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Abstract:

Abadie and Imbens (2008, Econometrica) showed that classical bootstrap schemes

fail to provide correct inference for K-nearest neighbour matching (KNNM) estima-

tors. This is an interesting result showing that bootstrap should not be applied without

theoretical justification. In this paper, we present two resampling schemes, which we

show provide valid inference for KNNM estimators. We resample “estimated individual

causal effects”(EICE), i.e. the difference in outcome between matched pairs, instead of

the original data. Moreover, by taking differences in EICEs ordered with respect to the

matching covariate, we obtain a bootstrap scheme valid also with heterogeneous causal

effects where mild assumptions on the heterogeneity are imposed. We provide proofs of

the validity of the proposed resampling based inferences. A simulation study illustrates

finite sample properties.
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1 Introduction

K-nearest neighbour matching (KNNM) estimators (Abadie and Imbens, 2006) are pop-

ular for estimating, non-parametrically, the average causal effect of a binary variable on

an outcome in observational studies, where confounders are observed and controlled for.

Abadie and Imbens (2008) showed that classical bootstrap schemes fail to provide cor-

rect inference for KNNM estimators. In particular, bootstrap variance estimators were

shown to be biased. The resampling schemes considered by Abadie and Imbens were

typical in the sense that bootstrap copies were obtained by sampling with replacement

from the data (assumed to be a random sample). Their finding is interesting because

it highlights the fact that bootstrap inference does not always work and hence must be

taken with caution in situations lacking theoretical justification.

In particular, more complex resampling schemes may be needed in cases not falling

within the usual range of applicability of the bootstrap. This is the case for KNNM

estimators which, as Abadie and Imbens (2008) noted, are unsmooth functions of the

data. In this paper, we present two resampling schemes, which we show provide correct

inference. We resample “estimated individual causal effects” (EICE), i.e. the differences

in outcomes between matched pairs, whose average forms the matching estimator of in-

terest. This has two major advantages. Because matching is performed only once on the

original data, the bootstrap scheme is extremely fast to perform (in contrast to boot-

strapping the original data, which implies that matching has to be performed for each

bootstrap replicate). However, most importantly, bootstrapping EICEs as described for-

mally below yields valid inference. Note that the KNNM estimator is a smooth function

of the EICEs. Still the latter cannot be naively resampled because they are dependent.

This is tackled by ordering the EICEs with respect to the matching covariate (or a score

summarizing several covariates) and by using a circular block bootstrapping scheme,

which is used for stationary and non-stationary time series (e.g., Künsch, 1989, Carl-

stein, 1986, Lahiri, 1992 and Sjöstedt, 2000). In contrast to typical time series situations
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the bootstrapped EICEs have a known dependence structure and we therefore propose

using this knowledge to find an appropriate blocking scheme.

The above sketched resampling scheme does typically not work if the EICEs have

mean (conditional on the covariate and the assignment to the causal agent) which varies

−heterogeneous causal effect. We overcome this difficulty by taking differences in EICEs

ordered with respect to the matching covariate, and again using a block bootstrap strat-

egy on these differences. This second bootstrap scheme yields correct inference under

wider generality, for instance, allowing for rather general forms of heterogeneity in the

causal effects.

Two inferential procedures are considered for constructing confidence intervals, either

using a subsampling variance estimate together with the asymptotic normality of the

estimator, or using bootstrap estimated quantiles of the distribution of the estimator.

We provide proofs of the validity of the different resampling based inferences proposed,

relying on previous results obtained on block-bootstrapping for non-stationary sequences

(Sjöstedt, 2000). The resampling inference studied herein constitutes a new and not

straightforward application area of such results which have previously been used in time

series and spatial data contexts (Ekström and Sjöstedt-de Luna, 2004).

In the next section KNNM estimators are introduced in the context of the potential

outcome framework. Section 3 summarizes our theoretical justifications of the boot-

strap schemes. A simulation study illustrating finite sample properties is presented in

Section 4. Abadie and Imbens (2006) matching based variance estimators are used as

benchmarks. All proofs are delayed to the Appendix.

2 Matching estimators for average causal effects

Consider the situation where we observe the variables y, z, and x for a random sample

of individuals, where z is binary (causal agent: treatment, intervention, etc.), y is an

outcome on which the causal effect of z is to be evaluated, and x is a vector of covariates

not affected by z.

Assume that the sample consists in n individuals with z = 1 (group of interest, often
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called treated) and N individuals with z = 0 (reference group), indexed such that zi = 1

for units i = 1, . . . , n and zi = 0 for i = n+ 1, . . . , n+N .

The effect evaluation we consider here consists in estimating the following average

causal effect (in the literature often called average treatment effect on the treated)

τ = E(yi(1)− yi(0)|zi = 1),

where yi(1) and yi(0) are the so called potential outcomes, i.e. outcomes arising when

units are assigned to zi = 1 and zi = 0 respectively; see Neyman (1923), Rubin (1974),

Imbens (2004). Here, and in the sequel, yi(1), yi(0), zi, and xi denote both the random

variable (modelling the random sampling from a population) and their realizations,

depending on the context.

We assume that if a given unit i is assigned a given value for zi, this does not affect

the values taken by the potential outcomes for this unit or any other unit in the study

(stable unit value assumption, Rubin, 1991). Moreover, the following assumptions are

assumed to hold in the sequel, thereby granting, for instance, that τ is identified (e.g.,

Rosenbaum and Rubin, 1983, Abadie and Imbens, 2006).

(A.1) : Conditional on the assignment to the causal agent zi = j, (yi(j), xi) are indepen-

dently drawn from the distribution law L{(yi(j), xi) | zi = j}, j = 0, 1. Let also

ns/(ns +N)→ α as n→∞, 0 < α < 1, for some s ≥ 1.

(A.2) : For all x in X , where X is the support of the random variable xi:

i) zi and yi(0) are independently distributed given xi = x,

ii) Pr(zi = 1|xi = x) < 1.

Assumption (A.2-i) is violated if there are unobserved confounders, that is variables

that affect both zi and yi(0) which are not included in xi. By assumption (A.2-ii), we

ensure that all those in the group of interest could as well have been in the reference

group for a given xi.

Another commonly targeted average causal effect is E(yi(1) − yi(0)). The latter is

equal to τ , for instance, when yi(1) − yi(0) = τ (constant individual causal effect) for
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all units in the population. However, in general the latter does not hold and stronger

assumptions are needed to identify E(yi(1)− yi(0)); see, e.g., Imbens (2004). Moreover,

in many applications the group of interest has far fewer individuals than the reference

group and it is therefore most realistic to focus on τ rather than on E(yi(1)− yi(0)).

We now define the KNNM estimator as

τ̂ =
1

n

n∑
i=1

(yi(1)− ŷi(0)), (1)

where ŷi(0) is a K-nearest neighbour estimator of the unobserved outcome yi(0). Thus,

for K = 1 we have

ŷi(0) = yj(0) such that j = argmin
j=n+1,...,n+N

|xj − xi|,

where | · · · | is a vector norm. Generally, for K > 0 and for i = 1, . . . , n, denote by

jK(i) the index j ∈ {n+ 1, . . . , n+N} that makes
∑n+N

l=n+1 1{|xl − xi| ≤ |xj − xi|} = K,

where 1{A} is the indicator function which is equal to one when A is true and zero

otherwise. The set of indices for the K-nearest matches for individual i is then JK(i) =

{j1(i), j2(i), . . . , jK(i)}. Then, a K-nearest neighbour estimator of the unobserved out-

come yi(0) is ŷi(0) = 1
K

∑
j∈JK(i) yj(0), i.e. the average of the K observed reference

individuals which are closest to individual i in terms of x.

Abadie and Imbens (2006) derived the asymptotic properties of (1), and under given

regularity conditions the KNNM estimator is asymptotically normal. They consider the

marginal variance V ar(τ̂) as well as the conditional variance V ar(τ̂ |X,Z), where X and

Z are vectors containing the observed values xi and zi, i = 1, . . . , n + N , respectively,

and introduce consistent estimators for these two variances (Abadie and Imbens, 2006,

Theorems 6 and 7), which we shall use as benchmarks in the Monte Carlo study below.

3 Resampling estimated individual causal effects

We now introduced bootstrapping and subsampling schemes that can be used to perform

inference on τ .
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Denote by

ein = yi(1)− ŷi(0)

the estimated individual causal effects (EICE). Hence, the KNNM estimator (1) can be

written as τ̂ = 1/n
∑n

i=1 ein. Note that the EICEs depend on xi through the matching

process.

(H.1) xi is a scalar- and continuous-valued random variable with compact and convex

support X and density function f(x) such that 0 < f(x) <∞ for x ∈ X .

In the multivariate covariate case, the covariate vector is typically replaced by a one-

dimensional continuous summarizing score (e.g., Rosenbaum and Rubin, 1983, Hansen,

2008, Waernbaum, 2010) to avoid the curse of dimensionality, thereby falling back into

our context.

From now on we consider the EICEs to be ordered according to their corresponding

xi values:

e1n, e2n, . . . , enn, where

x1n ≤ x2n ≤ . . . ≤ xnn,

with xin, i = 1, . . . , n, the sequence of ordered (ascendant) x′is. The EICEs are locally

dependent, because two EICEs may be computed using one or several identical indi-

viduals from the reference group. This dependence implies that we cannot bootstrap

the EICEs as if they were independently distributed and we henceforth consider block

resampling schemes.

3.1 Block bootstrap

We now describe a (circular) block bootstrap scheme and give conditions under which it

is theoretically justified for estimating the variance of τ̂ and for constructing confidence

intervals; see Politis and Romano (1992) and Sjöstedt (2000).

Construct consecutive blocks of data of size b < n such that Bj = {ejn, ej+1,n, . . . , ej+b−1,n},
j = 1, . . . , n, where en+j,n = ejn; see Figure 3. Furthermore, let e·jn =

∑j+b−1
i=j ein. A re-

sampling copy (a pseudo sample) of {e·jn}nj=1 is denoted {e∗·jn}nj=1 and is constructed by
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Bnn B1n

e1n e2n

e3n

e4n

eb−1,n

ebn

· · ·

...

en−1,n

enn

Figure 1: Circular blocking scheme.

drawing n items1 with replacement from {e·jn}nj=1. Define ē∗·n = 1
nb

∑n
j=1 e

∗
·jn and ē·n =

1
nb

∑n
j=1 e·jn. Because of the circular blocking scheme we have that ē·n = τ̂ . Under some

additional assumptions given below we show that the distribution L{
√
bn(ē∗·n−ē·n)|data}

asymptotically mimics the centered distribution of
√
nτ̂ conditional on X and Z.

As noted above, the sequence {e1n, . . . , enn} is locally dependent due to the fact that

the same units from the reference group can be used in different estimates ŷi(0). Thus,

there is a dependence between ein and all its neighbours using the same reference units,

forming thereby a cluster of dependent EICEs. By letting mn be equal to the maximum

size of the n clusters, we have that {e1n, . . . , enn} are mn-dependent, i.e., ein and ejn are

independent when |i− j| > mn, given X and Z.

We will use the following assumptions.

(H.2) For all n, we have that supn=1,2,...mn < m <∞ a.s.

(H.3) There is a δ > 0 such that supn=1,2,...
j=1,...,n

E
[
|ejn|2+δ | X,Z

]
<∞ a.s.

1We could instead draw n∗ items such that n∗b ≈ n. This is not necessary but probably slightly
better.
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Let τin = E(yi(1) − yi(0) | X,Z) = τ(xin), the expected individual causal effect

estimated by ein, and define τ·jn =
∑j+b−1

i=j τin, τ̄·jn = 1
b
τ·jn, and τ̄·n = 1

n

∑n
i=1 τin.

We need further the following assumptions.

(H.4) i) b
n

∑n
j=1(τ̄·jn − τ̄·n)2 = o(1) a.s.,

ii) b = b(n)→∞ as n→∞, and b(n) = o (n1−r), r > 0.

(H.5) E(yi(0) | xi, zi = 0) is Lipschitz on X .

Assumption (H.4-i) allows for vanishing variation (asymptotically) and could thus

be called “asymptotically homogeneous causal effect assumption.” Thus, a different

resampling scheme is introduced in the next section to cover heterogeneous causal effects.

Finally, (H4-ii) tells us how the block size must increase with sample size n in order to

achieve consistency, while (H.5) allows us to have control on the matching bias E(yi(0)−
ŷi(0) | X,Z).

Below we use the concept of weakly approaching sequences in probability (wa(P ),

introduced by Belyaev and Sjöstedt-de Luna, 2000), which is a generalization of the well

known concept of weak convergence, but without the need to have a limiting distribution;

see the Appendix for definitions.

Theorem 1 Assume (A.1-2) and (H.1-5). Then, as n→∞

L{
√
bn(ē∗·n − ē·n) | X,Z, Y } wa(P )↔ L{√n(τ̂ − τ̄·n) | X,Z},

where Y is the vector containing the observed outcomes yi(1), i = 1, . . . , n, and yi(0),

i = n+ 1, . . . , n+N .

The latter result tells us how we can mimic the distribution law L{√n(τ̂ − τ̄·n) | X,Z}
using bootstrap (see below). Note that the target distribution is conditional on X and

Z and centered on the parameter τ̄·n, sometimes called sample average causal effect in

the literature (e.g. Imbens, 2004, Imbens and Wooldridge, 2009). In cases where we

have homogeneous expected individual causal effects, i.e. where τi = τ for all i, we have

τ̄·n = τ .
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Theorem 1 justifies the following bootstrap confidence intervals. Draw B resampling

copies as described above yielding {
√
bn(ē∗g·n−ē·n)}Bg=1. These B draws yield an empirical

distribution whose quantiles q∗α are used to construct a (1 − α) confidence interval for

τ , e.g. as (τ̂ − q∗1−α/2/
√
n, τ̂ + q∗α/2/

√
n). The B draws could also be used to obtain

a variance estimator of τ̂ . However, such a variance estimator can readily be obtained

without drawing resampling copies, utilizing a subsampling estimator. We need the

following assumption.

(H.6) For all x ∈ X and z ∈ {0, 1}, σ2(x, z) < ∞, where σ2(x, z) = V ar(yi(1)zi +

yi(0)(1− zi) | xi = x, zi = z).

Note that (H.6) holds, for instance, when (H.1) holds and σ2(x, z) is Lipschitz on X for

z ∈ {0, 1}.

Theorem 2 Under assumptions (A.1-2) and (H.1-6) we have that

b

n

n∑
j=1

(ē·jn − ē·n)2 − V ar(√nτ̂ | X,Z)
P→ 0, as n→∞, (2)

where ē·jn = e·jn/b.

This variance estimator may be used together with the asymptotic normality of τ̂

(Abadie and Imbens, 2006) to construct confidence intervals for τ .

3.2 Block difference bootstrap

We want to allow for heterogeneity in the individual expected causal effects and thus

want to relax assumption (H.4-i), allowing instead for smoothly varying τ(xin). For such

situations we need to resample block-differences in order to achieve asymptotically cor-

rect inference. Let e′·jn = e·jn − e·j+2b,n, j = 1, . . . , n, denote block differences separated

by distance 2b. A resampling copy {e′∗·jn}nj=1 of {e′·jn}nj=1 is constructed by randomly

drawing n items with replacement from {e′·jn}nj=1. Let ē′∗·n = 1
2bn

∑n
j=1 e

′∗
·jn.

Further, we use below the following assumptions.
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(H.7) i) E(yi(1) | xi, zi = 1) is Lipschitz on X ,

ii) b(n)→∞ as n→∞ and b(n) = o(n2/3).

Assumptions (H.5) and (H.7-i) imply that τ(xin) is Lipschitz on X . This may be

called a “smoothly varying causal effect assumption” and replaces below the asymptot-

ically homogeneous causal effect assumption (H.4-i).

Theorem 3 Assume (A.1-2), (H.1-3), (H.5) and (H.7). Then, as n→∞

L{
√

2bnē′∗·n|X,Z, Y }
wa(P )↔ L{√n(τ̂ − τ̄·n) | X,Z}.

The resampling distribution L{
√

2bnē′·n|X,Z, Y } can be estimated by generating

B bootstrap copies {
√

2bnē′∗g·n }Bg=1 and using the resulting empirical distribution. The

latter is used to construct a confidence interval for τ . Here again a subsampling variance

estimator is available without the need to bootstrap.

Theorem 4 Under assumptions (A.1-2), (H.1-3), (H.5) and (H.6-7), we have

1

2bn

n∑
j=1

e′2·jn − V ar(
√
nτ̂ | X,Z)

P→ 0, as n→∞. (3)

Note that the marginal variance is obtained by adding 1/n
∑n

i=1(yi − ŷi(0) − τ̂)2 (i.e.,

an estimate of the variance of τin) to 1
2bn

∑n
j=1 e

′2
·jn; see Abadie and Imbens (2006, Sec.

4.2).

4 Monte Carlo study

To illustrate the finite sample properties of the methods introduced in this paper we

simulate data from a range of different data generating mechanisms (DGM) and present

results on K = 1 nearest neighbour matching estimators. For each individual i, values

for the variables are simulated using a combination of the mechanisms described below,

where the covariate is generated as xi ∼ U(0, 1).
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Table 1: Specification of the simulated data generating mechanisms.

mechanism n/N τ(x)a τ
DGM1.a (T.1,Y0.1,Y1.1) 1 c 2
DGM1.b (T.2,Y0.1,Y1.1) 0.1 c 2
DGM2.a (T.1,Y0.1,Y1.2) 1 c 2
DGM2.b (T.2,Y0.1,Y1.2) 0.1 c 2
DGM3.a (T.1,Y0.1,Y1.3) 1 nc 1.8b

DGM3.b (T.2,Y0.1,Y1.3) 0.1 nc 1.8b
ac: constant; nc: non-constant.

bApproximate values obtained via simulation.

Treatment assignment z given x

(T.1) Pr(zi = 1|xi) = (1 + exp(0.5− 2xi))
−1,

(T.2) Pr(zi = 1|xi) = 0.25((1 + exp(0.5− 2xi)))
−1.

Outcome without treatment Outcome under treatment

(Y0.1) yi(0)|xi ∼ N(−1 + 2xi, 1). (Y1.1) yi(1) = yi(0) + 2,
(Y1.2) yi(1)|xi ∼ N(1 + 2xi, 1),
(Y1.3) yi(1)|xi ∼ N(4xi, 1),

The DGMs used in our study are described in Table 1. Constant and different forms

of heterogeneity in the treatment effects are considered. Sample sizes considered are

n = 500 and 2000. For (T.1), data is simulated such that n = N and for (T.2) such that

N = 10n.

Due to the dependence in the EICEs and in order to achieve consistency, block size

b must increase as n increases (assumptions (H.4-ii) and (H7-ii)). The choice of b is, in

our particular case, simplified by the fact that we know the dependence structure for

a given sample. In particular, mn in assumption (H.2) is the maximum cluster size of

dependent EICEs. This information can be used to decide upon a block size b. Here we

investigate the choice b = cmn, where c is a tuning parameter. In the simulations, we

vary c within {1/4, 1/2, 3/4, 1, 3/2, 2, 5/2, 3, 4, 5, 7}.
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The results of the Monte Carlo experiments based on 10’000 replicates (with fixed X

and Z) are displayed in Tables 2-4 (Tables are under compilation and will be included

soon). AI-C and AI-M stands for the conditional and marginal variance estimators,

respectively, introduced by Abadie and Imbens (2006, Theorem 6 and 7), while BB and

BDP stands for block bootstrap and block difference bootstrap respectively. To save

space, we display only the results for c = 3/2, which yielded best empirical coverages

over a wide range of situations. The complete results may be obtained from the authors.

Both AI-M and the BB scheme fail for DGM3 which was expected. The former is

a marginal variance estimate (conditional and marginal variance differ only for DGM3)

while our Monte Carlo study is validating conditional inference (the replicates are con-

ditioned on X and Z fixed). BB is valid under assumption (H.4-i), which is violated

under DGM3 since the average causal effect is a function of the covariate. Abadie and

Imbens (2006, Theorem 7) conditional variance estimator performs remarkably well in

all situations considered, both in terms of variance (of
√
nτ̂) estimation and empirical

coverage of 90% and 95% confidence interval for τ . Finally, bootstrap is generally out-

performed by AI-C, although the difference in results decreases with increasing sample

sizes.

For homogeneous causal effects (DGM1-2) the results are not sensitive to value of

c ≤ 3/2. This is not the case for DGM3 where variance estimation and empirical

coverages deteriorate when departing from c = 3/2.
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Sjöstedt, S. (2000). Resampling m-dependent random variables with applications to

forecasting. Scandinavian Journal of Statistics , 27, 43–562.
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A Appendix: Proofs

We first define the concept of weakly approaching sequences (introduced by Belyaev and

Sjöstedt-de Luna, 2000), which is a generalization of the well known concept of weak

convergence, but without the need to have a limiting distribution. Let Cb(R) denote all

continuous real-valued bounded functions on R. For two sequences of random variables

{Xn ∈ R}, {Yn ∈ R} we say that L(Xn) weakly approaches L(Yn) if, for each function

h ∈ Cb(R), E[h(Xn)] − E[h(Yn)] → 0 as n → ∞. We denote this type of convergence

by L(Xn)
wa↔ L(Yn). A similar definition exists for random distribution laws: Consider

the two sequences {Xn,Zn} and {Yn}, where the random elements Zn belong to some

space Zn, and Xn,Zn are defined on the same probability space. Then the sequence of

regular conditional distribution laws {L(Xn|Zn)}, given Zn, weakly approaches {L(Yn)}
in probability along {Zn} if E[h(Xn)|Zn] − E[h(Yn)]

P→ 0 asn → ∞. This type of

convergence is denoted by L(Xn|Zn)
wa(P )←→ L(Yn). For more general definitions and a

collection of properties, see Belyaev and Sjöstedt-de Luna (2000) and Sjöstedt-de Luna

(2005). The proofs of Theorems 1-4 rely to a large extent on results by Sjöstedt (2000)

for m-dependent sequences. We assume s = 1 in (A.1), which is a worst case scenario.

Proof of Theorem 1. Let tin = E[ein|X,Z], δin = tin − τin, and furthermore let

14



t̄·jn =
∑j+b−1

i=j tin/b, t̄·n =
∑n

i=1 tin/n, δ̄·jn =
∑j+b−1

i=j δin/b, and δ̄·n =
∑n

i=1 δin/n. Then

b

n

n∑
j=1

(t̄·jn − t̄·n)2 =
b

n

n∑
j=1

(δ̄·jn − δ̄·n)2 +
b

n

n∑
j=1

(τ̄·jn − τ̄·n)2

+
2b

n

n∑
j=1

(δ̄·jn − δ̄·n)(τ̄·jn − τ̄·n).

Note that
1

n

n∑
j=1

(δ̄·jn − δ̄·n)2 =
1

n

n∑
j=1

δ̄2
·jn − δ̄2

·n.

Let µ0(x) = E[y(0)|x, z = 0]. Then

δin =
1

K

K∑
k=1

(µ0(xin)− µ0(xjk(i))).

It follows from Jensens inequality that∣∣∣∣∣
b∑

j=1

cj

∣∣∣∣∣
a

≤ ba−1

b∑
j=1

|cj|a. (4)

Therefore, by (4), (H.1) and (H.5) and from Lemma 2 in Abadie and Imbens (2006) we

have, for some positive constant c <∞, that

E[δ2
in] ≤ 1

K

K∑
k=1

E[|µ0(xin)− µ0(xjk(i))|2] ≤
c

K

K∑
k=1

E[|xin − xjk(i)|2] = O(N−2). (5)

Note that (A.1) implies that O(N−2) = O(n−2). Hence it follows, due to independence,

(4) and (5) that

E[δ̄2
·jn] ≤ O(n−2) and E[δ̄2

·n] ≤ O(n−2). (6)

Combining the above results and using Chebyshevs inequality and (H.4-ii) we thus have

that

P

(
b

n

n∑
j=1

(δ̄·jn − δ̄·n)2 > ε

)
≤ E

[
b

n

n∑
j=1

(δ̄·jn − δ̄·n)2

]
/ε ≤ O(bn−2) = O(

1

n1+r
).

Now
∞∑
n=1

P

(
b

n

n∑
j=1

(δ̄·jn − δ̄·n)2 > ε

)
=
∞∑
n=1

O(
1

n1+r
) <∞,

15



which implies that
b

n

n∑
j=1

(δ̄·jn − δ̄·n)2 → 0 a.s., (7)

see, e.g., Shiryaev (1984, p. 252-253). From Cauchy-Schwartz inequality together with

(H.4) and (7) we have that

b

n

n∑
j=1

(δ̄·jn − δ̄·n)(τ̄·jn − τ̄·n) ≤

√√√√ b

n

n∑
j=1

(δ̄·jn − δ̄·n)2

√√√√ b

n

n∑
j=1

(τ̄·jn − τ̄·n)2 → 0 a.s.,

and thus
b

n

n∑
j=1

(t̄·jn − t̄·n)2 → 0 a.s. (8)

By (H.2), (H.3) and (8) we have from Theorem 2 in Sjöstedt (2000) that, for every ε > 0

and for all h(·) ∈ Cb(R),

P
(∣∣∣E[h(

√
bn(ē∗·n − ē·n))|Y,X,Z]− E[h(

√
n(ē·n − t̄·n)|X,Z]

∣∣∣ > ε |X = x, Z = z
)

= o(1) a.s.

By dominated convergence it follows that

lim
n→∞

P
(∣∣∣E[h(

√
bn(ē∗·n − ē·n))|Y,X,Z]− E[h(

√
n(ē·n − t̄·n)|X,Z]

∣∣∣ > ε
)

= 0,

for every ε > 0 and for all h(·) ∈ Cb(R). Hence,

L(
√
bn(ē∗·n − ē·n))|Y,X,Z)

wa(p)←→ L(
√
n(ē·n − t̄·n)|X,Z) as n→∞.

We have that

L(
√
n(ē·n − t̄·n)|X,Z) = L(

√
n(ē·n − τ̄·n)|X,Z) + L(

√
nδ̄·n|X,Z).

By (6) and Chebyshevs inequality
√
nδ̄·n

P→ 0 as n→∞, and thus the result follows.

Proof of Theorem 2. Let uin = ein − tin. Then

b

n

n∑
j=1

(ē·jn − ē·n)2 =
b

n

n∑
j=1

(ū·jn − ū·n)2 +
b

n

n∑
j=1

(t̄·jn − t̄·n)2

+
2b

n

n∑
j=1

(ū·jn − ū·n)(t̄·jn − t̄·n),

16



where ū·jn =
∑j+b−1

i=j uin/b, and ū·n =
∑n

j=1 ujn/n. From (H.2)-(H.4) and by the same

arguments as in the proof of Theorem 2 in Sjöstedt (2000) we have that for all ε > 0

P

(∣∣∣∣∣ bn
n∑
j=1

(ū·jn − ū·n)2 − V ar[√nτ̂ |X,Z]

∣∣∣∣∣ > ε |X = x, Z = z

)
= o(1) a.s.

Dominated convergence then implies that

b

n

n∑
j=1

(ū·jn − ū·n)2 − V ar[√nτ̂ |X,Z]
p→ 0 as n→∞. (9)

From equation (13) in Abadie and Imbens (2006) we have that

V ar[
√
nτ̂ |X,Z] =

1

n

n∑
i=1

σ2(xin, zin) +
1

n

N∑
i=n+1

Q2
K(i)

K2
σ2(xin, zin), (10)

where Q2
K(i) denotes the number of times unit i (in the reference group) is used as a

match given that K matches per unit (in the group of interest) are used. The first term

on the right hand side of (10) is O(1) by (H.6). From Lemma 3 in Abadie and Imbens

(2006) we have that (N/n)E[Q2
K(i)|zin = 0] is bounded, which thus makes the last term

in (10) of magnitude OP (1), and therefore

V ar[
√
nτ̂ |X,Z] = Op(1). (11)

Hence,
b

n

n∑
j=1

(ū·jn − ū·n)2 = Op(1). (12)

By Cauchy-Schwartz inequality, (12) and (8)we have that

b

n

n∑
j=1

(ū·jn − ū·n)(t̄·jn − t̄·n) ≤

√√√√ b

n

n∑
j=1

(ū·jn − ū·n)2

√√√√ b

n

n∑
j=1

(t̄·jn − t̄·n)2 = op(1). (13)

Hence, combining (9), (H.4) and (13) yields the desired result.

Proof of Theorem 3. Let rin = ein − δin such that ein = rin + δin, and note that

E[rin|X,Z] = τin. It then follows that

L(
√

2bne′∗·n|X,Z, Y ) = L(
√

2bnr′∗·n|X,Z, Y ) + L(
√

2bnδ′∗·n|X,Z, Y ),

17



where r′∗·n and δ′∗·n are constructed as e′∗·n, while replacing ein by rin and δin, respectively.

Assumptions (H.2-3), (H.5) and (H.7-ii) imply that (7) holds and thus by Remark 3 in

Sjöstedt (2000) we have that

L(
√

2bnδ′∗·n|X,Z, Y )
wa(p)←→ L(

√
n(δ̄·n − E[δ̄·n|X,Z])|X,Z) = 0.

That

L(
√

2bnr′∗·n|X,Z, Y )
wa(p)←→ L(

√
n(τ̂ − τ̄·n)|X,Z) as n→∞,

follows by similar arguments as in the proof of Theorem 1, using Theorem 1 in Sjöstedt

(2000), and noting that by (H.5) and (H.7) τin is Lipschitz. Hence,

L(
√

2bne′∗·n|X,Z, Y )
wa(p)←→ L(

√
n(τ̂ − τ̄·n)|X,Z) as n→∞.

Proof of Theorem 4. We have that

1

2bn

n∑
j=1

(e′·jn)2 =
1

2bn

n∑
j=1

(u′·jn + t′·jn)2 =
1

2bn

n∑
j=1

(u′·jn)2 +
1

2bn

n∑
j=1

(t′·jn)2 +
1

bn

n∑
j=1

u′·jnt
′
·jn,

where u′·jn = b(ū·jn−ū·j+2b,n) and t′·jn = b(t̄·jn− t̄·j+2b,n). Since tin = τin+δin, by repeated

use of (4) we have that

1

bn

n∑
j=1

(t′·jn)2 ≤ 2b

n

n∑
j=1

(τ̄·jn − τ̄·i+2b,n)2 +
2b

n

n∑
j=1

(δ̄·jn − δ̄·i+2b,n)2

≤ 2

n

n∑
j=1

j+b−1∑
i=j

(τin − τi+2b,n)2 +
8b

n

n∑
j=1

δ̄2
·jn.

From (6) we have that E[b
∑n

j=1 δ̄
2
·jn/n] = O(b/n2) which tends to zero as n→∞, and

hence, b
∑n

j=1 δ̄
2
·jn/n

p→ 0 as n → ∞. Furthermore, (H.5) and (H.7) implies that τin is

Lipschitz, and thus, for some positive constant cL <∞,

1

n

n∑
j=1

j+b−1∑
i=j

E[(τin − τi+2b,n)2] ≤ c2L
n

n∑
j=1

j+b−1∑
i=j

E[(xin − xi+2b,n)2]
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≤ 2bc2L
n

n∑
j=1

j+b−1∑
i=j

2b−1∑
k=0

E[(xi+k,n − xi+k+1,n)2] = O(b3/n2),

by (4) and Lemma 2 of Abadie and Imbens (2006). But O(b3/n2) → 0 as n → ∞, by

(H.7-ii). Hence,

1

2bn

n∑
j=1

(t′·jn)2 p→ 0 as n→∞. (14)

(H.2-3), (H.5) and (H.7) together with Lemma 3 in Sjöstedt (2000) ensures that, for

any ε > 0

P

(∣∣∣∣∣ 1

2bn

n∑
j=1

(u′·jn)2 − var[√nτ̂ |X,Z]

∣∣∣∣∣ > ε | X = x, Z = z

)
= o(1) a.s.

By dominated convergence we thus have that

1

2bn

n∑
j=1

(u′·jn)2 − var[√nτ̂ |X,Z]
p→ 0 as n→∞. (15)

From similar arguments as for (11) and (12) it follows that
∑n

j=1(u
′
·jn)2/(2bn) = Op(1).

Now, by the Cauchy-Schwartz inequality, (14) and (15)

1

bn

n∑
j=1

u′·jnt
′
·jn ≤

√√√√ 1

2bn

n∑
j=1

(u′·jn)2

√√√√ 1

2bn

n∑
j=1

(t′·jn)2 = op(1).

Hence, the desired result follows.
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