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1 Introduction

Estimates of earnings processes are useful for a variety of purposes, which include testing between dif-

ferent models of the determinants of earnings distributions, building predictive earnings distributions, or

calibrating consumption and saving models.

While several papers have focused on modelling the heterogeneity and time series properties of the

conditional mean of earnings given its past (Lillard and Willis (1978), MaCurdy (1982), Abowd and Card

(1982), among others), the modelling of the conditional variance has been neglected. However, in many

applications it is important to understand the behavior of higher order moments of the process. This

would be the case if we consider an individual trying to forecast his/her future earnings, in order to guide

savings or other decisions. As the individual faces various sorts of uncertainty, we shall be interested in

forecasting not only the level of earnings but also its variance. The properties of the variance will be

important for describing wage profiles over time and for better understanding what drives fluctuations

in them. A richer specification can contribute also to modeling choices in models that use the earnings

process as an input. In fact, recent studies stress the relevance of considering a variance that varies with

time and across individuals (Meghir and Windmeijer (1999), Chamberlain and Hirano (1999), Meghir

and Pistaferri (2004), Albarrán (2004), Alvarez and Arellano (2004)).

There are also many papers that study the increase in the cross-sectional variance of earnings since

the 70’s until today. This growth in the aggregate variance is associated with an increase in inequality.

Much less it is known about the behaviour of the conditional variance given observed and unobserved

individual characteristics.

In this paper I propose a likelihood-based panel data model for the heterogeneity and dynamics of the

conditional mean and the conditional variance of individual wages. In particular, I build a dynamic panel

data model with linear individual effects in the mean and multiplicative individual effects in the condi-

tional ARCH type variance function. In the model people at different levels of the income distribution

face a different variance of their time-income profile.

It is well known that failure to control for individual unobserved heterogeneity can lead to misleading

conclusions. This problem is particularly severe when the unobserved heterogeneity is correlated with

explanatory variables. Such a situation arises naturally in a dynamic context. In this paper I adopt a

fixed effects perspective leaving the distribution for the unobserved heterogeneity completely unrestricted
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and treating each effect as one different parameter to be estimated.

There is an extensive literature on how to estimate linear panel data models with fixed effects (see

Chamberlain (1984) and Arellano and Honoré (2001) for references), but there are no general solutions

for non-linear cases. If the number of individuals N goes to infinity while the number of time periods

T is held fixed, estimation of non-linear models with fixed effects by maximum likelihood suffers from

the so-called Incidental Parameters Problem (Neyman and Scott (1948)). This problem arises because

the unobserved individual characteristics are replaced by inconsistent sample estimates, which biases

estimates of model parameters. In particular, under this problem, the bias of the maximum likelihood

estimator is of order 1/T . The number of periods available for many panel data sets is such that it is not

less natural to talk of time-series finite sample bias than of fixed-T inconsistency or underidentification.

In this light, an alternative reaction to the fact that micro panels are short is to ask for approximately

unbiased estimators as opposed to estimators with no bias at all. This approach has the potential of

overcoming some of the fixed-T identification difficulties and the advantage of generality. Methods of

estimation of nonlinear fixed effects panel data models with reduced bias properties have been recently

developed (see Arellano and Hahn (2005) for a review). There are automatic methods based on simulation

(Hahn and Newey (2004)), bias correction based on orthogonalization (Cox and Reid (1987), Lancaster

(2002)) and their extensions (Woutersen (2002), Arellano (2003)), analytical bias correction of estimators

(Hahn and Newey (2004), Hahn and Kuersteiner (2004)), bias correction of the moment equation (Carro

(2004), Fernández-Val (2005)) and bias corrections for the concentrated likelihood (DiCiccio and Stern

(1993), Severini (1998), Pace and Salvan (2005)).

Following this perspective, I build a modified likelihood function for estimation and inference. Using

a bias-corrected concentrated likelihood makes it possible to reduce the estimation bias to a term of

order 1/T 2, without increasing its asymptotic variance. This is very encouraging since the goal is not

necessarily to find a consistent estimator for fixed T , but one with a good finite sample performance and

a reasonable asymptotic approximation for the samples used in empirical studies.

I develop, for the first time, several versions of the modified likelihood based on DiCiccio and Stern

(1993), Severini (1998), and Pace and Salvan (2005) adapted to a nonlinear dynamic setting. The small

sample performance of bias corrected estimators is investigated in a Monte Carlo study. The simulation

results show that the bias of the maximum likelihood estimator is substantially corrected for samples
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designs that are broadly calibrated to the one used in the empirical aplication.

The empirical analysis is conducted on data drawn from the 1968-1993 Panel Study of Income Dy-

namics (PSID). These model and data are interesting because we do not know much how the volatilities

of individual wages behave in a period of increasing aggregate inequality. I find a significant estimate for

the AR coefficient in the mean and for the ARCH effects in the variance. However, the latter dissapear

when there are no job changes in the sample.

In a similar sample for male earnings, Meghir and Pistafferi (2004) find strong evidence of state

dependence effects as well as evidence of unobserved heterogeneity in the variances. They also propose

an autoregressive conditional heteroskedasticity panel data model of earnings dynamics, but they separate

into a permanent component and a transitory component of earnings shocks. This can be appropriate

in models where the author makes assumptions about the nature of the different shocks that affect the

income process. Nevertheless, a model with a permanent component I(1) imposes a unit root, i.e., a value

for the autoregressive coefficient in the mean equal to one, whereas recent evidence suggests a value for

this coefficient around 0.4−0.5 (Alvarez and Arellano (2004)). I use a single-shock, multiple effects model

instead. This parsimonious specification would be useful for describing and estimating wage distributions

(Chamberlain and Hirano (1999)). Meghir and Windmeijer (1999) and Albarrán (2004) use single-shock

models as well. They recover orthogonality conditions for the estimation of ARCH process but, in real

data, GMM estimators perform bad.

Two limitations of the model are the following: (i) so far there is not adjustment for measurement

error; and (ii) there is not explicit treatment of job changes. It is known that measurement error is

important for PSID wages and that part of the wages variance may be due to job mobility, so these issues

need to be addresed in further work

The rest of the paper is organised as follows. Section 2 presents the panel nonlinear dynamic model

and the likelihood function. Section 3 reviews the alternative approaches for correcting the concentrated

likelihood adapted to this particular setting. Section 4 shows some simulations to study the finite sample

performance of the bias corrections for the concentrated likelihood. In Section 5, I present the preliminary

empirical application on individual wages. Section 6 concludes with a future research agenda.
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2 The Model and the Likelihood Function

2.1 The Model

I consider the following model of individual wages where i and t index individuals and time, respectively:1

yit = αyit−1 + ηi + eit = αyit−1 + ηi +
p
hit²it; (i = 1, ...,N ; t = 1, ..., T )

with

E
¡
yit|yt−1i ,Θi,Υ

t
¢
= αyit−1 + ηi,

and

hit = V ar
¡
yit|yt−1i ,Θi,Υ

t
¢
= E

¡
e2it|yt−1i ,Θi,Υ

t
¢

= exp

µ
ψi + ωt + β

∙q
²2it−1 + Λ−E

µq
²2it + Λ

¶¸¶
= h (²it−1,ψi,ωt) .

In these expressions, {yi0, ..., yiT}Ni=1 are the observed data, Θi = (ηi,ψi)
0 are the individual unob-

served fixed effects, ΥT = (ω0, ...,ωT )
0 are time effects, eit is an ARCH process, {²it} is an i.i.d. sequence

with zero mean and unit variance, and Λ is a small positive number used to approximate the absolute

value function by means of a rotated hyperbola, so that hit is everywhere differentiable. The log formu-

lation implies that hit is always nonnegative, regardless of the parameter values (Nelson, 1992). Finally,

we denote the vector of common parameters as Γ = (α,β,ω0,ω1, . . .ωT )
0.

For the conditional mean, I consider an autorregresive specification where the parameter α measures

the persistence on the level of wages to shocks, ηi describe permanent unobserved heterogeneity and eit

reflects shocks that individuals receive every period. Departing for the classical AR(1) process, I permit

that the variances, given past observations, change over time and across individuals. This particular

ARCH type specification allows me to capture three patterns of wage volatility. The first one is individual

heterogeneity, ψi: wage volatilities of different individuals can vary differently. For instance, there can

be different variances of wages between civil servants and workers of a sales department and also between

workers of sales departments in big and small firms. The second feature captures the fact that variances

at each period may differ as a result of aggregate effects, ωt. The last one is dynamics, β, reflecting that
1 In the sequel, for any random variable (or vector of variables) Z, zit denotes observation for individual i at period t,

and zti = {zi0, ..., zit}, i.e. the set of observations for individual i from the first period to period t.
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periods of high volatility in wages tend to be consecutive and viceversa. This feature would be noticiable

not only for sellers, but also for funds managers or, in general, for workers that receive bonuses.

2.2 The Likelihood Function

Under the assumption that ²it ∼ N(0, 1), that is, ²it|yt−1i ,Θi,Υ
t ∼ N(0, 1) then, conditional on the past,

the model is normal heteroscedastic

yit|yt−1i ,Θi,Υ
t ∼ N(αyit−1 + ηi, hit),

and the individual likelihood, conditioned on initial observations, fixed effects, strictly exogenous variables

(note that I assume strict exogeneity in time effects), is

f (yi1, ..., yiT |yi0,ω0, ...,ωT ,Θi0) =
TY
t=1

f
¡
yit|yit−1,Υt,Θi0,Γ0

¢
.

The log-likelihood for one observation, `it, differs from the linear model with normal errors through the

time-dependence of the conditional variance. For any individual i and t > 1, we write

ln f
¡
yit|yit−1,Υt,Θi,Γ

¢
= `it (Γ,Θi) ∝ −

1

2
ln (h (²it−1,ψi,ωt))−

1

2

(yit − αyit−1 − ηi)
2

h (²it−1,ψi,ωt)
.

Initial conditions. Evaluation of the likelihood at t = 1 requires pre-sample values for ²2it and hit. For

t = 1,

yi1 = αyi0 + ηi + [h (²i0,ψi,ω1)]
1/2
²i1,

where h (²i0,ψi,ω1) = h (yi0, yi,−1, yi,−2, ...) .We have a model for f
¡
yi1|yi0, yi,−1, yi,−2, ...,ω1,Θi0

¢
or for

f
¡
yi1|yi0, ²i0,ω1,Θi0

¢
where ²i0 resumes all the past values of yit, but what we need is f

¡
yi1|yi0,ω1,Θi0

¢
.

We know that

E
¡
yi1|yi0,ω1,Θi0

¢
= E

¡
yi1|yi0, ²i0,ω1,Θi0

¢
= αyi0 + ηi,

and

V ar
¡
yi1|yi0,ω1,Θi0

¢
= E

¡
h (²i0,ψi,ω1) |yi0,ω1,Θi0

¢
+ V ar

¡
αyi0 + ηi|yi0,ω1,Θi0

¢
= E

¡
h (²i0,ψi,ω1) |yi0,ω1ω1,Θi0

¢
+ V ar

¡
ηi|yi0,ω1,Θi0

¢
= ϕ (ηi,ψi,Γ) .
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Thus, f
¡
yi1|yi0,ω1,Θi0

¢
would be a mixture given that:

f
¡
yi1|yi0,ω1,Θi0

¢
=

Z
f
¡
yi1|yi0, ²i0,ω1,Θi0

¢
dG
¡
²i0|yi0,ω1,Θi0

¢
.

For simplicity, I consider an approximate model where yi1|yi0,ω1,Θi0 ∼ N (αyi0 + ηi, hi1) and, as

suggested by Bollerslev (1986), I use the mean of the squared residuals as an estimate for hi1 =

1
T

TP
t=1
e2it.

2 As T → ∞, hi1 is the steady-state unconditional variance of eit given fixed effects, that

is, ϕ (ηi,ψi,Γ) =plimT→∞
1
T

TP
t=1
(yit − αyit−1 − ηi)

2.

Let the individual likelihood function be

£i (Γ,Θi) =
TY
t=2

1

[h (²it−1,ψi,ωt)]
1/2

φ

Ã
yit − αyit−1 − ηi

[h (²it−1,ψi,ωt)]
1/2

!
· 1

[hi1]
1/2

φ

Ã
yi1 − αyi0 − ηi

[hi1]
1/2

!
,

and the log-likelihood of each observation

`it (Γ,Θi) = −
1

2
ln (hit)−

1

2

(yit − αyit−1 − ηi)
2

hit
,

where

hit =

⎧⎪⎨⎪⎩
1
T

TP
t=1
e2it if t = 1,

exp
³
ψi + ωt + β

hq
²2it−1 + Λ−E

³q
²2it−1 + Λ

´i´
if t > 1.

3 A likelihood-based solution to the incidental parameters pro-
blem in dynamic nonlinear models with multiple effects

In this section, I adopt a likelihood-based approach that allows me to deal with dynamics and multiple

fixed effects in the estimation. The MLE of Γ, concentrating out the Θi, is the solution to

bΓ ≡ argmax
Γ

1

NT

NX
i=1

TX
t=1

`it

³
Γ, bΘi (Γ)´ ; bΘi (Γ) ≡ argmax

Θ

1

T

TX
t=1

`it (Γ,Θ) .

Incidental Parameters Problem. In this context, fixed effects MLE suffers from the incidental para-

meters problem noted by Neyman and Scott (1948). In this case, the incidental parameters would be

the individual effects. The problem arises because the unobserved individual effects Θi are replaced by

sample estimates bΘi (Γ): as only a finite number T of observations are available to estimate each Θi,

the estimation error of bΘi (Γ) does not vanish as the sample size N grows, and this error contamines the

estimates of common parameters in nonlinear models. Let

L (Γ) ≡ lim
N→∞

1

N

NX
i=1

E

"
TX
t=1

`it

³
Γ, bΘi (Γ)´# .

2Another alternative would be adding the missing variances as parameters to be estimated.
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Then, from the usual maximum likelihood properties, for N →∞ with T fixed, bΓT = ΓT + op (1) , where
ΓT ≡ argmaxΓ L (Γ) . In general, ΓT 6= Γ0, but ΓT → Γ0 as T →∞.

Due to the noise in estimating bΘi (Γ), the expectation of the concentrated likelihood is not maximized
at the true value of the parameter. This problem can be avoided by correcting the concentrated likelihood.

The bias in the expected concentrated likelihood at an arbitrary Γ can be expanded in orders of

magnitude of T

E

"
1

T

TX
t=1

`it

³
Γ, bΘi (Γ)´− 1

T

TX
t=1

`it
¡
Γ, Θ̄i (Γ)

¢#
=
bi (Γ)

T
+ o

µ
1

T

¶
,

where Θ̄i (Γ) maximizes limT→∞E
h
T−1

PT
t=1 `it (Γ,Θ)

i
. As it is shown in Appendix A, the form of the

approximate bias of the concentrated likelihood is:

bi (Γ)

T
≈ 1
2
tr
³
Hi (Γ)V ar

hbΘi (Γ)i´ = 1

2T
tr
¡
H−1i (Γ)Υi (Γ)

¢
,

where

Hi (Γ) = −E
∙
∂2`it (Γ,Θi)

∂Θi∂Θ0i

¸
,

Υi (Γ) = E

∙
∂`it (Γ,Θi)

∂Θi
· ∂`is (Γ,Θi)

∂Θ0i

¸
.

I will consider three alternative estimators of Γ which maximize a bias-corrected concentrated likeli-

hood function:

eΓ = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bΘi (Γ)´

= argmax
Γ

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
Γ, bΘi (Γ)´− 1

T
b̂i (Γ)

#
.

Letting b̂i (Γ) be an estimated bias, eΓ is expected to be less biased than the MLE bΓ. Moreover, in
a likelihood context, we can consider a local version of the estimated bias using that at the truth

H−1i (Γ0)Υi (Γ0) = 1 (Pace and Salvan, 2005). As it is shown at the end of Appendix A, this local

version of bbi (Γ) gives bbi (Γ) = −1
2
ln det bHi (Γ) + 1

2
ln det bΥi (Γ) .

This is why, in a likelihood context, I use a Determinant Based Approach and, for Pseudo Likelihoods, I

use a Trace Based Approach.
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For estimating the bias we need to estimate the hessian term, Hi (Γ) , and the expected outer product

term, Υi (Γ) . For estimating the first one we can use its sample counterpart:

bHi (Γ) = − 1
T

TX
t=1

∂2`it

³
Γ, bΘi (Γ)´

∂Θi∂Θ0i
.

With regard to Υi (Γ), note that since T−1
PT
t=1

∂`it(Γ,bΘi(Γ))
∂Θi

= 0, also T−1
PT

t=1

PT
s=1

∂`it(Γ,bΘi(Γ))
∂Θi

·
∂`is(Γ,bΘi(Γ))

∂Θ0i
= 0, so that using the observed quantities evaluated at bΘi (Γ) will not work. The three

different corrections, presented below, are based on three different estimators for this second term of the

bias.

3.1 Determinant Based Approach Using Expected Quantities

This approach is based on the expectation

Ῡi (Γ,Θi;Γ0,Θi0) = E0 [Υi (Γ) |yi0] .

It is important to note that this expected quantity can be obtained for given values of (Γ,Θi) and

(Γ0,Θi0), analytically or numerically, because in the likelihood context the density of the data is avail-

able. However, it cannot be calculated at (Γ0,Θi0) because true values are unknown. The estimator

solves this problem replacing (Γ0,Θi0) by their ML estimates
³bΓ, bΘi´. This give us the useful quantity:

Ῡi

³
Γ, bΘi (Γ) ; bΓ, bΘi´ . It can be regarded as a dynamic version of Severini (1998) or DiCiccio and Stern

(1993) approximations to the modified profile likelihood.

Iterated Bias-Corrected Likelihood Estimation. An undesirable feature of this approach is its

dependence on bΓ, which may have a large bias. This problem can be avoided by considering an iterative

procedure. That is, once we have a first corrected estimate

eΓI = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bΘi (Γ) ; bΓ, bΘi´ ,

we calculate

eΓII = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bΘi (Γ) ; eΓI , bΘi ³eΓI´´ .

Pursuing the iteration

eΓK = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bΘi (Γ) ; eΓK−1, bΘi ³eΓK−1´´ ,
8



until convergence, we shall obtain an estimator eΓ∞ that solves

NX
i=1

qmi

³
Γ, bΘi (Γ) ;Γ, bΘi (Γ)´ = 0,

where qmi (Γ,Θi;Γ0,Θi0) denotes the score of `mi (Γ,Θi;Γ0,Θi0) for fixed Γ0 and Θi0.

3.2 Trace Based Approach for Pseudo Likelihoods

Since Υi
³
Γ, bΘi (Γ)´ = 0, a trimmed version of Υi (Γ) might work. That is,

bΥi (Γ) = Ω0 + rX
l=1

(Ωl +Ω
0
l) ,

Ωl =
1

T − l

TX
t=l+1

µ
1− l

r + 1

¶ ∂`it

³
Γ, bΘi (Γ)´
∂Θ

·
∂`it−l

³
Γ, bΘi (Γ)´
∂Θ0

.

In principle r could be chosen as a suitable function of T to ensure bias reduction but, given that in

practice T will be small and that the procedure is known to fail for values of r at both ends of the

admissible range (r = 0 and r = T − 1), in practice r will be chosen equal to 2 or 3.

3.3 Determinant Based Approach Using a Bootstrap Estimate of V ar
hbΘi (Γ)

i
The first step consists in generating parametric bootstrap samples {ymi1 , ..., ymiT }

N
i=1 (m = 1, ...,M) from

the model
nQT

t=1 f
³
yit|yi0, bΓ, bΘi´oN

i=1
and, then, calculating the corresponding fixed effects estimatesnbΘmi (Γ)oM

m=1
. This approach, close to Pace and Salvan (2005), is based on using a bootstrap estimate

of V ar
hbΘi (Γ)i given by

dV ar hbΘi (Γ)i = 1

M

MX
m=1

hbΘmi (Γ)− bΘi (Γ)i2 .
4 Monte Carlo Evidence

The practical importance of these bias corrections depends on how much bias is removed for the relatively

small T that is often relevant in econometric applications.

In this section, I provide some simple versions of the model, showing that these corrections can remove

a large part of the bias even with small T .

4.1 The linear dynamic panel model with fixed effects

Consistent estimates of α for fixed T are available in the AR(1) case. I consider this model first to

compare the bias correcting estimators described above with the one proposed by Lancaster (2002).
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The model design is

yit = αyit−1 + ηi + ²it, (t = 1, ..., T ; i = 1, ...,N)

²it ∼ N(0, 1), ηi ∼ N(0, 1),

yi0 ∼ N

µ
ηi

(1− α)
,

1

(1− α2)

¶
.

The data are generated for T = 8 and 16, N = 500 and 1000, and for α = 0.5, and 0.8. For each sample I

have estimated α by maximum likelihood and by modified maximum likelihood. I have simulated samples

for different samples sizes because I expect the modified MLE’s to improve much more with T than with

N. And I have also simulated samples for different values of α because the larger the α the greater the

serial correlation of yit, thus I expect that the estimators perform worse.

Here the MLE of α is

α̂ ≡ argmax
α

1

N

NX
i=1

"
1

T

TX
t=1

`it (α, η̂i (α))

#
=

PN
i=1

PT
t=1 ỹitỹit−1PN

i=1

PT
t=1 ỹ

2
it−1

,

where

η̂i (α) ≡ argmax
η

1

T

TX
t=1

`it (α, η) = ȳi − αȳi(−1),

and ȳi = 1
T

TP
t=1
yit, ȳi(−1) = 1

T

TP
t=1
yit−1, ỹit = yit − ȳi, ỹit−1 = yit−1 − ȳi(−1). I also consider several bias-

correcting estimators of α that are obtained by maximization of a modified concentrated log likelihood

like

eα ≡ argmax
α

1

N

NX
i=1

`mi (α,bηi (α)) .
- Determinant Based Approach Using Expected Quantities: in this case,

bHi (α) = − 1
T

TX
t=1

∂2`it (α,bηi (α))
∂η2

= 1,

Υi (α) =
1

T

TX
t=1

TX
s=1

∂`it (α, η)

∂η
· ∂`is (α, η)

∂η
= Tv2i ,

where v̄i = 1
T

TP
t=1
vit, vit =

∂`it(α,η)
∂η ,3 and as it is shown in Appendix B

Ῡi (α, η;α0, η0) = TE
¡
v2i |yi0

¢
= 1 + T (α0 − α)2 ωT (α0) + 2T (α0 − α)ψT (α0)

+T {(α0 − α) [hT (α0) ηi0 + cT (α0) yi0] + (ηi0 − ηi)}
2 ,

3 In what follows I omit the argument in `it for notational simplificity.
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with

ωT (α0) =
1

T 2

h
1 + (1 + α0)

2
+
¡
1 + α0 + α20

¢2
+ . . .+

¡
1 + α0 + . . .+ αT−20

¢2i
,

ψT (α0) =
1

T 2
£¡
1 + α0 + . . .+ αT−20

¢
+
¡
1 + α0 + . . .+ αT−30

¢
+ . . .+ 1

¤
,

hT (α0) =
1

T

£
1 + (1 + α0) +

¡
1 + α0 + α20

¢
+ . . .+

¡
1 + α0 + . . .+ αT−20

¢¤
,

cT (α0) =
1

T

¡
1 + α0 + . . .+ αT−10

¢
.

Thus

Ῡi (α,bηi (α) ; α̂, η̂i) = 1 + T (α̂− α)
2
ωT (α̂) + 2T (α̂− α)ψT (α̂)

+T {(α̂− α) [hT (α̂) η̂i + cT (α̂) yi0] + (η̂i − bηi (α))}2 ,
or using η̂i − bηi (α) = − (α̂− α) ȳi(−1), also:

Ῡi (α,bηi (α) ; α̂, η̂i) = 1 + T (α̂− α)
2
ωT (α̂) + 2T (α̂− α)ψT (α̂)

+T (α̂− α)
2 ©
hT (α̂) η̂i + cT (α̂) yi0 − ȳi(−1)

ª2
.

It follows that in this case

`mi (α, η̂i (α) ; α̂, η̂i) = −
1

2T

TX
t=1

(yit − αyit−1 − η̂i (α))
2 − 1

2T
ln Ῡi (α, η̂i (α) ; α̂, η̂i) .

- Determinant Based Approach Using a Parametric Bootstrap Estimate of V ar [η̂i (α)]: now

`mi (α, η̂i (α)) = −
1

2T

TX
t=1

(yit − αyit−1 − η̂i (α))
2 − 1

2
lndV ar [η̂i (α)] ,

where

dV ar [η̂i (α)] = 1

M

MX
m=1

[η̂mi (α)− η̂i (α)]
2
,

and m indexs the simulated samples by parametric bootstrap.

- Trace Based Approach with Trimming: this approach uses a trimmed version of Υi (α) , that is,

bΥi (α) = Ω0 + 2 rX
l=1

Ωl,

where

Ωl =
1

T − l

TX
t=l+1

µ
1− l

r + 1

¶
∂`it
∂ηi

· ∂`it−l
∂ηi

,

11



for r small. So,

`mi (α, η̂i (α)) = −
1

2T

TX
t=1

(yit − αyit−1 − η̂i (α))
2 − 1

2T

³ bH−1i (α) bΥi (α)´ .
- Following Lancaster (2002), I consider the Approximate Conditional Likelihood:

`mi (α, η̂i (α)) = −
1

2T

TX
t=1

(yit − αyit−1 − η̂i (α))
2
+
bT (α)

T
,

where

bT (α) =
1

T

"
T−1X
t=1

µ
T − t
t

¶
αt

#
.

Before presenting the results I want to mention that I use Individual Block-Bootstrap for calculating

the standard errors of the estimates. The assumption of independence across individual allows me to

draw complete time series for each individual to capture the time series dependence, that is, I draw

yi = (yi1, ..., yiT )
0 S times to obtain the simulated data

n
y
(s)
i , y

(s)
i(−1)

oS
s=1

. For each sample I obtain the

corresponding estimates of α0,
³
α̂(1), ..., α̂(S)

´
, and the empirical distribution as an approximation of the

distribution of α̂.4

Table 1 reports estimates, based on 300 Monte Carlo runs, for T = 8 and N = 500.

Table 1. Properties of α̂ (T = 8)

α = 0.5 α = 0.8
Estimator of α Mean SD Mean SE Mean SD Mean SE
MLE 0.2947 0.0173 0.0160 0.5263 0.0163 0.0156
Expected Quantities 0.4077 0.0172 0.0184 0.5702 0.0156 0.0156
Bootstrap Variance 0.4745 0.0213 0.0193 0.7158 0.0182 0.0170
Trimming 0.3726 0.0168 0.0154 0.5845 0.0155 0.0150
Lancaster 0.5006 0.0205 0.0197 0.7989 0.0240 0.0240
Note: N=500; simulations=300; parametric bootstrap samples=300; non parametric bootstrap

samples=100; trimming=1. SD: Sample standard deviation. Mean SE: Mean of estimated standard

errors by individual block-bootstrap.

I find some difference in the performance between these four types of bias corrections. I have also

found that iterating bias correction, in the case of the first two corrections, improves a bit the estimation

but for brevity I do not report here these results. We will see an example in the next subsection. We

see in the table that the fixed effects MLE is biased downward by around 35-40 percent in both cases.

The bias corrections, except the one proposed by Lancaster (2002) that is consistent for fixed T , all
4Notice that, opposite to the block bootstrap procedure used in time-series literature (Hall and Horrowitz (1996),

Horrowitz (2002)), here I do not need to choose any bandwidth.
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perform better when α = 0.5. In this latter case, the corrections reduce the bias for at least a half. In

addition, we can see that the mean of the standard errors estimated by individual block-bootstrap is a

good approximation to the Monte Carlo standard deviation.

Table 2 presents estimates for T = 16 and N = 500.

Table 2. Properties of α̂ (T = 16)

α = 0.5 α = 0.8
Estimator of α Mean SD Mean SE Mean SD Mean SE

MLE 0.4008 0.0109 0.0106 0.6653 0.0097 0.0093
Expected Quantities 0.4412 0.0109 0.0111 0.6766 0.0096 0.0093
Bootstrap Variance 0.4962 0.0119 0.0115 0.7781 0.0106 0.0104
Trimming 0.4442 0.0106 0.0101 0.6949 0.0092 0.0089
Lancaster 0.4999 0.0119 0.0117 0.7993 0.0124 0.0119
Note: N=500; simulations=300; parametric bootstrap samples=200; non parametric bootstrap

samples=200; trimming=1. SD: Sample standard deviation. Mean SE: Mean of estimated standard

errors by individual block-bootstrap.

For α = 0.5, the MLE has still an important bias, but the modified MLEs are closer to the true value.

As before, corrections perform worse when α = 0.8.

I do not report here the results for N = 1000, because increasing the number of individuals from

N = 500 to N = 1000 has little effect on the magnitude of the estimated bias (much less effect that

increasing T ).

4.2 The linear dynamic panel model with multiple fixed effects

One of the advantages mentioned of the bias-correcting estimators with respect to the estimator proposed

by Lancaster is its generality. With only a slight modification of the previous expressions we can deal

with a more complex model. Let us see how the modified MLE’s work in finite sample for a AR(1) model

with fixed effects in the conditional mean, ηi, and in the conditional variance, σ
2
i .

Now the model design is

yit = αyit−1 + ηi + eit = αyit−1 + ηi + σi²it, (t = 1, ..., T ; i = 1, ..., N)

²it ∼ N(0, 1), ηi ∼ N(0, 1), ψi = log σ2i ∼ N (−3.0, 0.8) ,

yi0 ∼ N

µ
ηi

(1− α)
,

σ2i
(1− α2)

¶
.

The data are generated for T = 8 and 16, N = 500, and for α = 0.5. We denote as Θi =
¡
ηi,σ

2
i

¢0
the
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vector of fixed effects. The MLE of α is

α̂ ≡ argmax
α

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
α, bΘi (α)´#

= argmax
α

1

N

NX
i=1

"
−1
2
ln σ̂2i (α)−

1

2T

TX
t=1

(yit − αyit−1 − η̂i (α))
2

σ̂2i (α)

#
,

where

bΘi (α) = µ η̂i (α)

σ̂2i (α)

¶
=

⎛⎝ ȳi − αȳi(−1)

1
T

TP
t=1
(yit − αyit−1 − (ȳi − αx̄i))

2

⎞⎠ ,
and ȳi = 1

T

TP
t=1
yit, ȳi(−1) = 1

T

TP
t=1
yit−1, ỹit = yit− ȳi, ỹit−1 = yit−1− ȳi(−1). Again, I consider several bias-

correcting estimators of α that are obtained by maximization of a modified concentrated log likelihood

like

eα ≡ argmax
α

1

N

NX
i=1

`mi

³
α, bΘi (α)´ .

- Determinant Based Approach Using Expected Quantities: now

Hi (α) = − 1
T

TX
t=1

Ã
∂2`it
∂η2

∂2`it
∂η∂σ2

∂2`it
∂σ2∂η

∂2`it
∂(σ2)2

!

=
1

T

TX
t=1

⎛⎝ 1
σ2i

(yit−αyit−1−ηi)
σ4i

(yit−αyit−1−ηi)
σ4i

³
(yit−αyit−1−ηi)2

σ6i

´
− 1

2σ4i

⎞⎠ ,

Υi (α) =
1

T

TX
t=1

TX
s=1

Ã
∂`it
∂η ·

∂`is
∂η

∂`it
∂η ·

∂`is
∂σ2

∂`it
∂σ2 ·

∂`is
∂η

∂`it
∂σ2 ·

∂`is
∂σ2

!

=
1

T

TX
t=1

TX
s=1

⎛⎝ (yit−αyit−1−ηi)
σ2i

· (yis−αyis−1−ηi)
σ2i

(yit−αyit−1−ηi)
σ2i

· (yis−αyis−1−ηi)
2−σ2i

2σ4i
(yit−αyit−1−ηi)2−σ2i

2σ4i
· (yis−αyis−1−ηi)

σ2i

(yit−αyit−1−ηi)2−σ2i
2σ4i

· (yis−αyis−1−ηi)
2−σ2i

2σ4i

⎞⎠ .
And I obtain Ῡi

³
α, bΘi (α) ; α̂, bΘi´ as a mean of {Υmi (α)}Mm=1 calculated in data simulated as nQT

t=1 f
³
yit|yi0, α̂, bΘi´o

That is,

Ῡi

³
α, bΘi (α) ; α̂, bΘi´ = 1

M

MX
m=1

Υmi (α) ,

which leads to

`mi

³
α, bΘi (α) ; α̂, bΘ´ = 1

T

TX
t=1

`it

³
α, bΘi (α)´+ 1

2T
ln det bHi (α)− 1

2T
ln det Ῡi

³
α, bΘi (α) ; α̂, bΘi´ .

- Determinant Based Approach Using a Bootstrap Estimate of V ar
hbΘi (α)i: this approach is based on

using the bootstrap estimate

dV ar hbΘi (α)i = 1

M

MX
m=1

hbΘmi (α)− bΘi (α)i hbΘmi (α)− bΘi (α)i0 ,
14



which leads to

`mi

³
α, bΘi (α)´ = 1

T

TX
t=1

`it

³
α, bΘi (α)´− 1

2
ln det

³ bHi (α)dV ar hbΘi (α)i´ .
- Trace Based Approach with Trimming: this approach uses a trimmed version of Υi (α) , that is,

bΥi (α) = Ω0 + rX
l=1

(Ωl +Ω
0
l) ,

where

Ωl =
1

T − l

TX
t=l+1

µ
1− l

r + 1

¶
∂`it
∂Θi

· ∂`it−l
∂Θ0i

,

for r small. So,

`mi

³
α, bΘi (α)´ = 1

T

TX
t=1

`it

³
α, bΘi (α)´− 1

2T

³ bH−1i (α) bΥi (α)´ .
Table 3 reports estimates for T = 8 and 16, and N = 500.

Table 3. Properties of α̂ for α = 0.5

T = 8 T = 16
Estimator of α Mean SD Mean SD
MLE 0.2575 0.0169 0.3904 0.0113
Expected Quantities (1st) 0.3900 0.0346 0.4739 0.0160
Expected Quantities (2nd) 0.4720 0.0424 0.5040 0.0157
Bootstrap Variance (1st) 0.3753 0.0442 0.4707 0.0167
Bootstrap Variance (2nd) 0.4336 0.0515 0.4925 0.0172
Trimming 0.3205 0.0349 0.4333 0.0117
Note: N=500; simulations=300; parametric bootstrap samples=300;

trimming=1. SD: Sample standard deviation.

We see in the table that the fixed effects MLE is biased downward in both cases. Here we can see

that iterating bias correction improves substantially the estimation. In fact, bias corrections reduce the

bias for at least a half and this bias practically disappears when we iterate the corrections.

I have also found conclusions very similar in an alternative specification with time effects in the

variance in addition to the individual heterogeneity.

4.3 The AR(1)-EARCH(1) panel model with fixed effects in the variance

Now the model design is

yit = αyit−1 + eit = αyit−1 + h
1/2
it ²it, (t = 1, ..., T ; i = 1, ...,N)

hit = exp

µ
ψi + β

∙q
²2it−1 + Λ−

p
2/π

¸¶
= h (²it−1,ψi) ,

²it ∼ N(0, 1), ψi ∼ N (−3.0, 0.8) .
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where I use
p
2/π as aproximation for E

hp
²2it + Λ

i
given that ²it ∼ N(0, 1). The process is started at

yi0 = 0, then 700 time periods are generated before the sample is generated. I denote as Γ = (α,β) . The

data are generated for T = 8 and 16, N = 1000, α = 0.5, and β = 0.5. For each sample I have estimated

Γ by maximum likelihood and, at the moment, by the trimming modified maximum likelihood.

The MLE of Γ is

bΓ ≡ argmax
Γ

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
Γ, bψi (Γ)´

#
,

where

bψi (Γ) ≡ argmax
ψ

1

T

TX
t=1

`it (Γ,ψ) .

Since here I can not get a explicit expression of the fixed effects estimators as functions of α and β, I do

a double maximization, strictly speaking N maximizations inside the one for Γ. I use a Quasi-Newton’s

Method algorithm to maximize the log likelihood function with respect to Γ, and in each step bψi (Γ) is
computed such that, for this given value of Γ, the individual log likelihood is maximized with respect to

ψ.

The MMLE is

eΓ = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bψi (Γ)´

= argmax
Γ

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
Γ, bψi (Γ)´− b̂i (Γ)T

#
,

where

b̂i (Γ) =
1

2

h bH−1i (Γ) bΥi (Γ)i ,
for

bHi (Γ) = − 1
T

TX
t=1

∂2`it

∂ψ2
,

and a trimmed version of Υi (Γ) with r small

bΥi (Γ) = Ω0 + 2 rX
l=1

Ωl,

Ωl =
1

T − l

TX
t=l+1

µ
1− l

r + 1

¶
∂`it
∂ψi

· ∂`it−l
∂ψi

.

In this case we calculate numerical first and second derivatives.

Table 4 reports estimates for T = 8 and 16, and N = 1000.

16



Table 4. Properties of α̂, β̂ for α = 0.5,β = 0.5

Estimator of T = 8 T = 16

(α,β)
0 Mean α̂ SD α̂ Mean β̂ SD β̂ Mean α̂ SD α̂ Mean β̂ SD β̂

MLE 0.4978 0.0117 −0.1023 0.0777 0.4989 0.0077 0.3603 0.0245
Trimming 0.4991 0.0127 0.0297 0.0764 0.4990 0.0077 0.4647 0.0251
Note: N=1000; trimming=1. SD: Sample standard deviation. T=8: simulations=100; trimming: 95% successful

convergence. T=16: simulations=50; trimming: 100% successful convergence.

In this case α̂ is not biased, and with the trimming correction we can correct an otherwise seriously

biased MLE of β.

4.4 The AR(1)-EARCH(1) panel model with both fixed effects in the mean
and in the variance

Here the model design is

yit = αyit−1 + ηi + eit = αyit−1 + ηi + h
1/2
it ²it, (t = 1, ..., T ; i = 1, ..., N)

hit = exp

µ
ψi + β

∙q
²2it−1 + Λ−

p
2/π

¸¶
= h (²it−1,ψi) ,

²it ∼ N(0, 1); ηi ∼ N (0, 1) ; ψi ∼ N (−3.0, 0.8) .

The process is started at yi0 = 0, then 700 time periods are generated before the sample is generated.

I denote as Γ = (α,β) . The data are generated for T = 16, N = 1000, α0 = 0.5, and β0 = 0.5. For

each sample I have estimated Γ by maximum likelihood and, at the moment, by the trimming modified

maximum likelihood.

The MLE of Γ is

bΓ ≡ argmax
Γ

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
Γ, bΘi (Γ)´# ,

where

bΘi (Γ) ≡ argmax
Θ

1

T

TX
t=1

`it (Γ,Θ) ,

and the MMLE is

eΓ = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bΘi (Γ)´

= argmax
Γ

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
Γ, bΘi (Γ)´− b̂i (Γ)

T

#
,

where

b̂i (Γ) =
1

2
tr
h bH−1i (Γ) bΥi (Γ)i ,
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for

bHi (Γ) = − 1
T

TX
t=1

∂2`it
∂Θ∂Θ0

,

and a trimmed version of Υi (Γ,Θ)

bΥi (Γ,Θ) = Ω0 + rX
l=1

(Ωl +Ω
0
l) ,

with

Ωl =
1

T − l

TX
t=l+1

µ
1− l

r + 1

¶
∂`it
∂Θ

· ∂`it−l
∂Θ0

.

Also in this case we calculate numerical first, second and cross derivatives. Table 5 reports estimates

for T = 16 and N = 1000.

Table 5. Properties of α̂, β̂ for α = 0.5,β = 0.5 (T = 16)

Estimator of (α,β)0 Mean α̂ SD α̂ Mean β̂ SD β̂

MLE 0.3984 0.0072 0.4174 0.0377
Trimming 0.4383 0.0206 0.4782 0.0748
Note: N=1000; simulations=20; trimming=1. SD: Sample standard deviation.

Again, I obtain estimates with less bias when I use the modified maximum likelihood estimator.

5 Estimation Results

In this section I use the modified maximum likelihood method to estimate an empirical model for the

conditional mean and the conditional variance of male wages. As Meghir and Pistafferi (2004), I use data

on 2,066 individuals for the period 1968-1993 of the Panel Study of Income Dynamics. It is an unbalanced

panel with 32,066 observations. I select male heads aged 25 to 55 with at least nine years of usable wages

data. Step-by-step details on sample selection are reported in Appendix C. Sample composition by year

and by education, and demographic characteristics are presented in Appendix D.1.

The dependent variable is annual real wages of the heads, so I exclude other components of money

income for labor as labor part of farm income, business income, overtime, comissions, etc. Figures 1 and

2, at the end of the paper, plot the mean and the variance of log real wages against time for education

group and for the whole sample. These figures look very similar to the ones in Meghir and Pistaferri

(2004, pp. 4-5) and, as they say, reproduce well known facts about the distribution of male earnings in

the U.S. (Levy and Murnane (1992)).
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The variable that I use in the estimation is log wages residuals from first stage regressions on year

dummies, education, a quadratic in age, dummies for race (white), region of residence, and residence in

a SMSA.

The equation estimated is

yit = αyit−1 + ηi + eit = αyit−1 + ηi +
p
hit²it, (i = 1, ...,N ; t = 0, ..., T )

with

hit = exp

µ
ψi + β

∙q
²2it−1 + Λ−

p
2/π

¸¶
= h (²it−1,ψi) .

In this preliminar version of the model, I deal with additive aggregate effects in the variance by regarding

yit as standarized wages5.

First, I estimate in the sample by MLE the following four specifications of the model: (i) model

A consists on a specification AR(1)-EARCH(1) without fixed effects in the mean nor in the variance;

(ii) model B is a specification AR(1)-EARCH(1) only with fixed effects in the mean; (iii) model C, a

specification AR(1)-EARCH(1) only with fixed effects in the variance; and finally (iv) model D consists

on a specification AR(1)-EARCH(1) with both fixed effects in the mean and in the variance. The results

are the following

Table 6. α and β estimates for different specifications

bα bβ dE (ηi) dV ar (ηi) dE (ψi) dV ar (ψi)

Model A 0.8448 0.5391
Model B 0.5071 0.8829 0.0201 0.1682
Model C 0.9027 0.3910 −1.7429 1.8725
Model D 0.4822 0.4832 0.0025 0.1754 −2.0284 1.9080

Note: dE (·) : mean of estimated individual fixed effects; dV ar (·) : variance of
estimated individual fixed effects.

The idea behind is that if we do not take into account unobserved heterogeneity, both in the mean

and in the variance, we obtain much bigger estimates for α and β. Also when only one of the two types

of effects is considered, α̂ or β̂, one in each case, capture the effect of the unobserved heterogeneity.

Table 7 presents the estimation results by MLE and by maximization of the trimmed corrected

concentrated likelihood. Before comenting the values in the table, only to mention that AR(1) GMM

estimates for these sample give us α̂’s around 0.40 (α̂WG = 0.4048, α̂GMM1 = 0.4138, α̂GMM2 = 0.4092,

5For each year I calculate the sample wage variance, σ̂2t =
1
N

P
i (yit − ȳt)

2, and I take (yit − ȳt) /σ̂t.
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α̂GMM−SY STEM = 0.4140). Keep in mind that in a model with time heteroskedasticity (Alvarez and

Arellano (2004)) GMM estimates were very small.

Table 7. α and β estimates

Estimator of (α,β)0 bα bβ
MLE 0.4822 0.4832

(0.0114) (0.0541)
Trimming (r = 2) 0.5370 0.5546

(0.0397) (0.0915)
Note: Mean of estimated standard errors by individual

block-bootstrap in brackets.

In table 7, as expected, we can see that the MLE is underestimating the value of α and β. After

applying the bias correction, I obtain estimates of both parameters above 0.5. Not only the persistence in

the mean is significant. Also the true state dependence effects in the volatiliy of wages seem important.

I have also estimated a version of the model similar to Meghir and Windmeijer (1999). It is a

convenient specification but more difficult to interpret because the conditional variance of eit, git, it is a

function of the past values of the dependent variable instead of the past values of the error. The model

is the following

yit = αyit−1 + ηi + eit = αyit−1 + ηi +
√
git²it; (i = 1, ...,N ; t = 1, ..., T )

with

git = exp

µ
ψi + β

∙q
y2it−1 + Λ

¸¶
= g (yit−1,ψi) .

Table 8 presents the corresponding results of the estimation of this model by MLE and by maximixation

of the trimmed corrected concentrated likelihood. Although the estimates of β are a bit different, the

main results do not change.

Table 8. α and β estimates

Estimator of (α,β)0 bα bβ
MLE 0.4904 0.3713

(0.0099) (0.0313)
Trimming (r = 2) 0.5432 0.4145

(0.0095) (0.0337)
Note: Mean of estimated standard errors by individual

block-bootstrap in brackets.
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Job changes. It is important taking into account that in a model where individual heterogeneity is

treated as fixed effects we abstract for job changes. A specification like this

yit = αyit−1 + ηi + eit,

works worse if there are many job changes in the sample because ηi is fixed. In order to asses this concern,

I consider a sample where individuals in different jobs are treated as different individuals. That is, for

each individual

yit = αyit−1 + ηi1 + eit; individual i in job 1,

yit = αyit−1 + ηi2 + eit; individual i in job 2.

I use data on 1,363 and 17,729 observations. I do the same sample selection as before. Sample composition

by year and by education, and demographic characteristics are presented in Appendix D.2.

The results are reported in Table 9. We can see that the significant ARCH effects in the variance

disappears as soon as we consider a sample without job changes.

Table 9. α and β estimates

Estimator of (α,β)0 bα bβ
MLE 0.3768 0.0642

(0.0158) (0.0846)
Trimming (r = 2) 0.4569 0.0758

(0.0361) (0.0592)
Note: Mean of estimated standard errors by individual

block-bootstrap in brackets.

6 Conclusions

In this paper I propose a model for the conditional mean and the conditional variance of individual

wages. It is a non linear dynamic panel data model with multiple individual fixed effects. For estimating

the parameters of the model I assume a distribution for the shocks and apply bias corrections to the

concentrated likelihood. This corrects the bias of the estimated parameters from O
¡
T−1

¢
to O

¡
T−2

¢
,

so the estimator has a good finite sample performance and a reasonable asymptotic approximation for

moderate T . In fact, Monte Carlo results show that the bias of the MLE is substantially corrected for

samples designs that are broadly calibrated to the PSID dataset.
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The main advantage of this approach is its generality. As we have seen, the method is generally

applicable to take into account dynamics and multiple fixed effects. Another advantage is that the fixed

effects are estimated as part of the estimation process so we can construct measures that use them.

The empirical analysis is conducted on data drawn from the 1968-1993 PSID dataset. Estimates of

different specifications for the wage model point to the importance of taking unobserved heterogeneity into

account. In line with previous literature, we find a corrected estimate for the autorregresive coefficient

in the mean around 0.5, and positive ARCH effects for the variance. However the latter disappear when

there are not job changes in the sample.

Finally there are three issues, at least, that require further research: measurement error in PSID

wages, a more comprehensive model that include job changes, and the comparison with female workers

in terms of wage profiles.
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A First Order Bias of the Concentrated Likelihood at an arbit-
rary value of the common parameter Γ

Following Arellano and Hahn (2005), let `i (Γ,Θi) =
PT
t=1 `it (Γ,Θi) /T where `it (Γ,Θi) = ln f (yit|yit−1,Γ,Θi)

denotes the log likelihood of one observation. Let

Θi (Γ) = argmax
Θi

plimT→∞`i (Γ,Θi) ,

and

bΘi (Γ) = argmax
Θi

`i (Γ,Θi) ,

so that under regularity conditions Θi (Γ0) = Θi0.

Following Severini (2000) and Pace and Salvan (2005), the concentrated likelihood for unit i

ˆ̀
i (Γ) = `i

³
Γ, bΘi (Γ)´ ,

can be regarded as an estimate of the unfeasible concentrated log likelihood

¯̀
i (Γ) = `i

¡
Γ,Θi (Γ)

¢
.

Now, define

uit (Γ,Θi) =
∂`it (Γ,Θi)

∂Γ
, vit (Γ,Θi) =

∂`it (Γ,Θi)

∂Θi
,

ui (Γ,Θi) =
1

T

TX
t=1

uit (Γ,Θi) , vi (Γ,Θi) =
1

T

TX
t=1

vit (Γ,Θi) ,

Hi (Γ) = − lim
T→∞

E

"
∂vi

¡
Γ,Θi (Γ)

¢
∂Θ0i

#
.

When Θi0 is a vector of fixed effects, the Nagar expansion for bΘi (Γ)−Θi (Γ) takes the form
bΘi (Γ)−Θi (Γ) = H−1i (Γ) vi

¡
Γ,Θi (Γ)

¢
+
1

T
Bi (Γ) +Op

µ
1

T 3/2

¶
, (A.1)

where

Bi (Γ) = H−1i (Γ)
£
Ξi (Γ) vec

¡
H−1i (Γ)

¢
+
1

2
E

Ã
∂

∂Θ0
vec

∂vi
¡
Γ,Θi (Γ)

¢
∂Θ0

!0 ¡
H−1i (Γ)⊗H−1i (Γ)

¢
vec (Υi (Γ))

#
,

and

Υi (Γ) = Υi (Γ;Γ0,Θi0) = lim
T→∞

TE
h
vi
¡
Γ,Θi (Γ)

¢
vi
¡
Γ,Θi (Γ)

¢0i
,

Ξi (Γ) = Ξi (Γ;Γ0,Θi0) = lim
T→∞

TE

"
∂vi

¡
Γ,Θi (Γ)

¢
∂Θ0

⊗ vi
¡
Γ,Θi (Γ)

¢0#
.
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Next, expanding `i
³
Γ, bΘi (Γ)´ around Θi (Γ) for fixed Γ, we get

`i

³
Γ, bΘi (Γ)´− `i ¡Γ,Θi (Γ)¢

=
∂`i
¡
Γ,Θi (Γ)

¢
∂Θ0

³bΘi (Γ)−Θi (Γ)´
+
1

2

³bΘi (Γ)−Θi (Γ)´0 ∂2`i ¡Γ,Θi (Γ)¢
∂Θ∂Θ0

³bΘi (Γ)−Θi (Γ)´+Opµ 1

T 3/2

¶
=

∂`i
¡
Γ,Θi (Γ)

¢
∂Θ0

³bΘi (Γ)−Θi (Γ)´
+
1

2

³bΘi (Γ)−Θi (Γ)´0EÃ∂2`i
¡
Γ,Θi (Γ)

¢
∂Θ∂Θ0

!³bΘi (Γ)−Θi (Γ)´+Opµ 1

T 3/2

¶
= vi

¡
Γ,Θi (Γ)

¢0 ³bΘi (Γ)−Θi (Γ)´
−1
2

³bΘi (Γ)−Θi (Γ)´0Hi (Γ)³bΘi (Γ)−Θi (Γ)´+Opµ 1

T 3/2

¶
.

Substituting (A.1) we get

`i

³
Γ, bΘi (Γ)´− `i ¡Γ,Θi (Γ)¢ = 1

2
vi
¡
Γ,Θi (Γ)

¢0
H−1i (Γ) vi

¡
Γ,Θi (Γ)

¢
+Op

µ
1

T 3/2

¶
.

Taking expectations

E
h
`i

³
Γ, bΘi (Γ)´− `i ¡Γ,Θi (Γ)¢i = 1

2T
tr
¡
H−1i (Γ)Υi (Γ)

¢
+Op

µ
1

T 3/2

¶
.

So the bias in the expected concentrated likelihood at an arbitrary Γ is

bi (Γ) =
1

2
tr
¡
H−1i (Γ)Υi (Γ)

¢
=
1

2
tr
³
Hi (Γ)V ar

³√
T
hbΘi (Γ)−Θi (Γ)i´´ .

Thus, we expect that
NX
i=1

TX
t=1

`it

³
Γ, bΘi (Γ)´− NX

i=1

bbi (Γ) ,
is a closer aproximation to the target log likelihood than

PN
i=1

PT
t=1 `it

³
Γ, bΘi (Γ)´ .

Moreover, in the likelihood context, we can consider a local version of the estimated bias constructed

as an expansion of bbi (Γ) at Γ0 using that at the truth H−1i (Γ0)Υi (Γ0) = 1 (Pace and Salvan 2005). If

we consider bbi (Γ) = 1
2 tr

³ bH−1i (Γ) bΥi (Γ)´ also
bbi (Γ) = 1

2
p+

1

2

pX
j=1

h
λj

³ bH−1i (Γ) bΥi (Γ)´− 1i ,
where λj

³ bH−1i (Γ) bΥi (Γ)´ denotes the j-th eigenvalue of bH−1i (Γ) bΥi (Γ) and p is the dimension of Γ.
Thus a local version of bbi (Γ) gives

bbi (Γ) = 1

2
p+

1

2

pX
j=1

h
λj

³ bH−1i (Γ) bΥi (Γ)´i+Opµ 1
T

¶
.
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Moreover

1

2

pX
j=1

h
λj

³ bH−1i (Γ) bΥi (Γ)´i = 1

2
ln det

³ bH−1i (Γ) bΥi (Γ)´ = −1
2
ln det bHi (Γ) + 1

2
ln det bΥi (Γ) ,

which provided justification for the bias-corrected concentrated that we have used.

B Analytical expression for Ῡi (α,bηi (α) ; α̂, η̂i) in the AR(1) model
Let us obtain an expression for Ῡi (α,bηi (α) ; α̂, η̂i) in the dynamic panel example:

yit = αyit−1 + ηi + ²it,

where ²it ∼ iidN (0, 1). We have

`it (α, η) = C − 1
2
(yit − αyit−1 − ηi)

2
,

∂`it (α, η)

∂η
= yit − αyit−1 − ηi ≡ vit (α, η) ≡ vit,

and

Υi (α, η) =
1

T

TX
t=1

TX
s=1

∂`it
∂η

· ∂`is
∂η0

= Tv2i ,

where v̄i = 1
T

TP
t=1
vit, and

Ῡi (α, η;α0, η0) = TE
¡
v2i |yi0

¢
.

Note that

vit = ²it + (α0 − α) yit−1 + (ηi0 − ηi) ,

v̄i = ²̄i + (α0 − α) ȳi(−1) + (ηi0 − ηi) ,

E0 (v̄i|yi0, ηi0) = (α0 − α)E0
¡
ȳi(−1)|yi0

¢
+ (ηi0 − ηi) ,

V ar0 (v̄i|yi0, ηi0) =
1

T
+ (α0 − α)2 V ar0

¡
ȳi(−1)|yi0

¢
+ 2 (α0 − α)Cov0

¡
ȳi(−1), ²̄i|yi0

¢
,

where ȳi(−1) = 1
T

TP
t=1
yit−1. We have

ȳi(−1) = hT (α0) ηi0 + cT (α0) yi0+

1

T

£¡
1 + α0 + . . .+ αT−20

¢
²i1 +

¡
1 + α0 + . . .+ αT−30

¢
²i2 + . . .+ ²iT−1

¤
,
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where

hT (α0) =
1

T

£
1 + (1 + α0) +

¡
1 + α0 + α20

¢
+ . . .+

¡
1 + α0 + . . .+ αT−20

¢¤
,

cT (α0) =
1

T

¡
1 + α0 + . . .+ αT−10

¢
.

Thus

E0
¡
ȳi(−1)|yi0

¢
= hT (α0) ηi0 + cT (α0) yi0,

V ar0
¡
ȳi(−1)|yi0

¢
=

1

T 2

h
1 + (1 + α0)

2 +
¡
1 + α0 + α20

¢2
+ . . .+

¡
1 + α0 + . . .+ αT−20

¢2i ≡ ωT (α0) ,

Cov0
¡
ȳi(−1), ²̄i|yi0

¢
=

1

T 2
£¡
1 + α0 + . . .+ αT−20

¢
+
¡
1 + α0 + . . .+ αT−30

¢
+ . . .+ 1

¤
≡ ψT (α0) ,

E
¡
v2i |yi0

¢
= V ar0 (v̄i|yi0) +E20 (v̄i|yi0, ηi0)

=
1

T
+ (α0 − α)2 ωT (α0) + 2 (α0 − α)ψT (α0)

+
£
(α0 − α)E0

¡
ȳ(−1)|yi0

¢
+ (ηi0 − ηi)

¤2
,

and

Ῡi (α, η;α0, η0) = 1 + T (α0 − α)2 ωT (α0) + 2T (α0 − α)ψT (α0)

+T {(α0 − α) [hT (α0) ηi0 + cT (α0) yi0] + (ηi0 − ηi)}
2 .

Thus

Ῡi (α,bηi (α) ; α̂, η̂i) = 1 + T (α̂− α)2 ωT (α̂) + 2T (α̂− α)ψT (α̂)

+T {(α̂− α) [hT (α̂) η̂i + cT (α̂) yi0] + (η̂i − ηi (α))}
2 .

C Sample Selection

Starting point: PSID 1968-1993 Family and Individual - merged files (53,005 individuals).

1. Drop members of the Latino sample (10,022 individuals) and those who are never heads of their

households (26,945 individuals).

= Sample (16,038 individuals)

2. Keep only those who are continuously heads of their households, keep only those who are in the

sample for 9 years or more, and keep only those aged 25 to 55 over the period.

= Sample (5,247 individuals)
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3. Drop female heads.

= Sample (4,036 individuals)

4. Drop those with a spell of self-employment, drop those with missing earnings, and drop those with

zero or top-coded earnings data.

= Sample (2,205 individuals)

5. Drop those with missing education and race records, and those with inconsistent education records.

= Sample (2,148 individuals)

6. Drop those with outlying earnings records, that is, a change in log earnings greater than 5 or less

than -3 and those with noncontinuous data.

= FINAL SAMPLE (2,066 individuals and 32,066 observations).

Table C1. My sample vs. Meghir and Pistaferri (2004)
Number of individuals Meghir & Pistaferri (2004) Hospido (2006) Difference
Starting point 53, 013 53, 005 8
Latino subsample (10, 022) 42, 991 (10, 022) 42, 983 8
Never Heads (26, 962) 16, 029 (26, 945) 16, 038 −9
Heads, Age, N>9 (11, 490) 4, 539 (10, 791) 5, 247 −708
Female (876) 3, 663 (1, 211) 4, 036 −373
Self-employment, missing wages (1323) 2, 340 (1, 831) 2, 205 135
Missing education and race (187) 2, 153 (57) 2, 148 5
Outlying wages (84) 2, 069 (82) 2, 066 3
FINAL SAMPLE: Individuals 2, 069 2, 066
FINAL SAMPLE: Observations 31, 631 32, 066
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D Sample composition and descriptive statistics

D.1 Sample 1

Table D1.1. Distribution of observations by year
Year Number of Year Number of

observations observations
1968 655 1981 1419
1969 694 1982 1464
1970 738 1983 1506
1971 780 1984 1559
1972 856 1985 1626
1973 943 1986 1583
1974 1018 1987 1536
1975 1098 1988 1486
1976 1178 1989 1434
1977 1229 1990 1392
1978 1263 1991 1348
1979 1310 1992 1315
1980 1380 1993 1256

Table D1.2. Distribution of observations by education
Number of Individuals

Number Whole High School High School College
of Years sample Dropout Graduate Graduate

9 212 52 128 32
10 200 43 122 35
11 155 43 82 30
12 143 36 81 26
13 143 34 87 22
14 147 35 86 26
15 145 38 82 25
16 118 26 71 21
17 127 30 76 21
18 87 20 48 19
19 97 21 57 19
20 91 19 54 18
21 91 25 48 18
22 78 19 44 15
23 52 12 33 7
24 46 15 19 12
25 42 12 27 3
26 52 26 46 20
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Table D1.3. Descriptive Statistics
1968 1980 1993

Age 36.99 36.61 41.45
(6.58) (9.22) (5.74)

HS Dropout 0.44 0.25 0.12
HS Graduate 0.41 0.55 0.60

Hours 2272 2153 2135
(573) (525) (560)

Married 0.84 0.83 0.83
White 0.68 0.66 0.69
Children 2.80 1.39 1.36

(2.06) (1.28) (1.23)
Family Size 4.90 3.53 3.51

(2.01) (1.58) (1.45)
North-East 0.18 0.16 0.16
North-Central 0.27 0.25 0.23

South 0.39 0.42 0.44
SMSA 0.68 0.67 0.53

Note: Standard deviations of non-binary variables

in parentheses.

D.2 Sample 2

Table D2.1. Distribution of observations by year
Year Number of Year Number of

observations observations
1968 380 1981 721
1969 427 1982 777
1970 461 1983 817
1971 491 1984 861
1972 524 1985 924
1973 559 1986 896
1974 593 1987 868
1975 645 1988 839
1976 659 1989 810
1977 643 1990 768
1978 638 1991 736
1979 652 1992 698
1980 688 1993 654
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Table D2.2. Distribution of observations by education
Number of Individuals

Number Whole High School High School College
of Years sample Dropout Graduate Graduate

9 266 80 134 52
10 185 43 103 39
11 152 33 86 33
12 149 33 87 29
13 133 45 69 19
14 100 29 58 13
15 86 28 42 16
16 63 17 34 12
17 56 13 32 11
18 20 6 9 5
19 44 10 23 11
20 22 4 15 3
21 20 9 9 2
22 20 4 15 1
23 14 4 7 3
24 7 2 3 2
25 16 4 10 2
26 10 3 5 2

Table D2.3. Descriptive Statistics
1968 1980 1993

Age 38.09 39.41 42.59
(6.33) (9.26) (5.65)

HS Dropout 0.43 0.31 0.13
HS Graduate 0.40 0.51 0.62

Hours 2256 2148 2129
(517) (483) (521)

Married 0.83 0.84 0.86
White 0.70 0.66 0.67
Children 2.87 1.39 1.37

(2.07) (1.28) (1.28)
Family Size 5.02 3.65 3.60

(1.99) (1.63) (1.47)
North-East 0.18 0.16 0.16
North-Central 0.29 0.27 0.23

South 0.37 0.45 0.45
SMSA 0.69 0.65 0.52

Note: Standard deviations of non-binary variables

in parentheses.
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FIGURES

Figure 1. The mean of log wages

Figure 2. The variance of log wages
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