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Abstract

Two ubiquitous empirical regularities in pay distributions are that the variance of wages increases

with experience and innovations in wage residuals have a large, unpredictable component. The lead-

ing explanations for these patterns are that over time, either �rms learn about worker productivity but

productivity remains �xed or workers�productivities themselves evolve heterogeneously. In this paper,

we seek to disentangle these two models and place magnitudes on their relative importance. We de-

rive a dynamic model of learning and productivity that nests both models and allows them to coexist.

We estimate our model on a 20-year panel of pay and performance measures from a single, large �rm

(the Baker-Gibbs-Holmstrom data). Incorporating performance measures yields two key innovations.

First, the panel structure implies that we have repeat measures of correlates of productivity, as opposed

to empirical evidence on employer learning which uses one �xed measure. Second, we can separate

productivity from pay, whereas the previous literature on productivity evolution could not.

We �nd that both models are important in explaining the data. However, the predominant e¤ect

is that worker productivity evolves idiosyncratically over time, implying �rms must continuously learn

about a moving target. Therefore wages di¤er signi�cantly from individual productivity at all experience

levels due to imperfect information, but the majority of pay dispersion is driven by variation in individual

productivity. We believe this represents a signi�cant reinterpretation of the empirical literature on

employer learning.
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1 Introduction

Understanding how wages evolve as workers age and the reasons for wage dispersion in the

population are among the central questions of labor economics. The predominant answers to

these questions are based on the idea that wages perfectly re�ect the worker�s productivity. In

recent decades, the literature on employer learning has o¤ered a competing interpretation of

how wages evolve as workers accumulate experience. This literature assumes that employers

are imperfectly informed about worker productivity but learn as workers age. Changes

in wage residuals with experience therefore re�ect learning about worker productivity on

the part of �rms. An important and in�uential set of papers has used the �nding that,

as workers gain experience, wages increasingly correlate with variables that are hard to

observe by the �rm, as evidence of employer learning. In addition, this literature has proven

successful in explaining two empirical regularities regarding wage residuals: the variance

of wage residuals increases with experience and innovations in wage residuals have a large,

unpredictable component.1 However, these empirical regularities are also consistent with

the hypothesis that wages equal productivity at all times but productivity itself is evolving.

Indeed, without placing restrictions on the productivity process, one cannot use patterns in

residual wage variance to reject the full information model.2

The main obstacle in distinguishing employer learning models from full information mod-

els is that most data sets do not contain direct measures of individual productivity that allow

separating productivity and pay. In this paper, we provide new evidence on whether em-

ployer learning or changes in the productivity of workers drive changes in wage residuals over

the life cycle. This evidence is based on �rm-level data containing wages and performance

evaluations.

Our data, a 20-year unbalanced panel of all managerial employees in one �rm, were

previously analyzed in Baker, Gibbs and Holmstrom (1994a and 1994b). These landmark

studies provided early empirical evidence on the internal organization and pay dynamics

1These �ndings are intuitive. In learning models, wages equal expected productivity conditional on the
information available at any age. The variance of conditional expectations increases as the conditioning
set increases, implying that the variance of wage residuals increases as more information becomes available.
Furthermore, because past wages are included in the �rm�s information set, wage growth will be uncorrelated
over time. Finally, productivity measures that are observed in the data but not by the �rm will increasingly
be re�ected in wages as �rms learn about productivity itself. For more detail, see Farber and Gibbons 1996,
Altonji and Pierret 2001 and Lange 2007.

2A separate literature (e.g., Hause 1980, MaCurdy 1982 and Baker 1997) analyzes the correlation in
pay and pay changes over time to test for di¤erent patterns in the evolution of productivity, positing that
pay equals productivity. By analyzing the structure of residuals in pay regressions which control for person-
speci�c time trends, they can learn about the idiosyncratic component of productivity growth. For example,
Baker uncovers parameters from an ARMA process. Evidence here is mixed, with correlations in wage growth
varying widely.
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of the �rm.3 These data have the crucial advantage that they contain both annual pay

of workers as well as performance ratings. The panel structure allows us to observe past,

current, and future performance ratings, giving us information about worker productivity

that the �rm was not able to exploit when setting wages. Our main innovation is in analyzing

moments not before exploited in the data, correlations between pay and performance lags

and leads, and using these moments to test the learning and pure productivity models.

To fully exploit these data, we write down a dynamic model of learning and productivity.

In the model, �rms set pay equal to expected productivity which they predict using noisy

signals of productivity. In addition, worker productivity itself varies stochastically over time.

It follows that the variation in wages is partially driven by changes in underlying productivity

and partially by noise in the signals obtained by �rms.

This model nests both of the competing explanations for how wages vary over the life

cycle. This allows us to test pure versions of both models against each other. It also allows

us to examine which features of the data are not reproduced by the pure learning or the

pure productivity model. Finally, it allows us to estimate the models jointly and examine

how the learning and productivity processes interact in setting wages.

In isolation, neither model can fully reproduce the moments of the data. The pure

productivity model predicts that there are no major asymmetries of wage correlations with

past and future performance measures. Observing that wages are more highly correlated with

past rather than future performance ratings therefore leads us to reject the pure productivity

model. The pure learning model does generate this asymmetry in the correlations of pay with

past and future performance ratings. However, it also predicts that this di¤erence declines

with experience. We observe the opposite.

Estimating the full model, we �nd, quite intuitively, that �rms do learn about worker

ability and that productivity evolves over time. Somewhat surprisingly, we �nd that the

initial variance in worker ability is quite small and that �rms are well informed about the

skills of workers at the outset of their careers. Over time, productivity evolves and �rms

do worse at predicting ability. We �nd that most of the changes in productivity cannot

be predicted by past idiosyncratic productivity growth. Instead, productivity has a large

random walk component. The �rm must learn about an unpredictably moving target and

consequently updates expectations over worker ability, even at high experience levels. This

3This work was extremely in�uential in the �eld of organizational economics. Their �ndings have in-
spired the well known contributions by Gibbons and Waldman (1999 and 2006) who reconcile most of the
BGH �ndings by combining simple models of job (and later task) assignment, human-capital acquisition
and learning. In addition, Gibbs (1995) describes the empirical relationship between pay, promotions and
performance and DeVaro and Waldman (2007) use the data to test whether promotions signal worker ability
to outside �rms.
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explains why we observe patterns consistent with learning models even at high experience

levels. Overall, we �nd that wages di¤er signi�cantly from individual productivity at all

experience levels. Nevertheless, the majority of the observed dispersion in wage residuals is

due to variation in individual productivity.

We believe that this reinterpretation of the role of learning represents a signi�cant con-

tribution to the empirical literature on employer learning. This literature based on the

groundbreaking contributions by Farber and Gibbons (1996) and Altonji and Pierret (2001)

interprets the employer learning process as uncovering a �xed, idiosyncratic productivity

using repeated measures of productivity over time. We propose instead that employers need

to continuously learn about a moving target: the productive ability of their workers as it

changes over the life cycle.

The remainder of this paper is structured as follows. Section 2 describes the data. Section

3 presents the pure productivity model, the pure learning model, and the nested model. This

Section also provides a reduced form evaluation of the pure productivity and pure learning

models. In the Appendix, we show that these models are members of a larger class of models

of learning. We derive a mapping between this larger class of models and the Second moment

matrices of productivity measures and wages that allows estimating such models. In Section

4 we discuss the estimation and identi�cation of the models developed in Section 3. We

interpret our results and conclude in Section 5.

2 Data

In this paper, we analyze data �rst used in the canonical studies of Baker, Gibbs, and

Holmstrom (1994a,b) on the internal organization of the �rm (hereafter, BGH). The data

consist of personnel records for managerial employees of a medium-sized, US-based �rm in

the service sector from 1969-1988. We have annual pay and performance measures, as well

as demographics including age, race, gender and education. The original sample contains

16,133 employees. Of these, we restrict attention to the 11,067 employees with a non-

missing education variable who can be observed between the ages of 25 and 54. This age

window allows us to focus on early years of experience (when employer learning and human

capital accumulation should be most important) while still yielding a decent sample size.4 An

employee observation is useful to us if he or she can contribute to at least one comparison of

4Age 25 might be considered slightly old to begin the processes of employer learning and post-school skill
accumulation for most education groups. However, our sample consists of workers who have already been
promoted to the level of manager. As we have no way of learning about their labor market experiences
before they enter this sample, we start as early as we can while still having a decent sample size. This is
also why we extend the anaylsis to age 54.
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the following kinds: an auto-correlation in either pay or performance ratings or a correlation

between pay and a performance rating across a time gap of up to 6 years. We do not

consider correlations across more than 6 years, because these are often estimated using

very few individuals. 9,373 employees and 52,697 employee-years contribute to the moments

analyzed in this paper. A given employee-year contributes an average of 8:5 correlations.

Summary statistics are reported in table 1. The sample are primarily white males with

at least a college degree. Annual salary is cpi adjusted to 1988 dollars and measures base

pay.5 Workers earn on average $53,400. BGH (1994,b) present a detailed analysis of pay at

this �rm. They �nd that pay was higher in the �rm, relative to industry average, likely due

to this sample being managers. Pay inside the �rm did �uctuate with market conditions,

but by a smaller magnitude than the industry average. In their analysis, they �nd evidence

of cohort e¤ects, high variation in pay within a job level, serial correlation in pay growth,

and a strong relationship between promotions and pay growth. They also �nd that nominal

wage declines were almost nonexistent but real wage declines were common. Their paper

does not, however analyze performance measures.6

Figure 1 illustrates both how the mean and variance log earnings residuals vary with

age. The solid line graphs the log of annual salary by age, controlling for education, race,

gender and year �xed e¤ects. As can be seen the earnings pro�le is rising and concave,

re�ecting typical life-cycle patterns. The dashed line plots the squared residuals from a log

wage regression which controls for the variables listed above as well as age �xed e¤ects. The

variance in pay around the age pro�le is substantial and increases almost linearly with age.

It is only after age 45 that we observe a slow down. Understanding this variation and its

increase over the life-cycle is the primary task of this paper.7

We recode the performance rating such that it ranges from 1 to 4 with higher ratings

re�ecting better performance.8 From table 1, we see the average rating is a little over a 3.

Less than 1% of workers receive a 1, the worst rating, 16% receive a 2, while half receive a 3

and a third receive a 4. This distribution of performance ratings is similar to those found in

Medo¤and Abraham (1980,1981) and Murphy (1991) in their studies of performance ratings

5We have information on bonus pay for some years (1981-1988) but do not include it in the analysis
to maintain consistency in our data across years. 22% of workers receive a bonus in the years 1981-1988.
Conditional on receiving a bonus, the amount is on average 12% of base salary.

6In a subsequent paper, Gibbs (1995), does make use of these performance measures, in an e¤ort to
characterized within-job versus promotion-based incentives inside the �rm. He shows that performance
measures are correlated with current bonus and probability of promotion.

7It is worth noting that these variances are quite a bit lower than one would see in a cross-section (for
example, the variance in log earnings residuals is 0.04 at age 25). This is because we are already restricting
attention to workers in the same �rm and occupation (broadly de�ned).

8In the data, the scale is inverted and ranges from 1 to 5. We combine the worst two ratings, since almost
nobody receives the worst rating.
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across various industries and �rms. Further, Gibbs (1995) shows that these performance

measures do contain meaningful information. For example, high performance ratings are

correlated with higher raises and bonuses, and increased probability of promotions.9

Figure 2 shows the experience-performance pro�le both with and without worker �xed

e¤ects, controlling for education, race, gender in the �rst speci�cation and year �xed e¤ects

in both. Focusing �rst on the solid line without �xed e¤ects, we see that somewhat sur-

prisingly, performance gets worse with experience. This is unexpected if we think part of

the explanation for rising returns to experience is that workers are accumulating more skills

However, this is a common �nding in the literature. Medo¤ and Abraham (1980) interpret

these performance measures as relative ranks within a comparison group. If ratings are

relative then we could see any experience pro�le. For example, if workers are graded more

harshly as they accumulate experience, we would see this negative slope. In our analysis,

we follow the common practice in the literature and treat performance ratings as relative

within experience groups.

As described above, the performance rating is a categorical ordered variable. We interpret

these variables as arising from a latent signal on individual productivity. Equation 1 shows

the mapping of the latent productivity signal pit, for an individual; i, with experience t, onto

the observed performance rating, ~pit.

epit = j=K�1
�
j=1

1 (pit � cj (t)) (1)

A worker is assigned the ranking epit = k; if his or her latent productivity signal falls between
the two thresholds ck�1 and ck: These thresholds di¤er across reference groups de�ned by level

of experience, t. We could easily include demographics, such as race, gender and education,

in forming these groups, though we have not done so here.10

Below, we make a number of assumptions that ensure that the latent signal pit is normally

distributed. These assumption allow us to estimate correlations of pit with other normally

distributed variables (such as log wage residuals) and with performance measures from other

years using maximum likelihood methods. Of course, since the performance ratings are

categorical variables without obvious unit, we cannot identify the variance of pit. However,

appendix �gure 1 shows the distribution of the raw performance measures across age. It

9Gibbs �nds higher magnitudes for these e¤ects than do Medo¤ and Abraham (1980,1981) and Murphy
(1991). The causes of these discrepencies are unclear, but Gibbs hypothesizes they might be due to the
industries studied. Subsequent work by Gibbs and Hendricks (2004) is more consistent with the Gibbs
�nding.
10These may not capture the exact reference group for a worker. A natural group might be job level.

However, we did not want to residualize on a variable that is highly correlated with pay and may be the
outcome of employer learning.

6



looks as though they are fairly evenly distributed, with older workers more likely to receive

2�s and less likely to receive 4�s, relative to younger workers.

Because we have data on only one �rm, we may su¤er from several selection problems.

The primary source of selection, which we can do nothing about, is that all workers enter our

sample (i.e., this �rm) at some point. We are more concerned with the timing of exit from

the sample, since nonrandom turnover could bias our results. To illustrate the problem, we

estimate linear probability models of worker exit as a function of pay and performance in

the current year.

Appendix table 1 reports these results. As can be seen, workers with better performance

are far less likely to leave, even after controlling for salary. Salary itself has a small e¤ect

(higher pay implies less exit), which does not remain signi�cant after controlling for perfor-

mance. This �rm appears to be a very good place to work, with relatively low turnover,

where poor performance is the only predictor of exit. We discuss the implications of this

nonrandom turnover in the conclusion.11

3 3 Models of Wage and Productivity Dynamics

We now consider three models about how productivity and information about productivity

evolves over time. We begin with a pure productivity model in which �rms have full in-

formation about workers productivity. In this model, wage changes simply re�ect changes

in productivity over time. We then turn to a pure employer-learning model, in which pro-

ductivity is �xed over time. Initially, employers do not know worker productivity but they

continuously update their expectations based on noisy signals of productivity. As employers

update their expectations, wages evolve. We then present a third model that nests both the

pure productivity and pure learning models. As we develop each model, we also derive some

implications for the correlations in performance measures and wages. And, we will present

some reduced form evidence based on these implications.12

A number of features are common to all three models that we discuss in this Section.

These properties also apply to the more general class of learning and productivity models

11A second form of selection which may bias our results is non-random age of entry. This is because
our exercise exploits di¤erences in correlations between pay and performance across age levels. To test for
selection on age fo entry, we analyze starting pay and starting performance as a function of entry age. We
�nd no evidence that starting pay and performance are related to entry age, controlling for an age pro�le.
We are therefore not worried about this form of selection.
12In the next section, we will present a more general class of models that includes all three models described

here and we will show how to estimate the parameters of the more general class of models. This will form
the basis of the estimation results presented later in the paper. For now however, we will limit ourselves to
presenting the pure learning, the pure productivity model, and the model that nests both of these.
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that we discuss in the appendix. Most importantly, we assume that labor markets are spot

markets and that information is symmetric across all employers.13 This implies that wages

equal expected productivity in each period. Furthermore, we assume that �rms know the

structure of the economy and they update their expectations in a Bayesian manner. We make

a number of normality assumptions that ensure that we can represent learning by employers

using the tools of Kalman �ltering. For now, we will also maintain the assumption that we

observe in the data a signal of productivity pit that is itself normally distributed around

true productivity. As we discussed in the data section, we will allow the observed ordinal

performance ratings to map into the signal pit, though this process is described later:

We will generally assume that we can summarize a worker�s productivity using a single

variable eQit: Worker productivity varies with observed characteristics (xi) and experience t.
Thus, we let eQit = Q (x; t) �Qi;t; where Q (x; t) = E h eQitjx; ti and Qi;t = eQit=E h eQitjx; ti is
the idiosyncratic component of individual productivity. Regardless what model we consider,

the function Q (x; t) is common knowledge, but in some models, the component Qi;t is only

partially observed by �rms.

Let qit = log(Qit).14 It is this idiosyncratic component of productivity that �rms attempt

to estimate. Our interest in this paper is primarily in how this idiosyncractic component is

related to wages over the life-cycle.

3.1 Pure Employer Learning

The pure employer-learning model assumes that worker productivity qi = log(Qi) does not

evolve over time (even though Q (x; t) might) and that individual wage dynamics arise only

because employers learn about worker productivity over time. If labor markets are spot

markets and information is symmetric across all employers, then workers are paid their

expected productivity in each period.

The �ow of information to employers is modeled using three di¤erent signals. First, we

13A large literature deviates from the assumptions of spot markets and symmetric information. For
example, Gibbons and Katz (1991), Kahn (2009a), and Schönberg (2007) provide evidence, in a variety
of settings, that employers learn asymmetricly. Further Beaudry and DiNardo (1991), Kahn (2009b), and
Oreopoulos et al. (2006) show that pay is in part dependent on past labor market conditions. We are
enormously sympathetic to this literature, especially since one of us has contributed to it. However, it would
be intractible to include features of these models in our paper. What is important for us is despite evidence
of the existence of these market imperfections, evidence also exists that �rms are constrained by market
forces. For example, BGH (1994b) �nd that the �rm analyzed here does not fully shelter pay from market
�uctuations.
14We will generally follow the notational convention that upper case letters refer to variables measured in

levels and lower case letter refer to variables measured in logs.
By construction qit is mean zero and uncorrelated with the controls x. From now on, we will suppress the

dependence on x.

8



allow for the possibility that �rms have some knowledge about worker productivity at the

beginning of the worker�s career. This information is embodied in an initial signal zi0 and

is not observed in the data. Furthermore, we assume that the �rm observes two signals in

each time-period: fpit; zitg: The only signal that is contained in our data is pit:
As is standard in the learning literature, we impose a number of normality assumptions

that allow us to exploit the convenient features of normal distributions.15 In particular,

we assume that log productivity qi is distributed normally in the population with mean 0,

standard deviation �2q. We assume that all three signals are normally distributed around qi
and therefore have zi0 = qi+"i0; pit = qi+"

p
it; zit = qi+"

z
it where "i0~N (0; �

2
0) ; "

p
it s N

�
0; �2p

�
;

and "zit~N(0; �
2
z):Without loss of generality, we have imposed that cov ("

z
it; "

p
it) = 0.

16 Finally,

all signals are assumed to re�ect new information, i.e., the signal errors are uncorrelated

across time. In summary, we face a standard normal signal extraction problem with three

types of signals: an initial signal zi0 and a dynamic signal zit, both of which are observed

by �rms but not in the data and a signal pit that is observed both by employers and in the

data.

Equation (2) shows the equilibrium log wage implied by this signal extraction problem,

where I t denotes information the �rm has received up to time t.

w�it = E
�
qijI t

�
= �t + (1�Kt�1) � E [qijzi0] (2)

+Kt�1
1

t� 1
t�1P
j=1

((1� �) pij + �zij) (3)

Kt =
t�2q

t�2q + �
2
�

The time e¤ects �t capture both the common variation in log productivity over time and

also how the variance of the prediction error varies with experience. A convenient feature

of the normal learning model is that the variance of the prediction error does not depend

on the observed signals and is instead common across all individuals with the same level of

experience. The weight � depends on the variance of the signal noise in both zit and pit:

This weight combines the two signals zit and pit into a single scalar signal (1� �) pit + �zit
that represents a su¢ cient statistic for the information obtained in period t. The variance

15We impose these normality assumptions throughout the paper. One of the implications is that log wages
include a term that re�ects the variance of the expectation error arround worker productivity conditional on
observable characteristics. By assumption this term is constant across individuals within experience levels
and will be subsumed in Q(x,t). We describe this in more detail below.
16The information in correlated normal signals is identical to the information contained in orthogonalized

signals. The correlations between pit and wages are therefore identical, regardless of whether the �rm
observes a correlated signal or an uncorrelated signal.

9



of this scalar is denoted by �2�. The exact expressions of � and �
2
� are known, but are not of

particular interest at this point.

Equation (4) shows what the pure learning model implies for the covariances between

pay and performance measures across time.

cov(w�it; pi� ) =

(
Kt�1(�

2
q +

1��
t�1 �

2
p) � < t

Kt�1�
2
q � � t

)
(4)

Three of these implications are particularly noteworthy.

First, for � > t; the cov(w�it; pi� ) is increasing with t, because Kt�1, the weight placed

on the stream of performance measures, is increasing in t.17 Intuitively, both wages and the

performance ratings re�ect measures of true productivity plus noise. As the �rm learns,

the wage becomes increasingly more correlated with underlying productivity. Since the

noise in performance ratings does not change with experience, the two measures will become

increasingly correlated.

Second, cov(w�it; pi� ) is larger for performance measures that occurred before the wage

was set (� < t) ; than for performance measures that were not yet observed when the wage

was set (� � t). This is because current pay incorporates the realizations of "p from pre-

viously observed performance measures, but not from future performance measures. Under

the learning model, the relationship between cov(w�it; pi� ) and � will be a step function. The

size of the step can be obtained by di¤erencing the two expressions in equation (4) and is

equal to Kt�1
1��
t�1 �

2
p:

Third, the size of the step (re�ecting the di¤erence in covariances between wages and

past, compared to future, performance measures) decreases in t. Mathematically, this is

because Kt�1(1��)
t�1 �2p, decreases in t. Intuitively, �rms�expectations are based on substantially

more productivity ratings when t is large and they therefore put less weight on any given

signal pit when setting wages.

To test these implications in the data, we need to learn about the covariance of pay and

performance as a function of the timing of the performance measure. We �rst residualize

pay and performance by age and year, both interacted with education, race and gender.18

We will use these residuals throughout the paper. We then estimate separate regressions for

current wage residual on each of 6 leads and lags of the performance measures, separately

for two age groups, 25-39 and 40-54.19

17This is not necessarily true for � < t, because the weight placed on the measurement error component
in � < t declines with t.
18Speci�cally, we regress each variable on age, year, race and gender �xed e¤ects where we also interact

race and gender with a timetrend and a quadratic in age. We do this separately for each education group.
19These regressions are estimated separately for each performance rating so we do not have to restrict the
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Figure 3 plots these coe¢ cients as well as their 95% con�dence intervals. The x-axis

shows timing of performance measures where negatives indicate those that occurred before

the current wage was set while 0 to 6 occurred after, separated by the black vertical line.

The purple line shows the older age group while the blue line shows the younger. First, the

purple line is above the blue line, meaning the relationship between pay and performance

is stronger among the more experienced workers. This provides evidence in favor or the

�rst implication of the learning model outlined above. Second, we observe that performance

measures in the past are more highly correlated with pay than performance measures in the

future. However, contrary to the third prediction above, it looks as though the di¤erence

between the impact of past, compared to future performance, on the wage is larger for the

older age group. This larger step size seen in the older-worker sample suggests that the �rm

updates more on new signals for this group, compared to the younger workers. Thus we �nd

some evidence in favor of the pure employer learning model, but this �nding is inconsistent.20

3.2 Pure Productivity

In the pure productivity model, �rms are perfectly informed about worker productivity and

wage dynamics arise only because worker productivity itself evolves over time.

A simple yet �exible way of representing the evolution of individual productivity is given

by equation (5). We assume �i s N (0; �2�) and "rit s N (0; �2r) and that the "rit are uncorre-
lated over time and with �i. We initialize this di¤erence equation in period 0 by assuming

that qi0 is drawn from a normal distribution N(0; �2q) and is independent of �i.
21

qit = qit�1 + �i + "
r
it (5)

According to equation (5), the log of individual productivity qit evolves following an ex-

perience pro�le with three sources of heterogeneity. The heterogeneity in the drift parameter

�i captures that individuals may di¤er in the intensity with which they accumulate human

capital over the life-cycle. Persistent di¤erences in intensity would arise, for example, if

sample to individuals with non-missing values for all 13 comparisons.
20Note that �gure 3 also informs us about the �rm�s pay-for-performance practices. If �rms relied on

the performance evaluations to set direct incentives, we would observe that pay and performance ratings
correlate heavily for the current period. However, all other past performance evaluations, as well as all those
observed in the future, should have no impact on pay. That is, we should see a large spike in �gure 3 at
-1. We �nd absolutely no evidence for direct incentives so conclude that is not a confounding factor. This
is related to the fact that we do not use bonus data. When we restrict our sample to just the years where
bonus data is available and incorporated the bonuses, we do �nd a small spike at -1.
21We adopt the convention that period 0 is a period prior to the �rst production.
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individuals di¤er in either their preferences or ability to invest (Becker (1964), Ben-Porath

(1967)). The heterogeneity in qi0 captures di¤erences in the initial ability. Finally, the inno-

vations "rit represent time-variation in individual productivity that are not predictable. The

i.i.d. assumption on the "rit implies that the variation in these innovations does not decline

with experience and that individual productivity diverges even for relatively experienced

workers. There are various possibilities why worker productivity might evolve randomly

over time. It is for instance plausible that at least a subset of workers is subject to health

shocks that a¤ect performance. A more intriguing possibility is that experience a¤ects the

tasks individuals are required to perform. If productivity on past tasks does not perfectly

predict productivity on future tasks, then worker productivity would indeed be subject to

unpredictable variation as individuals gain experience (Gibbons and Waldman 2006).

The pure productivity model imposes that wages are exactly equal to productivity.

Therefore equation (5) represents a process by which wage growth follows a random walk

with drift. Under these assumptions, it is easy to see that individual variation in �i will

introduce persistent correlation in pay changes. As reported by BGHb, the data used in this

project display positive correlation in pay changes. Using regression analysis, we con�rm

this �nding in table 2 and �nd, for example, that last year�s pay change predicts this year�s

change. The regression coe¢ cient is approximately 0.21 and is statistically signi�cant at the

1% level.

Thus the data exhibit patterns consistent with individuals di¤ering in their rates of human

capital accumulation, represented by �i. However, we can learn more about the relative

importance of �i and the random walk component, "rit. Equations (6) and (7) show what

this formulation of the pure productivity model implies for the variance and covariances of

pay changes.22

V ar(w�it � w�it�1) = �2� + �
2
r (6)

Cov(w�it � w�it�1; w�it+k � w�it+k�1) = �2� (7)

Table 3 shows the empirical counterparts to equations (6) and (7) using the most recent

three changes in log pay residuals. Here the variance in pay changes is 0.003 while the

covariance is almost an order of magnitude smaller, equalling approximately 0.0007. A literal

interpretation of the pure productivity model implies the variance in the random walk term

is 3 times the variance in the linear growth term.

This �nding is roughly consistent with both the previous literature on productivity cited

22The star on w�it is meant to represent the wage as measured without measurement error. We introduce
measurement error in wages below.
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above and the literature on employer learning (Farber and Gibbons 1996). Log wage changes

seem to have a small persistent component but a sizeable random walk component. How-

ever, we do not know whether this large random walk component is driven by variation in

productivity or by changes in the information available to employers.

3.3 A Nested Model of Learning about Changing Productivity

Above we described both a pure learning and a pure productivity model. We now present

a nested model, combining the two. Nesting allows us to test and quantify the relative

importance of both models for explaining wage and productivity dynamics.

We use the same dynamic speci�cation for qit that we also used in the pure productivity

model. We therefore assume that qit evolves according to equation (5) at the beginning of

each period, including period 1 and maintain the same distributional assumptions described

above. Again, equation (5) allows us to represent three sources of individual heterogene-

ity in productivity evolution: qi0 captures di¤erences in initial productivity; �i captures

heterogeneous growth rates; "rit captures idiosyncratic shocks.

From the pure learning model, we adopt the idea that �rms do not observe individual

productivity directly. Rather, they observe correlates of worker productivity and use these

to learn about worker productivity. As described in the learning model, we assume that �rms

receive signals of three types. Two of these
n
zi0; fzitgTt=1

o
are not observed in the data and

one fpitgTt=1 is observed both by employers and in our data. The distributional assumptions
for
n
zi0; fzitgTt=1

o
are maintained from the pure employer learning model.

However, as we estimated the learning model, we realized that there is a relatively high

degree of correlation in manager ratings that is di¢ cult to explain with any learning or

productivity model. We interpret this as a manager "chumminess e¤ect": workers might be

temporarily matched with managers that generally give higher ratings or that are particularly

compatible with the worker. Such "chumminess" would generate temporarily high ratings

that will not persist as individuals are reassigned in their careers. We model this e¤ect by

assuming that the "pit evolve according to equation (8) :

"pit+1 = �"
p
it + uit+1 (8)

where the initial noise is "pi1 = 0 and uit~N (0; �
2
u) : The parameter � governs the degree of

persistence in manager ratings and will be estimated.23

23A di¤erent modeling assumption would be to put the auto-regressive component, �, directly into the
productivity evolution equation. This would yield some auto-correlation in performance measures. However,
because pit contains noise terms, "

p
it, the AR-1 process in performance would exhibit less persistence than

the AR-1 process in productivity. In order to generate the relatively large auto-correlations between pit and
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Thanks to the nesting, we can get back to the pure productivity model by restricting the

signal noise in zi0 and in fzitgTt=1 to be zero, and to the pure learning model by restricting the
variance in productivity innovations "rit and growth heterogeneity �i to be zero. Estimating a

model that leaves these parameters free allows for both productivity and learning dynamics.

As we move towards estimating this nested model, we need to address two measurement

problems. We need to associate the ordinal performance ratings in our data with the signals

pit and we need to allow for measurement error.

The performance ratings in our data and the productivity signals pit are clearly not

identical. The ratings are reported on an ordinal scale with a �nite set of (k) support points

and they therefore do not follow a normal distribution. We therefore assume that the normal

random variable pit represents the probit index for an ordered probit variable, such that the

signals pit map into our observed manager ratings (denote Pit) as follows:

~pit =
kP
i=1

1 (pit � ckt) (9)

It is important to note that the intercepts ckt di¤er by experience t. This implies that

manager rankings are assumed to be relative to workers within their experience level. It

is possible to re�ne the comparison group further, by demographic group or job level, for

example.

To account for measurement error in wages, we write

Wi;t = W
�
i;t
i;t (10)

where Wit is the observed wage, W �
it is the wage measured without error and 
it represents

the measurement error. Taking logs we get

wit = w
�
it + !it

We assume that !it is classical measurement error with !it~N (0; �2!) :

This completes the description of the model that we are analyzing in this paper. This

model is governed by 8 parameters
�
�2q; �

2
r; �

2
0; �

2
u; �

2
!; �

2
�; �; �

2
z

�
and by imposing the appro-

priate restrictions, we can restrict this model to the pure productivity or the pure learning

model and we can thus test these models against each other and against the unrestricted

version.

pit�1(we show below these are on the order of 0:6), we would need the signal noise in "
p
it to be very small.

But, if the "pit were very precise, then we would necessarily require wages and performance signals to be very
highly correlated. We show below that this is not something observe in the data.
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The dynamic learning model that we developed in this section belongs to a much larger

class of dynamic learning models. In the appendix, we describe this larger class of models

and show how it can be estimated using correlations between productivity signals and wages.

In Section 5 we discuss the estimation and identi�cation of the 3 models developed in the

current section.

4 Estimating and Identifying the Nested Model.

The results developed above allow us to estimate the parameters of the model of learn-

ing and productivity. A necessary condition for estimation is that the model is identi�ed.

While we have formally shown identi�cation only for the pure learning model24, we discuss

identi�cation simultaneously with the estimation results and the �t of the model.

To estimate the model we exploit the results from the general linear state space model

that show how to derive the second moment matrices for the observable quantities. We

transform these matrices into correlations for all moments that involve performance ratings.

In a �rst step, we estimate the correlations between the latent performance rating pit and

with wages wi� , where � varies from t-6 to t+6. We also estimate the correlations between

pit and pi� for � between t+1 and t+6. This is possible, because our model implies that the

ordinal performance ratings are derived from the underlying normally distributed pit and

because wages are themselves normal. We can therefore estimate the correlations of pit with

(pi� ; wit) using maximum likelihood.

The estimated correlations of the latent productivity measures pit with wages and other

productivity measures as well as the variance-covariance matrix of wages provide the mo-

ments that we will use to estimate our models.

We use data from 30 experience levels and we could therefore, in principle, match cor-

relations in wages and performance ratings across 30 experience levels. To simplify the

estimation, we chose 56 moments in the data that we think are particularly informative for

distinguishing the learning and the productivity models. We match the variance in pay by

5-year experience groupings from 0 to 30 years experience, the auto-correlations of pay and 6

lags separately for two 15-year experience groupings from 0 to 30 years, the auto-correlations

of performance and 6 lags separately for the same two experience groups, and the correlations

of wages and current performance as well as 6 lags and leads of performance also separated

by the same experience groups.25

24Results available upon request.
25The average auto-correlations at a given lag (or lead) and for a given experience group are obtained by

averaging the auto-correlations at that lag (or lead) across years of experience levels weighted by the number
of individuals for which we observe this auto-correlation.
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These moments are plotted in �gure 4 with 95% con�dence intervals (obtained from

bootstrapping with 500 repetitions). Where experience groups are separated, the red dots

refer to the older group. Some key features of these moments are as follows. First, the

variance in pay is increasing almost linearly in experience. Second the correlations between

pay and performance increase with experience. Third, the correlations between pay and

performance are higher for lagged performance, as also exhibited in �gure 3. Fourth, the

di¤erences between the auto-correlations between current pay and future performance minus

the auto-correlation of current pay and past performance increases in experience. These

patterns in the data will drive much of our estimation results described in this section.

In appendix �gure 2, we compare our performance moments, which estimate correlations

using the latent continuous performance measure, to standard pearson correlations using the

original performance residuals. The latter are represented with hollow dots alongside the

original moments. As can be seen, the correlations look quite similar, so we are not worried

that this method introduces any bias in our estimates.

Table 4 displays our parameter estimates for the three models which we obtain via method

of moments with equal weights on all moments. Standard errors, obtained by bootstrapping

with 500 repetitions, are shown in parentheses.26 We also plot the implied �tted moments

in �gures 5-7. Each �gure plots the sample moments as dots with lines represented the

�tted moments from one of the three models. We now discuss how well each model �ts the

data. We will at the same time discuss how each model is identi�ed and what features of

the observed moments determines the observed parameter values for each model.

4.1 Pure Learning

In the pure learning model, the idiosyncratic component of productivity is constant and

wages vary only because �rms obtain new information about individual productivity. By

imposing two restrictions on the nested model we obtain the learning model. We restrict the

variance of the random walk and of the heterogenous growth component to 0: �2r = �
2
� = 0:

There are therefore 6 free parameters. These are the variance of initial productivity
�
�2q
�
,

the variance in the measurement error of wages (�2!) ; the variance in the noise of initial

information (�20) ; the variance in the signal observed by �rms, but not in the data (�
2
z) ; and

26The exact bootstrapping procedure is as follows. We draw the sample randomly, with replacement and
generate the bootstrapped moments. We then estimate the parameters to match these moments, taking as
starting values the true parameters values shown in table 4. Because convergence is time consuming, we
restrict the number of iterations to be 100 or less (using the Simplex Method in Judd XX). Approximately
half of the bootstrapped samples actually converge. We do not search across starting values to �nd the
global minimum for each of the 500 samples. However, we hope that since our starting values are the true
estimates, we remain in the correct neighborhood.
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the two parameters (�; �2u) governing the variation in the signal observed both in the data

and by �rms:

Consider now how we can identify the parameters of the model using the moments pre-

sented in �gure 4. In �gure 5, we show these moments together with the �tted moments

using the estimated parameters (table 4) of the pure learning model.27

We begin by noting that in pure learning models wages increasingly re�ect true produc-

tivity and measurement error as individuals acquire experience. This means that we can

identify the variance of productivity and of the measurement error by observing the vari-

ance and covariance of measured wages at high experience levels. In particular, we have

that limt!1 (v (wt)) = �2q + �
2
! and limt!1 (cov (wt; wt+1)) = �2q: Thus, the variance and

covariance of wages at high experience levels identify the variances of both the measurement

error and of idiosyncratic productivity.

The two panels on the left of �gure 5 display the variance and auto-correlations of log

wages. We �nd that the variance in log wages at 20-30 years of experience is close to 0.12

and that the auto-correlation in log wages at these experience levels is about 0.95. For the

pure learning model, this implies estimates of the variance of productivity close to 0.12 and

estimates of the measurement error in wages of about 0.005. These are indeed the estimates

we obtain for
�
�2q; �

2
!

�
and report in table 4 for the pure learning model.

We now show how the auto-correlations of pit with pit�k at di¤erent lags k inform us

about the parameters (�; �2u) that govern the signal noise "
p
it. As t grows, the distribution

of pit converges to an ergodic distribution which depends only on the parameters � and �2u.

From equation (8), we get:

lim
t!1

var (pit) = �
2
q +

�2u
1� �2 (11)

We could thus identify �2u
1��2 if we knew the variance in the performance signal in pit, but

unfortunately this variance is unobservable, because pit is a categorical variable. However,

we also have:

lim
t!1

cor(pit; pit�1) =
�2q + �

�2u
1��2

�2q +
�2u
1��2

(12)

For relatively small �2q, the correlations in pit and pit�1 at high experience levels will

identify the parameter �: With �2q > 0; the pattern of auto-correlations together will su¢ ce

to determine both (�2u,�) : The auto-correlation in pit depends primarily on the parameter �:

The tight link between � and the observed decline in the auto-correlations in cor (pit; pit�k)

27Again, for all but the variances of wages, we show results for two experience groups: workers with less
and with more than 15 years of experience. The color red indicates experience levels 15-30 and the color
blue indicates experience levels 0-15.
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at high k therefore determines �: Figure 4, shows that the �rst order auto-correlation in pit
at higher experience levels is about 0.66 and about 0.52 at 2 lags. Consequently, we report

in table 4 an estimate of � of about 0.64 for the pure learning model.

To understand the identi�cation of �2u using the auto-correlations in pt; consider the limit

as t!1 for the auto-correlations at higher lags:

lim
t!1

cor(pit; pit�k) =
(1� �2)�2q + �k�2u
(1� �2)�2q + �2u

(13)

Conditional on
�
�; �2q

�
; these auto-correlations depend only on �2u: Furthermore, the

correlations in (13) are monotonically declining in �2u and we can therefore identify �
2
u at any

lag given values for
�
�; �2q

�
: The auto-correlations in (13) will be most responsive to changes

�2u at longer lags and these longer lags are therefore particularly useful for identifying �
2
u:

Using the estimates of
�
� = 0:64; �2q = 0:12

�
found above as well as an auto-correlation across

5 lags for pit of about 0.22, we �nd from equation (13) an approximate value of 0.49 for �2u
- reasonably close to our estimate of 0.65.28

This leaves only with two parameters that we need to identify: (�2z; �
2
0) : These represent

the noise in the dynamic and initial signals that are observed by �rms, but not by us.

The parameter �20 determines how much information the �rm has about workers as they

begin their careers. The parameter �2z, together with (�; �
2
u) ; determines how fast employers

learn about worker productivity as they spend time in the labor market. To identify these

parameters, we exploit the close link between the variance of wages and the amount of

information that �rms have at any moment in time. With �xed individual productivity, the

variation in the variance of wages over the life-cycle informs us about how much information

the �rm has at any experience level. We can therefore use the life-cycle variation in wages

to identify how informative z0 and zt are.

For young workers (0-4 years of experience), the variance in wage residuals is only about

0.04. This implies that at least initially the �rm has little information about workers wages.

To �t this fact, we will need the variance in the initial signal noise to be quite high and this

is indeed what we �nd. Our estimate of �20 = 0:58 is almost 5 times as large as the variance

in productivity, which results in very low variances in the wage for young workers. The

increase in the variance of wages is then governed by the new information employers acquire

through pt and zt. We do �nd that the variance in the signal noise in zt is 0.49. Together,

these parameter values reproduce the increase in the variance of the wage from about 0.04

to about 0.12 over the �rst 30 years of these individuals careers.

The learning model therefore does succeed in a number of ways. It matches the auto-

28The estimated value of 0.65 implies a correlation of 0.195 at 5 lags.
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correlations in wages and the variance of wages at high experience levels, it matches the

growth in the variance of wages with experience and it matches the auto-correlations in the

performance measures using a small set of parameters.

However, the pure learning model fails to reproduce a number of patterns in the data.

As evident from the top right panel in �gure 5, the pure learning model does not match

how observed performance measures correlate with wages and how these performance-pay

correlations vary with experience. In our view, the pure learning model fails to match these

correlations not because of any particular distributional assumptions. Instead, this failure

of the learning model re�ects a more general feature of pure learning models. In learning

models, wages depend on past productivity signals. The weight given to any individual

signal is larger when individuals are young and employers know relatively little about true

productivity. By contrast, for higher experience levels, any given performance rating does

not a¤ect wages as much because �rms have more precise expectations. For this reason, the

learning model predicts that past productivity signals correlate more strongly with wages

among younger rather than older workers.

The situation is reversed when we consider the correlations between current wages and

future productivity signals. Because wages are only based on past productivity signals, the

noise in future signals does not enter wage setting for young or for old workers. However,

wages of older workers correlate more highly with true productivity and this leads to higher

correlations of wages with future productivity signals for old rather than young workers.

The learning model therefore predicts a cross-over pattern when we compare correlations

of wages with productivity signals at di¤erent leads and lags across di¤erent experience levels.

There is no evidence for such a pattern in our data. Instead, the top right panel shows that

wages and productivity signals are always more highly correlated for older workers than for

younger. The therefore data suggests that �rms rely more heavily on recent performance

measures to set wages for their experienced employees than to set wages of young employees.

This is inconsistent with the pure employer learning model.

4.2 The Pure Productivity Model

We next discuss how to identify the parameters of the pure productivity model which imposes

that employers know individual productivity and that wages vary over the life-cycle because

individual productivity varies. We impose that �rms have perfect information by restricting

the variance of the noise in the signals observed by employers (but not in our data) to 0:

�20 = 0 and �
2
z = 0: We do not restrict the variance of the noise of the performance ratings

("pt ) in our data to equal zero because this restriction would imply that the performance
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ratings would be, absent measurement error in wages, perfectly correlated with wages.

Figure 6 displays the �t for the pure productivity model, where the solid line gives the

implied moments from our parameter estimates from the second column in table 4.

We identify (�; �2u; �
2
!) in much the same way as under the perfect learning model and

limit our discussion to the parameters of the productivity process:
�
�2q; �

2
r; �

2
�

�
: To simplify

the exposition, we assume that wages are measured without error. We then have

var (wi0) = �2q

cov (wit+1 � wit; wit+k � wt+k�1) = �2�

var(wit+1 � wit) = �2� + �
2
r

Clearly, the variance of wages at the beginning of a career identi�es the initial variation in

productivity across individuals. Then, the covariance in wage growth across periods identi�es

the growth rate heterogeneity �2�: Finally, we can use the variance of wage growth together

with �2� to identify �
2
r, the variance of the random walk component of productivity.

29 Indeed,

we �nd that the variance in initial productivity is quite small (0.024), �2� is approximately 0

and growth in productivity and wages is driven by a small random walk component. In 30

years variance in log pay (and therefore productivity in this model) rises by 0:08, which is

just a bit smaller than would be implied by the random walk (whose variance is 0:004).

We note that we have only used the variances and covariance of wages to identify the

parameters of the pure productivity model. The pure productivity model does however have

additional implications for these correlations that allow testing the model. Most importantly,

in the pure productivity model the variation in the productivity of individuals increases over

time. In consequence, the pure productivity model predicts that (i) the correlation of the

performance ratings with wages, (ii) the auto-correlations of performance ratings, and (iii)

the auto-correlations of wages are all increasing with experience. This is exactly what we

observe in the data. We �nd that the contemporaneous correlation of log wage residuals with

performance ratings are about 0.25 for workers with 0-15 years of experience. For workers

with 16-30 years of experience this correlation is about 0.35. The �rst order auto-correlation

of performance ratings rises over the same time period from 0.57 to 0.67. The �rst auto-

correlation of wages also increases from about 0.96 to 0.99. All of these aspects of the data

are well matched by the performance model, both qualitatively and quantitatively.

However, other features of the data are di¢ cult to match using a pure productivity model.

29As has been observed in MaCurdy (1982), Baker (1997) and many other papers that investigate the 2nd
moment properties of log wages, the autocorrelation in wage growth identi�es permanent heterogeneity in
the wage growth. Farber and Gibbons (1996) propose testing the pure learning model using exactly this
absence of autocorrelation in wage growth.
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Most importantly, from our perspective, is that the pure productivity model predicts that

the correlations of the current wage with future performance ratings exceeds the correlation

of the current wage with past performance ratings. This feature is driven by the random

innovations to productivity as individuals age. To see this, consider the correlations between

wages and productivity signals when we set �2� = 0, close to the estimated value. Then,

compare the covariance cov(wt; pt�k) with cov(wt; pt+k):30

cov(wt; pt�k) = cov(qt + "!; qt�k + "p)

= cov

 
tP
j=1

rj + "!;
t�kP
j=1

rj + "p

!
= (t� k)�2r

The covariance between wages and future performance rating is

cov(wt; pt+k) = t � �2r

For past productivity measures, the covariances between wages and productivity decline

with the lag-size, whereas for future productivity measures the correlations are larger and

identical across various leads. These features translate somewhat into the correlations that

we can observe in the data and show in �gure 5, but far from perfectly

An important di¤erence between the productivity and the learning model arises when we

consider correlations of wages and performance ratings that are almost contemporaneous.

The learning model imposes an asymmetry in time, because past performance measures are

used for setting current wages, while future performance measures can, by de�nition not be

used in setting wages. The pure productivity model does not admit such an asymmetry. For

small k, the performance ratings at t-k and t+k should be almost identically correlated in

much the same way with log wages. However, in the data, we clearly observe, especially at

higher experience levels, that future productivity levels are less correlated with log wages

than are past productivity measures. As reported in �gure 4, we observe among workers

with 0-15 years of experience, that the correlation of the wage at t with performance ratings

collected at t-3 exceeds the correlation with performance ratings at t+3 by about 0.03 points.

For workers with 16-30 years of experience, the same di¤erence is 0.07. These di¤erences in

the correlations of wages with past and future performance ratings and their increases are

not predicted by the pure productivity model.

We have thus described how the parameters of the pure learning and the pure productivity

models are linked to observable moments. We have also shown the features of the data that
30The problem is complicated by the fact that the standard deviations of the productivity signal also vary

with k. However, empirically the covariances dominate the observed patterns in the correlations.
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each of these models cannot match. Estimates from the joint model will in fact be able to

match these features and will allow us to quantify what role the learning and productivity

models play in setting wages.

4.3 The Combined Model

Finally, we consider how the nested model �ts the data. Figure 7 displays the results for the

nested model and parameter estimates are displayed in column 3 of table 4.

Comparing our estimates of the 3 productivity parameters
�
�2q; �

2
�; �

2
r

�
across the pure

productivity and the nested models, we �nd that the implied productivity processes of both

models are almost indistinguishable. The estimates from both models admit very little het-

erogeneity in �. Furthermore, both models allow for only modest heterogeneity in initial

productivity. The standard deviation of initial productivity is 0.15 in the pure productivity

model and 0.17 in the nested model. By contrast, we �nd substantial variation in produc-

tivity for older individuals. At 30 years of experience, the implied standard deviation in

productivity is 0.38 and 0.41 in the pure and nested models, respectively. This rise in the

dispersion of productivity is generated by the accumulation of random walk terms that have

a standard deviation in each model of about 0.065, annually. In both models, therefore,

individual productivity increases signi�cantly and unpredictably over the life-cycle.

When we compare the learning parameters (�20; �
2
z; �

2
u; �) across the pure learning and the

nested model, we observe large di¤erences in the estimated parameters and in the implied

learning process. Only the parameters (�2u; �) that govern the observable signal are similar

across models. For both models, we �nd that � is around 0.64, re�ecting the fact the the

auto-correlations of the performance measures decline rapidly with higher lags.

However, we see large di¤erences in the estimated variances of the signal noise in the

unobserved �rm signals zit and zi0: For the pure learning model, we estimate �20 = 0:374;

implying that the initial signal zi0 is quite imprecise. This high degree of imprecision is

required to match the low observed variance in initial wages. The nested model is able to �t

this low variance in initial wages by imposing that the variance of idiosyncratic productivity

itself is initially low. In the nested model, this allows for an estimate of �20 that is very close

to 0 �implying that �rms are almost perfectly informed about worker productivity at the

beginning of the workers career.

For the variance in the dynamic signal, zit, we �nd that the pure learning model yields a

lot more noise than does the nested model. The learning model needs the dynamic signals to

be relatively imprecise in order to allow the �rm to continue learning about worker produc-

tivity even at higher ages. This in turn is required because we observe that the variance of
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wages continues to increase at all experience levels. The nested model by contrast explains

the continuing increases in the wage variance as re�ecting continued changes in individual

productivity over the life-cycle.

Because the nested model does not tie down the learning parameters to �t the variance of

wages over time, it can instead use the them to obtain a better �t of the correlations between

pay and performance measures. In particular, because productivity continues to evolve and

because learning about any innovations in productivity is relatively rapid (�2z = 0:08); the

nested model can �t the time-pattern in the productivity and performance auto-correlations

quite well. It does underpredict the observed high auto-correlations of wages with past

productivity measures at high experience levels, but it qualitatively does �t most of the

observed patterns in how productivity and wages correlate.31

4.4 Interpretation

Our empirical analysis leads us to think of the life-cycle variation in the dispersion of wages

as re�ecting two contributing factors. First, productivity evolves along idiosyncratic paths

and drives much of the increase in wage variance. However, the extent to which productivity

is re�ected in wages is limited by the information available to �rms. Generally, the variance

of wages is lower than the variance of underlying productivity because wages are conditional

expectations based on information available to the �rm. The di¤erence between productivity

and the wage is expectation error on the part of the �rm. Given our estimates of the learning

model, we can now examine how employer expectation error and the variance in productivity

contribute to the overall variance of wages.

Figure 8 shows what the nested model implies for the variance of wages, the variance of

productivity and the variance of the expectation error. First, we see that overall the variance

of wages closely mirrors the variance of productivity. We found that the initial signals have

almost no noise about initial productivity and therefore initially the variance of wages and

the variance of productivity are nearly identical. However, as experience grows, productivity

evolves stochastically and employers aim to learn about this evolution. Because the dynamic

signals are noisy, employers start making errors and the variance of the expectation error

starts increasing and then stabilizes at about 0.025. The overall variance in wages follows

the variance in productivity over the life-cycle, but is somewhat smaller throughout.

31We have estimated our model restricting the sample to years in which bonus data is incorporate bonuses
into our measure of wages. We �nd qualitatively similar results. However, this underprediction of the
observed high correlations of wages with past productivity is even stronger. We attribute this to the notion
that there is some direct pay for performance occuring via the bonuses that our model cannot �t. Since
our primary analysis (using base pay) does not exhibit patterns consistent with direct incentives, we do not
build this concept into our model. Incorporating incentive pay would be an interesting area for future work.
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The nested model thus implies that the growth of the variance in wage residuals over the

life-cycle can be primarily attributed to random variation in wages over the life-cycle and not

to a slow discovery of some underlying �xed productivity characteristics. However, the model

does not imply that employer learning is unimportant as an economic phenomenon. Instead,

the standard deviation in the expectation error is about 0.15 for most of the life-cycle, which

implies that �rms make on average a mistake of about 12% of wages.

5 Conclusion

In this paper, we provide new evidence on employer learning and productivity evolution by

exploiting performance evaluations, along with pay data, from a panel of workers in a single

�rm. We derive a nested model and show how we can uncover both the learning and produc-

tivity parameters by matching moments in the data. We �nd that problems of accurately

predicting productivity are important for employers and that average expectation errors are

large at all stages of individuals careers. However, we do not �nd evidence that the wage

dynamics overall are driven primarily by the learning process. Instead, our model suggests

that random variation in productivity drives most of the observed increase in the variance

of wages over the life-cycle. We believe these �ndings represent a signi�cant reinterpretation

of the employer learning literature.

An important caveat to our conclusion is that we are only able to study one �rm and

further, only one occupation (broadly de�ned). Our �nding that �rms have quite precise

expectations over worker ability at the beginning of the worker�s career could be explained

by the fact that these workers have already been promoted to manager. Thus the market

probably had opportunities to learn about these workers, before they entered out sample.

In the future, we hope to analyze other data sets containing pay and performance measures

to establish the generalizability of these �ndings.

A related caveat is that, because we only have data on one �rm, we may have nonrandom

selection out of the sample. We showed above that workers who leave are negatively selected

on performance. We believe this may bias us against �nding evidence of employer learning.

When the �rm observes low productivity, the learning model predicts that subsequent wages

will fall. However, if a subset of these wages are not observed because low-performing workers

left the sample, we would �nd a smaller correlation between pay and past performance. In

principle, we can incorporate turnover into our model, and we hope to do so in future work.

Seemingly contradictory to most models of human capital accumulation (Becker 1964,

Ben-Porath 1967), we �nd that productivity evolves unpredictably throughout the life cycle

with almost no persistent-growth component. One explanation for this �nding is that workers
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are assigned to di¤erent tasks throughout the life cycle and performance on past tasks does

not predict performance on future tasks. This interpretation suggests that �rms shift workers

into job levels and tasks with little ability to predict worker success there.
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A A More General Class of Models

In Section 3, we have presented a model with a particular productivity process and a par-

ticular learning structure. In this section, we will show a more general class of models of

learning about worker productivity, drawing from Hamilton (1994). We will show how to

derive the second moment matrices of productivity signals and wages in this larger class of

models. To estimate the parameters of these models, one naturally will �t the predicted and

the observed second moment matrices of productivity signals and wages.

A.1 The Productivity Process

In period 0 (before production starts), individuals are endowed with a (nqx1)�vector of
productivity parameters �i0 with E [�i0] = 0 and E

h
�i0�

0

i0

i
= P0: In subsequent periods,

productivity evolves according to a stochastic process represented by the stochastic di¤erence

equation:

�it+1 = ��it + "
�
it+1 (14)

"�it+1~N(0; R�)

This implies that the productivity states in period 1, the �rst period of actual production

are �i1 = ��i0 + "�i1.

A.2 Prediction in the Initial Period

Before any production takes place, �rms draw a signal about �i0. This signal is summarized

by an initial (nzx1) vector of signals zi;0. This vector is not observed in the data, but

represents the information available to �rms at the beginning of an individuals career.

zi;0 = H 0
0�i0 + "

z
i;0 (15)

"zi;0~N(0; Rz;0)

The dimensions of
�
H0; "

z
i;0; Rz;0; P0

�
are implicitly de�ned to conform to zi;0 and �i0:

Based on the signal vector zi0 �rms predict the state �i0 :

b�i;0j0 = P0H0 (H0
0P0H0 +Rz;0)

�1
zi;0 (16)

= Kzzi
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Firms set wages based on this predicted state b�i;0j0 taking into account that productivity
will evolve between the pre-period and period 1 according to equation (14). Firms best guess

about productivity in period 1 is:

b�i1j0 = �b�i0j0
= �Kzzi

and the posterior variance of the expectation error is:

P1j0 = �(P0 �KzH
0
0P0) �

0 +R�

A.3 The Recursion

At the end of each period t > 0, a new (nxx1)�signal vector xit is drawn by the �rm.

xi;t = H 0
x�it + "

x
it (17)

"xit~N(0; Rx)

Based on this signal, the expected posterior of �it conditional on xit is:

b�itjt = b�itjt�1 + Ptjt�1Hx �Hx0Ptjt�1Hx +Rx��1 �xit �H 0
x
b�itjt�1� (18)

= b�itjt�1 +Kt

�
xit �H 0

x
b�itjt�1�

= (1�KtH
0
x)
b�itjt�1 +Ktxit

Again, �rms account for the evolution in productivity described in equation (14) and

therefore, �rms best guess about productivity in period t+1 is:

b�it+1jt = �b�itjt (19)

= �(1�KtH
0
x)
b�itjt�1 + �Ktxit

The variance of the expectation error then evolves according to

Pt+1jt = �
�
Ptjt�1 �KtH

0
xPtjt�1

�
�0 +R� (20)

This de�nes the complete prediction problem of the �rm. The parameters are (P0; Rz;0; Rx; R�; Hx; H0;�):
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A.4 Wages

So far, we have described how the individual productivity state and the expectation of

this state evolves over time. One component of the individual productivity state is qit,

the idiosyncratic component of log productivity. We now show how log wages are re-

lated to log productivity. Because we assume that labor markets are frictionless spot mar-

kets and all information is common, we have that wages W �
it equal expected productivity:

W �
it = E [Q (x; t)QitjI t] = E [Q (x; t) exp (qit) jI t] : Here Q(x; t) is a productivity pro�le com-

mon to all individuals and Qit represents individual productivity and I t represents the infor-

mation set available at time t. We assume also that wages are measured with multiplicative

measurement error 
it:

We have made a number of normality assumptions. One advantage of these assumptions

is that expected log productivity bqit is normally distributed in each period. We can therefore
write:

Wit = Q (x; t)E [Qi;tjIit] 
it

= Q (x; t)E [exp (qi;t) jIit] 
it = Q (x; t) exp
�bqit + 1

2
v (t)

�

it

where v (t) is the variance of the expectation of log productivity. Taking logs, we obtain

wit =

�
q (x; t) +

1

2
v (t)

�
+ bqit + !it (21)

= h (x; t) + bqit + !it
where !it is the noise in the measurement error with variance �2!. We assume that !it is

uncorrelated with all other variables in the model.

We residualize wages to remove the common age pro�le h (x; t) and denote the residual

as rit:

A.5 Link to Observable Data: A State-Space Speci�cation

The next task is to derive the second moments that the model implies for observable quanti-

ties (rit; pit). We note that our problem takes the form of a linear state-space speci�cations.

The states that describe individuals are the individual productivity states �it as well as

the expectations �rms hold b�it. We stack these two vectors and denote the state vector
by �it =

�b�it �it

�0
: The states evolve in a linear stochastic way and the observed data is

linearly related to the states. We denote the observed data as yit =
�
rit pit

�0
.
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The linear state space model consists of three parts. First, we need to specify how the

state evolves. This is done in equation (22) : Second, we need to specify how the states map

into observed variables. This measurement equation is given by (23). Finally, we need to

specify the distribution of the initial state �i1, the forcing variables vit; and the unobservable

noise in the measurement equation eit:

�it+1 = Ft�it + vit+1 (22)

yit = M�it + eit (23)

�i1 =

�
�Kzzi;0
�i1

�
The matrix M has as many rows as there are observable objects. The vector eit contains

the noise in the measurement equations. The matrix Ft is given by

Ft =

 
� (1�KtH

0
x) �KtH

0
x

0 �

!
and the innovation vit+1 to the state vector is de�ned as:

vit+1 =

�
�Kt"

x
it

"�it

�
The (Kz; Kt)�matrices were implicitly de�ned in equations (16) and (18) above.

A.6 The 2nd Moment Matrix of Observables

We can now derive the variance-covariance matrix for the observables yit and yi� . Without

loss of generality, we can limit ourselves to � � t:
Because eit contains only measurement error, we can write the second moment matrices

of the observables as follows:

E
h
yity

0

i��t

i
=ME [�it�

0
i� ]M

0 + E [eite
0
i� ] (24)

TheM are deterministic and we therefore just have 2 components E [�it�
0
i� ] ; and E [eite

0
i� ]

that need to be determined as functions of the parameters of the model. The matrix E [eite0i� ]

is 0 for � 6= t and is directly given from the is variance-covariance matrix of measurement error
within t. We therefore simply need to determine how E [�it�

0
i� ] is related to the parameters.
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Tedious, but straightforward algebra yields

E [�it�
0
i� ] =

j=tP
j=2

( 
l=t�1Q
l=j

Fl

!
E
h
vi;jv

0

i;j

i l=��1Q
l=j

Fl

!0)
+

�
l=t�1Q
l=1

Fl

�
E [�i1�

0
i1]

�
l=��1Q
l=1

Fl

�0
(25)

where

E [�i1�
0
i1] =

 
�Kz (H

0
0P0H0 +Rz)K

0
z�

0 �KzH
0
0P0�

0

�P0H0K
0
z�

0 �P0�
0 +R�

!
(26)

and

E
h
vi;jv

0

i;j

i
= E

 
�Kj�1RxK

0
j�1�

0 0

0 R�

!
(27)

We have thus shown how to generateE [yty� ] as functions of the parameters (P0; Rz;0; Rx; R�; Hx; H0;�)

and the measurement matrix for any dynamic speci�cation of productivity that follows equa-

tion (14) and any normal learning model that follows equations (15) and (17) :

A.7 The Nested Model as a Member of the General Linear State

Space Models

In this Section, we have described how the second moment of observable variables is linked to

the parameters of a general linear learning model. The nested model encountered in Section

3 is a special case of such a linear learning model. We now show in the remainder of the

Section what the nested model implies for the parameter matrices of the learning model:

(P0; Rz;0; Rx; R�; Hx; H0;�) and M: This will allow us to implement equation (24) together

with equations (25) ; (26) ; and (27) to generate the covariance matrices of the wage residuals

and performance ratings.

De�ne �rst the individual productivity states as �it = (b�it; �it)0 where:
�it =

0B@qit�i
"pit

1CA
Note here that we let the individual chumminess term "pit enter as an individual state.
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The individual state evolves as

�it+1 =

0B@qit+1�i
"pit+1

1CA =

0B@1 1 0

0 1 0

0 0 �

1CA
0B@qit�i
"pit

1CA+
0B@"

r
it+1

0

uit+1

1CA
= ��it + "

�
it

The vector vit+1 is therefore given by vit+1 =
�
�Kt"

x
it

"�it

�
.

Now, the measurement equation is yit = M�it + eit: Thus, we need to de�ne M and eit:

We assume that there is measurement error in rit but that pit is observed without error in

our data. Thus:

eit =

 
!it

0

!

The measurement error variance is �2! and thus E [eite
0
it] =

 
�2! 0

0 0

!
:

Next,

M =

 
1 0 0 0 0 0

0 0 0 1 0 1

!
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Then

P0 =

0B@�
2
q 0 0

0 �2� 0

0 0 0

1CA

H0 =

0B@10
0

1CA

Hx =

0B@1 1

0 0

0 1

1CA
Rz;0 = �20

Rx =

 
�2z 0

0 0

!

� =

0B@1 1 0

0 1 0

0 0 �

1CA

R� =

0B@�
2
r 0 0

0 0 0

0 0 �2u

1CA
This specialization of the general linear state space model represents the nested model

we estimate in this paper.
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3

Table 1: BGH Summary Statistics

Years 1969‐1988

Data Description
Managers of a medium‐
sized US firm in the 
service sector

# Employees1 9373
# Employee‐years 52697

% Male 75.7%
% White 88.8%

Age
37.7
(7.67)

Education
% HS 16.9%
% Some College 18.0%
% College 37.1%
% Advanced 27.9%

Salary2
$53,332
(24209)

[n=50477]

P f 3Performance
3.15

(0 706)(0.706)
[n=35856]

Performance Distribution
1 0.008
2 0.162
3 0.503
4 0.328

Notes: Parentheses contain standard deviations.  
1. Sample includes all employees who can be observed 
between the ages of 25 and 54, with a non‐missing 
education variable and a non‐missing value for at least one 
of the following comparisons: auto‐correlation in current pay 
and up to 6 year lag in pay, auto‐correlation in current 
performance and up to 6 year lag in performance, 
correlation between current pay and up to 6 year lags or 
leads in performance.

2. Salary is annual base pay, adjusted to 1988 dollars.

3. Performance is a categorical variable which we recode to 
be between 1 and 4, with 4 being the highest performance.
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Table 2: Serial Correlations of Pay Changes and Previous

Log Pay Change1

Last Year Change2 0.209**
[0.00770]

2 Years Ago Change 0.154**
[0.00812]

3 Years Ago Change 0.121**
[0.00852]

4 Years Ago Change 0.0742**
[0.00938]

5 Years Ago Change 0.0596**
[0.0113]

Constant 0.0360** 0.00681** 0.0340** 0.0414** 0.0418**
[0.0114] [0.00151] [0.0125] [0.00693] [0.0143]

Observations 33672 26999 21737 17488 14066
R‐squared 0.078 0.059 0.051 0.043 0.037
Robust standard errors in brackets, clustered by worker.

** p<0.01, * p<0.05, + p<0.1

1. Equals log pay residual in year t minus log pay residual in year t‐1.  Pay are 
residualized by age interacted with education, race and gender and year interacted with 
these variables.

2. Equals log pay residual in year t‐1 minus log pay residual in year t‐2.

Note: Each column presents results from a separate regression.  Sample selection 
criteria are based on non‐missing log pay change and the specific lag change, as well as 
restrictions noted in table 1.
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Table 3: Variance‐Covariance Matrix of Pay Changes

(n=27,577) Log Pay Change Last Year Change 2 Years Ago Change

Log Pay Change1 0.0029

Last Year Change2 0.00068 0.0029
2 Years Ago Change 0.00051 0.00070 0.0029

1. Equals log pay residual in year t minus log pay residual in year t‐1.  Pay are residualized by 
age interacted with education, race and gender and year interacted with these variables.

2. Equals log pay residual in year t‐1 minus log pay residual in year t‐2.

Note: Sample is restricted to those with non‐missing values for all 3 pay changes, as well as 
restrictions noted in table 1.
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Table 4: Parameter Estimates for 3 Models

Employer Learning Productivity Combined

σq
2  0.118

(0.0033)
0.024

(0.0028)
0.030

(0.0035)

σr
2 0

0.0040
(0.00026)

0.0045
(0.00027)

σ0
2 0.374

(0.030)
0

0.000
(0.0031)

σu
2 0.653 

(0.035)
0.409
(0.015)

0.502
(0.0024)

σω
2 0.0049

(0.00035)
0.000

(0.00010)
0.000
(0.000)

σκ
2 0

0.000
(0.000)

0.000005
(0.00000031)

ρ
0.643

(0.0088)
0.634

(0.0072)
0.636

(0.0089)

σz
2 0.494

(0.074)
0

0.094
(0.032)

Reported are the parameter values for the pure employer learning model (Section 3.2), the pure productivity model (Section 3.1) and combined model 
(Section 3.3). The pure employer learning model and the pure productivity model are estimated imposing zero restrictions on the relevant parameters. 
Standard errors are obtained by bootstrapping with 500 repetitions. 
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Appendix Figure 1: Distribution of Performance Rating by Age
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Appendix Figure 2: Polychoric vs. Pearson Correlations
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Standard errirs in   clustered   individual.

Appendix Table 1: Probability of Exit as a Function of Pay and 
Performance

I II III

Log(salary) ‐0.017* ‐0.0010

[0.0082] [0.013]

Perf=2 ‐0.088* ‐0.116**

[0.039] [0.041]

Perf=3 ‐0.139** ‐0.163**

[0.038] [0.041]

Perf=4 ‐0.162** ‐0.189**

[0.039] [0.041]

Constant 0.167* 0.131** 0.170

[0.085] [0.050] [0.133]

controls1 yes yes yes

Observations 21443 16444 15234

R‐squared 0.185 0.165 0.169

** p<0.01, * p<0.05, + p<0.1
Standard errirs in brackets, clustered by individual.brackets, by
1. Controls for gender, race, age and year fixed effects.
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