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Abstract 
One of the main arguments in favor of stricter regulations on air pollution is that it has harmful 
effects on child and adult health.  Air pollution is associated with asthma, lower lung function, hay 
fever, infant mortality, and emergency room visits.  Moreover, economists and epidemiologists also 
have found that increased air pollution increases school absenteeism, and that asthma may reduce 
school performance. If air. Given the strong (heavily documented) relationship between academic 
performance and future labor earnings, a potential negative  relationship between pollution 
educational attainment suggests a heretofore unappreciated additional cost of air pollution in terms 
of reduced future earnings. Further, since low-income children tend to live in high pollution areas, 
reducing pollution may decrease income inequality and increase social mobility.  
 We first use regression analysis to examine the effect of changes in air pollution on the 
performance of 2nd through 6th grade students in California on standardized tests. Specifically, our 
four outcomes of interest are the mean scaled score and the percent of students at least proficient in 
both Mathematics and in English/Language Arts at the grade-school level. Our measures of 
pollution are carbon monoxide, nitrogen dioxide, ozone, coarse particulate matter, and fine 
particulate matter. We use grade-school FEs and a large number of time changing control variables 
in our analysis.  Secondly, we examine the effect of an additional unit of pollution on different 
quantiles of the educational achievement distribution of these four performance measures using FE 
quantile regression analysis.  
 We find that a one standard deviation reduction in ozone, fine particulate matter, and 
especially coarse particulate matter generally increases these four performance measures at the mean 
and at the different quantiles by a small, but statistically significant, amount. A one standard 
deviation in nitrogen dioxide has a small but significant effect only on Mathematics scores, while in 
the vast majority of cases, the carbon monoxide coefficients are insignificant. These results are 
robust to a number of changes in how pollution is measured. In terms of comparing the quantile 
and regression estimates, the median estimates are similar to the FE regression results. In many 
cases, if the quantile estimates are significant for some quantiles, they are statistically significant for 
all quantiles. In a slight majority of cases where the  pollutant has a significant coefficient in the 
quantile estimates, the effect increases across quantiles, while in the other cases the coefficient for a 
given pollutant is  constant across quantiles.  
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1. Introduction 

The effects of air pollution on child and adult health have been widely studied. In fact, one of the 

main arguments in favor of stricter regulations on air pollution is that it has harmful effects on child 

and adult health.  Air pollution is associated with asthma, lower lung function, hay fever, infant 

mortality, and emergency room visits (Chay and Greenstone, 2003ab; Currie and Neidell, 2005, 

Gauderman et al., 2000; McConnell et al., 2002; McConnell et al., 2003; Neidell, 2004; and 

Rabinovitch, Strand, and Gelfand, 2006).  Moreover, economists and epidemiologists have found 

that increased air pollution also increases school absenteeism (Currie, Hanushek, Kahn, Neidell, and 

Rivkin, 2009; Gilliland et al., 2001; Ransom and Pope, 1992), and that asthma may reduce school 

performance (Currie, Stabile, Manivong, and Roos, 2010).   

 If air pollution negatively affects children’s health and increases school absenteeism, it is 

plausible that these children’s educational attainment would also be negatively affected. Given the 

strong relationship between academic performance and future labor income, this suggests a 

heretofore unappreciated additional cost of air pollution in terms of reduced future earnings. 

Further, pollution may also have different effects across the income distribution; for example, if 

another unit of pollution negatively affects disproportionately the lower quantiles of the academic 

distribution, it will disproportionately affect the achievement of low-income children, given the 

strong relationship between children’s academic achievement and family background. Further, even 

if these effects are constant across the achievement distribution, low-income children will be 

disproportionately affected because low-income households live in more highly polluted areas. Thus, 

an additional unit of overall pollution may increase income inequality and social mobility.  

 The central difficulty in identifying the effects of air pollution on academic performance is 

that air pollution is likely to be correlated with socioeconomic status; as noted above, higher income 

families are likely to sort into lower-pollution neighborhoods.   Because children from lower income 

families tend to have lower test scores than those from higher income families, a finding of a 

negative effect of pollution on test scores may simply reflect selection. Of course, this problem is 

not unique to our paper: all papers in the economics literature attempt to eliminate the confounding 

factor of socioeconomic status when estimating the effect of pollution on an outcome variable. 

Many of these articles use appropriate conditioning variables and fixed effects (hereafter FEs). Some 

studies aim to reduce this selection problem by using variation across time intervals that presumably 

are too short to reflect location behavior, albeit at the cost of making the assumption that variables 

outside this short time interval do not affect the outcome of interest.  
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 In this paper we follow the first strategy described above and use appropriate FEs to control 

for selection when investigating the effect of pollution on academic achievement. First, we examine 

the effect of changes in air pollution on the mean academic performance of school children in 

California, using standard FE regression analysis.  Second, we examine the effect of an additional 

unit of pollution on different quantiles of the educational achievement distribution, using FE 

quantile regression analysis. Quantile regression analysis has been sparingly used to study the effect 

of pollution; one obvious explanation for its infrequent use is that, up until recently, it has not been 

possible to incorporate FEs into this framework.  Canay (2011) presents a feasible means of using 

FEs in this framework, and we exploit his work in this paper.   

 We use the results of the California Standards Tests in Mathematics (hereafter math)  and 

English/Language Arts (hereafter ELA) as measures of academic performance (California 

Department of Education, 2002-2008c).  Specifically, our four outcomes of interest are the mean 

scaled score and percent of students at least proficient in math and in ELA at the grade-school level. 

Our pollution variables are the percent of days above the standard for carbon monoxide (CO), 

nitrogen dioxide (NO2), ozone (O3), coarse particulate matter (PM10), and fine particulate matter 

(PM2.5). We calculate the pollution measures for each school in California from all monitors 

(weighted by distance from the school) within a twenty mile radius of the school. Our sample is 

limited to the years 2002 to 2008 because that is the period during which the content of the tests 

remained constant. We use an average of the daily pollution levels for September through May.  We 

also consider the sensitivity of our results to different ways of measuring pollution and find that our 

original results are generally robust to such changes.  

 To avoid the problem of confounding factors or selection biasing our results, we include 

grade-school FEs, year effects, as well as a host of time-varying school quality, demographic, and 

community characteristics in the regressions. Thus, this paper makes two important contributions to 

the pollution literature. We are the first to estimate what economists view as the causal effect of 

pollution on the mean of measures of academic performance at the grade-school level. Moreover, 

we are the first to exploit Canay’s (2011) results and look at the effect of pollution on different 

quantiles of the outcome of interest after controlling for appropriate FEs.  

 The paper proceeds as follows. We review the relevant literature in section 2. We first 

discuss the economics literature to date on the related topics of the effect of pollution on health, the 

effect of pollution on school absenteeism, and the effect of asthma, which is exacerbated by and 

possibly caused by pollution, on academic performance. Next, we review work from the public 
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health literature concerning the above issues as well as examining correlations between pollution and 

test scores. We conclude that because the epidemiological literature is based on cross-section data, 

papers in this literature are unlikely to have sufficient controls for economists to consider the 

estimated effects as causal.   In section 3 we outline our econometric approach and discuss our 

identification strategy.  We describe the data in section 4.  

  We present our results in section 5, where we measure (separately) the effects of five 

pollutants on four measures of academic performance: i) mean math scores; ii) the percent of 

students at least proficient in math; iii) mean ELA scores; and iv) the percent of students at least 

proficient in ELA.   In terms of statistical significance, the effects are strongest for  O3, PM2.5 , and 

especially PM10. NO3 significantly affects only the math outcome variables, while in the vast majority 

of cases, the CO coefficients are insignificant. However, all of the pollution effects we measure are 

relatively small. The above results are robust to a number of changes in how pollution is measured. 

 In terms of comparing the quantile and regression estimates, the median estimates are similar 

to, but generally a bit more significant than, the regression results. In many cases, if the quantile 

estimates are significant for some quantiles, they are statistically significant for all quantiles. In a 

slight majority of cases where the pollutant has a significant coefficient in the quantile estimates, the 

effect increases across quantiles, while in the other cases the coefficient for a given pollutant is  

constant across quantiles. Again, the estimated effects of the different forms of pollution are small. 

We carry out comparative static results concerning the effect of changing pollution levels on the 

difference between high and low-income students, and high achievement and low achievement 

students. Section 6 concludes the paper. 

   



6 
 

    2. Literature Review 
 

Pollution can affect academic performance by way of three mechanisms: (i) school absenteeism due 

to illness caused by pollution; (ii) attention problems in school due to illness caused by pollution; (iii) 

fatigue when doing homework due to illness caused by pollution, and (iv) a direct negative effect of 

pollution on brain development.  All of the research on (iv) is drawn from epidemiological and 

neuropathology research; thus, we discuss it in section 2.2, where we review such research.   

 

2.1 Mechanisms by Which Pollution Can Affect Academic Performance–Evidence from the 

Economics Literature 

Mechanisms (i)-(iii) above rely on pollution having a negative effect on health, and then health 

impacting students’ academic performance. In this subsection, we highlight some of the economics 

articles investigating these mechanisms.2  Chay and Greenstone (2003ab) examine the effect of air 

pollution on infant mortality rates in United States counties between 1980 and 1982. Their initial 

identification strategy is based on assuming that county FEs, state trends, year effects, and 

socioeconomic controls are sufficient to eliminate most spurious correlations between pollution and 

infant mortality. Their socioeconomic controls include mother-specific characteristics aggregated to 

the county-level, including education, ethnicity, income, prenatal care, and age. They chose the 

period from 1980 to 1982 with the belief that/on the assumption that  much of the remaining 

variation in pollution after controlling for these variables comes from the differential impacts of the 

1980 recession on pollution levels. Therefore, they argue, changes in pollution are transitory and less 

likely to affect location choice. One caveat to this identification strategy is that one must ignore the 

fact that the recession will also directly affect location decisions as adults move from hard-hit labor 

markets to more prosperous labor markets, i.e. there may still be selection at work.  

  Chay and Greenstone weaken their identifying assumptions in several ways. First, they treat 

current pollution as endogenous, instrumenting for the change in pollution with lagged pollution 

levels; the latter will be a valid instrumental variable (IV) if there is no autocorrelation in pollution. 

Second, they group the treatment and control counties based on the size of income changes between 

1980 and 1982 and use their first differences estimation strategy.  Finally, they restrict the sample to 

                                                            
2 Several articles outside the economics literature establish this link as well (see McConnell et al., 2002, Gauderman et al., 
2000, and McConnell et al., 2003);  however, for brevity, we focus on the economics papers. 
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counties with low manufacturing employment. They compare changes in infant mortality rates 

across low manufacturing counties that bordered a county with high manufacturing employment in 

1980 to those counties that bordered other low manufacturing counties.   In the former case, a 

substantial decrease in a neighboring county’s manufacturing employment is likely to cause a 

reduction in Total Suspended Particles (TSPs) in the county of interest because of wind and other 

weather components. Thus, their new identifying assumption is that demand shocks in a 

neighboring county will not have spillover effects that induce migration from the county under 

consideration. 

 Neidell (2004) evaluates how seasonal changes in pollution affect asthma-related hospital 

admission rates for different age groups by month, conditional on zip code-year FEs and year-

month FEs.  For each zip code, he constructs a monthly measure of pollution by taking the average 

of pollution levels recorded at monitors within 20 miles of the centroid of the zip code weighted by 

the inverse distance to the monitor. The outcome variable is the number of asthma-related 

emergency room visits in each zip code-month observation, where a visit is classified as asthma-

related based on the principle diagnosis from the California Hospital Discharge Data. The control 

variables include the sex, race, and age of the patient, expected source of payment to the hospital, 

weather, and housing prices. Neidell finds that, of the pollutants considered, carbon monoxide has a 

significant effect on hospitalizations for asthma among children ages 1–18, while none of the 

pollutants considered has a clear impact on hospitalizations for infants. Using estimated coefficients 

and the expected number of asthma admissions from 1992 and 1998 pollution levels, Neidell 

calculates that the decline in pollution during this time period caused asthma admission rates to 

decrease from 13.5% to 4.6%.  Neidell also tests, by including the number of smog alerts as a 

control variable, whether families display avoidance behavior.  He concludes that they do exhibit 

avoidance behavior; the smog alert coefficient is negative and significant, while the magnitude of the 

negative coefficient on O3 is smaller when smog alerts are included in the regressions.  Because he 

uses a large number of FEs, the only caveat to Neidell’s results is that he must assume that pollution 

in previous months does not affect admissions in subsequent months; this assumption would be 

violated if previous pollution caused individuals to develop asthma, which made them more sensitive 

to current pollution. While of course this criticism could also be leveled at studies using annual data 

it is likely that this type of separability over time periods is less credible as the size of the period 

decreases (as in the consumer demand literature),.  
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 Currie and Neidell (2005) evaluate the effect of increased air pollution on infant mortality 

during the period from 1989 to 2000. The authors construct a weekly pollution measure similar to 

that in Neidell (2004) by taking the average of pollution levels recorded at monitors within 20 miles 

from of centroid of the zip code weighted by the inverse distance to the monitor. The authors 

include zip code month FEs and zip code year FEs. The authors include various mother-specific 

factors, including mother’s age, race, ethnicity, education, marital status, zip code of maternal 

residence, use of prenatal care, and private/public insurance.  Other covariates include weekly 

county-level averages for weather, date of birth, birth weight and gestation period.  They use a 

flexible discreet hazard model where the outcome variable is equal to one if the child died within the 

week.  They find that, in periods of higher pollution, although infant mortality rates are higher, 

prenatal exposure to pollution does not affect infant mortality.  They often find that ozone has the 

incorrect sign, but attribute this finding to a negative correlation between ozone and other 

pollutants.  We offer two criticisms of their work. First, they must assume that there is no 

unobserved heterogeneity at the individual or zip code level, since either form of heterogeneity will 

cause their parameter estimates to be biased. Second, they must assume that, conditional on duration 

(age), pollution levels in previous periods do not affect mortality. 

 Currie et al. (2009) investigate the effect of pollution on school absences, using data from 

the Texas Schools Project, a longitudinal administrative data set on student absenteeism in Texas.  

They aggregate pollution data from the Texas Commission on Environmental Quality into six-week 

time blocks, and merge these data with the administrative absenteeism data. Their identification 

comes from the variation in pollution across six-week attendance periods within a year or within an 

attendance period across years.  In the former case, they include school by attendance period FEs; in 

the latter case, they include school by year FEs. They measure pollution by determining whether 

each day is 0-25%, 25-50%, 50-75%, 75-100% or greater than 100% of the relevant Environmental 

Protection Agency (EPA) threshold for a particular pollutant.  They then calculate the shares of days 

in each category for the six-week attendance period. Their main finding is that CO between 75-

100% of the air quality standards threshold and above the threshold has a positive and significant 

effect on school absences. Ozone is not statistically significant in most specifications, but they did 

find a statistically significant increase in absences associated with PM10 levels between 50-75% of the 

EPA threshold. This latter result is somewhat surprising since in this case one would also expect 

pollution levels between 75% to 100% of the threshold, and above the threshold, to matter; of 

course, it may be that the effects of the higher levels of pollution simply have large confidence 
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intervals. Indeed, as the authors acknowledge, the result of a significant effect for PM10 levels 

between 50-75% of the threshold must be viewed with caution, since one significant result among 

many coefficients can occur by chance. Again, the identifying assumption in their work is that  past 

pollution levels do not affect current absences; as noted above, this assumption would be  violated  

if previous pollution levels increased the incidence of asthma, which in turn accentuated the effects 

of pollution in the current period. 

 Of course, air pollution affects academic performance through health only if health 

problems affect performance. Currie et al. (2010) evaluate the effect of various childhood diseases, 

including asthma, on (i) how students performed on a literacy exam, (ii) whether the students 

enrolled in a college preparatory math class, (iii) whether they were in the twelfth grade by age 17, 

and (iv) whether they used social assistance.  They match school administrative data, social assistance 

records, and health records for young adults in Manitoba, Canada born between 1979 and 1987.  

With a mother FE (which controls for time constant family characteristics), they investigate whether 

having been treated for asthma at various ages (0-3, 4-8, 9-13, 14-18) affects these young adult 

outcomes by using the variation across siblings in the incidence of asthma.   They find (at the 10% 

level) that (a) asthma at ages 9 to 13 had a significant negative effect on taking a college preparatory 

math class and (b) asthma at ages 14 to 18 sometimes had a negative effect on the literacy score in 

the 12th grade.  They find no effect of earlier asthma, conditional on current asthma.  As the authors 

acknowledge, their results must be viewed with caution since, again, two significant coefficients 

could happen by chance in this framework. Their identifying assumption is that there are no time 

varying family characteristics, i.e., socioeconomic status, that would be correlated with both asthma 

and these outcome variables, and that the asthma effect does not pick up the effect of current 

pollution.  
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2.2 Mechanisms by Which Pollution Can Affect Academic Performance–Evidence from the 
Epidemiological Literature 

All of the studies from the epidemiological literature are based on cross-section data and use a 

relatively small number of controls. As a result, these researchers are much more limited in their 

ability to deal with selection and endogeneity issues; this latter problem is accentuated by the fact 

that none consider instrumental variable estimation. 

 Gilliland et al. (2001) use the Children’s Health Study data to evaluate the effect of pollution 

on absenteeism. They study a cohort of 2,081 4th grade students who reside in 12 southern California 

communities. They track the students’ absences for the first 6 months of 1996, following up with 

the students’ parents to determine whether the absence is illness-related or not, and if so, whether it 

is an upper-respiratory, lower-respiratory, or gastro-intestinal illness. The type of illness is 

determined by the symptoms described during phone interviews with the parents. Using daily 

pollution levels from monitors located near the schools and a community FE model, the authors use 

within-community variation in pollution across the six-month period to determine its effect on 

average daily absences due to respiratory illness. They find that ozone has a statistically significant 

relationship (partial correlation) with reported absences from upper-respiratory and lower-

respiratory illness rates. To obtain a causal effect, they need to assume that, within a community, 

families do not sort themselves based on permanent differences in pollution across the community.  

 We now consider a number of other studies that use cross-section data and no FEs, 

rendering them less credible in terms of estimating causal effects. Fowler, Davenport, and Garg 

(1992) analyze the effect of asthma on different outcomes for the United States. They use data for 

10,362 children in the 1st  through 12th grade from the 1988 United States National Health Interview 

Survey. They find that children with asthma are more likely to have a learning disability than children 

who do not have asthma. In addition, among households with incomes below $20,000, asthmatic 

children are twice as likely to fail a grade as those without asthma. However, among higher income 

families, asthmatic children have only a slightly higher failure rate than non-asthmatic children. With 

a sample of 1,058 kindergarten-age children from Rochester, New York in 1998, Halterman et al. 

(2001) compare the parent-reported development skills of asthmatic children to those of non-

asthmatic children. After controlling for type of health insurance, education of the care-giver, 

gender, and pre-kindergarten education, the authors find that asthmatic kindergarten-aged children 

scored lower in school readiness skills (one category of reported development skills) than their non-

asthmatic peers. Butz et al. (1995) obtain demographic asthma symptoms and psychosocial 
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information for 392 children in kindergarten through the 8th grade in 42 schools in Baltimore, 

Maryland.  Asthma symptoms are divided into low, medium, and high levels. A child is considered 

to exhibit behavioral problems if her score on a questionnaire containing standardized psychosocial 

questions is higher than a given threshold. Using logistic regressions, the authors conclude that 

parents who report that their children have higher levels of asthma symptoms are twice as likely to 

report a behavioral problem compared to parents who report lower levels of asthma symptoms.   

 Bussing, Halfon, Benjamin, and Wells (1995) first use responses to the 1988 National Health 

Interview Survey on Child Health to categorize children into those who suffer from asthma alone, 

those who suffer from asthma combined with other chronic conditions, those who suffer from 

other chronic conditions alone, or those who have no chronic (including asthmatic) conditions.  

They then combine this information with a Behavior Problem Index constructed from psychosocial 

questions in the NHI survey. Using logistic regressions, the authors find that children with severe 

asthma alone are nearly three times as likely to have severe behavioral problems as children without 

a chronic condition. Halterman et al. (2006) investigate the relationship between behavioral 

problems and asthma symptoms for a cohort of 1,619 inner-city students in Rochester, New York.  

The parents of these kindergarten-age children were surveyed about their children’s health and 

behavior. The authors find that children with persistent asthma score worse on peer interactions and 

task orientation, and are more likely to exhibit shy and anxious behaviors compared to non-

asthmatic children.3  

 Epidemiologic, neuropathological, and brain imaging studies also provide evidence of a 

negative relationship between ambient air pollution and brain development conditional on 

observable demographic factors. Among 202 children who were approximately 10 years old in 

Boston, Massachusetts, higher levels of black carbon (a marker for traffic particles) were associated 

with decreased cognitive function across assessments of verbal and nonverbal intelligence and 

memory constructs (Suglia et al. 2008).  The authors estimate exposure to black carbon for each 

participant’s current residence and control for age, gender, mother’s education, and language spoken 

at home.  In a prospective study of a birth cohort of 249 children whose mothers lived in New 

York’s Harlem and South Bronx areas during pregnancy, Perera et al. (2009) investigate the effect of 

                                                            
3 According to the National Heart, Blood and Lung Institute of the National Institutes of Health (2007, p. 72), asthma is 
considered persistent if the patient experiences symptoms more than two days per week, limitation in activities, some 
nighttime awakenings or use of short acting beta2 agonists combined with either more than two exacerbations requiring 
oral steroids or more than four wheezing episodes longer lasting than a day per year.  
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polycyclic aromatic hydrocarbons (PAHs) on a child's intelligence quotient (IQ).4  (Motor vehicles 

are a major source of PAH in Harlem and the South Bronx.)  PAH levels are measured through 

personal monitoring of the mothers in their third trimester of pregnancy, while IQ was evaluated 

using the Wechsler Preschool and Primary Scale of Intelligence-revised. The researchers find that 

children with prenatal exposure to high levels of PAHs have full scale and verbal IQ scores at age 5 

that are 4.31 and 4.67 points lower, respectively, than those of less exposed children.  In a cross-

sectional study in Quanzhou, China, Wang et al. (2009) find that 8- to 10-year-old children attending 

a school located in a high traffic exhausts pollution area perform worse on multiple neurobehavioral 

function tests compared to those studying at another school, located in a clean air area.  The authors 

chose the schools based on traffic density and air pollution monitoring data, and they control for, 

among other things, father’s education, age, sex, birth weight, and second-hand smoke.  

 Calderón-Garcidueñas et al. (2008a, 2008b) led a series of clinical, neuropathological, and 

neuroimaging studies on clinically healthy and neurocognitively intact children and adolescents 

growing up either in Mexico City (a place with high ambient air pollution) or in clean air areas. In 

Calderón-Garcidueñas et al. (2008a), the authors find that among the forty-seven subjects who died 

suddenly, accumulations of amyloid  β42 (a marker of neurodegenerative disease) in the prefrontal 

brain region and disruption of the blood-brain-barrier were observed in the lifetime residents of 

Mexico City  (n=35) but not in the comparison group (n=12).5  In another study, Calderón-

Garcidueñas et al. 2008b find that children from Mexico City exhibit significant deficits in a 

combination of fluid and crystallized cognition tasks, as compared to other children from Polotitlán, 

a selected clean-air city.  Fluid cognition is supported by working memory, while crystallized 

cognition is supported by long-term memory. The 55 subjects from Mexico City and the 18 subjects 

from Polotitlán cities were from middle-class families. Their mothers had similar average years of 

formal schooling groups, and their households had a bedroom separate from the kitchen. Brain 

MRI-measured hyperintense white matter lesions substantially increased in children from Mexico 

City (56.5% vs. 7.6% in the control city).  White matter lesions may affect cognitive dysfunction and 

particulate matter may contribute to neuroinflammation. 

 Pastor, Sadd, and Morello-Frosch (2004) evaluate the relationship between academic 

performance and environmental hazards in the Los Angeles Unified School District in 1999.  They 

                                                            
4 Polycyclic aromatic hydrocarbons are formed by incomplete combustion of fossil fuels, among other organic material. 
Prenatal exposure to PAH has been linked with adverse immune, metabolic, and neurological functions and reduced 
birth weight.  
5 The comparison group consisted of residents of Tlaxcala and Veracruz. 
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combine data on schools’ Academic Progress Index (API) with information on their proximity to 

Toxic Release Inventory (TRI) emissions and census tract-level estimated respiratory risks associated 

with concentrations of 148 ambient air toxins. This latter measure of exposure at the tract level is 

the sum of hazard ratios for each pollutant, where the hazard ratio is calculated by dividing the 

EPA’s tract-level exposure estimate for a particular pollutant by the amount of toxicant below which 

there should be no adverse health effects. According to the California Department of Education 

(2010, p. 6), the API “is calculated by converting a student’s performance on statewide assessments 

across multiple content areas into points on the API scale. These points are then averaged across all 

students and all tests.” Each school receives one API score. In an OLS regression, the authors 

regress the API score on the respiratory risk index, a dummy equal to one if a facility releasing 

substances covered by the TRI and in the 33/50 program is within one mile of the school.6  The 

authors find that having a 33/50 facility within a one-mile radius has a negative and significant effect 

on academic performance, even after controlling for socioeconomic status variables such as parents’ 

education, percent minority, and percent who are English learners.  

 Finally Pastor, Morello-Frosch, and Sadd (2006) expand their previous analysis to all schools 

in California. They again use the API score as their measure of academic performance and construct 

similar respiratory risk indices. To examine whether the mechanism by which exposure to air 

pollution affects academic performance is through asthma, the authors first run a Tobit regression 

of the three-year averaged, age-adjusted, asthma hospitalization rates by Zip Code Tabulation Area 

on their measure of exposure controlling for socioeconomic status. They find that areas with higher 

respiratory risk have higher hospitalization rates.  They then turn to academic performance, and 

find, again, that schools located in higher pollution areas have lower API scores. They estimate that 

moving from the seventy-fifth quantile to the median level of the respiratory hazard ratio would 

improve test scores by about 1.2%. However, the assumptions necessary to interpret their estimates 

of the effect of pollution on school performance as causal are identical to the epidemiological 

studies discussed above and hence likely to be much too strong. In the section below, we aim to use 

an econometric approach very similar to those used in the economics papers discussed above so that 

our estimates of the effect of pollution on school performance can be credibly viewed as causal.  

 

                                                            
6 The 33/50 program was a voluntary program by the EPA established to reduce the release of 17 targeted priority 
chemicals.  Enacted in 1991, its goals were to reduce the release and transfer of chemicals by 50% by 1995, as measured 
against a 1988 baseline (EPA, 1999).  
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3. Empirical Strategy 
 

3.1 Estimating Pollution Effects Using a Fixed Effect Regression Model 

Our data, described in detail below, consist of approximately 24,000 grade-school units observed for 

up to seven years. Given that we have panel data, our first empirical specification for our outcome 

of interest ( gstS ) which is a performance measure for a given standardized test for grade g in school s 

(located in county c) in year t,  is given by 

 

 

 

where stP  represents pollution at school s at time t, gstX represents the  racial composition in grade g 

at school s  at time t, stW represents school specific characteristics for  school s at time t,  ctZ

represent time-changing county level factors,  gsf  represents a school-grade FE, tD  represents a 

year dummies, and  gst
  is an idiosyncratic error term.  

 As noted above, being able to account for confounding factors is crucial to the credibility of 

our analysis (or any such analysis). To account for these factors, in addition to grade-school FEs and 

year effects, we first use students’ ethnicity from the California Basic Educational System Data 

(California Department of Education, 2002-2008b) as a control variable.  Our other educational 

controls are from the Academic Performance Index (API) data files (California Department of 

Education, 2002-2008a). We first condition on average class size, which is measured separately for 

grades 4 through 6 and kindergarten through grade 3. We also control for the following variables at 

the school-year level: the percent of students receiving free or reduced-price lunches; the educational 

make-up of parents; the percent of students who are native English speakers; the percent of teachers 

who are fully certified; and total enrollment.  In addition, we control for annual expenditure per 

student at the district level using data from the National Center for Education Statistics’ Common 

Core of Data (2002-2008).7 Finally, we control for a number of business cycle variables at the county 

level: the unemployment rate and taxable transactions (the lowest level of geographical aggregation 

available).  We adjust taxable transactions and expenditures per student for inflation. 

 Thus, our identification comes from assuming that all the variation in pollution over time at 

a specific school, after controlling for ,  ,  gst st ctX W Z  and year dummies tD , is uncorrelated with any 

remaining unobservables driving school performance. We argue that our rich set of FEs and control 
                                                            
7 All monetary quantities are measured in real dollars. 

,                                                                                                          1 2 3 4   (1)
gstgst st gst st ct gs tS P X W Z f D         
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variables renders our identifying assumptions on a par with those made in the economic studies 

discussed above. Finally, we make the standard GLS (heteroskedasticity) adjustment of weighting 

observations by the respective square root of the number of students in the grade-school-year 

observation.  However, to allow for autocorrelation over time and any other sources of 

heteroskedasticity, the standard errors are still clustered at the school level. 
 

3.2 Estimating Pollution Effects Using a Fixed Effect Quantile Regression Model 

In the previous section we presented our strategy for identifying the effect of pollution on mean test 

scores. In this section we consider pollution’s effect on test scores at other points in the distribution. 

We first consider the following equation for the th  quantile of the distribution for an outcome of 

interest: 

 

1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( ) ( ) ,                    (2)gst gst gst st ct gs t t
t

Quant S P X W Z f D                   

 

where ( )gsf  is a quantile specific FE for grade g in school s,  and the other variables are  defined 

below  equation (1)8. (Our parameters of interest are the coefficients 1( )  .)9  In other words, if 

grade g in school s is in quantile  , its achievement consists of  its quantile-specific fixed effect and 

the quantile-specific (other) coefficient times its time-changing characteristics (including pollution). 

Note that this is an extremely rich specification because it involves estimating a fixed effect for grade 

g in school s for every quantile, including quantiles where it is never observed; not surprisingly, we 

cannot consistently estimate (2) as specified.  This is an important problem given our claim above 

that including FEs is crucial for obtaining estimates of the causal effect of pollution on academic 

performance. However, Canay (2011) provides a solution to this problem, which allows for 

consistent estimation of a FE quantile model: assume that the FEs are constant across quantiles for 

grade g in school s:10 

 
*

1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( ) .                      (3)gst gst gst st ct gs t t
t

Quant S P X W Z f D                 

                                                            
8 A very accessible treatment of quantile regression is presented in Imbens and Wooldridge (2008). They also provide the 
assumptions necessary for quantile regression to result that are of use in policy ananlysis.  
9 Consider the median for a  symmetric distribution, since in that case the mean and median are equal, and 

1( )  for the 

median will equal (in an expected value sense) the regression coefficient on pollution 
1 from equation (1). 

10 That is, *( )gs gsf f   for all .  
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This specification has a natural intuitive interpretation – the achievement of grade g in school s if it 

in quantile   in year t is the sum of its fixed effect plus the quantile specific coefficients times its 

time-changing characteristics. Using this assumption, Canay shows that the first step is to run the 

standard FEs regression model (1), and solve for the least squares estimates of the FEs. Next, one 

subtracts the estimated FEs from the respective outcome variables to obtain new outcome variables. 

Finally, one uses standard quantile regression using these new outcome variables. There still remains 

the problem of calculating standard errors for the parameter estimates when we assume that 

observations across grades in the same school are correlated in a given year and across years. We use 

the bootstrap to calculate these standard errors.  

 While necessary for estimation, the common fixed effect assumption across quantiles may be 

considered too strong. To shed some light on this issue, we note that if the outcome variables have a 

symmetric distribution, the mean and median will be equal for such a distribution. Since linear 

regression allows the mean to have its own FE, while the quantile analysis for the median assumes a 

constant FE across the different quantiles, if  the coefficients from the linear regression and median 

regression are similar, this would suggest that the quantile estimates are not unduly affected by the 

common FE assumption.11  

 

4. Data, Variable Definitions, and Summary Statistics 

 

The summary statistics for the variables used in this study are shown in Table 1. Panel A contains 

summary statistics for our OLS outcome variables at the grade-school-year level; here, for both 

math and ELA we use the i) mean scaled score and ii) the percentage at least proficient. The average 

scaled scores for math and ELA are 358 and 341 respectively, while the average percentage at least 

proficient for and ELA are 50.8% and 43.5% respectively. (The goal in California is for all students 

to score at least proficient; a student with a scaled score above 350 out of 600 is considered at least 

proficient.)  We include only data on years 2002 through 2008 because the test format changes 

outside this time interval. Our analysis includes grades 2 through 6 because the same tests are 

administered to all students within each grade.  We do not use data from grade 7 on because at that 

                                                            
11  Of course, the contrary is not true – the mean and median coefficients may be different because the distribution is 
not symmetric or the common FE assumption is inappropriate.  
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point students may take different mathematics courses based on ability – for example, algebra, 

geometry, or basic math – which would raise difficult selection issues for our analysis. 

 As noted above, we focus on the coefficients for five pollution variables: coarse particulate 

matter (PM10), fine particulate matter (PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), and 

Ozone (O3).  We use these specific pollutants in our analysis because they have been studied in the 

previous literature (Currie et al., 2009, Gilliland et al., 2001) and are correlated with various diseases 

(Gauderman et al., 2005; Grahame and Schlesinger, 2007; Kurt, Mogielnicki, Chandler, 1978; Linn, 

Szlachcic, Gong, Kinney, and Berhane, 2000; McConnell et al., 2002, Pope and Dockery, 2006; 

Russell and Brunekreef, 2009; and Yu, Sheppard, Lumley, Koenig, and Shapiro, 2000).  Vehicle 

exhaust is a major source of PM10, PM2.5, NO2, and CO. Other sources of particulate matter include 

dust from the earth's surface, pollen, forest fires, power plants, and factories. The greatest exposure 

to CO comes from smoking cigarettes, but it is also formed through the improper burning of 

various fuels. NO2 is emitted from coal-burning power plants and the burning of fossil fuels. O3 is 

formed through a chemical reaction between nitrogen oxides, sunlight, and various gaseous 

pollutants, which are often emitted from vehicles.12   

 Pollution data are from the Air Resources Board of California, (Daily Data, 2010).  The only 

feasible way of measuring pollution is at the school-year level, as we do not have access to students’ 

addresses.  (Thus, there is no variation in pollution across grades for a given school in a specific 

year.) The pollution measure used in this study is the percent of days that exceed the California 

Standard for that pollutant.  The California one-hour standards are 20 parts per million (ppm) for 

CO, 0.18 ppm for NO2, and 0.09 ppm for O3.  The standards for PM10 and PM2.5 are based on a 24-

hour measure rather than a one-hour measure. The 24-hour standard is 50 3/g m  (micrograms per 

cubic meter) for PM10 and 35 3/g m  for PM2.5 (California Environmental Protection Agency, 2009).  

The California standards are stricter than the federal standards for all pollutants except for PM2.5, 

which is the same as the federal standard.   

 To obtain our pollution measures, we first use the longitude and latitude of each school and 

of each pollution monitor in California to find all monitors within a 20-mile radius of each school.  

For a given pollutant and monitor, we calculate the total number of days that exceed the standards 

for that pollutant and then divide by the total number of days that are tested. Since students usually 

take the California Standards Tests in April or May, we use pollution data from September through 

May as an approximation of the pollution experienced during the school year.  Then, for a given 
                                                            
12 For additional information on these pollutants, see Environmental Protection Agency (2011). 
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pollutant at a given school in a given year, we take the weighted average of the percent of days 

exceeding the standard at each monitor, where the weighting is based on the inverse distance to the 

school.  Thus, we give monitors that are closer to the school more weight relative to ones that are 

further away. However, we also consider results based a number of alternative means of measuring 

pollution at the school levels. We present the results of this exercise below, and find that our results 

are robust to these changes. 

 The summary statistics for our pollution variables are shown in Panel B of Table 1. In Table 

2 we show the correlation matrix for the pollution variables. Table 1 indicates that an average of 

0.0039%, 0.0033%, 1.94%, 11.78%, and 6.45% days of the school year are above the California 

standards for CO, NO2, O3, PM10, and PM2.5. The correlation matrix in Table 2 indicates that some 

of the pollution measures are highly correlated.13  This latter result suggests that simultaneously 

using the different pollution measures is likely to cause a serious multicollinearity problem among at 

least some of the pollution measures; thus, we follow the literature and enter them one at a time.  

 We also include the control variables outlined in the previous section. The summary statistics 

for these are presented in Panel C of Table 1.  In terms of ethnic composition of the students, on 

average 35.0% of the students are White, 11.0% are Asian, 42.6% are Hispanic, 7.6% are African 

American, and 3.8% are other ethnicities.  The average class size is 26.5 students, and 94.7% of all 

teachers are fully certified. Further, on average, 51.4% of students receive a free or reduced-price 

lunch, and the percent of students who are non-native English speakers is 26.2%. The average 

enrollment and real expenditure per student are 406.9 and $8,828, respectively.14  The average county 

unemployment rate is 6.3%, and the average real value of county taxable transactions is 

approximately $384 million. Unlike some other studies, we did not include weather as a conditioning 

variable since it is difficult to obtain a meaningful measure of weather at an annual level.  Further, 

Morretti and Neidell (2009) show that including weather does not affect estimates of the impact of 

ozone on health. 
 

5. Empirical Results  
 

5.1 Main Fixed Effect Linear Regression Results 

                                                            
13 PM10 and PM2.5 are particularly highly correlated, while O3 is essentially uncorrelated with the other measures. 
 
14 Again all $ values are in real terms. 
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In Table 3A we show the estimated effects of pollution on mean scaled math scores from the 

standard FE linear regression model. In column (1), our pollution measure is the percent of days 

above the standard for carbon monoxide (CO). In columns (2)-(5), we include (separately) the 

percent of days above the standard for nitrogen dioxide (NO2), ozone (O3), coarse particulate matter 

(PM10), and fine particulate matter (PM2.5), respectively. To reiterate, we include the control variables 

listed in Table 3A and year effects (coefficients not shown).  The regressions are weighted by the 

square root of the number of students in each grade-school-year cell.  The errors are clustered at the 

school level and are robust to heteroskedasticity.  

In Table 3A, two of the pollution variables, CO and O3, have positive but insignificant 

coefficients, while NO2, PM10 and PM2.5 have negative coefficients. However, only the PM10 

coefficient is statistically significant at the 10% level (and almost significant at the 5% level); the NO2 

coefficient has a t-statistic of 1.6 and thus is almost significant at the 10% level. The PM10 coefficient 

implies that a one standard deviation in the percent of days that this pollutant exceeds the California 

standard lowers mean scaled math scores by 0.287 (of a point). The 95% confidence interval on this 

effect is [-0.5816, 0.0065]; which implies a small effect for even the largest element (in absolute 

value) in the confidence interval. (In the discussion below, we refer to the percent of days that 

pollution variable X is above the California daily standard simply as “pollution level X” for ease of 

exposition.)  

While our focus is not on the control variables, it is worth noting that many of these 

variables have the expected sign and are statistically significant at standard confidence levels. An 

increase in the average class size, decrease in the percent of the staff that are full-time equivalent, 

increase in the percent of the school that receives free or reduced price lunches, or an increase in the 

percent of the student body that are non-native English speakers, decreases test scores.  

Expenditures per student, the unemployment rate, and the total number of students in the school 

have no significant effect on test scores. The amount of taxable transactions in the county, a 

measure of economic activity, has a negative effect on test scores; this result may reflect the fact that 

schools in more prosperous areas (after conditioning on the FEs) will have more in-migration, 

everything else held equal. 

  Table 3B shows the effect of the pollution variables on the percentage of the students in the 

grade-school-year who are at least proficient in math; here, we use the same explanatory variables as 

in Table 3A. Interestingly, now all the pollution coefficients are negative, with the NO2 coefficient 

significant at the 10% level and the O3 and PM10 coefficients significant at the 5% level. A one 
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standard deviation increase in NO2 is estimated to lower the percentage of students at least 

proficient in math by 0.0698 (i.e. less than 0.1 of a percentage point), with the 95% confidence 

interval for this effect equaling [-0.1435, 0.0039]. A one standard deviation increase in O3 is 

estimated  to lower the percentage of students proficient in math by 0.2225, with the 95% 

confidence interval for this effect equaling [-0.379, -0.066]. Finally, a one standard deviation increase 

in PM10 is estimated to lower the percentage of students a least proficient in math by 0.2995, with 

the 95% confidence interval for this effect equaling [-0.4732, -0.1258]. Thus, the results in Table 3B 

suggest that the effect of pollution on the percentage at least proficient in math is quite small. 

 One natural question arising at this point is whether the effect of a pollutant (for example, 

PM10) on mean math scores is consistent with its effect on the percentage of students proficient in 

math. We do not have access to the distribution of math scores by school, so we cannot provide a 

rigorous answer to the question.  However, we can make a back-of-the-envelope calculation for 

PM10 by using the summary statistics in Table 1 and assuming that test scores are, on average, 

distributed15 as (357.57, 38.97).N
 
In this case the probability of a school being at least proficient in 

math, i.e. having a math score above 350 points, is 0.5769. Using the estimate from Table 3A, a one 

standard deviation increase in PM10 will lower the mean by 0.287 of a point, and the percentage at 

least proficient by 0.280 of a percentage point. Comparing this calculation with the estimate of 

0.2995 of a percentage point from Table 3B, we see that the results for PM10 are compatible across 

Tables 3A and 3B. One may also ask whether it makes sense for NO2 to significantly affect the 

percentage at least proficient in math when it has no significant effect on mean scaled math scores. 

However, the estimated NO2 coefficient in Table 3A has a large confidence interval, and elements of 

the confidence interval are consistent with it taking on a relatively sizeable negative value.  

 Table 4A presents the results when the dependent variable is the mean scaled ELA score. 

Now all pollution coefficients are negative, and the coefficients for O3, PM10 and PM2.5 are 

statistically significant at the 5% level.  The coefficients for PM10 and PM2.5 are of magnitudes similar 

to those in Table 3A for mean math scores, but the O3 coefficient is much larger in absolute value 

than its coefficient in Table 3A. A one standard deviation in O3 is estimated to lower mean scaled 

ELA scores by 0.5125, with the 95% confidence interval for this effect equaling [-0.654, -0.3704]. A 

                                                            
15 This assumption may overstate the effect on the percentage at least proficient because we are using the variance of the 
mean across schools in the mean Math scores, which is smaller than the variance for an individual school. On the other 
hand, the normality assumption may overstate the variability of mean Math scores since it ignores the fact that test 
scores are bounded above at 600 points and below at 200 points. Although we cannot be certain about the 
appropriateness of this assumption, we think the approximation is suitable for this informal analysis.  
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one standard deviation in PM10 is estimated to lower mean scaled ELA scores by 0.2371, with the 

95% confidence interval for this effect equaling [-0.4009, -0.-0.0732]. Finally, a one standard 

deviation in PM2.5 is estimated to lower mean scores scaled ELA by 0.1747, with the 95% confidence 

interval for this effect equaling [-0.3141, -0.-0.0352]. Thus, the effect of pollution on mean scaled 

ELA scores is also small.  

 Table 4B presents the results when the dependent variable is the percentage at least 

proficient in ELA. As was the case in Table 4A, the coefficients for O3, PM10 and PM2.5 are 

statistically significant, but now this significance is at the 1% level. A one standard deviation increase 

in O3 is estimated to lower the percentage of students at least proficient in English by 0.4150, with 

the 95% confidence interval for this effect equaling [-0.5228, -0.3072]. A one standard deviation 

increase in PM10 is estimated to lower the percentage of students at least proficient in English by 

0.2371, with the 95% confidence interval for this effect equaling [-0.3619, -0.1123]. Finally, a one 

standard deviation increase in PM2.5 is estimated to lower the percentage of students at least 

proficient in English by 0.2135, with the 95% confidence interval for this effect equaling [-0.3187, -

0.1083]. 

 We summarize our regression results as follows.  CO never significantly affects mean scaled 

scores or percentage at least proficient for math or ELA. NO2 significantly affects only the math 

mean scaled score (treating its t-statistic of 1.6 in Table 3A as significant). O3 significantly affects all 

outcome measures except that for mean scaled math scores, while PM2.5 significantly affects all 

outcome measures except for the percentage at least proficient in math. Finally PM10 significantly 

affects all outcome variables. However, in each case where a coefficient is significant, it predicts a 

relatively small impact of a one standard deviation increase in the respective pollution measure.  
 

5.2 Sensitivity Analysis for the Fixed Effect Regression Results 

We perform a sensitivity analysis by considering alternative pollution measures and sample selection 

in Tables 5-7. In each table we present the estimated coefficients on the pollution variables for the 

four outcome variables while suppressing the coefficient estimates for the control variables. In Table 

5 we use only pollution monitors that were functioning over the entire sample period. Columns (1), 

(2), (3) and (4) show the results for mean scaled math scores, percentage at least proficient in math, 

mean scaled ELA scores, and percentage at least proficient in ELA, respectively. Column (1) shows 

that the results for mean scaled math scores are slightly stronger than those in Table 3A since now 
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PM10 is significant at the 5% level instead of at the 10% level, and NO2 is significant at the 10% level 

instead of having a t-statistic of 1.6. Columns (2), (3), and (4) for the other outcome variables 

present results that are very similar to those in Tables 3B, 3C and 3D, respectively. 

            Table 6 presents the analogous results when we use only monitors within a ten-mile radius 

of the schools. Column (1) indicates that most of the estimated coefficients for mean scaled math 

scores are somewhat smaller than in Table 3A; this is especially true for PM10, which now is 

insignificant. However, one should not put too much weight on these differences, since the 

confidence intervals for the coefficients in column 1 and Table 3A have considerable overlap.16 

Column (2) indicates a similar pattern for the coefficients for the percentage at least proficient in 

math as compared to those in Table 3B. The coefficients for O3 and PM10 are somewhat smaller but 

still statistically significant, while the NO2 coefficient falls by two-thirds and is no longer significant. 

When we compare the results in column (3) for mean scaled ELA scores to those in Table 4A, the 

new coefficients for O3, PM10, and PM2.5 are somewhat smaller but still statistically significant. The 

CO coefficient is larger and now significant at the 10% level. The coefficients in column 4 are 

similar to those in Table 4B.  A similar pattern emerges for the percentage at least proficient in ELA 

in Column (4) compared to Table 4B. All in all, we consider Table 6 to replicate qualitatively our 

main results, but possibly with somewhat smaller effects.17   

  In   Table 7 we repeat the analysis using a grade-school-year observation only if all five 

pollution measures are available for it. Comparing the Column (1) results for mean scaled math 

scores with those in Table 3A shows that the two sets of estimates are generally similar, although 

now the PM10 coefficient is smaller in absolute value and insignificant. The results for the other 

outcome variables are very similar to those in Tables 3B-4B.  In summary, we conclude that results 

in Table 7 also are quite similar to those for our main pollution measures. 
 

5.3 Fixed Effect Quantile Regression Estimates 

 Table 8 presents the FE quantile regression results for our base sample. (The actual quantiles 

for the four outcome variables are presented in Table 9.)  Again, in Table 8 we report only the 

                                                            
16 This is of course an informal comparison; a formal comparison would entail terms involving both the variances of the 
estimates and the covariance between the estimates. Unfortunately, available software does not allow one to estimate a 
seemingly unrelated estimation procedure with weights, FEs, and clustered standard errors, making obtaining the 
covariance much more difficult.  
17 To the extent that the coefficients are smaller, the effects of a one standard deviation increase in the respective 
pollutant is smaller since the standard deviations of the pollutants for  this sample are essentially equal to those for our 
base sample. 
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coefficients for the pollution variables, and cluster the standard errors at the school level.18 Consider 

the results in section A for mean scaled math scores. To maximize intuition, we first focus on the 

results for the 50th quantile or the median in column (4), that indicate how the median of mean scaled 

math scores change as the pollution variables change; recall that the results in Table 3A indicate how 

the mean (from the FE regression) of mean scaled math scores changes as the pollution variables 

change. As in Table 3A, the coefficients for CO and O3 are insignificant in column (4) of part A of 

table 8.  The coefficients for NO2, PM10 and PM2.5 are similar in size to those in Table 3A, but now 

the coefficients for NO2 and PM2.5, in addition to the coefficient for PM10, are statistically significant.  

 Considering the estimated coefficients for all of the quantiles, the coefficients in column (1) 

indicate the effect of changing the pollution variables for those at the tenth quantile of the 

distribution, i.e. lowest achieving students.  The results in columns (2)-(7) show the analogous results 

for students at the twentieth quantile through the ninetieth quantile, respectively.  The CO estimated 

coefficients are insignificant for all quantiles. The NO2 coefficients are of similar magnitude across 

the different quantiles, but are significant only from the fortieth quantile through the ninetieth 

quantile. (Note that the similar coefficient sizes imply that a one standard deviation increase in NO2 

will have a larger percentage effect at the lower quantiles.) O3 significantly affects performance for 

only the ninetieth quantile, and then only at the 10% level.  PM10 has a similar effect in terms of 

magnitude, and is statistically significant, across all quantiles.  Finally, PM2.5 is significant for the 

fortieth quantile, and has a larger effect as one moves up the distribution of mean scaled math 

scores.  

 Section B of Table 8 presents our quantile regression results when the outcome is the 

percentage of students at least proficient in math. Comparing the median estimates in Column 4 to 

the mean estimates in Table 3B, the coefficients for O3, NO2, PM10 and PM2.5 are similar in 

magnitude across the two sets of results. However, the median coefficient for PM2.5 is now 

statistically significant in Section B, while the coefficients for NO2, PM10 and PM2.5, are statistically 

significant in both the regression and median estimates. (CO had no significant effect on the median 

or the mean for this outcome variable.) Considering all of the quantiles in Section B of Table 9, the 

magnitude of the NO2 coefficients are similar across quantiles, but significant only for the fortieth 

through ninetieth quantiles.   The PM10 and O3 coefficients are significant for all quantiles, and both 

                                                            
18 However, we find that clustering made little difference in terms of the standard errors but is significantly more 
computationally demanding. 
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increase in size as one moves up the distribution. Finally, the coefficients for PM2.5 increase across 

the quantiles and are significant from the median through the ninetieth quantile.   

 Section C presents the quantile regression results when the outcome is mean scaled ELA 

scores. The median results in column (4) are very similar in size and significance to the regression 

coefficients in Table 4A. All of the CO coefficients across quantiles (except for the median) are 

statistically significant and are largest for the lowest quantiles; the CO coefficient was insignificant in 

the regression results in Table 4A.   The coefficients for O3 and PM2.5 are also all significant and 

similar in size across the quantiles, while the coefficients for PM10  are all significant but increase in 

size as one moves up the  distribution.  Recall that the O3, PM2.5 and PM10 coefficients are also 

significant in the regression results in Table 4A.  

 Section D presents the quantile regression results when the outcome is the percentage of 

students at least proficient in ELA. The median results in column (4) again are very similar in size 

and significance to those for the mean in Table 4B. Further, across quantiles, the coefficients for O3 

and PM2.5 are all significant and  larger at higher quantiles, while all of the PM10 coefficients are 

significant but of similar magnitude across quantiles. Note that the O3, PM2.5 and PM10 coefficients 

are also significant in the regression results in Table 4A.  

 We summarize our quantile regression results as follows.  The CO coefficients are significant 

only when the outcome variable is mean ELA scores; recall that none of the CO coefficients was 

significant in any of the FE regression results in section 5.1.  NO2 significantly affects only mean 

math scores and the percentage at least proficient in  math from the fortieth quantile and up; in the 

FE regression results it was  almost significant for mean scaled math scores and significant for the 

percentage at least proficient in math at the 10% level. O3 significantly affects all quantiles for all 

outcome measures except that for mean math scores, which is consistent with the FE regression 

results. PM2.5 significantly affects mean math scores at all quantiles except the tenth, and significantly 

affects the percentage at least proficient in math from the median up, while it  significantly affects 

both of the ELA outcome measures at all quantiles. In the FE regression results,  PM2.5 significantly 

affects all outcomes except for the percentage at least proficient in math.) Finally, PM10 significantly 

affects all outcome variables at all quantiles; it also significantly affects all outcome variables in the 

FE regression results. The median estimates and the FE mean regression estimates are quite similar,; 

this is reassuring since we assume that the FEs are constant across quantiles for a given outcome, 

while for a symmetric distribution the regression results are equivalent to allowing the median to 

have its own FE. Thus, we argue that the quantile regression results produce a richer picture of the 
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effect of pollution on test scores than simply considering the FE regression results. Finally, again, in 

each case where a coefficient is significant,  the quantile regression results predict a relatively small 

impact of a one standard deviation in the respective pollution measure. 

 We carry out the same sensitivity analysis for the quantile estimates as we did for the FE 

regression results.19  The results are very similar to those in Table 8, even when we used the 

monitors only within a ten-mile radius of the school.  

 

5.4 Comparative Statics Exercises 

  To put these results in perspective, we do some back-of-the-envelope calculations of the 

benefits of a decrease in pollution for disadvantaged neighborhoods; for ease of exposition, we 

focus  on reductions in PM10. Using the median of free or reduced-price lunches as the threshold to 

determine high- and low-income schools, the percentage at least proficient in math is 22.5 

percentage points higher in high-income schools (61.8%) compared to low-income schools (39.3%).  

The percentage of days above the standard for PM10  is 14.3  for low-income schools and 9.3 for 

high-income schools − a gap of 5.0 percentage points. If these low-income schools had the 

pollution levels of the high-income schools, then the percentage at least proficient in math would 

increase by 0.12; in other words, the gap between high-income and low-income schools would fall to 

22.38 percentage points, or by about 0.5%. In a similar vein, the difference between high-income 

and low-income schools in the percentage at least proficient in ELA is 28.04 percentage points. 

Equalizing PM10 exposure in terms of days above the standard between high-income and low-

income schools would increase the percentage at least proficient in ELA in low-income schools by 

0.095 and would decrease the gap between high- and low-income schools to 27.945 by 0.34 %.  

 For a starker comparison, the percentage at least proficient in math at the ninetieth quantile 

is 80 percentage points and at the tenth quantile it is 22 percentage points (see Table 9)—a gap of 58 

percentage points. To obtain the corresponding average number of days that PM10 is above the daily 

standard for the ninetieth (tenth) quantile, we take the average of schools over the eighty-fifth to 

ninety-fifth (fifth and fifteenth) quantiles. This produces the ‘average’ percent of PM10 days above 

the standard of 8.82 and 14.28 for the ninetieth and tenth quantile, respectively, for a difference of 

                                                            
19 These results are available at xxx. In these results we have not clustered the standard errors, given how 
computationally demanding it was to do so in Table 9 and how little it changed the estimates of the standard errors. 
John add to website. 
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5.47 percent of days.   If we decrease air pollution for the tenth quantile to that of the ninetieth 

quantile, we see that the percentage at least proficient in math at the tenth quantile would rise by 

0.092 percentage points. When we do this calculation for the percentage at least proficient in ELA, 

we find that the tenth quantile increases by 0.13 percentage points. 

 Finally, we consider the decrease in the average percent of days above the limit for PM10 

between 1990 and 2008. To calculate the average percent of days above the standard for California 

in these two years, we determine whether, for each monitoring site and date, the maximum 1-hour 

value for PM10 is above the standard. If the value for PM10 for one of the monitors within an air 

basin was above the standard for a particular day, we designate that day as being above the standard 

for that air basin. Then, for each air basin, we calculate the percent of days within the year when 

PM10 was above the standard. Finally, we take the average of the air basin values for each year and 

designate that average as the percent of days above the standard for California for PM10 in each year. 

In this calculation, we use all sites that were functioning in 1990 and all sites that were functioning in 

2008, and we use the entire calendar year, not just the school year. Using this approach, we estimate 

that there is an 8.28 percentage point reduction in the percent of days above the standard between 

1990 and 2008 for PM10. The regression results suggest that this reduction would increase the 

percentage at least proficient in math and in ELA by 0.198 and 0.157 percentage points, respectively. 

To put this number in perspective, recall that the percentage at least proficient in math is 22.5 

percentage points higher in high-income schools than in low-income schools.  Using either outcome 

variable, the contribution of the decrease in pollution to the improvement in the mean of the 

percentage at least proficient is small.  In terms of the quantile estimates, decreasing PM10 for the 

tenth quantile by 8.28 while keeping the PM10 level for ninetieth quantile constant would decrease 

the gap in the percentage at least proficient between the quantiles by 0.14 percentage points for 

math and by 0.16 percentage points for ELA.  
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6. Conclusion 

In this paper we present FE linear regression and quantile regression estimates that suggest that a 

reduction in air pollution generally increases academic performance on standardized tests in both 

Mathematics and English/Language Arts by a small but significant amount, even when we also use a 

large number of time changing control variables.  The effects are strongest for O3, PM2.5, and 

especially PM10. NO2 significantly affects only the Mathematics outcome variables, while in the vast 

majority of cases, the CO coefficients are insignificant. The above results are robust to a number of 

changes in how pollution is measured. 

 In terms of comparing FE quantile and FE regression estimates, the median estimates are 

similar to the FE regression results. In many cases, if the quantile estimates are significant for some 

quantiles, they are statistically significant for all quantiles. In a slight majority of cases where the 

pollutant has a significant coefficient in the quantile estimates, the effect increases across quantiles, 

while in the remaining cases the coefficient for a given pollutant is constant across quantiles. 

Overall, the quantile estimates produce a richer picture of the effect of pollution on test scores. 

Given that the methodology now exists for estimating FE quantile regressions, we believe that it will 

be fruitful to explore its use in other contexts.   

 In terms of policy implications, this paper shows that efforts to reduce air pollution will not 

only improve children’s health, as noted in previous articles, but also slightly increase children’s 

academic performance.   
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Table 1: Descriptive Statistics Across California Schools, 2002‐2008

 
 Mean 

Standard 

Deviation
Minimum Maximum

 Mathematics 

 Mean scaled score  357.57 38.97 181.60 537.10

 Percent at least proficient  50.74 21.36 0.00 100.00

 English/language arts 

 Mean scaled score  341.21 28.75 182.10 474.80

 Percent at least proficient  43.35 21.25 0.00 100.00

Percent of Days that Exceed the Pollution Standard

Carbon monoxide (CO) 0.0039 0.11 0.00 7.40

Nitrogen dioxide (NO2) 0.0033 0.021 0.00 0.63

Ozone (O3) 1.94 2.50 0.00 24.91

Coarse Particulate matter (PM10) 11.78 12.48 0.00 79.80

Fine Particulate matter (PM2.5) 6.45 6.47 0.00 32.00

 Time‐varying Grade‐School Characteristics 

 White (%)  35.00 28.36 0.00 100.00

 Asian (%)  11.04 15.05 0.00 100.00

 Hispanic (%)  42.56 29.75 0.00 100.00

 African American (%)  7.58 12.51 0.00 100.00

 Other (%)  3.81 5.98 0.00 98.31

 Time‐varying School Characteristics 

 Average class size 26.54 4.97 5.00 50.00

 Reduced or free meals (%)  51.39 30.65 0.00 100.00

 Parent is a high school graduate (%)  19.38 18.50 0.00 100.00

 Parent has some college education (%)  24.98 13.20 0.00 100.00

 Parent is a college graduate (%)  19.53 13.28 0.00 100.00

 Parent attended graduate school (%)  11.82 13.91 0.00 100.00

 Fully certified teachers (%)  94.72 9.31 0.00 100.00

 Non‐native english speakers (%) 26.24 21.91 0.00 100.00

 School enrollment 406.89 214.76 13.00 3,110.00

 Time‐varying District Characteristics 

 Expenditure per student (*10^‐3) 8.83 2.56 1.87 70.76

 Time‐varying County Characteristics 

 County unemployment rate  6.38 2.10 3.40 22.40

 County taxable transactions (*10^‐5) 384.52 417.05 0.17 1,215.06

Panel A:  Test Score Variables

Panel B: Pollution Variables

Panel C: Control Variables

Note: Average class size is measured separately for kindergarten through third grade and fourth 

through sixth grade.  The means for CO, NO2, O3, PM10, and  PM2.5 are based on 143,041 observations, 

131,446 observations, 138,259 observations, 136,476 observations, and 131,467 observations, 

respectively.  See Appendix A for data sources.



Table 2: Correlation Coefficients Across California Schools, 2002‐2008

CO NO2 O3 PM10 PM2.5

Carbon monoxide (CO) 1

Nitrogen dioxide (NO2) 0.23 1

Ozone (O3) 0.020 0.029 1

Coarse Particulate matter (PM10) 0.15 0.53 0.54 1

Fine Particulate matter (PM2.5) ‐0.020 0.064 0.50 0.66 1

 

 

 

 

 

Percent of days that exceed the standard for:

Percent of days that exceed the standard for:



(1) (2) (3) (4) (5)

Percent of days that exceed the standard for:

Carbon monoxide (CO) 0.523

[0.419]
Nitrogen dioxide (NO2) ‐5.139

[3.226]
Ozone (O3) 0.009

[0.052]
Particulate matter10 (PM10) ‐0.023+

[0.012]
Particulate matter2.5 (PM2.5) ‐0.024

[0.019]

Asian (%)  0.142** 0.134** 0.143** 0.138** 0.136**

[0.023] [0.024] [0.023] [0.023] [0.024]

Hispanic (%)  ‐0.359** ‐0.375** ‐0.363** ‐0.371** ‐0.372**

[0.014] [0.015] [0.015] [0.015] [0.015]

African American (%)  ‐0.498** ‐0.512** ‐0.502** ‐0.511** ‐0.518**

[0.022] [0.023] [0.023] [0.023] [0.023]

Other (%)  ‐0.154** ‐0.149** ‐0.144** ‐0.155** ‐0.149**

[0.019] [0.021] [0.019] [0.020] [0.0196]

Average class size  ‐0.197** ‐0.212** ‐0.202** ‐0.206** ‐0.201**

[0.028] [0.0298] [0.029] [0.029] [0.0297]

Reduced or free meals (%)  ‐0.109** ‐0.113** ‐0.113** ‐0.115** ‐0.117**

[0.013] [0.013] [0.013] [0.013] [0.014]

Parent is a:

 High school graduate (%)  0.035* 0.032+ 0.036* 0.034+ 0.035+

[0.017] [0.018] [0.017] [0.018] [0.018]

 Some college (%)  0.018 0.026 0.022 0.021 0.019

[0.017] [0.019] [0.018] [0.018] [0.019]

 College graduate (%)  0.062** 0.054** 0.060** 0.058** 0.056**

[0.018] [0.019] [0.019] [0.019] [0.019]

 Graduate school (%)  0.111** 0.110** 0.110** 0.108** 0.107**

[0.020] [0.021] [0.020] [0.021] [0.021]

Fully certified teachers (%)  0.051** 0.041** 0.048** 0.044** 0.040*

[0.015] [0.016] [0.015] [0.016] [0.016]

Expenditure per student  0.0297 0.025 0.044 0.0103 0.0196

[0.050] [0.059] [0.051] [0.051] [0.054]

Non‐native English speakers (%) ‐0.151** ‐0.152** ‐0.149** ‐0.148** ‐0.145**

[0.017] [0.018] [0.018] [0.018] [0.018]

School enrollment ‐0.0015 ‐0.0015 ‐0.0016 ‐0.0015 ‐0.0016

[0.0015] [0.0015] [0.0015] [0.0015] [0.0016]

County unemployment rate  ‐0.219 ‐0.206 ‐0.200 ‐0.143 ‐0.136

[0.168] [0.176] [0.167] [0.169] [0.173]

County taxable transactions ‐0.014** ‐0.016** ‐0.014** ‐0.014** ‐0.016**

[0.0032] [0.0033] [0.0033] [0.0033] [0.0032]

Observations 142320 130832 137600 135693 130891

R‐squared 0.877 0.881 0.879 0.879 0.881

Table 3A: The Effect of Air Pollution (percent of days that exceed the standard) on  Mean Scaled 

Scores in Mathematics − Grade‐School and Year Effects 

Note:  Standard errors in parentheses are clustered by school. Significance levels: **1% ,*5%,+10%.



(1) (2) (3) (4) (5)

Percent of days that exceed the standard for:

Carbon monoxide (CO) ‐0.123

[0.277]
Nitrogen dioxide (NO2) ‐3.323+

[1.791]
Ozone (O3) ‐0.089**

[0.032]
Particulate matter10 (PM10) ‐0.024**

[0.0071]
Particulate matter2.5 (PM2.5) ‐0.012

[0.011]

Asian (%)  0.013 0.008 0.013 0.011 0.008

[0.012] [0.012] [0.012] [0.012] [0.012]

Hispanic (%)  ‐0.190** ‐0.197** ‐0.194** ‐0.196** ‐0.197**

[0.0081] [0.0086] [0.0083] [0.008] [0.0085]

African American (%)  ‐0.292** ‐0.299** ‐0.296** ‐0.298** ‐0.306**

[0.013] [0.014] [0.013] [0.013] [0.014]

Other (%)  ‐0.133** ‐0.141** ‐0.131** ‐0.138** ‐0.138**

[0.011] [0.012] [0.011] [0.012] [0.012]

Average class size  ‐0.123** ‐0.132** ‐0.126** ‐0.128** ‐0.127**

[0.017] [0.018] [0.017] [0.017] [0.018]

Reduced or free meals (%)  ‐0.038** ‐0.039** ‐0.039** ‐0.039** ‐0.041**

[0.0073] [0.0077] [0.0074] [0.008] [0.0078]

Parent is a:

 High school graduate (%)  0.029** 0.0298** 0.031** 0.030** 0.031**

[0.010] [0.011] [0.010] [0.011] [0.011]

 Some college (%)  0.032** 0.036** 0.033** 0.035** 0.033**

[0.010] [0.011] [0.011] [0.011] [0.011]

 College graduate (%)  0.042** 0.038** 0.042** 0.041** 0.039**

[0.011] [0.011] [0.011] [0.011] [0.011]

 Graduate school (%)  0.026* 0.026* 0.026* 0.025* 0.024*

[0.011] [0.012] [0.011] [0.012] [0.012]

Fully certified teachers (%)  0.065** 0.064** 0.066** 0.063** 0.062**

[0.0085] [0.0087] [0.0086] [0.009] [0.0088]

Expenditure per student  0.019 0.0055 0.025 ‐0.0016 0.0056

[0.029] [0.034] [0.030] [0.030] [0.032]

Non‐native English speakers (%) ‐0.063** ‐0.063** ‐0.061** ‐0.061** ‐0.059**

[0.010] [0.010] [0.010] [0.010] [0.010]

School enrollment ‐0.0032** ‐0.0033** ‐0.0033** ‐0.003** ‐0.0033**

[0.00085] [0.00087] [0.00086] [0.00086] [0.00088]

County unemployment rate  0.235* 0.258* 0.302** 0.344** 0.341**

[0.103] [0.107] [0.102] [0.103] [0.106]

County taxable transactions ‐0.0063** ‐0.0071** ‐0.0057** ‐0.006** ‐0.0068**

[0.0018] [0.0019] [0.0018] [0.0018] [0.0018]

Observations 142320 130832 137600 135693 130891

R‐squared 0.86 0.865 0.862 0.862 0.864

Table 3B: The Effect of Air Pollution (percent of days that exceed the standard) on  Percent of Students at 

Least Proficient in Mathematics − Grade‐School and Year Effects 

See notes to Table 3A.



(1) (2) (3) (4) (5)

Percent of days that exceed the standard for:

Carbon monoxide (CO) ‐0.418

[0.302]
Nitrogen dioxide (NO2) ‐0.994

[1.915]
Ozone (O3) ‐0.205**

[0.029]
Particulate matter10 (PM10) ‐0.019**

[0.0067]
Particulate matter2.5 (PM2.5) ‐0.027*

[0.011]

Asian (%)  0.045** 0.041** 0.045** 0.046** 0.045**

[0.013] [0.014] [0.014] [0.014] [0.014]

Hispanic (%)  ‐0.270** ‐0.277** ‐0.275** ‐0.273** ‐0.274**

[0.0088] [0.0094] [0.00905] [0.00904] [0.0093]

African American (%)  ‐0.304** ‐0.313** ‐0.309** ‐0.312** ‐0.315**

[0.014] [0.014] [0.014] [0.014] [0.014]

Other (%)  ‐0.127** ‐0.127** ‐0.125** ‐0.128** ‐0.125**

[0.011] [0.012] [0.012] [0.012] [0.012]

Average class size  ‐0.031* ‐0.030+ ‐0.024 ‐0.026+ ‐0.022

[0.015] [0.016] [0.016] [0.016] [0.016]

Reduced or free meals (%)  ‐0.069** ‐0.068** ‐0.071** ‐0.070** ‐0.073**

[0.0074] [0.0079] [0.0076] [0.0077] [0.0080]

Parent is a:

 High school graduate (%)  0.033** 0.035** 0.036** 0.035** 0.035**

[0.010] [0.011] [0.010] [0.011] [0.011]

 Some college (%)  0.020+ 0.029* 0.023* 0.025* 0.026*

[0.011] [0.011] [0.011] [0.011] [0.011]

 College graduate (%)  0.062** 0.060** 0.062** 0.062** 0.061**

[0.011] [0.011] [0.011] [0.011] [0.011]

 Graduate school (%)  0.083** 0.086** 0.084** 0.082** 0.083**

[0.012] [0.012] [0.012] [0.012] [0.012]

Fully certified teachers (%)  0.054** 0.049** 0.055** 0.0502** 0.047**

[0.0088] [0.0091] [0.0089] [0.00902] [0.0091]

Expenditure per student  ‐0.0089 0.00304 ‐0.0039 ‐0.0196 ‐0.015

[0.029] [0.032] [0.029] [0.030] [0.031]

Non‐native English speakers (%) ‐0.164** ‐0.169** ‐0.165** ‐0.167** ‐0.165**

[0.0101] [0.0106] [0.0104] [0.0104] [0.0106]

School enrollment ‐0.0021** ‐0.0020* ‐0.0022** ‐0.0021** ‐0.0019*

[0.00078] [0.00080] [0.00078] [0.00079] [0.00081]

County unemployment rate  0.088 0.212* 0.205* 0.219* 0.200*

[0.092] [0.097] [0.091] [0.092] [0.095]

County taxable transactions ‐0.0046* ‐0.0049** ‐0.0037* ‐0.0045* ‐0.0064**

[0.0018] [0.0019] [0.0018] [0.0018] [0.0019]

Observations 142320 130832 137600 135693 130891

R‐squared 0.919 0.922 0.921 0.92 0.922

Table 4A: The Effect of Air Pollution (percent of days that exceed the standard) on  Mean Scaled Scores in 

English/Language Arts − Grade‐School and Year Effects 

See notes to Table 3A.



(1) (2) (3) (4) (5)

Percent of days that exceed the standard for:

Carbon monoxide (CO) 0.177

[0.176]
Nitrogen dioxide (NO2) ‐0.876

[1.380]
Ozone (O3) ‐0.166**

[0.022]
Particulate matter10 (PM10) ‐0.019**

[0.0051]
Particulate matter2.5 (PM2.5) ‐0.033**

[0.0083]

Asian (%)  0.0065 0.00404 0.00615 0.0064 0.0057

[0.010] [0.0102] [0.010] [0.0101] [0.0102]

Hispanic (%)  ‐0.197** ‐0.202** ‐0.201** ‐0.200** ‐0.200**

[0.0069] [0.0073] [0.00704] [0.0071] [0.0072]

African American (%)  ‐0.230** ‐0.234** ‐0.233** ‐0.234** ‐0.238**

[0.011] [0.011] [0.011] [0.011] [0.011]

Other (%)  ‐0.106** ‐0.107** ‐0.104** ‐0.109** ‐0.106**

[0.0091] [0.0097] [0.0093] [0.0095] [0.0097]

Average class size  ‐0.0054 ‐0.0057 ‐0.0014 ‐0.00398 ‐0.0027

[0.012] [0.012] [0.012] [0.012] [0.012]

Reduced or free meals (%)  ‐0.044** ‐0.042** ‐0.045** ‐0.044** ‐0.044**

[0.0055] [0.0058] [0.0056] [0.0057] [0.0059]

Parent is a:

 High school graduate (%)  0.026** 0.028** 0.028** 0.028** 0.029**

[0.0074] [0.0079] [0.0075] [0.0078] [0.00796]

 Some college (%)  0.025** 0.031** 0.026** 0.028** 0.027**

[0.0077] [0.0082] [0.0078] [0.00805] [0.0082]

 College graduate (%)  0.052** 0.052** 0.053** 0.054** 0.053**

[0.00795] [0.0085] [0.0082] [0.0084] [0.0085]

 Graduate school (%)  0.038** 0.0397** 0.039** 0.039** 0.039**

[0.0082] [0.0087] [0.0083] [0.0085] [0.0086]

Fully certified teachers (%)  0.048** 0.046** 0.049** 0.046** 0.044**

[0.0063] [0.0066] [0.0064] [0.0065] [0.0066]

Expenditure per student  0.012 0.032 0.0155 0.0026 0.0085

[0.027] [0.025] [0.028] [0.028] [0.0298]

Non‐native English speakers (%) ‐0.110** ‐0.113** ‐0.111** ‐0.112** ‐0.110**

[0.0074] [0.0076] [0.0075] [0.0076] [0.0077]

School enrollment ‐0.0018** ‐0.0018** ‐0.0019** ‐0.0018** ‐0.0017**

[0.00058] [0.00060] [0.00058] [0.00059] [0.00060]

County unemployment rate  0.358** 0.414** 0.425** 0.441** 0.407**

[0.071] [0.075] [0.070] [0.072] [0.073]

County taxable transactions 0.00055 0.00068 0.00155 0.00058 ‐0.00096

[0.0013] [0.0013] [0.0013] [0.0013] [0.0013]

Observations 142320 130832 137600 135693 130891

R‐squared 0.904 0.908 0.905 0.905 0.907

Table 4B: The Effect of Air Pollution (percent of days that exceed the standard) on  Percent of Students at 

Least Proficient in English/Language Arts − Grade‐School and Year Effects 

See notes to Table 3A.



Mean scaled 

score

Percent at least 

proficient

Mean scaled 

score

Percent at least 

proficient

(1) (2) (3) (4)

Percent of days that exceed the standard for:

Carbon monoxide (CO) 0.745 ‐0.192 ‐0.533 0.249

[0.600] [0.402] [0.423] [0.261]

Nitrogen dioxide (NO2) ‐4.845+ ‐2.821+ 0.068 ‐0.202

[2.946] [1.638] [1.709] [1.246]

Ozone (OZ) 0.007 ‐0.091** ‐0.209** ‐0.175**

[0.052] [0.032] [0.029] [0.022]

Particulate matter10 (PM10) ‐0.027* ‐0.026** ‐0.023** ‐0.024**

[0.011] [0.007] [0.006] [0.005]

Particulate matter2.5 (PM2.5) ‐0.015 ‐0.006 ‐0.025* ‐0.031**

[0.019] [0.011] [0.011] [0.008]

Mean scaled 

score

Percent at least 

proficient

Mean scaled 

score

Percent at least 

proficient

(1) (2) (3) (4)

Percent of days that exceed the standard for:

Carbon monoxide (CO) 0.354 ‐0.114 ‐0.570+ 0.231

[0.429] [0.287] [0.319] [0.173]

Nitrogen dioxide (NO2) ‐4.192+ ‐1.349 ‐0.695 ‐0.149

[2.352] [1.354] [1.378] [0.992]

Ozone (O3) 0.011 ‐0.068* ‐0.149** ‐0.120**

[0.049] [0.031] [0.028] [0.021]

Particulate matter10 (PM10) ‐0.002 ‐0.013+ ‐0.015* ‐0.015**

[0.012] [0.007] [0.007] [0.005]

Particulate matter2.5 (PM2.5) ‐0.004 ‐0.009 ‐0.024* ‐0.030**

[0.020] [0.012] [0.012] [0.009]

See notes to Table 3A.

Table 5: The Effect of Air Pollution (percent of days that exceed the standard) on  Academic Performance 

using Monitors Functioning Throughout the Period− Grade‐School and Year Effects 

Table 6: The Effect of Air Pollution  (percent of days that exceed the standard) on  Academic Performance 

using Monitors within a 10 mile Radius − Grade‐School and Year Effects 

See notes to Table 3A.

Mathematics English/Language Arts

Mathematics English/Language Arts



Mean scaled 

score

Percent at least 

proficient

Mean scaled 

score

Percent at least 

proficient

(1) (2) (3) (4)

Percent of days that exceed the standard for:

Carbon monoxide (CO) 0.735+ ‐0.034 ‐0.264 0.259

[0.429] [0.277] [0.305] [0.174]

Nitrogen dioxide (NO2) ‐5.584 ‐2.730 0.142 ‐0.423

[3.692] [2.018] [2.064] [1.534]

Ozone (O3) 0.017 ‐0.096** ‐0.213** ‐0.167**

[0.057] [0.035] [0.032] [0.024]

Particulate matter10 (PM10) ‐0.016 ‐0.023** ‐0.018** ‐0.020**

[0.012] [0.007] [0.007] [0.005]

Particulate matter2.5 (PM2.5) ‐0.015 ‐0.010 ‐0.022* ‐0.030**

[0.019] [0.011] [0.011] [0.008]

Table 7: The Effect of Air Pollution  (percent of days that exceed the standard) on  Academic Performance 

using  Observations where all Pollutants and Test Scores are Available − Grade‐School and Year Effects 

See notes to Table 3A.



Quantile 10% 20% 40% 50% 60% 80% 90%

(1) (2) (3) (4) (5) (6) (7)

Carbon monoxide (CO) 0.496 0.087 0.022 0.52 0.266 0.412 0.536

[0.478] [0.498] [0.555] [0.411] [0.401] [0.766] [0.438]

Nitrogen dioxide (NO2) ‐5.615 ‐3.786 ‐7.393** ‐5.151* ‐4.437* ‐3.245 ‐5.056*

[4.288] [3.228] [2.778] [2.327] [2.101] [2.374] [2.579]

Ozone (O3) 0.005 0.012 0.019 0.016 0.005 ‐0.034 ‐0.051+

[0.030] [0.024] [0.021] [0.018] [0.020] [0.024] [0.028]

Particulate matter10 (PM10) ‐0.024** ‐0.027** ‐0.022** ‐0.017** ‐0.022** ‐0.025** ‐0.020**

[0.0056] [0.0044] [0.0043] [0.0038] [0.0039] [0.0050] [0.0060]

Particulate matter2.5 (PM2.5) 0.0007 ‐0.021* ‐0.025** ‐0.030** ‐0.029** ‐0.046** ‐0.048**

[0.012] [0.0010] [0.0090] [0.010] [0.012] [0.0086] [0.012]

Carbon monoxide (CO) ‐0.641 ‐0.340 ‐0.256 ‐0.338+ ‐0.364+ ‐0.274 ‐0.332

[0.409] [0.414] [0.388] [0.200] [0.199] [0.378] [0.457]

Nitrogen dioxide (NO2) ‐3.042 ‐1.878 ‐3.340** ‐4.066** ‐4.685** ‐4.462** ‐4.347+

[2.228] [1.759] [1.229] [1.395] [1.257] [1.729] [2.308]

Ozone (O3) ‐0.040* ‐0.066** ‐0.095** ‐0.105** ‐0.116** ‐0.143** ‐0.151**

[0.016] [0.014] [0.013] [0.014] [0.013] [0.016] [0.021]

Particulate matter10 (PM10) ‐0.017** ‐0.020** ‐0.025** ‐0.026** ‐0.030** ‐0.030** ‐0.032**

[0.0040] [0.0029] [0.0030] [0.0031] [0.0033] [0.0038] [0.0047]

Particulate matter2.5 (PM2.5) 0.012 0.0054 ‐0.0063 ‐0.011* ‐0.022** ‐0.028** ‐0.032**

[0.0077] [0.0060] [0.0051] [0.0050] [0.0055] [0.0063] [0.0066]

Carbon monoxide (CO) ‐0.998* ‐0.744* ‐0.502+ ‐0.339 ‐0.540** ‐0.574+ ‐0.609*

[0.469] [0.332] [0.264] [0.235] [0.185] [0.348] [0.290]

Nitrogen dioxide (NO2) 0.422 ‐1.072 ‐1.777 ‐0.967 ‐0.501 ‐0.639 0.258

[2.658] [1.494] [1.440] [1.676] [1.137] [1.703] [2.914]

Ozone (O3) ‐0.191** ‐0.205** ‐0.196** ‐0.211** ‐0.222** ‐0.224** ‐0.262**

[0.015] [0.012] [0.012] [0.012] [0.013] [0.012] [0.020]

Particulate matter10 (PM10) ‐0.014** ‐0.015** ‐0.019** ‐0.021** ‐0.021** ‐0.022** ‐0.025**

[0.0047] [0.0038] [0.0026] [0.0026] [0.0023] [0.0030] [0.0039]

Particulate matter2.5 (PM2.5) ‐0.022** ‐0.026** ‐0.028** ‐0.029** ‐0.029** ‐0.024** ‐0.027**

[0.0063] [0.0051] [0.0047] [0.0044] [0.0047] [0.0064] [0.0069]

Carbon monoxide (CO) 0.320+ 0.168 0.153 0.074 ‐0.032 ‐0.021 ‐0.186

[0.194] [0.140] [0.230] [0.171] [0.107] [0.214] [0.247]

Nitrogen dioxide (NO2) ‐2.148 ‐1.826 ‐2.069+ ‐1.164 ‐0.576 ‐0.258 0.687

[1.448] [1.368] [1.164] [1.220] [1.482] [1.523] [1.266]

Ozone (O3) ‐0.142** ‐0.149** ‐0.163** ‐0.178** ‐0.182** ‐0.204** ‐0.252**

[0.013] [0.010] [0.008] [0.010] [0.011] [0.013] [0.016]

Particulate matter10 (PM10) ‐0.019** ‐0.017** ‐0.019** ‐0.020** ‐0.020** ‐0.022** ‐0.023**

[0.0027] [0.0022] [0.0022] [0.0025] [0.0023] [0.0027] [0.0035]

Particulate matter2.5 (PM2.5) ‐0.024** ‐0.023** ‐0.029** ‐0.036** ‐0.036** ‐0.033** ‐0.036**

[0.0050] [0.0046] [0.0033] [0.0032] [0.0032] [0.0047] [0.0060]

Table 8: Quantile Regressions Results for Mathematics and English/Language Arts

See notes to Table 3a.

Panel A:  Mathematics Mean Scaled Score

Panel B: Percent at Least Proficient in Mathematics

Panel C: English/Language Arts Mean Scaled Score

Panel D: Percent at Least Proficient in English/Language Arts



Quantile 10% 20% 40% 50% 60% 80% 90%

 Mathematics 

 Mean scaled score  310.2 324 344.5 354 364.3 389.9 410.2

 Percent at least proficient  22 31 44 50 57 71 80

 English/language arts 

 Mean scaled score  306 316.3 331.7 339.1 346.7 365.9 380.3
 Percent at least proficient  17 24 35 41 48 63 74

Table 9: Distribution of Outcome Variables
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