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Abstract. College students in the United States choose their major much

later than their counterparts in Europe. American colleges also typically allow

students to choose when they wish to make their major decision. In this paper

we estimate the benefits of such a policy: specifically, whether additional years of

multi-disciplinary education help students make a better choice of specialization,

and at what cost in foregone specialized human capital. We first document that,

in the cross section, students who choose their major later are more likely to

change fields on the labor market. We then build and estimate a dynamic

model of college education where the optimal timing of specialization reflects a

tradeoff between discovering comparative advantage and acquiring occupation-

specific skills. Multi-disciplinary education allows students to learn about their

comparative advantage, while specialized education is more highly valued in

occupations related to that field. Estimates suggest that delaying specialization

is informative, although noisy. Working in the field of comparative advantage

accounts for up to 20% of a well-matched worker’s earnings. While education is

transferable across fields with only a 10% penalty, workers who wish to change

fields incur a large, one-time cost. We then use these estimates to compare the

current college system to one which imposes specialization at college entry. In

this counterfactual, the number of workers who switch fields drops from 24%

to 20%; however, the share of workers who are not working in the field of their

comparative advantage rises substantially, from 23% to 30%. Overall, expected

earnings fall by 1.5%.
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1. Introduction

On the first day of college at an American university, many freshmen do not

know what field they will concentrate on during their undergraduate studies. Four

years later, newly-minted graduates enter the world of work with a new credential

and a field of specialization. Despite the dire importance students ascribe to their

choice of major, relatively little research has examined the process by which this

decision is reached and the implications of constraining that process.

Education systems differ widely in how and when students are allowed to select a

field. In many european universities the choice of major is made prior to enrollment

and is difficult to adjust thereafter. Other countries, in contrast, are much more

forgiving towards the undecided. It is well accepted in the United States that

college is a time of self discovery: the exploration of different fields is encouraged

and sometimes mandated. In the US majors can be chosen several years into

college, and adjusted even later.

The impact of constraining the timing of specialization on eventual labor market

outcomes is potentially large. If delayed specialization enables students to make

better-informed decision about their field of specialization, the returns to educa-

tion are affected through two channels. First, better-matched students are more

likely to pursue careers in a field related to their studies, thus making better use

of their specialized training. Second, workers who are in occupations which are

well-suited to their innate talents are likely to be more productive. Education re-

forms which seek to increase the returns to college education must take account of

such effects, particularly those reforms which would narrow the breadth of college

education.

Does broad education help students discover their idiosyncratic talents? And if

so, does the accuracy of this match translate into better labor market outcomes?

This paper provides empirical answers to these questions. We first document the

positive cross-sectional correlation between the timing of specialization and the

probability of working in an occupation unrelated to college major. This finding

suggests that selection into specialization needs to be accounted for, and motivates

our structural model.
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In our model, the optimal timing of specialization reflects a trade-off between

identifying one’s field of comparative advantage and acquiring specialized skills.

Each agent is best suited to one field, but the identity of that field is initially

unknown. Taking courses in many fields simultaneously provides agents with in-

formation about their comparative advantage. College course choices solve an op-

timal experimentation (bandit) problem: a student may choose multi-disciplinary

education, where he acquires skills and receives information about his match to

different fields; alternatively, he may choose specialized education, which conveys

field-specific skills at a faster rate but does not provide such information.

Students update their beliefs about their comparative advantage by filtering a

diffusion process in continuous time. Their course choices follow a stopping rule:

students start by enrolling in multi-disciplinary education, where they learn about

their field of comparative advantage. Once their confidence level is sufficiently

high – the belief that they belong in either field being sufficiently close to 1 – they

specialize. This bandit problem is not stationary: over time, as agents remaining

in the mixed-education stream acquire skills, the value of their foregone wages

rises and the expected length of additional specialized studies diminishes. This

reduction in the length of specialized education depresses the value of current

information and makes the agents less willing to experiment. Agents optimally

lower the confidence level they require in order to specialize.

This property of optimal experimentation has important cross-sectional implica-

tions. Agents whose beliefs process drifts the fastest, and who therefore specialize

early, are more likely to specialize in the field of their comparative advantage.

Agents whose beliefs process remains close to their prior longer take their special-

ization decision on the basis of weaker information. Late specializers are therefore

more likely to choose wrongly. Since these same individuals spent most of their

studies in the multi-disciplinary stream, their education is also relatively more

transferable. The model therefore delivers our reduced-form result: compared to

early specializers, late specializers are more likely to change occupations.

To separate the contribution of self-selection from the lock-in effect of early

specialization, the model is estimated structurally. Using data from a panel of

college graduates, we estimate the parameters of the model through simulated

method of moments. Detailed transcript data allow us to construct a proxy for



4 L. BRIDET AND M. LEIGHTON

the timing of specialization based on the course mix a student chooses in each

period. We then simulate the model, selecting parameters to match the observed

timing of specialization, occupation field choice, and wages.

Our estimated parameter values reveal that the benefits of flexible specializa-

tion are large. Time spent in mixed-discipline studies is informative, although

imperfectly so. One year of exploratory college courses is as informative about

comparative advantage as the entire pre-college period; nevertheless, despite con-

siderable time spent acquiring information, only 53% of students major in the

field of their comparative advantage. Furthermore, being type-matched to one’s

occupation is well-rewarded – workers employed in the field of their comparative

advantage earn a 20% wage premium. While our estimates indicate a large, one-

time switching cost equivalent to 1.5 years of wages, field-specific education is

highly transferable: ten years after graduation, out-of-field education is remuner-

ated at 90% the rate of field-related schooling. While the parameters are estimated

simultaneously, variation in the timing of specialization and occupation choice ap-

pears to drive identification of the precision of signals, both prior to and during

college. These values in turn, along with the earnings moments, pin down the

parameters governing returns and switching costs.

These parameter values allow us to compare the current college system to a

Europe-style counterfactual where specialization is imposed at college entry. While

such a policy will be welfare-reducing by construction, imposing a timing of spe-

cialization may be a necessary practical or cost-saving measure on the part of an

education system. Our estimates suggest that such a policy would have non-trivial

consequences. We predict a modest change (a reduction from 24% to 20%) in the

proportion of agents that pursue careers outside of their field of specialization, as

the lock-in effect of early specialization counteracts the poorer information stu-

dents have at the start of college. The change in the allocation of individuals

across occupations is more substantial. In the early-specialization counterfactual,

70% of workers are employed in the field of their ex-ante comparative advantage,

down from 77% in the benchmark. The average welfare cost of such a policy would

be equivalent to reducing education stocks by half a year of specialized studies, or

to reducing expected discounted lifetime earnings by 1.5%.
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This paper contributes to the small literature on the timing of specialization

in higher education by introducing a model of endogenous timing choice. Mala-

mud (2010, 2011) assumes, just like we do, that broad education is informative

about horizontal match characteristics. He compares labor market outcomes of

early-specializing students (in England) to late-specializing students (in Scotland).

Comparing these two cohorts, which face specialization imposed at different times,

he finds that late specializers are less likely to choose occupations unrelated to

their studies (2011 paper). Our model suggests that these results are reversed

in a context where the timing of specialization is chosen by each student; a pre-

diction which is borne out in our data. Flexible specialization times are typical

of American colleges; our model therefore allows us to explore how the timing of

specialization affects labor market outcomes in the US context.

Bordon and Fu (2013) estimate an equilibrium admissions model to explore the

impact of unbundling college choice and major choice in Chile, where the current

system requires students to apply to a college-major pair. The authors estimate

the impact of alternate systems on college retention and peer quality, finding

that more flexible policies are welfare improving so long as the relative returns

to specialized education are not too high. Our model, which does not include

college choice, allows us to estimate the returns to specialized education and the

information value of unspecialized studies simultaneously.

This work also relates to the literature that integrates information revelation

into models of college major choice. Altonji (1993) introduces a sequential model

of college education where both aptitude and completion probabilities are ex-ante

uncertain. Subsequent papers generally adhered to Altonji’s approach of sorting

majors by difficulty. Arcidiacono (2004) estimates a rich structural model with

four majors, using grades as signals of ability and allowing college students to

change majors, or drop out, between the early and later periods of college. While

his results show that students do sort across majors based on ability, wage dif-

ferencials between majors – large as they are – are not sufficient to explain this

sorting. Taking advantage of the expectations data in their Berea Panel Study,

Stinebrickner and Stinebrickner (2014), find that students switch out of majors

in math and science as a result of learning that they perform less well in those

subjects than they had anticipated. These findings are supported by Arcidiacono
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et al. (2012), Arcidiacono et al. (2013b) and Ost (2010).1 We diverge from these

papers by focusing on horizontal type discovery. We find that purely horizontal

considerations matter a great deal: within our subset of majors – all of which are

relatively high earning – a graduate working in the field of his comparative advan-

tage earns significantly higher wages than an individual with the same education

who is not well matched to his occupation.

Two recent papers extend the literature in this direction. Kinsler and Pavan

(forthcoming) model ability as a two-dimensional vector – loosely corresponding

to math and verbal skills – which is only fully revealed on the labor market.

Silos and Smith (forthcoming) allow college students to choose their investment in

three skills – quantitative, humanities and social sciences – which are ultimately

rewarded to different degrees in different occupations. Residual uncertainty about

agents’ match to different occupations is resolved after a probationary period

working in that particular job. In contrast to these papers, we are concerned

with how education choices can help resolve this uncertainty prior to the labor

market. This emphasis allows us to speak directly to education policy, unpacking

the returns to higher education and informing the debate on college reform.

Finally, this paper speaks to the literature on the returns to education breadth.

Dolton and Vignoles (2002) include secondary school course diversity in earnings

equations. In their UK data, breadth of courses, at A-level or O-level, are shown to

have insignificant effects on earnings. Using data from a European post-secondary

graduate survey, Heijke and Meng (2006) find that graduates from programs that

provide both academic and discipline-specific competencies produce less perfor-

mant workers. There are many reasons to expect that selection into broad studies

is not random, making a causal interpretation of these findings problematic.2 Our

paper contributes to this literature by exploring one specific channel through which

broad curricula could be beneficial: by facilitating better field choices. In doing

1We do not treat college attrition in this paper; however, it remains an important focus of this
literature. See Stinebrickner and Stinebrickner (forthcoming), Arcidiacono et al. (2013a) and
Trachter (forthcoming), among others.
2To the best of our knowledge, no study has estimated the returns to breadth in education in
a setting where education breadth is plausibly exogenous. Joensen and Nielsen (2009) come
perhaps the closest, although the change in breadth they consider is quite marginal: taking
advantage of a policy experiment in Denmark, which allowed students to take advanced math
without taking advanced physics (taking advanced chemistry instead), the authors estimate the
returns to advanced coursework in math.
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so, we shed light on why broad curricula – even if they improve field choice – might

be unrelated to labor market outcomes in the cross section.

In the following section, we introduce the data and describe how we determine

the timing of specialization. Section 3 presents the model: first a two-type, con-

tinuous time version, and then the N-type, discrete time model we use in our

simulations. The estimation procedure and the results are outlined in Section 4,

while Section 5 discusses the policy experiments. Section 6 describes robustness

exercises and extensions and Section 7 concludes.

2. Data

2.1. Overview. The data we use in this paper come from the restricted version

of the Baccalaureate & Beyond 93:03 dataset.3 This 10-year panel follows ap-

proximately 10,000 students who earned a bachelor’s degree4 from an American

institution in the 1992-1993 academic year. Three follow-ups are carried out (one,

four and ten years later), during which labor market and further education vari-

ables are collected.

Two features make this dataset ideal for our purposes: the policy context and

the level of detail in the education and labor market variables. We require data in

which there is some variation in the timing of specialization among students who

graduate with the same major and degree. Given that college students in the US

have considerable discretion over their course choices (and indeed, take relatively

few courses in their major field), they have some scope to choose when they choose

their major. This motivates our use of US data.

Our more restrictive requirement is that the panel include data on all courses

taken in college, and the date at which these courses were taken. Timing of

specialization, although central to our story, is not a well-established variable5

3Referred to in the following as B&B93:03. Dataset sponsored by the National Center for
Education Statistics, U.S. Department of Education (for more information, see Wine et al.
(2005)).
4A bachelor’s degree is a 4-year undergraduate degree.
5The closest measurable variable might be the declaration of a major, as used in Bradley (2012)’s
study of major choice during recessions. For a number of reasons this is not fully satisfactory
for our purposes: first, different universities may require students to declare a major at different
times, and this information is not in our data; second, if students are required to declare a major
in order to, for example, register for their second year courses, this declaration is not necessarily
an active form of specialization. Given that it is generally easy to change majors, and that major
choice does not usually constrain course choices (at least early in college), the declaration of a
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and we rely on the sequence of course choices to derive a proxy. Few datasets

include both labor market outcomes and detailed course data.

We make several important sample restrictions. First, since we estimate infor-

mation revelation in college, we retain only those students who graduated between

the ages of 21 and 23:6 older students are likely to have acquired information

through other means, such as by working. Second, as our model supposes that

students anticipate specific college courses to be useful on the labor market, we

restrict our analysis to applied fields.7 Finally, due to differences in pre-college abil-

ity across majors, as well the associated earnings differences on the labor market,

we retain only the high-earning quantitative majors in our estimation.8 Details of

the sample construction can be found in Appendix A.

2.2. Timing of specialization. We derive a proxy for specialization using the

mix of courses a student chooses in each period of school. In contrast with

some panels that follow students through college,9 our data does not include self-

reported college major at multiple periods of time. Instead, we observe the entire

sequence of course choices, as they appear on the final college transcript. Our

specialization proxy in an indicator variable based on the share of credits chosen

in the eventual major field of study. The intuition behind this is that students

have a stronger incentive to take courses in the field in which they will eventually

work. Once a student has settled on a particular field, the expected return from

taking related courses rises.

Table 1 lists the total credits earned by students in each major, along with the

share of those credits taken in that field. American bachelor degrees are evidently

quite broad: even with coarse major categories, the share of credits taken in-major

rarely exceeds 50%. We therefore do not expect students to commit themselves

major could be little more than a statement about the field a students thinks it is most likely
she will pursue. Finally, this information is not available in the B&B93:03 dataset.
6These students in general took between 3 and 6 years to complete their degree.
7We are by no means the first to make a distinction between majors based on their links to the
labor market. To cite two of many examples, Saniter and Siedler (2014) distinguish between
fields with a strong versus a weak labor market orientation in German data, based on whether or
not the field of study leads to a particular profession. Using Canadian data, Finnie (2002) finds
differences in the early labor market outcomes of graduates from ‘applied’ fields versus those
with majors in ‘softer’ subjects.
8These differences are explored in depth by Arcidiacono (2004); the distribution of SAT or ACT
scores across majors for our sample is given in Figure 11 in Appendix A. We retain those majors
with more mass in the upper two quartiles than in the lower two.
9For instance the NLS72, used by Arcidiacono (2004).
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full-time to their major once they have specialized10 – only that courses will be

chosen differently after specialization than before.

Table 1. Credits: mean total and specialization by major

Major Total credits (SD) In-major share
Science 127 (13) 0.51
Engineering 135 (12) 0.43
Business & Econ 126 (11) 0.43

Source: B&B93:03, sample restrictions described in section A.1. Note: a bachelor’s
degree requires 120 credits.

We derive the timing of specialization as follows. Courses are first associated

with a major:11 this allows us to calculate the total credits earned in each field

for each academic year.12 The timing of specialization is then defined as the term

in which the share of credits taken in the eventual major field of study exceeds a

given threshold.

To choose an appropriate threshold, we must take into account two factors: how

strictly to define specialization, and how to treat differences across majors. If the

threshold is too slack, it is difficult to justify that we are capturing a genuine

change in course-choosing behavior; on the other hand, given the low number of

credits students take in their major field, a high threshold results in many students

‘never’ specializing, despite the fact that they successfully graduate with a major.13

The major categories retained for analysis – while common and intuitive – are

not necessarily aggregated in a similar fashion. Consider, for example, a major in

science and a major in engineering. The field of science includes biology, physics,

chemistry and math, and so courses in all these fields will be coded as science

courses. In contrast, the field of engineering is relative narrow, since it includes

10There could be many reasons for this: it may not be possible to take a full load of courses
in that field, due to missing course prerequisites or simply a shortage of courses at a given
level; it may not be desirable to do so, particularly if advanced level-courses are more difficult
than introductory courses in other fields; it may not even be permitted within the confines of
the bachelor degree program, as many institutions impose a minimum number of courses to be
taken in fields different from one’s major.
11In the dataset, there are approximately 1000 unique course codes. We attribute each of these
to one of 14 coarse major categories, several of which are later aggregated (see Table 19 in the
Appendix).
12Courses vary in how long and intensive they are. The dataset includes a conversion metric
for each course, translating the credit units attributed by the degree-granting institution into
standard credit equivalents based a 120-credit degree.
13Graphical representations of sample retention and timing of specialization for increasingly
strict thresholds are presented in Appendix A.3.
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Figure 1: Timing of specialization: major-specific threshold vs. constant threshold

only course which are catalogued as ‘engineering’. To address this issue, we adopt a

data-driven approach to defining the threshold. Specifically, we choose a threshold

for each major such that 50% of students who graduate in that field specialize by

the end of their second year. Students who never reach the threshold, but who

nevertheless graduate with a major in that field, are assumed to have specialized

at the very end of college.

Figure 1 shows the distribution of the timing of specialization, for both our

primary specification and for a universal 40% concentration threshold.14 The two

specifications give a similar picture for Engineering and Business & Economics

majors, although the timing of specialization is slightly earlier using the major-

specific threshold. Science & Math majors display two important differences.

First, a 40% threshold is quite low for this group of majors: a vast majority of

students meet this threshold in their first year.15 Second, even using a major-

specific threshold, students who complete a major in Science & Math tend to

specialize earlier than students in other majors. This feature is robust to all of the

timing of specialization specifications we have developed (see Appendix A.3 for a

discussion of these approaches).

2.3. Reduced-form evidence. Table 2 presents a reduced form regression of the

timing of specialization on the probability or working in an occupation related to

14This approach attributes specialization to the year in which the concentration of major-related
courses meets or exceeds 40%.
15As discussed above, this is not surprising. A student taking 5 courses a semester must only
take 2 of these in science, math or computer science to reach a 40% threshold.
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one’s field of study, ten years after college. While Malamud (2011) finds that early-

specializing English students are more likely to change fields on the labor market

than late-specializing Scottish students, our data display the opposite result: late

specializers are more likely to work in a field unrelated to their studies. Restricting

to our core sample of quantitative graduates, delaying specialization by one year

is associated with a 1.5% decrease in the probability of working in an occupation

related to one’s major.

Our cross-sectional findings are echoed elsewhere. Using US data, Silos and

Smith (forthcoming) also find that students with less specialized education stocks

are more likely to switch occupations. Their concept of specialization, the closeness

of a student’s skill bundle to the average skill bundle of a given occupation, is

different from ours; however, the concept of hedging through skill diversification is

closely related. In a similar vein, Borghans and Golsteyn (2007) estimate a model

of occupation changes where human capital is imperfectly transferable. Using

Dutch data, in which almost 30% of graduates were working in an unrelated field

3 years after college, they find that higher skill transferability is associated with

a greater probability that a graduate who regrets his field of study will switch to

an occupation in a different field.

Table 2. Match probability

Probability of working in related field
All majors Quantitative Non-quantitative

Timing -0.0376∗∗∗ -0.0154∗∗ -0.0244∗∗

(0.000) (0.048) (0.027)
Controls X X X
R2 0.381 0.527 0.771
adj. R2 0.375 0.522 0.765
Sample size 2110 1560 550

Source: B&B93:03, sample restrictions described in section A.1. P-values in parentheses; ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗. Sample sizes rounded to the nearest 10. Occupation is observed
10 years after graduation. Timing is the primary timing of specialization variable (see
Section 2.2); match refers to the relation between field of study and field of work. Controls
are major and occupation dummies.

Table 3 presents results of a regression of log income on the timing of special-

ization, controlling for field of study and occupation. The coefficient on timing of
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specialization in the main regression is small and not significant. While the con-

texts under consideration are quite different, this result is consistent with Dolton

and Vignoles (2002)’s finding that curriculum breadth is unrelated to earnings.16

The absence of a trend in the cross sections hides interesting subgroup effects.

When the sample is restricted to those individuals who switched fields on the labor

market, timing becomes positive and significant: late specialization is associated

with higher wages. If we consider only those individuals who are working in the

field of their major, the coefficient on timing is negative but not significant.

Table 3. Log income

Log income
All Matched Not matched

Timing 0.00734 -0.0131 0.0323∗

(0.527) (0.411) (0.063)
Controls X X X
R2 0.189 0.191 0.219
adj. R2 0.182 0.185 0.203
Sample size 2100 1220 880

Source: B&B93:03, sample restrictions described in section A.1. P-values in parenthe-
ses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗. Sample sizes rounded to the nearest 10. Timing is the
primary timing of specialization variable (see Section 2.2); match refers to the relation
between field of study and field of work. Controls are major and occupation dummies.

Can these results be consistent with multi-disciplinary studies helping individ-

uals discover their comparative advantage? A naive reading of Table 2 could

conclude the opposite: after all, more time spent in broad education is associ-

ated with a higher probability of changing fields. If the timing of specialization is

endogenous, however, the issue of selection looms large: those who are quite confi-

dent about their comparative advantage may opt out of multi-disciplinary studies

at an early stage, especially if specialized education is more highly rewarded in

their intended field of work. This selection pressure is intensified by the fact that

the opportunity cost of studies is rises the longer a students spends in school.

We are therefore unable to conclude on the learning value of multi-disciplinary

education from cross-sectional regressions on the probability of switching fields.

The results in Tables 2 and 3 motivate us to develop a model where the timing

of specialization is endogenous to the student’s confidence about his comparative

16To see why, note that since late specializers will spend more of their degree taking a broad
range of courses, the timing of specialization is correlated with college course breadth: late
specializers chose broader curricula.
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advantage. In Table 2 we observe a positive correlation between the timing of

specialization and the probability of working in an occupation related to field of

study. Table 3 shows that, among those workers who change fields, late specializers

have higher earnings than early specializers. These results are consistent with

the imperfect transferability of skills across fields: late specializers have a more

portable skill set, and are therefore able to change fields more easily. They are

also consistent with the gradual and imperfect revelation of information about

students’ comparative advantage, through a process of selection described in detail

below. These two channels are indistinguishable in reduced-form evidence: to

identify them separately, we will need to estimate the model structurally.

3. Model

3.1. 2-Type Continuous Time Model. In this section we describe a two-field,

continuous-time version of the model, which enables use to arrive quickly at the

optimal policy and to introduce the parameters of interest. Restricting to two

types helps convey the intuition and makes the learning process most transparent.

The model that we estimate – with N -types and discrete periods – is described in

Section 3.2.

3.1.1. Agents. There are two fields of work (f ∈ {s, a}), with two corresponding

subjects taught at school, so human capital is a two-dimensional state variable

e = (eS, eA). Agents are born at date t = 0 with human capital (eS, eA) = (0, 0),

have an infinite lifetime and discount the future at rate r > 0. They have one of

two possible comparative advantages (type θ ∈ {S,A}).

3.1.2. Choice set and education tenures. At each point in time, agents can enter

the labor force, follow specialized studies in subject S or in subject A, or follow

multi-subject studies M .17 The laws of motion of human capital are respectively

(ėS, ėA) ∈ {(0, 0) , (1, 0) , (0, 1) , (1/2, 1/2)}. Since we assume that uncertainty is

resolved upon entry on the labor market, we do not allow agents to return to

school once they have started working.

17The idea that education has both general and specialized segments is echoed by Altonji et al.
(2012), who explicitly model college as two decision periods: one where the student takes many
courses, and a second where they choose a major.
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3.1.3. Information acquisition. The type θ is initially unknown to the agent, who

enters date 0 with a prior belief p0 = P [θ = S|F0]. The prior p0 may be correlated

with θ, and thus reflects information acquired prior to higher education.18 Mixed-

discipline education has an informational benefit: provided that he is engaged

in multi-subject education for a short time interval dt, the agent observes an

informative signal about his type, modeled as a diffusion Ỹ with type-dependent

drift. 19 Filtering this observation allows him to update his estimate p(t) =

P [θ = S|Ft] following Bayes’ rule. The learning technology is characterized by

a single signal-to-noise ratio φ, such that the agent correctly forecasts his own

belief as a pure drift-less diffusion (Beliefs derived from Bayes’ rule are always

martingales):

dp(t) = p(t) (1− p(t))φdW̃ (t)(1)

The volatility of beliefs, roughly equivalent to to the speed of learning, is highest

the closer the agent is to indecision (p(t) = 1/2) and the higher the signal-to-noise

ratio. Learning is informative, so conditionally on type the belief process of θ = S

types drifts upwards (similarly type A-agents’ beliefs drift downwards):

dp(t) = (1− p(t))2p(t)φ2dt+ p(t) (1− p(t))φdW̃ (t)(2)

A more informative signal helps the belief converge towards the truth faster by

increasing the drift of the process, but also raises its volatility.

This signal technology is characterized by gradual and incomplete learning: un-

like in Poisson bandit models, agents never learn their type completely but instead

continuously and gradually update their beliefs. An important property of this

learning technology is that agents do not necessarily acquire better information

over time.20

18Ft denotes time-t filtrations which summarize the agent’s information accumulated up to date
t. In the binary case, a single scalar P [θ = S] fully characterizes the beliefs of the agent at any
point in time. With N fields, a belief is identified with an element of the N -dimensional simplex.
19This standard model of gradual and continuous learning is used by Felli and Harris (1996);
Moscarini and Smith (2001), among others.
20By contrast, filtering a sequence of Gaussian signals with unknown mean results in a Gaussian
posterior belief about the mean, and the variance of the belief decreases deterministically. In
that sense, agents necessarily become better informed over time, whereas in our setup, once an
agent returns to a previously-held belief, it is as if any information received in the meantime had
been wasted.
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3.1.4. Payoffs. Payoffs accrue to agents from two sources: wages and benefits

while working, and flow payoffs in school. During their education tenure, agents

earn constant, possibly negative flow payoffs z that reflect tuition and overall

enjoyment of studies. At the end of the education tenure, agents choose a field

of work which may differ from their field of specialization. We assume that the

labor market rewards within-field education more than out-of-field education and

to describe labor market returns, we first define an effective stock of skills for each

field:

εS = eS + βeA, εA = eA + βeS.(3)

While a unit of human capital in subject s contributes one unit to εS, an equivalent

investment in subject a contributes only β to the stock of skills applicable to field

s. We call β a transferability parameter and assume β ≤ 1: skills acquired in one

field are only partially transferable. The flow wage when working in sector f is

given by:

R(εf ) + 11θ=fP ,(4)

where R(.) is an increasing and concave function and has the dimension of flow

utility. Returns are therefore increasing in within-field skills (R′(εf ) at the margin)

and out-of-field skills (βR′(εf ) at the margin), with an additive premium P for

working in the field of one’s comparative advantage (θ = f).

3.1.5. Optimal policy and testable implications. The optimal policy is character-

ized by optimal stopping times. Agents begin in multi-subject education, specialize

their studies at time τ1 ≥ 0, and proceed to the labor market at time τ2 ≥ τ1.

It can be optimal for agents to choose τ1 = 0 if the signal is totally uninformative

(φ = 0) and more generally, experimentation may not be worthwhile. The length

of the specialization period may also vanish (τ2 = τ1) if the return function does

not depend on the level of effective human capital (R′(ε) = 0), so that agents

transfer directly from multi-subject education into the labor market. Figure 2

represents a regular case in which τ1 > 0 and τ2 − τ1 > 0.

The agent’s decisions are presented recursively over the following paragraphs.

Starting from the choice of occupation, we discuss the determination of the time
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Figure 2: Sample education tenure. An agent of type θ = S with prior 1/2
starts by following multi-subject education, both education stocks increase at rate
1/2 and the belief process p(t) = P [θ = S|Ft] obeys equation (2) (hence drifts
upwards). At t = τ1 the belief is sufficiently high that the agent exits into specialized
education in subject s, where eS increases at rate 1 while eA stays constant. The
agent does not update his belief about θ until entry in the labor market at t = τ2,
when uncertainty resolves.

spent in specialized studies, τ2 − τ1 and ultimately, the optimal timing of special-

ization, τ1.

Determination of τ2. The agent’s type is revealed upon entry into the labor market,

after which he may switch fields. In this exposition, the switching of fields comes

at no additional cost. Consider an agent who has spent H periods specializing in

subject S,21 and is endowed with human capital stocks (eS, eA) = (H+ τ1/2, τ1/2)

(where τ1 is the length of the mixed-studies tenure that predated specialization).

21Symmetric expressions obtain for subject A, with the important caveat that the confidence
threshold is then 1− p.
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The agent’s expected payoff at the end of his education tenure is Ys, such that:

rYs (p, eS, eA) =

p (Rs (eS + βeA) + P )

+ (1− p)Max {Rs (eS + βeA) , Ra (eA + βeS) + P} .(5)

Indeed, with probability p the agent is truly of type S, in which case he earns the

premium P when working in field S. With probability 1− p, he is in fact type A:

he may then choose either to remain employed in field s and forgo the matching

premium, or to switch fields. If he switches fields he does earn the premium;

however, he suffers a transferability penalty since in his case eS +βeA > βeS + eA.

Equation 5 allows us to define the optimal length of specialized studies, which

solves the deterministic program:

VS (p, eS, eA) = Max
{H≥0}

∫ H

0

exp {−rt}zdt+ exp {−rH}Ys (p, eS +H, eA) .(6)

It follows that a student who specialized in subject S will continue in that field

until the marginal value of studies (flow value and increment in future earnings)

falls below the opportunity cost of remaining at school (the flow-equivalent value

of working). This is formalized in the following first-order condition:

z +
∂Ys (p, eS +H, eA)

∂eS
≤ rYs (p, eS +H, eA) , with equality if H > 0.(7)

Since this tradeoff is known at the time of specialization, the duration of specialized

studies (H = τ2−τ1) is deterministic, as no uncertainty emerges during that time.

Finally, since either field can be chosen as specialization, we can define a value of

specializing V = max(VA, VS).

Determination of τ1. Due to uncertainty about the beliefs process p(t), τ1 is not

deterministic. While human capital accumulates steadily during multi-subject

education (education stocks at time t are (t/2, t/2)), beliefs evolve stochastically.

The expected value writes as:

E
[∫ τ1

0

exp {−rt}zdt+ exp {−rτ1}V (p(τ1), τ1/2, τ1/2)

]
(8)
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The expectation is taken over paths of the beliefs process p(t) and τ1 is chosen

optimally.

For each date t we can define two boundary beliefs: one close to certainty in

type-S (call it ps(t)), and one close to certainty in type-A (pa(t)). If, at time t,

the agent’s beliefs exceed the boundary in either direction, it is optimal for him

to specialize. τ1 is then the first random time such that either p(t) ≥ ps(t) or

p(t) ≤ pa(t). Figure 3 illustrates the boundaries, overlaid with a simulated belief

path.

τ1 = Min {t ≥ 0, p(t) ≥ ps(t) or p(t) ≤ pa(t)}(9)

Also pictured are the densities of exit times: the optimal specialization policy

induces a distribution of exit times, with cumulative distribution FET (t, θ) =

P [τ1 ≤ t|θ]. Similarly, by conditioning on the field of specialization and the agent’s

type, we can define a distribution of correct specialization times. For example, for

θ = S agents, we can define FCET (t, θ) = P [τ1 ≤ t ∩ p(τ1) = ps(τ1)|θ = S]. The

limit of FCET (t, θ) as t grows large is the proportion of agents who specialize in

the appropriate field.

3.1.6. Properties of the optimal policy. If we impose symmetry and assume that

the returns to effective skills are linear, we can show that the specialization bound-

aries are bounded away from 0 and converge to 0 in finite time, and simulations

indicate that optimal boundaries are monotonic. In Appendix B we illustrate

the properties of simulated optimal policies and show how parameter changes af-

fect the empirical predictions of the model; which shed light on the sources of

identification in Section 4.

Monotonic boundary beliefs – with ps(t) decreasing and pa(t) increasing – have

important empirical implications. They imply that early and late specializers have

two important differences: not only do they accumulate different stocks of human

capital, they also exit education with different probabilities of having specialized

in the field of their comparative advantage. While all agents have the same infor-

mation technology and use the same decision rules, differences in the idiosyncratic

noise cause some agents’ belief processes to drift rapidly towards the boundary,

prompting them to specialize early relative to their peers. Consider two students
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Figure 3: Optimal Boundaries and density of specialization times. The agent starts
specialized education once the belief process p(t) escapes the interval (pa(t), ps(t)).
This particular sample path leads to specialization time τ1 ≈ 3.15 and corresponds
to correct specialization (in subject S).

that choose specialize in field S, the first at time t and the second at time T

(with t < T ). The first student specializes at a point where his belief satisfies

p(t) = ps(t) while the second one’s cutoff is reached as p(T ) = ps(T ). Since ps

is a decreasing function, we have ps(t) > ps(T ): the first student specializes with

a higher level of confidence than the second one. Furthermore, the belief level

ps(t) is also statistically the cross-sectional proportion of types S among agents

specializing at time t. Fast learners thus are more likely to specialize correctly and

be type-matched to their initial job field than slow learners.

Figure 3 illustrates one realized belief path of a single S-type student, overlaid

with the optimal boundaries. Near t = 0, the agent requires his subjective proba-

bility of having comparative advantage S to be above 0.71 or below 0.29 in order

to specialize into fields S or A, respectively. If he has not specialized by time

t = 7, however, much smaller deviations from 1/2 would be sufficient to trigger

specialization: beliefs above 0.55 or below 0.45 would suffice.
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3.2. Estimated N-type discrete time model. To bring the model to data,

we modify it in several ways that provide a better fit with the observations and

respond to the computational challenges brought about by the rich informational

structure. First, we estimate the college phase of the model in discrete time,

which enables the use of standard dynamic programming techniques. Second, we

consider a choice between three fields as opposed to two in the continuous time

model, to accommodate the three high-ability applied majors that we retain for

estimation. The modifications these changes entail are highlighted below.

3.2.1. Computational challenges. The curse of dimensionality affects bandit mod-

els particularly, as beliefs enter as multi-dimensional state variables in the opti-

mization and the number of decision nodes increases very quickly, both with the

number of periods and the with the dimensionality of beliefs (beliefs have N − 1

degrees of freedom). This difficulty can be alleviated with the use of Gittins in-

dices and recent papers22 manage to accommodate binary state variables; however,

non-stationary problems remain intrinsically challenging. Our formulation of the

learning process postulates a sequential sampling of discrete signals (three per year

of mixed education), which has the benefit of not necessitating further approxima-

tions. The discrete model limits the number of nodes at which the value function

is estimated, first because the number of possible beliefs in the period following

a given node is equal to the number of fields, but also because the ordering of

signals is irrelevant, so several belief paths lead to the same belief. We retain the

continuous-time formulation once agents specialize, which enables us to obtain

explicit value functions in the specialization phase, and therefore simplifies and

speeds up computation appreciably.23

3.2.2. Agents. There are N fields of work (fields f ∈ {f1, f2, . . . , fN}), with N

corresponding subjects taught at school, so human capital is an N− dimensional

state variable e = (e1, e2, ..., eN). Agents are born at date t = 0 with human

capital (0, 0, . . . , 0), have a finite lifetime T , and discount the future at a constant

rate δ < 1. They are endowed with an unknown comparative advantage in one of

the N fields (type θ ∈ {1, 2, . . . , N}). 24

22See Papageorgiou (2014); Eeckhout and Weng (2011).
23Discount factors are adjusted to make preferences consistent.
24The model does not allow for heterogeneity among students other than their comparative
advantage and the beliefs they hold about their comparative advantage. By limiting the number
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3.2.3. Choice set and education tenures. Agents choose their education path as

described in Section 3.1.2. For each period they are enrolled in multi-subject

studies, agents now acquire 1/N units of education in each field.

3.2.4. Information acquisition. Agents begin higher education with anN−dimensional,

type-dependent prior, p0,θ = [P1, P2, . . . , PN ]. At the end of each period of multi-

subject studies, the agent receive a noisy signal about his type.25 Specifically, he

observes a signal σ ∈ 1, 2, ..., N. With probability ρ, the signal corresponds to his

type (σ = θ), while with probability 1− ρ the signal is misleading (σ 6= θ) and

correspond to any of the N − 1 other types. The agent updates his beliefs before

choosing his education stream for the subsequent period. For example, if the agent

holding belief p observes σ = 1, his updated belief vector will be given by:

p′ =

[
ρP1

ρP1 + γ(1− P1)
,

γP2

ρP1 + γ(1− P1)
, ...,

γPN
ρP1 + γ(1− P1)

]
, with γ =

1− ρ
N − 1

.

(10)

3.2.5. Payoffs. Payoffs and occupational choice are as described in Section 3.1.4.

In the N -type case, the effective stock of skills is defined as follows:

∀n = 1 . . . N, εn = en + β
∑
m6=n

em.(11)

There is no distinction across fields: all out-of-field education is treated symmet-

rically, as are all fields outside of an agent’s comparative advantage.26

of majors considered, and by considering only successful college graduates, we narrow the span of
ability within our sample; however, we acknowledge that vertical ability differences, not captured
in our model, do remain. Table 23 in Appendix A.4 gives the correlation of the timing of
specialization with several observable characteristics.
25A growing body of research explores how grades effect students’ beliefs and course choices
(see Arcidiacono (2004), Zafar (2011), Main and Ost (2014) and Stinebrickner and Stinebrickner
(2014, forthcoming)). In this paper we remain agnostic about the source of the signals that
students receive. While grades no doubt play a role, other unmeasurable factors also influence
students’ academic paths.
26We treat all ‘out-of-field’ education symmetrically. At the high school level, there is little
evidence that any subjects are more universally rewarded than others (see Altonji (1995)). Math
is something of an exception, though the evidence is sparse. Joensen and Nielsen (2009) find a
strong causal effect of advanced math courses on later earnings in Denmark; elsewhere, the effect
is small (Morin (2013), Canadian data), or only present in some groups (Levine and Zimmerman
(1995), female college graduates in the US).
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Flow returns (theoretical counterparts of log earnings) are given by:

yf (θ, (ef , e−f )) = R(εf ) + 11θ=fP.(12)

We briefly review the optimal behavior of agents and introduce the notation neces-

sary to describe moment equations. We start by describing the last decision node,

the decision to change fields, then we describe the optimal length of specialization

and eventually the optimal experimentation phase.

3.2.6. The decision to change fields. We assume that type θ is perfectly revealed

upon entry but agents face a cost c of switching fields, a shortcut for the more

realistic gradual realization of type mismatch and associated foregone experience

and possible retraining.27 This simplistic assumption also correspond to the lim-

ited observations of agents’ early careers in the data. Agents who have stayed

in mixed education until period t and in specialized education in field 1 for H

years have education stock (t/N + H, t/N, . . . , t/N). Initially type-mismatched

agents observe their type and the draw from the cost distribution c and receive

the following value if they switch to their field of comparative advantage θ 6= 1:

Jsw (t+H, e, c) = −c+

∫ T−t−H

0

exp {−rt} [R (εθ) + P ] dt(13)

If they remain in their field of specialization (field 1), they obtain value

Jst (t+H, e, c) =

∫ T−t−H

0

exp {−rt}R (ε1) dt(14)

They choose to switch fields provided that Jsw (t+H, e, c) ≥ Jst (t+H, e, c) or

equivalently, whenever c is lower than a cutoff value ĉ(H).

From an ex ante perspective, upon starting work after training for a length H,

initially type-mismatched agents obtain value

J̄(t, e,H) =

∫ ĉ(H)

c0

f (c) Jsw (t+H, e, c) dc+ (1− F (ĉ(H))) Jst (t+H, e, c) ,(15)

27We do not model the labor market explicitly. This raises concerns that field-specific labor
market fluctuations could affect our results, either by drawing in large numbers of students
during booms or forcing graduates into other fields during crashes (in addition, Altonji et al.
(2013) document that the returns to individual majors are affected differently by recessions).
While we cannot rule this out, the sensitivity of our estimates should be reduced by the coarse
aggregation of majors and occupations: large categories mean that those who cannot find work
exactly corresponding to their major are likely to land a job in the broad field it is associated
with. Furthermore, existing evidence suggests that the elasticity of major choice to market
conditions, while positive, is relatively small: see Blom (2012) and Beffy et al. (2012).
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where f and F are the pdf and cdf of the truncated exponential distribution.

Agent who are type-matched to field 1 receive value

Jtm (t+H, e) =

∫ T−t−H

0

exp {−rt} [R (ε1) + P ] dt(16)

3.2.7. The optimal length of specialization. At time 1, upon beginning specializa-

tion in field 1, the agent expects to be type-matched to field one with probabil-

ity p1 (the first entry in the beliefs vector) and type-unmatched with probabil-

ity 1 − p1. Given that the education stock and time are linked by the relation

e = (t/N, t/N, . . . , t/N), we omit the explicit dependance on e. The expected

value of specializing in field 1 writes as:

V1(t, p) = Max
{H≥0,H≤T}

∫ H

0

exp {−rt} zdt

+ exp {−rH}
[
(1− p1)J̄(t, e(H)) + p1Jtm(t+H, e(H))

]
(17)

Upon finding the maximizer H∗(t, p), we can define the expected wage conditional

on changing fields.

ewsw,1(t, p) = R (β(t+H∗(t, p)) + (1− β)t/N) + P(18)

The expected wage conditional on staying in the given field is the weighted average

of the wage of initially-matched and initially-unmatched agents. The total prob-

ability A of carrying on in field 1 is the sum of the probability of being properly

matched A1 = p1 and the contribution of initially unmatched agents who remain

in the field, A2 = (1 − p1) (1− F (ĉ(H∗(t, p)))). Both groups receive as earn-

ings x1 = R (β(t+H∗(t, p)) + (1− β)(t/N +H∗(t, p)) while type-matched agents

receive the premium P .

ewst,1(t, p) = (A1(x1 + P ) + A2x1)(A1 + A2)−1(19)

3.2.8. Optimal experimentation and beliefs histories. Continuing in mixed-education

enables agents to periodically receive signals about their field of comparative ad-

vantage, while increasing their stock of skills in all fields. In the discrete-time

formulation, call δ the discount rate that can be compounded into the calibrated

annual rate .28 Recalling that a period is a third of a year, the Bellman equation

28There are three periods per year, so δ3 is the annual discount rate.
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that defines the value of mixed-education reads:

V0(t, p, e) = 1/3 z + δ E [V (t+ 1/3, p′, e′)](20)

Where V is the maximum of V0 and the Vi reflects optimal behavior from t+ 1/3

and e′ = e+ 1/3× (1/N, . . . , 1/N). The expectation is taken over future values of

p′, the bayesian update obtained as in equation (10).

The last object we define is the density of exit times, necessary for the definition

of moments. Call ht(p) the N -dimensional vector such that the i-th entry reflects

the mass of agents of type i holding belief p at time t, having never specialized

before time t. Starting from a mass 1 of agents at date −1, we distribute them

across types according to the vector p−1 chosen so as to reflect the empirical

distribution of majors, so h−1(p−1) = p−1. Next, agents observe one signal which

agrees with their type with probability ρ0 and update their beliefs according to

formula (10), replacing ρ with ρ0.

This procedure generates the time-0 beliefs p0,i that correspond to the Bayesian

update of p−1 upon observing signal i. To update the distribution, observe that

type-1 agents receive signal 1 with probability ρ0 while type-i, i 6= 1 agents receive

signal 1 with probability γ0 = (N − 1)−1(1 − ρ0). The mass of agents of type

1 holding belief p0,1 is therefore h0(p0,1)1 = ρ0 × (p−1)1, where (p−1)1 is the first

entry of vector p−1. The mass of agents of type i > 1 holding the same belief is

h0(p0,1)i = γ0 × (p−1)i, while the total mass of agents holding belief p0,1 at time 0

is
∑N

i=1 h0(p0,1)i.

All possible belief points can be split between experimentation and specializa-

tion nodes. Say p ∈ Ex(t) if agents holding belief p at time t choose to carry on

in mixed-education and p ∈ Spi(t) if they choose to specialize in field i at time t.

While experimentation prevails, we can update vector h iteratively using the same

procedure as above, except parameter ρ is used in updates instead of parameter

ρ0.

4. Estimation

4.1. Methodology. We simulate the model described in Section 3.2. Parameter

values are obtained through a combination of external calibration and simulated
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method of moments. The model is estimated using a subset of three majors:

sciences & math, engineering, and business & economics.29

The parameters of the model are described in Table 4. While we have chosen to

aggregate courses by year in the data, we estimate the model with shorter periods:

each year is represented by three periods, with 12 periods being the maximum du-

ration of non-specialized studies. This allows for a greater heterogeneity of beliefs

and smoothness of decision nodes, reducing the granularity introduced through

the discretization of the model.

For computational reasons, we impose that the cost of switching fields is drawn

from an exponential distribution truncated30 above a cutoff c0 > 0 and we add the

mean of the cost distribution (Cλ) to the list of estimated parameters. Since there

is no mass on negative realizations of the cost, type-matched agents never find it

advantageous to switch fields. Furthermore, the optimal stopping property and

symmetry guarantee that type-unmatched agents do not find it optimal to switch

to a field different from their comparative advantage.

4.2. Moments. The moments we use to estimate the model relate to four observ-

ables: the timing of specialization, the field of specialization, the relation between

the field of work and the field of studies, and wages. Empirically, these correspond

to four sets of moments. The first is the proportion of students specializing in each

major, in each year (shown previously in Figure 1). These proportions fully de-

scribe the first two observables: that is, the timing of specialization and the field

of specialization. The second is the probability of working in a field related to

one’s field of studies, conditional on major and timing of specialization. The third

and fourth sets of moments are wages. We calculate two average wages for each

major–timing of specialization cell: wages for those who are working in the field

of their major, and wages of those who have switched to a different field.

29The inclusion of detailed major categories remains a challenge throughout the literature.
In empirical work, Kinsler and Pavan (forthcoming) retain three majors (science, business
and other), Arcidiacono (2004) uses four (natural sciences, business, education and social sci-
ence/humanities/other), Stange (2013) includes three (business, engineering and nursing), while
Altonji (1993)’s conceptual model has only two (math or science, and humanities). Our choice
of majors is constrained by both computational power and cell size. While education majors are
sufficiently numerous to be included, we restrict our primary sample to the more homogenous
set of quantitative majors.
30The truncation enables to put probability mass on relatively high cost values without requiring
a very low decay rate. The assumption of exponential distribution enables us to compute explicit
continuation values without requiring dynamic programming in the specialized phase.
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Table 4. Parameters

Parameter Description
Calibrated
p−1 Prior belief: set to reflect the empirical distribution of majors∗

δ Annual discount factor: set to 0.96%
T Working lifetime: set to 20 years
z Flow cost of education: set to approximately -15% of average

wage
Estimated
ρ Precision of learning
ρ0 Precision of the initial signal
β Transferability
P Matching premium
Rf (εf ) Returns to education∗∗ with Rf = R ∀ f ∗∗∗
Cλ Expected cost of switching fields

*This assumption is innocuous when the returns across fields are identical and there are no
differences in flow utility from studying different subjects.

**Returns to effective education – the sum of in-field education and β times out-of-field education
– are assumed concave. We constrain this function to be a cubic polynomial with a value of
one and a zero derivative at the maximum effective education level (the level of education
corresponding to immediate specialization in any field for 4 years), and to be equal to zero at
zero education. We estimate one remaining curvature parameter from the data.

***Returns do vary across fields, both in the cross-section (Carnevale et al. (2012) present recent
evidence from the United States, Finnie (2002) from Canada, to name just a few) and in studies
controlling for selection (e.g. Chevalier (2012), Kinsler and Pavan (forthcoming)).

The vector of moments therefore has 60 entries: 4 moment types, 5 years31 and

3 fields. To formalize notation, let MT be the set of theoretical moments, each

specific to a year-field cell. The first block of moments concerns timing: entry

y + 3× (f − 1) is the proportion of agents specializing in field f and year y:

MTy+3×(f−1) =

3y−1∑
t=3(y−1)

∑
p∈Spf (t)

N∑
i=1

(ht(p))i.(21)

The innermost summation symbol denotes the fact that we are summing across

agent types, the intermediate one corresponds to the pooling of belief nodes leading

to specialization in field f in period t, and the outermost summation aggregates

3 periods, to bring the unit of observation from a period up to a year. Since

all agents eventually specialize, the sum of the first 15 entries equals the total

population.

31Recall from Section 2.2 that, although all students in our sample graduated with a major in
one of the three fields, some never reach the threshold of specialization. We interpret this as
very late specialization; that is, specialization just prior to entering the labor market.
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The second block of moments measures the number of horizontally matched

agents: entry 15 + y + 3 × (f − 1) is the proportion of agents who specialize in

field f and year y, eventually carry on working in field f . Each such entry is

the product of the corresponding timing entry and the year-field cell’s average

probability of remaining in the chosen field:

MT15+y+3×(f−1) =

3y−1∑
t=3(y−1)

∑
p∈Spf (t)

N∑
i=1

(ht(p))i × [pf + (1− pf ) (1− F (ĉ(H∗(t, p))))] .(22)

These first two blocks of moments are proportions which are directly comparable

to their empirical counterparts. The next two blocks represent earnings: entry

30 + y+ 3× (f − 1) is the average earnings of agents who specialize in field f and

year y and eventually carry on working in field f , while entry 45 + y+ 3× (f − 1)

is the average earnings of agents who specialize in field f and year y but work in a

field different from f . These vectors are computed according to section 3.2.7 and

averaged using the relevant proportions.

4.3. Distance criterion. In order to relate the earnings moments to their the-

oretical counterparts, particularly regarding orders of magnitude and dispersion,

we first standardize them: standard deviations of income are therefore compared

to standard deviations of returns in the model.

Our parameter estimates are the values which minimize the weighted difference

between the empirical and theoretical versions of the moments described above.

The model is simulated for every element s in the set S of parameters on a defined

grid, and the estimates are the parameter values Θ̂ that satisfy:

Θ̂ = argminΘs(ME −MT (Θs))
′W (ME −MT (Θs)), i = s...S;(23)

where ME are the empirical moments, MT (Θs) their simulated counterparts using

parameter values Θs, and W is a weighting matrix. There are two issues with

the determination of matrix W . The first one has to do with commensurability

of measurements. Empirical and theoretical income measurement units must be

made comparable, and then adjusted so that they are of similar magnitude to

proportion-based moments. This is required so that no one set of moments dwarfs
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another, or the distance function would emphasize them disproportionately. To

address both difficulties, we standardize sets of moments block-wise. That is, each

block of 15 entries is adjusted linearly so as to have mean 0 and standard deviation

1.32 Finally, we constrain our estimates to generate a pattern of majors consistent

with the observed distribution – and thereby consistent with the prior. We do this

by eliminating parameter values that cause the predicted share in each major to

deviate from the observed share by more than 25%.

The weighting matrix used for the primary estimation is a diagonal matrix of

the empirical proportions of the sample in each major-timing of specialization cell,

that is, the first 15 entries of the ME vector, repeated 4 times. We also compute

distance criteria that put a lower weight on income moments, to reflect the higher

uncertainties associated with the modelling of earnings. Distance functions using

the Identity matrix for weights, as well as alternative measurements of the timing

variable and selected subsamples, are explored in Section 6.1.2.

4.4. Estimates. The values of the six estimated parameters are given in Table 5.

These results support the existence of learning in general education and also imply

that specialized education is imperfectly transferable across fields. Specifically, we

find that each year in multi-subject information gives a signal with precision-level

0.39. This value can be compared to a pure noise ‘signal’, which in our 3-type

case would have a precision of 0.33. Conversely, if a single period of broad studies

revealed type with certainty, the precision of the signal would be 1. Our estimated

signal is therefore informative, but still noisy.

Another way to understand the estimated precision level is by considering the

expected entropy reduction, a pure measure of informativeness.33 We find that

the initial distribution of majors is associated with an entropy of 1.58, which the

32Populations (cell sizes) are used as weights in the standardization.
33If variable θ can take any of N values, write qk = P [θ = k]. Shannon entropy measures the
uncertainty associated with belief vector q and is defined as

E (q) = −
N∑
j=1

qj log2 (qj) , with 0× log2(0) = 0 by convention(24)

To define expected entropy reduction, suppose the agent starts a given period with belief p ∈ ∆N .
The signal σ has n possible realizations and with probability ωi, the bayesian update of p
following observation σi takes value gi. We can thus define the expected entropy of the posterior,
leading to the following definition

I (σ, p) = E (q)−
n∑
i=1

ωiE (gi) ≥ 0(25)
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pre-college signal reduces by 0.075. Each period of multi-disciplinary college (a

third of a year) reduces entropy by a further 0.027. Students therefore acquire as

much information in one year of broad college courses as they did in the entire

pre-college period (3 ∗ 0.027).34

The parameter β is estimated at 0.90; this implies that out-of-field education

is remunerated at 90% of the level of education related to one’s field of work. An

individual suffers a modest loss of human capital when choosing to work in a field

different from his major – more substantial if he specialized early. This loss of

human capital is compensated for by a large premium to working in the field of

one’s comparative advantage. Our estimated matching premium is 0.20: those

who are type-matched to their field of work earn 20% higher wages than similarly-

skilled individuals who do not. Finally, students incur large one-time costs when

they switch fields, equivalent to 1.59 years of income.

Table 5. Estimated parameter values

Parameter Definition Estimate Discussion
ρ Precision of learn-

ing
0.39 Compare to an uninformative sig-

nal: ρ = 0.33
ρ0 High school signal 0.49 The precision of beliefs at college

entry
β Transferability 0.90 Out-of-field education is remuner-

ated at 90% of in-field education
P Matching premium 20 20% percent of earnings are due

to type-match with occupation
Rf (εf ) Return function 23.5 Curvature parameter for the re-

turns function (no intuitive inter-
pretation)

Cλ Expected switching
penalty

1.59 Corresponds to ∼1.5 years of in-
come

4.5. Model fit. We explore model fit in two ways. First, we present graphically

the relative and absolute deviations of the 60 theoretical moments from their

empirical counterparts. The left panel of Figure 4 shows the contribution each

In investment problems, expected entropy reduction is shown by Cabrales et al. (2013) to be
the unique parameter-independent complete ordering of information structures that agrees with
investors’ willingness to pay. It is therefore a valid measure of the informativeness of a signal,
particularly when it comes to comparisons.
34Neither signal reduces the absolute value of entropy by a large amount, but entropy is a concave
function of beliefs and decreases fast near the edges of the simplex, so absolute variations near
the middle of the simplex are small.
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Figure 4: Relative (L) and absolute (R) deviations: model vs data

Aggregated By major

Figure 5: Model vs. data: specialization times

moment makes to the distance function (moments are numbered from 1-60, as

described in Section 4.2). The absolute deviations behind these contributions are

shown in the right panel of Figure 4.

To understand the implications of these differences, we next examine each block

of moments individually. Figure 5 shows predicted and observed patterns of spe-

cialization. In the left panel, all majors are aggregated: black diamonds represent

predicted specialization at different belief nodes, while red crosses plot the empir-

ical counterpart. The right panel displays the same data, broken down by major

(majors are (1) Science & Math, (2) Engineering, (3) Business & Economics). The

model predicts that students will specialize slightly later, on average, that they do

in the data. When broken down by major, we can see this arises primarily from

a failure to match the mass of specialization by engineering students in periods 2

and 3, although the model under-predicts mid-term specialization overall as well.
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Aggregated By major

Figure 6: Model vs. data: probability of switching

The probability of working in the field of studies, given the timing of special-

ization, is shown in Figure 6. On aggregate (left panel), staying is over-predicted

by the model. The disaggregated comparison (right panel) suggests that the low

propensity of engineers to remain in engineering is driving the divergence between

the model and the data. This is compounded for late specializers by a low proba-

bility of staying for the other majors as well.

The two sets of wage moments are presented in Figure 7, with stayers in the left

panel, and switchers on the right. The graphs present standard deviations from

mean income for both the model, on the horizontal axis, and the data, plotted on

the vertical axis. If the model perfectly predicted income differences, the plotted

observations should be arranged along the 45-degree line. Figure 7 shows that

the model predicts income quite well for workers who remain in the field of their

major. While there are some off-diagonal observations, these are generally small

masses of individuals.

This is not so much the case for the income of switchers: in the data, engineers

who switch fields earn systematically higher incomes, while science and math ma-

jors who switch fields earn low incomes. The model, which predicts lower incomes

for early specializers who switch, matches empirical wages for early-specializing

scientists and business & economics majors, but performs poorly elsewhere. This

may be partly due to our coarse treatment of occupations outside of the field of

study: in the model, all occupations unrelated to the field of study are treated

symmetrically. Table 18 in Appendix A.2 lists the occupations of graduates from

each major. A full 43% of all engineering graduates who switch fields are employed

in business and management (a category which includes high-paying occupations
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Stayers Switchers

Figure 7: Model vs. data: wages of stayers (L) and switchers (R)

in finance), whereas science and math graduates who are working in other fields

are spread out across a greater diversity of occupations, including 29% employed

in the low-paying field of education.

4.6. Identification. Although all parameters are estimated simultaneously, we

can give some intuition about the identification process. We do so using two

approaches. First, we compute illustrative simulated comparative statics for a

linear-symmetric case of the model. These results are reported and discussed

in Appendix C. Second, we constrain the parameters of our simulation one at

a time, and re-estimate the remaining parameters. To accomplish this, we take

the grid of parameter values that we used to estimate the model and impose the

value of one parameter at a time. We then select the set of parameter values

which, while respecting our imposed constraint, minimizes the primary distance

criterion. In order to compare high and low values of the parameter in question,

we do this for the highest and lowest value that parameter takes on our grid.These

experiments suggest that the timing of specialization and switching behavior are

primarily responsible for identifying the precision of learning, both prior to and

during college. These parameters, along with the earnings moments, in turn pin

down the parameters governing returns and switching costs.
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The resulting parameter estimates are given in Table 6, and will be discussed in

more detail in Section 6.1.1. We focus here on how these experimental variations

affect the distance criterion, and the implications this has for identification. Table

7 gives the distance criterion for each experiment, broken down into the contri-

bution of each block of moments. These block fall naturally into two groups: the

first two capture the behavior of agents (major & timing of specialization, and

the share of each major-timing cell who stayed in their field of study on the labor

market), while the second two are wage moments (for stayers, and for switchers).

The contribution of each of the 60 individual moments to the distance criterion is

presented graphically in Appendix D.

4.6.1. Learning parameters. The first two rows of Table 7 impose the precision of

signals received during multi-disciplinary studies. Imposing an imprecise signal

actually improves the match with the empirical wage moments; however, it does

so by worsening the match with the behavioral moments considerably. Imposing

a high precision of learning has a smaller effect on the distance criterion, with the

largest deviation from the benchmark coming from the wages of stayers. Overall,

it appears that variations in the precision of the college signals during affects the

distance criterion primarily through the behavior moments.

Imposing a highly informative pre-college signal impacts the distance criterion

in a similar way as did the imposition of an un-informative college signal, and vice-

versa for a highly informative pre-college signal: notice the symmetry between the

first and second pair of rows in Table 7. This suggests that the precision of the

pre-college signal is also being pinned down by the behavioral moments, although

in this case the variation in the wages of stayers is also quite important.

4.6.2. Return function parameters. The next four rows of Table 7 present varia-

tions in the transferability of specialized education and the matching premium.

Based on the distance criteria alone, it appears that these two parameters are

relatively unimportant. In the case of the comparative advantage premium, P ,

the distance criteria for the low and high values are almost identical, and the con-

tribution of each block of moments barely changes. In both cases, the distance

criterion is relatively evenly contributed to from each block of moments.
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A look ahead to the distance-minimize parameter values estimated under each

constraint, listed in Table 6, suggests that these parameters matter a great deal.

This is particularly the case for the estimation of the switching cost and the trans-

ferability of specialized education, which appear to move together: low switching

costs coexisting with high transferability, for an ‘easy mobility’ alternative, and

vice-versa for a ‘tough mobility’ alternative. The fact that these two very different

alternatives have such similar distance criteria suggests that the identification of

these parameters is not as strong as the others.35

4.6.3. Switching costs. The switching cost parameter appears to be driven by both

the behavioral moments and the wage moments (see the final rows of Table 7).

While the differences in each case are modest, with the experiment imposing high

switching costs matching three of the four moments better than that with low

switching costs, variation in this parameter appears to affect all four sets of mo-

ments to a similar degree.

Table 6. Estimated parameters when constraining one parameter
at a time (actual estimates obtain by dividing by 100)

Contraint ρ ρ0 P Rf (εf ) β Cλ
Benchmark 39 49 20 23.5 90 1.59
Low ρ 37 45 24.5 23.5 90 2.97
High ρ 43 47 17 23.5 66 5.99
Low ρ0 40 39 15.5 23 70 5.68
High ρ0 39 51 24.5 23 90 1.2
Low P 40 45 15.5 23.5 82 4.72
High P 39 49 24.5 23 90 2.94
Low β 41 49 18.5 23.5 66 6.82
High β 39 49 20 23.5 90 1.59
Low Cλ 39 47 15.5 22.5 90 1.11
High Cλ 40 43 24.5 23.5 66 8.75

5. Policy simulation: the costs of imposing early specialization

Calls to reform college education in the US regularly accuse bachelor degrees

of being too broad and weakly linked to the labor market. What would happen

if students were forced to specialize at college entry? Using the parameter values

estimated above, we can predict the impact of such a policy. Specifically, we

35We do not present experimental variation in the curvature of the returns function. While this
parameter is important, it is not a primary focus of our study: we estimate it because we lack
any reasonable outside calibration.
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Table 7. Contribution of each block of moments to the distance
criterion, under different constraints

Constraint Block 1 Block 2 Block 3 Block 4 TOTAL
Benchmark 0.67 0.53 0.54 0.97 2.72
Low ρ 1.43 1.41 0.34 0.96 4.15
High ρ 0.70 0.62 0.84 0.86 3.01
Low ρ0 0.75 0.60 1.09 0.88 3.32
High ρ0 1.49 1.38 0.50 0.97 4.34
Low P 0.75 0.61 0.49 0.90 2.76
High P 0.72 0.61 0.46 0.97 2.77
Low β 0.71 0.71 0.63 0.86 2.91
High β 0.67 0.53 0.54 0.97 2.72
Low Cλ 0.97 0.82 0.64 0.96 3.39
High Cλ 0.86 0.75 0.72 0.83 3.15

Moment blocks: (1) timing of specialization and major, (2) stayers, by
timing and major, (3) wages of stayers, (4) wages of switchers.

consider a policy where students must specialize after receiving a single college

signal: this corresponds to spending 1/3 of a year in mixed-discipline studies prior

to specializing.

We focus on two outcomes, summarized in Table 8. The first, which is observable

in the data, is the fraction of students who choose an occupation in a field different

from their major.36 In our baseline simulation we find that 47% of workers are

type-mis-matched to their field when they reach the labor market; nearly half

of these workers, 24% overall, switch occupations and thus end up working in a

field unrelated to their field of studies.37 In the counterfactual, students do not

learn about their type in college, and 50% graduate in a field different than their

comparative advantage. These students specialized early, acquiring a large stock of

human capital in their major field. The high transferability and large comparative

advantage premium nevertheless induce many students to seek out their preferred

field: 20% change fields when their type is revealed.

The second outcome is the number of agents who are working in a field different

from that of their comparative advantage. In the baseline simulation, 53% of

36The large number of young people working in fields unrelated to their field of study has been
studied in a number of countries. See, for instance, Finnie (2001) in Canada, McGuinness and
Sloane (2011) in the UK, Badillo-Amador et al. (2005) in Spain, Bender and Heywood (2011)
for scientists in the US.
37Although our criteria for matching occupations and majors is based on coarse categories, the
level of horizontal mis-match in our data is similar to that found through other methods. Using
the 1993 Survey of College Graduates, Robst (2007) finds that 20% of respondents – across all
ages and majors – report that their work is ‘not related’ to their degree field.
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students correctly discover their type during college: all of these are correctly

type-matched on the labor market. In addition, 24% switch fields, leaving 23%

of the population mis-matched to their field of work. Under the counterfactual

policy, only 50% of students graduate in the field best suited to them; 30% overall

remain type-mismatched to their occupation.

Table 8. Policy Experiment

Initially matched Change fields Remain type-mismatched
Baseline 53% 24% 23%
Counterfactual 50% 20% 30%

This counterfactual experiment highlights the deep implications of our results

for education policy. Imposing early field choice actually improves the correspon-

dence between field of study and field of work: 17% fewer students choose an

occupation outside their field of study. This apparent improvement masks a sig-

nificant worsening of the allocation of individuals to occupations that suit them

best: early specialization increases type-occupation mis-match by 30%. Our es-

timates suggests that the average individual cost of this policy is equivalent to

the return earned on 0.45 of a year of occupation-related specialized studies, or

approximate 3% of wages.

How does a student’s expected value evolve as function of imposed timing of

specialization? Figure 8 shows the ex-ante expected value for a range of mandated

specialization policies. Note that the policy under consideration is specialization

imposed at or before the date on the x-axis; prior to mandated specialization,

students may opt in to specialization at any time. The left-most observation

corresponds to the policy described above. The relationship between the mandated

specialization time and the expected value is almost linear: while any constraint

makes students on average worse off, the time at which specialization is imposed

has a large impact.

We do not draw conclusions on whether or not early specialization is an effi-

cient policy choice. There are two reasons for this. First, we do not have data

on the relative costs of broad and specialized education. Anecdotal evidence sug-

gests that the breadth of courses and flexibility of course choices at American

universities presents non-trivial administrative challenges: early-specialization is

often associated with simpler, homogenous course schedules. Second, we make the
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Figure 8: Ex-ante expected value under different specialization regimes

standard assumption that students know more about themselves than the social

planner, and that they both process information optimally and make optimal ex-

perimentation decisions. It follows from this assumption that any constraint on

course choices is at least weakly welfare decreasing. While our counterfactual will

therefore make students worse off by construction, the magnitude of the effects we

find can inform policies which take both the costs and benefits of allowing flexible

course choices into account.

6. Robustness Checks and Extensions

6.1. Robustness checks. To explore the sensitivity of our estimates to individual

characteristic which are outside our model, we perform three types of experiments.

First, we constrain our parameter values one at a time, and estimate the remaining

parameters. Second, we estimate the model parameters using different distance

functions. Third, we estimate the model using different subsamples of the data.38

38For each subsample, the timing of specialization variable is attributed as it is in the primary
estimation; however, the moments are adjusted to reflect the different population under consider-
ation. The calibrated parameters are held constant across the subsample estimations, while the
estimated parameters are allowed to vary. This means that the prior belief, which is calibrated
to the empirical distribution of graduates in the full sample, is maintained for each subsample
estimation. For this reason, we do not report estimates for subsamples with very different pat-
terns of specialization from the full sample: doing so would violate the fixed-point assumption
behind our prior beliefs.
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While the interpretation of these parameter estimates is quite limited, they shed

some light on the sensitivity of our results to different specifications. Overall,

the picture is encouraging. The informativeness of mixed-discipline education

varies little across the estimations; however, transferability of education and the

matching premium are more volatile.

6.1.1. Constraining parameters. In Section 4.6 we introduced a series of experi-

ments where we constrain the value of one parameter and estimate the remaining

five. In addition to shedding light on identification, these experiments allow us to

explore the robustness of our parameter estimates.

The first four experiments, reported in Table 6, concern the precision of learning

before and during college. We first constrain the precision of learning during multi-

disciplinary studies to be low. The resulting parameter estimates, with respect

to our baseline specification, have a lower level of pre-college information, but

higher switching costs and a higher comparative advantage premium. If learning

is imprecise, there must be high returns to making a correct match in order to

justify observed behavior - and even then, this set of parameters matching the

behavioral moments quite poorly (see Table 7. When imposing a high precision

of learning, on the other hand, we find low transferability, high switching costs

and a low premium. If learning happens quickly, students must expect that re-

adjustment on the labor market is very difficult, otherwise they would not spend

so much time acquiring information.

Constraining the precision of pre-college learning has the reverse effect: impos-

ing a precise pre-college signal leads to estimates with high transferability and low

switching costs, while imposing a highly noisy college signal leads to estimates

with a high switching costs and low transferability. That the precision of college

signals is also different in the two sets of parameters, with a precise pre-college

signal associated with a less-precise college signal and vice versa, could partially

explain this result. Notice, however, that precise pre-college signal condition –

with a loose labor market – misses the behavioral moments quite badly.

Comparing the low and high transferability experiments39 echoes the compar-

isons above by suggesting the existence of easy-mobility and tough-mobility al-

ternatives. Imposing low transferability leads to a set of parameters with a high

39High transferability also corresponds to the benchmark.
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switching cost, while high transferability co-exists with relatively low switching

costs. Note also that the college signal is quite precise under the low transferabil-

ity constraint. Variations in the comparative advantage premium perform simi-

larly to variations in transferability with, as discussed in Section 4.6, a negligible

difference in the distance function between the high premium and low premium

conditions.

The final two rows of Table 6 compare parameter values when we impose a high

cost of switching, and when we impose a low cost. As we have seen previously, to

justify a low switching cost the transferability needs to be high, while the opposite

is true for a high switching cost. In keeping with previous findings, the easy-

mobility alternative is associated with less precise college signals and a stronger

pre-college signal, although modestly in both cases.

These experiments suggest the existence of an alternate set of estimates, which

may not be too distant from our best-fit parameters, with lower transferability,

high average switching costs, and more precise college signals than our current

benchmark.

6.1.2. Alternate distance criteria. In addition to our primary distance criterion,

we consider several other distance functions. We consider six variants in two

families of distance functions: the first, in keeping with our primary specification,

weights each moment by the fraction of the sample found in the corresponding

major-timing of specialization cell. This approach puts more weight on cells that

are heavily populated. The second family of distance functions is not weighted,40

but is otherwise identical to the first.

Table 9 presents distance-minimizing parameter estimates for the weighed dis-

tance functions, while Table 10 displays the unweighted equivalents. The primary

estimates are listed in the first column of Table 9, for comparison. The dis-

tance functions differ in the moments which are targeted, and whether or not

the moments have been standardized. These moments are, by column: (I) major

& timing of specialization, probability of switching and wages, all standardized;

(II) major & timing of specialization, probability of staying, standardized; (III)

major & timing of specialization, probability of staying, not standardized; (IV)

cumulative density of major & timing of specialization (as opposed to cell shares),

40The unweighted distance function uses the Identity matrix as the weighting matrix.
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probability of match as proportion of cell (as opposed to share of population); (V)

cumulative density of major & timing of specialization; (VI) probability of match

as proportion of cell.

Table 9. Distance-minimizing parameters using alternate criteria - weighted

Distance criteria
Param. Definition I II III IV V VI
ρ Precision of learning 0.39 0.42 0.42 0.40 0.42 0.41
ρ0 High school signal 0.49 0.43 0.43 0.51 0.51 0.47
β Transferability 0.90 0.66 0.66 0.74 0.66 0.66
P Matching premium 0.20 0.155 0.155 0.20 0.155 0.155
Rf (εf ) Return function 0.235 0.225 0.225 23 0.235 0.225
Cλ Expected switching

penalty
1.59 1.65 1.65 1.16 1.72 0.67

Table 10. Distance-minimizing parameters using alternate criteria
- not weighted

Distance criteria
Param. Definition I II III IV V VI
ρ Precision of learning 0.38 0.41 0.41 0.39 0.42 0.40
ρ0 High school signal 0.45 0.41 0.41 0.49 0.51 0.45
β Transferability 0.82 0.66 0.66 0.66 0.66 0.66
P Matching premium 0.18.5 0.155 0.155 0.20 0.155 0.155
Rf (εf ) Return function 0.235 0.235 0.23 0.23 0.235 0.225
Cλ Expected switching

penalty
2.10 1.72 1.43 1.03 1.72 0.67

6.1.3. Ability. Figure 9 shows the distribution of timing of specialization for grad-

uates who scored in the upper and lower ability quartiles on their college entrance

ACT or SAT exam. The quantitative majors we have retained attract relatively

high-ability students; approximately 1/3 of the sample falls into the lower two

quartiles, and this sparsity makes the specialization patterns between the two

groups difficult to compare. Note that this is particularly the case for Science &

Math and Engineering, while Business & Economics students are more evenly dis-

tributed across ability groups. For the latter, while lower ability students tend to

specialize slightly earlier than their higher ability peers, the two curves are overall

quite similar.

Table 11 presents two sets of parameter estimates: our primary estimates for

comparison alongside values that best fit the subsample of individuals in the higher
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Figure 9: Timing of specialization: lower and upper SAT/ACT quartiles

ability bracket. Note that we do not report parameter estimates for the lower

ability sample: while our entire sample contains roughly equal shares of students

in each major (slanted towards science, the largest category), the subsample of

lower-ability graduates is heavily dominated by Business & Economics majors.

The high-ability subsample estimates are very similar to the full sample with

respect to learning; transferability of education and the matching premium are

both a little lower.

Table 11. Restricted sample: students from upper SAT/ACT quartiles

Parameter Definition Baseline Upper Qts
ρ Precision of learning 0.39 0.41
ρ0 High school signal 0.49 0.49
β Transferability 0.90 0.70
P Matching premium 0.20 0.17
Rf (εf ) Return function 0.235 0.235
Cλ Expected switching penalty 1.59 3.3

6.1.4. Gender. Does the learning value or transferability of education depend on

gender? There is considerable evidence that major choice itself varies across

genders.41 Furthermore, gender-correlated differences in expected labor market

attachment could influence the importance of specialized skills vs. information

about ones comparative advantage. Bronson (2014) highlights differential penal-

ties in labor supply reductions as one reason women avoid high-paying majors.42

41See Montmarquette et al. (2002), Kirkeboen (2012), Holzer and Dunlop (2013), Turner and
Bowen (1999), Dickson (2010)
42Walker and Zhu (2011) also find that returns to majors vary across genders.
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Figure 10: Timing of specialization: women and men

Gender-correlated differences in risk aversion (De Paola and Gioia (2011)) and

competitiveness and overconfidence (Reuben et al. (2013)) can also play a role.

Figure 10 shows the timing of specialization and major choice for men and

women. As above, we do not report parameter estimates for women due to the

very small share of women majoring in Engineering. A comparison of parameter

estimates for men vs. the full sample (see Table 12) shows slightly greater di-

vergence than the ability subsample: learning is faster – both in high school and

in mixed-discipline studies – while transferability of education and the matching

premium are lower. Importantly, however, the tradeoff of interest remains perti-

nent: with low transferability of education, field-related education earns a large

premium; however, multi-disciplinary studies are informative.

Table 12. Restricted sample: men only

Parameter Definition Baseline Men
ρ Precision of learning 0.39 0.40
ρ0 High school signal 0.49 0.52
β Transferability 0.90 0.86
P Matching premium 0.20 0.238
Rf (εf ) Return function 0.235 0.235
Cλ Expected switching penalty 1.59 1.63

6.2. Extensions.

6.2.1. Relation to Mincer equation specifications. Our specification, along with the

assumption of logarithmic utility, implies that log earnings are a concave function

of years of schooling. Assume that the mapping from earnings to flow payoffs is
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logarithmic and write wf = exp yf for earnings:

wf = exp {(R(εf )) + 11θ=fP}(26)

≈ exp {(R(εf ))} (1 + 11θ=fP )(27)

This justifies our interpretation of P as a proportional earnings premium for type-

matched agents. When agents apply a logarithmic utility mapping to earnings,

we recover the specification in (12).

Equation (12) relates to the schooling component of a Mincer equation.43 Two

important features of our specification are at odds with Mincer equations:44 while

Mincer equations use years of schooling as a covariate, we use the effective stock

of skills ε. Second, a standard Mincer equation has the logarithm of income

depend linearly on years of schooling. For comparability, we can use the best linear

approximation (in the sense of minimizing quadratic distance) to our estimated

returns function, using ε as the covariate, which leads us to retain the value:

R(εf ) = 0.01 + 0.051εf .(28)

Ignoring informational benefits and field switches, an additional year of schooling

increases log earnings by 0.051, corresponding to a 5.1% increase in earnings.

This estimate can be refined in light of our results: taking into account imperfect

transferability, β × 5.1% is a lower bound on the return to schooling. Since about

one quarter of agents end up switching fields, (1/4β + 3/4) × 5.1% gives us an

estimate of the average return to specialized schooling. The informational benefits

(which increase the probability that a premium will be earned) imply that these

are underestimates of the total return to education.

6.2.2. Overeducation. While not the focus of this study, our model of higher edu-

cation has implications for over-education.45 According to the model, those who

choose to work in a field unrelated to their studies will have a smaller stock of spe-

cialized education than their fellow graduates who did not change fields. While the

43Since our sample contains students of the same age, all of whom attain a bachelor’s degree,
there is little observable variability in experience, and no observable employment record that
would enable tenure observations. Accordingly, our theoretical specification omits experience
and tenure effects, leaving only the years of schooling component.
44See, for example, Heckman et al. (2006).
45See McGuinness (2006) for a review.
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allocation of tasks within an occupation grouping is outside our model, it is natural

to suppose these individuals will be hired into less-advanced posts than their peers

who majored in the occupation-related field. In keeping with Kim et al. (2012)’s

study of Korean college graduates, we therefore anticipate a positive correlation

between horizontal and vertical occupation-education mis-match.

To investigate this, we take advantage of an additional variable in the data: the

(self-reported) education level required by the respondent’s most recent occupa-

tion. We recode these responses into a binary over-education variable, equal to 1 if

the occupation requires less than a bachelor’s degree, or if the occupation requires

a bachelor’s degree and the respondent has earned a master’s degree or more.

Table 13 presents results of a regression of occupation-education match on over-

education. As expected, we find a positive relationship between over-education

and horizontal education-occupation mismatch. Controlling for field of study and

occupation, we find that mis-matched workers are approximately 11% more likely

to be overeducated. The effect is stronger when restricting to non-quantitative

majors: students graduating in these fields are 18% more likely to be overeducated

if they have switched to an occupation unrelated to their field of study.

Table 13. Probability of overeducation

Probability of overeducation
All majors Quantitative Non-quantitative

Match -0.108∗∗∗ -0.0967∗∗∗ -0.183∗∗

(0.000) (0.004) (0.050)
Controls X X X
R2 0.097 0.100 0.107
adj. R2 0.089 0.092 0.083
Sample size 2110 1560 550

Source: B&B93:03, sample restrictions described in section A.1. P-values in parentheses; ∗∗

p < 0.05, ∗∗∗ p < 0.01. Sample sizes rounded to the nearest 10. Match is a dummy variable
equal to 1 if the field of studies is the same as the field of work. Controls are major and
occupation dummies.

6.2.3. Early career labor market rigidities. While our estimated parameter values

are specific to the context under investigation – American college students major-

ing in one of three quantitative, applied fields – the question we address is not.

How would an education system characterized by flexible specialization times per-

form in different countries? One important mediating factor is the flexibility of
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the domestic labor market, particularly with respect to early career occupation

changes. While we have not modeled the labor market explicitly, the one-time

cost incurred by workers who change fields reflects the stickiness of occupation

categories, above and beyond the transferability of skills.

Suppose the education system we have modeled was adopted by a country with

different labor market conditions. How would the probability of changing fields,

and of comparative advantage-occupation mismatch, adjust? To explore these

questions, we carry out two experiments. Starting from our baseline parameter

estimates, we vary the expected cost of switching fields (Cλ). Maintaining all

other parameters at their estimated levels, we then compute counter-factual labor

market outcomes.

Table 14 presents the result of this experiment, with the expected cost of switch-

ing set at the high end to 2.02 years of income, and at the low end to 1.17 years of

income.46 As expected, a higher cost of switching fields reduces the probability of

changing fields, and decreases the probability of working in the field of compara-

tive advantage. Reducing the expected switching cost produces a symmetric effect.

Interestingly, the proportion of students who specialize in the field of comparative

advantage is not affected:47 this suggests that students do not significantly adapt

their timing of specialization in light of a change in expected switching costs, but

they do adjust their occupation choices.

Table 14. Policy Experiment

E(cost) Initially matched Change fields Remain type-mismatched
Baseline 1.52 53% 24% 23%
High cost 2.02 53% 20% 27%
Low cost 1.17 53% 29% 18%

7. Conclusion

Does a broad education help people orient themselves towards occupations

which are well-suited to them? In the case of post-secondary education, we find

evidence that it does. The parameter values we estimate are consistent with a

genuine exploration-exploitation tradeoff: broad studies provide information, but

46These values are chosen as they represent one step up and one step down on our parameter
grid, and are roughly symmetrical increments around our benchmark value.
47There is in fact a very small effect, which is not robust to rounding.
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specialized studies are more valuable on-the-job. Furthermore, when given the

freedom of choice students choose to their timing of specialization in a way con-

sistent with optimal stopping behavior.

While the parameter values we estimate lend support to our model, they also

highlight features of the economic environment which are often overlooked. First

of all, having explicitly modelled individual heterogeneity as a comparative ad-

vantage, we estimate the importance this has on the labor market. The return to

working in a field related to one’s comparative advantage is large: our estimates

put it at 20% of total wages. Secondly, we unpack the college premium along a

new dimension: controlling for degree and major, does the timing of specialization

matter? The fact that it does suggests that the degree of specialization in college,

along with the individual heterogeneity, should be accounted for more carefully

when calculating returns to higher education.

Our results point to the importance that education policy has in shaping the la-

bor market returns to education. Since we have not modelled education provision,

it is beyond the scope of this paper to assess whether the resulting welfare loss

is efficient. However, as the policy experiment in Section 5 illustrates, imposing

early specialization is costly to students – and that cost is largely hidden from

view.
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Appendix A. Data

A.1. Sample. The B&B 93:03 sample is based on the 1993 National Postsec-

ondary Student Aid Study,48 restricted to students who were identified as bac-

calaureate recipients in the 1992-1993 school year. We use the restricted-access

version of this dataset to generate the moments we match in our simulation. Since

the simulation exercise was not done within the secure data environment, all data

used in the estimation – as well as descriptive statistics reported elsewhere in the

paper – have to meet disclosure restrictions. This requirement imposes two sub-

stantial limitations for our purposes: all sample sizes and frequency counts must

be rounded to the nearest 10, and no values can be reported for cells with fewer

than 3 individuals. While the estimation procedure uses percentage frequencies

rather than count data, the second restriction results in some data loss: this is

particularly the case for wage data, which we measure separately for those who

switch fields and those who do not, within each major-timing of specialization cell.

While college graduates are likely to be more homogenous in ability than other

groups (for instance, college entrants), they are nevertheless a disparate collection

of individuals. We restrict the sample in a number of ways, both due to data

quality and for conceptual reasons. The entire sample includes 10,980 individuals.

We first restrict to individuals who are between 21 and 23 years of age at college

graduation, reducing the sample to 7,090. Many of these students transferred

institutions some years into their studies. Unfortunately, detailed course data

is only available from the degree-granting university; in many cases, transferred

courses are noted on the final transcripts, but without a date and often without

a course-specific credit value. We retain as many transfer students as we can:

essentially, those who transferred after one year or less, and whose transferred

courses are identified.49 This remains a costly restriction, reducing the sample to

48The NPSAS is a nationally representative sample of students (and institutions) at all levels of
post-secondary education, at all types of institutions.
49We do not observe how long a student spent at a different institution. In practice, we allow
students to have up to 45 transfer credits, if these transfer credits are or can be associated to a list
of transferred courses. Students with more than 45 transfer credits are dropped. Students with
between 20 and 45 transfer credits are retained: when applicable, these students are assumed to
have 1 year of transferred courses. If a student has more than 20 transfer credits which are not
associated to a list of transferred courses, that student is dropped. Students with 20 transfer
credits or less are considered to not have taken an additional year, but to have earned these
credits in other ways. These transfer credits (whether attributed or otherwise) are coded as part
of their first year of studies.
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5,750. Cleaning credit values and removing individuals with excessively high or

low credit counts, as well as those with study gaps of a year or more, reduces the

sample to 5,260. Finally, we restrict to those individuals who were followed up in

2003, leaving a sample of 4,170.50

A.1.1. Majors. While college may prepare students for work in many different

ways, our model is constructed with applied majors in mind. The tradeoff be-

tween between skills and information only has bite when students anticipate that

additional course material in their eventual field of work will bring additional re-

turns. Many majors have weak links to the labor market; while this does not

mean that they do not yield returns, optimal course choices in such majors may

very well follow a different path from those in applied fields. We therefore restrict

our sample to students with applied majors: these include six fields and 2160

individuals, subdivided into quantitative fields (1580) and non-quantitative fields

(580).51 While our estimation is done using only the quantitative graduates, we

present statistics for all six majors here. The allocation across majors is given in

Table 15.

Table 15. Count of observations by major

Major Count Quantitative Non-quantitative
Science 630 X
Engineering 350 X
Business & Econ 600 X
Education 430 X
Nursing 70 X
Social Wk & Protective 80 X
Total 2160 1580 580

Source: B&B93:03, sample restrictions described in section A.1. Counts rounded to
the nearest 10 to respect disclosure restrictions.

Our analysis abstracts from the vertical dimension of ability. Computational

constraints require us to be parsimonious with parameters, and we are specifi-

cally interested in horizontal abilities. Restricting our analysis to individuals who

50In our analysis we make use of the 2003 occupation observation only. This refers to the
occupation held most recently by the respondent at the time of the survey, and therefore is non-
missing even for individuals who are unemployed at the time of the survey. For most individuals,
however, this is the occupation held ten years after college graduation.
51While this figure represents a dramatic reduction of the original sample, it is worth noting that
this is largely due to the vast heterogeneity in the college graduate population. Using a sister
dataset, albeit with an even more heterogenous population, Silos and Smith (forthcoming) are
required to make similarly harsh restrictions.
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earned a bachelor degree between ages 21 and 23 narrows the distribution of abil-

ity within the sample. We remain concerned, however, that some skills may act

as gatekeepers to certain fields, preventing lower-ability students from completing

majors in those subjects even had they wished to.

Figure 11 shows the distribution of individuals across quartiles of SAT or ACT

scores, by major. Clearly, some majors have a greater mass of high-ability students

than others. This, combined with the small number of individuals choosing nursing

and social work majors, motivates us to use only the three quantitative majors for

our primary specification. While this restricts the interpretation of our results, it

is plausible that this set of students is more homogenous that those enrolled in all

six fields combined.

A.1.2. Term length. In principle, school terms are an intuitive and straight-forward

concept, and relate naturally to the discrete-time version of our model. Classes are

chosen at the start of the term and difficult to adjust once the term is underway;

at the end of each term, enrollment for the next term – and the associated course

selection – gets underway. In practice, however, the concept of a school term is

difficult to pin down. In addition to the diversity of term structures (semesters,

trimester, quarters, etc.), there are many students who enter university with some

number of college credits. These may have been earned by exam (for instance,

Advanced Placement courses), taken while in high school, or earned at a previous

university and transferred to the degree-granting institution.52 Even defining the

start of the school year is not without difficulties: fall courses at one institution

may start before summer courses have completed at another.

To mitigate these problems, we use the academic year as our period length; the

remaining issues are dealt with in one of two ways. First, having restricted our

sample to individuals who graduate between the ages of 21 and 23 – and therefore

eliminating students who take an unusually long time to complete their degree –

we abstract from term dates and divide a student’s courses chronologically into

four terms of equal credit value.

52In general, credits earned through exam are indicated as such on the transcript. Given that
these are not actually classes, and are often earned based on prior education, they are not
included in the analysis.
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Figure 11: SAT or ACT quartiles, by major

Our second approach accommodates diversity in time-to-degree by coding school

years as faithfully as possible. We define the academic year as running from

August to July, and attribute courses accordingly. To avoid creating spurious

years of college (due to a late summer course, for instance), we recode any terms

with 6 or fewer credits as belonging to the next or previous school term. Finally,

to maintain a reasonably homogenous group, we restrict the sample to students
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who graduate in 4 or 5 years. Table 16 gives the distribution of time-to-degree for

these students.

Table 16. Time to degree, by major

Major 4 years 5 years
Science 380 210
Engineering 140 170
Business & Econ 350 210
Education 200 180
Nursing 40 30
Social Wk & Protective 40 30
Total 1150 830

Source: B&B93:03, sample restrictions described in section A.1. The timing of spe-
cialization used is the primary specification, with time-to-degree computed using a
true-term approach.

Table 17 presents correlations between two different timing variables computed

using both true years and standardized years. The two approaches are strongly

correlated. While the second approach would permit us to examine how the timing

of specialization is related to time-to-degree, data sparsity becomes a pressing

concern (note that this would require us to track of 4- and 5-year degree students

separately). In addition, it is not clear how adequately our model captures the

choice to pursue a 5th year of undergraduate study. For these reasons we use

the first approach for our primary specification, standardizing the duration of a

college degree to four years.

Table 17. Correlation between timing of specialization using true
and standardized years

Timing variable TY-con TY-ret 4Y-con 4Y-ret
True years - concentration 1.0000
True years - 90% retention 0.8277* 1.0000
Four years - concentration 0.8288* 0.8190* 1.0000
Four years - 90% retention 0.7512* 0.8298* 0.9009* 1.0000

Source: B&B93:03, sample restrictions described in section A.1. Star indi-
cates significance at the 10% level. Thresholds are defined and explained in
Section A.3.1.

A.2. Matching occupations to majors. One of the key outcomes we are inter-

ested in is whether individuals pursue a career in their field of studies, or whether

they switch into a different field. This link is better defined for some fields than

for others: some majors, such as engineering or education, have obvious careers
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associated to them. Other majors, including most of the humanities and social

sciences, do not lead unambiguously to a certain occupation. Table 18 gives an

overview of the occupations held by sample members, as a percentage of all grad-

uates from each major.

Table 18. Share of major in each occupation

Sci Eng Bus Edu Nur Swp
Occupation
Educators 14 3 5 74 0 14
Business/management 14 24 57 7 0 14
Engineering/Architecture 5 44 2 0 0 0
Computer science 11 9 5 0 0 0
Medical professions 27 0 2 2 100 14
Editors/writers/performers 2 0 2 2 0 0
Human/protective services/legal pro 3 3 7 2 0 43
Research/scientists/technical 14 9 2 2 0 0
Administrative/clerical/legal 2 0 3 2 0 14
Mechanics/laborers 2 3 2 2 0 0
Service industries 5 3 13 5 0 0
Other/military 2 3 2 0 0 0

Source: B&B93:03, sample restrictions described in section A.1. Note that columns
may not sum to 100 due to rounding.

Matching occupations with majors is facilitated by the restriction to applied

fields described in Appendix A.1. We base our major categories on 14 aggregated

majors given in the data,53 and derive a correspondence between these majors and

12 occupation categories. The aggregation of majors is given in Table 19, along

with the corresponding occupations. Note that we select the sample based on

major, making no restrictions with regard to occupation.

A.3. Timing of specialization.

A.3.1. Alternate specifications. In addition to the primary specification described

in Section 2.2, we derive a number of alternate timing of specialization variables.

These alternate approaches allow us to run robustness checks and explore the

generality of our primary measure.

Figures 12 - 14 present the distribution of timing of specialization for four alter-

nate specifications. Five different thresholds are represented for each specification,

53We deviate from these categories by recoding economics with business, rather than with social
sciences.
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Table 19. Occupation-Major Correspondance
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as well as the attrition in the number of specializers as the threshold rises. Fig-

ures 12 and 13 are computed using true years (see section A.1.2). Both thresholds

refer to a concentration of credits the student must reach or exceed; however, the

thresholds in Figure 13 require that students remain above that threshold until

graduation, while those in Figures 12 do not. Figure 14 presents the distribution

of the timing of specialization for equivalent thresholds, using standardized 4-year

college tenures. In this figure ‘never’-specializers appear on the right as if they

had specialized in Year 5 (hence their representation with one graph rather than

two).
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Figure 14: Timing of specialization using standardized years (note: specialization
in Year 5 is equivalent to never specializing)

A.3.2. Specialization and course choices. We have identified specialization based

on the concentration of courses a student takes during each school year. While

we have no way to verify our specialization concept externally, we can make some

basic checks.

First of all, our approach relies on students taking more major-field courses

later in their degrees. Figures 15 and 16 show the distribution of the percent

of credits taken in the major field, before and after specialization. While the

specification itself could induce a modest difference in these distributions, it is

encouraging to see that students are indeed taking few credits in their major prior

to specialization.54

Next, our model supposes that students take a constant share of courses in

their major field in each period of specialized studies, regardless of the timing

of specialization. This does not permit late specializers to load up on major-

specific courses in order to meet major requirements or catch up with their early-

specializing peers. To check whether this assumption is reasonable we look at how

total credits and credits in the major field vary with the timing of specialization.

Table 20 gives the mean and standard deviation of total credits, for each major and

timing of specialization. While there is some variation across majors, the average

credit load is encouragingly flat with regards to the timing of specialization.55

54Science remains an outlier, with the mean credit share before specialization being quite large
at 40%, while the mean credit share afterwards is a more typical 60%.
55The invariance of total credits to the timing of specialization suggests that the timing of
specialization may not be that closely correlated with time-to-degree: late specializers do not
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Figure 15: In-major credit share before and after specialization: quantitative
majors (primary specification)

The mean number of in-major credits for each major and timing of specialization

are shown in Table 21. Unlike for total credits, the number of in-major credits

declines with later specialization, although clearly this is more true in some majors

than in others. Late specializers may indeed try to ‘catch up’ by taking a heavier

course load; however, early specializers still take more credits in their major field.

systematically accumulate an extra year of courses. The abstraction we make from time-to-
degree is less striking in light of this.
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Figure 16: In-major credit share before and after specialization: non-quantitative
majors (primary specification)

Finally, Table 22 shows the difference in the term-by-term share of courses

taken in the major field, before and after specialization. From the table, it does

not appear that late specializers experience a higher jump in course taking than

early specializers. This suggests that any catch-up by later specializers is modest.

A.4. Correlations on observables. Table 23 presents the correlations of our

main timing of specialization variable with several observable characteristics of
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Table 20. Total credits, by major and timing of specialization

Major Year 1 Year 2 Year 3 Year 4 Never
Science 126 (10) 127 (12) 127 (14) 129 (15) 127 (13)
Engineering 134 (12) 135 (11) 136 (12) 132 (17) 132 (8)
Business & Econ 125 (14) 126 (11) 126 (10) 126 (15) 125 (12)
Education 133 (13) 133 (12) 134 (13) 136 (15) 131 (15)
Nursing 125 (7 ) 128 (15) 138 (14) - -
Social Wk & Protective 129 (11) 122 (10) 128 (11) 126 (12) -

Source: B&B93:03, sample restrictions described in section A.1. Standard deviations
in parenthesis. A standard undergraduate degree is 120 credits.

Table 21. In-major credits, by major and timing of specialization

Major Year 1 Year 2 Year 3 Year 4 Never
Science 77 (13) 74 (12) 70 (13) 65 (9) 39 (18)
Engineering 70 (13) 63 (12) 57 (11) 38 (7) 10 (9)
Business & Econ 62 (13) 60 (12) 52 (12) 38 (7) 25 (11)
Education 67 (17) 60 (14) 47 (13) 28 (7) 8 (6)
Nursing 59 (8) 55 (7) 49 (12) - -
Social Wk & Protective 41 (13) 37 (7) 32 (9 ) 25 (8) -

Source: B&B93:03, sample restrictions described in section A.1. Standard deviations
in parenthesis. A standard undergraduate degree is 120 credits.

Table 22. Major-field course share: after minus before specialization

Major Year 2 Year 3 Year 4
Science 0.21 0.25 0.33
Engineering 0.46 0.5 0.33
Business & Econ 0.48 0.45 0.34
Education 0.51 0.54 0.47
Nursing 0.56 0.68 -
Social Wk & Protective 0.36 0.41 0.48

Source: B&B93:03, sample restrictions described in section A.1. Standard deviations
in parenthesis. A standard undergraduate degree is 120 credits.

the students: family income quartile, father’s and mother’s education, academic

ability prior to college (captured by SAT or ACT score quartiles, and also SAT

math and verbal scores separately for those students who took the SAT), and

gender. The correlations are small and in general not significant at the 10% level.

Family income is the exception: higher incomes are associated with a later timing

of specialization.

The absence of correlations may partly be an artifact of aggregation. Table 24

breaks the sample into students graduating with quantitative majors (science, en-

gineering or business and economics), and those graduating with non-quantitative
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Table 23. Correlations on Observables - all majors

TIM FaInc FEdu MEdu S/Aq SATV SATM G
TIMING of SPEC 1.000
Family income 0.049* 1.000
Father’s ed 0.024 0.363* 1.000
Mother’s ed 0.046 0.313* 0.551* 1.000
SAT/ACT quart 0.024 0.171* 0.224* 0.205* 1.000
SAT verbal 0.055 -0.047 0.023 0.018 -0.013 1.000
SAT math 0.035 -0.063* -0.018 -0.019 0.002 0.672* 1.000
Gender -0.020 -0.065* -0.070* -0.038* -0.178* -0.007 -0.037 1.000

Source: B&B93:03, sample restrictions described in section A.1. Timing of specialization is
the primary specification (see Section 2.2). Gender is increasing in femininity. Star indicates
significance at the 10% level. Correlations are pairwise, starting from a maximum sample of
2160 observations.

majors (education, nursing or social work and protective services). While the

correlations remain modest in size, some stronger patterns emerge. Quantita-

tive graduates are more likely to specialize early if they have higher SAT or ACT

scores, while the reverse is true for non-quantitative graduates. On the other hand,

non-quantitative graduates are more likely to specialize early if they are women,

while the reverse is true in the quantitative fields. The correlation between tim-

ing of specialization and family income disappears when considering quantitative

majors alone, but strengthens slightly for non-quantitative majors. These correla-

tions motivate our choice of split-sample robustness checks, presented in Section

6. In particular, we consider separately men and women, and upper and lower

ability students. Given that the correlation with family income is not present in

our primary sample, and is otherwise relatively small, we do not pursue it at this

time.

Appendix B. Analytical results in the linear-symmetric model

B.1. Linear-symmetric model. To explore the impact that the parameters of

the model have on the empirical outcomes we are interested in, we consider a

simplified parametric version of the model presented in Section 3.1. We assume

perfect symmetry between the fields (Rs = Ra) and a neutral prior, p0 = 1/2.

Furthermore, let the return function R be linear in the education stock and com-

posed of a baseline wage level and a term proportional to the effective education
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Table 24. Correlations on Observables - by type of major

TIM FaInc FEdu MEdu S/Aq SATV SATM G

Quantitative
TIMING of SPEC 1.000
Family income -0.013 1.000
Father’s ed 0.015 0.340* 1.000
Mother’s ed 0.008 0.251* 0.546* 1.000
SAT/ACT quart -0.104* 0.131* 0.197* 0.192* 1.000
SAT verbal 0.045 -0.108* -0.041 -0.006 -0.049 1.000
SAT math 0.017 -0.055 -0.100 -0.037 0.007 0.653* 1.000
Gender 0.091* -0.060* -0.044* -0.040 -0.153* 0.077 0.015 1.000

Non-quantitative
TIMING of SPEC 1.000
Family income 0.071* 1.000
Father’s ed 0.038 0.301* 1.000
Mother’s ed 0.033 0.245* 0.590* 1.000
SAT/ACT quart 0.101* 0.110* 0.166* 0.155* 1.000
SAT verbal 0.107 0.041 0.094 -0.134 0.048 1.000
SAT math 0.088 -0.001 0.035 -0.080 -0.063 0.657* 1.000
Gender -0.149* 0.009 0.037 0.061 -0.007 -0.141 -0.005 1.000

Source: B&B93:03, sample restrictions described in section A.1. Timing of specialization is
the primary specification (see Section 2.2). Gender is increasing in femininity. Star indicates
significance at the 10% level. Correlations are pairwise, starting from maximum samples of 1580
(quantitative) and 580 (non-quantitative) observations.

stock

R (εf ) = w0 + yεf .(29)

Under these assumptions, we can obtain simple and interpretable closed-form

solutions for the optimal length of specialized schooling. Assuming that the agent

with education stocks (eS, eA) anticipates to remain in field s (even if he learns

that his comparative advantage is in field a), he will choose the value of H∗ in

order to achieve an optimal aggregate education stock εS. The optimal value H∗

satisfies:

eS +H∗ + βeA =
1

r
− w0 + pP − z

ys
,(30)

where z is the flow payoff from studies. The agent’s optimal tenure in specialized

education is H = H∗ if positive, and zero otherwise. A necessary condition for H∗

to be positive56 is that inequality (31) hold, which happens when the labor market

56Inequality (31) obtains from (30) by imposing eS = eA = 0 and p = 0 and imposing that the
right-hand side be positive.
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rewards training, flow payoffs of specialized education are large and the agent is

patient.

P + 2w0 <
2y

r
+ 2z(31)

We assume that condition (31) holds strictly. Under these conditions, the value

of starting specialized studies in subject S at time t is given by:

VS,st(p, t/2, t/2) = r−2exp

{
r

(β + 1)

2
t+ r

pP

y
+
w0r − rz

ys
− 1

}
y + r−1z,(32)

where subscript st indicates the intention to stay in field s (as opposed to sw for

switching). A similar formula can be obtained if the agent anticipates changing

fields. Again assuming an interior choice of H∗, we have:

VS,sw (p, t/2, t/2) =

r−1z + r−2y (p (1− β) + β) exp

{
r (β + 1) t

2 (p (1− β) + β)
+

r (w0 + P − z)

y (p (1− β) + β)
− 1

}
.

(33)

Using these formulas, we can show that some experimentation is worthwhile as

long as the signal is informative, thereby guaranteeing τ1 > 0.

Proposition 1 (Minimum level of experimentation). In the linear-symmetric

case, ps(0) is bounded away from 1
2
: the agent engages in mixed studies in the

neighborhood of t = 0.

We can further establish that mixed education becomes dominated in finite

time: there exists a limit at which agents stop experimenting regardless of the

path followed by the belief process.

Proposition 2 (Maximum level of experimentation). In the linear-symmetric

case, there exists t∗ > 0 such that ps(t
∗) = pa(t

∗) = 1/2: the agent never engages

in mixed studies for t ≥ t∗.

These two propositions show that the boundary ps moves from a position bounded

away from 1/2 at t = 0 down to 1/2 before a fixed time t∗. While this is not

inconsistent with the boundary being locally increasing, it must be decreasing

on average. In numerical simulations, the optimal boundary is monotonically

decreasing.
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Appendix C. Simulations results in the linear-symmetric model

We illustrate the properties of the optimal solution by identifying the optimal

boundary numerically for a given set of parameters in a linear-symmetric model

with no switching cost. We show how parameter changes affect that optimal

boundary, the flow of agents through the different education regimes as well as

the level of confidence at which their initial specialization takes place. This justifies

the parameter selection for our estimation exercise.

C.0.1. Optimal boundaries and exit. Figure 17 (reproduced from Section 3.1) dis-

plays the optimal belief boundaries, overlaid with a sample belief path of a type S

agent. Near t = 0, agents require strong beliefs in order to specialize: above 0.75

(to specialize in S) or below 0.25 (to specialize in A). If they have not specialized

by time t = 8, a very small deviation of pt away from 1/2 is enough to trigger

specialization. The density of specialization times is also displayed in the figure,

for specialization into S or A separately.57 By integrating these densities, we find

that approximately 68 percent of type S agents eventually specialize correctly in

field S – the field of their comparative advantage, while 32 percent specialize in

field A and are therefore initially mismatched.

Upon specialization, agents already know the probability with which they will

switch fields. The duration of specialized studies is then determined in part by

whether the agent will choose to pursue his comparative advantage, should he

discover on the labor market that his comparative advantage is in the other field.

Figure 18 shows the probability of switching fields as a function of the timing of

specialization (solid red line), and shows that the earliest specializers do not switch

fields. The Figure also displays the length of specialized studies for these same

individuals (dashed blue line), and shows that early specializers do not “hedge their

bets”: they invest heavily in specialized education and plan to stay in their initial

field even if they turn out to be initially type-mismatched. In the opposite extreme,

very late specializers - who have chosen their field on relatively poor information

- know that they are likely to discover their comparative advantage is actually in

the other field and accordingly spend comparatively little time specializing before

57We also assume that the initial distribution of priors is a Dirac mass at 1/2.
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Figure 17: Optimal Boundaries and density of specialization times. The
agent starts specialized education once the belief process pt escapes the interval
(pa(t), ps(t)). This particular sample path leads to specialization time τ1 ≈ 1.64
and corresponds to correct specialization (in subject S).

joining the labor market (keep in mind that late specializers have accumulated a

significant amount of human capital in both fields).

C.0.2. Parameter changes. We now consider how changes in individual parameter

values affect the behavior of agents, ceteris paribus. Payoff-relevant parameters

(P,w0, y, z, β, r) do not impact the informativeness of signals; however, they in-

fluence the relative value of specialized education and type-discovery. Figure 19

illustrates how the belief boundaries change following a discrete change in the

value of each of these parameters (the figures show only the upper boundary ps(t);

the lower boundary pa(t) will adjust symmetrically). Since the speed at which

agents reach the boundaries is not affected by these parameters, the location of

the boundary itself summarizes the impact of these changes.

While the distributions in Figure 17 are generated under the assumption that all

belief paths begin at p0 = 1/2 (and evolve according to equation (2)), the model

does allow for agents to have some information about their type at t = 0. This is

formally represented by a distribution of time-zero beliefs p0 that is correlated with



THE MAJOR DECISION 69

Figure 18: Probability of switching fields and length of specialized education
tenure conditional on specialization time. Early specializers (t ≤ 2.7) remain
in their field of specialization even if revealed to be of type A. They choose a
longer education tenure.

the true type. In contrast with the return parameters, the initial information set

does not affect the optimal forward-looking experimentation policy, which implies

that its effect is entirely driven by the density of exit times.

Informative initial beliefs are illustrated in Figure 20. Let the belief at t = 0 be

informative in the following sense: before t = 0, agents receive a symmetric binary

signal that agrees with their true type with probability 3/5 and is misleading

otherwise.58 Figure 20 plots the density of timings of specialization – separately

for each field – for two populations of S-type agents which differ only in their

prior information. The solid red line and dashed blue line give the specialization

times for agents with an informative prior, while the dotted red line and dot-

dashed blue line give the distribution for agents with no prior information about

their type. As before, the solid and dotted lines correspond to those agents who

specialize – correctly – into field S, while the dashed lines represent agents who

mistakenly believe their comparative advantage to be in field A. We can see that

58Such a signal leads to type S agents holding updated belief p0 = 3/5 with probability 3/5 and
belief p0 = 2/5 with probability 2/5, with symmetric numbers for type-A agents.
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Transferability of human capita: β Comparative advantage premium: P

Flow payoffs during studies: z Discount rate: r

Returns function intercept: w0 Marginal returns to human capital: y

Figure 19: Comparative statics. Each sub-figure compares the optimal upper
boundary ps(t) before (solid red line) and after (dashed blue line) a 20% increase of
the parameter in question. For a fixed learning technology, an upwards shift of the
boundary implies that agents specialize later: they hold out for more confidence
before committing to either field.

improving the initial information of agents has the effect of speeding up the process

in the sense of first-order stochastic dominance and of increasing the probability

of correct initial match.

The precision of learning is the only parameter entering equation (2), hence the

beliefs updating process. As a result, it impacts the optimal specialization decision

through the choice of boundaries ps(t), pa(t), but also the distribution of times at

which boundaries are reached and the likelihood of specializing correctly. Figure
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Figure 20: Specialization timing densities with informative and uninformative
initial beliefs.

21 shows how the boundary and the exit density change when the precision of the

signal increases by 20%. On one hand, the increased demand for experimentation

(left panel) implies that agents should specialize later. On the other hand, a higher

signal-to-noise ratio implies that agents reach any given target belief faster, which

is the dominant effect and explains why the density of exit times puts more weight

on early realizations. Notice that the two effects go in the same direction with

respect to the probability of correct eventual specialization: not only the optimal

boundary shifts upwards, but also agents exit faster, hence are more likely to

specialize upon reaching a high confidence threshold.
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Specialization
boundary ps(t) Specialization timing density (S exit)

Figure 21: Change in the precision of learning, φ

Appendix D. Identification

Figures 22 - 26 show the weighted contribution of each moment to the distance

criterion, for each of the experimental conditions discussed in Section 4.6.

Low ρ High ρ

Figure 22: Contribution to distance criteria: baseline (grey) and constraint (black)

Low ρ0 High ρ0

Figure 23: Contribution to distance criteria: baseline (grey) and constraint (black)
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Low β High β

Figure 24: Contribution to distance criteria: baseline (grey) and constraint (black)

Low P High P

Figure 25: Contribution to distance criteria: baseline (grey) and constraint (black)

Low Cλ High Cλ

Figure 26: Contribution to distance criteria: baseline (grey) and constraint (black)
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