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1 Introduction

Sunlight is said to be the best of

disinfectants; electric light the most

efficient policeman.

Louis Brandeis

Though half a century has passed since the enactment of the Civil Right Act, there is

ample evidence that American employers still discriminate based upon legally protected

characteristics including sex and race (Guryan and Charles, 2013; Bertrand and Duflo,

2017; Quillian et al., 2017; Quillian, Lee and Oliver, 2020). One reason for the stubborn

persistence of employer discrimination is the paucity of reliable information regarding

the tendencies of specific organizations to engage in such illicit behavior. Job seekers

cannot direct their search effort away from biased firms if the identities of these firms are

unknown. Corporate executives may have little incentive to search for more equitable

recruiting practices if they cannot benchmark their organizations’ biases to those of their

peers.

This paper constructs a discrimination report card that summarizes objective infor-

mation regarding the relative biases of a broad collection of Fortune 500 companies. Our

analysis leverages a massive correspondence experiment sending up to 1,000 job appli-

cations to each of 108 firms. In a previous analysis of this experiment (Kline, Rose and

Walters, 2022), we established that applications listing distinctively Black names received

seven percent fewer employer contacts than those listing distinctively white names. This

contact penalty displays striking heterogeneity across companies: applying Empirical

Bayes (EB) deconvolution methods, we found that the top 20% of discriminating firms

were responsible for nearly half of the employer contacts lost to racial discrimination.

While this earlier work established that discrimination is highly concentrated among a

small subset of employers, the experimental estimate for any particular firm is subject to

significant sampling uncertainty. This statistical noise presents an obstacle to reliable es-

timation of discrimination by specific firms. Though scientific communication is generally

aided by transparency (Andrews and Shapiro, 2021), lay audiences can find it challenging

to translate point estimates and standard errors into conclusions of interest. Experimental

evidence from psychology suggests audiences frequently depart from Bayesian reasoning,

which may generate over- or under-reactions to statistical evidence (Mullainathan, 2002;

Mullainathan, Schwartzstein and Shleifer, 2008; Bordalo et al., 2016). These considera-

tions suggest that a low-dimensional, easily-digestible summary of the experimental find-

ings is important for effectively communicating the results to a broad audience. Likely for

similar reasons, scholars, policymakers, and private businesses increasingly report simple

“report cards” summarizing estimates of quality for various types of institutions, includ-
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ing colleges (Chetty et al., 2017), K-12 schools (Bergman, Chan and Kapor, 2020; Angrist

et al., 2021), teachers (Bergman and Hill, 2018; Pope, 2019), healthcare providers (Brook

et al., 2002; Pope, 2009; Kolstad, 2013), and neighborhoods (Chetty and Hendren, 2018b;

Chetty et al., 2018a).

This paper develops new methods for grading firms (or other units) based upon noisy

measures of their conduct while maintaining statistical guarantees on the reliability of

the resulting grades. The information content of our classification scheme is quantified

by Kendall’s τ measure of correlation (Kendall, 1938) between our proposed ranking

and the true ranking of firms’ latent discriminatory behavior. The reliability of the

report card grades is quantified by an analogue of the False Discovery Rate (Benjamini

and Hochberg, 1995; Storey, 2002) that we term the Discordance Rate (DR). The DR

between two grades gives the expected probability that a firm assigned the worse grade

discriminates less than a firm assigned the better grade. We also develop an extension

of DR that weights mistakes by their cardinal magnitudes, which captures the idea that

large mistakes are more costly than small ones.

We show that the tradeoff between these notions of information and reliability arises

naturally from a series of lotteries over firm pairs where an analyst guesses which mem-

ber of each pair exhibits worse conduct. When facing multiple gambles of this form,

the analyst faces an optimization problem subject to logical transitivity constraints re-

quiring all pairwise comparisons to be consistent with a coherent underlying ranking. A

parameter λ trades off the gains of correctly ranking pairs of firms against the costs of

misclassifying them. When λ = 1, it is optimal to assign every firm a unique grade that

maximizes the expected rank correlation with the true latent discrimination levels. These

maximally-informative grades turn out to be closely connected to classic proposals for

preference aggregation via pairwise elections found in the social choice literature (Borda,

1784; Condorcet, 1785; Young and Levenglick, 1978; Young, 1986), with the posterior

probability that one firm is more biased than another serving as a “vote share.” When

λ < 1 it is only optimal to strictly rank firm pairs that can be distinguished with suf-

ficiently high posterior probability, potentially yielding ties and therefore a low number

of distinct “grades.” These coarse grades protect against misinterpretation at the cost of

losing information, thereby reducing correlation with the true ranks.

The grades generated by our procedure yield a simple classification of firms into groups

that facilitates pairwise comparisons of firm conduct. The grades allow an assessment

not only of which firms are discriminating most, but also which firms are discriminating

least. The latter sort of information may prove especially useful in the hunt for best

practices that lead to inclusive hiring. For example, our past work documented smaller

contact gaps at firms that contacted applicants from fewer phone numbers, a proxy for

centralized human resources (HR) practices. Berson, Laouenan and Valat (2020) provide

corroborating evidence that contact gaps are lower among French firms with centralized
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recruiting practices, while Challe et al. (2022) report encouraging experimental evidence

on the potential for HR reforms to foster inclusive hiring at large firms. Our report card

results suggest directions for work comparing these and other policies across firms graded

as high and low performers.

To supplement the ordinal information conveyed by our grades, we report Empirical

Bayes posterior means and credible intervals summarizing the level of discriminatory

conduct at each employer. This ordinal and cardinal information is visualized in a single

report card that provides a powerful and easily-accessible rubric for assessing absolute

and relative discriminatory conduct. Although this rubric was designed to communicate

information about discrimination, we expect the methods proposed here to prove useful

in other settings where noisy measures of institutional performance and conduct have

been studied, including assessments of school value added (Angrist et al., 2017), hospital

quality (Chandra et al., 2016), health insurance plans (Abaluck et al., 2021), and regional

intergenerational mobility (Chetty and Hendren, 2018a). Routines for implementing our

ranking procedure are available online at https://github.com/ekrose/drrank.

As an introductory illustration of the method, we rank the contact rates of the first

names used in our correspondence experiment. A non-parametric deconvolution suggests

that name-specific contact rates cluster around two distinct values capturing mean contact

rates for distinctively white and Black names. Weighing the loss from incorrectly ordering

a pair of names four times as heavily as the gain from correctly ordering them, our ranking

procedure stratifies the names into two groups with distinct grades. These grades are

shown to be strongly predictive of a name’s nominal race but not its sex. Allowing

additional grades has little impact on these correlations, suggesting that our ranking

procedure is suitable for recovering “missing labels” with a low-dimensional structure.

Proceeding to our primary application of ranking firm biases against Black applicants,

we compute optimal grades subject to the same preferences over correct and incorrect

rankings used for first name pairs. In a single pairwise gamble, these preferences (which

correspond to a particular choice of λ) require at least 80% posterior confidence to justify a

strict ordering of firms. In our baseline specification, applying this choice of λ to generate

a transitive ordering over all firms yields three unique grade levels. These grades capture

roughly 19% of the between-firm variation in proportional contact penalties and yield an

expected rank correlation with the true penalties of 0.21. Although our grading system

reflects only ordinal considerations, we estimate that the average white/Black gap in

contact rates among firms awarded the worst grade is 24%, while the gap among firms

awarded the best grade is only 3%.

Our earlier work found that industry explains roughly half of the variation in racial

discrimination levels across firms (Kline, Rose and Walters, 2022). Motivated by this

finding, we extend our procedure to build industry information into the report card

grades. This extension is achieved by augmenting Efron (2016)’s log-spline deconvolution
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approach to flexibly estimate separate distributions of discrimination within and between

industries. Consistent with our past work, we find that industry affiliation accounts for

roughly half of the cross-firm variation in proportional contact penalties. Incorporating

industry affiliation into the ranking procedure with the same choice of λ yields four grades.

These improved grades explain 47% of the variation in contact penalties across firms and

yield a correlation with the latent ranks of 0.32, while limiting the expected share of firm

pairs that are mis-ranked to 5.2%.

These more informative industry-dependent grades constitute our preferred ranking of

the companies in our experiment. Firms assigned the worst grade in this ranking contact

white applicants 22% more often than Black applicants, similar to the lowest category

in the ranking without industry effects. However, 5 firms receive this label in the model

with industry effects compared to only 2 in the baseline model, an indication of the extra

information conveyed by industry. Similar to the specification without industry, firms

receiving the best grade in the industry effects model (11 firms) exhibit very small racial

biases. To the extent that these differences are driven by HR practices or other firm

policies, there may be opportunities for the substantial set of firms that scored poorly to

improve their behavior by imitating the practices of those who scored more highly.

Our work extends a burgeoning literature on EB ranking methods. A large empirical

literature ranks teachers, schools, hospitals, and neighborhoods using James-Stein style

shrinkage rules (e.g., Chetty, Friedman and Rockoff, 2014; Chetty et al., 2018b). Portnoy

(1982) established conditions under which ranking based on such rules maximizes the

probability of a correct ordering, while Laird and Louis (1989) proposed directly com-

puting posterior mean ranks under a normality assumption on the latent heterogeneity.

Both sorts of ranks may be noisy, however, leading to a proliferation of ranking mistakes

when the number of units grows large. A recent econometrics literature confirms that this

problem can become severe in practice and proposes approaches to testing hypotheses re-

garding either ranks themselves or the levels of highly-ranked units (Andrews, Kitagawa

and McCloskey, 2019; Mogstad et al., 2020).

Building on the analogy with multiple testing, Gu and Koenker (2020) consider the

use of non-parametric EB methods to select tail performers subject to constraints on

the False Discovery Rate, which limits the number of ordering mistakes expected when

selecting top performers. Our proposal generalizes the approach in Gu and Koenker

(2020) by accommodating more than two grades and avoids the requirement to treat one

of the grades as a null hypothesis. More recent work by Gu and Koenker (2022) considers

a ranking of journals based on pairwise citation counts using a penalized Bradley-Terry

model (Bradley and Terry, 1952). While our proposed approach shares Gu and Koenker

(2022)’s focus on pairwise differences, the method does not require pairwise data on

tournaments and allows users to trade off transparent notions of the information content

and reliability of the resulting grades.
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After undergoing peer review, we plan to release the names of the firms in this study to

the public. Regulatory agencies such as the Equal Employment Opportunity Commission

(EEOC) and the Office of Federal Contract Compliance (OFCCP) have broad discretion

to launch investigations into possible violations of equal employment opportunity laws,

especially violations by federal contractors. Many of the firms receiving poor grades turn

out to be federal contractors, suggesting this information may be of help in targeting

future compliance efforts. However, compliance efforts are inevitably long and costly and

many firms remain out of compliance even after having been fined (Maxwell et al., 2013).

As the introductory quote by Brandeis suggests, shining some statistical light on the

problem of discrimination may have a more immediately salutary effect than regulatory

enforcement efforts. Little scientific information about the discriminatory conduct of

particular firms is available to the public. The most powerful “disinfectant” may well be

the decentralized reactions of employees, customers, and leaders of these organizations to

the provision of such information.

2 The experiment

We construct discrimination report cards based on the resume correspondence experiment

analyzed in Kline, Rose and Walters (2022). The experiment’s sampling frame began

with the 2018 list of companies in the Fortune 500. Attention was then restricted to

firms with sufficient geographic variation and entry-level job posting for our experiment

to be feasible. Over the course of the study, 125 entry-level job vacancies were sampled

from each of these employers, with each vacancy corresponding to an establishment in

a different U.S. county. This restriction was intended to ensure nation-wide coverage of

each firm’s recruitment conduct and to minimize the chances that multiple sampled job

vacancies were being managed by the same individual.

Sampling was organized in a series of 5 waves, with a target of 25 jobs sampled for

each firm in each wave. The majority of firms (72) were sampled in all waves; the rest

were excluded in some waves due to COVID-19 and technological interruptions. We

attempted to send each sampled job four pairs of applications, with each pair consisting

of one Black applicant and one white applicant. Some vacancies received fewer than 8

total applications because the job opening closed while applications were still in progress.

Our final sample included roughly 84,000 applications.

To signal race and gender, we followed previous correspondence experiments and used

distinctive names. Our set of names started with that of Bertrand and Mullainathan

(2004), who used 9 unique names for each race and gender group. This list was supple-

mented with 10 additional names per group from a database of speeding tickets issued

in North Carolina between 2006 and 2018. We classified a name as racially distinctive if

more than 90% of individuals with that name are of a particular race, and selected the
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most common distinctive Black and white names for those born between 1974 and 1979.

Distinctive last names were taken from the 2010 U.S. Census. We selected names with

high race-specific shares among those that occur at least 10,000 times nationally.

One application within each pair was randomly assigned a distinctively white name

while the other was randomly assigned a distinctively Black name. Fifty-percent of names

were distinctively female and the rest distinctively male, but assignment of sex was not

stratified. Each fictitious applicant was independently randomly assigned a large set of

additional characteristics, including educational and previous employment histories.

Our primary outcome is whether an employer attempted to contact the fictitious

applicant. Phone numbers and e-mail addresses assigned to the fictitious applicants

were monitored to determine when employers reached out for an interview. Contact

information was assigned to ensure that no two applicants to the same firm shared an e-

mail address or phone number. Our analysis focuses on whether the employer attempted

to contact an applicant by any method within 30 days of applying. Further details on

the experimental design are available in Kline, Rose and Walters (2022).

3 Decision problem

Consider the problem of ranking a collection of n firms, indexed by i ∈ {1, . . . , n} ≡ [n],

according to their values of a scalar measure of discrimination θi ∈ R. The decision

variable di ∈ [n] gives the grade assigned to firm i. Larger values of di indicate a firm is

more biased. Hence, when di > dj for two firms i and j, we say that firm i received a

“worse” grade than firm j.

For each firm i ∈ [n], we have the measurements Yi = (θ̂i, si), where θ̂i is a consistent

estimate of θi and si is that estimate’s asymptotic standard error. We assume the {θ̂i}ni=1

are mutually independent and that θ̂i ∼ N (θi, s
2
i ). The normality assumption can be

justified by an asymptotic approximation as each θ̂i is based on the contact rate of a

large number of underlying applications.

It is convenient to recast the problem of ranking n firms as that of ranking all
(
n
2

)
pairs of firms subject to a set of transitivity constraints. Correctly ranking the bias of a

pair of firms yields a concordance while ranking the pair incorrectly yields a discordance.

A pair can also be deemed a tie, which yields neither a discordance nor a concordance.

3.1 Gambling over ranks

To build intuition it is helpful to first consider the problem of deciding on the rank of a

single pair of firms i and j based upon realizations (yi, yj) of independent signals (Yi, Yj).

Suppose that correctly ranking the pair yields payoff λ ∈ [0, 1] while reversing their true

rank yields payoff -1. We can also declare the comparison a draw by assigning the firms
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equal ranks, which amounts to abstaining from the gamble and yields certain payoff 0.

In considering this lottery, we view the pair (θi, θj) of firm types as i.i.d. draws from

a continuous prior distribution G : R → [0, 1]. The posterior probability that firm i is

more biased than firm j will be denoted πij = Pr (θi > θj|Yi = yi, Yj = yj). Because G is

continuous, ties are measure zero and πij = 1− πji.

The expected utility of assigning grades d = (d1, d2) ∈ {1, 2}2 to these firms can

therefore be written

EU(πij, d) =[λπij − πji] · 1{di > dj}+ [λπji − πij] · 1{di < dj}

=[(1 + λ)πij − 1] · 1{di > dj}+ [(1 + λ)(1− πji)− 1] · 1{di < dj}.

The optimal policy is a simple posterior threshold rule:

• Set (di = 2, dj = 1) iff πij >
1

1+λ
.

• Set (di = 1, dj = 2) iff πji >
1

1+λ
.

• Otherwise, set di = dj.

When λ = 1, it is optimal to follow a maximum a posteriori (MAP) rule, assigning

the higher rank to whichever firm has a greater probability of having the largest value of

θ. But when λ < 1, it is better to assign pairs of firms with πij near 1/2 equal grades

rather than risk ranking them incorrectly. The quantity (1−λ) can therefore be thought

of as measuring discordance aversion.

3.2 Compound Loss

Now consider the case where we can gamble on the relative rank of all
(
n
2

)
pairs of firms.

Kendall (1938)’s classic τ measure of rank correlation can be defined as the share of pairs

yielding a concordance minus the share yielding a discordance. The loss function we

propose is a generalization of τ indexed by a scalar λ ∈ [0, 1] that controls the benefit of

a concordance relative to the cost of a discordance.

Letting θ = (θ1, . . . , θn)
′ denote the vector of latent biases and d = (d1, . . . , dn)

′ a

vector of assigned grades, our loss function can be written:

L (d, θ;λ) =

(
n

2

)−1 n∑
i=2

i∑
j=1

[
1 {θi > θj, di < dj}+ 1 {θi < θj, di > dj}︸ ︷︷ ︸

discordant pairs

− (1)

λ

(
1 {θi < θj, di < dj}+ 1 {θi > θj, di > dj}︸ ︷︷ ︸

concordant pairs

)]
.
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While every discordant pair yields a loss of 1, every concordant pair reduces loss by

λ. When λ = 1 the loss function equals minus one times Kendall’s τ measure of rank

correlation between d and θ, which we will denote τ(d, θ). When λ < 1, ranking mistakes

are more costly than forgone concordances, which creates an incentive to deem the pair

a tie.

Building on the insight that τ(d, θ) = −L (d, θ; 1), we can also write the loss function:

L (d, θ;λ) = (1− λ)

(
n

2

)−1 n∑
i=2

i∑
j=1

[
1 {θi > θj, di < dj}+ 1 {θi < θj, di > dj}

]
− λτ(d, θ)

= (1− λ)DP (d, θ)− λτ(d, θ),

where the quantityDP (d, θ) =
(
n
2

)−1∑n
i=2

∑i
j=1[1 {θi > θj, di < dj}+1 {θi < θj, di > dj}]

is the Discordance Proportion. The Discordance Proportion gives the share of firm pairs

that are misranked according to their grades. Interpreting our decision problem as a

series of tests of the null hypothesis that each member of a pair discriminates equally,

the Discordance Proportion may be seen as a directional (sometimes called type III)

error rate. That is, we reject equality in favor of an erroneous alternative, yielding

a discordance. This representation clarifies that the parameter λ trades off the desire

to accurately communicate information to the audience by maximizing τ(d, θ) against

concern about misclassifying the ranks of firms, as reflected by DP (d, θ).

3.3 Risk function

While one would ideally like to choose grades d that balance the rank correlation τ(d, θ)

against the Discordance Proportion DP (d, θ), these quantities are not directly observed.

Suppose, however, that we have a continuous i.i.d. prior G : R → [0, 1] over the elements

of θ and that we observe a realization y of the random vector Y = (Y1, . . . , Yn)
′. The

posterior probability that firm i ∈ [n] is more biased than firm j ̸= i will again be denoted

by πij = Pr (θi > θj|Y = y).

The posterior expectation under G of both the unknown τ(d, θ) and DP (d, θ) can

be expressed in terms of the pairwise probabilities πij. The posterior expected rank

correlation τ̄(d) = E[τ(d, θ)|Y = y] is given by

τ̄(d) =

(
n

2

)−1 n∑
i=2

i∑
j=1

1 {di < dj} · (πij − πji) + 1 {di > dj} · (πji − πij) .

Likewise, the posterior expected value of DP (d, θ), a quantity we term the Discordance
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Rate (DR), is

DR(d) =

(
n

2

)−1 n∑
i=2

i−1∑
j=1

1 {di < dj} πij + 1 {di > dj} πji. (2)

Consequently, the posterior expected loss (i.e., the Bayes risk) of assigning grades d ∈ [n]n

can be written:

R(d;λ) = E[L(d, θ;λ) | Y = y]

= (1− λ)DR(d)− λτ̄(d)

=

(
n

2

)−1 n∑
i=2

i∑
j=1

πji1 {di > dj}+ πij (1− 1 {di = dj} − 1 {di > dj})−

λπji (1− 1 {di = dj} − 1 {di > dj})− λπij1 {di > dj} . (3)

The optimal grades d∗(λ) minimize R(d;λ). To simplify this minimization problem,

it is convenient to recast the relevant decision variables as pairwise indicators dij =

1 {di > dj} and eij = 1 {di = dj}. Transitivity requires that for any triple (i, j, k) ∈ [n]3

the following constraints hold:

dij + djk ≤ 1 + dik, (4)

dik + (1− djk) ≤ 1 + dij,

eij + ejk ≤ 1 + eik.

Hence, we can rewrite the problem of choosing d ∈ [n]n to minimize (3) as that of

choosing the binary indicators {dij, eij}i=n,j=i
i=2,j=1 to minimize

n∑
i=2

i∑
j=1

πjidij + πij (1− eij − dij)− λπji (1− eij − dij)− λπijdij, (5)

subject to the transitivity constraints in (4) and the logical constraint that eij+dij+dji =

1 for all (i, j) ∈ [n]2. Note that both the objective (5) and the constraints are linear in

the control variables. This reformulation therefore yields an integer linear programming

problem, the solution to which can be computed with standard optimization packages.

3.4 The role of λ

To develop intuition for the role that λ plays in the nature of the solution to our linear

programming problem, it is useful to consider the task of ranking a single pair in (5)
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while ignoring cross-pair constraints. Setting dij = 1 minimizes risk whenever

πji − λπij︸ ︷︷ ︸
dij=1 (i≻j)

< min

 0︸︷︷︸
eij=1 (tie)

, πij − λπji︸ ︷︷ ︸
dij=eij=0 (i≺j)

 .

For λ ∈ [0, 1], we can rewrite this condition as

πij > (1 + λ)−1, (6)

which is equivalent to the rule derived in section 3.1. Hence, with λ = 1, it is optimal to

choose dij = 1{πij > 1/2}, which can be thought of as a MAP estimate of the pairwise

rank. When λ ∈ (0, 1), greater posterior certainty is required to conclude that dij = 1

and values of πij near 1/2 will yield ties even though G is continuous. As λ approaches

zero, fewer distinct grades will be assigned. When λ = 0, all n firms are assigned the

same grade because πij ≤ 1.

The coarse grades that result from applying the pairwise thresholding rule in (6) when

λ < 1 can generate a form of Condorcet cycle in indifferences that violates the transitivity

constraints in (4) even if they would be satisfied under λ = 1. The following three firm

example illustrates the problem.

Example 1 (Three firms, normal posteriors). Suppose n = 3 and θi|Yi = yi ∼ N(ωi, 1).

If the {θi}3i=1 are mutually independent, then:

πij = Pr(θi > θj|Yi = yi, Yj = yj) = Φ

(
ωi − ωj√

2

)
.

Let λ = 1/4, which implies (1+λ)−1 = 0.8. If (ω1, ω3) = (2, 0), so that π13 = Φ(
√
2) = .92

and π31 = 1 − π13 = .08, then it is optimal to rank θ1 > θ3. But if ω2 ∈ (0.81, 1.19),

it is optimal to rank both (θ1, θ2) and (θ2, θ3) as ties because max{π12, π23} < 0.8. By

transitivity, this implies θ1 = θ3 which contradicts our earlier assertion that θ1 > θ3.

Note that if we had set λ = 1 in the above example transitivity would have been

satisfied because the posteriors themselves are transitive in the sense that for any triple

(i, j, k) of firms, πij > πji and πjk > πkj imply πik > πki. This transitivity derives from

the scalar index structure of the posteriors, revealed by the fact that

πij > πji ⇐⇒ ωi > ωj.

Sobel (1993) establishes the transitivity of posteriors in a broader exponential family

subject to a corresponding index restriction. In general, however, when the observations

are heteroscedastic, such index representations are not available and transitivity is not
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assured. When transitivity fails, the constraints in (4) will bind and multiple units may

receive the same grade even when λ = 1.

Finally, note that coarse grades need not be a consequence of transitivity violations.

If ω2 ∈ (−1.19, 0.81) in the preceding example, it is optimal to rank θ1 > θ3, θ1 > θ2,

and θ2 = θ3. Thus pairwise thresholding yields two grades and no transitivity viola-

tions. Whether the transitivity constraints bind therefore depends on the structure of

the pairwise posterior contrasts.

3.5 Connections to social choice

The literature on ranking methods bears a close connection to problems of social choice.

If we re-interpret πij as the share of votes for firm i over firm j in a pairwise election then

a number of standard preference aggregation schemes suggest themselves.1 For example,

Borda (1784)’s voting method simply ranks each firm i based on the number of elections

it has won; i.e., based upon
∑

j ̸=i 1{πij > 1/2}. If (as we have assumed) G is continuous,

then the Borda measure is equivalent to the posterior mean rank, a quantity studied by

Laird and Louis (1989).

The ranking procedure devised in section 3.3 turns out to be closely tied to Condorcet

(1785)’s voting scheme. To develop this connection, it is useful to define the Kemeny

(1959) distance between the vectors θ and d, which can be written

K (θ, d) =
n∑

i=2

i∑
j=1

|1 {θi > θj} − 1 {θi < θj} − (1 {di > dj} − 1 {di < dj})| .

Integrating out θ yields

E [K (θ, d) |Y = y] =
n∑

i=2

i∑
j=1

(πij + πji) 1 {di = dj}+ (1 + πji − πij) 1 {di > dj}

+ (1 + πij − πji) 1 {di < dj} .

When ties are not possible (i.e., when πij = 1− πji for all i ̸= j) we obtain the simplifi-

cation

E [K (θ, d) |Y = y] ∝
n∑

i=2

i∑
j=1

(2πij − 1) (dji − dij) . (7)

Young and Levenglick (1978) show that Condorcet (1785)’s voting scheme is equivalent to

choosing a ranking d that minimizes (7). Young (1986) establishes that this vote aggre-

gation scheme is the unique rule that is unanimous, neutral, and satisfies reinforcement

1In developing this analogy, we temporarily depart from the convention that di > dj implies firm i
has been assigned a “worse” grade than firm j, referring instead to firms with high di as highly ranked.
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and independence of remote alternatives. It can also be viewed as a type of maximum

likelihood estimator giving “the ranking of all candidates that is most likely to be correct”

(Young, 1986, p.114).

Note that (2πij − 1) (dji − dij) is minimized by the MAP thresholding rule dMAP
ij =

1{πij > 1/2}. When λ = 1, our objective in (5) reduces to (7). Consequently, the

most granular version of our grading scheme minimizes the expected Kemeny distance

between the assigned grades and the true rankings. When λ < 1 we depart from the

Kemeny criterion by calling elections a draw when they are close. Here, a close election

is one where πij < (1 + λ)−1.

Condorcet rankings obey the famous Condorcet winner criterion: a unit that wins all

pairwise elections between candidates (that is, satisfies πij > 1/2 ∀j ̸= i) will be ranked

first. The following proposition reveals that when λ < 1 our grades fulfill a modified

version of the Condorcet winner criterion.

Proposition 1 (λ-Condorcet Criterion). Suppose that firm i satisfies πij > (1+λ)−1 ∀ j ̸=
i. Then di > dj ∀ j ̸= i. Moreover, suppose that firm k satisfies πik > (1 + λ)−1 and

πkj > (1 + λ)−1 ∀ j ̸= i, j ̸= k. Then di > dk > dj ∀ j ̸= i, j ̸= k.

We leave the short proof for Appendix A. By symmetry of the objective in (5), the

firm assigned the lowest grade by our method must achieve the highest grade when the

sign of the estimand being ranked is reversed. Hence, Proposition 1 also implies that any

Condorcet loser – i.e., any candidate firm i with πji > (1 + λ)−1 for all j ̸= i – must be

assigned the lowest grade.

Another well-known property of Condorcet rankings is that when no Condorcet winner

exists, the top ranked candidate must be a member of the Smith (1973) set: the smallest

non-empty subset of candidates such that every candidate in the subset is majority-

preferred over every candidate not in the subset. The following proposition establishes a

corresponding property of our grades in the case where λ < 1.

Proposition 2 (λ-Smith criterion). Let S denote a collection of firms exhibiting the

following dominance property: πij > (1 + λ)−1 ∀i ∈ S, j /∈ S. Then the top graded firms

must be a member of S.

The proof is again left for the appendix. Symmetrically, Proposition 2 implies the

firm assigned the lowest grade must be a member of the Smith loser set of candidates

that are majority non-preferred to all others. Finally, we note that when λ < 1 and no

ordering is possible within the Smith set, all firms in the set will receive equal grades.

Proposition 3 (Unordered λ-Smith candidates are tied). Let S denote a collection of

firms exhibiting the following dominance property: πij > (1 + λ)−1 ∀i ∈ S, j /∈ S.
Moreover, suppose πij < (1 + λ)−1 ∀(i, j) ∈ S. Then all firms in S receive the highest

grade.
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As with the preceding propositions, the proof appears in Appendix A.

3.6 Extension to weighted loss

Ranking mistakes are likely to be more costly when the magnitude of the mistake is larger.

The following family of loss functions weight pairwise concordances and discordances by

the p’th power of the difference between the cardinal biases of the two firms:

Lp (d, θ;λ) =

(
n

2

)−1 n∑
i=2

i∑
j=1

[
1 {θi > θj, di < dj} (θi − θj)

p + 1 {θi < θj, di > dj} (θj − θi)
p︸ ︷︷ ︸

discordant pairs

−

λ

(
1 {θi < θj, di < dj} (θi − θj)

p + 1 {θi > θj, di > dj} (θj − θi)
p︸ ︷︷ ︸

concordant pairs

)]
.

A loss function corresponding to the (p = 2, λ = 1) case was previously considered by

Sobel (1990). The corresponding family of risk functions take the form

Rp(d;λ) =

(
n

2

)−1 n∑
i=2

i∑
j=1

µp
jidij + µp

ij (1− eij − dij)− λµp
ji (1− eij − dij)− λµp

ijdij,

where µp
ij = E [max{(θi − θj), 0}p | Y = y]. Note that limp→0 µ

p
ij = πij. Hence, one can

think of our baseline risk function in (5) as a limiting case of Rp as p approaches zero. In

what follows, we focus on this limiting case where p → 0 (“binary loss”) but also report

results analyzing the case where p = 2 (“square-weighted loss”) in Appendix D.

3.7 Discordance rates

To summarize the reliability of the grades it is useful to report the Discordance Rate

DR(d∗), which gives the posterior expected frequency of discordances between pairs of

grades. From (2), this quantity is trivial to compute, as it depends only on the optimized

decisions {d∗i }ni=1 and the posterior probabilities {πij}i ̸=j.

We can also define the conditional Discordance Rate between a specific pair of grades

g and g′ < g as

DRg,g′ =

∑n
i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
E [1 {θi < θj} |Y = y]∑n

i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
=

∑n
i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
πji∑n

i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

} .

The denominator of each pairwise rate can be thought of as giving the number of rejections

of the null hypothesis that a pair of firms discriminate equally in favor of the alternative
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that the firm assigned to group g′ is more biased than the firm assigned to group g. Hence,

DRg,g′ is an analogue of the directional false discovery rate (Benjamini and Hochberg,

1995; Benjamini and Yekutieli, 2005), giving the expected share of pairs with differing

grades that are misranked.

Because the conditional DRs are symmetric (DRg,g′ = DRg′,g), we report them as a

lower triangular matrix. Note that the overall DR is a weighted average of the conditional

DRs with positive weight put on the “on-diagonal” terms DRg,g, which are necessarily

zero. When working with p-weighted loss a corresponding weighted version of the condi-

tional discordance rate can be employed:

DRp
g,g′ =

∑n
i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
E [max{(θi − θj), 0}p | Y = y]∑n

i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
E [(θi − θj)p | Y = y]

=

∑n
i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
(1− µp

ij)∑n
i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
mp

ij

,

where mp
ij = EG [(θi − θj)

p | Y = y] . The p-weighted discordance rate nests the corre-

sponding unweighted rate as DR0
g,g′ = DRg,g′ . For any p > 0, DR0

g,g′ is guaranteed to lie

in the unit interval.

If we view the grades {d∗i }ni=1 as exchangeable random variables and take DRg,g′ as

an assessment of the conditional misranking probability Pr(θi > θj | d∗i = g, d∗j = g′) we

can convert the conditional DR’s into Bayes Factors expressing the informativeness of

assigned grade pairs about the relative ranks of firms. By Bayes’ rule,

BFg,g′ =
Pr
(
d∗i = g, d∗j = g′ | θi ≤ θj

)
Pr
(
d∗i = g, d∗j = g′ | θi > θj

)
=

Pr
(
θi ≤ θj | d∗i = g, d∗j = g′

)
Pr (θi ≤ θj)

Pr
(
θi > θj | d∗i = g, d∗j = g′

)
Pr (θi > θj)

=
1−DRg,g′

DRg,g′
,

where we have used the fact that under a smooth i.i.d. prior Pr (θi > θj) = 1−Pr (θi ≤ θj) .

The Bayes Factor BFg,g′ conveys the odds that a randomly selected firm assigned grade

g is more biased than a randomly selected firm assigned grade g′ < g. Corresponding

p-weighted Bayes Factors can be formed in the same manner using DRp
g,g′ .

4 Ranking Names

As an introductory illustration of the methods developed in the previous section, we

now rank the employer contact propensities of the names used in our correspondence

experiment. The experiment utilized 76 first names, which were split equally between
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the nominal categories of: Black male, Black female, white male, and white female.

Table 1 lists the mean contact rates of names in each of these categories, along with the

number of applications. Distinctively white and female names were called back most often

in the experiment, followed by white male names, then Black male names, with Black

female names being called back least often. Though the same names were intended to be

sent to each firm, the COVID-19 epidemic and other disruptions led to minor imbalances

reflected in the sample counts. In our past work (Kline, Rose and Walters, 2022) we

were unable to reject the null hypothesis that the first names randomly assigned to our

applications exhibited equal employer contact probabilities conditional on their nominal

race and sex, which suggests these imbalances had little effect on mean contact rates by

race or sex. For completeness, Table 1 reports for each demographic group the p-value

of a Wald test of the null hypothesis that the name specific contact rates are equal. The

smallest such p-value is 0.24.

To get a sense of what share of the variation in name contact probabilities is likely

explained by the names’ putative race and sex labels, we compute a bias-corrected esti-

mate of the between demographic group variance using the formula G−1
G

(
S2 − s2

)
where

G = 4 is the number of demographic groups, S2 is the sample variance across demo-

graphic groups of the point estimates reported in Table 1, and s2 is the average squared

standard error across those groups. This calculation yields an unbiased estimate of the

between demographic group variance of (0.011)2. Applying a corresponding calculation

to the name specific means and standard errors yields a bias-corrected estimate of the

variability in contact probabilities across all 76 first names of (0.010)2. The finding that

our between demographic group variance estimate exceeds our between name variance

estimate suggests that the nominal race and sex of a first name explains nearly all of the

variation across first names in contact probabilities; that is, we expect that a regression

of the latent name specific contact probabilities on race and sex interactions would yield

an R2 very close to one.

In principle, even if race and sex perfectly predict employer treatment of names, the

causal factors generating this association could be other features of names that correlate

strongly with race and sex. A candidate factor that has attracted substantial attention

from social scientists is employer stereotypes about the likely productivity of individuals

with different names (Fryer Jr and Levitt, 2004; Gaddis, 2017). This hypothesis was eval-

uated by Bertrand and Mullainathan (2004), who found that the average socioeconomic

status of the first names considered in their experiment (as proxied by average maternal

education) varied widely within race but were insignificantly related to contact rates.2

Because roughly half (40 out of 76) of our first names coincide with those studied by

2Recent work by Crabtree et al. (2022) directly elicits perceptions of educational attainment and
income by first name on a variety of online platforms. Remarkably, they find that perceptions of social
class exhibit variability across racially distinctive first names in the same race category comparable in
magnitude to the variability found between race categories (see their Figure 4).
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Bertrand and Mullainathan (2004), our finding of insignificant contact probability differ-

ences within race and gender casts further doubt on the view that employer responses

are driven primarily by features of names other than their likely race or sex.

The finding that race and sex provide an accurate low dimensional summary of the

76 name specific contact probabilities suggests it is possible to build a highly informative

ranking of the names involving just a few grades. Below, we investigate this conjecture

in two ways. First, we examine how the expected Kendall’s τ produced by our procedure

scales with the number of grades assigned. Second, we treat each name’s nominal race

and sex as “missing labels” and study the extent to which the coarse grades assigned to

first names by our ranking algorithm can recover these labels from data on firms’ sample

contact rates.

4.1 Estimating G

Abusing notation somewhat, let i in this section refer to a first name and denote the

number of applications with name i sent in the experiment byNi. The number of employer

contacts received within 30 days by those applications is denoted by Ci. If the contacts

are viewed as independent Bernoulli trials with name specific contact probabilities pi then

the contact rate Ci/Ni of name i has mean pi and variance pi(1−pi)/Ni. This dependence

of the variance on the contact probability complicates ranking exercises, as contact rates

for names that deserve the best and worst grades – that is, those with pi near one or zero

– will also be estimated with the least noise.

To stabilize the variance, we rank names according to a Bartlett (1936) transformation

of their contact rates

θ̂i = sin−1
√
Ci/Ni.

The logic of this transform follows from the observation that d
dx

sin−1√x =
[
2
√

x(1− x)
]−1

.

Consequently, the Delta method implies θ̂i has asymptotic distribution N (θi, (4Ni)
−1),

where θi = sin−1√pi.

To estimate the distribution G from which θi was drawn we first apply the non-

parametric maximum likelihood (NPMLE) estimator developed by Koenker and Mizera

(2014) as implemented by the ‘GLmix’ command in the R package REBayes (Koenker

and Gu, 2017). The NPMLE estimates a discrete approximation to the distribution of

θi assuming that θ̂i | θi, Ni ∼ N (θi, (4Ni)
−1). Supporting the maintained independence

of θi from Ni, a regression of θ̂i on lnNi yields a statistically insignificant relationship

(p=0.17).3

3The variation in Ni is primarily attributable to the fact that a subset of our first and last name
pairs were taken from the study of Bertrand and Mullainathan (2004), while the remaining name pairs
were drawn from North Carolina data on speeding tickets and Census data. The number of last names
considered differed across the two data sources, leading to imbalances in the average number of last
names (and hence applications) per first name.
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A plot of the estimated marginal distribution Ĝ of θi produced by the NPMLE is

provided in Figure 1. The bars correspond to histograms of θ̂i while the yellow spikes

represent the estimated probability mass function dĜ of the θi. This discrete distri-

bution does an excellent job matching the mean value of the θ̂i and its bias corrected

variance, which we compute as its sample variance minus its average squared standard

error n−1
∑n

i=1 s
2
i = n−1

∑n
i=1(4Ni)

−1.

Figure 1 also plots the estimated density of θi produced by Efron (2016)’s log-spline

estimator, which models G as a 5th order spline in the exponential family. Estimation

of the spline parameters is conducted via penalized maximum likelihood, where Ni is

treated as independent of θi. The penalization parameter has been chosen by GMM to

match unbiased estimates of G’s first two moments as closely as possible. Despite being

continuous, the bimodal shape of the log-spline estimate is remarkably consistent with

that of the NPMLE. For reference, the sample mean values of θ̂i for each nominal race

and sex category are portrayed on the Figure as vertical lines. Despite not using race

in the estimation procedure, the two modes of the log-spline estimate fall near the race

specific means as do the modes of the NPMLE estimate.

The lower panel of Figure 1 converts these estimates back into probability points

via the inverse transform θ 7→ sin(θ)2. The NPMLE finds two large mass points: one

at p = 0.226 and another at p = 0.244. The 1.8 percentage point gap between these

mass points is very near the Black-white contact gap in the experiment of 2.1 percentage

points. Likewise, the distance between the modes of the log-spline estimate is roughly

2.1 percentage points. The NPMLE also finds a third mass point at p = 0.260, which lies

just below the estimated average contact rate for distinctively white female names.

As noted earlier, the discrete Ĝ produced by the NPMLE is a data dependent ap-

proximation to the true G. Even if differences in the treatment of names are driven

primarily by employer perceptions of their race and sex, it seems unlikely that the true G

is literally characterized by a few mass points, as small differences across names in their

perceived race should generate corresponding contact rate differences. In fact, although

three discrete modes are visible from the Figure, the NPMLE solution involves dozens of

atoms with positive mass, most of which are imperceptible. In what follows, we rely on

the log-spline estimate Ĝ of G which, as in the theoretical analysis of Section 3, implies

that ties are measure zero.

4.2 Reporting possibilities

The top left panel of Figure 2 depicts the posterior contrast probabilities πij = Pr(θi > θj |
θ̂i, θ̂j, Ni, Nj); see the Appendix for details on how these posteriors were computed. Names

have been ordered according to their Condorcet rank (i.e., their grade when λ = 1). To

ease interpretation, we have labeled the name with the highest ranked contact probability
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1 and that with the lowest ranked contact probability 76. Name pairs with adjacent ranks

exhibit πij’s near 1/2, indicating that we have little confidence in their relative order.

Reassuringly, names with vastly different ranks exhibit πij’s near 0 or 1, indicating that

the experimental data are informative about the relative ordering of these pairs.

The top right panel of Figure 2 depicts the Discordance Rate that arises from mini-

mizing R(d;λ) – that is, from solving (5) subject to (4) – for different choices of λ. The

number used to demarcate each solution corresponds to the number of distinct grades

the integer linear programming procedure produces for that choice of λ. A sharp “elbow”

emerges around λ = 0.18, above which the DR grows rapidly.

The bottom panel depicts the trade off between grade reliability 1 − DR and infor-

mativeness τ̄ associated with our choice of λ. The data are potentially quite informative

about name rankings: as λ approaches 1, the expected rank correlation τ̄ approaches

0.44. However, the reliability of such a report would be fairly low, yielding a Discordance

Rate of 0.28. For comparison, we also show the results of naively ranking based on θ̂ or

the EB posterior mean θ̄i = E[θi|Y = y]. Remarkably, both naive approaches yield ranks

with τ̄ and DR very similar to those produced by our procedure when λ = 1.

To improve the reliability of the grades, we set λ = .25, implying via equation (6) that,

in the absence of transitivity considerations, we would require 80% posterior certainty of

each pairwise ranking decision that is not an abstention. This choice yields two grades

that exhibit a remarkably high level of informativeness (τ̄ = 0.29) and an acceptable level

of reliability (DR = .07). For comparison, lowering the implicit posterior threshold to

70% by setting λ = 0.41 would yield three grades and increase their informativeness by

11% (to τ̄ = 0.32) at the expense of a 21% increase in DR. Conversely, requiring λ < 0.18

would generate only one grade, yielding both τ̄ and DR of zero by construction.

4.3 Grades and demographics

Figure 3 lists the first names according to their Condorcet ranking, along with the pos-

terior mean of each name’s contact probability pi = sin(θi)
2. In addition to the posterior

means, which are depicted as dots, we report posterior credible intervals connecting the

2.5th percentile of each name’s posterior distribution of contact probabilities to the 97.5th

percentile of its posterior distribution. One should expect that approximately 72 (i.e.,

95%) of these 76 intervals contain their name’s true latent contact rate.4 While the cred-

ible intervals tend to be fairly short—spanning between two and three percentage points

in most cases—there is clearly enough uncertainty about each name’s contact probability

to significantly complicate the task of ranking them.

The Condorcet ranks can be thought of as a one dimensional encoding of the
(
76
2

)
=

4The asymmetry of the credible intervals reflects both that the estimated mixing distribution Ĝ of θi
is asymmetric and that we have fed the interval limits through the nonlinear transformation θ 7→ sin(θ)2.
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2, 850 pairwise contrasts depicted in the upper left panel of Figure 2. When the poste-

riors are transitive, as they are in this case, this reduction amounts to the most likely

ordering of the name contact probabilities. Variation in Ni across names, and hence the

precision with which contact rates are measured, could in principle generate substantial

non-monotonicity of the posterior mean in the Condorcet rank. In practice, however,

names’ Condorcet rankings are very nearly monotone in their posterior means.

The Condorcet ranks are extremely correlated with race. Of the top 38 ranked first

names, only 8 are distinctively Black. Though the three top ranked names “Misty,”

“Heather,” and “Laurie” are all distinctively female, the presumptive sex of a name

turns out to be only weakly related to its Condorcet rank: 19 of the top 38 names are

distinctively male. Hence, the Condorcet ranks manage to recover the race labels from

contact rates with very little error but serve as unreliable proxies of a name’s sex.

By construction, the Condorcet ranks exhibit the strongest expected rank correlation

with the latent θ ranks. The coarse ranks that emerge when λ < 1 sacrifice rank cor-

relation in exchange for the prospects of incurring fewer mistakes. Each name’s color

reflects its assigned grade (i.e., its coarse rank). A depiction of how the grades vary with

name-specific contact rates and their standard errors is provided in Appendix Figure E1.

As expected, names with higher contact rates tend to earn the better grade ⋆⋆. However,

heteroscedasticity in the estimates prevents the grades from being characterized by a

single cutoff contact rate.

Though we saw earlier that the expected rank correlation of our grades with the

true latent ranks is 0.29, it is also of interest to know how much pi varies across grades.

As described in Appendix B, we can use our EB posteriors to compute an estimate

of the variance of pi across grades. Though our procedure assigns only two grades to

the names, we estimate that the (name-weighted) between grade standard deviation in

contact probabilities is 0.006. Since the marginal standard deviation of pi is roughly

0.010, a regression of the latent pi on our grades should yield an R2 of 35%.

The coarse grades that emerge from our procedure continue to align closely with our

race labels: 35 of the 53 names (66%) in the top grade are distinctively white, while just

3 of the 23 names (13%) in the second grade are white. Notably, the top two names are

also female; however, they do not appear in their own grade. Hence, a two-group ranking

recovers the missing race label with limited error and, consistent with our findings in

Table 1, suggests that white female names are particularly favored.

It is natural to wonder if a solution with more grades would be more predictive of

sex. Appendix Figure E2 reports the pseudo-R2 and Area under the Curve (AUC) from a

series of logistic regressions of the name’s sex on grade indicators for different choices of λ.

Note that if we were to set λ = 1, this regression would necessarily predict sex perfectly,

as every name would receive its own dummy indicator. However, the four-grade solution

with the smallest value of λ yields a pseudo-R2 for sex of 0.012. With five grades we
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find a pseudo-R2 for sex of 0.034. By contrast, a corresponding logistic regression of race

on assigned grades yields pseudo-R2s for four- and five-grade solutions of 0.28 and 0.23,

respectively.

Appendix Figure E4 shows the grades that result from minimizing expected square-

weighted loss R2(d, λ), which weights large mistakes in pairwise rankings more heavily

than small mistakes. As above, we set λ = 0.25, which now yields five distinct grades.

Once again, the grade categories are better predictors of race than sex. As shown in

Appendix Figure E5, a logistic regression of sex on these five grade categories yields a

pseudo-R2 of roughly 0.05, while a corresponding race regression yields a pseudo-R2 of

0.24. Appendix D provides further details on the square-weighted rankings.

We conclude that our grades are fairly strong predictors of a name’s race but not its

sex. Given that the overall gender gap in contact rates is indistinguishable from statistical

noise in our experiment, the failure to predict gender is not particularly surprising. The

ability to predict race for a wide range of choices of λ, however, suggests that our grading

scheme can be effective at detecting latent group structure even when the number of units

being ranked is relatively modest.

5 Ranking firms

We turn now to ranking firms in their relative treatment of Black versus white names.

The conduct of each firm i in our experiment is characterized by the race-specific contact

probabilities (piw, pib). These probabilities represent the hypothetical 30 day contact rates

that would arise for applications with distinctively white and Black names, respectively,

if we were to sample an infinite number of job vacancies from firm i and send each job

four pairs of applications. The sample contact rates (p̂iw, p̂ib) provide unbiased estimates

of these contact probabilities.

To mitigate the potential influence of firm heterogeneity in baseline contact rates on

our measure of discrimination, we focus on the following proportional measure of bias

against Black names at firm i:

θi = ln(piw)− ln(pib).

Our estimator of θi will be the plug-in analog θ̂i = ln(p̂iw)− ln(p̂ib). Because the number

of applications sent to each firm is large, we employ the Delta method to construct a

standard error si for each θ̂i based on the job-clustered sampling covariance matrix of

the sample contact rates. Although θ̂i is not fully variance-stabilized, the log transform

removes any direct dependence of the variance on θi itself.
5

5Specifically, a second-order Taylor expansion of p̂iw/p̂ib = exp
(
θ̂i

)
around the point (piw, pib) yields
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In what follows, we exclude the eleven firms in the original experiment with callback

rates below 3% or fewer than 40 total sampled jobs, since the estimated contact ratios for

these firms may be unreliable. Summary statistics for the remaining estimation sample

of 97 firms are provided in Table 2. The unweighted average value of θ̂i across these 97

firms is 0.095, implying the typical firm in our sample exhibits a bias against Black names

of roughly 10%. Detailed point estimates and uncertainty measures for all 97 firms used

in our analysis are provided in Appendix E2.

Twenty-one of the 97 estimated contact gaps are negative, indicating a preference for

distinctively Black names. The firm-specific estimates are noisy, however, possessing an

average standard error of 0.104. To test whether all firms in fact weakly prefer white

to Black names (i.e., the joint null that θi ≥ 0 ∀i ∈ [n]) we apply the high dimensional

inequality testing procedure of Bai, Santos and Shaikh (2021). This procedure yields a

p-value of 0.94, suggesting the observed negative point estimates are likely attributable

to chance.

Although the asymptotic variance of θ̂i does not mechanically depend on θi, it is

possible for θi and si to be correlated. The top panel of Appendix Figure E6 plots θ̂i

against si, revealing that firms with more precise estimates tend to show less bias against

Black names. The Spearman correlation between between θ̂i and si is 0.36 (p < 0.001).

5.1 A model of precision dependence

In light of the above findings, we assume that each θi is non-negative and may depend

(statistically) on its standard error si. A simple model satisfying these criteria is:

θi = exp (β ln si + ln vi) = sβi vi, vi | si ∼ Gv for all i ∈ [n]. (8)

The parameter β governs how the conditional distribution of bias varies with the standard

error si. The latent variable vi captures heterogeneity in discriminatory conduct among

firms with similar standard errors, and follows a distribution Gv with strictly positive

support. When β is positive, both the mean and variance of θi increase monotonically

with si. To complete the model, we link our estimates θ̂i to θi as follows:

θ̂i = θi + siei, ei | si, vi ∼ N (0, 1) for all i ∈ [n],

where siei is the noise in θ̂i attributable to the fact that a finite number of jobs were

sampled from firm i.

To evaluate the plausibility of this model, we scrutinize some of the moment conditions

the approximation V [p̂iw/p̂ib] ≈ θ2i

{
V[p̂iw]
p2
iw

+ V[p̂ib]
p2
ib

− 2C[p̂iw,p̂ib]
piwpib

}
. Consequently, the Delta method im-

plies that V
[
θ̂i

]
≈ V[p̂iw]

p2
iw

+ V[p̂ib]
p2
ib

− 2C[p̂iw,p̂ib]
piwpib

.
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it implies. Letting E[vi|si] = µv > 0 and V(vi|si) = σ2
v > 0, consider the following

“studentized” version of θ̂i:

Ti =
θ̂i − sβi µv√
s2βi σ2

v + s2i

.

Our model implies that Ti has mean zero and marginal variance one. Moreover, Ti should

be independent of si. These restrictions imply the following four moment conditions:

E[Ti] = 0, E[Tisi] = 0, E[T 2
i − 1] = 0, E[(T 2

i − 1)si] = 0. (9)

Imposing these moment conditions via two-step efficient GMM yields the parameter esti-

mates reported in Table 3. The minimized value of the GMM criterion function suggests

the model’s over-identifying restrictions – which test the joint requirement that the Ti

have mean zero and constant variance across all values of si – are satisfied (p = 0.97).

The GMM estimate of β is β̂ ≈ 1/2, indicating that θi is roughly proportional to
√
si.

The large estimated value of σv reveals that discriminatory conduct varies substantially

among firms with similar standard errors.

The top panel of Appendix Figure E6 superimposes the estimated conditional expec-

tation function Ê[θi|si] = sβ̂i µ̂v on the scatterplot of θ̂i against si. Consistent with the

J-test from GMM estimation, the estimated conditional mean fits the cloud of points

closely. The bottom panel of Appendix Figure E6 plots values of the estimated residual

T̂i =
θ̂i − sβ̂i µ̂v√
s2β̂i σ̂2

v + s2i

against si. Consistent with our model, T̂i exhibits roughly constant

variance and a mean near zero throughout the observed range of si.

5.2 Estimating G

To estimate the population distribution of contact penalties, we deconvolve the residual

v̂i = θ̂i/s
β̂
i which, by the Delta method, obeys

v̂i | vi, si ∼ N
(
vi, s

2(1−β)
i

)
, vi | si ∼ Gv, for all i ∈ [n].

Relying again on a variant of Efron (2016)’s log-spline estimator, we parametrize Gv as

a fifth order natural spline with strictly positive support. The spline parameters are

estimated by penalized maximum likelihood with the penalty term chosen to minimize

the distance to our earlier GMM estimates (µ̂v, σ̂
2
v) of the first two moments of vi. We

then integrate over the empirical distribution of si to convert the estimated Ĝv into an

estimate Ĝθ of the distribution of contact gaps θi .

Figure 4 plots the log-spline estimate Ĝθ overlaid against the histogram of contact gap

estimates. Ĝθ is less dispersed than the histogram, reflecting the noise in the estimates
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{θ̂i}ni=1. Unlike with our earlier analysis of names, the density Ĝθ is unimodal but highly

skewed. While most firms exhibit little bias against Black names, some exhibit large

biases of 20-40%. By construction, no firms are estimated to discriminate against white

names.

As a robustness check, we also compute NPMLE estimates using the GLVmix pro-

cedure developed by Koenker and Gu (2017), which estimates a bivariate discrete dis-

tribution for (θi, Nis
2
i ) under the assumption that θi is independent of Ni. The result-

ing marginal distribution of θi exhibits many mass points and is also unimodal. The

NPMLE estimate of the variance of the θi’s departs somewhat from both the log-spline

estimate and a simple bias-corrected variance estimator n−1
∑

i[(θ̂i − θ̄)2 − s2i ]. However,

the NPMLE and log-spline estimates appear comparable in their overall shape. Since a

discrete distribution with exact ties seems implausible, we rely again on the log-spline

estimates in what follows. The EB posterior distribution of θi|Yi inherits the continuity

of the log-spline deconvolution estimate of the prior distribution, which has the added

benefit of simplifying computation of posterior credible intervals for each θi.

5.3 Industry effects

In Kline, Rose and Walters (2022) we found large differences in the magnitude of contact

gaps across 2-digit NAICS industries. Many of these industries have only 2 or 3 firms,

precluding a fixed effects approach to incorporating industry affiliation into the model.

We therefore employ a hierarchical random effects specification of vi taking the form:

vi = ηk(i)ξi,

ξi | si, ηk(i) ∼ Gξ, i ∈ {1, ..., n},

ηk | sk ∼ Gη, k ∈ {1, ...., K},

where the function k : {1, . . . , n} → {1, . . . , K} returns a firm’s industry and sk is the

vector of standard errors for all firms with k(i) = k. The industry effect ηk(i) captures

correlation in discriminatory conduct among firms in the same industry, while the firm

effect ξi captures departures from the industry average. As a normalization we assume

E[ηk] = 1, which implies E[ξi] = µv.

The marginal variance of vi in this model is σ2
v = σ2

ησ
2
ξ +σ2

ηµ
2
v+σ2

ξ , where σ
2
ξ gives the

variance of ξi and σ2
η the variance of ηk. To separately identify the between and within

industry variance components, we add two new moment conditions to the set listed in

(9). Denote the average value of v̂i in industry k by

v̄k = n−1
k

∑
i:k(i)=k

θ̂i/s
β
i = n−1

k

∑
i:k(i)=k

vi + n−1
k

∑
i:k(i)=k

ei/s
β
i ,
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where nk gives the number of firms in industry k. The variance of v̄k in this model can

be shown to be Vk ≡
(
σ2
ησ

2
ξ/nk + σ2

ηµ
2
v + σ2

ξ/nk

)
+ n−1

k

∑
i:k(i)=k s

2(1−β)
i . Letting s̄k =

n−1
k

∑
i:k(i)=k si denote the average standard error in industry k, our two new moment

conditions can be written

E
[
(v̄k − µv)

2 − Vk

]
= 0, E

[{
(v̄k − µv)

2 − Vk

}
s̄k
]
= 0.

The first condition simply equates the empirical squared deviations of the v̄k around

the model implied mean to the model implied variance. The second condition prohibits

heteroscedasticity with respect to s̄k.

GMM estimates of the parameters of this hierarchical model are reported in the second

column of Table 3. The model’s over-identifying restrictions again appear to be satisfied

(p = 0.95). While the variance σ2
η of the industry component is estimated to be nearly

10 times as large as the variance σ2
ξ of the firm specific component, the multiplicative

influence of these components on vi implies that roughly half of the marginal variance in

vi stems from within industry variation.6

To identify the marginal distribution of θi, we assume that both Gη and Gξ lie in the

exponential family parameterized by a 5th order spline. Generalizing Efron (2016)’s log-

spline estimator to the hierarchical case, these distributions are estimated by penalized

maximum likelihood (see Appendix C for details). The two penalty parameters in this

likelihood function are chosen so that the resulting distributions match GMM estimates

of the between-industry and total variances of θi.

Estimates of Gξ and Gη are displayed in the top panel of Figure 5. Table 4 reports

moments of the within- and between-industry distributions implied by the log-spline

estimates as well as moments of the overall contact ratio θi = sβi ηk(i)ξi. Standard errors

for the moments are computed via the Delta method, treating the fifth-order splines as

correctly specified models for the log density functions. The mean contact gap, between-

industry standard deviation, and total standard deviation reported in Table 4 closely

match the corresponding GMM estimates of these parameters in Table 3.

As can be seen in Figure 5, the industry component ηk is more variable than the firm

component ξi and exhibits positive skew and excess kurtosis, reflecting that some indus-

tries feature particularly heavy discrimination against Black names. Recall however that

the location of the industry effect distribution is not informative as we have normalized

E[ηk] = 1. The bottom panel of Figure 5 shows that the implied distribution of θi is

similar to the estimate from the model without industry effects in Figure 4, with a peak

at small contact penalties and a long right tail. As expected, the deconvolved distribution

is more compressed than the empirical distribution of estimated contact gaps.

6By the law of total variance V [vi] = V[E[vi|k(i)]]+E[V[vi|k(i)]]. Plugging in vi = ηk(i)ξi reveals that
the within share V[E[vi|k(i)]]/V [vi] evaluates to (σ2

η + 1)σ2
ξ/σ

2
v .
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5.4 Reporting possibilities

Figure 6 plots the pairwise posterior ranking probabilities πij with firms ordered by their

rank under λ = 1. Following our earlier convention with the names, these ranks range

from 1 (the largest contact penalty) to 97 (the smallest contact penalty). Panel (a)

shows results from our baseline specification with the log-spline estimate of the marginal

mixing distribution as prior, while panel (b) reports results based on the hierarchical

log-spline model with industry effects. Because the firm assigned rank 1 is deemed most

discriminatory, many other firms are more likely than not to have lower values of θ.

Firms of middling rank, on the other hand, are more difficult to distinguish from others.

Including industry effects tightens the posteriors, which leads the πij’s to become more

dispersed around 1/2. This phenomenon is apparent in the more distinct ridge along the

diagonal of the matrix in panel (b) compared to the baseline specification in panel (a).

Figure 7 displays only the pairwise probabilities that satisfy the naive thresholding

rule πij > (1+λ)−1 when λ has been set to 0.25. The resulting frontier implies numerous

transitivity violations. For example, in panel (a), firm #9 cannot be distinguished from

firm #4 or firm #49, suggesting each of these pairs in isolation would be labeled a

tie. However, firm #49 is clearly distinguishable from firm #4, yielding a contradiction.

Super-imposed on the figure we show a frontier corresponding to the three grades that

solve (5) subject to (4) when λ = 0.25. These frontiers can be viewed as a transitivity-

constrained version of the thresholding rule.

Figure 8 plots the number of distinct grades that result from minimizing R(d;λ) along

with the Discordance Rate of those grades as a function of the parameter λ. As expected,

the number of grades tends to increase with λ as does the DR. In the absence of industry

effects, setting λ = 0.25 yields three groups and an unconditional DR of roughly 3.9%.

Introducing industry effects yields four groups and decreases the DR to 5.2%.

Figure 9 illustrates the empirical tradeoff between the information content of our

grades, quantified by the expected rank correlation τ̄ , and their reliability, as quantified

by the Discordance Rate. Without industry effects, setting λ = 1 yields τ̄ = 0.46 and

a Discordance Rate of 0.27. Including industry effects increases the τ̄ of the Condorcet

ranks to 0.51 and lowers their DR to 0.24. In contrast, ranking naively on θ̂i yields both

a higher Discordance Rate and lower τ̄ than the Condorcet ranks, indicating such an

approach is both less informative and less reliable. Interestingly, ranking based upon the

EB posterior means yields a τ̄ and DR essentially equivalent to the Condorcet ranks.7

To improve the reliability of the Condorcet ranks, we set λ = 0.25. In the absence of

transitivity violations, this choice of λ requires a posterior threshold of at least 80% to

make pairwise ranking decisions. As depicted in Figure 7, however, numerous transitivity

7While ranking based upon posterior means is known to possess certain optimality properties when
G is normal and the normal noise is homoscedastic (Portnoy, 1982), our environment features both
heteroscedasticity and a decidedly non-normal mixing distribution Ĝ.
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violations emerge in this example. Resolving these violations raises the required posterior

certainty above 80% in most instances, yielding a Discordance Rate of only 3.9% in the

baseline specification without industry effects and 5.2% in the hierarchical specification

with industry effects. Fortunately, the resulting grades remain highly informative: τ̄ is

0.21 in our baseline specification and 0.32 when industry effects are included.

6 Discrimination report cards

The report cards generated by our grading procedure provide a concise, low-dimensional

summary of differences in discrimination across firms. This can be seen in Figure 10,

which displays the report card results for the baseline specification without industry

effects. In addition to the report card grades, the Figure plots a posterior mean estimate of

each firm’s bias θi along with 95% credible intervals, which are constructed by connecting

the posterior 2.5th percentile of θi to the posterior 97.5th percentile. The lower limit of

each credible interval is positive as a result of our support restriction ruling out bias

against white applicants. The firms are ordered by their Condorcet ranks (i.e., their

grades under λ = 1). In this draft we have replaced each firm’s name with the rank of its

bias estimate θ̂i, which allows us to compare firm orderings across loss functions. Firms

that are federal contractors, and hence subject to higher regulatory standards regarding

equal opportunity laws, have been listed in black, while those that are not contractors are

listed in gray. After the paper has undergone peer review, we intend to label the report

card with firms’ actual names.

Setting λ = 0.25 generates a report card with three grades, represented in Figure 10

by a number of ⋆’s between one (the worst grade) and three (the best). The shading

of credible intervals reflects the grade assigned to each firm. Most firms receive the

middle grade of ⋆⋆, which reflects both the noise in our estimates and the shape of the

estimated distribution Ĝ. By contrast, only two firms out of 97 are assigned the grade of

⋆, suggesting they are the heaviest discriminators against Black names. Fourteen firms

are assigned the score of ⋆ ⋆ ⋆, which indicates that this group is the least-biased against

Black applicants.

While the Condorcet ranks of the posterior means are highly correlated with the

ranks of the bias estimates, heteroscedasticity makes the correlation less than perfect.

For example, the firm with the sixth largest point estimate of bias (AKA firm #6) has a

Condorcet rank of 1 and the largest posterior mean, while the firm with the largest bias

point estimate (AKA firm #1) has a Condorcet rank of 2 and the second largest posterior

mean. This rank reversal reflects that firm #6 has a larger standard error than firm #1,

which leads the EB posterior mean to apply more shrinkage of the point estimate towards

the center of the distribution.

Appendix Figure E7 depicts the relationship between report card grades and firm-
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specific bias estimates and standard errors. Firms assigned the best grade of ⋆⋆⋆ tend to

have both small contact gap estimates and standard errors, while firms assigned the grade

⋆⋆ range widely in their standard errors but have modest contact gap estimates falling

uniformly below 0.2. Firms assigned the worst grade of ⋆ exhibit very large contact gap

estimates and widely varying standard errors. Appendix Figure E13 depicts the grade

assignments that result from different choices of λ.

Though we have used stars to represent the firm ranks, it is important to remember

that these grades were designed to convey ordinal rather than cardinal information. One

of us (Kline, 2023) has recently cautioned against focusing excessively on rankings without

also considering absolute standards of conduct. There is nothing in our integer linear

programming problem that guarantees a grade of ⋆ implies a particularly egregious level

of discrimination. Conversely, there is nothing that guarantees firms assigned a grade of

⋆ ⋆ ⋆ exhibit no bias against Black names.

As it turns out, however, the grades assigned by our procedure yield groups of firms

with large cardinal differences in contact gaps. The firms assigned the grade of ⋆ ⋆ ⋆ have

an average posterior mean value of θi of 0.03, while the two firms assigned the worst

grade exhibit posterior means indicating a 24% penalty against Black names on average.

Notably, both of these heavily discriminating firms are federal contractors.

Our past work (Kline, Rose and Walters, 2022) found that federal contractors, who

are subject to monitoring by OFCCP for compliance with equal employment laws, tend

to be substantially less biased against Black names on average, which is consistent with

a variety of other evidence on the causal effects of affirmative action provisions on hiring

behavior (e.g., McCrary, 2007; Kurtulus, 2016; Miller, 2017). Indeed, an early audit study

of federal contractors by Newman (1978) found evidence of a systematic preference for

Black over white applicants among such firms. It is somewhat surprising then that the

Condorcet ranks indicate that the four most heavily discriminating firms are all federal

contractors. This finding is, to some extent, a reflection of the fact that the vast majority

of the firms in our sample of large employers are contractors (63 of 97). The mean

Condorcet rank of federal contractors is 54 (with rank 1 showing the most bias against

Black applicants) while the mean Condorcet rank of non-contractors is 42.

Although a legal precedent for audit studies has yet to be established, a commonly

applied standard in discrimination cases is the so called “four fifths rule,” described in

the Uniform Guidelines on Employee Selection (Commission, 1978) which state that

A selection rate for any race, sex, or ethnic group which is less than four-

fifths (4/5) (or eighty percent) of the rate for the group with the highest rate

will generally be regarded by the Federal enforcement agencies as evidence of

adverse impact.

Our estimates suggest the contact rates for fictitious applicants in our experiment may
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have violated this standard.

6.1 Incorporating industry effects

As a result of the substantial variation in contact penalties across industries, a report

card that incorporates industry information is substantially more informative. This can

be seen in Figure 11, which displays discrimination report card results based on a model

with industry effects. Adding industry information while maintaining the preference

parameter λ at 0.25 yields a report card with four grades rather than three. The number

of firms assigned the worst grade of ⋆ increases from two to five, while nine firms are

now assigned the second-worst grade ⋆⋆. Eleven firms are assigned the best grade ⋆ ⋆ ⋆⋆.

Appendix Figure E14 depicts the grade assignments that result from different choices of

λ.

The average value of the posterior mean θ̄i among the firms assigned the grade ⋆ is

0.22, indicating an expected bias against Black names in this group of 22%. In contrast,

the average value of θ̄i among the eleven firms assigned grade ⋆ ⋆ ⋆⋆ is 0.03, suggesting

a negligible effect of race on callback outcomes in this group. This finding indicates

that many large firms are nearly unbiased, an important possibility result for companies

seeking to improve the fairness of their recruiting process.

The small number of grades generated by our report card procedure explain a sub-

stantial portion of the total variation in discrimination across employers, especially when

we incorporate industry. To summarize the explanatory power of the grades, we again

utilize the grade-average posterior means as detailed in the Appendix. The variance esti-

mate is weighted by the number of firms per grade, so that the ratio of between-grade to

total variance has an R2 interpretation. The estimated between-grade standard deviation

in contact penalties is 0.034 for the three grades reported in Figure 10, implying an R2 of

roughly 19%. Adding industry boosts the R2 to 47%. In other words, the four categories

displayed in Figure 11 explain nearly half of the variance in discrimination across the 97

companies in our experiment.

Our ranking procedure allows us to grade the conduct of entire industries in addition

to individual firms. Figure 12 plots posterior estimates E[ηk|Y = y]n−1
k

∑
i:k(i)=k s

β̂
i of

industry mean contact penalties. The most biased industry is estimated to be SIC 55,

“Auto dealers / services,” with a posterior mean contact penalty of 25%. In an industry

grading scheme with λ = 0.25 (which yields three total grades), SIC 55 is assigned its

own unique grade of ⋆, indicating that this industry can be distinguished as the most

biased in the experiment with high confidence. A group of six industries receive the best

grade of ⋆ ⋆ ⋆, all of which have posterior mean contact gaps of roughly 5%. The role of

common industry-level practices in generating the stark differences between these low-

and high-performers is an interesting topic for further inquiry.
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6.2 Grades under square-weighted loss

Appendix D details the firm rankings derived from minimizing our square-weighted no-

tion of risk R2(d;λ). Under this grading scheme, misrankings involving small differences

in discriminatory conduct between firms yield negligible losses, which makes a more ag-

gressive partitioning of the firms optimal. Choosing λ = 0.25 yields a six grade ranking

without industry effects and an eight grade ranking when industry affiliation is taken into

account. Because more grades are employed under square-weighting than under our de-

fault scheme, the variance in contact penalties explained by the grades is somewhat larger

than for the grades reported in Figures 10 and 11. As explained in the Appendix, the

square-weighted grades nevertheless maintain tight control over the expected probability

of mistakes involving misrankings of firms with large absolute differences in discrimina-

tory conduct.

6.3 Misclassification and Bayes Factors

In addition to conveying substantial information about discrimination, our report card

system limits the ranking errors generated by the resulting classification. Figure 13

assesses the reliability of report card grades by reporting the lower-triangular matrix of

estimated between-grade DRs in our baseline model that omits industry effects. Panel

(a), for example, shows that 11% of the firm comparisons across grades ⋆ and ⋆⋆ are

expected to be misordered. The Discordance Rate naturally declines when comparing

non-adjacent grades. The expected share of misordered comparisons across grades ⋆ and

⋆ ⋆ ⋆ is below 1%. Adjacent grades have DR’s between 11 and 14%, implying Bayes

Factors between 7 and 6, respectively. The discordance rate for non-adjacent grades of

0.8% implies a Bayes Factor exceeding 11.

Our preferred report card with industry effects limits misrankings between firms se-

lected as high- and low-performers. Panel (b) of Figure 13 summarizes the reliability of

the grades obtained when conditioning on industry effects. Discordance Rates between

adjacent grades range from 15% to 17%. DRs for grades separated by two categories are

less than 4%, and the DR between the worst grade (⋆) and the best grade (⋆⋆⋆⋆) is 0.4%.

Combined with the results from Section 6.1, this implies that a comparison of the best-

and worst-performers in Figure 11 isolates firms with large differences in discriminatory

conduct while yielding a negligible chance of misclassification.

7 Conclusion

We have proposed a new Empirical Bayes method for ranking units based upon noisy

measurements and used it to grade the discriminatory conduct of firms towards distinc-

tively Black names in a large-scale correspondence experiment. The experiment is shown
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to contain a wealth of information about the relative conduct of firms: our most granular

(Condorcet) grades taking into account industry affiliation yield an expected correlation

with the true firm ranks of 0.51. These grades are noisy, however, resulting in (expected)

mistakes in nearly one quarter of the
(
97
2

)
= 4, 656 possible pairwise firm comparisons.

A generalization of the Condorcet scheme based on a desired 80% posterior certainty

threshold for pairwise contrasts yields a report card with only four grades. These coarse

grades turn out to be substantially more reliable than the Condorcet ranks, lowering the

chances that a randomly sampled pair of firms is misordered to 5.2%. The four grades

are also highly informative, offering an expected correlation with the true firm ranks of

0.32. In addition to conveying information about the ranking of firm conduct, the grades

capture important differences in conduct levels. Firms assigned the worst grade favor

white applicants over Black applicants by 23% while those assigned the best grade favor

white applicants by only 3%.

The finding of negligible contact gaps in a large group of firms provides a possibility

result for employers seeking to improve the fairness of their hiring processes. Recent re-

search points towards centralization of hiring processes as a possible means of dampening

bias in large organizations (Berson, Laouenan and Valat, 2020; Challe et al., 2022), a

conjecture that aligns with findings in behavioral economics that snap judgments by in-

dividuals are especially susceptible to bias (e.g., Agan et al., 2023). Further corroboration

of this view comes from Miller (2017)’s finding that temporary exposure to the heightened

scrutiny over HR practices accompanying federal contractor status has persistent effects

on the composition of firm hires.

We plan to eventually release the information in this report card to the public along

with the identities of the companies in the experiment. Our hope is that this information

will prompt corporate leaders to rethink whether their inclusive hiring goals are being met.

Much work remains to establish which sorts of reforms to organizational practices can

improve the fairness and efficiency of corporate recruiting efforts. Releasing these data

for use by other researchers will hopefully accelerate the pace of research into strategies

for subduing hiring discrimination.
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Figures

Figure 1: Deconvolutions of name-specific contact rate estimates

a) Variance-stabilized contact rates (sin−1√pi)
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Notes: This figure presents non-parametric estimates of the distribution name-specific contact
rates. Panel (a) deconvolves transformed contact rates θ̂i = sin−1

(√
p̂i
)
, where p̂i is the contact

rate for applications sent with first name i. The hollow blue histogram shows the distribution
of estimated variance-stabilized contact rates. The red line shows a deconvolution estimate
of the population contact rate distribution. The deconvolution procedure parameterizes the
log-density with a fifth-order spline, and the parameters are estimated by penalized maximum
likelihood, with penalization parameter chosen to match the mean and bias-corrected variance
estimate as closely as possible. The dark green mass points plot the distribution of population
contact rates estimated by non-parametric maximum likelihood (NPMLE). The vertical dashed
lines plot mean contact rates for each race and gender group of names. Panel (b) converts the
estimated distributions of variance-stabilized contact rates into distributions of contact rates pi.
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Figure 2: Name ranking exercises

a) Pairwise posterior contrasts b) Grades and discordance
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Notes: This figure summarizes the results from grading contact rates for names. Panel (a) shows
pairwise posterior ordering probabilities for all names. Posteriors are computed using the log-
spline estimate plotted in Figure 1 as the prior. Names are ordered by their rank under λ = 1.
Shading indicates the posterior probability that the contact rate for the name on the vertical
axis exceeds the contact rate for the name on the horizontal axis. Panel (b) shows estimated
Discordance Rates (DR) for an intermediate range of λ. Panel (c) plots the expectation of
Kendall’s τ rank correlation between true contact rates and grades against Discordance Rates
(DR) for a range of grades indexed by λ. The red circle highlights the DR and expected τ
corresponding to λ = 0.25. “θ̂ rank” refers to ranks based upon point estimates. “θ̄ rank” refers
to ranks based upon Empirical Bayes posterior means.
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Figure 3: Posterior means and grades of first names

0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260
Contact rate

Latisha
Tameka

Lawanda
Lamar
Latoya

Maurice
Lakeisha
Geoffrey
Lakisha
Tamika

Tomeka
Tyrone
Kenya

Roderick
Justin

Reginald
Lakesha
Lamont

Ebony
Lashonda

Leroy
Susan

Tawanda
Marquis
Joshua

Latasha
Jermaine
Donnell
Latonya

Jamal
Terrell

Julie
Tremayne
Rasheed

Erin
Jason

Keisha
Bradley

Greg
Hakim

Jill
Meredith

Patrice
Rebecca

Aisha
Jennifer

Brad
Todd

Darnell
Nathan
Kareem
Antwan

Lori
Matthew
Terrance

Carrie
Jacob

Jay
Brett
Scott
Emily
Chad

Neil
Brendan

Allison
Jeremy
Sarah

Amanda
Tanisha

Anne
Kristen

Amy
Laurie
Adam

Heather
Misty

Notes: This figure shows posterior mean contact rates, 95% credible intervals, and assigned
grades for names. Results are shown for λ = 0.25, implying an 80% threshold for posterior
ranking probabilities. Names are ordered by their rank under λ = 1, when each name is
assigned its own grade.
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Figure 4: Deconvolution estimates of firm-level contact penalty distribution
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Notes: This figure presents non-parametric estimates of the distribution of firm-specific contact
penalties. The blue histogram shows the distribution of estimated proportional contact penal-
ties. The red line shows a log-spline deconvolution estimate of the population contact penalty
distribution. The dark green mass points plot a non-parametric maximum likelihood (NPMLE)
estimate of the population contact penalty distribution. The bias-corrected standard deviation
estimate is computed by subtracting the average squared standard error from the sample vari-
ance of estimated contact penalties, then taking the square root.
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Figure 5: Deconvolution estimates of between- and within-industry contact penalty dis-
tributions

a) Standardized contact penalty distribution

b) Marginal contact penalty distribution

Notes: This figure presents estimates of the hierarchical random effects model described in
Section 5.3. Panel (a) presents the estimated within- and between- industry distributions of
standardized contact penalties. The blue histogram shows the distribution of η̂k, computed

as the industry mean of v̂i/µ̂v, where v̂i = θ̂i/s
β̂
i and µ̂v and β̂ are GMM estimates from

Table 3. The red histogram displays the distribution of ξ̂i = v̂i/η̂k(i). Blue and red densities
show corresponding log-spline deconvolution estimates of the distributions of ηk and ξi. The
deconvolution procedure parameterizes the log-density of each distribution with a fifth-order
spline, and the parameters are estimated by penalized maximum likelihood, with penalization
parameter chosen to match the GMM mean and variance estimates from Table 3 as closely
as possible. Panel (b) shows the marginal distribution of contact penalties θi implied by the
estimates from panel (a) along with a histogram of estimated contact penalties θ̂i. See Appendix
C for complete details.
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Figure 6: Posterior contrasts
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Notes: This figure plots pairwise posterior ordering probabilities for firm-specific contact penal-
ties. Posteriors are computed using the log-spline estimates from Figure 4 as the prior distri-
butions and Firms are ordered by their ranks under λ = 1. The rank implying the largest θi is
denoted by 1. Shading indicates the posterior probability that the contact penalty for the firm
on the vertical axis exceeds the contact penalty for the firm on the horizontal axis.
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Figure 7: Optimal pairwise rankings and global orderings
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Notes: This figure plots the posterior ordering probabilities from Figure 6 for firm pairs where
πij > 1/(1 + λ), indicating the pairwise optimal decision would rank the firm on the horizontal
axis below the firm on the vertical axis. Both panels use λ = 0.25, implying an 80% threshold
for posterior ranking probabilities. The black lines denote the boundaries of optimal grades for
this λ for the firms in the rows. Panel (b) repeats the same exercise, but uses the industry
random effect model to compute posteriors.
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Figure 8: Grades and discordance as a function of λ
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Notes: This figure shows estimated Discordance Rates (DR) as a function of λ. The number
on each point indicates the number of unique grades in the underlying grading scheme. The
vertical dashed line shows results for the benchmark case of λ = 0.25.
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Figure 9: Reporting possibilities
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Notes: This figure shows the expectation of Kendall’s τ rank correlation between θ and assigned
grades (labeled τ̄) against Discordance Rates (DR) for a range of grades indexed by λ. Red
circles highlight the DR and τ̄ corresponding to λ = 0.25. “θ̂ rank” refers to ranks based upon
point estimates. “θ̄ rank” refers to ranks based upon Empirical Bayes posterior means.
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Figure 10: Posterior means and grades of firms
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Notes: This figure shows posterior mean proportional contact penalties, 95% credible intervals,
and assigned grades. Results are shown for λ = 0.25, implying an 80% threshold for posterior
ranking probabilities. Firms are ordered by their rank under λ = 1, when each firm is assigned
its own grade, and labeled by their raw contact penalty rank, with #1 showing the largest bias
towards white applicants. Firms labeled with black text are federal contractors, whereas firms
in gray are not.
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Figure 11: Posterior means and grades of firms (Industry effects model)
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Notes: This figure shows posterior mean proportional contact penalties, 95% credible intervals,
and assigned grades from the industry random effect model. Results are shown for λ = 0.25,
implying an 80% threshold for posterior ranking probabilities. Firms are ordered by their rank
under λ = 1, when each firm is assigned its own grade, and labeled by their raw contact penalty
rank, with #1 showing the largest bias towards white applicants. Firms labeled with black text
are federal contractors, whereas firms in gray are not.
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Figure 12: Posterior means and grades of industries
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Notes: This figure shows posterior means, 95% credible intervals, and assigned grades for
industry mean proportional contact penalties. Results are shown for λ = 0.25, implying an 80%
threshold for posterior ranking probabilities. Each industry is labeled by its name and two-digit
SIC code.
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Figure 13: DR in baseline and industry effects model
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Notes: This figure shows mean Discordance Rates (DR) across grade pairs for the baseline
model and the model with industry effects. In both panels, DRg,g′ is the expected share of
pairwise comparisons between firms in grades g and g′ where the grade rank differs from the
latent firm rank. The upper-left most estimate in panel a, for example, indicates a 11% chance
that a random firm in grade ⋆’s true rank is below a randomly chosen firm’s in grade ⋆⋆’s.
In both panels, DR decays quickly when comparing non-adjacent grades.
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Tables

Table 1: Summary statistics for first names sample

Wald test of
Contact rate # apps # first names heterogeneity

Male

Black 0.233 20,927 19 12.6
(0.003) [0.82]

White 0.246 20,975 19 15.8
(0.003) [0.61]

Female

Black 0.226 20,879 19 21.2
(0.003) [0.24]

White 0.254 20,862 19 19.9
(0.003) [0.34]

Estimated contact rate SD

Total 0.010

Between race/sex 0.011

Notes: This table presents summary statistics for the sample of applications used in the analysis
of first names. The table presents the mean 30-day contact rate, total number of applications
sent, and number of unique first names used for each race and sex combination. Contact rates
are re-weighted to balance the distribution of names across experimental waves. Although Black
and white names were sent in pairs during the experiment, the total number of applications
across race groups is not identical because some jobs closed before both applications could be
sent. The gender of the name assigned to each application was unconditionally randomized.
The final column reports Wald tests for equality of contact probabilities across the first names
in each demographic group. Under the null hypothesis of equal contact probabilities, each test
statistic is distributed χ2(18). Corresponding p-values are reported in brackets. The estimated
contact rate SD is a bias-corrected estimate of the standard deviation of name-specific contact
rates, computed by subtracting the average squared standard error from the sample variance of
contact rate estimates then taking the square root. The between race/sex standard deviation is
a corresponding bias-corrected estimate of the variation in mean contact rates across race and
sex groups. See Appendix Table E1 for a list of first names used in the analysis.
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Table 2: Summary statistics for firm sample

Contact rates and gaps

# Firms # Jobs # Apps White Black Difference Log dif Mean SE

All 97 10,453 78,910 0.256 (0.004) 0.236 (0.003) 0.020 (0.002) 0.095 (0.013) 0.104

2-digit SIC industry (code)

Food products (20) 1 100 788 0.435 (0.041) 0.440 (0.040) -0.005 (0.019) -0.011 (0.045) 0.045
Apparel manufacturing (23) 2 200 1,538 0.205 (0.026) 0.175 (0.023) 0.031 (0.012) 0.177 (0.062) 0.088
Other manufacturing (24) 4 375 2,904 0.119 (0.012) 0.104 (0.012) 0.015 (0.009) 0.179 (0.116) 0.211
Freight / transport (42) 4 458 3,300 0.194 (0.017) 0.197 (0.017) -0.003 (0.008) -0.014 (0.039) 0.076
Communications (48) 2 175 1,124 0.273 (0.036) 0.225 (0.033) 0.048 (0.021) 0.163 (0.086) 0.120
Electric / gas (49) 3 320 2,419 0.261 (0.021) 0.247 (0.020) 0.014 (0.010) 0.120 (0.060) 0.094
Wholesale durable (50) 2 152 1,143 0.194 (0.028) 0.177 (0.027) 0.017 (0.011) 0.088 (0.057) 0.081
Wholesale nondurable (51) 11 1,117 8,194 0.299 (0.011) 0.288 (0.011) 0.011 (0.007) 0.092 (0.032) 0.091
Building materials (52) 3 377 2,755 0.297 (0.019) 0.285 (0.019) 0.012 (0.008) 0.024 (0.039) 0.062
General merchandise (53) 12 1,380 10,440 0.320 (0.010) 0.292 (0.010) 0.028 (0.006) 0.108 (0.030) 0.083
Food stores (54) 5 530 4,030 0.451 (0.018) 0.425 (0.018) 0.026 (0.010) 0.063 (0.029) 0.058
Auto dealers / services (55) 8 891 6,930 0.257 (0.012) 0.204 (0.011) 0.053 (0.008) 0.237 (0.040) 0.107
Apparel stores (56) 4 400 3,093 0.237 (0.017) 0.202 (0.016) 0.035 (0.010) 0.173 (0.067) 0.117
Furnishing stores (57) 4 482 3,679 0.286 (0.018) 0.251 (0.017) 0.035 (0.011) 0.131 (0.045) 0.086
Eating/drinking (58) 4 500 4,000 0.368 (0.018) 0.337 (0.018) 0.032 (0.009) 0.086 (0.027) 0.053
Other retail (59) 7 816 6,281 0.206 (0.011) 0.182 (0.011) 0.024 (0.007) 0.133 (0.060) 0.138
Banks / credit (60) 2 252 1,947 0.119 (0.015) 0.121 (0.016) -0.002 (0.010) -0.073 (0.116) 0.150
Securities brokers (62) 1 125 965 0.122 (0.021) 0.111 (0.019) 0.011 (0.012) 0.098 (0.102) 0.102
Insurance / real estate (63) 5 398 2,907 0.142 (0.015) 0.142 (0.016) 0.000 (0.010) 0.015 (0.108) 0.203
Accommodation (70) 2 243 1,850 0.200 (0.022) 0.199 (0.023) 0.001 (0.012) 0.043 (0.068) 0.094
Business services (73) 3 375 2,812 0.214 (0.017) 0.212 (0.017) 0.003 (0.007) 0.101 (0.076) 0.113
Auto / repair services (75) 3 340 2,551 0.285 (0.022) 0.275 (0.022) 0.010 (0.010) 0.046 (0.037) 0.062
Health services (80) 4 400 2,886 0.150 (0.015) 0.144 (0.015) 0.006 (0.008) -0.071 (0.067) 0.127
Engineering services (87) 1 47 374 0.122 (0.047) 0.117 (0.046) 0.005 (0.005) 0.044 (0.042) 0.042

Notes: This table presents summary statistics the sample of applications used in the analysis of firm contact penalties. “White” and “Black”
refer to average firm-level contact rates for white and Black applications. Difference is the average difference. Log dif is the industry average of
the primary contact penalty measure used in the analysis: ln(p̂iw)− ln(p̂ib). Mean SE is the average standard error of firm-level log difference
estimate. Standard errors in parentheses.
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Table 3: GMM estimates of contact penalty parameters

No industry With industry
effects effects
(1) (2)

β 0.510 0.517
(0.190) (0.121)

µv 0.313 0.292
(0.074) (0.074)

σv 0.207
(0.106)

ση 0.452
(0.171)

σξ 0.144
(0.066)

Within share 0.556

J-statistic (d.f.) 0.101 (1) 0.111 (2)

Notes: This table reports generalized method of moments (GMM) estimates of the parameters of

the model θi = sβi vi, with E[vi] = µv and V[vi] = σ2
v . Column (2) allows an industry component

of the form vi = ηk(i)ξi, where k(i) is the industry of firm i and E[ηk] = 1. Estimates come
from two-step optimally-weighted GMM with an identity weighting matrix in the first step.
The variance matrix in column (2) is clustered by industry. The within share is E[V[vi|k(i)]]

V[vi] =
(σ2

η+1)σ2
ξ

σ2
ησ

2
ξ+σ2

ηµ
2
v+σ2

ξ
.
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Table 4: Moments of random effect distributions

Industry Firm Contact
effect (ηk) effect (ξi) penalty (θi)

(1) (2) (3)

Mean 1.000 0.292 0.086
- (0.040) (0.012)

Std. dev. 0.495 0.138 0.072
(0.192) (0.049) (0.019)

Skewness 1.856 2.293 3.545
(1.824) (4.580) (2.778)

Excess kurtosis 7.735 30.067 43.653
(6.740) (52.585) (70.467)

Notes: This table reports estimated moments of the distributions of industry and firm effects
along with moments of the marginal distribution of contact penalties. Results are derived from
hierarchical log-spline deconvolution estimates, with spline parameters estimated by penalized
maximum likelihood. Standard errors are computed by the Delta method, with the variance
matrix for the spline parameters computed from the negative inverse Hessian of the log likelihood
function.
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Appendix A Proofs of propositions

This section provides proofs of the propositions discussed in Section 3.5, which are re-

stated here for completeness.

Proposition 1 (λ-Condorcet Criterion). Suppose that firm i satisfies πij > (1+λ)−1 ∀ j ̸=
i. Then di > dj ∀ j ̸= i. Moreover, suppose that firm k satisfies πik > (1 + λ)−1 and

πkj > (1 + λ)−1 ∀ j ̸= i, j ̸= k, then di > dk > dj ∀ j ̸= i, j ̸= k.

Proof. First, we establish that no firm can be tied with firm i. Suppose ∃ j s.t. dj = di =

d. Let d̃ = inf{{d′ ∈ d∗(λ) s.t. d′ > d} ∪ {∞}}. Then changing firm i’s grade to a value

in (d, d̃) yields strictly lower loss, because
∑

j ̸=i s.t. dj=d πji − λπij < 0, and comparisons

between i and all other firms j s.t. dj ̸= d are unaffected.

Now suppose ∃ d ∈ d∗(λ) s.t. d > di. Let d′ = inf{d ∈ d∗(λ) s.t. d > di}. Then

∀j s.t. dj = d′, the risk of re-assigning di = d′ + ϵ < inf{{d ∈ d∗(λ) s.t. d > d′} ∪ {∞}}
is strictly lower because

∑
j ̸=i s.t. dj=d′ πji − λπij < 0 <

∑
j ̸=i s.t. dj=d′ πij − λπji, and

comparisons between i and all other firms j s.t. dj ̸= d′ are unaffected. Since the same

argument applies to firm k removing firm i from set of firms under consideration, the

proof of the second part of the claim is identical.

Proposition 2 (λ-Smith criterion). Let S denote a collection of firms exhibiting the

following dominance property: πij > (1 + λ)−1 ∀i ∈ S, j /∈ S. Then the top graded firms

must be a member of S.

Proof. First, note that if S is a singleton, then Proposition 1 applies directly. Otherwise,

let d̃ = sup{di s.t. i ∈ S} and let S̄ denote the set {i ∈ S s.t. di = d̃}. Suppose ∃ j /∈
S s.t. dj > d̃. Let d′ = inf{d ∈ d∗(λ) s.t. d > d̃} and S denote the set {j /∈ S s.t. dj = d′}.
Then swapping grades such that all firms in S̄ receive grade d′ and all firms in S receive

grade d̃ must decrease risk, because
∑

i∈S̄
∑

j∈S πji − λπij < 0 <
∑

i∈S̄
∑

j∈S πij − λπji,

comparisons between all firms within S̄ and S are unaffected, and comparisons between

all firms k /∈ {S̄ ∪ S} are unaffected. Thus no firm j /∈ S may be ranked above the top

graded member of S.

Proposition 3 (Unordered λ-Smith candidates are tied). Let S denote a collection of

firms exhibiting the following dominance property: πij > (1 + λ)−1 ∀i ∈ S, j /∈ S.
Moreover, suppose πij < (1 + λ)−1 ∀(i, j) ∈ S. Then all firms in S receive the highest

grade.

Proof. First, we show that all firms j /∈ S must be ranked below every member of S.
Suppose not. Let d′ = inf{dj s.t. j /∈ S,∃ i ∈ S s.t. dj > di}, S = {j /∈ S s.t. dj = d′},
d̃ = sup{di s.t. i ∈ S, di < d′}, S̄ = {i ∈ S s.t. di = d̃}. Then setting grades so that all

firms in S receive a grade m ∈ (d′, d̃) and all firms in S̄ receive grade d′ must decrease
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risk because
∑

i∈S̄
∑

j∈S πji − λπij < 0 <
∑

i∈S̄
∑

j∈S πij − λπji, implying it is optimal to

rank all firms in S̄ above those in S. Moreover,
∑

i∈S̄
∑

j∈S s.t. dj=d′ πji−λπij > 0 implies

that it is optimal to tie firms in S̄ with firms in S that already have grade d′, while∑
j∈S
∑

i∈S s.t. di=d′ πji−λπij < 0 implies it is optimal to rank any firms in S that already

have grade d′ above those firms /∈ S reassigned to grade m, and
∑

i∈S̄
∑

j /∈S s.t. dj=d̃ πji −
λπij < 0 implies it is optimal to rank firms in S̄ above any firms /∈ S that currently have

grade d̃. Comparisons to all firms with grades higher than d′ are unaffected, as well as to

any firms with grades below d̃. The top grades thus consist exclusively of firms in S. To
see that they also must be tied, note that because πji − λπij > 0 ∀(i, j) ∈ S, collapsing
any two adjacent grades for firms in S must decrease risk.
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Appendix B Computing posteriors

This appendix details computation of posterior distributions for the firm contact gap

analysis of Section 5. Computation of posteriors for the name contact rate analysis of

Section 4 is a special case of this framework setting the dependence parameter β to zero

and the standard error si for name i to (4Ni)
−1. Under the model in (8), the posterior

density for vi = θi/s
β
i is given by

fv(x|Yi;Gv, β) =
L(θ̂i|vi = x, si; β)dGv(x)∫
L(θ̂i|vi = u, si; β)dGv(u)

,

L(θ̂i|vi = x, si; β) =
1

s1−β
i

ϕ

(
(θ̂i/s

β
i )− x

s1−β
i

)
.

Taking Ĝv as a deconvolution estimate of Gv and β̂ as a GMM estimate of β, posterior

means for θi are computed as sβ̂i ×
∫
xfv(x|Yi; Ĝv, β̂)dx, while the lower and upper limits

of 95% credible intervals are given by the 2.5th and 97.5th percentiles of the posterior

cumulative distribution Fθ(t|Yi; Ĝv, β̂) =
∫ t/sβ̂i
−∞ fv(x|Yi; Ĝv, β̂)dx.

We also use Ĝv and β̂ to compute the matrix of pairwise posterior ranking probabilities

πij. We have:

πij = Pr(θi > θj|Yi, Yj;Gv, β)

= Pr((si/sj)
βvi > vj|Yi, Yj;Gv, β)

=

∫ ∞

−∞

∫ (si/sj)
βx

−∞
fv(x|Yi;Gv, β)fv(u|Yj;Gv, β)dudx.

Posterior moments of differences in firm biases µp
ij = E [max{(θi − θj), 0}p | Yi, Yj] are

computed analogously. Specifically:

E [max{(θi − θj), 0}p | Yi, Yj] =

∫ ∞

−∞

∫ (si/sj)
βx

−∞
(sβi x− sβj u)

pfv(x|Yi;Gv, β)fv(u|Yj;Gv, β)dudx.

We plug Ĝv and β̂ into these formulas to construct empirical Bayes posteriors by numerical

integration, then solve the linear programming problem to minimize either binary or

weighted risk using Gurobi.

B.1 Industry effects

Posteriors for the hierarchical industry effects model of Section 5.3 condition on the data

for all firms in an industry. Let Yk denote the 2nk×1 vector of estimates θ̂i and standard

errors si for all firms in industry k, and let ξξξk denote the nk × 1 vector of within-industry

deviations ξi for all firms in this industry. The joint posterior density for ξξξk and the
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industry effect ηk at the point where ηk = x and ξk = z = (z1, ...., znk
)′ is given by:

fη,ξξξ(x, z|Yk;Gη, Gξ, β) =

[∏
i:k(i)=k L(θ̂i|vi = x× zi, si; β)dGξ(zi)

]
dGη(x)∫

u

∫
t

[∏
i:k(i)=k L(θ̂i|vi = u× ti, si; β)dGξ(ti)

]
dGη(u)

.

We form Empirical Bayes joint posteriors given by fη,ξξξ(x, z|Yk; Ĝη, Ĝξ, β̂), where β̂ is

the GMM estimate of β from column (2) of Table 3, and Ĝξ and Ĝη are hierarchical

deconvolution estimates from panel (a) of Figure 5. We then integrate over these joint

posteriors by simulation to compute posterior means and quantiles for each random effect

along with pairwise posterior probabilities πij for the model with industry effects.

B.2 Between grade variance

Letting M denote the total number of grades, the (firm-weighted) between grade variance

of θi can be written

M∑
g=1

wgθ̄
2
g −

(
M∑
g=1

wgθ̄g

)2

=
M∑
g=1

wg (1− wg) θ̄
2
g −

M∑
g=1

∑
g′ ̸=g

wgwg′ θ̄gθ̄g′ ,

where θ̄g =
∑n

i=1 Digθi∑n
i=1 Dig

, Dig = 1{d∗i = g} is an indicator for being assigned grade g ∈ [M ],

and wg = n−1
∑n

i=1Dig gives the share of firms assigned grade g.

We compute a Bayes unbiased estimate of each θ̄g by simply averaging the firm specific

posterior firm means E [θi|Y ] within grade. The posterior mean estimate of each θ̄2g is

slightly harder to compute because

θ̄2g =

∑n
i=1Digθ

2
i

(
∑n

i=1Dig)
2 +

∑n
i=1

∑
i′ ̸=i DigDi′gθiθi′

(
∑n

i=1 Dig)
2

= (nwg)
−2

{
n∑

i=1

Digθ
2
i +

n∑
i=1

∑
i′ ̸=i

DigDi′gθiθi′

}
.

Our posterior mean estimate of this quantity is computed analogously as

E
[
θ̄2g |Y

]
= (nwg)

−2

{
n∑

i=1

DigE
[
θ2i |Y

]
+

n∑
i=1

∑
i′ ̸=i

DigDi′gE [θi|Y ]E [θi′ |Y ]

}

= (nwg)
−2


n∑

i=1

DigE
[
θ2i |Y

]
+

(
n∑

i=1

DigE [θi|Y ]

)2

−
n∑

i=1

DigE [θi|Y ]2

 ,

where each E [θi|Y ] and E [θ2i |Y ] is evaluated numerically using the relevant estimated Ĝ.
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Appendix C Hierarchical log-spline estimator

Efron’s (2016) empirical Bayes log-spline deconvolution approach uses a flexible expo-

nential family mixing distribution model with density parameterized by a flexible B-th

order spline. The spline parameters are then estimated by penalized maximum likelihood.

We adapt this approach to estimate the within- and between-industry distributions for

the hierarchical model of Section 5.3. The between-industry distribution Gη is approx-

imated with a discrete probability mass function defined on a set of Mη support points

{η̄1, ...., η̄Mη}. The mass at the m-th support point η̄m is given by

gη,m(αη) = exp

(
q′η,mαη − log

(
Mη∑
ℓ=1

exp(q′η,ℓαη)

))
,

where qη,m is a B × 1 vector of values of natural spline basis functions for point m (as

detailed in Efron 2016) and αη is a B × 1 vector of coefficients. Similarly, we approxi-

mate the within-industry distribution Gξ with a discrete distribution defined on support

{ξ̄1, ...., ξ̄Mξ
}, with mass function

gξ,m(αξ) = exp

q′ξ,mαξ − log

 Mξ∑
ℓ=1

exp(q′ξ,ℓαξ)


for B × 1 spline basis and coefficient vectors qξ,m and αξ, respectively.

With this specification of the mixing distributions, the joint likelihood contribution

for firms in industry k is given by:

L
(
θ̂k|sk;αη, αξ

)
=

Mη∑
ℓ=1

gη,ℓ(αη)

 ∏
i:k(i)=k

 Mξ∑
m=1

gξ,m(αξ)
1

s1−β
i

ϕ

(
(θ̂i/s

β
i )− η̄ℓξ̄m

s1−β
i

),

where θ̂k and sk are vectors collecting the θ̂i and si for firms with k(i) = k. Following

Efron (2016), we estimate the parameters αη and αξ by penalized maximum likelihood.

Our approach extends the Efron (2016) estimator to add a separate penalty for the

within- and between-industry spline coefficients. Specifically, the parameter estimates

are computed as:

(α̂η, α̂ξ) = arg max
(αη ,αξ)

K∑
k=1

logL
(
θ̂k|sk;αη, αξ

)
− cη

√
α′
ηαη − cξ

√
α′
ξαξ.

We set the spline order equal to B = 5. In models with industry effects the number

of support points is set equal to Mη = Mξ = 200, with points equally spaced on the

supports of ηk and ξi. Models without industry effects use Mξ = 1, 000 and Mη = 1

6



with η̄1 = 1, so that ηk has a degenerate distribution at unity. The lower limits of

the supports are set to zero. The upper limits of the support for each component is

set equal to the maximum of the empirical distribution of corresponding estimates or

five standard deviations above the GMM-estimated mean, whichever is larger. Since

the scales of the two mixing distributions are not separately identified we impose the

constraint
∑

m gη,m(αm)η̄m = 1. The penalty terms cη and cξ are calibrated so that

mean contact ratio and variances of the within- and between-industry components come

as close as possible to matching GMM estimates of these same quantities, as measured

by the quadratic distance between log-spline and GMM estimates (scaled by the inverse

variance matrix of the GMM estimates). The model without industry effects chooses cξ

to minimize the quadratic difference between model-implied and GMM estimates of the

mean and total variance of contact gaps. In practice all parameters match well, as can

be seen by comparing Tables 3 and 4.
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Appendix D Results under square weighted loss

In this Appendix we discuss the grades that result from minimizing the square-weighted

risk function R2(d;λ) introduced in Section 3.6. Mirroring the formulation in (3), square-

weighted risk can be written as a linear combination of a square-weighted Discordance

Rate and a square-weighted rank correlation:

R2(d;λ) = (1− λ)DR2(d)− λτ̄ 2(d). (10)

The square-weighted rank correlation coefficient

τ̄ 2(d) =
1∑n

i=2

∑i−1
j=1 m

2
ij

n∑
i=2

i−1∑
j=1

1 {di < dj} (µ2
ij − µ2

ji) + 1 {di > dj} (µ2
ji − µ2

ij)

provides a measure of the information conveyed by a set of grades. The square-weighted

Discordance Rate

DR2(d) =
1∑n

i=2

∑i−1
j=1m

2
ij

n∑
i=2

i−1∑
j=1

1 {di < dj}µ2
ij + 1 {di > dj}µ2

ji

is an average of the DR2
g,g′ introduced in Section 3.7 that summarizes the reliability of a

set of grades. In words, DR2(d) gives the chance that a randomly selected pair of firms,

sampled with weights proportional to the square of the difference in their latent contact

gaps, is misranked.

We use the decomposition given by (10) in the applications below to construct a

reporting possibilities frontier contrasting DR2(d∗(λ)) with τ̄ 2(d∗(λ)) for different choices

of λ. In both applications, square-weighting shifts out the reporting possibilities frontier

relative to the frontier implied by binary (i.e. p = 0) loss, which is intuitive as one should

expect less loss from ranking exercises when small mistakes are inconsequential. As a

result, switching from binary to square-weighted loss tends to yield more grades when λ

is held constant.

D.1 Square-weighted results for first names

Panel (a) of Figure E3 depicts the number of grades that emerge from minimizing square-

weighted risk as a function of the preference parameter λ. At our preferred value of

λ = 0.25, five grades emerge with a square weighted discordance rate of 5.4%. Panel (b)

of Figure E3 shows that square-weighting shifts out the reporting possibilities frontier.

As in our binary baseline, naively ranking either the point estimates θ̂i or the posterior

means θ̄i according to their empirical distribution yields grades with information content

and reliability very close to those delivered by the square-weighted grades with λ = 1.
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The five grades that result from choosing λ = 0.25 under square-weighting are shown

in Figure E4. Interestingly, under this weighting scheme, the posterior means of the

names are more nearly monotone in the n assigned grades that result when setting λ = 1

than was found under binary loss. Two distinctively white female names “Misty” and

“Heather” earn the top grade, while three out of the four names assigned the bottom grade

“Lawanda”, “Tameka”, and “Latisha” are distinctively Black and female. As shown in

Figure E5, however, a logistic regression of sex on these five grade categories yields a

pseudo-R2 of roughly 0.05, while a corresponding race regression yields a pseudo-R2 of

0.24 revealing that these grades are much stronger predictors of race than sex.

D.2 Square-weighted results for firms

Figure E8 shows the number of grades that emerge from different choices of λ. Regardless

of whether industry effects are included, square weighting substantially increases the

number of grades assigned relative to the solutions under binary loss. At λ = 0.25 square

weighting yields six grades without industry effects and eight grades when industry effects

are included. While the number of grades increases, their reliability remains high, with

the six grade ranking exhibiting a square-weighted discordance rate of 4.7% and the

eight grade ranking a corresponding discordance rate of 3.1%. Evidently, it is possible to

assign many grades without exposing oneself to many large mistakes.

Figure E9 displays the reporting possibilities under binary and square weighting.

Square-weighting the losses pushes out the reporting possibilities frontier relative to bi-

nary ranking. Naively ranking based upon the posterior mean θ̄i again yields results very

similar to the grades generated by setting λ = 1. However ranking based upon the naive

(i.e., unshrunk) point estimates θ̂i yields a combination of very high square-weighted Dis-

cordance Rates and a modest square-weighted rank correlation that is dominated by our

square-weighted grades when λ = 0.25.

Figure E10 displays the firm rankings derived from minimizing square-weighted risk

without conditioning on industry effects. As before, firms are ordered by their ranking

under λ = 1, which aligns closely with the Condorcet ranks reported in Figure 10. Rel-

ative to the binary loss solution, square-weighting leads to three additional grades, and

a more even distribution of firms across grades. Using industry effects to evaluate the

square-weighted risk generates the eight grade ranking portrayed in Figure E11. Notably,

a single firm with the highest posterior mean contact penalty earns the worst grade.

As in the binary loss case, these grades explain a meaningful share of total variance

in θi. The estimated between-grade standard deviation in contact penalties is 0.047 for

the six grades reported in Figure E10, implying an R2 of 37%. The grades computed

from the model with industry effects and reported in Figure E11 explain 56% of the total

variance. Figures E15 and E16 depict the grades assigned under different choices of λ for
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the square-weighting schemes excluding and including industry effects respectively.

Figure E16 reports square-weighted DR estimates for the grades that minimizeR2(d;λ).

Under square weighted loss, we find weighted Discordance Rates between adjacent grades

ranging from 10 to 15% implying Bayes factors ranging from 8 to 6. Weighted Discor-

dance Rates between non-adjacent grades are uniformly smaller than 3%. Our finding

that the square-weighted DRs in Figure E16 fall below those in Figure E16, reflects that

most of the ranking mistakes likely to arise are small in magnitude, meaning that if one

firm is erroneously listed as more biased than another, the two firms likely exhibit similar

levels of bias.
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Appendix E Additional Figures and Tables

Table E1: First names assigned by race and gender

Black male White male Black female White female

Name Source Name Source Name Source Name Source
1 Antwan NC Adam NC Aisha Both Allison BM
2 Darnell BM Brad Both Ebony Both Amanda NC
3 Donnell NC Bradley NC Keisha BM Amy NC
4 Hakim BM Brendan Both Kenya BM Anne BM
5 Jamal Both Brett BM Lakeisha NC Carrie BM
6 Jermaine Both Chad NC Lakesha NC Emily Both
7 Kareem Both Geoffrey BM Lakisha Both Erin NC
8 Lamar NC Greg BM Lashonda NC Heather NC
9 Lamont NC Jacob NC Latasha NC Jennifer NC
10 Leroy BM Jason NC Latisha NC Jill Both
11 Marquis NC Jay BM Latonya Both Julie NC
12 Maurice NC Jeremy NC Latoya Both Kristen Both
13 Rasheed BM Joshua NC Lawanda NC Laurie BM
14 Reginald NC Justin NC Patrice NC Lori NC
15 Roderick NC Matthew Both Tameka NC Meredith BM
16 Terrance NC Nathan NC Tamika Both Misty NC
17 Terrell NC Neil BM Tanisha BM Rebecca NC
18 Tremayne BM Scott NC Tawanda NC Sarah Both
19 Tyrone Both Todd BM Tomeka NC Susan NC

Notes: This table lists the first names assigned by race and gender and their sources. “BM”
indicates that the name appeared in original set of nine names used for each group in Bertrand
and Mullainathan (2004). “NC” indicates the name was drawn from data on North Carolina
speeding infractions and arrests. “Both” indicates the name appeared in both sources. Names
from N.C. speeding tickets were selected from the most common names where at least 90% of
individuals are reported to belong to the relevant race and gender group.
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Table E2: Detailed results by firm

Baseline model Industry effects model

Firm Post. Post. Cond. Post. Post. Cond.

(SIC) θi mean CI Grd rank mean CI Grd rank

6 (55) 0.33 (0.07) 0.25 [0.12, 0.34] 1 1 0.27 [0.16, 0.38] 1 2

1 (55) 0.43 (0.13) 0.23 [0.08, 0.45] 1 2 0.33 [0.16, 0.5] 1 1

3 (53) 0.38 (0.28) 0.19 [0.03, 0.38] 2 3 0.17 [0.03, 0.32] 2 8

2 (63) 0.4 (0.22) 0.19 [0.04, 0.4] 2 4 0.13 [0.02, 0.27] 3 17

4 (24) 0.35 (0.29) 0.19 [0.03, 0.37] 2 5 0.15 [0.02, 0.32] 2 12

5 (59) 0.34 (0.24) 0.18 [0.03, 0.35] 2 6 0.17 [0.03, 0.34] 2 9

27 (24) 0.17 (0.31) 0.17 [0.02, 0.34] 2 7 0.15 [0.02, 0.32] 2 14

8 (56) 0.3 (0.23) 0.17 [0.03, 0.33] 2 8 0.16 [0.03, 0.36] 2 11

7 (73) 0.3 (0.19) 0.16 [0.03, 0.32] 2 9 0.10 [0.01, 0.24] 3 29

11 (55) 0.27 (0.08) 0.16 [0.06, 0.32] 2 10 0.24 [0.12, 0.36] 1 5

13 (51) 0.24 (0.24) 0.16 [0.03, 0.32] 2 11 0.12 [0.02, 0.25] 3 19

10 (51) 0.29 (0.11) 0.16 [0.05, 0.33] 2 12 0.10 [0.02, 0.19] 3 31

9 (55) 0.29 (0.11) 0.16 [0.05, 0.32] 2 13 0.27 [0.11, 0.42] 1 3

12 (23) 0.26 (0.09) 0.15 [0.06, 0.3] 2 14 0.13 [0.03, 0.29] 3 18

97 (63) -0.54 (0.44) 0.16 [0.01, 0.34] 2 15 0.14 [0.01, 0.32] 3 15

25 (59) 0.17 (0.21) 0.14 [0.02, 0.28] 2 16 0.15 [0.02, 0.3] 2 13

14 (59) 0.24 (0.08) 0.14 [0.05, 0.27] 2 17 0.12 [0.04, 0.21] 3 20

15 (56) 0.24 (0.09) 0.14 [0.05, 0.26] 2 18 0.11 [0.03, 0.24] 3 21

22 (63) 0.18 (0.19) 0.14 [0.02, 0.27] 2 19 0.11 [0.01, 0.23] 3 26

16 (49) 0.22 (0.15) 0.14 [0.03, 0.26] 2 20 0.11 [0.02, 0.23] 3 24

18 (51) 0.2 (0.14) 0.13 [0.03, 0.24] 2 21 0.09 [0.02, 0.19] 3 30

17 (48) 0.22 (0.1) 0.13 [0.04, 0.23] 2 22 0.11 [0.02, 0.24] 3 25

19 (55) 0.19 (0.14) 0.13 [0.02, 0.24] 2 23 0.24 [0.05, 0.43] 1 4

33 (24) 0.14 (0.17) 0.12 [0.02, 0.24] 2 24 0.11 [0.01, 0.23] 3 23

20 (70) 0.19 (0.12) 0.12 [0.03, 0.22] 2 25 0.09 [0.01, 0.19] 3 39

21 (80) 0.19 (0.08) 0.12 [0.03, 0.2] 2 26 0.07 [0.01, 0.16] 3 57

23 (55) 0.18 (0.08) 0.11 [0.04, 0.2] 2 27 0.19 [0.07, 0.3] 2 7

24 (53) 0.17 (0.06) 0.11 [0.04, 0.19] 2 28 0.09 [0.03, 0.16] 3 34

93 (59) -0.12 (0.24) 0.12 [0.01, 0.25] 2 29 0.13 [0.01, 0.28] 3 16

26 (54) 0.17 (0.08) 0.11 [0.03, 0.19] 2 30 0.08 [0.02, 0.16] 3 45

28 (49) 0.17 (0.08) 0.11 [0.03, 0.19] 2 31 0.09 [0.01, 0.17] 3 42

66 (55) 0.05 (0.17) 0.11 [0.01, 0.23] 2 32 0.21 [0.01, 0.42] 2 6

45 (48) 0.11 (0.14) 0.11 [0.02, 0.21] 2 33 0.11 [0.01, 0.24] 3 27

39 (57) 0.13 (0.12) 0.11 [0.02, 0.21] 2 34 0.11 [0.02, 0.22] 3 22

32 (51) 0.14 (0.11) 0.11 [0.02, 0.2] 2 35 0.08 [0.01, 0.16] 3 49

34 (57) 0.14 (0.11) 0.11 [0.02, 0.2] 2 36 0.10 [0.02, 0.21] 3 28

29 (59) 0.15 (0.06) 0.10 [0.04, 0.17] 2 37 0.09 [0.03, 0.17] 3 32

Continued on next page
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30 (55) 0.15 (0.06) 0.10 [0.04, 0.17] 2 38 0.16 [0.06, 0.26] 2 10

31 (58) 0.14 (0.06) 0.10 [0.04, 0.16] 2 39 0.08 [0.03, 0.15] 3 43

38 (75) 0.13 (0.09) 0.10 [0.02, 0.18] 2 40 0.07 [0.01, 0.15] 3 58

35 (53) 0.14 (0.05) 0.10 [0.04, 0.16] 2 41 0.08 [0.03, 0.14] 3 44

37 (57) 0.14 (0.06) 0.10 [0.03, 0.16] 2 42 0.09 [0.03, 0.16] 3 38

36 (59) 0.14 (0.06) 0.09 [0.03, 0.16] 2 43 0.09 [0.03, 0.16] 3 36

95 (60) -0.19 (0.22) 0.10 [0.01, 0.22] 2 44 0.09 [0.01, 0.22] 3 37

40 (50) 0.12 (0.08) 0.09 [0.02, 0.17] 2 45 0.08 [0.01, 0.16] 3 51

47 (62) 0.1 (0.1) 0.09 [0.02, 0.18] 2 46 0.08 [0.01, 0.18] 3 47

53 (53) 0.09 (0.1) 0.09 [0.01, 0.18] 2 47 0.09 [0.02, 0.17] 3 33

44 (53) 0.11 (0.07) 0.09 [0.02, 0.16] 2 48 0.08 [0.02, 0.15] 3 40

42 (56) 0.12 (0.06) 0.09 [0.02, 0.15] 2 49 0.08 [0.02, 0.16] 3 41

43 (53) 0.12 (0.07) 0.09 [0.02, 0.15] 2 50 0.08 [0.02, 0.15] 3 46

41 (57) 0.12 (0.05) 0.09 [0.03, 0.14] 2 51 0.08 [0.03, 0.14] 3 52

49 (23) 0.09 (0.09) 0.09 [0.02, 0.16] 2 52 0.09 [0.02, 0.2] 3 35

69 (73) 0.03 (0.11) 0.08 [0.01, 0.17] 2 53 0.07 [0, 0.16] 3 64

50 (53) 0.09 (0.07) 0.08 [0.02, 0.15] 2 54 0.08 [0.02, 0.14] 3 50

46 (53) 0.1 (0.05) 0.08 [0.02, 0.14] 2 55 0.07 [0.02, 0.13] 3 54

51 (51) 0.09 (0.07) 0.08 [0.02, 0.14] 2 56 0.06 [0.01, 0.13] 3 67

48 (51) 0.1 (0.05) 0.08 [0.02, 0.13] 2 57 0.06 [0.01, 0.11] 3 72

96 (80) -0.27 (0.2) 0.08 [0.01, 0.19] 2 58 0.08 [0, 0.19] 3 55

68 (56) 0.04 (0.09) 0.07 [0.01, 0.15] 2 59 0.08 [0.01, 0.17] 3 48

63 (63) 0.05 (0.08) 0.07 [0.01, 0.15] 2 60 0.06 [0.01, 0.14] 3 65

60 (50) 0.06 (0.08) 0.07 [0.01, 0.14] 2 61 0.07 [0.01, 0.14] 3 59

74 (54) 0 (0.11) 0.07 [0.01, 0.16] 2 62 0.07 [0.01, 0.15] 3 56

58 (24) 0.06 (0.07) 0.07 [0.01, 0.14] 2 63 0.07 [0.01, 0.14] 3 61

52 (58) 0.09 (0.04) 0.07 [0.02, 0.12] 2 64 0.06 [0.02, 0.11] 3 63

65 (60) 0.05 (0.08) 0.07 [0.01, 0.15] 2 65 0.06 [0.01, 0.14] 3 70

54 (54) 0.08 (0.05) 0.07 [0.02, 0.12] 2 66 0.06 [0.01, 0.11] 3 71

72 (42) 0.02 (0.09) 0.07 [0.01, 0.15] 2 67 0.05 [0, 0.12] 3 84

61 (51) 0.06 (0.07) 0.07 [0.01, 0.13] 2 68 0.06 [0.01, 0.12] 3 74

55 (52) 0.08 (0.03) 0.07 [0.02, 0.11] 2 69 0.05 [0.01, 0.1] 3 79

78 (52) -0.01 (0.1) 0.07 [0.01, 0.15] 2 70 0.07 [0.01, 0.14] 3 62

71 (53) 0.02 (0.09) 0.07 [0.01, 0.14] 2 71 0.07 [0.01, 0.15] 3 53

56 (53) 0.07 (0.04) 0.06 [0.02, 0.11] 2 72 0.06 [0.02, 0.11] 3 66

64 (58) 0.05 (0.07) 0.06 [0.01, 0.13] 2 73 0.07 [0.01, 0.13] 3 60

59 (75) 0.06 (0.06) 0.06 [0.01, 0.12] 2 74 0.05 [0.01, 0.11] 3 80

57 (58) 0.06 (0.05) 0.06 [0.01, 0.11] 2 75 0.06 [0.01, 0.11] 3 69

81 (80) -0.01 (0.09) 0.06 [0.01, 0.13] 2 76 0.06 [0, 0.13] 3 77

94 (80) -0.18 (0.14) 0.06 [0, 0.15] 2 77 0.06 [0, 0.15] 3 73

79 (42) -0.01 (0.08) 0.06 [0.01, 0.13] 2 78 0.04 [0, 0.11] 3 86

84 (63) -0.02 (0.09) 0.06 [0.01, 0.13] 2 79 0.06 [0, 0.13] 3 75

85 (51) -0.02 (0.09) 0.06 [0.01, 0.13] 2 80 0.06 [0.01, 0.12] 3 76

Continued on next page
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62 (54) 0.06 (0.04) 0.05 [0.01, 0.1] 2 81 0.05 [0.01, 0.09] 3 81

73 (59) 0.01 (0.07) 0.05 [0.01, 0.11] 2 82 0.06 [0.01, 0.13] 3 68

67 (87) 0.04 (0.04) 0.05 [0.01, 0.1] 2 83 0.05 [0.01, 0.1] 3 82

83 (51) -0.01 (0.06) 0.05 [0, 0.1] 3 84 0.05 [0, 0.1] 3 83

80 (53) -0.01 (0.06) 0.05 [0, 0.1] 3 85 0.05 [0, 0.11] 3 78

88 (42) -0.03 (0.07) 0.04 [0, 0.1] 3 86 0.03 [0, 0.09] 4 92

77 (52) 0 (0.05) 0.04 [0, 0.09] 3 87 0.04 [0, 0.09] 3 85

87 (42) -0.03 (0.06) 0.04 [0, 0.1] 3 88 0.03 [0, 0.09] 4 93

70 (53) 0.02 (0.03) 0.03 [0, 0.07] 3 89 0.04 [0.01, 0.08] 4 87

82 (20) -0.01 (0.04) 0.03 [0, 0.08] 3 90 0.03 [0, 0.08] 4 90

92 (70) -0.11 (0.07) 0.03 [0, 0.09] 3 91 0.04 [0, 0.1] 4 88

75 (51) 0 (0.04) 0.03 [0, 0.07] 3 92 0.03 [0, 0.07] 4 89

86 (49) -0.03 (0.04) 0.03 [0, 0.07] 3 93 0.03 [0, 0.08] 4 91

76 (54) 0 (0.03) 0.02 [0, 0.05] 3 94 0.03 [0, 0.06] 4 95

90 (75) -0.05 (0.04) 0.02 [0, 0.06] 3 95 0.03 [0, 0.07] 4 94

91 (51) -0.07 (0.04) 0.02 [0, 0.05] 3 96 0.02 [0, 0.06] 4 96

89 (73) -0.03 (0.03) 0.02 [0, 0.04] 3 97 0.02 [0, 0.05] 4 97

Notes: This table reports estimated contact penalties and the results of Empirical Bayes and

grading exercises for each firm in the sample. Firms are labeled by their raw contact penalty

rank, with their industry (2-digit SIC code) shown in parentheses. The column θi reports

contact penalties with a job-clustered standard error in parentheses. The remaining columns

report posterior means (Post. mean), 95% credible intervals (Post. CI), assigned grades using

λ = .25 (Grd), and Condorcet ranks (Cond. rank), which are grades under λ = 1, in the baseline

model and the model with industry effects.
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Figure E1: Contact rates, standard errors, and name grades
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Notes: This figure plots the estimated contact rates for each name against its standard error.
The shape and color of each point indicate the grade assigned to the name using the same
specification as Figure 3.
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Figure E2: Predictive power of grades name for race and sex labels

a) Pseudo R2
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b) Area under the curve
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Notes: This figure plots the psuedo-R2 (panel a) and AUC (panel b) for a series of logistic
regressions using an indicator for the race or sex of the name as the outcome and dummies for
assigned grades as the explanatory variables for an intermediate range of λ. The number shown
indicates the number of grades assigned.
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Figure E3: Square weighted name ranking exercises

a) Grades and discordance
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Notes: This figure presents additional results from grading contact rates for names under binary
and square-weighted loss. In both panels, posteriors are computed using the log-spline estimate
plotted in Figure 1 as the prior. Panel (a) shows estimated Discordance Rates (DR) for an
intermediate range of λ under binary and square-weighted loss. Panel (b) plots the expectation
of Kendall’s τ rank correlation between true contact rates and grades against Discordance
Rates (DR) for a range of grades indexed by λ. Red circles highlight the DR and expected τ
corresponding to λ = 0.25. “θ̂ rank” refers to ranks based upon point estimates. “θ̄ rank” refers
to ranks based upon Empirical Bayes posterior means.
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Figure E4: Posterior means and grades for names under square-weighted loss
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Notes: This figure shows posterior mean contact rates, 95% credible intervals, and assigned
grades for names. Results are shown for λ = 0.25, implying an 80% threshold for posterior
ranking probabilities. Names are ordered by their rank under λ = 1, when each name is
assigned its own grade.
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Figure E5: Predictive power of square-weighted name grades for race and sex labels

a) Pseudo R2
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Notes: This figure plots the psuedo-R2 (panel a) and AUC (panel b) for a series of logistic
regressions using an indicator for the race or sex of the name as the outcome and dummies
for assigned grades under square-weighted loss as the explanatory variables for an intermediate
range of λ. The number shown indicates the number of grades assigned.
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Figure E6: Unadjusted and studentized contact gaps against standard errors
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Notes: Panel (a) of this figure plots estimated contact penalties against their standard errors.
The green line plots the conditional mean of θi given si implied by the GMM estimates. Panel (b)
plots studentized contact gaps T̂i against standard errors. The green line plots the relationship
implied by the model.
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Figure E7: Contact penalties, standard errors, and report card grades
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Notes: This figure plots the estimated contact penalty for a Black name at each firm against
the standard error of the contact penalty estimate. The shape and color of each point indicate
the grade assigned to the firm using the same specification as Figure 10.
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Figure E8: Grades and discordance as a function of λ
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Notes: This figure shows estimated Discordance Rates (DR) as a function of λ for both binary
and square-weighted loss. The number on each point indicates the number of unique grades in
the underlying grading scheme. The vertical dashed line shows results for the benchmark case
of λ = 0.25.
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Figure E9: Reporting possibilities
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Notes: This figure shows the expectation of Kendall’s τ rank correlation between θ and assigned
grades (labeled τ̄) against Discordance Rates (DR) for a range of grades indexed by λ and for
both binary and square-weighted loss. Red circles highlight the DR and τ̄ corresponding to
λ = 0.25. “θ̂ rank” refers to ranks based upon point estimates. “θ̄ rank” refers to ranks based
upon Empirical Bayes posterior means.
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Figure E10: Square-weighted loss: Posterior means and grades
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Notes: This figure shows posterior mean proportional contact penalties, 95% credible intervals,
and assigned grades under square-weighted loss. Results are shown for λ = 0.25. Firms are
ordered by their rank under λ = 1, when each firm is assigned its own grade, and labeled by the
raw proportional contact gap rank, with #1 showing the largest gap in favor of white applicants.
Firms labeled with black text are federal contractors, whereas firms in gray are not.
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Figure E11: Square-weighted loss with industry effects: Posterior means and grades
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Notes: This figure shows posterior mean proportional contact penalties, 95% credible intervals,
and assigned grades from the model with industry effects under square-weighted loss. Results are
shown for λ = 0.25. Firms are ordered by their rank under λ = 1, when each firm is assigned its
own grade, and labeled by the raw proportional contact gap rank, with #1 showing the largest
gap in favor of white applicants. Firms labeled with black text are federal contractors, whereas
firms in gray are not.

25



Figure E12: DR for square-weighted loss
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Notes: This figure shows mean Discordance Rates (DR) across grade pairs under square
weighted loss. Panel a uses the baseline model, while panel b uses the model with industry
effects. Only cells where DR is above 0.01 are annotated. In both panels, DR decays quickly
when comparing non-adjacent grades.
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Figure E13: Binary loss: All grades
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1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3
1 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3
1 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 4 3 3 4
1 2 2 2 2 2 2 2 3 2 3 3 3 3 4 4 3 4 4
1 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 5
1 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 5
1 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 5
1 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 5
1 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 5
1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5
1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5
1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5
1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 5
1 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 4 5 6
1 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 4 5 6
1 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5 6
1 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5 6

Notes: This figure shows grade assignments for each value of λ <= 0.5. To increase readability,
only the smallest lambda that yields each unique set of grades is retained. The x-axis reports
this λ and the value of 1/(1 + λ), which is the implied posterior threshold for pairwise ranking
decisions. Firms are ordered by their rank under λ = 1, when each firm is assigned its own
grade.
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Figure E14: Binary loss with industry effects: All grades
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7
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13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
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47
49
51
53
55
57
59
61
63
65
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69
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73
75
77
79
81
83
85
87
89
91
93
95
97

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
1 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
1 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
1 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3
1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4
1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4
1 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4
1 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 4 4
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 4 4
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 4 4 4 4
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 4 4 4 4
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 4 4 4 4
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 3 3 3 3 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 6 6
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 5 5 5 5 5 5 5 5 5 6 7
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 5 5 5 5 5 5 5 5 6 7 7
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7
1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7
1 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7
1 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7
1 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7
1 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7
1 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7
1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7
1 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7
1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 8 8
1 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 7 8 8

Notes: This figure shows grade assignments for each value of λ ≤ 0.5. To increase readability,
only the smallest lambda that yields each unique set of grades is retained. The x-axis reports
this λ and the value of 1/(1 + λ), which is the implied posterior threshold for pairwise ranking
decisions. Firms are ordered by their rank under λ = 1, when each firm is assigned its own
grade.
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Figure E15: Square-weighted loss: All grades
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75
77
79
81
83
85
87
89
91
93
95
97

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 3 3
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 3 3 3 3 3
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 3 3 3 3 3
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 3 3 3 3 3
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 3 3 3 3 3
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 3 3 3 3 3
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 3 3 3 3 3 3
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 3 3 3 3 3 3
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 3 3 3 3 3 3
1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 3 3 3 3 3 3
1 1 1 2 2 2 2 2 1 1 1 2 2 3 3 3 3 3 4 4 4
1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 2 3 3 3 4 3 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5
1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 5
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 2 3 3 2 2 2 3 3 4 4 4 5 5 6 6 6
1 1 1 2 2 3 3 3 2 2 2 4 4 4 4 5 6 6 7 7 7
1 1 1 2 3 3 3 3 2 2 3 4 4 4 4 5 6 6 7 7 7
1 1 1 2 3 3 3 3 2 3 3 4 4 4 5 5 6 6 7 7 7
1 1 1 3 3 3 3 3 3 3 3 4 4 5 5 5 6 6 7 7 7
1 1 1 3 3 3 3 3 3 3 3 4 4 5 5 5 6 6 7 7 7
1 1 1 3 3 3 3 3 3 3 3 4 4 5 5 5 6 6 7 7 7
1 1 1 3 3 3 3 3 3 3 3 4 4 5 5 5 6 6 7 7 7
1 1 1 3 3 3 3 3 3 3 3 4 4 5 5 5 6 6 7 7 7
1 1 2 3 3 3 3 3 3 3 3 4 4 5 5 6 7 7 8 8 8
1 1 2 3 3 3 3 3 3 3 3 4 4 5 5 6 7 7 8 8 8
1 1 2 3 3 3 3 4 3 3 3 4 4 5 5 6 7 7 8 8 8
1 1 2 3 3 3 3 4 3 3 3 4 4 5 5 6 7 7 8 8 8
1 2 2 3 3 3 4 4 3 3 3 4 4 5 5 6 7 7 8 8 8
1 2 2 3 3 3 4 4 3 3 3 5 5 6 6 7 8 8 9 9 9
1 2 2 3 3 3 4 4 3 3 4 5 5 6 6 7 8 8 9 9 9
1 2 2 3 3 3 4 4 3 4 4 5 5 6 6 7 8 8 10 10 10
1 2 2 3 3 3 4 4 3 4 4 5 5 6 6 7 8 8 10 10 10

Notes: This figure shows grade assignments for each value of λ ≤ 0.5. To increase readability,
only the smallest lambda that yields each unique set of grades is retained. The x-axis reports
this λ and the value of 1/(1 + λ), which is the implied posterior threshold for pairwise ranking
decisions. Firms are ordered by their rank under λ = 1, when each firm is assigned its own
grade.
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Figure E16: Square-weighted loss with industry effects: All grades
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1 2 2 2 2 3 3 3 3 3 4 4 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 7 7 7 7
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 8
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 9
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 8 8 8 9
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7 7 8 9 9 9 9
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7 7 8 9 9 9 9
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7 7 8 9 9 9 9
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 7 7 7 7 8 9 9 9 9
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 7 7 7 7 8 9 9 9 9
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 9 10 10 10
1 2 2 2 2 3 3 3 3 3 4 5 5 4 4 5 5 5 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 10 11 11 11
1 2 2 2 2 3 3 3 3 3 5 5 5 4 4 5 5 5 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 10 11 11 11
1 2 2 2 2 3 3 3 3 3 5 5 5 4 5 5 5 5 5 5 5 5 6 6 6 6 7 7 8 8 8 8 8 8 9 10 11 11 11
1 2 2 2 2 3 3 3 3 3 5 5 5 4 5 5 5 5 5 5 5 5 6 6 6 6 7 8 8 8 8 8 8 8 9 10 11 11 11
1 2 2 2 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 7 8 8 8 8 8 8 8 8 9 10 11 11 11
1 2 2 2 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 7 8 8 8 8 8 8 8 8 9 10 11 11 11
1 2 2 2 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 7 8 8 8 8 8 8 8 8 9 10 11 11 11
1 2 2 2 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 7 7 8 8 8 8 8 8 8 8 9 10 11 11 11
1 2 2 2 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 7 7 8 8 8 8 8 8 8 8 9 10 11 11 11
1 2 2 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 8 8 8 9 10 11 12 12 12
1 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 8 9 9 9 9 9 9 9 10 11 12 12 12
1 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 8 9 9 9 9 9 9 9 10 11 12 12 12
1 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 8 9 9 9 9 9 9 9 10 11 12 12 12
1 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 8 9 9 9 9 9 9 9 10 11 12 12 12
1 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 8 9 9 9 9 9 9 9 10 11 12 12 12
1 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 8 9 9 9 9 9 9 9 10 11 12 12 12
1 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7 7 8 8 9 9 9 10 10 10 10 10 11 12 13 13 13
1 3 3 3 3 4 4 4 4 4 5 5 6 5 6 6 6 6 6 6 7 7 7 8 8 8 9 10 10 10 10 10 10 10 11 12 13 13 13
1 3 3 3 3 4 4 4 4 4 5 6 6 6 6 6 6 6 6 7 7 7 8 8 8 8 9 10 10 10 10 10 10 10 11 12 13 14 14
1 3 3 3 3 4 4 4 4 4 6 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 9 10 10 10 10 10 11 11 12 13 14 14 14

Notes: This figure shows grade assignments for each value of λ ≤ 0.5. To increase readability,
only the smallest lambda that yields each unique set of grades is retained. The x-axis reports
this λ and the value of 1/(1 + λ), which is the implied posterior threshold for pairwise ranking
decisions. Firms are ordered by their rank under λ = 1, when each firm is assigned its own
grade.
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