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Abstract

The US suffers from large regional disparities in employment rates, which have

persisted for many decades. It has often been argued that foreign migration offers a

remedy: it “greases the wheels” of the labor market by accelerating the adjustment

of local population, following shocks to demand. Remarkably, I find that new foreign

migrants account for between 25 and 55 percent of the local population response. But,

I also find that foreign migration “crowds out” the native contribution to adjustment:

so in regions better supplied by new migrants, I cannot reject the hypothesis that

local population adjustment is no faster. This is fundamentally a story of geographical

displacement, which can be tested more directly: in particular, I estimate that each new

foreign migrant to an area displaces one native (or earlier migrant). The magnitude of

these effects is puzzling, and they may be somewhat overstated by under-reporting of

migrants in the census. Nevertheless, they appear to conflict with much of the existing

literature, and I attempt to explain why. Keywords: migration, geographical mobility,

local labor markets, employment. JEL: J61, J64, R23.

1 Introduction

The US suffers from large regional disparities in employment-population ratios (from here

on, “employment rates”) which have persisted for many decades (Kline and Moretti, 2013;

Amior and Manning, forthcoming). Concern has grown about these inequities in recent
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years in light of the Great Recession and a secular decline in manufacturing employment

(Kroft and Pope, 2014; Acemoglu et al., 2016), whose impact has been heavily concentrated

geographically (Autor, Dorn and Hanson, 2013; Moretti, 2012) - with arguably important

political consequences (Autor et al., 2016). In principle, these disparities should be eliminated

by residential mobility, but long distance mobility has been in secular decline in recent

decades (Molloy, Smith and Wozniak, 2011; Kaplan and Schulhofer-Wohl, 2017).

In the face of these challenges, it has famously been argued that foreign migration offers a

remedy. Borjas (2001) claims that new immigrants “grease the wheels” of the labor market:

given they have already incurred the fixed cost of moving, they are very responsive to regional

differences in economic opportunity - and therefore accelerate the adjustment of local labor

markets.1 And in recent groundbreaking work, Cadena and Kovak (2016) argue further

that foreign-born workers (or at least low skilled migrants from Mexico) continue to “grease

the wheels” even some years after arrival: migrants are a self-selected group with strong

labor market attachment, and their mobility is also enhanced by long-distance co-patriot job

networks. The idea is similar to Dustmann, Schoenberg and Stuhler (2017), who find that

older workers (who supply labor elastically) protect the employment of younger workers (who

supply labor inelastically) in the event of adverse shocks. In this paper, building on Cadena

and Kovak, I return to these questions using a large US dataset spanning 722 commuting

zones (CZs) and five decades - and using an empirical model which explicitly accounts for

dynamic adjustment. In the process, I offer new methodological insights on the identification

of local immigration shocks in the context of these dynamics.

[Table 1 here]

Table 1 offers some initial insights into migratory flows to US states. Between 2000 and

2016, 3.4 percent of individuals report living outside their current state of residence one year

previously. The foreign-born account for 27 percent of these moves, which exceeds their 17

percent population share. This is not due to their mobility within the US (2.43 percent move

annually between states, compared to 2.79 percent of natives), but rather because of large

inflows from abroad.2

Of course, gross flows are not necessarily informative of population adjustment to local

shocks. But exploiting decadal census data since 1960 across commuting zones (CZs), I

1Borjas (1999), Card and Lewis (2007), Jaeger (2007), Cadena (2013) and Cadena (2014) offer additional
evidence that new migrants’ location decisions respond strongly to local economic conditions.

2These results reflect those of Table 1 in Cadena and Kovak (2016). In Appendix B, I show the newest
immigrants do in fact move more than natives, but the differential is eliminated within five years.
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confirm that foreign migration does indeed contribute disproportionately to local population

adjustment. Remarkably, between 25 and 55 percent of the local population response can

be attributed to new arrivals from abroad (though the impact of longer term migrants

is comparatively small). However, I also find that new migrants “crowd out” the native

contribution to adjustment: so in regions better supplied by new migrants, I cannot reject

the hypothesis that local population adjustment is no faster (though the standard errors

on these estimates do admit the possibility of “partial” crowding out). This is not to say

that natives gain little from this contribution of foreign migration: in particular, conditional

on the level of immigration, a regionally flexible migrant workforce may save natives from

having to incur potentially steep moving costs.3 As Molloy, Smith and Wozniak (2017)

suggest, this may in principle shine a more positive light on the well-documented decline in

regional mobility since the 1980s.

I underpin my crowding out result with a model of local labor market adjustment which

builds on Amior and Manning (forthcoming). Local equilibrium is defined in a competitive

Rosen-Roback framework (Rosen, 1979; Roback, 1982), which is supplemented with equa-

tions describing how population flows to areas offering higher utility - but in this paper,

distinguishing between the contributions of foreign and internal migration. All else equal, to

the extent that new migrants are responsive to local economic conditions, migratory flows

from abroad should bring local labor markets to equilibrium more quickly. But all else

is not equal: given that local utility differentials would then be narrower at any point in

time, natives (and earlier migrants) would be discouraged from relocating over the path of

adjustment. Of course, any such “crowding out” effect will only materialize if the existing

population is responsive to local differentials in the first place, i.e. to the extent that the

labor market’s wheels are already “greasy”. And indeed, the existing evidence does mostly

point to a relatively swift adjustment of local population: see e.g. Blanchard and Katz

(1992); Beaudry, Green and Sand (2014); Amior and Manning (forthcoming). This suggests

that large “crowding out” effects are theoretically plausible.

Following Amior and Manning, I estimate the overall speed of adjustment using an error

correction model (ECM), where changes in log population are regressed on changes in log

employment and the lagged log employment rate (the disequilibrium term); and I instrument

3Estimates of moving costs vary considerably in the literature: Bayer and Juessen (2012) identify a cost
of $34,000; Lkhagvasuren (2014) propose something beween $28,000 and $54,000; Davies, Greenwood and
Li (2001) suggest it is much larger, around $200,000. Kennan and Walker (2011) famously estimate an
unconditional average cost of moving of $312,000, though moving costs among those who choose to move
are typically negative. Also conditional on moving, I have estimated a mean cost of $13,000 for college
graduates, though I argue it is closer to zero for non-graduates (Amior, 2017a).
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the right hand side variables using current and lagged industry shift-shares (following Bartik,

1991). Amior and Manning show the employment rate can serve as a “sufficient statistic”

for local economic opportunity, as an alternative to the more common real consumption

wage (which is difficult to measure for detailed local geographies). The inclusion of the

disequilibrium term is essential if adjustment is not instantaneous; and indeed, the results

show these dynamics matter even over the decadal intervals between census years. Jaeger,

Ruist and Stuhler (2017) have emphasized the importance of these dynamics in interpreting

the local effects of immigration, and their solution is to control for lagged local immigration

shocks (a “reduced form” approach). Controlling for the initial conditions (as summarized

by the lagged employment rate) addresses the same concern, but it offers the advantage of

encapsulating the entire history of both labor demand and supply shocks, whether observed

or unobserved.

The model fits the data well. I estimate that the elasticity of population to contem-

poraneous employment shocks is 0.63, and the elasticity to the lagged employment rate is

0.39 - which points to large but incomplete adjustment. I then confirm that new foreign mi-

grants contribute disproportionately to the population response. On average, they account

for one quarter of the response to contemporaneous employment changes and, remarkably,

over half the response to the lagged employment rate. This is partly due to the flexibility

of new migrants’ residential choices. But it also a result of the well-documented preference

of new migrants to live among existing co-patriot communities. Given these communities

are disproportionately located in areas with growing demand (a natural consequence of the

persistence of local demand shocks: see Amior and Manning), this preference will encourage

new foreign arrivals to settle in high-employment areas.

However, this does not necessarily mean that new migrants “grease the wheels”, in the

sense of accelerating the adjustment of local population. To test for crowding out, building

on the methodology proposed by Cadena and Kovak (2016), I exploit variation across time

and space in the supply of new migrants. I identify the local supply using the shift-share

instrument popularized by Altonji and Card (1991) and Card (2001). This predicts the local

inflow by allocating new arrivals from each origin country to CZs according to the initial

spatial distribution of co-patriot communities.4 I cannot reject the hypothesis that popula-

tion adjusts no faster in those markets which are better supplied by migrants. Intuitively, a

larger response from foreign inflows to these areas is offset by a weaker response from internal

4It is well known that migrants tend to cluster in those areas where their communities have historically
settled, whether because of job networks (Munshi, 2003) or cultural amenities (Gonzalez, 1998).
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mobility. This result appears to contradict Cadena and Kovak (2016), who identify a much

larger low skilled population response to employment shocks in the late 2000s in cities with

initially large Mexican population shares. In Appendix E, I attempt to reconcile my findings

with theirs: dynamic effects, right hand side controls and sample appear to play a role.5

This is fundamentally a story of geographical displacement: new foreign migrants to a

particular region “displace” existing US residents (whether through larger internal outflows

or smaller inflows) who would otherwise have lived in that region. In the second part of

the paper, I address the question of displacement more directly - identifying the impact of

realized foreign inflows using the migrant shift-share instrument. Remarkably, I estimate a

one-for-one displacement effect (or more precisely, 1.1 natives and earlier migrants for each

new foreign arrival), with a standard error of just 0.13. This result is robust to controlling for

CZ fixed effects, at least in some specifications. And preliminary findings (not yet finalized)

suggest it is also robust to higher levels of spatial aggregation: I cannot reject one-for-one

displacement across US states either. However, the displacement effect is very sensitive to

sample and right hand side controls. In the absence of controls, it is statistically insignf-

icant in certain decades (before 1990). But after controlling for contemporaneous demand

shocks (using a Bartik shift-share proxy), the initial conditions (i.e. the lagged employment

rate. instrumented by a lagged Bartik) and local climate conditions (an important determi-

nant of local population change: see Rappaport, 2007), the displacement estimate becomes

substantial in every decade; and pooling decades to expand the sample has a similar effect.

The magnitude of the crowding out and displacement effects is certainly puzzling. First,

it is surprising that population should adjust so quickly to labor supply shocks, given the

response to demand shocks is more sluggish. And second, given one-for-one displacement,

one would expect to see no local welfare effects. But I find that inflows of new migrants exert

a significant negative effect on local employment rates (with an elasticity ranging between

-0.14 and -0.24 in specifications without fixed effects, for both natives and migrants). See

also Smith (2012), Edo and Rapoport (2017) and Gould (forthcoming), who identify adverse

effects on native employment rates. In terms of the dynamics, my estimates suggest these

effects dissipate within about three decades. How can this be interpreted? It may be that

5Cadena and Kovak (2016) find that low skilled natives make a negligible contribution to local adjustment -
in which case, economic theory would indeed predict negligible crowding out. But once I account for dynamic
effects (controlling for the initial employment rate) and/or observable amenity effects, I find a much larger
response from natives. Applying my specification to their data, the evidence on crowding out appears mixed:
using my preferred specification, I cannot reject the hypothesis of zero crowding out. But given the sample
size (they study a single time difference between 2006 and 2010), the standard errors are large. So it is also
difficult to exclude the possibility of a substantial crowding out effect.
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migrants are more productive than natives (in the sense of doing the same work for less), so

local adjustment may be incomplete even following one-for-one displacement. Alternatively,

the displacement effect may be somewhat overestimated due to under-reporting of new (and

undocumented) migrants in the census. On the other hand, preliminary results (not yet

finalized) suggest there is no significant effect on local native wages (even after controlling

for observable characteristics) - though this may relect selective attrition of the lowest paid

natives out of employment (see Bratsberg and Raaum, 2012).

Other studies have also identified substantial geographical displacement (e.g. Frey, 1995;

1996, Borjas, Freeman and Katz, 1997, and Borjas, 2006), though Peri and Sparber (2011)

and Card and Peri (2016) have disputed his methodology. The recent US literature has

more typically gravitated to small or zero displacement - or even a positive effect on native

population.6 See, for example, Card and DiNardo (2000), Card (2001, 2005, 2009a), Card

and Lewis (2007), Cortes (2008), Boustan, Fishback and Kantor (2010), Wozniak and Murray

(2012) and Edo and Rapoport (2017); and see Peri and Sparber (2011) and Lewis and Peri

(2014) for recent surveys. Various theoretical explanations have been offered. One view

is that native-born workers are geographically immobile. Alternatively, labor demand and

production technology may adjust endogenously to changes in labor supply or the skill mix:

see Lewis (2011) and Dustmann and Glitz (2015). And third, migrants and natives may be

imperfect substitutes in production: see Card (2009b); Manacorda, Manning and Wadsworth

(2012); Ottaviano and Peri (2012). For example, Peri and Sparber (2009), D’Amuri and

Peri (2014) and Foged and Peri (2016) argue that natives have a comparative advantage

in communication-intensive tasks. Of course, to the extent that imperfect substitutability

shelters natives from migrant supply shocks, it will also limit the ability of migrants to

“grease the wheels” of native markets.

In the final part of the paper, I attempt to reconcile my results on geographical displace-

ment with the existing literature. Omitted local effects are certainly a challenge, and this

is manifested in the sensitivity of my displacement estimates to the right hand side con-

trols. The seminal work in the literature has typically addressed this problem by exploiting

variation across skill groups within geographical areas (see Card and DiNardo, 2000; Card,

6An interesting exception is Monras (2015), who identifies one-for-one displacement following the short
run surge of Mexican migrants during the Peso crisis of 1995 - but he finds much less displacement over longer
horizons. Moving outside the US, Dustmann, Schoenberg and Stuhler (2017) exploit a policy allowing Czechs
to commute across the German border for work: they find a one-for-one displacement effect in employment,
with about a third of that effect materializing in net-out migration from the affected border areas. On the
other hand, using Spanish data, Sanchis-Guarner (2014) finds that foreign migration leads to net inflows of
natives.
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2001, 2005; Borjas, 2006; Cortes, 2008; Monras, 2015). Dustmann, Schoenberg and Stuhler

(2016) refer to this as the “mixture approach”. A natural interpretation of this finding is that

(skill-specific) geographical displacement is small or incomplete. But there are alternative

interpretations. First, changes in local composition may reflect changes in the characteristics

of local birth cohorts. And indeed, I offer evidence that such cohort effects have historically

offset the impact of geographical displacement on local skill composition. And second, as

Card (2001) points out, the response of local skill composition will also depend on the elas-

ticity of substitution between the various skill groups in production. Intuitively, within-area

estimates do not account for the impact that new migrants exert outside their own skill

group (see also Dustmann, Frattini and Preston 2012; Dustmann, Schoenberg and Stuhler

2016), and the importance of such effects will depend on the elasticity of substitution. In-

deed, I show that within-area estimates of displacement are sensitive to the delineation of

skill groups.

In the following section, I set out the basic model of local labor market adjustment.

Section 3 describes the data; and Section 4 presents estimates of population adjustment,

allowing also for heterogeneous responses by CZ. In Section 5, I estimate displacement effects

directly by exploiting the migrant shift-share as an instrument. In Section 6, I re-estimate

the displacement equation exploiting skill group variation within CZs, based on a modified

version of the model. And I conclude in Section 7.

2 Model of local population adjustment

2.1 Local equilibrium conditional on population

I base my analysis on the model of local population adjustment from Amior and Manning

(forthcoming), but here distinguishing between the contributions of internal and foreign mi-

gration. To ease the exposition, I make no distinction between the labor supplied by natives

and migrants in production. Of course, to the extent that these groups are imperfect sub-

stitutes in production, the model will overstate any effects of foreign migration on the labor

outcomes of existing residents. But ultimately, these effects are estimated empirically in the

analysis that follows. As it happens, I cannot reject one-for-one geographical displacement

in the data - suggesting these assumptions may not be so unreasonable, at least in this

aggregate-level framework.

The model has two components. First, I characterise local equilibrium conditional on

local population, based on the classic Rosen-Roback framework (Rosen, 1979; Roback, 1982).
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And I then combine this with dynamic equations describing how population flows to areas

offering higher utility. I set out the essential details here. Those who are interested in a

more complete presentation with various extensions (multiple traded and non-traded sectors,

agglomeration effects, endogenous amenities, frictional labor markets) can consult the online

appendices of Amior and Manning (forthcoming), and I offer a version with heterogeneous

skills in Section 6 below.

There are two consumption goods in the economy: (i) a single tradable good, priced at P

in all local areas r; and (ii) a non-traded good, housing, whose price P h
r varies geographically.

Assuming preferences are homothetic, a unique price index can be derived in each area r:

Pr = Q
(

P, P h
r

)

(1)

Let Nr and Lr be employment and population respectively in area r, and suppose all em-

ployed individuals earn a wage Wr. The standard Rosen-Roback model assumes labor supply

is fixed, so local employment is identical to local population. But, I allow for a labor supply

curve which is somewhat elastic to the real consumption wage:

nr = lr + ǫs (wr − pr) + zs
r (2)

where lower case variables denote logs, and zs
r is an area-specific labor supply shifter.7 After

specifying housing supply and demand (and imposing equilibrium in the housing market),

ph
r and therefore pr can be expressed as a function of local population and employment (see

Amior and Manning). A (downward-sloping) labor demand curve is then sufficient to solve

for all local endogenous variables as a function of population lr:

nr = ǫd (wr − p) + zd
r (3)

where zd
r is a local demand shifter.

I assume local utility depends on the employment rate nr − lr, the real consumption wage

wr − pr and local amenities ar:

ur = π (nr − lr) + (wr − pr) + ar (4)

Importantly, the real wage can be substituted using the labor supply curve (2) - so the

7Equation (2) can be interpreted as an elastic labor supply curve in a competitive labor market, or as a
“wage curve” (Blanchflower and Oswald, 1994) in the presence of frictions.
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employment rate can serve as a sufficient statistic for local employment conditions:

ur =
(

β +
1

ǫs

)

(nr − lr) + ar −
1

ǫs
zs

r (5)

This result is fundamental to the analysis which follows. This interpretation of the aggregate

employment rate (i.e. across all local workers) may be compromised by variation in local

demographic composition or if natives and migrants have different preferences for leisure (see

e.g. Borjas, 2016). But I show in Appendix C that the empirical results are robust to ad-

justing local employment rates for demographic composition - controlling for age, education,

gender and race, as well as nativity.

In the long run, the model is closed with a spatial arbitrage equation, which requires ur

to be invariant across space in equilibrium. This determines the equilibrium population lr

in each area.

2.2 Internal and foreign migratory responses

I now allow for dynamic adjustment in continuous time to this long run equilibrium, with

population responding to the gap between local utility ur and aggregate utility u. Moving

beyond Amior and Manning, I distinguish between the contributions of internal and foreign

migration to the population response:

dlr = λI
r + λF

r (6)

where λI
r is the instantaneous rate of net internal inflows (i.e. from within the US) to area

r, and λF
r is the foreign inflow rate to area r (from abroad), relative to the population in

area r. Unfortunately, it is not possible to identify emigration in the data, but one might

theoretically interpret λF
r as the net inflow from abroad to account for this.8

Suppose the net internal inflow rate responds to local utility in the following way:

λI
r = gI (ur − u) (7)

= γI (ãr + nr − lr)

8The emigration decision may be particularly important for foreign-born workers: see e.g. Dustmann and
Weiss (2007) for evidence on return migration. Of course, I do not observe foreign-born workers who both
enter and leave the US between two consecutive census dates. And regarding those foreign-born workers
who remain in the US for longer than one decade (and then perhaps emigrate), I show below that they make
a relatively small contribution to local population adjustment.
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where λI
r is zero in the absence of local utility differentials. For simplicity, I assume the

g function is linear, where γI ∈ (0,∞) denotes the speed of adjustment. The second line

substitutes (5) for ur, with ãr denoting a linear combination of the local amenity effect ar

and labor supply shifter zs
r , as well as any time effects encapsulated in u.

And I assume the foreign inflow rate behaves as follows:

λF
r − λ̂F

r

λ̂F
r

= γF (ãr + nr − lr) (8)

where λ̂F
r is the local “migrant intensity”, the foreign inflow rate in the absence of local

utility differentials - which I assume to be positive. Importantly, I permit λ̂F
r to vary across

areas r. Intuitively, absorption into the US may entail fixed costs (due to job market access,

language or cultural learning), and these entry costs may be lower in some neighborhoods

than others. In particular, Munshi (2003) and Gonzalez (1998) emphasize the value of

living close to existing co-patriot networks. In this exposition, once migrants have arrived

in the country (and paid any fixed costs), I assume they behave identically to natives.

The location choices of new migrants might alternatively be modeled using migrant-specific

amenities (with implications for utility), but this would complicate the exposition without

adding significant insight - at least for the questions I am studying.

The γI parameter in (7) can be interpreted as the elasticity of the stock of existing

local residents, while γF in (8) is the elasticity of the flow from abroad. As an aside, it is

worth noting that γI can also be expressed in terms of flow elasticities in a more complete

model. In particular, suppose there are individuals moving both to and from area r even

in the absence of local utility differentials, driven perhaps by idiosyncratic amenity or job

shocks. Let λIi
r and λIo

r denote the internal inflows and outflows respectively, where the net

inflow λI
r is equal to λIi

r − λIo
r . In spatial equilibrium, i.e. in the absence of local utility

differentials, suppose these are equal to λ̂Ii
r and λ̂Io

r respectively, where λ̂Ii
r = λ̂Io

r , such that

λ̂I
r = 0. Now, suppose the response of these inflows and outflows takes the same form as

(8), so λIi
r −λ̂Ii

r

λ̂Ii
r

= γIi (ãr + nr − lr) and λIo
r −λ̂Io

r

λ̂Io
r

= −γIo (ãr + nr − lr) . It then follows that

λI
r

Lr
= λ̂Ii

r

Lr

(

γIi + γIo
)

(ãr + nr − lr). And thus, γI in (7) can be expressed as λ̂Ii
r

Lr

(

γIi + γIo
)

,

where γIi and γIo are the elasticities of the internal flows (both in and out), and λ̂Ii
r

Lr
is the

spatial equilibrium rate of internal in-migration (and out-migration).
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2.3 Aggregate population adjustment

Based on (6), aggregate population growth can then be expressed as:

dlr = λ̂F
r + γ (ãr + nr − lr) (9)

where

γ = γI + γF λ̂F
r (10)

is the aggregate population elasticity. I show in Appendix A that (9) can be discretized to

yield:

∆lrt = λ̂F
rt +

(

1 −
1 − e−γ

γ

)

(

∆nrt + ∆ãrt − λ̂F
rt

)

+
(

1 − e−γ
)

(nrt−1 − lrt−1 + ãrt−1) (11)

where I have assumed that employment nr and the supply shifter ãr change at a constant

rate within each discrete time unit (between t− 1 and t), and local migrant intensity λ̂F
r is

constant within each discrete time unit. λ̂F
rt is the total migrant intensity integrated between

t− 1 and t.

Equation (11) can intuitively be interpreted as an ECM in population and employment:

the change in local population ∆lrt depends on the change in local employment ∆nrt and a

disequilibrium term nrt−1 − lrt−1, which is simply the employment rate. The coefficients on

both these terms are bounded by 0 below (for γ = 0) and 1 above (as γ → ∞). A coefficient

of 1 on ∆nrt would indicate that population fully adjusts to contemporaneous employment

shocks, and a coefficient of 1 on nrt−1 − lrt−1 would imply that any initial disequilibrium is

eliminated in the subsequent time interval through population adjustment. And coefficients

closer to zero would be indicative of sluggish adjustment. At the same time, the local

economy is subject to supply shocks in the form of changes in amenity values ∆ãrt and local

migrant intensity λ̂F
rt.

I now disaggregate the population response into contributions from internal and foreign

migration. Let λI
rt =

∫ t
t−1 λ

I
r (s) ds and λF

rt =
∫ t

t−1 λ
F
r (s) ds denote the internal and foreign

contributions to the change in overall log population in area r, between t− 1 and t, where:

λI
rt =

γI

γ

[(

1 −
1 − e−γ

γ

)

(

∆nrt + ∆ãrt − λ̂F
rt

)

+
(

1 − e−γ
)

(nrt−1 − lrt−1 + ãrt−1)

]

(12)
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and

λF
rt = λ̂F

rt +
γF λ̂F

rt

γ

[(

1 −
1 − e−γ

γ

)

(

∆nrt + ∆ãrt − λ̂F
rt

)

+
(

1 − e−γ
)

(nrt−1 − lrt−1 + ãrt−1)

]

(13)

The migrant intensity λ̂F
rt is the key parameter of interest. Notice that λ̂F

rt enters (12) and

(13) directly and also indirectly through changes in the aggregate population elasticity γ.

The direct effect is simple to interpret: λ̂F
rt has a 1-for-1 effect on foreign inflows λF

rt in

(13), but there is a compensating reduction of population growth of
(

1 −
1−e−γ

γ

)

< 1. This

adjustment comes through partial displacement of both (net) internal and foreign inflows,

as the larger supply of migrants puts downward pressure on the local employment rate (and

utility).

The indirect effect of migrant intensity λ̂F
rt through changes in γ is the “crowding out”

effect which motivates this paper. To study this effect, it is useful to take a first order

approximation around λ̂F
rt = 0. As I show in Appendix A, this yields:

λI
rt ≈

(

1 −
1 − e−γI

γI

)

(

∆nrt + ∆ãrt − λ̂F
rt

)

+
(

1 − e−γI
)

(nt−1 − lt−1 + ãrt−1) (14)

−
γF

γI

[(

1 − 2
1 − e−γI

γI
+ e−γI

)

(∆nrt + ∆ãrt) +
(

1 − e−γI

− γIe−γI
)

(nrt−1 − lrt−1 + ãrt−1)

]

λ̂F
rt

and

λF
rt ≈ λ̂F

rt+
γF

γI

[(

1 −
1 − e−γI

γI

)

(∆nrt + ∆ãrt) +
(

1 − e−γI
)

(nrt−1 − lrt−1 + ãrt−1)

]

λ̂F
rt (15)

As the second term of (15) shows, a larger supply of foreign migrants (i.e. a larger λ̂F
rt)

makes foreign inflows λF
rt more responsive to local employment shocks, both contemporaneous

(∆nrt) and historical (nt−1 − lt−1). However, as (14) shows, a larger λ̂F
rt also weakens the

response of internal inflows to local shocks. Intuitively, in the presence of a larger λ̂F
rt,

the local employment rate (and utility) become less sensitive to employment shocks; and

narrower utility differentials discourage workers from moving internally, along the path of

adjustment. In this way, foreign inflows crowd out the contribution of internal inflows to

local population adjustment that would have materialized in the counterfactual.

Summing (14) and (15) yields an approximation for the overall population response:
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∆lrt ≈ λ̂F
rt +

(

1 −
1 − e−γI

γI

)

(

∆nrt + ∆ãrt − λ̂F
rt

)

+
(

1 − e−γI
)

(nrt−1 − lrt−1 + ãrt−1)(16)

+
γF

γI

[(

1 − e−γI

γI
− e−γI

)

(∆nrt + ∆ãrt) + γIe−γI

(nrt−1 − lrt−1 + ãrt−1)

]

λ̂F
rt

Importantly, both the direct and indirect effects of migrant intensity λ̂F
rt on population are de-

creasing in γI , the elasticity of internal inflows to local utility. Regarding the direct effect, as

γI → ∞, foreign inflows displace the local population internally 1-for-1, as
(

1 −
1−e−γI

γI

)

→ 1

in (16). And similarly, as γI → ∞, the contribution of new migrants to population adjust-

ment (to employment shocks) fully crowds out the contribution of internal migration. To

see this, notice the term in square brackets in (16) converges to zero. In other words, foreign

migration does not “grease the wheels” if the wheels are already greasy.

2.4 Geographical displacement

The direct and indirect effects described above are both manifestations of geographical dis-

placement, and this question can be addressed more explicitly: i.e. what is the effect of

realized foreign inflows λF
rt on net internal inflows λI

rt? The validity of this approach hinges

on the assumption that the entire effect of λ̂F
rt (both direct and indirect) materializes through

the realized foreign inflows. In imposing this restriction, this approach may be interpreted as

“semi-structural”. In contrast, equations (14) to (16) may be interpreted as “reduced form”

characterizations with respect to foreign inflows, as they reduce the impact of these inflows

to an exogenous supply shock encapsulated by λ̂F
rt .9 To move towards a semi-structural

specification, I eliminate λ̂F
rt in (12) using (13):

λI
rt =

γI
(

1
1−e−γ −

1
γ

)

1 + γI
(

1
1−e−γ −

1
γ

)

(

∆nrt + ∆ãrt − λF
rt

)

(17)

+
γI

1 + γI
(

1
1−e−γ −

1
γ

) (nrt−1 − lrt−1 + ãrt−1)

9At the same time, (14) to (16) can be interpreted as “semi-structural” with respect to the demand
side: they study the response to realized employment changes, rather than reducing these to the exogenous
demand shocks zd

rt.
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where migrant intensity λ̂F
rt (and its interactions with ∆nrt) is omitted and can serve as

an instrument for realized foreign inflows, λF
rt. However, notice that the coefficient on λF

rt

is not a “true” displacement effect: (17) conditions on changes in employment ∆nrt, and

employment may be an important margin of adjustment for areas receiving new migrants.

As I show in Appendix A, eliminating ∆nrt from (17) yields:

λI
rt =

(1 − η) γI
(

1
1−e−γ −

1
γ

)

1 + (1 − η) γI
(

1
1−e−γ −

1
γ

)

(

∆zd
rt − λF

rt +
∆ãrt + η∆zs

rt

1 − η

)

(18)

+
γI

1 + (1 − η) γI
(

1
1−e−γ −

1
γ

) (nrt−1 − lrt−1 + ãrt−1)

where

η =
−ǫd

−ǫd + ǫs

is the ratio of the elasticity of labor demand to the sum of the supply and demand elasticities.

The displacement effect is the coefficient on λF
rt in (18): i.e. for each new arrival from abroad,

how many workers leave (on net), relative to the initial population? This effect is evaluated

conditional on demand and supply shocks, i.e. ∆zd
rt, ∆zs

rt and ∆ãrt, as well as initial utility,

encapsulated by the lagged employment rate (nt−1 − lt−1) and amenity value ãrt−1.

Similarly to the crowding out effect described above, the displacement effect depends on

the elasticity of internal flows, γI . Holding other parameters fixed, the displacement effect

converges to -1 as internal population flows become perfectly elastic. But given I am no

longer controlling for local employment, the displacement effect also depends on the relative

elasticities of labor demand and supply. As the elasticity of labor demand grows (relative

to supply), η converges to 1, and displacement converges to zero. Intuitively, in the limit,

adjustment is fully manifested in changes in local employment rather than population.

To the extent that displacement is incomplete (i.e. less than 1-for-1), the arrival of new

migrants will have a negative effect on the local employment rate. As I show in Appendix

A, the change in the employment rate can be summarized as:

∆ (nrt − lrt) =
1 − η

1 + (1 − η) γI
(

1
1−e−γ −

1
γ

)

(

∆zd
rt − λF

rt

)

+
η

1 + (1 − η) γI
(

1
1−e−γ −

1
γ

)∆zs
rt (19)

−
(1 − η) γI

(

1
1−e−γ −

1
γ

)

1 + (1 − η) γI
(

1
1−e−γ −

1
γ

)∆ãrt −
γI

1 + (1 − η) γI
(

1
1−e−γ −

1
γ

) (nt−1 − lt−1 + ãrt−1)
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This is a useful expression for evaluating the fit of the model, and I return to it in the

empirical analysis below.

3 Data

3.1 Local population and employment

I use decadal census data10 on local population and employment across 722 Commuting Zone

(CZ) in the Continental US since 1960.11 CZs were originally developed as an approximation

to local labor markets by Tolbert and Sizer (1996), based on county groups, and recently

popularized by Autor and Dorn (2013) and Autor, Dorn and Hanson (2013).12 The sample

includes all individuals aged 16-64. See the appendices of Amior and Manning (forthcoming)

for further details on the construction of the dataset.

An important concern is under-coverage of undocumented migrants in the census - and

undocumented Mexicans in particular. Card and Lewis (2007) summarize some of the ev-

idence, noting that the problem had eased considerably by the 2000 census. In particular,

about 40 percent of undocumented Mexicans were overlooked in the 1980 census (Borjas,

Freeman and Lang, 1991) and 30 percent in the 1990 census (Van Hook and Bean, 1998),

but just 10 percent in 2000 (US Department of Homeland Security, 2003). Equivalently, 25

percent of all Mexican migrants were missed in 1980, 20 percent in 1990, and 6-8 percent in

2000.

10Where possible, I based the data on published county-level aggregates from the US census, extracted
from the National Historical Geographic Information System (Manson et al., 2017). Not all demographic
cells of interest are covered by these published results, so I supplement this with information from the
microdata census extracts and American Community Survey of 2009-11, taken from the Integrated Public
Use Microdata Series (Ruggles et al., 2017).

11I begin the analysis in 1960 because migrants’ year of arrival cannot be identified before the 1970 census
microdata. This means that, for changes over the 1950s, I cannot distinguish between new migrants from
abroad and earlier ones (who arrived before 1950).

12Amior and Manning (forthcoming) make just one modification to the Tolbert-Sizer CZ scheme to enable
us to allow construction of consistent geographies over time. Specifically, La Paz County (AZ) is incorporated
into the same CZ as Yuma County (AZ). Tolbert and Sizer allocated La Paz and Yuma to different CZs,
but the two counties only separated in 1983. CZs have two advantages over Metropolitan Statistical Areas
(MSAs). First, MSAs cover only a limited proportion of the US landmass (unlike CZs whose coverage is
universal). And second, there have been changes in MSA definitions over time: this would be particularly
problematic for the very long run analysis of this study.
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3.2 Disaggregating local population growth

In the model, I have disaggregated the change in log local population into contributions

from internal and foreign migration, i.e. λI
rt and λF

rt in equations (14) and (15) respectively.

However, since I only observe local population at discrete intervals, I cannot precisely identify

λI
rt and λF

rt in the data. A natural approach is to take a first order approximation and study

contributions to decadal population growth. Let LF
rt be the foreign-born population in area

r and time t who arrived in the US in the previous ten years (i.e. since t− 1). Then, local

population growth can be disaggregated in the following way:

∆Lrt

Lrt−1
=

LF
rt

Lrt−1
+
Lrt − LF

rt

Lrt−1
(20)

where
Lrt−LF

rt

Lrt−1

is the residual, i.e. the component of local population growth which is not

explained by new foreign arrivals. This will of course account for internal migration, but it

is also conflated with other factors, specifically “natural” population growth and emigration

to outside the US. This specification focusing on contributions to overall population growth

follows the approach of Card and DiNardo (2000) and Card (2001), as recommended by Peri

and Sparber (2011) and Card and Peri (2016)

3.3 Instruments

I identify changes in local demand using industry shift-shares (following Bartik, 1991), which

are intended to exclude supply-side effects. And, I identify the local migrant intensity λ̂F
rt

in the model above using migrant shift-shares (following Altonji and Card, 1991, and Card,

2001), which in turn are intended to exclude local demand shocks. These shift-share variables

are pervasive in the urban and migration literatures; I use them as either instruments or

controls at various points in the analysis.

The Bartik shift-share brt predicts the growth of local labor demand (over one decade),

assuming the stock of employment in each industry i grows at the average rate elsewhere in

the country:

brt =
∑

i

φi
rt−1

[

ni(−r)t − ni(−r)t−1

]

(21)

where φi
rt−1 is the share of workers in area r at time t− 1 employed in industry i. The term

[

ni(−r)t − ni(−r)t−1

]

, expressed in logs, is the growth of employment nationally in industry i,

excluding area r. This exclusion, recommended by Goldsmith-Pinkham, Sorkin and Swift
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(2017), was proposed by Autor and Duggan (2003) to address concerns about endogeneity

to local employment counts.

Following Amior and Manning (forthcoming), I use the contemporaneous Bartik shift-

share bN
rt as an instrument for current employment growth ∆nrt, and I use the lagged shift-

share brt−1 to instrument for the lagged employment rate (nrt−1 − lrt−1). The intuition for

the lagged instrument is that the employment rate, at any point in time, can be written

as a distributed lag of past labor demand shocks. In practice, it is sufficient to instrument

using the first lag alone. I construct these instruments using 2-digit industry data from the

IPUMS micro-data.

I predict the local migrant intensity λ̂F
rt using a migrant shift-share, based on the initial

geographical distribution of migrants. As is well known, migrants are often guided in their

location choice by the presence of established co-patriot communities, whether because of job

networks (Munshi, 2003) or cultural amenities (Gonzalez, 1998). In the empirical migration

literature, there has been a long tradition of proxying these preferences with historical local

settlement patterns. An early example is Altonji and Card (1991), and Card (2001) extends

it by exploiting varying settlement patterns by origin country. Jaeger, Ruist and Stuhler

(2017) offer a useful survey of the empirical literature. I construct the shift-share mrt as

follows:

mrt =

∑

o φ
o
rt−1L

F
o(−r)t

Lrt−1
(22)

where φo
rt−1 is the share of population in area r at time t−1 which is native to origin o. LF

o(−r)t

is the stock of new origin-specific migrants (excluding those living in area r) who arrived in

the US between t− 1 and t. The numerator of equation (22) then gives the predicted inflow

of all migrants over those ten years to area r. This is scaled by Lrt−1, the initial population

of area r. Similarly to the Bartik industry shift-shares, the exclusion of area r from LF
o(−r)t

helps allay concerns over the endogeneity of mrt to the dependent variable, local population

growth. I construct this migrant shift-share variable using census and ACS micro-data from

IPUMS, based on 79 origin countries.

For the purposes of the empirical analysis which follows, I construct the migrant intensity

λ̂F
rt using a linear projection of

LF
rt

Lrt−1

(the contribution of new migrants to population growth)

on mrt, based on the following OLS regression:

LF
rt

Lrt−1
= α0 + α1mrt + εrt (23)
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where observations are weighted by the lagged local population share. The coefficient α0 is

estimated as 0.01, α1 is 0.96, and the R squared is 76 percent.

3.4 Amenity controls

Aside from the Card shift-share, I control for a range of observable supply effects or amenities

in my empirical specifications. The set of controls is identical to those in Amior and Manning

(forthcoming). These consist of (i) a binary indicator for the presence of coastline (ocean or

Great Lakes); (ii) climate indicators (specifically maximum January temperature, maximum

July temperature and mean July relative humidity: Rappaport, 2007, shows that Americans

have been moving to places with more pleasant weather); (iii) log population density in

1900; and (iv) an index of CZ isolation, specifically the log distance to the closest CZ, where

distance is measured between population-weighted centroids in 1990. Because the impact of

some of these might vary over time, I interact each of them with a full set of year effects in

the regressions below.

I do not control for amenities which are likely to be endogenous to current labor market

conditions, such as crime and local restaurants, since these present challenges for identifica-

tion. This means the estimated coefficients on employment shocks must be interpreted as

reduced form effects. That is, these coefficients will account for all effects of employment

on utility (and local population growth), both the direct labor market effects (discussed in

Section 2 above) and the indirect effects due to changes in local amenities such as crime (see

Diamond, 2016).

4 Estimates of population response to employment shocks

4.1 Average contribution of foreign migration

In this section, I study the average contribution of foreign migration to local population

adjustment across CZs, abstracting away from heterogeneity in the local migrant intensity,

λ̂F
rt. I return to this heterogeneity below. I begin by estimating the overall population

response to local employment shocks. In line with equation (11), I use the following error

correction model:

∆lrt = β0 + β1∆nrt + β2 (nrt−1 − lrt−1) + ÃrtβA + εrt (24)
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where t denotes time periods at decadal intervals, and ∆ is a decadal change. I regress

the change in log population, ∆lrt, on the the change in log employment, ∆nrt, and the

disequilibrium term, the lagged employment rate (nrt−1 − lrt−1). I control for a vector of

supply effects Ãrt, driven by amenities or the labor supply shifter. Note Ãrt contains a full

set of time effects reflecting changes in the aggregate level of utility in (7). The error term

εrt includes any supply effects which are unobserved. All observations are weighted by the

lagged local population share, and standard errors are clustered by CZ.

[Table 2 here]

I set out estimates of (24) in column 1 of Panel A in Table 2. I report only the coefficients

of interest, β1 and β2, the elasticities of local population to contemporaneous employment

shocks and the lagged employment rate. Using OLS, these are estimated as 0.80 and 0.17

respectively. These cannot be interpreted causally: unobserved supply-side shocks will bias

OLS estimates of β1 upwards; and β2 estimates may be biased downwards if these shocks are

persistent. For example, an improvement in local amenities should affect local population

growth positively and the employment rate negatively. To address these concerns, the IV

specification instruments the log employment change with the current Bartik shock and the

lagged employment rate with the lagged Bartik. The first stage results (Panel B) strongly

support the identification strategy: both instruments have power, but only for the endoge-

nous variables they are intended to explain. The IV estimates of β1 and β2 are 0.63 and 0.39

respectively13 (and the associated standard errors are small), so the OLS bias is in the ex-

pected direction. These numbers indicate large but incomplete population adjustment over

one decade - to contemporaneous employment shocks and initial employment conditions.

I next study the average contribution of foreign migrants to these population responses.

For the reasons discussed in Section 3, I approximate the change in log population ∆lrt

with local population growth ∆Lrt

Lrt−1

, which I disaggregate using the scheme in equation (20).

In column 2, I re-estimate (24) but replacing the dependent variable with local population

growth ∆Lrt

Lrt−1

. The IV estimates are similar to column 1, with β1 and β2 taking 0.76 and

0.43 respectively. Column 3 estimates the contribution of new migrants to local population

growth, replacing the dependent variable with
LF

rt

Lrt−1

, where LF
rt is defined as the local stock

of foreign-born migrants at time t who arrived in the US in the previous ten years (i.e.

13These numbers are similar but not identical to the basic estimates of Amior and Manning (forthcoming).
This is because I have omitted one decade of data in this study, as the 1960 census does not report migrants’
year of arrival. See Section 3 above.
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since t − 1). Looking at the IV specification, new migrants account for 25 percent of the

overall population response to contemporaneous shocks (β1), and remarkably, 55 percent of

the response to the lagged employment rate (β2). Column 4 reports the residual component

of population growth,
∆Lrt−LF

rt

Lrt−1

, due to natives and “old” migrants (i.e. those who arrived

over ten years previously, before t− 1). This is driven to some extent by internal migration,

though the estimates are conflated with emigration and “natural” population growth. In

column 5, I report the contribution of natives only, i.e.
∆LN

rt

Lrt−1

, where LN
rt is the local stock

of natives. The IV estimates are very similar to column 4, which suggests old migrants

contribute little to the response to employment shocks.14

An intuition in the model may help explain why new migrants contribute much more to

the β2 response than β1. In principle, equation (11), imposes restrictions on the relationship

between β1 and β2: they depend on a single parameter, γ. In particular, the β2 coefficient

should be larger: workers have more time to respond to a pre-existing local welfare deviation

(in the form of the lagged employment rate) than to one that materializes gradually over time

(a change in local employment). And indeed, for new migrants, we see exactly this pattern:

β2 exceeds β1 (0.24 against 0.19 in column 3), though the difference is not statistically

significant. However, for other workers, the opposite is true: β1 is much larger than β2

(0.57 against 0.19 in column 4). This may due to heterogeneity in mobility which the model

neglects: β1 may reflect the response of more mobile US residents and β2 the less mobile

(who respond with a lag). And intuitively, this heterogeneity may be less consequential for

the flow of foreign migrants arriving in the US: the composition of this flow (in terms of

regional flexibility of the incoming workers) is unlikely to be very sensitive to local business

cycle variation.

In the final four columns of Table 2, I replicate columns 2-5, but now conditioning on

local migrant intensity λ̂F
rt , which I predict using the migrant shift share (22) as described in

Section 3 above. There are two key messages here. First, my estimate of λ̂F
rt explains away

a large portion of new migrants’ disproportionate contribution to local adjustment. While

the overall population response is unaffected (column 6), the relative contribution of new

migrants (column 7) is now markedly lower: conditional on the shift share, new migrants

now account for 15 and 24 percent of the β1 and β2 response respectively (down from 25

and 55 percent) in the IV specification. This is indicative of a tight correlation between the

migrant shift share and the Bartik instruments. This is a natural consequence of the large

14This finding appears to be at odds with Cadena and Kovak (2016): they find a negligible native response,
at least among the low skilled. But I argue in Appendix E that our results can be reconciled by accounting
for population dynamics and amenity controls in their specification.
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decadal persistence in local demand shocks described by Amior and Manning (forthcoming).

Intuitively, new foreign arrivals are attracted to areas with strong demand conditions (or in

the language of Bartik instruments, areas specialized in high-growth industries), resulting

in large migrant enclaves in these areas. This attracts even more migrants in the future,

which aids population adjustment - given these areas continue to experience positive demand

shocks.15

This result points to some interesting dynamics. In principle, a one-off local shock to labor

demand may elicit an “overshooting” response to population: such a shock disproportionately

attracts foreign migrants, and foreign-born residents offer an amenity value to future arrivals

from abroad - even after the demand shock has expired. However, in the presence of large

persistence in the demand shocks, there need not be any “overshooting”. In particular,

Amior and Manning (forthcoming) argue that the large persistence of local employment

rates reflects a population response which is outpaced over many decades by secular trends

in local labor demand. In such an environment, “overshooting” is certainly not a problem

facing the average CZ.

Columns 7-9 also point to a direct displacement effect: a one point increase in the shift

share raises the contribution of new migrants by 0.97 (column 7), but reduces the contribution

of natives and old migrants by 0.92 (column 8). The effect on overall population growth is

statistically insignificant (column 6). A large displacement effect is consistent with the model,

but a one-for-one effect is certainly larger than expected. Equation (14) above predicts that

λ̂F
rt should exert the same effect as the employment change ∆nrt, but the coefficient on the

latter takes a value of just 0.64 for natives and old migrants (column 8). I return to this

point in Section 5.3 below.

One may be concerned that changes in local demographic composition (in response to

the shocks) are distorting the results. In Appendix C, I show these results are broadly ro-

bust to adjusting all employment variables for local demographic composition, including age,

education, gender, ethnicity and nativity (native or foreign-born), and a rich set of interac-

tions. The aggregate population responses are slightly larger (to both the contemporaneous

employment change and the lagged employment rate), but the proportional contribution of

new foreign migrants is almost identical.

15The fact that the overall population response in column 6 is unaffected hints at foreign migrants crowding
out the internal response to employment shocks - which I explore in the following section.
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4.2 Testing for “crowding out”

The results above suggest that foreign migrants do contribute disproportionately to local

adjustment, and this is entirely due to new arrivals. But it does not necessarily follow that

they “grease the wheels” as Borjas (2001) has claimed - if the response of migrants crowds

out the response of other workers, along the path of adjustment. Building on Cadena and

Kovak (2016), a natural approach to testing for crowding out is to exploit geographical (and

temporal) variation in local migrant intensity λ̂F
rt - as predicted by the migrant shift share

(22). In Table 3, based on (14) and (15), I present estimates of the following equation:

Xrt

Lrt−1
= βc

0 + βc
1∆nrt + βc

2 (nrt−1 − lrt−1) + Ãrtβ
c
A (25)

+
[

βc
0λ + βc

1λ∆nrt + βc
2λ (nrt−1 − lrt−1) + Ãrtβ

c
Aλ

]

λ̂F
rt + εrt

where Xrt

Lrt−1

is the contribution of new migrants (Xrt = LF
rt) or other workers (Xrt = ∆Lrt −

LF
rt) to local population growth, and where the change in log employment (nrt−1 − lrt−1)

and the lagged employment rate (nrt−1 − lrt−1) are now interacted with migrant intensity

λ̂F
rt . Notice the model also suggests migrant intensity should be interacted with the vector

of amenity controls Ãrt (i.e. coastline, climate indicators, historical population density and

isolation). The first four columns of Panel A of Table 3 do not control for these λ̂F
rt-amenity

interactions, and the latter four do.

[Table 3 here]

I report OLS estimates of (25) in the top half of Panel A. Column 1 shows the overall

population response to employment shocks does not vary significantly with migrant intensity

λ̂F
rt. That is, population adjustment is no faster in those areas which are better supplied by

new foreign arrivals. But this masks some important effects. As equation 15 predicts,

column 2 shows the contribution of new migrants to the population response is increasing

in λ̂F
rt. The contributions of new migrants to the ∆nrt and (nrt−1 − lrt−1) responses are

statistically insignificant at λ̂F
rt = 0 (as the model predicts); and they increase to 0.14 and

0.22 respectively at λ̂F
rt = 0.1, which is the 98th percentile of λ̂F

rt (the maximum value is 0.31:

the distribution is heavily skewed). But this larger contribution from new migrants is offset

by a smaller contribution from other workers (column 3), such that the evolution of local

population is not statistically different in areas with a large or small supply of new migrants
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(column 1). The crowding out effect is weaker for the lagged employment rate when I control

for the λ̂F
rt-amenity interactions in columns 5-8, but foreign arrivals still add nothing to the

overall population response to ∆nrt (column 5).

The bottom half of Table 3 presents the IV estimates. I have introduced two new endoge-

nous variables, so I need two further instruments to identify the model: I use interactions

between migrant intensity λ̂F
rt and the current and lagged Bartik shocks. The first stage es-

timates are reported in columns 1-4 of Panel B of Table 3. I have marked in bold where one

should theoretically expect to see positive significant effects. These predictions are confirmed

in each case and with small standard errors.

Just as with the OLS estimates, I cannot reject the claim that new migrants fully crowd

out the population response of other workers to employment shocks. Both columns 1 and

5 (without and including amenity interactions, respectively) shows the population response

does not vary significantly with migrant intensity λ̂F
rt . The response of new migrants,

however, is steeply increasing in λ̂F
rt (columns 2 and 6) from a base of zero (though this

effect is statistically insignificant in column 2 - without amenity interactions), and this is

mostly offset by the response of other workers (columns 3 and 7). The interactions effects

are larger than in OLS. Controlling for amenity interactions for example, the contributions

of new migrants to the ∆nrt and (nrt−1 − lrt−1) responses reach 0.45 and 0.71 respectively

at λ̂F
rt = 0.1 (column 6), while the contributions of other workers decline to 0.37 (from 0.82

at λ̂F
rt = 0) and to 0.01 (from 0.52): see column 7. Though I cannot reject total crowding

out, it should be emphasized that the standard errors do admit the possibility of “partial”

crowding out. In particular, the standard error on the offsetting response from natives and

old is close to half the magnitude of the βc
2λ coefficient (though it is smaller for βc

1λ).

Columns 4 and 8 report the contribution of natives alone. The interaction effects in

all specifications exceed those in columns 3 and 7, implying that old migrants amplify the

contribution of new migrants to adjustment - while natives account for the entire crowing

out effect (offsetting the contributions of old and new migrants alike). The fact that old

migrants amplify the contribution of new migrants is intuitive: those areas with larger

migrant intensity will have larger stocks of old migrants, so old migrants should mechanically

contribute more to population adjustment in these places.

One possible concern is that changes in local demographic composition, driven by changes

in the local share of migrants, complicate the interpretation of the employment effects. But

I show in Appendix C that adjusting all employment variables for local demographic compo-

sition (controlling for foreign-born status, among other observables) makes little difference

23



to the results.

5 Geographical displacement: CZ-level estimates

5.1 Empirical specification

The analysis above suggests that a larger supply of new migrants is offset by a weaker

contribution of other workers to population adjustment. This is fundamentally a story of

geographical displacement, though in the context of local demand fluctuations. But geo-

graphical displacement can be tested more explicitly using a “semi-structural” specification:

i.e. for each new arrival from abroad, how many other workers leave (on net)? This is what

I turn to next.

In line with (18) in Section 2 above, I estimate the magnitude of displacement using the

following empirical equation:

∆Lrt − LF
rt

Lrt−1
= δ0 + δ1

LF
rt

Lrt−1
+ δ2brt + δ3 (nrt−1 − lrt−1) + ÃrtδA + εrt (26)

where
LF

rt

Lrt−1

is the contribution of new migrants to local population growth, and
∆Lrt−LF

rt

Lrt−1

is

the contribution of other workers (i.e. natives and old migrants), and the displacement effect

is given by δ1. The Bartik shift-share brt and the amenity vector Ãrt account for observed

components of demand and supply shocks respectively, and the unobserved components are

contained in the residual εrt. Since I am not conditioning on the contemporaneous change

in employment, the displacment effect δ1 depends both on the speed of internal population

adjustment and the elasticity of labor demand: see equation (18). My specification of the

population variables in terms of contributions to overall population growth is consistent with

the approach of Card and DiNardo (2000) and Card (2001), as recommended by Peri and

Sparber (2011) and Card and Peri (2016).

Controlling for initial conditions, as summarized by the initial employment rate, is new

to the literature. It addresses the concern raised by Jaeger, Ruist and Stuhler (2017) that

adjustment to local migration shocks is not instantaneous. Jaeger, Ruist and Stuhler suggest

controlling for lagged migration shocks; but controlling for initial conditions offers the ad-

vantage of summarizing the entire history of both labor demand and supply shocks, whether

observed or unobserved. Of course, this interpretation depends on the assumption that the

local employment rate is a sufficient statistic for local labor market conditions. Furthermore,

as Jaeger, Ruist and Stuhler show, it is difficult to separately identify the effects of current
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and lagged migration shocks, since the correlation between them is so tight.

With respect to identification, there are two endogenous variables:
LF

rt

Lrt−1

and (nrt−1 − lrt−1),

so two instruments are required. The simplest approach is to use the local migrant intensity

λ̂F
rt, as predicted by the migrant shift share, together with the lagged Bartik shock brt−1. I

also offer IV estimates which exploit two further instruments: interactions between λ̂F
rt and

both the current and lagged Bartik shocks, brt and brt−1. This is motivated by (15), which

predicts the effect of local demand on the realized contribution of new migrants
LF

rt

Lrt−1

is

increasing in the local migrant intensity λ̂F
rt. Identification is certainly less demanding here

than in the “crowding out” specification (25) (which studies the interaction between supply

and demand shocks), and this will allow for greater precision in the estimates.

I present estimates of (18) both with and without CZ fixed effects. The fixed effects

will absorb any time-invariant components of unobserved supply effects, ∆ãrt. Identification

with fixed effects relies on the fact that migrant inflows to different areas have grown at

different speeds. This is similar in spirit to the double differencing methodology (comparing

changes before and after 197016) of Borjas, Freeman and Katz (1997). However, large serial

correlation in local migration shocks (see e.g. Jaeger, Ruist and Stuhler, 2017) makes this

an empirically demanding specification, especially given the short panel sutructure (just five

periods) - and hence its absence (to my knowledge) in earlier work on displacement.

5.2 Estimates of displacement

Almost all specifications in Panel A of Table 4 point to a substantial displacement effect.

Column 1 offers OLS estimates of equation (18), with δ1 taking a value of -0.78. That is, for

each new migrant entering a given CZ, 0.78 natives or earlier migrants leave on net (relative

to the initial population). The effect is somewhat smaller (-0.55) when I control for CZ

fixed effects at the bottom of the table. One concern is that the displacement effect may

be artificially driven by return migration: i.e. migrants moving to some CZ in the US, and

returning back to their country of origin shortly afterwards. However, column 3 shows that

natives account for three quarters of the displacement effect in the basic specification and

for the entire effect when I control for fixed effects.

[Table 4 here]

16Jaeger, Ruist and Stuhler (2017) emphasize that the Immigration and Nationality Act of 1965, which
facilitated much larger inflows of non-European migrants, was an important structural break.
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Of course, omitted labor supply and demand shocks make it difficult to interpret the OLS

estimates. Column 3 of Panel A reports IV estimates of (26), using the migrant shift-share

λ̂F
rt as an instrument for the new migrant contribution and the lagged Bartik shift share brt−1

as an instrument for the lagged employment rate. The first stage regression for the migrant

contribution has substantial power in both the basic and fixed effect specifications (column

1 and 3 in Panel B). In the basic specification, the IV estimate of displacement is somewhat

larger than OLS, with δ1 reaching -1.11: i.e. exceeding (though insignificantly different

from) 1-for-1 displacement. This effect is estimated resonably precisely, with a standard

error of 0.13. The IV estimates are expected to be larger than OLS if we believe variation

in the contribution of new migrants
LF

rt

Lrt−1

is conflated with unobserved local demand shocks.

Furthermore, to the extent that the instrument does not successfully exclude local demand

shocks, one might expect that even the IV estimate may be biased towards zero (assuming

foreign migrants are attracted to areas with growing demand). Similar to OLS, column 4

suggests that natives account for the bulk of the IV displacement effect.

When I control for fixed effects in column 4 however, the displacement effect drops to

near zero, though the standard erorr balloons to 0.75. To address this apparent lack of

power in the fixed effects specification, I include interactions between migrant intensity

λ̂F
rt and the current and lagged Bartik shift-shares as further instruments - as suggested

by equation (15) in the model. The first stage estimates for the migrant contribution are

reported in columns 2 and 4 of Panel B: the interaction effects are positive and (in most

cases) statistically significant. The second stage estimates are presented in columns 8-9 of

Panel A. The additional instruments make little difference to the basic specification. But

the fixed effects estimates now sport much smaller standard errors, and the coefficients are

very close to -1.

[Table 5 here]

In Table 5, I study the robustness of my IV estimate of δ1 (specifically, that of column

3 in Table 4: without the interacted instruments) to these considerations. When I include

no regression controls, the displacement effects vary greatly across decades. In particular,

the results suggest little displacement before 1990 and significant displacement thereafter;

and indeed, Card (2009a) finds something similar. But controlling for the current Bartik

shift-share and the lagged employment rate (i.e. the initial conditions) moves the average

displacement effect from -0.51 to -0.77 (see column 7); and once I control for the various

amenity effects (and climate in particular), I cannot reject a 1-for-1 displacement effect in
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any decade except the 2000s (and even there, the displacement effect is substantial: -0.63).

In the final row of Table 6, I replace the lagged employment rate with the lagged Bartik shift-

share control. The results looks very similar, except the fixed effects specification now also

yields a substantial displacement effect (-1.25), even without the interacted instruments. The

sensitivity of the estimates to the various controls suggests the migrant shift-share instrument

is correlated with important supply and demand-side drivers of population. But given this,

a degree of caution is advisable in interpreting results using this instrument: both in this

study and elsewhere in the literature.

.

As equation (18) shows, a displacement effect of -1 must reflect a rapid internal population

adjustment (i.e. large γI in the model) and an inelatic demand for labor (ǫd low relative

to ǫs). One might control for the labor demand effect by conditioning on contemporaneous

employment growth ∆nrt on the right hand side (and using brt as an instrument). I do

exactly this in Appendix D. Surprisingly, controlling for employment actually yields a slightly

smaller displacement estimate (which appears to imply a positive elasticity of labor demand),

though the difference is not statistically significant.17 Nevertheless, one can at least conclude

that labor demand does little to facilitate local adjustment; and this can help explain the

substantial displacement effect.

5.3 Impact on local employment rates

Taking the substantial crowding out and displacement estimates at face value, their magni-

tude is certainly surprising. First, as noted above, given that existing US residents respond

somewhat sluggishly to local demand shocks, one should not expect a one-for-one response

to supply shocks. And second, one-for-one displacement sits uneasily with evidence on the

effect on local employment rates. In particular, if there is indeed one-for-one displacement,

the arrival of new migrants should have no effect on the local employment rate - as equation

(19) demonstrates. But as I now show, local employment rates (among both natives and

migrants) fall significantly in response to foreign inflows (though, at least in specifications

without fixed effects, the effect is not large). See also Smith (2012), Edo and Rapoport

(2017) and Gould (forthcoming), who identify similar effects.

My strategy is simple to re-estimate (18), but replacing the dependent variable with the

change in the local log employment rate, ∆ (nrt − lrt). In Table 6, I present results for the

17As I discuss in the appendix, this result can be understood in the context of the seemingly counter-
intuitive effect of migratory flows on the local employment rate (which I turn to next).
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employment rate change among the full sample of 16-64s, but also separately for natives and

migrants. And just as in Table 4, I report estimates using both the “simple” IV strategy

(with the migrant shift-share and lagged Bartik instruments) and including the additional

interacted instruments.

[Table 6 here]

In the basic specification (without fixed effects), all estimates of δ1 in Table 6 (i.e. the

effect of migrant inflows) lie between -0.14 and -0.24, with standard errors between 0.05 and

0.07. It is worth emphasizing that the responses of the native and migrant employment

rates are very similar in the basic specification. This suggests there is no great loss from

my assumption in Section 2 that natives and migrants are perfect substitutes in production,

at least in this particular context. The estimates also change little when I adjust the em-

ployment rates for local demographic composition (controlling for age, education, gender,

ethnicity and nativity, as well as a range of interactions). However, the fixed effect results

are much harder to interpret: using the simple IV strategy (columns 1-3), the δ1 estimates

appear unresonably large, reaching -1. The effects are smaller, but still very large when I

use the interacted instruments: -0.3 for natives and -0.6 for migrants. The coefficient on

the lagged employment rate (i.e. the initial conditions) can shed light on the local dynam-

ics. In the basic specification, the elasticity hovers around -0.3, which suggests the effect is

dissipated in about three decades.

Preliminary results (yet to be finalized) suggest the impact on native employment rates

are entirely driven by low educated natives: the effect on native college graduates is sta-

tistically insignificant. Interestingly, I also find no significant effect on native wages (even

after adjusting for local composition) - or even housing rents or prices. This surprising result

may reflect selective attrition of lower paid natives into employment (see e.g. Bratsberg and

Raaum, 2012).

But the puzzle remains: given sluggishness in the response to local demand shocks and

significant adverse effects on local employment rates, how can one-for-one geographical dis-

placement be interpreted? One possible resolution puzzle is that migrants are more produc-

tive than natives, in the sense of doing the same work for less (see e.g. Nanos and Schluter,

2014; Albert, 2017; Amior, 2017b). Migrants may then implicitly offer more “efficiency units”

than natives, so displacement in excess of one-for-one may be required for complete local

adjustment. This view is consistent with evidence from Dustmann, Schoenberg and Stuhler

(2016) that new foreign migrants downgrade in terms of occupation on arrival. Alternatively,
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the census data may over-estimate the “true” displacement effects because undocumented

migrants are under-reported in the census: see the discussion in Section 3.1 above.

6 Geographical displacement: Within-CZ estimates

6.1 Motivation

Using CZ-level variation, the previous section identifies substantial displacement effects,

though these may be overestimated due to under-reporting of undocumented migrants. As

Table 5 shows, these results are sensitive to the choice of right hand side controls. In

order to address the challenge of omitted variables, the existing literature has typically

exploited variation across skill groups within geographical areas. Card (2001) notes that

recent migrants are concentrated in different occupations to natives; and consequently, the

labor market impact of an additional migrant will vary by skill group within areas. In

particular, Peri and Sparber (2011) recommend the following empirical specification:

∆Lsrt − LF
srt

Lsrt−1

= δs
0 + δs

1

LF
srt

Lsrt−1

+ drt + dst + εsrt (27)

where
LF

srt

Lsrt−1

is the contribution of new migrants to local population growth in skill group

s, and
∆Lsrt−LF

srt

Lsrt−1

is the contribution of other workers (i.e. natives and old migrants). drt

are area-time interacted fixed effects, which absorb local shocks common to all skill groups;

and dst are skill-time interacted effects, which account for national-level trends across skill

groups.

In a series of seminal contributions, Card and DiNardo (2000), Card (2001) and Cortes

(2008) apply this specification to US data, producing δs
1 estimates which are small (typically

below 0.3 in magnitude) and sometimes positive. More recently, Monras (2015) has estimated

substantial displacement (insignificantly different from one-for-one) in the year following the

Mexican Peso crisis of 1995, which saw a sudden increase in low skilled migration from

Mexico. But interestingly, his estimates of δs
1 are smaller (between -0.21 and -0.39) over a

longer decadal interval, specifically the 1990s.18 Using similar within-area variation but a

different functional form, Borjas (2006) identifies large displacement effects: his estimates

18He ascribes this difference to the unexpected nature of the 1995 inflow: firms had little time to expand
their operations in response. In contrast, he argues that a local demand response was feasible in the context
of the longer run migrant influx over the full decade. I derive the -0.21 and -0.39 estimates from columns 6
and 8 from Table 7 in his paper.
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imply that each new migrant displaces 0.61 natives across metropolitan areas, though his

methodology is disputed by Peri and Sparber (2011) and Card and Peri (2016).

In the remainder of the paper, I attempt to reconcile my results on displacement with

the existing literature. Though the within-area approach can address the important concern

of omitted local effects, it presents two important challenges. First, if one uses pooled cross-

sectional data, it is not possible to distinguish between genuine net migratory flows and local

changes in skill composition across cohorts. And second, this approach will not account for

the impact that new migrant arrivals exert outside their own skill group s (see Dustmann,

Schoenberg and Stuhler, 2016). As Card (2001) poins out, the importance of such effects

will depend on the elasticity of substitution between skill groups. Consequently, estimates

of δs
1 may be sensitive to the delineation of skill groups.

I begin this analysis by setting out an extension to the model of Section 2 with het-

erogeneous skills. This helps clarify the importance of substitutability of skill groups in

production. I then discuss the choice of skill delineation, and I return to the question of

cohort effects when discussing the empirical estimates.

6.2 Model

Suppose production technology in area r, for the tradable good priced at P , is a CES function

over skill-defined local labor inputs:

Yr = θr

(

∑

s

αsrN
σ
sr

)
ρ

σ

(28)

where θr is an aggregate productivity shifter, and 1
1−σ

is the elasticity of substitution between

labor inputs in production, where σ ∈ [−∞, 1]. The term (
∑

s αsrtN
σ
srt)

1

σ may be interpreted

as an aggregate labor component, and the exponent ρ ≤ 1 allows for diminishing returns to

labor. Assuming markets are competitive, the labor demand curve for skill s in area r can

be written as:

wsr − p = logαsr + log ρ+
σ

ρ
log θr +

ρ− σ

ρ
yr − (1 − σ)nsr (29)

conditional on local output yr. And using the same structure as (2) in Section 2 above, I

write the skill-specific labor supply as:

nsr = lsr + ǫs (wsr − pr) + zs
sr (30)
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In the same way, the utility equation (5) in Section 2 can be rewritten with s subscripts, so

utility depends on the skill-specific local employment rate and real consumption wage. And

similarly, s subscripts can be applied to equations (7) and (8), so skill-specific population

adjusts (sluggishly) with elasticity γ to skill specific differentials in local utility usr. Following

the same procedure outlined in Section 2, after discretizing the model, one can then derive

an (almost) identical expression to (18) for the internal contribution λI
srt to local population

growth in skill group s:

λI
srt =

(1 − η) γI
(

1
1−e−γ −

1
γ

)

1 + (1 − η) γI
(

1
1−e−γ −

1
γ

) ·
1

1 − σ

(

∆ logαsrt +
σ

ρ
∆ log θrt +

ρ− σ

ρ
∆yrt

)

(31)

+
(1 − η) γI

(

1
1−e−γ −

1
γ

)

1 + (1 − η) γI
(

1
1−e−γ −

1
γ

)

(

∆ãrt + η∆zs
rt

1 − η
− λF

srt

)

+
γI

1 + (1 − η) γI
(

1
1−e−γ −

1
γ

) (nsrt−1 − lsrt−1 + ãrt−1)

where, as before,

η =

(

1
1−σ

)

(

1
1−σ

)

+ ǫs

is the ratio of the elasticity of labor demand to the sum of the supply and demand elasticities.

Now, consider again the empirical specification (27) in light of (31). The area-time

fixed effect drt absorbs variation in local output yrt and the aggregate productivity shock

θrt. The error term εsrt will contain any unobserved components of the skill-specific local

productivity shifters αsrt, after conditioning on the Bartik shift-shares. Now, suppose the

effect of the foreign migrant contribution to population,
LF

srt

Lsrt−1

(which proxies for λF
srt), is

consistently identified; that is, conditional on the fixed effects and the Bartik shift-shares,
LF

srt

Lsrt−1

is uncorrelated with the error term εsrt. Then, the coefficient of interest δs
1 in (27) will

be equal to:

δs
1 =

(1 − σ) ǫsγI
(

1
1−e−γ −

1
γ

)

1 + (1 − σ) ǫs
[

1 + γI
(

1
1−e−γ −

1
γ

)] (32)

But in general, this is not a pure displacement effect - which I define as the number of workers

who leave (on net) for each new arrival from abroad. Intuitively, this is because the impact

of immigration on skill group s is partly diffused across the local economy (i.e. in local
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output yrt) - to the extent that skill types are substitutable in production. But the empirical

specification holds yrt fixed by virtue of the area fixed effects drt, so any component of the

displacement effect weighing equally on all skill groups is necessarily neglected. For example,

notice that δs
1 goes to zero as σ converges to 1, i.e. as skill types become perfect substitutes

- and the impact of immigration is fully diffused. But of course, perfect substitutability does

not preclude the existence of displacement effects.

More specifically, as Card (2001) points out, δs
1 will only reveal a pure displacement effect

if wages in each skill group s depend only on employment in s and not in other skill groups.

In that case, skill-specific markets can be treated independently, and shocks are not diffused

across the local economy. This requires an additively separable production function - which,

by inspection of (29), is only true under the knife-edge condition σ = ρ. If σ is larger than

ρ, the cross-elasticities are negative, and δs
1 will underestimate the true displacement effect.

Intuitively, group s will suffer from migratory inflows elsewhere in the local economy, but

these cross-group effects are not picked up by the δs
1 coefficient. And conversely, if σ is smaller

than ρ, the cross-elasticities are positive, so δs
1 will overestimate the true displacement effect.

Of course, the σ = ρ condition is only relevant to a CES production function with a

single nest. If there is a more complex structure, with the elasticities of substitution varying

across hierarchical nests, additive separability can never be satisfied - so δs
1 can never equal

the true displacement effect.

In practice, the delineation of skill groups is ultimately a choice made by the researcher.

But this choice matters for estimates of δs
1, as δs

1 conflates both the displacement effect and

substitutability in production. Different skill delineations will effectively be associated with

different levels of σ (i.e. substitutability in production), and as (32) shows, δs
1 is sensitive to

σ. Ideally, one may want to choose a skill delineation which yields a σ as close as possible

to ρ (if there happens to be a single nest), but these parameters are difficult to identify.

6.3 Skill delineation

Skill is typically identified in the literature by education, given it is relatively “exogenous”

compared to occupation. Various education classifications have been applied in the displace-

ment literature. Mechanically, finer classifications are likely to entail greater substitutability

in production (i.e. larger σ) - and consequently lower estimates of δs
1. Finer classifications

will also typically be associated more complex nesting structures, which make it harder to

interpret estimates of δs
1. In what follows, I offer estimates for three education-based classifi-

cations: (i) college graduates v non-graduates; (ii) high school dropouts v all others (see e.g.

32



Card, 2005; Cortes, 2008); (iii) four groups: dropouts, high school graduates, some college

and college graduates (e.g. Borjas, 2006). Card (2009a) argues that a four-group classifica-

tion may be too restrictive: it imposes a uniform substitution elasticity across all groups.

The particular concern is that high school graduates and dropouts are very close substitutes

(see Borjas, Grogger and Hanson, 2012, for an alternative view). If so, the dropout share

(among non-college workers) should have no effect on native outcomes. This matters in the

immigration context because migrants are much more likely to be dropouts than natives.19

This may also have implications for the interpretation of classification (ii).

Either way, classifications by education may not do justice in the particular context

of immigration: there is evidence to suggest that similarly educated natives and migrants

are not perfect substitutes (see Card, 2009b; Manacorda, Manning and Wadsworth, 2012;

Ottaviano and Peri, 2012, though Borjas, Grogger and Hanson, 2012, dispute this). This

may be a consequence of migrants working in lower skilled occupations than their schooling

might otherwise warrant (Dustmann and Preston, 2012; Dustmann, Schoenberg and Stuhler,

2016). Card and DiNardo (2000) and Card (2001) offer a practical method to address this

concern. They probabilistically assign individuals into broad occupation groups, conditional

on their education and demographic characteristics. This assignment is based on predictions

from a multinomial logit model; and crucially, this model is estimated separately for natives

and migrants - thus accounting for any downgrading effect.

In what follows, I estimate displacement effects for two such probabilistic classifications.

First, I use Card’s (2001) six-group occupation classification: laborers and low skilled ser-

vices; operative and craft; clerical; sales; managers; professional and technical. As an alter-

native, I also study a classification with just two imputed occupation groups: (i) all those

two-digit occupations with less than 50 percent college share in 2010; and (ii) all those

with more than 50 percent.20 I assign individuals probabilistically to these groups based on

multinomial logit estimates using the 1990 census.

6.4 Estimates of displacement: decadal cross-sections

I next estimate the empirical specification (27) separately for the three education classifica-

tions and the two imputed occupation classifications described above. In principle, in line

19In the ACS sample of 2010, a similar fraction of migrants and natives have no college education: 57 and
48 percent respectively. But 27 percent of migrants are high school dropouts, compared to just 12 percent
of natives.

20As it happens, the occupational distribution in college share is strongly bipolar, and 50 percent is the
natural dividing line.
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with (31), one should control for the initial conditions and proxies for skill-specific local

demand shocks. One might use skill-specific Bartik shift-shares for this purpose (see e.g.

Amior and Manning, forthcoming), but it turns out this makes little difference to the results

in these within-area specifications. For consistency with the existing literature then, I choose

to omit these controls; and I just condition on CZ-year and skill-year interacted fixed effects.

The regressor of interest, the contribution of new migrants
LF

srt

Lsrt−1

to the local skill s

population, is presumably endogenous to cell-specific demand shocks; and I again address

this problem using a migrant shift-share instrument. Card (2001) shows this instrument

can be applied elegantly to predict the migrant contribution to skill cells within local areas.

Specifically, the instrument takes the form:

msrt =

∑

o φ
o
rt−1L

F
o(−r)st

Lrst−1

(33)

where new migrants of origin o and skill s are allocated proportionally according to the initial

co-patriot geographical distribution.

[Table 7 here]

In the top half of Table 7, I present IV estimates of δs
1 from equation (27), based on

decadal differences in census cross-sections. I include the first stage estimates in column 1:

that is, the effect of the skill-specific migrant shift share instrument msrt on the new migrant

contribution
LF

srt

Lsrt−1

. The rows of the table correspond to different skill delineations.

As column 1 shows, the skill-specific migrant shift-share is a strong instrument for all

skill delineations, with the coefficient ranging from 0.4 to 0.8. But, controlling for CZ

fixed effects, IV estimates of the δs
1 within CZ-year cells (in column 2) are sensitive to skill

delineation. The overall effect (accounting for both natives and old migrants) is negligible

when I use the imputed occupation classifications, whereas the responses are large and

positive (between 0.6 and 1.2) for the education group classifications (i.e. foreign inflows

appear to attract additional workers to these cells). Interestingly, comparing columns 2 and

3, the positive effects are (more than) entirely driven by natives: the contribution of old

migrants is negative. In other words, for any of the skill delineations I study, a skill-specific

inflow of foreign migrants has a substantial effect on local skill composition - a result which

is consistent with the existing literature. However, this result need not reflect an internal

mobility response (or lack thereof): local composition may also be driven by local birth

cohort effects, and this is what I turn to next.
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6.5 Estimates of displacement: longitudinal dimension

Fortunately, it is possible to isolate the impact on residential decisions by exploiting a longi-

tudinal dimension of the census data: between 1970 and 2000, respondents were asked where

they lived five years ago. This approach has precedent: Card (2001) and Borjas (2006) use

this data to test for displacement. I restrict attention to the period 1980-2000, since previous

residence is only classified by state in 1970. I construct CZ population counts (for individ-

uals aged 16-64) by current residence in each census extract, together with CZ counts for

the same individuals by residence five years earlier. Of course, I do not observe emigrants

from the US, but this omission should bias my findings against displacement - if emigration

is partly a response to an individual’s local economic environment (i.e. at the CZ level); and

indeed, Cadena and Kovak (2016) present some evidence in favor of this claim for returning

Mexicans.

With this in mind, I re-estimate equation (27) using five year differences:

(

Lsrt − LF
srt

)

− Lsrt−5

Lsrt−5

= δs5
0 + δs5

1

LF
srt

Lsrt−5

+ drt + dst + εsrt (34)

where t now denotes years (as opposed to decades), LF
srt is the stock of “new” migrants (who

arrived in the US less than five years previously), and Lsrt −LF
srt is the local stock of workers

who were living in the US for more than five years. Thus, the expression
(

Lsrt − LF
srt

)

−

Lsrt−5 identifies the net migratory flow of these longer-term residents between t − 5 and

t. As described above, my data covers three census extracts: 1980, 1990 and 2000. I also

reconstruct the skill-specific migrant shift-share instrument msrt, to predict the contribution

of new migrants to the local population over five years (rather than a decade).

I present the first stage and IV estimates in the bottom half of Table 7. Unsurprisingly,

the first stage estimates look similar to those in the decadal data. But this time, estimates

of δs5
1 are universally negative. The overall response (of both natives and old migrants)

is reported in column 2, and these do vary considerably in magnitude by skill delineation.

The response for the college grad/non-grad decomposition (first row) is -2.8, though the

standard error is very large. The estimate of δs5
1 is -0.38 for the high school dropout/non-

dropout decomposition and -0.17 for the 4 education group classification. However, as I

have described above, these education classifications are potentially problematic because

of misallocation of migrants to native skill groups, as well as the general concerns about

substitutability in production.

The final two rows report results for the imputed occupation classifications. I estimate
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δs5
1 as -1.3 for the two group decomposition and -0.38 for six groups. The difference in these

estimates is statistically significant, and this makes sense in light of the predictions from

the model above. A classification with more skill groups admits greater substitutability in

production, so a larger amount of the displacement effect is diffused across skill groups - and

absorbed by the CZ-year interacted fixed effects. The contribution of natives to these δs5
1

estimates is substantial in each.

Using a similar set-up however (with the same longitudinal dimension of the census),

Card (2001) finds no evidence of geographical displacement. He uses a six-group occupation

delineation, which may be subject to larger substitutability in production. However, in the

final row of Table 7, I do estimate statistically significant displacement effects even in this six-

group set-up (though much smaller than for the two-group delineation). I study this further

in Appendix F, where I attempt to reconcile Card’s results with mine. The difference can

apparently be explained by two additional factors. First, Card’s restriction of the sample to

the top 175 MSAs attenuates the effect. And second, he controls for a range of demographic

means at time t− 5 within the skill-area cells (age, education, migrants’ years in US) which

also attenuate the effect. Of course, these controls may be picking up important skill-specific

shocks which I have neglected: the purpose of this exercise is merely to understand how our

results can be reconciled.

6.6 Estimates of cohort effects

These cohort effects can also be observed directly (at least among the native-born) by exploit-

ing data on individuals’ state of birth (also reported in the census). I begin by re-estimating

equation (27) using state-level data. I report the results in Table 8. The first stage in column

1 shows substantial power, and the range of coefficients (across skill delineations) is similar to

the CZ-level estimates in the top half of Table 7. Column 2 offers estimates of δs
1, replicating

the second column of Table 7 (top half) for state-level data. Again, the coefficients look very

similar to the CZ results.

[Table 8 here]

In column 3, I re-estimate equation (27), but allowing subscript r in the dependent

variable to correspond to state of birth, rather than state of residence. Thus, the dependent

variable
∆Lsrt−LF

srt

Lsrt−1

now becomes the contribution of natives and old migrants to population

growth of 16-64s with skill s - among those born (rather than residing) in state r. This
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accounts for the contribution of cohort effects to skill composition in state r. The coefficients

are remarkably large (close to 1 in several cases) - and universally larger than the δs
1 estimates

by state of residence in column 2 (though the standard errors are very large in the case of

college graduates/non-graduates). Given that approximately two thirds of individuals live

in their state of birth, these cohort effects will exert a sizeable influence on the evolution of

local skill composition.

To summarize then, the longitudinal evidence (exploiting individuals’ reported previous

place of residence) points to substantial geographical displacement even within skill groups.

But these effects are not manifested in decadal census changes because of substantial cohort

effects. For example, California has received a large inflow of low skilled migrants from

abroad. On net, there has also been a large outflow of low skilled natives and earlier migrants

(relative to high skilled). All else equal, this would have left the local skill composition

unchanged overall. But the native Californian population has also downgraded in terms of

skills over time - which has undone the contribution of native relocation decisions to local

skill composition.

At first sight, these cohort effects may appear strange: low skilled Californians might be

expected to respond to low skilled immigration by acquiring more education. One explana-

tion might be that the composition of cohorts is driven by the children of earlier migrants -

but I find that excluding self-identifying Hispanics does not affect the results. Alternatively,

the cohort effects may be driven by selection. Suppose that, among the low skilled, the

more productive workers respond more heavily in their location choices (i.e. moving on net

away from California). The families of these more productive workers (whether the movers

themselves or their children) are more likely to be on the margin of acquiring college educa-

tion, particularly in the context of the expansion of college education in recent decades. So

over time, education levels among native Californians would then have decreased relative to

elsewhere. But of course, this is mere speculation - and it warrants further investigation.

7 Conclusion

The US suffers from large and persistent regional disparities in employment and labor force

participation, and it is often claimed that foreign migration may offer a remedy. Given that

new migrants are more mobile geographically, they can help “grease the wheels” of the labor

market and accelerate the adjustment of local outcomes (Borjas, 2001).

Building on important work by Cadena and Kovak (2016), I find that new foreign mi-
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grants account for between 25 and 55 percent of the local population response to demand

shocks. However, I cannot reject the hypothesis that population adjustment is no faster in

those areas which are better supplied by new migrants, as indicated by the migrant shift

share instrument. This is because migrants “crowd out” the contribution of natives to local

adjustment (though the standard errors do allow for partial crowding out effects). Indeed, I

present more direct evidence that new migrants have displaced natives (and earlier migrants)

one-for-one from CZs with large co-patriot communities, though this result relies on the in-

clusion of various controls for local demand and supply effects. Methodologically, I show how

concerns about serially correlated local migration shocks (in a dynamic setting with sluggish

adjustment) may be addressed by controlling for the initial conditions, encapsulated by the

initial local employment rate.

Using variation between skill groups within CZs, much of the existing literature has

identified small displacement effects; but I argue our results can be reconciled by accounting

for cohort effects and the sensitivity to skill delineation.

The magnitude of this displacement effect is certainly puzzling. Given the response of

population to labor demand shocks is somewhat sluggish, it is surprising that it should

respond strongly to supply shocks. Furthermore, despite one-for-one displacement, foreign

migration exerts a significant negative effect on local employment rates, with an elasticity

of -0.14 to -0.24. This may be reconciled with the displacement result if migrants are more

productive than natives, in the sense of doing the same work for less. Alternatively, the

displacement effect may be somewhat overestimated due to under-reporting of undocumented

migrants in the census.

Appendix

A Theoretical derivations

A.1 Derivation of equation (11)

Here, I show how equation (9) can be discretized to yield (11), following similar steps to

Amior and Manning (forthcoming). Notice first that (9) can be written as:

∂eγtlr (t)

∂t
= eγtλ̂F

r (t) + γeγtãr (t) + γeγtnr (t) (A1)

which has as a solution:
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eγtlr (t) = lr (0) +
∫ t

0
eγs

[

λ̂F
r (s) + γnr (s) + γãr (s)

]

ds (A2)

which can be re-arranged to give:

lr (t) − lr (0) =
∫ t

0
eγ(s−t)

[

λ̂F
r (s) + γnr (s) − γnr (0) + γãr (s)

]

ds (A3)

+
(

1 − e−γt
)

[nr (0) − lr (0)]

which can be written as:

lr (t) − lr (0) =
∫ t

0
eγ(s−t)λ̂F

r (s) ds+ nr (t) − nr (0) + ãr (t) − ãr (0) (A4)

−

∫ t

0
eγ(s−t)

[

ṅr (s) + ˙̃ar (s) ds
]

ds

+
(

1 − e−γt
)

[nr (0) − lr (0) + ãr (0)]

If λ̂F
r (s) is constant between time 0 and t, and if employment nr and the supply shifter ãr

change at a constant rate over the period, this gives:

lr (t) − lr (0) = λ̂F
rt +

[

1 −

(

1 − e−γt

γt

)]

[

nr (t) − nr (0) + ãr (t) − ãr (0) − λ̂F
rt

]

(A5)

+
(

1 − e−γt
)

[nr (0) − lr (0) + ãr (0)]

where λ̂F
rt =

∫

λ̂F
r (s) ds is the total migrant intensity integrated between 0 and t. (11) then

follows from this equation.

A.2 Derivation of equations (14) and (15)

For clarity, it is useful to define two functions:

fI

(

λ̂F
rt

)

=
γI

γI + γF λ̂F
r

[(

1 −
1 − e−γI

−γF λ̂F

r

γI + γF λ̂F
r

)

(

∆nrt + ∆ãrt − λ̂F
rt

)

+
(

1 − e−γI
−γF λ̂F

r

)

(nt−1 − lt−1 + ãrt−1)

]

(A6)
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and

fF

(

λ̂F
rt

)

= λ̂F
rt+

γF λ̂F
rt

γI + γF λ̂F
r

[(

1 −
1 − e−γI

−γF λ̂F

r

γI + γF λ̂F
r

)

(

∆nrt + ∆ãrt − λ̂F
rt

)

+
(

1 − e−γI
−γF λ̂F

r

)

(nt−1 − lt−1 + ãrt−1)

]

(A7)

which summarize the internal and foreign contributions to local population growth respec-

tively, for given migrant intensity λ̂F
rt. These correspond to (12) and (13) respectively. Taking

first order approximations of these functions around λ̂F
rt = 0:

fI

(

λ̂F
rt

)

≈ fI (0) + λ̂F
rtf

′

I (0)

and

fF

(

λ̂F
rt

)

≈ fF (0) + λ̂F
rtf

′

F (0)

which yield (14) and (15) in the main text.

A.3 Derivation of equations (18) and (19)

Using the labor supply and demand curves, (2) and (3), local employment can be expressed

as:

nrt = η (lrt + zs
rt) + (1 − η) zd

rt (A8)

for given local population lrt, where

η =
−ǫd

−ǫd + ǫs
(A9)

is the ratio of the elasticity of labor demand to the sum of the supply and demand elasticities.

Taking first differences:

∆nrt = η
(

λI
rt + λF

rt + ∆zs
rt

)

+ (1 − η) ∆zd
rt (A10)

where local population growth ∆lrt has been disaggregated into the contributions from in-

ternal and foreign migration, λI
rt and λF

rt. Equation (19) can then be derived by substituting

(A10) for ∆nrt in (17).

I next turn to the change in the local employment rate, ∆ (nrt − lrt). I first replace ∆nrt

with (A10):

∆ (nrt − lrt) = η∆zs
rt + (1 − η) ∆zd

rt − (1 − η)λI
rt − λF

rt (A11)
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where ∆lrt has again been disaggregated into λI
rt and λF

rt. Equation (19) can then be derived

by substituting (18) for λI
rt.

B Effect of years in US on cross-state mobility

Based on ACS samples between 2000 and 2016, Table 1 shows that foreign-born individuals

are less likely to move between states (2.43 percent each year) than natives (2.79 percent).

However, this masks some important heterogeneity by years in US. In this appendix, using

the same data, I show that new immigrants are in fact more mobile between states than

natives, but this differential is eliminated within five years.

To identify the effect of years in the US, it is important to control for entry cohort effects

(Borjas, 1985) and observation year effects. To control for these, I estimate complementary

log-log models for the annual incidence of cross-state migration (see Amior, 2017a).

Let MigRate (Xi) denote the instantaneous cross-state migration rate conditional on a

vector of individual characteristics Xi. The probability of moving before time t is then:

Pr (Migτ
i = 1, t < τ) = 1 − exp (−MigRate (Xi) τ) (A12)

This motivates the complementary log-log model:

Pr (Migτ
i = 1, t < τ) = 1 − exp (− exp (ψ′Xi) τ) (A13)

where the ψ parameters can be interpreted as the elasticities of the instantaneous migration

rate MigRate (Xi) with respect to the components of Xi. An attractive feature of the

complementary log-log model is that this interpretation is independent of the time horizon τ

associated with the migration variable (assuming a constant hazard). I define an individual

as a cross-state mover if he reports living in a different state 12 months previously - so I

effectively normalize τ to one year. The Xi vector includes the following variables:

ψ′Xi =
20
∑

k=1

ψY RS
k Y rsUSk +

2015
∑

k=1981

ψY RI
k Y rImmigk +

2016
∑

k=2001

ψY RI
k Y rObsk

The sample for this exercise consists of (1) all natives aged 16-64 (22.6m observations) and

(2) all foreign-born individuals aged 16-64 with between 1 and 20 years in the US (2.2m).

Thus, there are 21 demographic groups: natives, migrants with 1 years in US, migrants with

2 years, ..., migrants with 20 years. I include in the Xi vector binary indicators for the final
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20, i.e. Y rsUSk for k between 1 and 20, so natives are the omitted category. I also control

for a full set of entry cohort effects Y rImmigk (taking 0 for natives: the omitted category

again) and a full set of observation year effects Y rObsk. I assume here that the observation

year effects are common to natives and migrants.

Panel A of Figure A1 reports the basic coefficient estimates on the years in US dummies,

together with the 95 percent confidence intervals. The estimates can be interpreted as the

log point difference in cross-state mobility between migrants (with given years in US) and

natives, controlling for entry cohort and observation year effects. Migrants are initially more

mobile than natives: the deviation at the entry year is 93 log points. But this falls to zero

by year 6 and becomes negative thereafter, dropping to -49 log points by year 20.

In Panel B, I estimate the same empirical model, but this time controlling for a full

set of single-year age effects. Age effects are important here because individuals with fewer

years in the US will typically be younger, and the young are known to be more mobile for

other reasons (see e.g. Kennan and Walker, 2011). Thus, without age controls, we are likely

to overestimate mobility of new immigrants relative to natives. And indeed, this is what

the results suggest: the deviation at year 1 is now somewhat lower, at 68 log points. The

gradient in Panel B is still negative, but shallower than Panel A: the coefficient touches zero

at year 5 and reaches -31 log points by year 20.

C Robustness to composition-adjusted employment

I have argued in this paper that local migrant inflows are associated with important changes

in native cohort quality. This may raise concerns about the interpretation of aggregate-

level employment rates and changes in employment. In this appendix, I replicate all the

aggregate-level results in the main text, but this time adjusting any employment variables

for local differences in demographic composition.

I begin by computing composition-adjusted local employment rates for every commuting

zone r and time period t, which I denote by ERADJ
rt . To do this, I run logit regressions of

employment on a detailed range of individual characteristics (age and age squared; four edu-

cation indicators, each interacted with age and age squared; black and Hispanic indicators; a

gender dummy, interacted with all previously-mentioned variables; and a foreign-born indi-

cator, interacted with all previously-mentioned variables) and a set of location fixed effects,

separately for each census cross-section. I then predict the average employment rate in each

location - assuming the local demographic composition in each location is identical to the
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national composition.

I then back out the composition-adjusted employment stocks, NADJ
rt , by multiplying by

local population, Lrt:

NADJ
rt = ERADJ

rt · Lrt

The change in log composition-adjusted employment is then simply the differenced log of

NADJ
rt , i.e. ∆nADJ

rt .

I begin with Table A1, where I re-estimate the averages response specifications from

Table 2 - but this time using composition-adjusted employment variables. Interestingly, the

IV population responses (column 1) are larger: the response to local employment growth,

β1, is now 0.75 (up from 0.63 in Table 2); and the response to the lagged employment rate is

0.55 (up from 0.39). However, the contribution from foreign migration is (proportionately)

very similar to Table 2: new migrants contribute 28 percent of the β1 effect and 56 percent

of the β2 effect (comparing IV estimates in columns 2 and 3).

Next, in Table A2, I re-estimate the crowding out effects from Table 3 using composition-

adjusted employment. The results look similar: at least in the IV estimates, I cannot

reject the claim that a larger local supply of foreign migrants has no effect on the speed of

population adjustment. Finally, Table A3 re-estimates the displacement effects in Table 4,

and Table A4 re-estimates the effects on employment rates in Table 6; and in both cases,

adjusting the employment variables for composition makes little difference.

D Displacement estimates controlling for employment

growth

In this appendix, I estimate a “conditional” displacement effect, based on equation (17):

∆Lrt − LF
rt

Lrt−1
= δc

0 + δc
1

LF
rt

Lrt−1
+ δc

2∆nrt + δc
3 (nrt−1 − lrt−1) + Ãrtδ

c
A + εrt (A14)

where, in contrast to the displacement specification in equation 26, I now condition on the

change in local employment ∆nrt. The identification of this equation requires one additional

instrument, and I simply use the contemporaneous Bartik shift-share brt for this purpose.

Note that brt was a right hand side control in 26, and it is now omitted from the specification.

As I describe in Section 2 in the main text, δc
2 cannot be interpreted as a “true” dis-

placment effect, as changes in employment may be an important margin of adjustment in
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response to
LF

rt

Lrt−1

. But in principle, a comparison of the estimates of A14 and 26 should give

some indication of the contribution of labor demand to local adjustment.

I report estimates of equation (A14) in columns 1, 3 and 5 of Table A5, for OLS and

both the “simple” and “interacted” IV specifications, and both with and without CZ fixed

effects. For comparison, in columns 2, 4 and 6, I report the estimates of the “unconditional”

displacement equation 26, which replaces ∆nrt with the current Bartik brt on the right hand

side: these are identical to the same columns of Table 4 in the main text.

In all specifications, the conditional and unconditional displacement effects look similar.

As one would expect, the OLS estimates suggest the conditional effect (columns 1) is larger

(more negative) than the unconditional effect (coumn 2). Nevertheless, the fact that the two

are close (the difference is not statistically significant) suggests that labor demand plays a

minor role in local adjustment. In the context of the model in Section 2, this is indicative

of a small η; that is, an elasticity of labor demand ǫd which is small relative to the elasticity

of supply ǫs.

However, in the IV specifications, the conditional displacement effects (columns 3 and

5) are slightly smaller than the unconditional effects (4 and 6); though again, it should be

stressed that the difference is not statistically significant (and at least in the basic specifi-

cation without CZ fixed effects, neither are significantly different from -1). Taking a literal

interpretation of the model in Section 2, the fact that the conditional effect is smaller would

appear to imply a negative elasticity of labor demand, ǫd.

These seemingly unintuitive results can be “explained” by the negative effects of migrant

inflows on employment rates that I estimated in Section 5.3 in the main text. Given that

migrant inflows have a negligible effect on total population (due to 1-for-1 displacement), a

negative effect on the employment rate implies that hey have a negative effect on the total

employment stock. Consequently, the omission of the employment control will necessarily

cause the unconditional displacement effect (in columns 4 and 6) to be more negative than

the conditional effect (3 and 5).

E Reconciliation with Cadena and Kovak (2016)

[THIS SECTION IS PRELIMINARY AND INCOMPLETE]

In a groundbreaking paper, Cadena and Kovak (2016) study the contribution of (specifi-

cally Mexican) migrants to local labor market adjustment, exploiting variation in historical
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settlement patterns. Building on their contribution, I use a similar identification strategy.

But their results appear to diverge from mine in three ways. First, Cadena and Kovak find

that natives contribute negligibly to local adjustment - in contrast to foreign-born workers.

Second, they find that migrants respond heavily even after arriving in the US - while in my

paper, the migrant response is entirely driven by new arrivals. And third, they find that

migrants do not “crowd out” the native response - which makes theoretical sense, given they

find that low skilled natives are immobile.

In this appendix, I attempt to reconcile my results with theirs. There are some important

differences in empirical setting. They focus on the contribution of specifically Mexican-born

migrants between 2006 and 2010 (during the Great Recession). And they find that Mexicans

accelerate local adjustment specifically in the low skilled market (less than college): college-

educated natives do respond strongly to local demand. In contrast, my focus is the overall

contribution of all migrants to the aggregate labor market over a broader period: 1960-2010.

Nevertheless, I show here that there are also differences in empirical specification between

our papers which can help bridge much of the gap.

E.1 Average response to local demand shocks

Cadena and Kovak base their analysis on the following specification:

∆lgr = βCK
0 + βCK

1 ∆ñgr +Xgrβ
CK
X + εgr (A15)

where I have altered notation to match my own. The dependent variable ∆lr is the change

in log local population in a given nativity group g (i.e. natives, Mexican migrants, non-

Mexican migrants), and ∆ñgr represents the local employment shock experienced by that

group. Specifically, this is the weighted average of industry-specific employment changes;

∆ñgr =
∑

i

φi
gr∆nirt (A16)

where the weights φi
gr are equal to group-specific shares of local employment in industry

i. ∆ñgr is instrumented using a contemporaneous Bartik industry shift-share, akin to that

described in equation (21) in the main text. The coefficient βCK
1 is then interpreted as the

magnitude of the population response to a local group-specific demand shock. In certain

specifications, two right-hand side controls are included in the vector Xgr: the Mexican

population share in 2000 (which serves as an “enclave” instrument for Mexicans, akin to

equation (22)) and indicators for MSAs in states that enacted anti-migrant employment
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legislation.

For the most part, Cadena and Kovak (2016) study local changes between 2006 and 2010

across 94 Metropolitan Statistical Areas (MSAs) in the US. Attention is restricted to MSAs

with adult population exceeding 100,000, Mexican-born sample exceeding 60, and non-zero

samples for all other studied demographic groups.

Compared to my specification in (24), there are five key differences. First, Cadena and

Kovak (2016) study the response to a weighted industry employment shock ∆ñ, rather than

a simple change in log employment ∆n. Second, they do not account for dynamics: in

particular, they do not control for the lagged employment rate. In principle, these dynamics

should be even more important for their short 2006-2010 interval than the decadal intervals

in my own analysis. Third, they do not control for local amenity effects such as climate

and coastline. And fourth, they exclude geographical areas with smaller aggregate and

Mexican-born populations - while my Commuting Zone (CZ) sample is comprehensive of the

continental US.

In Table A6, I offer estimates of (A15), relying on data and programs published alongside

Cadena and Kovak’s article. I restrict attention to low skilled workers (and specifically men)

- who account for Cadena and Kovak’s headline results. The first row of Table A6 replicates

the first row of Table 4 in their paper. The response of low skilled natives to local demand

shocks is negligble, while the Mexican-born population responds heavily (with a one-for-one

effect). Interestingly, the response of non-Mexican migrants is large and negative, offsetting

much of the Mexican response. The overall population response (column 1) is statistically

insignificant.

In the next row, I replace the weighted industry employment shock ∆ñgr with a simple

change in (group-specific) log employment ∆ngr. The estimates are mostly unchanged,

except we now see a large positive response from non-Mexican migrants. In columns 5-8,

I control additionally for the lagged employment rate (i.e. in 2006), which I instrument

using a Bartik industry shift-share for 2000-6. The response among natives and the overall

population are now substantially larger - and it is not possible to statistically reject complete

adjustment over the period. The fit appears remarkably good, given the small sample of

94 MSAs. Intuitively, as Cadena and Kovak note, MSAs experiencing larger upturns before

2006 experienced larger downturns thereafter. Thus, the small native response in the first

row of Table A6 may simply reflect a mixture between a (somewhat sluggish) response to a

historic upturn and contemporaneous downturn.

In the third section of Table A6, I control for the local amenity effects described in

46



Section 3 in the main text (using population allocations to map CZ data to MSAs): climate,

coastline, historical population and isolation. In columns 1-4 (without the dynamics), there

is now a strongly significant response from all demographic groups. This suggests that

these amenity effects may be important omitted variables, correlated with local demand

shocks. The responses become larger in magnitude in columns 5-8 (controlling for the lagged

employment rate), though the standard errors are also much larger.

Of course, given the small sample of 94 MSAs, this is a demanding specification. In the

final section of Table A6, I extend the sample of geographical areas. Specifically, I include

the remaining 181 MSAs (based on Cadena and Kovak’s scheme), and I also include 41

additional areas consisting of the non-metro areas in each state (so 316 areas in total). The

latter modification ensures the area sample is comprehensive of the US, similarly to the

Commuting Zones I use in the main text. The results are reported in the final section of

Table A6, controlling for the amenity effects. The results look similar to before, but the

standard errors are now much smaller in almost all cases. Native-born workers do exhibit a

large population response, though not as large as Mexican-born migrants. The response of

non-Mexican migrants is difficult to pin down, given large standard errors.

In the main text, I study the contribution of different nativity groups (natives, migrants,

etc.) to overall population growth in the local area: see Table 2. I now replicate this

approach, estimating:

∆Lgrt

Lrt−1

= βCK
0 + βCK

1 ∆nrt + βCK
2 (nrt−1 − lrt−1) +Xrtβ

CK
X + εgrt (A17)

This specification is identical to the final section of Table A6, but replacing the dependent

variable with contributions (of group g) to population growth between 2006 and 2010 among

low skilled men, ∆Lgrt

Lrt−1

. Also, the employment shocks are no longer nativity-specific - and

now correspond to all low skilled men. The vector Xgr contains the Mexican enclave, policy

controls and also the amenity effects.

I report the results in Table A7. Native-born workers account for most of the response

to the contemporaneous employment change, ∆nrt, and for the entire response to the lagged

employment rate. “New” migrants (arriving in the country since 2006) explain the remainder

the response - consistent with my findings in Table 2. The average contribution of old

migrants (arriving before 2006) is statistically insignificant. Having said that, there is a

significant response from “old” Mexicans (consistent with Cadena and Kovak’s findings),

but this is offset by a negative contribution from old non-Mexican migrants.

To summarize, once I account for population dynamics and amenity controls, the results
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look similar to my findings - despite important differences in the sample (low skilled men,

as opposed to all individuals) and time period (2006-10, as opposed to 1960-2010).

E.2 Local heterogeneity

Table A7 confirms that foreign-born workers make a disproportionate contribution to local

adjustment in Cadena and Kovak’s data. I now assess the implications of a larger supply of

migrants for overall adjustment: i.e. do migrants crowd out the contribution of natives? I

address this question in the main text by exploiting local variation in the supply of migrants,

and Cadena and Kovak do the same. Specifically, they rank the 94 MSAs according to the

initial share of Mexican-born among the low skilled population: the median share is 0.147.

And in Table 5 of their paper, they show that local employment rates respond more weakly

to demand shocks in MSAs with Mexican share exceeding 0.147 than those with smaller

shares.

In the main text, I study variation across the support of an aggregate migrant shift-

share instrument - rather than initial Mexican share. However, unsurprisingly perhaps, the

migrant shift-share and Mexican share are closely correlated, with an R squared of 41 percent

in my 316 geographical area sample.

My approach here is to re-estimate equation (A17), with the endogenous variables (and

their Bartik instruments) interacted with a dummy MexHighrt which takes value 1 for an

MSA with Mexican share exceeding 0.147:

∆Lgrt

Lrt−1
= βCK

0 + βCK
1 ∆nrt + βCK

2 (nrt−1 − lrt−1) + βCK
3 ∆nrt ·MexHighrt (A18)

+βCK
4 (nrt−1 − lrt−1) ·MexHighrt +Xrtβ

CK
X + εgrt

where the vector Xrt now contains both the policy controls and the MexHighrt dummy.

I offer estimtaes of this equation in Table A8. The first section of the table reports

estimates with a 94 MSA sample and excluding the amenity controls. Without accounting

for dynamics (columns 1-4), there is no population response to local employment shocks in

MSAs with low Mexican shares. But there is a large response in MSAs with high shares,

largely driven by the contribution of Mexican-born workers. There is also no evidence of

crowding out: the native response is negligible in MSAs with both high and low Mexican

shares. This is all consistent with the results in Cadena and Kovak’s Table 5. Once I control

for the dynamics (columns 5-8), Mexicans continue to make a large contribution to the
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response to the contemporaneous shock ∆nrt, though not to the lagged employment rate.

In the second section of Table A8, I control for amenity effects. There is now some evi-

dence of displacement of the native contribution. In low share MSAs, the native contribution

is 0.36 (not accounting for dynamics), and this falls to 0.1 in high share MSAs - though the

standard errors are large.

In the third section, I extend the sample to 316 geographical areas. Standard errors are

now lower, and we see the same displacement effect in the first four columns: the overall

response of population is insignificantly different in high and low share MSAs. However, once

I account for dynamics (columns 5-8), the coefficients now suggest there is little crowding

out. But again, the standard errors are large (especially on the native response: column 6)

- so it also not possible to reject a large displacement effect. Given the sample size though,

this is a demanding specification.

F Reconciliation with Card (2001)

The seminal reference in the geographical displacement literature is Card (2001). He avoids

concerns about cohort effects by exploiting the longitudinal dimension of the US census -

basing his estimates on respondents’ reported places of residence five years previously. But

despite this, he finds “negative displacement” effects - with each new foreign migrant to an

area attracting (on net) 0.25 additional residents. In order to reconcile my results with his,

this appendix explores the robustness of his results to various specification changes. I show

the divergence of our estimates is explained by: (1) the delineation of skill groups, (2) the

choice right hand side controls, and (3) the sample of geographical areas.

Card (2001) exploits variation across the 175 largest Metropolitan Statistical Areas

(MSAs) in the 5 percent census extract of 1990 - in the contrast to the analysis in the

main text, which is based on Commuting Zones. Similarly to the main analysis, I extract

this data from the Integrated Public Use Microdata Series (Ruggles et al., 2017). The

1990 census extracts offers sub-state geographical identifiers known as Public Use Micro-

data Areas (PUMAs), and a concordance between PUMAs and MSAs can be found at:

https://usa.ipums.org/usa/volii/puma.shtml. A number of PUMAs straddle MSA bound-

aries; and following Card (2001), I allocate the population of a given PUMA to a given MSA

if at least half that PUMA’s population resides in that MSA.

I construct the regression variables according to the details provided by Card (2001). The

sample is restricted to individuals aged 16 to 68 with at least one year of potential experience.
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In constructing his sample, Card uses all foreign-born individuals in the census extract and

a 25 percent random sample of the native-born. I instead use the full sample of natives, and

this may (at least partly) account for some small discrepancies between his estimates and my

replication. Card delineates skill groups by probabilistically assigning individuals into six

broad occupation groups, conditional on their education and demographic characteristics (as

described in Section 6.3 above). This assignment is based on predictions from a multinomial

logit model, estimated separately for native men, native women, migrant men and migrant

women.

Card estimates a specification similar to (34) in the main text:

Lsr,1990 − Lsr,1985

Lsr,1985
= δC

0 + δC
1

LF
sr,1990

Lsr,1985
+ δC′

2 xsr + dC
r + dC

s + εsr (B1)

where Lsr,1990 is the population in skill group s in area r in the census year, 1990; and Lsr,1985

is the local population five years previously, based on the sample of census respondents.

LF
sr,1990 is the number of migrants in the cell in 1990 who were living abroad in 1985. Thus, the

dependent variable Lsr,1990−Lsr,1985

Lsr,1985

is the population growth in skill group s in area r (though

not accounting for emigrants from the US), and the key independent variable
LF

sr,1990

Lsr,1985

is the

contribution of foreign migration to that growth. xsr is a vector of mean characteristics of

individuals in the (s, r) cell. In line with Card, this consists of mean age, mean age squared,

mean years of schooling and fraction black, separately for both natives and migrants in the

cell, and (for migrants only) mean years in the US. Finally, dr and ds are full sets of area

and skill fixed effects respectively.

In the main text however, my dependent variable is the contribution of natives and

earlier (pre-1985) migrants to population growth (rather than overall population growth).

To maintain consistency with the main text, I estimate the following specification:

(

Lsr,1990 − LF
sr,1990

)

− Lsr,1985

Lsr,1985
= δs5

0 + δs5
1

LF
sr,1990

Lsr,1985
+ δs5′

2 xsr + dr + ds + εsr (B2)

While δC
1 in (B1) describes the effect of an additional migrant to overall population growth

within the cell, δs5
1 in (B2) gives a within-cell “displacement effect”.21 In his baseline OLS

specification (with 175 MSAs and observations weighted by cell population), Card estimates

δC
1 as 1.25 (with a standard error of 0.04), which implies a δs5

1 of 0.25 - i.e. a “negative dis-

placement” effect.22 His equivalent specification (using the shift-share instrument described

21See Peri and Sparber (2011) for a discussion of this point.
22See Table 4 of Card (2001).
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in the main text) gives the same number for δC
1 , but with a standard error of 0.05. I record

these estimates in columns 1 of Table A9.

[Table A9 here]

I attempt to replicate these estimates in columns 2, and I achieve similar numbers for

Card’s six-group occupation scheme. In the remaining rows of these two columns, I re-

estimate the model for the various skill delineations discussed in Section 6.3, but the δs5
1

estimates are not significantly different. In column 3, I cluster the errors by MSA: the

standard errors are now larger, but the broad conclusions are unaffected.

Much of the action comes in columns 4, when I exclude the mean demographic controls

in xsr from the right hand side. All the estimates of δs5
1 are now negative, and they are

statistically significant for both the graduate/non-graduate delineation and the two-group

occupation scheme, with IV coefficients of -1.98 and -0.43 respectively. Of course, these con-

trols may be picking up important skill-specific shocks which I have neglected: the purpose

of this exercise is merely to understand how our results can be reconciled.

Finally, column 5 extends the sample of geographical areas. The earlier columns restrict

the sample to the 175 largest MSAs, following the example of Card; but I now include the

remaining 145 MSAs sample (raising the total to 320), and I also include 49 additional

areas consisting of the non-metro areas in each state (so 369 areas in total).23 The latter

modification ensures the area sample is comprehensive of the US, similarly to the Commuting

Zones I use in the main text. The coefficient estimates in columns 5 are larger (more negative)

for every skill delineation. In particular, the IV coefficients are now -2.54 and -0.78 for the

graduate/non-graduate and two-group occupations schemes respectively. The estimates are

closer to zero (though still for negative) for the remaining skill delineations, in line with the

longitudinal estimates in Table 7 in the main text.

23Based on the allocation procedure described above, all of New Jersey is classified as part of an MSA.
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Tables and figures

Table 1: Gross annual flows into US states

All Native-born Foreign-born

All In US last year Abroad last year

(1) (2) (3) (4) (5)

% living in a different US state last year 2.72 2.79 2.36 2.43 0

% living abroad last year 0.70 0.24 2.91 0 100

Gross annual inflows (total) 3.41 3.03 5.28 2.43 100

Contribution to gross annual inflows (%) 100 73.35 26.65 11.94 14.71

Data is based on individuals aged 16-64 in American Community Survey samples between 2000 and 2016, extracted
from the Integrated Public Use Microdata Series (Ruggles et al., 2017). I break down the sample into native and
foreign-born; and I break the latter down according to where they were living 12 months previously (in US or
abroad). The first row give the percentage of individuals (in each group) who report living in a different US state 12
months previously, and the second row the percentage living abroad. The third row reports the sum of the first two
rows. The final row reports the contribution of each demographic group to the total gross annual inflow (i.e. 3.41
percent).
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Table 2: Average contributions to local population adjustment

PANEL A: OLS and IV

∆ log pop Contributions to local population growth

All New Natives and Natives All New Natives and Natives

migrants old migrants only migrants old migrants only

(1) (2) (3) (4) (5) (6) (7) (8) (9)

OLS

∆ log emp 0.803*** 0.957*** 0.039*** 0.918*** 0.869*** 0.957*** 0.045*** 0.912*** 0.865***

(0.015) (0.024) (0.013) (0.025) (0.021) (0.024) (0.009) (0.020) (0.018)

Lagged log ER 0.174*** 0.182*** 0.102*** 0.080** 0.047* 0.180*** 0.076*** 0.104*** 0.062***

(0.014) (0.017) (0.036) (0.039) (0.025) (0.017) (0.017) (0.021) (0.016)

λ̂F
rt 0.085* 0.971*** -0.886*** -0.552***

(0.047) (0.069) (0.074) (0.055)

IV

∆ log emp 0.630*** 0.761*** 0.194** 0.567*** 0.602*** 0.757*** 0.116*** 0.641*** 0.649***

(0.038) (0.051) (0.090) (0.097) (0.066) (0.049) (0.044) (0.062) (0.052)

Lagged log ER 0.388*** 0.429*** 0.236*** 0.193* 0.186** 0.422*** 0.103** 0.319*** 0.265***

(0.056) (0.065) (0.068) (0.100) (0.083) (0.066) (0.044) (0.083) (0.073)

λ̂F
rt 0.051 0.968*** -0.917*** -0.581***

(0.080) (0.072) (0.088) (0.078)

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

PANEL B: First stage

∆ log emp Lagged log ER

(1) (2) (3) (4)

Current Bartik 0.894*** 0.907*** -0.057 -0.056

(0.117) (0.112) (0.079) (0.073)

Lagged Bartik 0.101 0.119* 0.556*** 0.558***

(0.063) (0.066) (0.056) (0.058)

λ̂F
rt -0.208* -0.017

(0.106) (0.166)

Observations 3,610 3,610 3,610 3,610

Panel A reports OLS and IV estimates of β1 and β2 in the population response equation (24), across 722 CZs and five (decadal) time periods.
The dependent variable in column 1 is the log change in the population of all individuals aged 16-64. In the remaining columns, I replace the
dependent variables with components of local population growth. For reasons discussed in Section 3, I approximate the change in log population
∆lrt with local population growth ∆Lrt

Lrt−1

(column 2), which I disaggregate using the scheme in equation (20). Column 3 replaces the dependent

variable with the contribution of new migrants (arriving in the previous ten years),
LF

rt

Lrt−1

; column 4 with the contribution of other workers,

∆Lrt−LF

rt

Lrt−1

; and column 5 with the contribution of natives alone. Columns 6-9 replicate the previous four columns, but now controlling for local

migrant intensity, λ̂F
rt, as specified in equations (22) and (23). Panel B presents the first stage results associated with the IV estimates. There are

two endogenous variables (the change in log employment and the lagged log employment rate) and two corresponding instruments (the current
and lagged Bartik shift shares). I report the first stage estimates for each endogenous variable, both with and without the migrant intensity
control (which appears in the IV specifications in columns 6-9). Beyond local migrant intensity, all specifications control for a full set of time
effects, three climate variables (the maximum January and July termperatures, and mean July relative humidity), a dummy for the presence of
coastline, the log population density in 1900, the log distance to the closest CZ centroid; and these controls are also interacted with the time
effects. Errors are clustered by CZ, and robust standard errors are reported in parentheses. Each observation is weighted by the lagged local
population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Heterogeneity in contributions to population adjustment

PANEL A: OLS and IV
All New Natives and Natives All New Natives and Natives

migrants old migrants only migrants old migrants only

(1) (2) (3) (4) (5) (6) (7) (8)

OLS

∆ log emp 0.966*** 0.002 0.964*** 0.971*** 0.958*** -0.016 0.974*** 0.972***

(0.022) (0.019) (0.028) (0.026) (0.019) (0.014) (0.023) (0.023)

∆ log emp * λ̂F
rt -0.151 1.409*** -1.561*** -3.138*** 0.023 1.763*** -1.740*** -3.112***

(0.402) (0.514) (0.492) (0.429) (0.389) (0.381) (0.506) (0.433)

Lagged log ER 0.152*** -0.007 0.159*** 0.155*** 0.152*** 0.009 0.142*** 0.147***

(0.023) (0.013) (0.026) (0.021) (0.025) (0.014) (0.025) (0.020)

Lagged log ER * λ̂F
rt 0.688 2.249*** -1.561** -2.724*** 1.449* 1.345* 0.103 -1.629***

(0.613) (0.664) (0.737) (0.433) (0.862) (0.709) (0.726) (0.478)

λ̂F
rt 0.392* 1.742*** -1.350*** -1.310*** 1.511 1.017 0.494 0.759

(0.237) (0.222) (0.277) (0.173) (1.583) (1.484) (1.067) (0.906)

IV

∆ log emp 0.746*** -0.030 0.775*** 0.838*** 0.800*** -0.023 0.823*** 0.844***

(0.057) (0.048) (0.057) (0.052) (0.041) (0.029) (0.044) (0.047)

∆ log emp * λ̂F
rt 0.784 6.462 -5.678** -7.901*** -0.030 4.493*** -4.523*** -6.953***

(2.397) (4.131) (2.589) (2.537) (0.978) (1.605) (1.320) (1.537)

Lagged log ER 0.345** -0.223 0.568*** 0.603*** 0.428*** -0.095 0.523*** 0.571***

(0.141) (0.243) (0.161) (0.151) (0.090) (0.072) (0.098) (0.100)

Lagged log ER * λ̂F
rt 2.403 10.303 -7.901** -10.709*** 2.010 7.144*** -5.134** -9.542***

(4.115) (6.275) (3.668) (3.657) (2.540) (2.400) (2.490) (2.382)

λ̂F
rt 0.960 4.490** -3.530*** -4.097*** 2.461 6.051 -3.591 -5.710*

(1.504) (2.287) (1.329) (1.320) (3.569) (4.153) (2.801) (3.406)

λ̂F
rt * amenities No No No No Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

PANEL B: First stage

∆ log emp ∆ log emp Lagged Lagged log ∆ log emp ∆ log emp Lagged Lagged log

* λ̂F
rt log ER ER * λ̂F

rt * λ̂F
rt log ER ER * λ̂F

rt

(1) (2) (3) (4) (5) (6) (7) (8)

Current Bartik 1.128*** -0.021*** -0.062 0.018*** 1.148*** -0.007 -0.146** 0.002

(0.105) (0.007) (0.078) (0.006) (0.104) (0.006) (0.064) (0.005)

Current Bartik * λ̂F
rt -5.520** 1.489*** 0.136 -0.826*** -5.666** 1.219*** 2.052** -0.416***

(2.701) (0.268) (1.137) (0.119) (2.870) (0.224) (0.976) (0.108)

Lagged Bartik 0.127** 0.026*** 0.558*** -0.002 0.118* 0.021*** 0.474*** -0.005**

(0.064) (0.004) (0.068) (0.004) (0.062) (0.004) (0.056) (0.002)

Lagged Bartik * λ̂F
rt -1.745 -0.878*** 0.035 0.826*** -0.987 -0.516*** 0.734 0.658***

(1.315) (0.243) (1.757) (0.204) (1.545) (0.190) (1.084) (0.113)

λ̂F
rt 0.734*** 0.083** -0.039 -0.456*** -0.868 0.008 -3.463 -1.159***

(0.252) (0.035) (0.198) (0.032) (2.089) (0.246) (2.704) (0.324)

λ̂F
rt * amenities No No No No Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

Panel A reports OLS and IV estimates of equation (25), across 722 CZs and five (decadal) time periods. Just as in Table 2 (see the associated
table notes), I estimate this equation separately for overall local population growth (column 2) and the contributions of new migrants (column
3), other workers (column 4) and natives alone (column 5). All specifications control for the amenity variables described in the notes under Table

2, as well as for local migrant intensity, λ̂F
rt, as specified in equations (22) and (23). In addition, the remaining four columns (5-8) also control for

interactions between the amenity variables and the migrant intensity, λ̂F
rt. There are four endogenous variables: the change in log employment

and the lagged log employment rate, and the same two variables interacted with local migrant intensity, λ̂F
rt. Panel B reports the first stage

estimates for each endogenous variables, which use four corresponding instruments: the current and lagged Bartik shift-shares, both on their
own and interacted with migrant intensity. I have marked in bold the effect of each instrument and its corresponding endogenous variable - that
is, where one should theoretically expect to see significant positive effects. Errors are clustered by CZ, and robust standard errors are reported
in parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Estimates of displacement across CZs

PANEL A: IV and OLS

OLS IV: simple IV: interacted instruments

Natives and Natives Natives and Natives Natives and Natives

old migrants only old migrants only old migrants only

(1) (2) (3) (4) (5) (6)

Basic specification

New migs’ contrib -0.782*** -0.573*** -1.110*** -0.755*** -1.167*** -0.861***

(0.141) (0.118) (0.131) (0.130) (0.139) (0.140)

Lagged log ER 0.427*** 0.352*** 0.598*** 0.500*** 0.605*** 0.516***

(0.054) (0.048) (0.122) (0.109) (0.122) (0.108)

Current Bartik 0.687*** 0.690*** 0.707*** 0.677*** 0.721*** 0.702***

(0.093) (0.083) (0.095) (0.088) (0.094) (0.086)

FE specification

New migs’ contrib -0.553*** -0.706*** -0.317 0.141 -1.006*** -1.059***

(0.169) (0.166) (0.751) (0.666) (0.319) (0.272)

Lagged log ER -0.258*** -0.346*** 1.272*** 0.993** 0.373 -0.458*

(0.075) (0.084) (0.459) (0.427) (0.295) (0.244)

Current Bartik 0.778*** 0.696*** 0.768*** 0.715*** 0.750*** 0.682***

(0.092) (0.082) (0.100) (0.088) (0.083) (0.068)

Observations 3,610 3,610 3,610 3,610 3,610 3,610

PANEL B: First stage for new migrants’ contribution

Basic specification FE specification

(1) (2) (3) (4)

Current Bartik 0.100*** 0.032 -0.006 -0.065***

(0.029) (0.031) (0.018) (0.024)

Current Bartik * λ̂F
rt 1.247 1.415**

(0.858) (0.566)

Lagged Bartik 0.071*** 0.021 0.036** -0.025**

(0.020) (0.020) (0.017) (0.011)

Lagged Bartik * λ̂F
rt 2.887*** 2.710***

(0.498) (0.634)

λ̂F
rt 0.942*** 0.319** 0.491*** -0.048

(0.062) (0.137) (0.059) (0.151)

Observations 3,610 3,610 3,610 3,610

Panel A reports OLS and IV estimates of the displacement equations (26) and (??), across 722 CZs and five (decadal)

time periods. There are two endogenous variables: the contribution of new migrants to local population growth,
LF

rt

Lrt−1

,

and the lagged log employment rate. In all IV specifications, I instrument the contribution of new migrants using
the local migrant intensity, λ̂F

rt, as specified in equations (22) and (23); and I instrument the lagged employment rate
using the lagged Bartik shift share. For the IV estimates in columns 5-6, I include two additional instruments - as
suggested by equation (15) - namely interactions between the local migrant intensity λ̂F

rt and the current and lagged
Bartik shift shares. All specifications include the full set of controls listed in the notes under Table 2. The bottom half
of the table conditions further on CZ fixed effects, while the top half does not. Column 1, 3, and 5 report estimates
for the displacement of both natives and old migrants (who arrived in the US at least ten years previously), and the
remaining columns report estimates for the displacement of natives alone. The first stage estimates are presented in
Panel B, for both instrumenting strategies. Errors are clustered by CZ, and robust standard errors are reported in
parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Robustness tests for IV displacement effects: Basic specification

Basic specification FEs

1960s 1970s 1980s 1990s 2000s All years All years

(2) (3) (4) (5) (6) (7) (8)

Year effects 0.319 -0.687 -0.048 -0.903*** -0.514** -0.507** -2.148**

(0.922) (0.579) (0.208) (0.203) (0.221) (0.231) (0.934)

+ Current Bartik -0.718 -0.276 -0.471* -0.888*** -0.550** -0.671*** -1.598*

(1.032) (0.385) (0.257) (0.239) (0.220) (0.196) (0.862)

+ Lagged log ER (instrumented) -0.656 -0.231 -1.656 0.392 -0.544** -0.774*** -1.598*

(1.082) (0.326) (3.819) (0.610) (0.213) (0.232) (0.862)

+ Climate controls -2.090** -2.391*** -1.315 -1.207*** -0.855*** -1.422*** -1.598*

(0.958) (0.623) (1.042) (0.375) (0.139) (0.138) (0.862)

+ Coastline dummy -2.153** -2.414*** -1.222 -0.989*** -0.648*** -1.290*** -1.598*

(1.029) (0.724) (1.179) (0.358) (0.168) (0.172) (0.862)

+ Log pop density 1900 -1.766*** -2.141*** -1.034 -0.984*** -0.581*** -1.149*** -1.598*

(0.556) (0.552) (0.819) (0.370) (0.183) (0.194) (0.862)

+ Log distance to closest CZ -1.705*** -2.168*** -1.058*** -1.096*** -0.630*** -1.153*** -1.598*

(0.550) (0.595) (0.353) (0.384) (0.184) (0.191) (0.862)

+ Amenities x year effects -1.705*** -2.168*** -1.058*** -1.096*** -0.630*** -1.110*** -0.317

(0.550) (0.595) (0.353) (0.384) (0.184) (0.131) (0.751)

As above, but with lagged -1.555*** -2.116*** -0.745*** -1.365*** -1.024*** -1.120*** -1.251***

Bartik replacing lagged ER (0.525) (0.536) (0.174) (0.181) (0.190) (0.136) (0.433)

Observations 722 722 722 722 722 3,610 3,610

This table tests robustness of my IV estimates of displacement in column 3 of Table 4. These are based on the model of equation
(26): the dependent variable is the contribution of natives and old migrants to local population growth, and the endogenous

regressor is the contribution of new migrants (arriving in the last ten years), instrumented by local migrant intensity λ̂F
rt, as

specified in equations (22) and (23). The first seven columns report estimates of δu
1 for the basic specification (without CZ fixed

effects), separately for each decade and for all years together; and the final column looks at the fixed effects specification (for all
years). Along the rows of the table, I show how estimates of δu

1 change as progressively more controls are included. The first row
reports estimates when controlling for year effects alone; the second row includes a current Bartik control; the third row includes
the lagged employment rate (together with it’s lagged Bartik instrument); and the various amenities are then progressively added
- unil the penultimate row, which includes the full set of controls I use in Table 4. The final row replaces the lagged employment
rate with a lagged Bartik control. Errors are clustered by CZ, and robust standard errors are reported in parentheses. Each
observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.

56



Table 6: IV effects of foreign inflows on local employment rates

IV: simple IV: interacted instruments

All Natives Migrants All Natives Migrants

(1) (2) (3) (4) (5) (6)

Basic specification

New migs’ contrib -0.144** -0.201*** -0.177*** -0.182*** -0.186*** -0.238***

(0.059) (0.058) (0.064) (0.066) (0.066) (0.064)

Lagged log ER -0.282*** -0.279*** -0.356** -0.276*** -0.282*** -0.346**

(0.052) (0.053) (0.144) (0.052) (0.053) (0.144)

Current Bartik 0.360*** 0.338*** 0.191** 0.368*** 0.334*** 0.205**

(0.039) (0.039) (0.092) (0.038) (0.039) (0.093)

FE specification

New migs’ contrib -1.099*** -1.323*** -0.611 -0.613*** -0.311** -0.615***

(0.211) (0.255) (0.604) (0.100) (0.121) (0.196)

Lagged log ER -1.010*** -0.991*** -1.046 -0.455*** 0.149 -1.008***

(0.235) (0.281) (0.687) (0.131) (0.162) (0.214)

Current Bartik 0.266*** 0.218*** 0.138 0.280*** 0.247*** 0.137

(0.042) (0.051) (0.113) (0.038) (0.046) (0.108)

Observations 3,610 3,610 3,610 3,610 3,610 3,610

This table reports IV estimates of the impact of inflows of new migrants on local employment rates,
across 722 CZs and five (decadal) time periods. Specifically, I replace the dependent variable in
equation (26) with the decadal change in the log employment rate among (i) all individuals, (ii)
natives and (iii) migrants, i.e. foreign-born. In the first three columns, the contribution of new

migrants (to local population growth) is instrumented by local migrant intensity λ̂F
rt and the lagged

employment rate by the lagged Bartik shift-share. In the final three columns, I also include the
interacted instrumented -as described in the notes under Table 4. All specifications include the full
set of controls listed in the notes under Table 2, together with the current Bartik shift-share. The
bottom half of the table conditions further on CZ fixed effects. Errors are clustered by CZ, and
robust standard errors are reported in parentheses. Each observation is weighted by the lagged local
population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Within-CZ IV estimates of δs
1 and δs5

1

First stage Estimate of δs
1 or δs5

1 Observations

Native and Natives

old migrants alone

(1) (2) (3)

Decadal cross-sections: δs
1 estimates

2 edu groups: CG/non 0.472*** 0.882** 1.319** 7,220

(0.100) (0.372) (0.637)

2 edu groups: HSD/non 0.711*** 0.593*** 1.204*** 7,220

(0.051) (0.154) (0.273)

4 educ groups 0.681*** 0.817*** 1.233*** 14,440

(0.045) (0.134) (0.254)

2 occup groups 0.770*** 0.155 0.760*** 7,220

(0.065) (0.243) (0.282)

6 occup groups 0.833*** -0.086 0.260** 21,660

(0.074) (0.101) (0.129)

Five-year longitudinal differences: δs5
1 estimates

2 edu groups: CG/non 0.473*** -2.844* -2.151 4,332

(0.137) (1.718) (1.465)

2 edu groups: HSD/non 0.796*** -0.383*** -0.204** 4,332

(0.041) (0.070) (0.085)

4 educ groups 0.785*** -0.166* -0.012 8,664

(0.038) (0.090) (0.083)

2 occup groups 0.766*** -1.257*** -0.916*** 4,332

(0.049) (0.213) (0.212)

6 occup groups 0.771*** -0.376*** -0.182*** 12,996

(0.036) (0.050) (0.063)

This table reports IV estimates of δs
1 and δs5

1 (together with the first stages), exploiting variation
across skill groups within CZ-year cells. Specifically, I regress the contribution of natives and
old migrants (to local population growth) on the contribution of new migrants, with the latter
instrumented using the migrant shift-share msrt. The top half of the table reports estimates of
δs

1 in equation (27), based on decadal differences between 1960 and 2010. And the bottom half
reports estimates of δs5

1 in (34), exploiting the longitudinal dimension of the 1980, 1990 and
2000 census microdata extracts (respondents were asked where they lived five years previously).
Each row reports estimates for a different skill delineation. The first column presents the first
stage effect (the coefficient on the migrant shift-share), and columns 2-3 report the IV estimates
of δs

1 and δs5
1 : both the overall effect (i.e. on the contribution of both natives and old migrants

to local population growth) and on the contribution of natives alone. All specifications control
for both CZ-year and skill-year interacted fixed effects. Errors are clustered by CZ, and robust
standard errors are reported in parentheses. Each observation is weighted by the lagged cell-
specific population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Within-state IV estimates of δs
1 across skill groups: decadal cross-sections

First stage Estimate of δs
1 Observations

State of State of

residence birth

(1) (2) (3)

2 edu groups: CG/non 0.481*** 0.831 1.126 490

(0.117) (0.816) (0.814)

2 edu groups: HSD/non 0.911*** 0.622** 0.906*** 490

(0.037) (0.284) (0.282)

4 educ groups 0.876*** 0.827*** 1.187*** 980

(0.035) (0.221) (0.266)

2 occup groups 0.962*** 0.381 1.110*** 490

(0.062) (0.343) (0.248)

6 occup groups 1.072*** -0.045 0.539*** 1,470

(0.050) (0.130) (0.144)

This table reports state-level IV estimates of δs
1, together with the first stage, based on

decadal differences between 1960 and 2010. Columns 1 and 2 replicate columns 1 and 2
of the top half of Table 7 (see notes under that table), using the specification of equation
equation (27), but using variation across states rather than CZs. I include the 48 states
of the Continental US plus the District of Columbia. Column 3 re-estimates equation
(27), but allowing subscript r in the dependent variable to correspond to state of birth,
rather than state of residence. All specifications control for both state-year and skill-
year interacted fixed effects. Errors are clustered by state, and robust standard errors
are reported in parentheses. Each observation is weighted by the lagged cell-specific
population share. *** p<0.01, ** p<0.05, * p<0.1.

59



Table A1: Average contributions to local population adjustment: Composition-adjusted
employment variables

PANEL A: OLS and IV

∆ log pop Contributions to local population growth

All New Natives and Natives All New Natives and Natives

migrants old migrants only migrants old migrants only

(1) (2) (3) (4) (5) (6) (7) (8) (9)

OLS

∆ log emp 0.855*** 1.019*** 0.050*** 0.969*** 0.907*** 1.020*** 0.057*** 0.963*** 0.904***

(0.011) (0.020) (0.015) (0.022) (0.019) (0.020) (0.009) (0.018) (0.016)

Lagged log ER 0.242*** 0.257*** 0.087* 0.170*** 0.124*** 0.256*** 0.074*** 0.181*** 0.131***

(0.014) (0.018) (0.046) (0.044) (0.028) (0.018) (0.020) (0.024) (0.023)

λ̂F
rt 0.144*** 0.982*** -0.837*** -0.509***

(0.043) (0.068) (0.066) (0.053)

IV

∆ log emp 0.749*** 0.897*** 0.251** 0.646*** 0.683*** 0.883*** 0.142*** 0.741*** 0.741***

(0.036) (0.052) (0.100) (0.092) (0.062) (0.046) (0.046) (0.056) (0.050)

Lagged log ER 0.549*** 0.606*** 0.339*** 0.267** 0.255** 0.580*** 0.144** 0.436*** 0.358***

(0.073) (0.087) (0.109) (0.134) (0.113) (0.090) (0.068) (0.108) (0.100)

λ̂F
rt 0.128* 0.983*** -0.856*** -0.524***

(0.069) (0.073) (0.074) (0.070)

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

PANEL B: First stage

∆ log emp Lagged log ER

(1) (2) (3) (4)

Current Bartik 0.824*** 0.839*** -0.138** -0.134**

(0.115) (0.109) (0.061) (0.057)

Lagged Bartik 0.103 0.123* 0.369*** 0.373***

(0.063) (0.065) (0.045) (0.046)

λ̂F
rt -0.238** -0.053

(0.102) (0.111)

Observations 3,610 3,610 3,610 3,610

This table replicates the specifications of Table 2, except employment variables (specifically the change in log employment and the lagged
employment rate) are now adjusted for local demographic composition. Errors are clustered by CZ, and robust standard errors are reported in
parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A2: Heterogeneity in contributions to population adjustment: Composition-adjusted
employment variables

PANEL A: OLS and IV
All New Natives and Natives All New Natives and Natives

migrants old migrants only migrants old migrants only

(1) (2) (3) (4) (5) (6) (7) (8)

OLS

∆ log emp 1.014*** 0.015 0.999*** 1.011*** 1.002*** -0.015 1.017*** 1.020***

(0.020) (0.021) (0.030) (0.028) (0.019) (0.015) (0.024) (0.025)

∆ log emp * λ̂F
rt 0.219 1.279** -1.060* -3.100*** 0.48 2.005*** -1.525*** -3.325***

(0.359) (0.597) (0.628) (0.594) (0.374) (0.451) (0.587) (0.576)

Lagged log ER 0.210*** -0.017 0.227*** 0.249*** 0.200*** 0.003 0.197*** 0.229***

(0.020) (0.017) (0.024) (0.021) (0.022) (0.014) (0.021) (0.022)

Lagged log ER * λ̂F
rt 1.489** 3.013*** -1.524* -3.958*** 2.465*** 1.857*** 0.608 -2.412***

(0.631) (1.061) (0.921) (0.603) (0.808) (0.717) (0.675) (0.572)

λ̂F
rt 0.720*** 2.042*** -1.323*** -1.727*** 2.424* 1.434 0.99 0.197

(0.217) (0.351) (0.348) (0.241) (1.333) (1.354) (1.137) (1.019)

IV

∆ log emp 0.898*** -0.041 0.939*** 1.006*** 0.943*** -0.041 0.984*** 1.017***

(0.052) (0.058) (0.070) (0.069) (0.039) (0.026) (0.044) (0.043)

∆ log emp * λ̂F
rt -0.108 8.998 -9.106** -12.128*** -0.898 5.120*** -6.018*** -8.948***

(2.515) (5.904) (4.377) (4.677) (0.955) (1.484) (1.287) (1.424)

Lagged log ER 0.521*** -0.371 0.892*** 0.959*** 0.613*** -0.092 0.705*** 0.754***

(0.178) (0.431) (0.327) (0.341) (0.108) (0.089) (0.122) (0.132)

Lagged log ER * λ̂F
rt 1.944 17.866 -15.922 -21.002** 1.005 9.186*** -8.180* -14.141***

(5.105) (11.889) (9.754) (10.698) (2.478) (3.516) (4.400) (5.059)

λ̂F
rt 0.928 7.102* -6.174* -7.525* 1.513 7.605* -6.092 -9.375*

(1.816) (4.278) (3.518) (3.874) (2.995) (4.112) (3.969) (4.863)

λ̂F
rt * amenities No No No No Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

PANEL B: First stage

∆ log emp ∆ log emp Lagged Lagged log ∆ log emp ∆ log emp Lagged Lagged log

* λ̂F
rt log ER ER * λ̂F

rt * λ̂F
rt log ER ER * λ̂F

rt

(1) (2) (3) (4) (5) (6) (7) (8)

Current Bartik 1.008*** -0.024*** -0.164*** 0.013*** 1.032*** -0.008 -0.202*** 0.004

(0.101) (0.007) (0.062) (0.004) (0.100) (0.006) (0.055) (0.004)

Current Bartik * λ̂F
rt -4.363* 1.506*** 0.986 -0.678*** -4.384 1.244*** 1.876** -0.429***

(2.617) (0.247) (0.805) (0.062) (2.766) (0.204) (0.842) (0.102)

Lagged Bartik 0.114* 0.023*** 0.399*** -0.002 0.101* 0.017*** 0.344*** -0.004**

(0.062) (0.004) (0.052) (0.003) (0.060) (0.004) (0.045) (0.002)

Lagged Bartik * λ̂F
rt -0.534 -0.716*** -1.074 0.499*** 0.359 -0.313* -0.303 0.427***

(1.378) (0.231) (1.153) (0.096) (1.663) (0.181) (0.964) (0.091)

λ̂F
rt 0.367 0.055 0.007 -0.406*** -2.085 -0.163 -1.265 -0.960***

(0.225) (0.034) (0.119) (0.014) (2.134) (0.249) (1.835) (0.183)

λ̂F
rt * amenities No No No No Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table replicates the specifications of Table 3, except employment variables (specifically the change in log employment and the lagged
employment rate) are now adjusted for local demographic composition. Errors are clustered by CZ, and robust standard errors are reported in
parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.

61



Table A3: Estimates of displacement across CZs: Composition-adjusted employment vari-
ables

OLS IV: simple IV: interacted instruments

Natives and Natives Natives and Natives Natives and Natives

old migrants only old migrants only old migrants only

(1) (2) (3) (4) (5) (6)

Basic specification

New migs’ contrib -0.747*** -0.546*** -1.071*** -0.723*** -1.122*** -0.823***

(0.144) (0.119) (0.118) (0.121) (0.124) (0.129)

Lagged log ER 0.561*** 0.470*** 0.885*** 0.741*** 0.849*** 0.722***

(0.065) (0.059) (0.181) (0.162) (0.168) (0.152)

Current Bartik 0.757*** 0.747*** 0.789*** 0.745*** 0.811*** 0.779***

(0.094) (0.085) (0.092) (0.087) (0.092) (0.085)

FE specification

New migs’ contrib -0.589*** -0.753*** -0.502 -0.004 -0.999*** -1.074***

(0.171) (0.169) (0.691) (0.628) (0.320) (0.273)

Lagged log ER -0.157* -0.237** 1.438*** 1.122** 0.568 -0.516

(0.091) (0.101) (0.508) (0.467) (0.389) (0.350)

Current Bartik 0.782*** 0.702*** 0.701*** 0.663*** 0.725*** 0.703***

(0.093) (0.084) (0.087) (0.076) (0.078) (0.068)

Observations 3,610 3,610 3,610 3,610 3,610 3,610

This table replicates the specifications of Panel A of Table 4, except the lagged log employment rate is now ad-
justed for local demographic composition. Errors are clustered by CZ, and robust standard errors are reported in
parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A4: IV effects of foreign inflows on local employment rates: Composition-adjusted
employment variables

IV: simple IV: interacted instruments

All Natives Migrants All Natives Migrants

(1) (2) (3) (4) (5) (6)

Basic specification

New migs’ contrib -0.194*** -0.230*** -0.196*** -0.196*** -0.227*** -0.231***

(0.047) (0.050) (0.054) (0.051) (0.054) (0.056)

Lagged log ER -0.400*** -0.399*** -0.451*** -0.387*** -0.383*** -0.451***

(0.071) (0.070) (0.157) (0.070) (0.069) (0.159)

Current Bartik 0.259*** 0.263*** 0.153** 0.257*** 0.259*** 0.163**

(0.031) (0.031) (0.069) (0.031) (0.030) (0.070)

FE specification

New migs’ contrib -0.905*** -1.010*** -0.763** -0.340*** -0.333*** -0.573***

(0.151) (0.160) (0.373) (0.093) (0.101) (0.184)

Lagged log ER -0.986*** -1.011*** -1.193** -0.176 -0.035 -0.952***

(0.213) (0.221) (0.562) (0.150) (0.167) (0.250)

Current Bartik 0.264*** 0.264*** 0.160* 0.246*** 0.242*** 0.155*

(0.034) (0.035) (0.090) (0.040) (0.041) (0.090)

Observations 3,610 3,610 3,610 3,610 3,610 3,610

This table replicates the specifications of Table 6, except the lagged log employment rate is now
adjusted for local demographic composition. Errors are clustered by CZ, and robust standard errors
are reported in parentheses. Each observation is weighted by the lagged local population share. ***
p<0.01, ** p<0.05, * p<0.1.
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Table A5: Estimates of displacement across CZs: Controlling for employment growth

OLS IV: simple IV: interacted instruments

(1) (2) (3) (4) (5) (6)

Basic specification

New migs’ contrib -0.860*** -0.782*** -0.947*** -1.110*** -0.939*** -1.167***

(0.051) (0.141) (0.081) (0.131) (0.088) (0.139)

∆ log emp 0.951*** 0.751*** 0.749***

(0.024) (0.048) (0.051)

Lagged log ER 0.168*** 0.427*** 0.417*** 0.598*** 0.416*** 0.605***

(0.017) (0.054) (0.068) (0.122) (0.069) (0.122)

Current Bartik 0.687*** 0.707*** 0.721***

(0.093) (0.095) (0.094)

FE specification

New migs’ contrib -0.780*** -0.553*** -0.063 -0.317 -0.620*** -1.006***

(0.092) (0.169) (0.308) (0.751) (0.161) (0.319)

∆ log emp 0.884*** 0.823*** 0.821***

(0.029) (0.056) (0.045)

Lagged log ER 0.539*** -0.258*** 1.206*** 1.272*** 0.531*** 0.373

(0.050) (0.075) (0.275) (0.459) (0.147) (0.295)

Current Bartik 0.778*** 0.768*** 0.750***

(0.092) (0.100) (0.083)

Observations 3,610 3,610 3,610 3,610 3,610 3,610

Columns 1, 3 and 5 reproduce the displacement estimates (for both natives and old migrants) of columns 1,
3 and 5 of Panel A of Table 4, controlling for the lagged employment rate and current Bartik shift-share.
In the remaining columns, I control additionally for the contemporaneous change in log employment. This
requires an additional instrument, and I use the current Bartik shift-share (which is consequently omitted
on the right hand side). Errors are clustered by CZ, and robust standard errors are reported in parentheses.
Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A6: Robustness of average responses from Cadena and Kovak (2016): low skilled men

All Natives Mexican Other All Natives Mexican Other

migrants migrants migrants migrants

(1) (2) (3) (4) (5) (6) (7) (8)

(1) Baseline specification: equation (A15)

Emp shock: group-specific 0.223 0.007 0.992** -0.675** - - - -
(0.166) (0.090) (0.468) (0.278)

(2) As above, but replace ∆ñgt with ∆ngt

∆ log emp: group-specific 0.301* 0.013 0.771*** 1.413*** 0.654*** 0.871** 0.380 1.470***

(0.170) (0.159) (0.104) (0.356) (0.199) (0.441) (0.413) (0.552)

Lagged log ER: group-specific 0.680** 0.745*** -2.429 -0.519

(0.305) (0.284) (2.651) (2.753)

(3) Include amenity controls

∆ log emp: group-specific 0.540*** 0.366*** 0.839*** 0.957** 0.598*** 0.698 0.930*** 0.798***

(0.097) (0.093) (0.128) (0.378) (0.099) (0.503) (0.266) (0.248)

Lagged log ER: group-specific 0.235 0.826 0.623 -0.669

(0.304) (0.969) (2.257) (1.017)

(4) Extend sample of geographical areas

∆ log emp: group-specific 0.494*** 0.373*** 0.833*** 0.955 0.518*** 0.437*** 0.910*** 1.192

(0.062) (0.079) (0.103) (0.655) (0.077) (0.125) (0.159) (2.588)

Lagged log ER: group-specific 0.323*** 0.420*** 0.568 -2.086

(0.118) (0.113) (1.258) (8.780)

Observations: (1), (2), (3) 94 94 94 94 94 94 94 94

Observations: (4) 316 316 274 287 316 316 274 287

*** p<0.01, ** p<0.05, * p<0.1.

Table A7: Average contributions to local adjustment: Cadena and Kovak (2016) data, low
skilled men

All Natives All migrants Mexican migrants Other migrants

New Old New Old New Old

(1) (2) (3) (4) (5) (6) (7) (8)

∆ log emp 0.514*** 0.297*** 0.130*** 0.087 0.019 0.155*** 0.111*** -0.069

(0.077) (0.093) (0.040) (0.098) (0.013) (0.055) (0.039) (0.077)

Lagged log ER 0.307*** 0.381*** 0.039 -0.114 0.035 -0.197** 0.004 0.084

(0.117) (0.113) (0.059) (0.108) (0.023) (0.078) (0.058) (0.060)

Observations 316 316 316 316 316 316 316 316

*** p<0.01, ** p<0.05, * p<0.1.
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Table A8: Heterogeneity in contributions to adjustment: Cadena and Kovak (2016) data,
low skilled men

All Natives Mexican Other All Natives Mexican Other

migrants migrants migrants migrants

(1) (2) (3) (4) (5) (6) (7) (8)

(1) Baseline specification: equation (A18)

∆ log emp 0.006 0.073 0.107** -0.174 0.299* 0.330 -0.009 -0.022

(0.198) (0.103) (0.048) (0.219) (0.159) (0.224) (0.107) (0.150)

∆ log emp * MexHigh 0.535** 0.017 0.311** 0.208 0.624** 0.059 0.417*** 0.149

(0.235) (0.144) (0.132) (0.224) (0.315) (0.294) (0.159) (0.161)

Lagged log ER 0.563*** 0.491* -0.216 0.288**

(0.200) (0.293) (0.140) (0.137)

Lagged log ER * MexHigh 0.808* 0.581 0.18 0.047

(0.473) (0.464) (0.233) (0.186)

(2) Include amenity controls

∆ log emp 0.393*** 0.361*** 0.106 -0.074 0.317* 0.314** 0.093 -0.090

(0.103) (0.117) (0.073) (0.146) (0.166) (0.135) (0.073) (0.147)

∆ log emp * MexHigh 0.164 -0.263* 0.317** 0.110 0.511* -0.097 0.309** 0.298

(0.166) (0.139) (0.137) (0.160) (0.261) (0.208) (0.144) (0.197)

Lagged log ER 0.647 0.231 -0.125 0.541

(0.464) (0.380) (0.207) (0.383)

Lagged log ER * MexHigh 0.316 0.200 0.062 0.054

(0.393) (0.302) (0.216) (0.238)

(3) Extend sample of geographical areas

∆ log emp 0.423*** 0.357*** 0.036 0.030 0.330** 0.291** 0.041 -0.001

(0.074) (0.084) (0.041) (0.071) (0.153) (0.136) (0.042) (0.076)

∆ log emp * MexHigh 0.158 -0.269** 0.411*** 0.016 0.548* 0.010 0.391*** 0.148

(0.148) (0.123) (0.136) (0.095) (0.286) (0.239) (0.132) (0.113)

Lagged log ER 0.485*** 0.387*** -0.032 0.130

(0.157) (0.150) (0.052) (0.080)

Lagged log ER * MexHigh 0.507 0.327 -0.022 0.201

(0.402) (0.329) (0.187) (0.143)

Observations: (1), (2) 94 94 94 94 94 94 94 94

Observations: (3) 316 316 316 316 316 316 316 316

*** p<0.01, ** p<0.05, * p<0.1.

66



Table A9: Robustness of 1985-1990 within-area estimates from Card (2001)

Card (2001): 175 Replication ... with errors ... excluding ... with full

MSAs, weighted clustered by area demog controls area sample

(1) (2) (3) (4) (5)

OLS

Coll grad v non-grad -0.259 -0.259 -1.918*** -3.545***

(0.439) (0.741) (0.555) (0.767)

HSD v non-HSD 0.097 0.097 -0.081 -0.253

(0.104) (0.198) (0.168) (0.169)

4 educ groups 0.157 0.157 -0.115 -0.346**

(0.106) (0.144) (0.133) (0.154)

2 occup groups 0.028 0.028 -0.479** -0.940***

(0.178) (0.305) (0.213) (0.297)

6 occup groups 0.25*** 0.198*** 0.198** -0.069 -0.228***

(0.04) (0.045) (0.084) (0.072) (0.083)

IV

Coll grad v non-grad 0.697 0.697 -1.976*** -2.536***

(0.915) (1.575) (0.674) (0.838)

HSD v non-HSD 0.241*** 0.241* -0.046 -0.256**

(0.082) (0.145) (0.117) (0.127)

4 educ groups 0.447*** 0.447*** -0.008 -0.159

(0.117) (0.153) (0.123) (0.126)

2 occup groups 0.160 0.160 -0.430*** -0.780***

(0.134) (0.248) (0.141) (0.171)

6 occup groups 0.25*** 0.235*** 0.235*** -0.043 -0.167**

(0.05) (0.045) (0.081) (0.062) (0.068)

This table tests the robustness of Card’s (2001) estimates of geographical displacement. Card’s OLS and IV results
(for his six-group occupation scheme) are presented in column 1. These are taken from Table 4 of his paper, based on
the 175 largest MSAs of the 1990 census extract, with observations weighted by cell populations. (Card reports his
estimates as the effect on population growth, but I substract one from his numbers to give a "displacement effect";
see Peri and Sparber, 2011.) I attempt to replicate his results in column 2. In columns 3, I cluster standard errors
by MSA. Column 4 excludes the demographic controls from the regression. And column 5 extends the geographical
sample to all identifiable MSAs (raising the total to 320), as well as 49 supplementary regions consisting of the
non-metro areas in each state (so 369 areas in total). I present all results for both Card’s six-group occupation
scheme and also (in the remaining rows) the other skill delineations discussed in Section 6 in the main text. ***
p<0.01, ** p<0.05, * p<0.1.
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Figure A1: Effect of years in US on cross-state mobility

Note: This figure plots estimates of the log point difference in cross-state mobility between migrants (with given years in
US) and natives. Estimates are based on complementary log-log models, controlling for a full set of entry cohort effects and
observation year effects. In addition to these, the model in Panel B controls for a full set of age effects. Sample consists of
individuals aged 16-64 in ACS waves between 2000 and 2016. See Appendix B for further details.
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