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Abstract

The agent in our model retrieves memories and combines them with the prior to form a

belief. The agent is fully Bayesian and rational but faces a constraint on memory retrieval—she

can only sample observations one at a time instead of retrieving all of them simultaneously.

Retrieval is primarily random, but the agent can partially target retrieval using an index. The

index splits the database of memories into two (or more) groups based on the values of one (or

more) attribute. The agent chooses which indexed group to sample in each period to ensure

that her beliefs are as accurate as possible. We show that the agent will generically oversample

one group and characterize three forces that determine which group the agent samples more

intensely. We then show that oversampling translates directly into belief distortion. We use

this insight to explain well-known biases in beliefs across individuals, such as the “depression

babies” effect, rational stereotypes, and the dependence of beliefs on the history of previously

encountered problems.
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. . . [A]s we know, there are known knowns; there are things we know we know. We also

know there are known unknowns; that is to say, we know there are some things we do

not know. But there are also unknown unknowns – the ones we don’t know we don’t

know . . . [I]t is the latter category that tends to be the difficult ones.

(Donald Henry Rumsfeld, US Secretary of Defense (2002))

1 Introduction

Donald Rumsfeld’s well-known quote captures the basic idea that we are commonly asked to voice

opinions on issues we have not considered before. For example, a colleague organizing a department

event might ask us if economists are more or less likely to enjoy board games than the rest of the

population. The standard model of decision-making under uncertainty in economics essentially

assumes that we have priors on the propensity of the average economist and non-economist to like

board games, which we constantly update whenever we observe someone playing (or not playing)

board games. We call this form of reasoning that treats beliefs as primitives statistical reasoning.

However, in reality, there are too many states of the world to keep track of, and we doubt

that anyone but board game enthusiasts has a ready-formed belief about the relative enthusiasm

of economists for board games. A natural way to construct an on-demand belief is to sample one’s

memory. We call this process anecdotal reasoning. Of course, if sampling from memory is perfect,

then the agent can reconstruct the same beliefs she would have held under statistical reasoning.

However, this is no longer the case if memory is imperfect. There are two basic ways to introduce

memory imperfections. First, storing memories could be costly, so the agent can only recall a limited

number of memories. Wilson (2014) uses this approach and analyzes which anecdotes to store in

one’s memory. Second, there could be a cost for retrieving memories. Our paper builds on this

friction, and our analysis focuses on how to sample from memory in a constrained optimal way.

The agent in our model retrieves memories and combines them with the prior to form a belief.

The agent is Bayesian and rational but faces a constraint on memory retrieval—she can only sample

observations one at a time instead of retrieving all of them simultaneously. Retrieval is primarily

random, but the agent can partially target retrieval using an index. The index splits the database

of memories into two (or more) groups based on the values of one (or more) attribute. The agent

chooses which indexed group to sample in each period to ensure that her beliefs are as accurate as

possible.

We show that the agent optimally samples one group more than the other, which we call

oversampling, and identify three effects that contribute to it. First, the variability effect pushes the

agent to oversample the group that has more uncertainty about it. Second, the availability effect

pushes her to oversample the group with observations that are harder to access with her index.

This oversampling only partially compensates for the difficulty in accessing observations. The agent

ends up with more observations that are more available than observations that are less available.

Third, the importance effect pushes the agent to oversample the group that is more important for
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the statistic the agent is estimating.

The agent’s beliefs are correct in the limit, but in finite samples, they are distorted, and the

magnitude of the distortion depends on the sampling strategy. The agent uses an unbiased estimator

relative to her belief, but she is distorted relative to the realized value of the statistic. This distortion

is what an outside observer who knows the true statistic would see. The agent’s belief combines

retrieved observations with her prior. As a result, in finite samples, the agent is distorted relative

to the actual value of the statistic she is estimating. For linear problems, her distortion about

each group is always toward her prior about that group. The magnitude of the distortion for each

group decreases in the number of observations the agent samples from that group. Despite this

monotonicity, the total distortion may be non-monotonic in the sample size if the agent learns

about the different groups at different rates.

Figure 1 illustrates the basic mechanics of the model. The agent receives a problem about the dif-

ference in the share of Runners among Male and Female Scientists, P (Runner | Scientist,Male)−
P (R | Scientist, Female). The agent starts with a prior belief P0(Runner | Scientist,Male) =

P0(R | Scientist, Female) = 0.1. Suppose the truth is that P (Runner | Scientist,Male) = P (R |
Scientist, Female) = 0.4. The agent has a Gender index, so she chooses whether to sample a

man or a woman in each period. With each sample from a given gender, her beliefs move away

from the prior and closer to the truth about that gender. In the limit, the agent’s beliefs converge

to the truth. In finite time, however, her beliefs will be distorted. Suppose Scientists are more

prevalent among men than women. Then, the availability effect causes the agent to oversample

Male Scientists compared to Female Scientists1. As a result, the agent learns faster about Male

Scientists than Female Scientists. So, her belief about the share of Runners among Male Scientists

increases faster than her belief about Female Scientists. This belief trajectory is illustrated by the

arrow from the ‘Prior’ point to the ‘Truth’ point in Figure 1. At a finite time t > 0, her beliefs

are distorted up: Pt(Runner | Scientist,Male) − Pt(R | Scientist, Female) > 0. This distortion

disappears in the limit as t goes to infinity.

We apply our model to explain various biases. The model provides a memory-based explanation

for why some people are optimistic and others pessimistic. Optimists have easier access to memories

of good days. Formally, optimists have an index that splits memories into good and non-good

periods, which combine neutral and bad periods. As a result, observations of good periods are

more available than observations of bad periods. Therefore, beliefs about the good periods are

more accurate than beliefs about the bad periods. If the prior beliefs about an outcome of interest

are medium for all periods, the agent’s belief is distorted positively about bad periods and negatively

about good periods. Since the agent learns faster about good periods, her total distortion is driven

mainly by the distortion about bad periods, which is positive. As a result, an agent with an index

for good periods is more optimistic about the uncertain outcome. In the financial domain, this

explains why people who experienced the Great Depression at a young age (“depression babies”)

are more pessimistic about the stock market and less likely to invest in it (Malmendier and Nagel

1See Section 4.2 for more details.

3



P (R | S, F )

P (R | S,M)

Prior

Truth

Prior Truth

Prior

Truth

Belief at t

P (R | S,M) > P (R | S, F )

P (R | S,M) < P (R | S, F )

Figure 1: Evolution of agent’s beliefs over time

(2011)). Someone who grew up during a period of depression is more likely to have easier access

to memories about depression than someone who grew up during a period of economic boom. In

our model, depression babies would have an index that separates memories of depression from

non-depression. As a result, an agent with a depression index is more pessimistic about the stock

market than an agent with a boom index.

The model also rationalizes stereotypes based on generalizations. Consider an agent with an

index for nationalities combining all Europeans in one group. For this agent, it is harder to retrieve

observations on specific European nationalities, like Germans, than for someone with an index

for each nationality separately. As a result, the agent with the coarse index has less accurate

beliefs about specific nationalities. Furthermore, she has a stronger distortion toward the common

European prior. Therefore, the agent with the coarse index is more likely to give similar answers

about all European nationalities. Although this may look like stereotyping, the agent gives her best

answer under the constraints. If the agent is constrained to having a coarse index, she may want to

index observations probabilistically, so that all nationalities are equally represented in the coarse

index. Probabilistic indexing would allow the agent to optimize for the worst-case scenario—when

she needs to form a belief about very rare nationalities.

Apart from generalization stereotypes, the model explains stereotypes based on anchoring. Con-

sider an agent who has an index for Germans but needs to form a belief about Austrians. The agent

knows that Germans and Austrians are similar with some probability. The agent could search for

Austrians in the non-German group, but it would take a long time to find enough Austrians. Al-

ternatively, the agent could form a belief about Germans and adjust it in the direction of her prior

about Austrians. The benefit of this approach is that the agent has easy access to observations

of Germans, so she can easily form an accurate belief about Germans. This approach is better if

Austrians are similar to Germans with sufficiently high probability. Thus, the agent may form a

stereotype about Austrians by anchoring to Germans. Moreover, another agent with an index, for

example, for the French, may anchor to her beliefs about the French. The two agents will have

different beliefs about Austrians: one is closer to Germans, and the other is closer to the French.
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Our model also explains why people with the same experiences and priors may have different

distortions depending on their previous problems. If the agent faces several problems, she may keep

some retrieved observations in the short-term memory, available for instant use. Someone who faced

questions about female scientists is likely to have several observations of female scientists readily

available. This agent will likely have beliefs distorted up about the average mathematical skills of

all women. In contrast, someone who recently formed beliefs about female non-scientists will likely

have beliefs distorted down.

So far, we have treated an index as exogenously given, but the agent may prefer one index

to another. We highlight three properties of an attribute that make it a good candidate for an

index, which can be interpreted as salience. The first property is that the agent needs to form

beliefs about a group defined by this attribute frequently. An index is most helpful for statistics

that condition on the indexed group. Therefore, if such problems arise frequently, the attribute

becomes a helpful basis for indexing. The second property is informativeness. An informative

attribute splits the database into two groups that are substantially different. For example, gender

and age are informative, while the first letter of the name is not. Informativeness helps for two

reasons. First, an informative index makes it easier to target non-indexed attributes. For example,

a gender index helps retrieve observations of football players by focusing on men. Second, more

extreme parameters are increasingly easier to estimate with low variance. Therefore, an estimate

of an average parameter based on two different groups is more accurate than its estimate based

on two similar groups. The third property is unbalancedness. An attribute is unbalanced if it has

a rare group, for example, minority status or rare skill. An index for an unbalanced attribute is

especially useful for forming beliefs about a rare group. Without this index, the agent would spend

long searching for relevant observations. The penalty for not having an index for an unbalanced

attribute, in terms of required sample size, is larger than for a balanced attribute. These three

properties suggest an interpretation of what it means for an attribute to be salient. A salient

attribute is informative and unbalanced and defines a frequent target group for belief formation.

Lastly, we connect our model to models of cued recall based on similarity and representativeness

(e.g., Kahana (2012); Bordalo et al. (2023b)). A fundamental assumption in those models is that

the likelihood of recalling a given observation after receiving some cue increases in the similarity

between the observation and the cue and decreases in the similarity between other observations

and the cue. The optimal sampling strategy in our model has a similar structure, which arises

endogenously as a result of optimization. This result allows us to pin down the measure of simi-

larity that rationalizes the central assumption in the cued recall models. Relatedly, we show that

representativeness also plays a role in our model. A characteristic is representative of a group if

it is more prevalent in this group compared to another (Tversky and Kahneman (1983)). If some

characteristic is representative of an indexed group, the index is helpful for retrieving observations

with that characteristic. As a result, the agent may optimally sample more observations with the

representative characteristic than their share in the population. Her beliefs may be driven more by

the representative observations compared to someone who does not use an index.
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Section 2 discusses related literature. Section 3 describes the model setup. Section 4 identifies

sampling distortions. Section 5 describes the resulting belief distortions. Sections 6-8 illustrate

various applications of the model.

2 Related Literature

There is a large body of experimental and empirical evidence on memory imperfections and their

effects on beliefs and decision-making. Kahana (2012) provides a broad review of findings about

memory from the psychology literature. Bordalo et al. (2016, 2021, 2023b) experimentally show

that memory retrieval is context- and cue-dependent and biased by representativeness.2 They

further show that these recall patterns lead to belief biases. Enke et al. (2023); Afrouzi et al.

(2023) show that people overreact to recent news in their forecasts because memory is associative

— current signals trigger recall of similar signals from the past. Graeber et al. (2022) compare

stories and statistics. In their experiment, stories are more easily recalled than statistics and have

a more persistent effect on beliefs.Malmendier and Wachter (2021) review empirical evidence of

the effects of past experiences on financial choices. For example, Malmendier and Nagel (2011)

show that people who grew up during the Great Depression are more pessimistic about the stock

market and invest less. Charles (2022) shows that associations and recency of memories affect

trading behavior. Kwon and Tang (2020) also use investor data to document systematic over- and

underreaction to news consistent with beliefs based on the representativeness heuristic. Bordalo et

al. (2016) review an extensive literature on stereotypes, many of which can potentially be attributed

to memory. Our model explains some of these observations in a fully Bayesian model. We show

that various stereotypes and biases can arise in a rational and Bayesian model due to sequential

memory retrieval.

There are various approaches to modeling memory imperfections. One approach directly incor-

porates empirical regularities in the memory models. Dougherty et al. (1999); Nilsson et al. (2005),

as well as models described in Kahana (2012) are some examples of this approach. Mullainathan

(2002a) formalizes two empirical findings about memory — rehearsal and associativeness — and

incorporates them into a consumption model. Fudenberg et al. (2022) assume that the agent is

more likely to remember some experiences than others but does not account for it when updating

beliefs. In a series of papers, Gennaioli and Shleifer (2010); Bordalo et al. (2016, 2021, 2023b)

develop models of memory based on cued recall. The central assumption is that the likelihood

of recalling an observation increases in the similarity between that observation and the cue and

decreases in the similarity between other observations and the cue. These models capture the

representativeness heuristic and generate many documented biases. Although our model does not

assume specific memory retrieval patterns, it is related to the cued recall models. We show that the

2‘An attribute is representative of a class if it is very diagnostic, that is, if the relative frequency of this attribute
is much higher in that class than in a relevant reference class’ (Tversky and Kahneman (1983), p. 296). For example,
having red hair is representative of the Irish population because red hair is more common among the Irish than among
other populations.
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optimal sampling strategy is consistent with the cue-guided recall, thus providing a microfounda-

tion for this assumption. Furthermore, our model pins down a similarity measure that rationalizes

cued recall.

Another approach to modeling memory limitations imposes “technological constraints” on hu-

man memory but otherwise assumes rationality and sophistication. Wilson (2014) assumes that the

agent has a limited memory capacity and summarizes all information using several states. Limited

memory size leads to various behavioral phenomena, such as stickiness and polarization of beliefs,

and confirmation bias. Da Silveira et al. (2020) assume that memory has limited complexity. This

assumption leads to biased beliefs and overreactions in forecasts. Afrouzi et al. (2023) impose a

cost on retrieving past observations, leading to overreaction. In their model, the agent chooses

how much to remember, while in our model, the agent chooses what to remember.Neligh (2022)

assumes that memory decays over time, but the agent can exert costly effort to preserve a memory

for longer. This model generates the recency effect. Our model is closely related to these papers in

the spirit of using the “technological constraint” approach. The constraint we impose is that the

agent cannot retrieve all observations at once but has to retrieve them one by one to update her

beliefs. The agent is otherwise rational and Bayesian. Compared to other models, we focus on a

new memory limitation and show that it can explain new biases and stereotypes.

Our model also relates to the literature on dynamic information acquisition but microfounds

the signal structure, which is usually given exogenously (e.g., Che and Mierendorff (2019); Azevedo

et al. (2020); Gossner et al. (2021); Mayskaya (2022); Liang et al. (2022)). These papers also

characterize the optimal learning process. For example, Liang et al. (2022) derive the optimal

strategy of allocating attention to different signals in closed form. The properties of this optimal

strategy agree with our results. However, existing papers model the learning process as observing

signals with exogenously specified informativeness. In contrast, we model learning as observing

samples of data. As a result, the informativeness of each observation is not fixed exogenously but

is determined endogenously by the population distribution and the agent’s index. This approach

allows us to explain why learning about some groups is more difficult than others and connect this

to known stereotypes and belief biases.

Another related strand of literature is models of categorization. Mullainathan (2002b); Fryer

and Jackson (2008); Mohlin (2014) model beliefs and decisions based on coarse categories. Cate-

gories combine different observations so that the agent’s beliefs about a specific category element

are biased toward the category average. We do not assume that the agent in our model forms

explicit categories, but the index effectively splits memories into categories. As a result, our model

explains stereotypes based on categories as well. However, in contrast to the categorization models,

our model also predicts that the magnitude of the belief distortion depends on the problem the

agent faces and that the distortion disappears in the limit.

We are also related to papers on applications of memory models to various domains. Kőszegi et

al. (2022); Gottlieb (2014) apply memory imperfections to self-esteem, Wachter and Kahana (2019)

to financial markets, Bordalo et al. (2020) to consumer choice, Bordalo et al. (2023a) to forecasting
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risks; Malmendier and Wachter (2021) review models with applications to financial choice. We

also apply our model to financial choice and show that it can explain the pessimism of Depression

Babies (Malmendier and Nagel (2011)).

3 A Model of Belief Formation through Sampling

3.1 Model Setup

Consider an environment with a database D containing individuals withK binary attributes. All in-

dividuals can be grouped into 2K subgroups with identical attribute values. Let x = (x1, ..., x2K ) ∈
∆2K−1 denote the shares of each subgroup.

There is one long-lived agent, who does not know the realization of x and has a Dirichlet prior

x ∼ Dir(α1, ..., α2K ). One special case is the flat prior Dir(1, ..., 1), under which all realizations

of x are equally likely. When called to take an action, the agent must choose an action a ∈ R to

match a given statistic f(x), where f is a twice differentiable function known to the agent. The

agent minimizes expected quadratic loss:

min
a∈R

E(a− f(x))2 (1)

Before taking the action, the agent can refine her estimate of the statistic f(x) by retrieving

observations from the database. The crucial limitation is that the agent can only retrieve one

observation at a time. In each period t, unless the agent is called to choose an action, she samples

one unique observation from the database belonging to subgroup i with probability xi. She observes

the values of all its K attributes. The agent combines the prior with the retrieved observations

using Bayes’ rule to form a posterior belief G. Given the posterior G, the agent’s optimal action

a∗ is

a∗ = EG(f(x)) ≡ f̂(x) (2)

An expert agent has a memory retrieval technology that allows her to target groups of observa-

tions instead of sampling random ones. We call this technology an index.

Definition 1. An index Ind = {A, Ã} is a partition of the subgroups in database D that allows

the agent to target memory retrieval from groups A and Ã.

An index Ind = {A, Ã} partitions the database into two groups of observations, A and Ã.

For example, if the agent has a gender index, all observations are divided into A = Male and

Ã = Female. An expert can choose in each period which group to sample from, A or Ã. In

contrast, a non-expert does not have an index and can only retrieve observations randomly, i.e.,

the non-expert samples A and Ã with probabilities equal to population shares. We assume that

the total shares of the indexed groups, P (A) and P (Ã), are known.3

3For individuals with an index, knowledge of P (A) and P (Ã) is crucial in deciding which subgroup to sample
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In each period t, the expert agent chooses whether to sample an observation from group A or

group Ã, st ∈ {A, Ã}. Her objective is to minimize the expected next-period4 loss from choosing

the optimal action a∗ = f̂(x) conditional on her current belief Gt, where the expectation is taken

over the distribution of the next sampled observation:

min
st∈{A,Ã}

EGt [EGt+1(f̂(x)− f(x))2] (3)

The expected loss from taking the optimal action is the Mean Squared Error of f(x) given the

statistic estimator f̂(x), so the agent’s objective when choosing whom to sample is to minimize the

expected next-period MSE:

min
st∈{A,Ã}

EGt [MSEGt+1(f(x)|f̂(x))] (4)

If the agent uses the unbiased estimator f̂(x) = EG(f(x)), the agent’s objective function reduces

to posterior variance. Therefore, in each period t, the agent chooses to sample from the group that

minimizes the expected next-period posterior variance:

min
st∈{A,Ã}

EGt [V arGt+1(f(x))] (5)

3.2 Optimal Sampling

The solution to the agent’s exact problem (5) is hard to characterize and interpret for a general

statistic f . Instead, we analyze the approximate problem, which is more tractable and interpretable.

Solutions to the approximate and exact problems converge in the limit and are similar in finite

sample simulations.

We approximate the exact problem using two simplifications. First, in each period t, the agent

treats the current estimate of subgroup shares x̂t as constant, ignoring the fact that she will update

it based on an extra sampled observation. Second, instead of the exact variance, the agent minimizes

its Taylor approximation.

Specifically, consider a general Dirichlet prior x ∼ Dir(α1, ..., α2K ), and denote αA =
∑

i∈A αi,

αÃ =
∑

i∈Ã αi. Let P (A) and P (Ã) = 1 − P (A) be the population shares of groups A and Ã,

known to the agent. Let g(i) be the indexed group that subgroup i belongs to, i.e.,

g(i) =

A if i ∈ A

Ã if i ∈ Ã
(6)

Given a sample of observations, let ni be the number of observations from subgroup i, and let

from. By endowing the non-index individuals with P (A) and P (Ã) as well, we ensure that differences in beliefs are
only due to the different memory retrieval technologies.

4We conjecture that the sample would be the same in most cases if the agent was optimizing multiple periods
ahead.
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ng(i) =
∑

i∈g(i) ni. The estimates for individual subgroup shares xi are:

x̂i = EG(xi) =
ni + αi

ng(i) + αg(i)
P (g(i)) (7)

At each t, the agent’s problem is to choose whether to sample from group A or Ã to reduce

the Taylor approximation of variance. An extra observation from a group decreases the part of the

total variance that comes from that group. Hence, the agent selects st such that:

min
st∈{A,Ã}

∑
i∈A

(f ′
i(x̂)

2x̂i(P (A)− x̂i)− 2
∑

j∈A:j>i

f ′
i(x̂)f

′
j(x̂)x̂ix̂j)

 1

nA + αA

(
nA + αA

nA + αA + 1

)
1st=A

+

∑
i∈Ã

(f ′
i(x̂)

2x̂i(P (Ã)− x̂i)− 2
∑

j∈Ã:j>i

f ′
i(x̂)f

′
j(x̂)x̂ix̂j)

 1

nÃ + αÃ

(
nÃ + αÃ

nÃ + αÃ + 1

)
1st=Ã

(8)

The two simplifications may affect the solution in a finite horizon, but they do not affect the

limit. Let St(A) be the share of group A in the observations sampled up to time t in the solution

to the approximate problem (8). Similarly, let S∗
t (A) be the share of group A in the observations

sampled up to time t in the solution to the exact problem (5). These shares converge to the same

limit S(A), which minimizes asymptotic variance given realized population shares x∗:

AV ar(f(x) | x∗) = min
S(A)

1

S(A)

∑
i∈A

(f ′
i(x

∗)2x∗i (P (A)− x∗i )− 2
∑

i,j∈A:j>i

f ′
i(x

∗)f ′
j(x)x

∗
ix

∗
j )


+

1

1− S(A)

∑
i∈Ã

(f ′
i(x

∗)2x∗i (P (Ã)− x∗i )− 2
∑

i,j∈Ã:j>i

f ′
i(x

∗)f ′
j(x

∗)x∗ix
∗
j )


(9)

Theorem 1. The sample compositions under the approximate and exact strategies converge in prob-

ability to the same limit, which minimizes asymptotic variance, St(A)
p−−−−→

N→∞
S(A), S∗

t (A)
p−−−−→

N→∞
S(A). The rate of convergence is

√
N .

The proof is in Appendix A.

In the limit, our two simplifications do not affect the strategy. First, the estimate x̂ converges

to the constant true value as the sample size grows, so treating the estimate as constant does

not change the strategy. Second, the Taylor approximation keeps only those variance terms that

decrease at the rate of 1
N and ignores smaller-order terms, which disappear in the limit.

For some statistics f , we can calculate the variance directly for any sample and solve the exact

problem (5). We use these examples to test the performance of the approximation in finite samples

with simulations. Specifically, we compare the approximate strategy to a strategy that accounts
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for the updating in x̂ and minimizes the exact variance for three examples of statistics, for which

we can calculate the exact variance. We report simulations in Appendix B that demonstrate that

the two strategies are almost identical even in a finite sample.

3.3 Discussion of Modeling Assumptions

Indexing as Associative Recall. Indexing can be interpreted as a form of associative recall (Kahana

(2012)). For example, assume that the agent is an expert on gender and needs to estimate the

differences in the propensity of men and women to pursue a career in science. Models of cued

recall assume that the mention of “gender” in the problem instance serves as the cue that induces

agents to selectively recall memories based on some similarity measure. The expert in our model

will sample memories by gender in a way consistent with the common functional descriptions of

cued recall in cognitive psychology and some recent papers in economics Bordalo et al. (2023a).

Our model pins down an exact functional form of the similarity measure. We formally explore this

connection to models of cued recall in Section 8.1.

Introspective versus Explicit Sampling. We describe our model in terms of introspective sampling

from memory. An interesting alternative interpretation is to view it as a model of a market research

agency that estimates a given statistic f(x) for a client firm. The agency can selectively invite

potential consumers for an interview according to a set of predefined criteria (such as gender).

Each invitation has a fixed cost, and the agency wants to provide the most accurate prediction to

the client firm at the lowest sampling cost. In this interpretation, the agency explicitly samples

from a large set of consumers.

Memory Database. We treat sampling from the memory database D as drawing iid observations

with each subgroup i having probability xi. While the actual memory databases are finite, we

deliberately abstract away from limited memory capacity. This model focuses on the constraints

of memory retrieval rather than storage. Therefore, we think of the database as being sufficiently

large so that issues of finite memory can be ignored.

Dirichlet Priors. Throughout most of the paper, we assume that the agent has a flat prior over

group share realizations. We model this assumption using the flat symmetric Dirichlet distribution,

x ∼ Dir(1, ..., 1). The Dirichlet distribution ensures that xi > 0 for i = 1, ..., 2K , and
∑2K

i=1 xi = 1.

The prior easily generalizes to a non-flat Dirichlet distribution, x ∼ Dir(α1, ..α2K ). Given the

Dirichlet parameter vector α = (α1, ..., α2K ) > 0, the expectation and variance of the share of each

group are:

E(xi) =
αi∑
j αj

, V ar(xi) =
αi(
∑

j αj − αi)

(
∑

j αj)2(
∑

j αj + 1)
(10)

Thus, the non-flat Dirichlet prior captures two additional features. First, subgroups may have
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different shares in expectation: the higher the αi (holding αj for all j ̸= i constant), the higher

the subgroup share. Second, the agent may have different degrees of certainty about the subgroup

shares: scaling all αi by a factor greater than 1 decreases variance and thus increases certainty

about the subgroup shares.

The non-flat Dirichlet prior has two interpretations. First, the agent may have some prior

knowledge about the distribution of subgroup shares. This knowledge can be directly captured in

parameters α1, ..., α2K . Second, the agent may have immediate access to some observations from

the database before sampling extra observations. Suppose the agent has a flat prior Dir(1, ..., 1)

but observes a random sample consisting of ni observations from subgroups i = 1, ..., 2K . Then the

agent’s belief is x ∼ Dir(1 + n1, ..., 1 + n2K ).

Single versus Multi-Period Optimization. We assume that the expert samples from her index to

minimize the expected loss in the next period. At this point, we only conjecture that her sampling

would be the same in most cases if she were optimizing multiple periods ahead.

4 Sampling Distortions

We now characterize sampling strategies and answer the question of who comes to mind. Since

non-experts do not have an index, they randomly select anecdotes from memory. For example,

these agents will sample men and women according to the share of both groups in the population.

The sampling strategies of experts, on the other hand, depend on the problem they need to solve.

We will show, for example, that an expert with a gender index will generically over- or undersample

men and women. We start by defining a class of problems that we call simple problems that allow

us to characterize this sampling distortion efficiently.

4.1 Simple Problems

Consider an index Ind =
{
A, Ã

}
. Let IA ⊆ A and IÃ ⊆ Ã be subsets of the indexed groups. Let

I ′A ⊆ IA and I ′
Ã
⊆ IÃ be further subsets of those subsets. Let P (I ′A | IA) and P (I ′A | IA) be the

shares of these smaller subsets conditional on the bigger subsets:

P (I ′g | Ig) =

∑
i∈I′g xi∑
i∈Ig xi

for g = A, Ã (11)

Simple problems depend only on these aggregate shares and not on the shares of individual

subgroups xi.

Definition 2. Given an index Ind =
{
A, Ã

}
, a statistic f(x) is a simple problem if it can be

written as f̃(P (I ′A | IA), P (I ′
Ã
| IÃ)) where I ′g ⊆ Ig ⊆ g, and P (I ′g | Ig) =

∑
i∈I′g

xi∑
i∈Ig

xi
for g = A, Ã.

To illustrate the model, consider an example of a memory database that consists of people with
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three binary attributes (see Table 1): Gender (Male or Female)5, Occupation (Scientist or Non-

Scientist), and Hobby (Runner or Non-Runner). Therefore, there are 23 = 8 distinct subgroups of

observations, with shares x = x1, ..., x8, xi ≥ 0, and
∑8

i=1 xi = 1. The agent does not know the

realization of x and has a prior x ∼ Dir(α1, ..., α8).

Table 1: Database composition with three binary attributes (gender, occupation, hobby)

F M

R NR R NR

S x1 x2 x5 x6
NS x3 x4 x7 x8

x ∼ Dir(α1, ..., α8)
There are three binary attributes {Female,Male} × {Scientist,Non-Scientist} ×
{Runner,Non-Runner} and therefore 23 = 8 subgroups.

Table 2: Examples of simple problems

Importance Variability Availability

P (Scientist | Female)− P (Scientist | Male) No Yes No
Conditional Full-Index

P (Runner | Female, Scientist)− P (Runner | Male, Scientist) No Yes Yes
Conditional Partial-Index

P (Scientist) Yes Yes No
Unconditional

Suppose the agent is a gender expert, so she has a gender index Ind = {F,M}. Table 2 lists

three examples of simple problems. The first example is a conditional full-index problem, which is a

function of conditional estimates about certain traits among men and women, such as the difference

in the propensity of women and men to become scientists. The second example is a conditional

partial-index problem which conditions on subsets of women and men such as female and male

scientists, respectively. The third example is an unconditional problem, which we can decompose

as follows:

P (Scientist) = P (Scientist | Female)P (Female) + P (Scientist | Male)P (Male) (12)

However, some problems are not simple. Most notably, problems conditioning on a non-indexed

attribute are not simple. For example, P (Runner | Scientist) is not simple because it conditions on

being a Scientist, which combines both genders.

The general solution to the agent’s problem and other results are independent of the problem

being simple. The main advantage of simple problems is that they allow us to separate and interpret

different forces that affect sampling distortions, which we formalize in Theorem 2. These effects are

also present in the optimal strategies for non-simple problems. For non-simple problems, however,

5We acknowledge that while for illustration purposes, we treat gender as binary, in reality, it is a diverse aspect
of human identity.
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the interactions between these forces do not allow us to isolate them.

4.2 Characterizing Sampling Distortions

To keep the exposition simple, we will focus on the gender index when stating results. The following

theorem describes the optimal shares of male and female groups in the sample in the limit as the

number of retrieved observations goes to infinity. It compares the sampling strategy to a natural

and useful benchmark — equal-share sampling. We say that the agent oversamples one group if

she samples it more than the other.

Theorem 2. Consider a simple problem. The ratio of sampled women to men S(F )/S(M) is

increasing in the following three effects:

1. relative importance
∣∣∣ ∂f̃
∂P (I′F |IF )

/ ∂f̃
∂P (I′M |IM )

∣∣∣ — the subgroup that affects the problem more in-

tensely is sampled more

2. relative variability
P (I′F |IF )(1−P (I′F |IF ))

P (I′M |IM )(1−P (I′M |IM ))
— the subgroup whose share is closer to 1

2 is sampled

more

3. relative availability P (IM | M)/P (IF | F ) — the subgroup that is rarer is sampled more

The ratio of sample shares in the limit is:

S(F )

S(M)
=

∣∣∣∣∣ ∂f̃

∂P (I ′F | IF )
/

∂f̃

∂P (I ′M | IM )

∣∣∣∣∣
√

P (I ′F | IF )(1− P (I ′F | IF ))
P (I ′M | IM )(1− P (I ′M | IM ))

P (IM | M)

P (IF | F )
(13)

The proof is in Appendix C.

Theorem 2 characterizes the sample in the limit. In a finite horizon, the agent’s sample is

approximated by the same equation (13) but with her current estimates of probabilities instead of

their true values. The agent’s belief distortions may amplify the three effects in a finite sample.

We can now apply theorem 2 to the three simple problems listed in Table 2. For the conditional

full-index example, we obtain the following sampling share:

S(F )

S(M)
=

√
P (Scientist | Female)(1− P (Scientist | Female))

P (Scientist | Male)(1− P (Scientist | Male))︸ ︷︷ ︸
variability effect

(14)

We can see that sampling is only driven by the variability effect – the importance effect is equal

to 1 because the two subsets enter the question with equal weights. The availability effect is also

equal to 1 because IF = F and IM = M . It is, therefore, optimal to sample more from the gender

whose share of scientists is closer to 1
2 .
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We next consider the partial index problem:

S(F )

S(M)
=

√
P (Runner | Female, Scientist)(1− P (Runner | Female, Scientist))

P (Runner | Male, Scientist)(1− P (Runner | Male, Scientist))︸ ︷︷ ︸
variability effect

×

√
P (Male, Scientist | Male)

P (Female, Scientist | Female)︸ ︷︷ ︸
availability effect

(15)

Sampling is now also affected by availability: if women are less likely to be scientists such that

P (Female, Scientist | Female) < P (Male, Scientist | Male) then the agent will attempt to com-

pensate for this by devoting more attention to retrieving women from her database. However, the

agent compensates for the relative availability of female scientists only partially — she still retrieves

fewer observations of them than of male scientists.

Corollary 1. The availability effect leads to the agent oversampling the group with the rarer sub-

group, but the rarer subgroup is still undersampled. Assuming P (IF | F ) < P (IM | M) and the

importance and variability effects are absent, the ratio of subgroup shares in the sample is:

S(IF )

S(IM )
=

S(F )

S(M)

P (IF | F )

P (IM | M)
=

√
P (IF | F )

P (IM | M)
< 1 (16)

This corollary highlights the trade-off when searching for rare observations. On the one hand,

the rare observations are useful because the agent has little data on the rare subgroup. On the other

hand, rare observations are less available, and searching for them is costly because the agent foregoes

observations from the other groups. As a result, the agent oversamples the group that contains the

rare subgroup, but not to the full extent. The rare subgroup is ultimately undersampled.

The availability effect is closely related to the availability heuristic (Tversky and Kahneman

(1973)). It is optimal for the agent to oversample observations that are relatively easier to access. As

we show in the next section, this leads to the agent’s beliefs being driven more by the information on

the subgroup that is more available. Even though the agent does not overestimate the share of the

more available observations, they contribute more to her beliefs than the less available observations.

Finally, we consider sampling for the unconditional problem:

S(F )

S(M)
=

P (Female)

P (Male)︸ ︷︷ ︸
importance effect

×

√
P (Scientist | Female)(1− P (Scientist | Female))

P (Scientist | Male)(1− P (Scientist | Male))︸ ︷︷ ︸
variability effect

(17)

For this problem, the importance effect is not equal to 1, but it is equal to the ratio of gender

population shares P (Female)/P (Male). The larger the gender’s share, the more important it is for

answering the question about the whole population and the more it is being sampled.
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Note that a truly gender-blind person, or a person with no gender index, samples women and

men by their population shares. Population-share sampling is an alternative benchmark in addition

to the equal-share benchmark. For the agent with an index, it is generically optimal to sample in

different proportions, not by population or equal shares. The degree and direction of oversampling

depends on the problem. To an outside observer, oversampling may look like a bias in favor of one

group. However, our model shows that oversampling can be rational and result from an optimization

problem.

5 Belief Distortions

In the previous section, we have shown that an expert will generically oversample one of the indexed

groups. In the long term, oversampling does not matter because a fully Bayesian agent (an expert

and a non-expert) will have correct beliefs as the number of retrieved observations goes to infinity.

However, in the medium run, oversampling will give rise to what might look to an outside observer

as a bias: the agent will have more accurate beliefs about the group that she oversamples, and her

beliefs about the undersampled group will be more heavily affected by her priors.

5.1 Distortion

Although the agent uses an unbiased estimator given her beliefs, the expectation of the estimate is

different from the actual realization of subgroup shares. We will refer to this difference as distortion.

Definition 3. The distortion of an estimator f̂(x) given realized x∗ and sample sizes from two

index groups nA, nÃ is

Dist(f̂(x) | x∗, nA, nÃ) = E(f̂(x)− f(x∗) | x∗, nA, nÃ) (18)

where the expectation is taken over the distribution of sampled observations conditional on x∗, nA,

and nÃ.

The distortion arises because the agent combines data from observations with the prior. While

the observations are informative about the realized value of f(x∗), the prior generally distorts the

estimate away from the realized f(x∗). For example, consider the distortion for one subgroup xi:

Dist(x̂i | x∗, nA, nÃ) = E(x̂i − x∗i | x∗, nA, nÃ) (19)

= E
(
P (g(i))

ni + αi

ng(i) + αg(i)
− x∗i

∣∣∣x∗, nA, nÃ

)
(20)

=
αg(i)

ng(i) + αg(i)

(
P (g(i))

αi

αg(i)
− x∗i

)
(21)

=
αg(i)

ng(i) + αg(i)

(
xpriori − x∗i

)
(22)
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The distortion arises from the difference between the realized value x∗i and its expected value

based on the prior, xpriori . The more observations the agent retrieves, the more weight she puts

on the data-driven component of the estimate and the less weight she puts on the prior. As the

sample grows, the distortion decreases and disappears in the limit.

While we can calculate the distortion for estimators of individual group shares xi, there is

no closed-form expression for estimators of arbitrary problems f(x). As in the previous section,

we calculate the Taylor approximation of the distortion instead. To keep statements precise, we

formulate results about the asymptotic distortion, ADist(f̂(x) | x∗) = plimN→∞N · Dist(x̂i |
x∗, nA, nÃ), because the Taylor approximation of the distortion scaled up by N converges to its

true value in the limit.

The distortion for a general problem can be decomposed into two components corresponding to

the two index groups. For example, with the gender index, the two components are the distortions

about women and men. Each component decreases in the number of observations sampled from

the corresponding gender.

Theorem 3. The agent’s beliefs are distorted after sampling a finite number of observations. For

linear problems6, the female and male components are distorted toward their prior, and the absolute

values of distortion components decrease in sample size. For general problems, the ratio of the

asymptotic distortion components for women and men, in absolute value, is proportional to the

ratio of sampled men to women S(M)/S(F ).

Proof is in Appendix D.

The agent’s ability to optimize sampling leads to rational and persistent stereotypes. As we show

in Theorem 2, different forces make it optimal for the agent to sample one gender more than the

other. If the agent oversamples men, she has precise and observation-driven beliefs about men and

imprecise and prior-driven beliefs about women. Although the agent looks like she has stereotypes

about women and is unwilling to correct them, this strategy and the corresponding outcome are

optimal for the agent. Furthermore, since the agent undersamples women, it takes longer for her

to unlearn any stereotypes about women, making stereotypes more persistent.

The agent’s distortions are also problem-dependent. The statistical problem f affects the op-

timal sampling strategy S(F )/S(M), which in turn affects the resulting distortions. As a result,

the agent’s belief may be relatively more distorted about women than men for some problems and

more distorted about men than women for other problems.

5.2 Non-monotonic Distortion

Theorem 3 states that the distortions of beliefs about men and women are decreasing in sample

size in absolute value. However, the aggregate distortion may be non-monotonic if the agent learns

about the two genders at different rates.

6A problem f(x) is linear if f is a linear function. For the three simple problems listed in Table 2, the full-index
and unconditional problems are linear, and the partial-index problem is not linear.
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Table 3: Parameters in simulations

(a) Shares conditional on gender

F M

R NR R NR

S 0.2 0.1 0.5 0.3
NS 0.4 0.3 0.1 0.1

(b) Unconditional shares

F M

R NR R NR

S 0.09 0.045 0.275 0.165
NS 0.18 0.135 0.055 0.055

Corollary 2. The agent’s distortion may be non-monotonic in sample size.

The aggregate distortion consists of the distortions about men and women. The two components

of the aggregate distortion may balance each other out, at least partially. As the sample size grows,

the agent reduces her distortion about both components. If one of the distortions decreases faster

than the other, they may stop balancing each other out, and the aggregate distortion may increase.

Consider an agent with a general prior Dir(α1, ..., α2K ) and a linear problem f(x). Appendix

D shows that the distortion can be written as a weighted sum of the prior distortions about the

two genders:

Dist(f̂(x) | x∗, nF , nM ) =
αF

nF + αF
DistF (f̂(x) | x∗, 0, 0) +

αM

nM + αM
DistM (f̂(x) | x∗, 0, 0)

(23)

Suppose the prior distortions are equal but have opposite signs: DistF (f̂(x) | x∗, 0, 0) =

−DistM (f̂(x) | x∗, 0, 0). Then, the aggregate distortion is proportional to:

Dist(f̂(x) | x∗, nF , nM ) ∝
(

αF

nF + αF
− αM

nM + αM

)
(24)

The agent may learn about the two genders at different rates for two reasons. First, the

agent may be (optimally) sampling one gender more often than the other. For example, suppose

nF = 2
3N , nM = 1

3N , but αF = αM . Second, the agent may be more certain in her prior about

one gender than the other. For example, suppose αM = 2αF but nF = nM = N
2 . Both reasons

generate non-monotonic aggregate distortion. The initial aggregate distortion is zero. As sample

size N increases, the aggregate distortion increases, reaches its peak, and decreases toward zero.

5.3 Simulations

We run simulations to illustrate the results’ magnitudes for the three problems introduced in Table

2 of the previous section. First, we fix the population shares of different groups at levels specified in

Table 3. We assume the agent has a flat prior and the gender index and hence knows the population

gender shares: P (F ) = 0.45, P (M) = 0.557.

7We introduce slight imbalance in the gender shares to illustrate the importance effect in the unconditional
problem.
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For each of the three questions, we run 10,000 simulation rounds, each consisting of 100 periods

(i.e., retrieved observations). In each period, we choose whether to sample a man or a woman

to minimize the expected next-period variance (calculated using Taylor approximation) based on

the current sample. Given the choice of whom to sample, we draw a random observation of the

corresponding gender according to the population shares. The variation between simulation rounds

comes from the randomness of the drawn observations.

Figure 2 shows how the simulated share of men in the sample changes over time for the three

problems. In all three cases, the share converges to a constant. For the full-index problem in panel

a), only the variability effect determines sampling. The probability of being a Runner is 0.6 for

both genders, so the variability effect equals 1. As a result, the agent samples men and women in

equal shares in the limit. For the unconditional problem in panel c), sampling is also influenced by

the importance effect, i.e., by population shares of men and women. Since men constitute 55% of

the population, the agent optimally accounts for their importance and samples men proportionally.

For the partial-index problem in panel b), sampling is determined by the availability and variability

effects. The problem is about scientists, who are rarer among women than men. This effect pushes

the share of men in the sample down.

Figure 3 shows the simulated evolution of distortion over time by gender. Specifically, each line

plots the distance between the agent’s belief and the true value of the female and male components

of each problem in percentages of the true value. For all three problems, distortion decreases as

the sample grows. After N = 100 observations, the relative distortion is between 8% and 12%,

depending on the problem and gender. Consistent with intuition, the evolution of distortion is the

same for both genders in the full-index problem. For the unconditional problem, distortion about

men decreases faster because the agent samples more men. For the partial-index problem, although

the agent samples more women, she retrieves fewer observations of women who are scientists than

men who are scientists. Because there are more men in the ‘effective’ sample, distortion about men

decreases faster.

Figure 4 shows the simulated variance evolution of the agent’s beliefs about the male and female

components of the three problems. After N = 100 observations, the variance approaches zero. For

the full-index problem, there is no difference between genders. For the unconditional and partial-

index problems, the difference in variance between genders reflects the difference in parameters and

the agent’s sampling strategy.

6 Exogenous Indexing

Different people may have different indices. This can be caused by exogenous factors such as

growing up in a particular place and time or a history of previous beliefs the agent had to form.

It can also result from the agent endogenously choosing an index from the outset. This section

focuses on exogenous indices and illustrates how they can explain various biases and stereotypes.
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Figure 2: Simulated share of men in the sample

(a) Conditional Full-Index (b) Conditional Partial-Index (c) Unconditional

Figure 3: Simulated relative distortion over time by gender for the three problems

(a) Conditional Full-Index (b) Conditional Partial-Index (c) Unconditional

Figure 4: Simulated variance over time by gender for the three problems
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6.1 Optimism vs Pessimism

Why are some people optimistic and others pessimistic? Our model explains this difference in views

through the lens of distorted beliefs due to memory imperfection.

Suppose the world can be in one of three equally likely states: Good, Neutral, and Bad. The

outcome of some event of interest can be High or Low. The agent’s memory consists of observations

of the state and the outcome8. There are two types of agents. Optimists have an index for the

Good state: IndO = {Good,Not Good}, where Not Good includes Bad and Neutral. Pessimists,

in contrast, have an index for the Bad state: IndP = {Bad,Not Bad}, where Not Bad includes

Good and Neutral. The difference in indices could reflect, for example, different life experiences or

different world views.

The agent is deciding whether to take a risky action. The expected payoff from the action is

positive if the High outcome is sufficiently likely. We assume that the agent is indifferent about

the action in the Neutral state, so she needs to estimate the chance of the High outcome in the

non-Neutral states:

f(x) = P (High | non-Neutral) = 1

2
P (High | Good) +

1

2
P (High | Bad) (25)

Assume, for symmetry, that P (High | Good) = 1−P (High | Bad) > 0.5. The agent starts with

an uninformative prior.

Proposition 1. Optimists overestimate the chance of High returns. Pessimists underestimate it.

Proof is in Appendix E.

This result is ultimately driven by the availability effect, which causes the agent to oversample

some of the observations depending on her index. Consider an Optimist agent with an index

for the Good state. The agent can directly retrieve observations of the Good state but cannot

directly target observations of the Bad state. Instead, she can only target non-Good observations,

which yield observations of the Bad state with a probability of less than 1. From Corollary 1,

the availability effect pushes the agent to oversample the non-Good state but not enough to fully

compensate for the availability of the Good state. As a result, the agent ends up with fewer

observations of the Bad state than of the Good state.

Because the agent has more observations of the Good state than the Bad state, her beliefs are

driven by data more for the Good state and are driven by the prior more for the Bad state. The

agent starts with a flat prior, so her prior for the High outcome in both states is 0.5. Therefore, her

belief is distorted downward about the chance of the High outcome in the Good state and upward

about the chance of the High outcome in the Bad state. The Optimists have more observations of

the Good state than the Bad state, so they correct the negative distortion about the Good state

faster than the positive distortion about the Bad state. As a result, the total distortion is positive,

and the Optimists overestimate the aggregate chance of the High outcome.

8This setup slightly deviates from the baseline because the state is not binary but has three values. This extension
is straightforward if the non-binary attribute is indexed and the agent knows the shares of all its values.
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One example of this is the “depression babies” effect. Malmendier and Nagel (2011) show that

people who experienced low stock market returns during their young age (“depression babies”) are

less likely to participate in the stock market and are more pessimistic about future stock returns.

To put this story in our context, depression babies have an index for the Bad state of the economy,

which is driven by their experiences in their formative years. Having the index for the Bad state

makes them more pessimistic about the stock market performance and deters them from investing.

6.2 Generalization Stereotypes

Stereotyping may be a belief that two different groups are similar. Such stereotyping arises naturally

in the current model and depends on the coarseness of the agent’s index.

Suppose the indexed attribute has more than two values. Consider two agents with indices

of different coarseness. Agent C has a coarse index IndC = {A, Ã}. Agent F has a finer index

IndF = {A1, ..., AL, Ã1, ..., ÃL̃}, where A1 ∪ ... ∪ AL = A and Ã1 ∪ ... ∪ ÃL̃ = Ã9. We assume that

both agents know the population shares P (g) for g = A1, ...AL, Ã1, ..., ÃL̃, so the only difference

between the agents is their ability to target memory retrieval. Agent F can target retrieval more

precisely, which leads to a lower posterior variance of her belief.

Proposition 2. The agent with a finer index has a weekly lower asymptotic variance for any

question. The tight bounds on the ratio of asymptotic variances are AV arF (f(x))
AV arC(f(x)) ∈ [min{P (A1 |

A), ..., P (AL | A), P (Ã1 | Ã), ..., P (ÃL̃ | Ã)}, 1].

Proof is in Appendix F.

Agent F can target her sampling strategy more finely than agent C. In the extreme case, this

allows agent F to retrieve only useful observations, while agent C retrieves useful observations

mixed with irrelevant ones. However, the share of useful observations agent C retrieves is bounded

from below. For example, if agent C needs to retrieve observations from group A1, she can target

its superset — group A, for which she has an index. Then, she would retrieve observations from

A1 with probability P (A1 | A). This strategy imposes a bound on the ratio of useful observations

agents F and C retrieve. The bound on the ratio of useful samples implies a bound on the ratio of

the accuracy of agents’ beliefs, measured by asymptotic variance.

The following example illustrates this result, demonstrates that the bound is tight, and shows

how a coarse index exacerbates stereotyping. Suppose each person has two attributes: nationality

and profession. Suppose there are three nationalities: American, German, and French, and two

professions: Economists and Non-Economists.

To illustrate the effects of a coarse index, compare two agents with different coarseness of the in-

dex. Suppose an American agent has a coarse nationality index IndA = {American,Non-American}.
A European agent, in contrast, has a finer nationality index IndE = {American,German,French}.
This difference in coarseness could result from different life experiences. If an American rarely

9This setup also deviates from the baseline because the indexed attribute has multiple values, and the index is
non-binary. This generalization is straightforward and does not affect previous results.
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interacts with Europeans or solves problems that require thinking about Europe, she is likely to

have a more coarse index than a European. Let P (G | NA) be the share of Germans among

Non-Americans. Suppose both agents receive a question about Germans: what is the share of

Economists among Germans, f(x) = P (E | G).

Corollary 3. A European agent has a more accurate belief about Germans than an American

agent: AV arE(P (E|G))
AV arA(P (E|G)) = P (G | NA). Furthermore, the American agent’s beliefs about Germans

are more distorted towards the prior than the European agent’s:
∣∣∣DistE( ̂P (E|G)|x∗)

DistA( ̂P (E|G)|x∗)

∣∣∣ = P (G | NA).

Under the flat prior, the American agent’s beliefs about Germans and French are closer than the

European agent’s.

To form more precise beliefs about Germans, the agents need to retrieve observations of Ger-

mans. While the European agent can target Germans directly, the American agent can only target

the Non-American group, which yields a German with probability P (G | NA). Thus, the Ameri-

can agent retrieves only a P (G | NA) share of observations of Germans compared to the European

agent. The difference in the number of sampled Germans leads to the difference in the accuracy

of estimates. Asymptotic variance and absolute distortion decrease inversely in the share of obser-

vations. Therefore, asymptotic variance and absolute distortion are proportionally smaller for the

European agent than for the American agent. If Germans are rarer than the French, this example

shows that the lower bound is tight.

The American agent treats Germans and the French more similarly than the European agent

due to the distortion toward the flat prior. Suppose both agents receive a second question about

the French. After sampling a finite number of observations, American and European agents’ beliefs

are distorted toward the common prior. However, the European agent learns about Germans and

the French faster than the Americans. As a result, the American agent’s beliefs about Germans

and French will be more similar than the European agent’s.

6.2.1 Probabilistic Indexing

One implication of Proposition 2 is that the agent may be able to strictly improve upon indexing

all observations. If she indexes some of them probabilistically, she can make it easier to retrieve

rare observations. Let PInd(Ai | A) be the share of observations from subgroup Ai in the indexed

group A in the agent’s index, which could differ from the population share P (Ai | A).

Corollary 4. The worst-case relative penalty on the coarse index, AV arF (f(x))
AV arC(f(x)) , is minimized by

probabilistic indexing, such that the shares of subgroups in the index are equal, PInd(A1 | A) = ... =

PInd(AL | A) = 1
L and PInd(Ã1 | Ã) = ... = PInd(ÃL̃ | Ã) = 1

L̃
.

Probabilistic indexing allows an agent to create an index with more balanced subgroups. As

a result, the agent has easier access to observations with rare attribute values. Problems about

rare observations drive the worst cases. Thus, an index with more balanced subgroups has a better

worst-case performance.
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6.3 Anchoring Stereotypes

Stereotyping can also take the form of extrapolating beliefs about one group to another group.

This phenomenon also arises in our model as a rational response to the difficulty of finding rare

observations. Instead of searching for rare observations, the agent can form a belief based on

observations from a different but correlated group that are easier to retrieve and adjust the belief

in the necessary direction. In this case, the agent’s belief may not converge to the truth even in the

limit, and the beliefs of two agents using two different groups may not converge to the same limit.

Suppose the indexed attribute has several values, one of which is rare, and the problem f(x)

is about this rare group. If the rare group does not have its own index but is correlated with an

indexed group, it may be optimal for the agent to use a ‘proxy index.’ Instead of trying to find the

rare observations, the agent can estimate an analogous statistic for the indexed group. The agent

would then form a proxy estimate by adjusting her estimate for the indexed group toward the rare

group. This approach could be a good approximation if the correlation is high.

Consider an agent with index Ind = {A, Ã}, where A = A1, Ã = Ã1∪ ...∪ ÃL̃. Let k1 be a value

of a non-indexed attribute K1. Suppose the agent’s problem is to estimate f(x) = P (k1 | Ã1).

Suppose further that there is a chance that A1 is identical to Ã1 in dimension K1: with probability

p, P (k1 | Ã1) = P (k1 | A1), and with probability 1− p, P (k1 | Ã1) and P (k1 | A1) are independent.

The higher the p, the more likely it is that learning about A1 is informative about Ã1.

One strategy for the agent is to sample from group Ã, keep observations in Ã1, and thus estimate

P (k1 | Ã1) directly. Alternatively, the agent can sample from group A, estimate P (k1 | A1), and

partially adjust the estimate in the direction of her prior about P (k1 | Ã1). The result would be a

proxy estimate for P (k1 | Ã1). Denote G0 the prior distribution and GN the posterior distribution

after N observations.

Proposition 3. The proxy estimate is p(P (k1 | A1))+(1−p)P (k1 | Ã1). Assuming Ã1 is sufficiently

rare, the proxy estimate has lower variance than the direct estimate after N observations if

p(1− p)(EG0P (k1 | Ã1)− EGN
P (k1 | A1))

2 < p(V arG0(P (k1 | Ã1))− V arGN
(P (k1 | A1))) (26)

In the limit, the estimate based on the proxy index has a higher variance than the direct estimate.

Proof is in Appendix G.

When choosing between the direct and proxy estimates of P (k1 | Ã1), the agent faces a trade-

off between estimating P (k1 | Ã1) on little data and estimating P (k1 | A1), which is potentially

informative, on more data. On the one hand, a proxy index allows to get an accurate estimate

for P (k1 | A1) with less data than what would be needed for P (k1 | Ã1). The right-hand side

of equation (26) captures this force. The proxy index reduces the variance by accurately estimating

the case when the two subgroups are identical. On the other hand, the estimate for P (k1 | A1) is not

informative about P (k1 | Ã1) if they are independent. The left-hand side of equation (26) captures

this force after partial adjustment. Conditional on the two subgroups being independent, the proxy

estimate introduces a bias because the expectations for the two subgroups are different. The balance
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between reducing variance and introducing a bias when the groups are different determines whether

the proxy index is better than direct estimation.

However, using a proxy index is worse than direct estimation in the limit. As the sample size

goes to infinity, the variance of the direct estimate goes to zero. For the proxy estimate, however,

the variance does not go to zero in the limit. When the two subgroups are independent, the proxy

index is uninformative about the subgroup of interest, so the variance is always strictly positive.

Thus, with an infinite sample, direct estimation is better.

The use of proxy indices rationalizes the stereotyping of a small group. If it is too difficult to

retrieve observations of the small group, it may be optimal to form a belief based on the observations

of a similar group that is easier to retrieve. For example, suppose the agent does not have an

index for Austrians but has an index for Germans. She may find it optimal to base her beliefs

about Austrians on the observations of Germans and adjust them partially towards her prior about

Austrians. Her beliefs about Austrians based on Germans may be accurate for those domains where

the two nationalities are similar. In other domains, her beliefs may be very wrong.

One consequence of using a proxy is that beliefs do not converge to the truth even in the limit.

Furthermore, if two agents use two different proxies to estimate the same statistic, their beliefs may

not converge in the limit.

Corollary 5. If an agent uses a proxy for estimation, her beliefs do not converge to the truth even

in the limit. Beliefs of agents who use different proxies may not converge even in the limit.

Continuing the previous example, while one agent may have a German index, another may have

a French index. Their beliefs converge to a mixture of the truth about their indexed nationality

and the prior about Austrians. Thus, their beliefs do not converge to the truth about Austrians.

Furthermore, if Germans and the French are not identical, the beliefs of the two agents will diverge—

one will be anchored to Germans, the other to the French.

6.4 History Dependence

If the agent answers several questions sequentially, she may store a set of recently retrieved obser-

vations and have them all in short-term memory for instant use. These observations may affect the

agent’s beliefs, and depending on their composition, the agent’s beliefs will be distorted in different

directions.

Suppose the memory database consists of women who are Scientists (S)/Non-Scientists (NS)

and Good at Math (G)/Not Good at Math (NG). Suppose that P (S) = 0.5, P (G) = 0.5, but

P (G | NS) < 0.5 < P (G | S) — scientists are more likely to be good at math than non-scientists.

Consider two agents, S and NS, with a scientist index and a flat prior but different sets of

observations in their short-term memory for historical reasons. Agent S has N0 observations of

scientists. Agent NS has N0 observations of non-scientists. Suppose both agents receive a question

about women: What is the share of women who are good at math, P (G). The agents’ beliefs are

distorted in the direction of the observations in their short-term memory.
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Proposition 4. Agent S, who has scientists in short-term memory, has beliefs that are distorted up

about P (G). Agent NS, who has non-scientists in short-term memory, has beliefs that are distorted

down about P (G).

Proof is in Appendix H.

The agents decompose the problem into two components — female scientists and female non-

scientists — and use the available set of observations to estimate one of the components before

sampling from the memory database. From the start, Agent S has accurate beliefs about female

scientists, but her beliefs about female non-scientists are distorted up, i.e., toward the prior. This

leads to a positive aggregate distortion of agent S. In contrast, Agent NS has accurate beliefs

about female non-scientists, but her beliefs about female scientists are distorted down, i.e., toward

the prior. This leads to a negative aggregate distortion of agent NS. Two agents who start with

the same index and prior but focus on different observations for historical reasons can have beliefs

distorted in opposite directions about the same question.

7 Optimal Indexing

So far, we assumed that the index is given exogenously. However, some indices perform better than

others. If the agent had a choice, she may prefer to index one attribute over another. This sec-

tion shows that good indices address frequent questions and represent informative and unbalanced

attributes.

First, we introduce a general setup and then impose restrictive assumptions to highlight each

factor. The memory database consists of people with four attributes: Scientist (S)/Non-Scientist

(NS), Runner (R)/Non-Runner (NR), Female (F )/Male (M), Nationality (A/Ã). The agent

receives one problem f from a set of possible problems F .

For tractability, we assume that the agent can only have a gender index IndG = {F,M} or a Na-

tionality index IndN = {A, Ã}. We also restrict the set of possible problems to unconditional and

conditional problems about being a Runner: P (R) and P (R | k), where k ∈ {S,NS, F,M,A, Ã}.
In the following subsections, we introduce additional restrictive assumptions to turn off all but

one factor at a time, including assumptions on the parameter realizations. The agent does not

know these realizations from the beginning, but she learns them over time and adjusts her strat-

egy accordingly. We compare the performance of the two indices given the assumptions on the

parameters.

7.1 Distribution of Problems

One reason for an attribute to be a good candidate for an index is that it helps answer problems

that arise frequently. For example, if most problems are conditional on gender, then having a

gender index is useful because it facilitates efficient retrieval of relevant observations.

Suppose both indexable attributes are ex-post uninformative about the other attributes: con-

ditioning on a value of the indexable attribute does not affect the distribution of values of other
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attributes. Suppose also they are ex-post balanced: both values of the indexable attributes are

equally likely.

Definition 4. An attribute Ki is ex-post uninformative if P (kj | ki) = P (kj) and P (kj ∩ kl |
ki) = P (kj ∩ kl) for any ki ∈ Ki, kj ∈ Kj, and kl ∈ Kl. An attribute Ki is ex-post balanced if

P (ki) = P (k̃i) =
1
2 for ki, k̃i ∈ Ki.

The distribution of problems is the only factor determining which index is better. In particular,

the only difference is in the questions that condition on one of the indexable attributes.

Proposition 5. Assume that both indices are ex-post uninformative and balanced. The gender

index has a lower expected asymptotic variance than the nationality index if and only if the proba-

bility of problems conditioning on gender is higher than the probability of problems conditioning on

nationality.

Proof is in Appendix I.

Intuitively, an index is good if it is useful to answer high-probability problems. Because of the

uninformativeness and balancedness assumptions, neither index is useful for any problem except

for problems that condition on the indexed attribute. Therefore, the only difference is coming from

problems P (R | k), where k ∈ {F,M,A, Ã}. If the agent has an index for k, she can sample a k

observation each period. If the agent has a different index, this index is not useful because of the

uninformativeness assumption. As a result, she can only sample a k observation with probability

P (k). Smaller effective sample size inflates asymptotic variance by 1
P (k) compared to the agent

with the index on k:

AV arG(P (R | k))
AV arN (P (R | k))

=


P (k) if k ∈ {F,M}
1

P (k)
if k ∈ {A, Ã}

For clarity of comparison, we assume that gender and nationality attributes are ex-post sym-

metric. Therefore, the gender index is better if and only if problems conditioning on gender are

more likely.

7.2 Informativeness

A good attribute for an index is informative about other attributes. An informative attribute helps

answer problems not only conditioning on the attribute itself but also on other attributes and the

unconditional problem. Higher informativeness rationalizes having an index based, for example, on

gender or age rather than on the first letter of the name or eye color.

Suppose nationality is ex-post uninformative, while gender is fully informative about being a

scientist: P (S | M) = 1, P (S | F ) = 0. The nationality index is useful only for answering problems

that condition on nationality. The gender index is useful for problems that condition on gender

and occupation and for the unconditional problem.
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Proposition 6. Assume gender is fully informative about occupation, while nationality is ex-post

uninformative. The gender index leads to a lower asymptotic variance than the nationality index

for the unconditional problem and the problems conditional on the non-indexable attribute.

Proof is in Appendix J.

First, consider a problem P (R | S) (equivalently, P (R | NS)) — conditional on a non-indexable

attribute. The nationality index is not useful because it is fully uninformative. On the other hand,

the gender index is completely informative and turns the problem into estimating P (R | M). Thus,

the gender index allows the agent to sample a scientist each period, while the nationality index —

only with probability P (S). As a result, the gender index performs better:

AV arG(P (R | S))
AV arN (P (R | S))

= P (S) (27)

Second, consider the unconditional problem P (R). The uninformative nationality index splits

the population into two groups with identical shares of runners P (R | A) = P (R | Ã) = P (R). The

informative gender index splits the population into two groups: one has a higher share of runners,

and the other has a lower share of runners. More extreme parameters are easier to estimate

precisely: formally, asymptotic variance is concave in the share of runners. As a result, splitting

the data into two different groups by gender reduces the total variance of the estimate compared

to splitting into two identical groups by nationality.

7.3 Unbalancedness

Another feature of a good candidate for an index is unbalancedness. An unbalanced attribute

has rare values, which are hard to retrieve without the appropriate index and, therefore, hard to

learn about. This penalty on low availability makes it important to have an index for unbalanced

attributes, such as minority status, rare skill, or rare nationality.

Suppose gender is more balanced than nationality: | P (F )−P (M) |<| P (A)−P (Ã) |. Suppose
also that both attributes are ex-post uninformative. Thus, an index is useful only for problems

that condition on the indexed attribute. For these problems, it is important to have an index for

rare groups.

Proposition 7. Assume both indices are ex-post uninformative, but gender is more balanced than

nationality. Assume the problems conditioning on the indexable attributes are equally likely. Then,

the nationality index has a lower expected asymptotic variance than the gender index.

Proof is in Appendix K.

Because the indexed attributes are uninformative, the indices are useful only for problems that

condition on the indexed attribute, i.e., P (R | k), where k ∈ {F,M,A, Ã}. If the agent has the

index for k, she can sample a relevant observation each period. If she has the other index, she can
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only sample a relevant observation with probability P (k). As a result, the asymptotic variance gets

inflated by 1
P (k) if the agent has the wrong index:

AV arG(P (R | k))
AV arN (P (R | k))

=


P (k) if k ∈ {F,M}
1

P (k)
if k ∈ {A, Ã}

(28)

Note that the relative penalty for the wrong index, 1
P (k) , is convex. For the problems conditional

on a fully balanced attribute, the average penalty is only 2. As the attribute becomes less balanced,

the average penalty increases because of convexity. Intuitively, if one group is very rare, then not

having an index for it is very costly. Therefore, if all problems conditional on the indexable

attributes are equally likely, the index for the unbalanced attribute performs better.

8 Other Applications

8.1 Microfoundation for Cued Recall

A popular class of recall models is based on cues and the similarity between cues and memories

(e.g., Kahana (2012); Bordalo et al. (2023b)). In our model, the agent’s recalled sample looks like

it is based on cued recall. Therefore, our model provides a microfoundation for the cued recall

models and specifies the functional form of the similarity measure.

Models of cued recall assume that the probability of recalling a given observation increases in the

similarity of this observation with a given cue and decreases in the similarity of other observations

with the cue (e.g., Kahana (2012); Bordalo et al. (2023b)). Let d be an observation in a memory

dataset D. Let c be a cue. Let Sim(d, c) be the similarity between observation d and cue c. The

standard assumption is that the probability of recalling observation d given cue c, r(d, c), is

r(d, c) =
Sim(d, c)∑

d′∈D Sim(d′, c)
(29)

Our model does not impose any specific assumptions on the recall probabilities. Nevertheless,

the agent’s optimal recall strategy yields the same structure of the recalled sample as the models

of cued recall.

It is helpful to think of recall in our model as happening in two stages. First, the agent chooses

which indexed group to target — this stage is the one we are most interested in. Then, she retrieves

an observation from that group uniformly at random. Suppose the agent has an index Ind = {A, Ã}
and receives a problem f(x). We treat f(x) as a cue for the first retrieval stage. Let observation

d belong to the indexed group g. To adapt equation (29) to our setup, take the sample size to

infinity. In the first stage, the agent chooses which group to target, so instead of looking at the

probability of recalling a single observation d (which goes to zero), consider the share of recalled
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observations that belong to group g:

r(g, c) = lim
N→∞

∑
d∈g Sim(d, c)∑

d′∈D Sim(d′, c)
(30)

=
P (g)Sim(g, c)∑

g′∈{A,Ã} P (g′)Sim(g′, c)
(31)

where Sim(g′, c) = Sim(d′, c) = Sim(d′′, c) for all observations d′, d′′ in indexed group g′.

The sample share of group g under cued recall coincides with the sample share of group g in

the optimal sampling strategy. The following corollary is a direct consequence of the solution to

problem (9), given in Appendix C.

Corollary 6. The share of indexed group g ∈ {A, Ã} in the recalled sample in the limit as N → ∞
is

S(g) =
P (g)Sim(g, f(x))∑

g′∈{A,Ã} P (g′)Sim(g′, f(x))
(32)

where

Sim(g, f(x)) =
1

P (g)

√∑
i∈g

(f ′
i(x)

2xi(P (g)− xi)− 2
∑

i,j∈g:j>i

f ′
i(x)f

′
j(x)xixj) (33)

This corollary highlights two results. First, we provide a microfoundation for the cued recall

models. We show that the recalled sample under optimal memory retrieval has the same structure

as in the cued recall models. Second, we derive the specific functional form of the similarity metric.

Intuitively, the similarity between a group and a problem is given by the amount of variance

attributed to this group. This metric pins down the definition of similarity between cues and

observations, connecting it to the fundamental parameters. This similarity metric rationalizes the

recalled sample based on a cued recall model.

In the second stage, the agent draws an observation from the target group uniformly at random.

In the terminology of cues, this is equivalent to drawing an observation guided by the target group

being the cue. The similarity measure is constant and positive for observations inside that group

and zero outside. This assumption on the retrieval process within a group is the simplest and

cleanest because it does not drive any of the results about distortions. Possible extensions of

the model could impose other assumptions on within-group retrieval, such as associativeness and

rehearsal effects. These extra assumptions would affect the resulting sample of recalled memories

and lead to different model predictions.

8.2 Representativeness Stereotypes

One implication of the cued recall models is that people may form stereotypes based on the rep-

resentativeness heuristic (Tversky and Kahneman (1983); Bordalo et al. (2016, 2021)). Following
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Bordalo et al. (2016), we say that an attribute k is representative of group A if P (k|A)

P (k|Ã)
, a measure

of representativeness, is greater than 1.

The following simplified setup illustrates how representativeness affects the agent’s distortions

in our model. Consider our main example with three attributes and the gender index. Suppose

the agent’s problem is P (Runner | Scientist). To get cleaner results, analogously to the previous

section, assume that being a runner is ex-post uninformative.

Proposition 8. Suppose the problem is P (Runner | Scientist), and being a runner is ex-post

uninformative. If being a scientist is representative of men, the share of male scientists in the

sample is greater than their share in the population, and it is increasing in representativeness:

S(Scientist,Male) = P (Scientist,Male)

√
P (Scientist|Male)

P (Scientist|Female)

P (Male)
√

P (Scientist|Male)
P (Scientist|Female) + P (Female)

(34)

Proof is in Appendix L.

Even though the agent uses the optimal sampling strategy, an outside observer may think

she uses the representativeness heuristic. If being a scientist is representative of men, the agent

samples more male scientists (and fewer female scientists) than their population share. This strategy

is optimal because it is easier to find scientists—the group of interest for the problem—among

men than women, so representativeness works through the availability effect. As a consequence

of representativeness, the agent’s beliefs about scientists are driven more by the data on male

scientists and by the prior about female scientists, compared to an agent who does not use an index

for sampling.

9 Conclusion

In this paper, we proposed a model of belief formation based on memory. The agent in our model

retrieves memories and combines them with the prior to form a belief. The agent is Bayesian and

rational but faces a constraint on memory retrieval — she can only sample observations one at a

time instead of retrieving all of them simultaneously. Retrieval is primarily random, but the agent

can partially target retrieval using an index. The index splits the database of memories into two

(or more) groups based on the values of one (or more) attribute. The agent chooses which indexed

group to sample in each period to ensure that her beliefs are as accurate as possible.

We show that the expert will generically oversample one group and characterize the three

forces determining the oversampling for simple problems. We then demonstrate that oversampling

translates directly into belief distortion. We use this insight to explain well-known biases in beliefs

across individuals, such as the “depression babies” effect, rational stereotypes, and the dependence

of beliefs on the history of previously encountered problems.

Testing the model. A natural next step would be empirically testing our model’s assumptions

and implications. Our model implies that beliefs converge to the truth as the value of having
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correct beliefs increases. It assumes that the agent keeps retrieving observations indefinitely until

an exogenous decision period. In reality, we expect people to stop retrieving observations when

the marginal cost of recall is greater than the marginal benefit of improving beliefs. Thus, one can

change the incentives to recall more observations by experimentally varying the stakes. If there are

enough observations to be retrieved, our model predicts that beliefs should converge to the truth

if the stakes are sufficiently high.

Another implication of the model is that the sampling strategy depends on the problem. The

effects identified in Theorem 2 are not fixed for a given index but change from problem to problem.

For example, while women may be undersampled when answering a problem about scientists,

they may be oversampled when answering a problem about teachers. One can test this result

by experimentally varying the beliefs participants must form, such as asking about scientists or

teachers. Furthermore, Theorem 2 predicts not only that the sampling strategy should change in

response to a new problem but also the specific direction of this change, which can also be tested.

One could also test the assumptions about the mechanics of the model. For example, one

could induce different indices among participants in a lab experiment, elicit beliefs on full-index,

partial-index, and unconditional problems, and test for the predicted sampling strategies and belief

distortions.

These tests are challenging because recall is an internal process, which we can not observe.

However, we can measure it indirectly in two ways. First, we can ask participants to list every

observation they recall. Although imperfect, this approach makes the recall process more explicit.

Second, we can indirectly test the model by measuring final beliefs, which depend on the recall

strategy. A complementary approach could build on the alternative interpretation of our model

from Section 3.3 where a “market research agency” explicitly samples consumers at a cost. By

having experimental participants play the role of the agency and measuring their explicit sampling

of different types of consumers, we could directly test the oversampling predictions of our model.
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A Proof of Theorem 1

Consider a general index Ind = {A, Ã} and prior x ∼ Dir(α1, ..., α2K ). Denote αA =
∑

i∈A αi and

αÃ =
∑

i∈Ã αi. Let g(i) be the indexed group of subgroup i, i.e., g(i) = A if i ∈ A and g(i) = Ã

if i ∈ Ã. After N observations, the posterior G is also Dirichlet, x ∼ Dir(α1 + n1, ..., α2K + n2K ).

Denote subgroup shares conditional on the indexed group x̃i = xi
P (g(i)) . As a property of the

Dirichlet distribution, (x̃i)i∈g ∼ Dir(( αi+ni
αg+ng

)i∈g) for g = A, Ã. The expected values of x̃i are

ˆ̃xi = EG(x̃i) =
αi + ni

αg(i) + ng(i)
(35)

By LLN, the estimates of parameters x̂ (for which ng(i) → ∞) converge to true values x in

probability:

x̂i = P (g(i))
ni + αi

ng(i) + αg(i)

p−→ P (g(i))x̃i = xi (36)

⇒ x̂
p−→ x (37)

Assume f ′
i is continuous for each i ∈ {1, ..., 2K}. The estimates of asymptotic variance Taylor

approximation components for the two groups, A and Ã, converge to their true values in probability

by Mann-Wald theorem:

∑
i∈A

(f ′
i(x̂)

2x̂i(P (A)− x̂i)− 2
∑

j∈A:j>i

f ′
i(x̂)f

′
j(x̂)x̂ix̂j)

p−→
∑
i∈A

(f ′
i(x)

2xi(P (A)− xi)− 2
4∑

j∈A:j>i

f ′
i(x)f

′
j(x)xixj)

(38)∑
i∈Ã

(f ′
i(x̂)

2x̂i(P (Ã)− x̂i)− 2
∑

j∈Ã:j>i

f ′
i(x̂)f

′
j(x̂)x̂ix̂j)

p−→
∑
i∈Ã

(f ′
i(x)

2xi(P (Ã)− xi)− 2
∑

j∈Ã:j>i

f ′
i(x)f

′
j(x)xixj)

(39)

Let Starget
t (A) be the “target” share of A in the sample that minimizes the current estimate of

the asymptotic variance Taylor approximation:

Starget
t (A) = argmin

S(A)

1

S(A)

∑
i∈A

(f ′
i(x̂)

2x̂i(P (A)− x̂i)− 2
∑

j∈A:j>i

f ′
i(x̂)f

′
j(x̂)x̂ix̂j)


+

1

1− S(A)

∑
i∈Ã

(f ′
i(x̂)

2x̂i(P (Ã)− x̂i)− 2
∑

j∈Ã:j>i

f ′
i(x̂)f

′
j(x̂)x̂ix̂j)

 (40)

The target sample share Starget
t (A) under the approximate strategy is continuous in the esti-

mates x̂. By Mann-Wald theorem, it converges in probability to the sample share that minimizes

the true asymptotic variance: Starget
t (A)

p−→ S(A). The agent’s strategy is to sample from group

35



A whenever the current sample share is below the target St(A) < Starget
t (A), and to sample from

group Ã otherwise. Since the target sample share converges to a constant in the limit, the actual

sample share St(A) also converges to the same limit:

St(A)
p−→ S(A) (41)

Similarly, assuming continuity of f , the objective function for the optimal non-approximate

strategy (multiplied by N) converges to the true asymptotic variance:

N · E(f̂(x)− f(x))2
p−→ AV ar(f(x) | x∗) (42)

The sample share S∗
t (A) under the optimal strategy is continuous in the sample (which is

integer-valued), so it also converges in probability to the sample share that minimizes the true

asymptotic variance:

S∗
t (A)

p−→ S(A) (43)

By Central Limit Theorem,
√
N(x̂−x)

d−→ N (0, AV ar(x)). Applying the Delta method, sample

shares converge at the rate of
√
N .

B Monte-Carlo Simulations: Exact vs. Approximate Sampling

We compare the approximate and optimal sampling strategies in finite samples using some problems,

for which we can calculate variance exactly. Specifically, assume x = (x1, ..., x8) ∼ Dir(1, ..., ). Let

the index be Ind = {A, Ã}, where A = {1, 2, 3, 4}, Ã = {5, 6, 7, 8}. Consider the following three

statistics: f lin(x) = x1 + x5, f
prod(x) = (x1 + x2)(x5 + x6), f

rat(x) = x1+x2
x5+x6

.

For each of these statistics, we can calculate the exact variance as a function of the sample. Let

ni, i ∈ {1, ..., 8} be the number of retrieved observations of subgroup i, and let ng =
∑

i∈g ni for

g ∈ {A, Ã}. The variances are

V ar(f lin(x)) =P (A)2
(n1 + 1)(nA − n1 + 3)

(nA + 4)2(nA + 5)
+ P (Ã)2

(n5 + 1)(nÃ − n5 + 3)

(nÃ + 4)2(nÃ + 5)
(44)

V ar(fprod(x)) =P (A)2P (Ã)2
(n1 + n2 + 2)(n5 + n6 + 2)

(nA + 4)(nÃ + 4)

×
(
(n1 + n2 + 3)(n5 + n6 + 3)

(nA + 5)(nÃ + 5)
− (n1 + n2 + 2)(n5 + n6 + 2)

(nA + 4)(nÃ + 4)

)
(45)

V ar(f rat(x)) =
P (A)2

P (Ã)2
(n1 + n2 + 2)(nÃ + 3)

(nA + 4)(n5 + n6 + 1)
(46)

×
(
(n1 + n2 + 3)(nÃ + 2)

(nA + 5)(n5 + n6)
−

(n1 + n2 + 2)(nÃ + 3)

(nA + 4)(n5 + n6 + 1)

)
(47)

We set the number of periods to be 100 and the number of simulations to be 10000 for each
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| nt(A)− n∗
t (A) | | St(A)− S∗

t (A) |
f lin 0.13 0.004
fprod 0.16 0.016
f rat 1.01 0.053

Table 4: The simulated average difference between the approximate and optimal strategies for three
problems.

of the three problems. For each simulation, we generate a random vector x from Dir(1, ..., 1) and

then generate a random database of observations according to the realized x.

We compare two strategies. The approximate strategy solves problem (8) — minimizing the

approximation of variance holding estimates fixed. The optimal strategy solves problem (5) —

minimizing the exact variance, taking the next-period change in the estimates into account. We

compare the number and the share of observations sampled from group A under both strategies.

Table 4 summarizes the absolute differences in the strategies, averaged over simulations and time

periods. The two strategies are very close across all three problems. The average absolute difference

in the number of sampled observations from group A is between 0.13 and 1.01. The average absolute

difference in the share of sampled observations from group A is between 0.004 and 0.053.

C Proof of Theorem 2

Consider a general index Ind = {A, Ã}. In the limit, the agent’s sampling shares are characterized

by problem (9). The solution and the minimized value of the asymptotic variance are

S(A)

S(Ã)
=

√∑
i∈A(f

′
i(x)

2xi(P (A)− xi)− 2
∑

i,j∈A:j>i f
′
i(x)f

′
j(x)xixj)√∑

i∈Ã(f
′
i(x)

2xi(P (Ã)− xi)− 2
∑

i,j∈Ã:j>i f
′
i(x)f

′
j(x)xixj)

(48)

AV ar(f(x)) =

(√∑
i∈A

(f ′
i(x)

2xi(P (A)− xi)− 2
∑

i,j∈A:j>i

f ′
i(x)f

′
j(x)xixj)

+

√∑
i∈Ã

(f ′
i(x)

2xi(P (Ã)− xi)− 2
∑

i,j∈Ã:j>i

f ′
i(x)f

′
j(x)xixj)

)2

(49)

Suppose f(x) is a simple subset problem, so it can be represented as f̃(P (I ′A | IA), P (I ′
Ã

|
IÃ)). For convenience, denote f̃ ′

A = ∂f̃
∂P (I′A|IA)

(P (I ′A | IA), P (I ′
Ã
| IÃ)), and f̃ ′

Ã
= ∂f̃

∂P (I′
Ã
|IÃ)

(P (I ′A |
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IA), P (I ′
Ã
| IÃ)). Consider first i ∈ A (everything is analogous for i ∈ Ã). The derivatives are

f ′
i(x) =


f̃ ′
A

P (IA \ I ′A)
P (IA)2

for i ∈ I ′A

f̃ ′
A

−P (I ′A)

P (IA)2
for i ∈ IA \ I ′A

0 for i ̸∈ IA

(50)

Plug in the values of f ′(x) into the formula above and simplify the expression under the square

root:∑
i∈A

(f ′
i(x)

2xi(P (A)− xi)− 2
∑

i,j∈A:j>i

f ′
i(x)f

′
j(x)xixj) = f̃ ′2

A

P (I ′A | IA)(1− P (I ′A | IA))
P (IA | A)

(51)

The same steps apply for i ∈ Ã. Therefore, the ratio of sample shares and the asymptotic

variance are

S(A)

S(Ã)
=

| f̃ ′
A |
√
P (I ′A | IA)(1− P (I ′A | IA))P (IÃ | Ã)

| f̃ ′
Ã
|
√

P (I ′
Ã
| IÃ)(1− P (I ′

Ã
| IÃ))P (IA | A)

(52)

AV ar(f(x)) =

(
| f̃ ′

A |

√
P (I ′A | IA)(1− P (I ′A | IA))

P (IA | A)

+ | f̃ ′
Ã
|

√
P (I ′

Ã
| IÃ)(1− P (I ′

Ã
| IÃ))

P (IÃ | Ã)

)2

(53)

D Proof of Theorem 3

Consider a general index Ind = {A, Ã} and a linear problem f(x). For a linear problem:

f(x) = f(x∗) +
∑
i

f ′
i(x

∗)(xi − x∗i ) (54)

Take expectations of both sides:

f̂(x) = f(x∗) +
∑
i

f ′
i(x

∗)(x̂i − x∗i ) (55)
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The distortion for such a problem is

Dist(f̂(x) | x∗, nA, nÃ) = E(f̂(x)− f(x∗) | x∗, nA, nÃ) (56)

= E

(∑
i

f ′
i(x

∗)(x̂i − x∗i )) | x∗, nA, nÃ

)
(57)

=
∑
i

f ′
i(x

∗)
αg(i)

ng(i) + αg(i)

(
P (g(i))

αi

αg(i)
− x∗i

)
(58)

=
αA

nA + αA
DistA(f̂(x) | x∗, 0, 0) +

αÃ

nÃ + αÃ

DistÃ(f̂(x) | x
∗, 0, 0) (59)

where Distg(f̂(x) | x∗, 0, 0) =
∑

i∈g f
′
i(x

∗)
(
P (g) αi

αg
− x∗i

)
for g = A, Ã is the initial distortion at

prior.

In the limit, N
ng(i)+αg(i)

p−−−−→
N→∞

1
S(g(i)) . Therefore, the asymptotic distortion, decomposed by the

index groups is

ADist(f̂(x) | x∗) =
αA

S(A)

∑
i∈A

f ′
i(x

∗)

(
P (A)

αi

αA
− x∗i

)
+

αÃ

S(Ã)

∑
i∈Ã

f ′
i(x

∗)

(
P (Ã)

αi

αÃ

− x∗i

)
(60)

Next, consider a general problem f(x). Use Taylor approximation to derive distortion E(f̂(x)−
f(x∗) | x∗, nA, nÃ):

f(x) = f(x∗) +
∑
i

f ′
i(x

∗)(xi − x∗i ) +
∑
i,j

f ′′
i,j(x

∗)

2
(xi − x∗i )(xj − x∗j ) + h(x,x∗) (61)

⇒f̂(x)− f(x∗) =
∑
i

f ′
i(x

∗)(x̂i − x∗i ) +
∑
i,j

f ′′
i,j(x

∗)

2
(CovG(xi, xj) + (x̂i − x∗i )(x̂j − x∗j )) + EG(h(x,x

∗))

(62)

where N · EG(h(x,x
∗))

p−−−−→
N→∞

0 and N · EG(x̂i − x∗i )(x̂j − x∗j )
p−−−−→

N→∞
0. Take the expectation and

limit to get the asymptotic distortion:

N · E(f̂(x)− f(x∗) | x∗, nA, nÃ)
p−−−−→

N→∞

∑
i

(
f ′
i(x

∗)
αg(i)

S(g(i))

(
P (g(i))

αi

αg(i)
− x∗i

)
(63)

+
∑
j∈g(i)

f ′′
i,j(x

∗)

2
ACov(xi, xj | x∗)

)
(64)
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Rearranging, the asymptotic distortion can be decomposed by the two index groups:

ADist(f̂(x) | x∗)

=
1

S(A)

∑
i∈A

(
f ′
i(x

∗)αA

(
P (A)

αi

αA
− x∗i

)
+

f ′′
i,i(x

∗)

2
x∗i (P (A)− x∗i )−

∑
j∈A:j>i

f ′′
i,j(x

∗)x∗ix
∗
j

)

+
1

S(Ã)

∑
i∈Ã

(
f ′
i(x

∗)αÃ

(
P (Ã)

αi

αÃ

− x∗i

)
+

f ′′
i,i(x

∗)

2
x∗i (P (Ã)− x∗i )−

∑
j∈Ã:j>i

f ′′
i,j(x

∗)x∗ix
∗
j

)
(65)

The absolute value of a group-specific distortion is decreasing in the share of this group in the

sample. The ratio of absolute values of group-specific distortions is proportional to the inverse ratio

of the sample shares of those groups.

E Proof of Proposition 1

For conciseness, we refer to the various subgroups by their first letters: Good (G), Normal (N),

Bad (B), non-Good (NG), non-Bad (NB), High outcome (H).

Consider an agent with an index for the Good state IndG = {G,NG}. Formulate the problem

as a simple subset problem: IA = G, I ′A = G ∩H, IÃ = B, I ′
Ã
= B ∩H. Then, using Theorem 2,

we derive the limiting optimal sampling shares:

S(G)

S(NG)
=

1/2

1/2

√
P (H | G)(1− P (H | G))P (B | NG)

P (H | B)(1− P (H | B))P (G | G)
(66)

Assume symmetry between Good and Bad states: P (H | G) = 1 − P (H | B) > 1
2 . Then, the

ratio of optimal sampling shares is

S(G)

S(NG)
=
√
P (B | NG) (67)

Although the agent undersamples the Good state relative to non-Good, she oversamples the

Good state relative to the Bad state:

S(G)

S(B)
=

S(G)

S(NG)P (B | NG)
=

1√
P (B | NG)

> 1 (68)

Using Theorem 3, we show that the belief distortion for the agent with the Good state index is

positive:

40



ADistG(f̂(x) | x∗) ∝ 1

S(G)

(
1

2
− P (H | G)

)
+

1

S(B)

(
1

2
− P (H | B)

)
(69)

∝ 1

2
− P (H | G) +

1√
P (B | NG)

(
1

2
− P (H | B)

)
(70)

=

(
1√

P (B | NG)
− 1

)(
1

2
− P (H | B)

)
> 0 (71)

Similarly, for an agent with the Bad state index, the optimal strategy oversamples the Bad

state:

S(G)

S(B)
=

S(NB)P (G | NB)

S(B)
=
√

P (G | NB) < 1 (72)

As a result, the agent with the Bad state index underestimates the outcome:

ADistB(f̂(x) | x∗) ∝ 1

S(G)

(
1

2
− P (H | G)

)
+

1

S(B)

(
1

2
− P (H | B)

)
(73)

∝ 1

2
− P (H | G) +

√
P (G | NB)

(
1

2
− P (H | B)

)
(74)

=
(√

P (G | NB)− 1
)(1

2
− P (H | B)

)
< 0 (75)

F Proof of Proposition 2

Agent F with the fine index can always reproduce the sampling strategy of agent C with the coarse

index. Therefore, AV arF (f(x)) ≤ AV arC(f(x)).

Agent C can imperfectly reproduce the strategy of agent F by sampling from the respective

coarser group. If agent F samples from group Ai, agent C can sample from group A and retrieve

Ai with probability P (Ai | A) and ignore the observation if it is not in Ai. Therefore, the ratio of

effective sample sizes of agents C and F is bounded in the limit:

NC

NF
≥ min{P (A1 | A), ..., P (AL | A), P (Ã1 | Ã), ..., P (ÃL̃ | Ã)} (76)

Since asymptotic variance is proportional to 1
N , the lower bound on the ratio of asymptotic

variances is

AV arF (f(x))

AV arC(f(x))
≥ min{P (A1 | A), ..., P (AL | A), P (Ã1 | Ã), ..., P (ÃL̃ | Ã)} (77)

The following two examples show that the bounds are tight. Let IndC = {A, Ã} and IndF =
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{A1, A2, Ã} Let k1 be a value of non-indexed attribute K1.

First, consider a question P (k1 | Ã). The optimal strategy for both agents is to sample from

group Ã, and hence in the limit AV arF (P (k1 | Ã)) = AV arC(P (k1 | Ã)).

Second, suppose P (A1 | A) < P (A2 | A) and consider a question P (k1 | A1). Agent F can

directly sample A1. Agent C can only sample A, which yields A1 with probability P (A1 | A).

Therefore, in the limit

AV arF (P (k1 | A1))

AV arC(P (k1 | A1))
= min{P (A1 | A), ..., P (AL | A), P (Ã1 | Ã), ..., P (ÃL̃ | Ã)} (78)

G Proof of Proposition 3

Suppose the agent uses an estimate based on the proxy index. After sampling N observations of

A1, her belief G
Prox about the distribution of P (k1 | Ã1) is a mixture of two Dirichlet distributions:

the prior distribution of P (k1 | Ã1) with weight 1− p and the posterior distribution of P (k1 | A1)

with weight p. Then, the expectation of P (k1 | Ã1) is:

EGProxP (k1 | Ã1) = pEGN
P (k1 | A1) + (1− p)EG0P (k1 | Ã1) (79)

This is the proxy estimate after sampling N observations of A1.

The variance of the posterior under the proxy index is the variance of the mixture of the two

distributions:

V arGProx(P (k1 | Ã1)) = pV arGN
(P (k1 | A1)) + (1− p)V arG0(P (k1 | Ã1))

+ p(EGN
P (k1 | A1))

2 + (1− p)(EG0P (k1 | Ã1))
2

− (pEGN
P (k1 | A1) + (1− p)EG0P (k1 | Ã1))

2 (80)

= pV arGN
(P (k1 | A1)) + (1− p)V arG0(P (k1 | Ã1))

+ p(1− p)(EG0P (k1 | Ã1)− EGN
P (k1 | A1))

2 (81)

If the agent estimates P (k1 | Ã1) directly, her posterior variance is V arGDir(P (k1 | Ã1)) under

posterior GDir. We assume that Ã1 is sufficiently rare so that after sampling N observations from

Ã, the agent does not encounter any Ã1 observations. In this case, the posterior variance is equal

prior variance: V arGDir(P (k1 | Ã1)) = V arG0(P (k1 | Ã1)).

Then, the proxy index is better if it gives lower posterior variance:

p(1− p)(EG0P (k1 | Ã1)− EGN
P (k1 | A1))

2 < p(V arG0(P (k1 | Ã1))− V arGN
(P (k1 | A1))) (82)

In the limit, as N → ∞, V arGDir(P (k1 | Ã1))
p−−−−→

N→∞
0, while V arGProx(P (k1 | Ã1))

p−−−−→
N→∞

const > 0 because P (k1 | Ã1) ̸= P (k1 | A1) with probability 1−p. Thus, in the limit, V arGDir(P (k1 |
Ã1)) < V arGProx(P (k1 | Ã1)) — the direct estimate is better.
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H Proof of Proposition 4

Agent S starts with nS = N0 immediate observations of scientists and nNS = 0 observations of

non-scientists. Her initial belief distortion is positive:

Dist(P̂ (G) | x∗, N0, 0) = E(P̂ (G)− P (G) | x∗, N0, 0) (83)

= E( ̂P (G | S)P (S) + ̂P (G | NS)P (NS)− P (G) | x∗, N0, 0) (84)

= E
(
nG,S + 1

N0 + 2

1

2
+

1

2

1

2
− P (G | S)1

2
− P (G | NS)

1

2

∣∣∣x∗, N0, 0

)
(85)

=
1

2

(
N0P (G | S) + 1

N0 + 2
+

1

2
− P (G | S)− P (G | NS)

)
(86)

=
1

2

(
N0(2P (G | S)− 1)

2(N0 + 2)

)
> 0 (87)

Thus, agent S has a positive belief distortion about P (G) from the start.

Similarly, agent NS starts with nNS = N0 immediate observations of non-scientists and nS = 0

observations of scientists. Her initial belief distortion is negative:

Dist(P̂ (G) | x∗, 0, N0) = E(P̂ (G)− P (G) | x∗, 0, N0) (88)

= E( ̂P (G | S)P (S) + ̂P (G | NS)P (NS)− P (G) | x∗, 0, N0) (89)

= E
(
1

2

1

2
+

nG,NS + 1

N0 + 2

1

2
− P (G | S)1

2
− P (G | NS)

1

2

∣∣∣x∗, 0, N0

)
(90)

=
1

2

(
1

2
+

N0P (G | NS) + 1

N0 + 2
− P (G | S)− P (G | NS)

)
(91)

=
1

2

(
N0(2P (G | NS)− 1)

2(N0 + 2)

)
< 0 (92)

Thus, agent NS has a negative belief distortion about P (G) from the start.

I Proof of Proposition 5

To prove the proposition, we consider all possible problems and compare the performance of each

index.

First, consider the unconditional problem P (R). It is a simple problem, so Theorem 2 applies.

Consider the gender index IndG = {F,M}. The asymptotic variance is

AV arG(P (R)) = (
√
P (R | F )(1− P (R | F ))P (F ) +

√
P (R | M)(1− P (R | M))P (M))2 (93)

The same expression holds for the nationality index. Use the ex-post uninformativeness assumption
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to simplify the expression:

AV arG(P (R)) = AV arN (P (R)) = P (R)(1− P (R)) (94)

Thus, both indices lead to the same asymptotic variance.

Next, consider a conditional problem P (R | S). Note that the problem conditions on a non-

indexed attribute. This is not a simple problem for either index, but we can still derive the

asymptotic variance.

Lemma 1. Consider the problem f(x) = P (R | S). If the index attribute is ex-post uninformative,

the asymptotic variance is

AV ar(P (R | S)) = P (R | S)(1− P (R | S))
P (S)

(95)

Proof. Without loss of generality, consider the gender index. Note that f ′
i(x) = P (NR∩S)

P (S)2
for

i ∈ R ∩ S and f ′
i(x) = −P (R∩S)

P (S)2
for i ∈ NR ∩ S. Thus, the asymptotic variance from equation (9)

is

AV arG(P (R | S)) = min
S(F )

∑
g∈F,M

P (g)2

S(g)

(P (NR ∩ S)2

P (S)4
P (R ∩ S | g)(1− P (R ∩ S | g))

+
P (R ∩ S)2

P (S)4
P (NR ∩ S | g)(1− P (NR ∩ S | g))

+ 2
P (NR ∩ S)P (R ∩ S)

P (S)4
P (R ∩ S | g)P (NR ∩ S | g)

)
(96)

Solving for the optimal sampling shares S(F ) yields

AV arG(P (R | S)) =
( ∑

g∈F,M
P (g)

(P (NR ∩ S)2

P (S)4
P (R ∩ S | g)(1− P (R ∩ S | g))

+
P (R ∩ S)2

P (S)4
P (NR ∩ S | g)(1− P (NR ∩ S | g))

+ 2
P (NR ∩ S)P (R ∩ S)

P (S)4
P (R ∩ S | g)P (NR ∩ S | g)

) 1
2
)2

(97)

Next, use ex-post uninformativeness to simplify the expression:

AV arG(P (R | S)) = P (R | S)(1− P (R | S))
P (S)

(98)

Since both indices are ex-post uninformative, Lemma 1 shows that both indices result in the
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same asymptotic variance for problems P (R | S) and P (R | NS):

AV arG(P (R | S)) = AV arN (P (R | S)) = P (R | S)(1− P (R | S))
P (S)

(99)

AV arG(P (R | NS)) = AV arN (P (R | NS)) =
P (R | NS)(1− P (R | NS))

P (NS)
(100)

Next, consider a problem conditioning on one of the indexable attributes, P (R | k), k ∈
{F,M,A, Ã}. If the agent has the corresponding index, she can sample observations from ki

directly. Under the uninformativess assumption, this leads to the following asymptotic variance:

AV ar(P (R | k)) = P (R)(1− P (R)) (101)

If the agent does not have the corresponding index, then it is not a simple problem, and Lemma 1

applies. Under the uninformativess assumption, this leads to the following asymptotic variance:

AV ar(P (R | k)) = P (R)(1− P (R))

P (k)
(102)

Suppose each problem P (R | k), k ∈ {F,M,A, Ã} arises with probability qk. Assuming that

gender and nationality are ex-post balanced, the expected asymptotic variance for these problems

for each index is

EqAV arG(P (R | k)) =P (R)(1− P (R))
(
qF + qM + 2(qA + qÃ)

)
(103)

EqAV arN (P (R | k)) =P (R)(1− P (R))
(
qA + qÃ + 2(qF + qM )

)
(104)

Therefore, the gender index has a lower expected asymptotic variance than the nationality index

if and only if qF + qM > qA + qÃ, i.e., the probability of problems conditioning on gender is higher

than the probability of problems conditioning on nationality.

J Proof of Proposition 6

First, consider a problem conditional on the non-indexable attribute, P (R | S) (equivalently, P (R |
NS)). Using Lemma 1, the asymptotic variance with the ex-post uninformative nationality index

is

AV arN (P (R | S)) = P (R | S)(1− P (R | S))
P (S)

(105)

AV arN (P (R | NS)) =
P (R | NS)(1− P (R | NS))

P (NS)
(106)

If the agent instead has the fully informative gender index, i.e. P (M | S) = 1 and P (M |
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NS) = 0, then the asymptotic variance for problem P (R | S) from equation (97) simplifies to

AV arG(P (R | S)) =P (M)2
(P (NR ∩ S)2

P (S)4
P (R | S)(1− P (R | S))

+
P (R ∩ S)2

P (S)4
P (NR | S)(1− P (NR | S))

+ 2
P (NR ∩ S)P (R ∩ S)

P (S)4
P (R | S)P (NR | S)

)
=P (R | S)(1− P (R | S)) (107)

Analogously, for problem P (R | NS):

AV arG(P (R | NS)) =P (R | NS)(1− P (R | NS)) (108)

Therefore, having an informative index reduces the asymptotic variance for problems that con-

dition on the non-indexable attribute.

Next, consider the unconditional problem P (R). With the uninformative nationality index, the

asymptotic variance is the same as without any index:

AV arN (P (R)) = P (R)(1− P (R)) (109)

Consider now the gender index. It is a simple problem, so based on Theorem 2, the asymptotic

variance is

AV arG(P (R)) =
(
P (F )

√
P (R | F )(1− P (R | F )) + P (M)

√
P (R | M)(1− P (R | M))

)2
=
(
P (F )

√
P (R | F )(1− P (R | F ))

+
√
(P (R)− P (R | F )P (F ))(1− P (R)− (1− P (R | F ))P (F ))

)2
(110)

The expression above for AV arG(P (R)), as a function of P (R | F ), is maximized at P (R | F ) =

P (R), with the maximum value of P (R)(1 − P (R)). Therefore, AV arG(P (R)) ≤ AV arN (P (R)),

with strict inequality unless P (R | F ) = P (R). The informative gender index leads to a lower

asymptotic variance than the uninformative nationality index.

K Proof of Proposition 7

We proceed in the same manner as in Appendix I. Since both indexable attributes are ex-post

uninformative, their asymptotic variances for problems P (R), P (R | S), and P (R | NS) are the
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same:

AV arG(P (R)) = AV arN (P (R)) = P (R)(1− P (R)) (111)

AV arG(P (R | S)) = AV arN (P (R | S)) = P (R | S)(1− P (R | S))
P (S)

(112)

AV arG(P (R | NS)) = AV arN (P (R | NS)) =
P (R | NS)(1− P (R | NS))

P (NS)
(113)

Next, consider problems conditioning on the indexable attributes P (R | k), k ∈ {F,M,A, Ã}.
Suppose they all arise with the same probability, qF = qM = qA = qÃ = q. Then, from the results

in Appendix I, the expected asymptotic variance for these problems with each index is

EqAV arG(P (R | k)) =P (R)(1− P (R))q

(
1 + 1 +

1

P (A)
+

1

P (Ã)

)
(114)

EqAV arN (P (R | k)) =P (R)(1− P (R))q

(
1 + 1 +

1

P (F )
+

1

P (M)

)
(115)

An expression of the form 1
x + 1

1−x with x ∈ (0, 1) is minimized at x = 1
2 and is increasing

towards both endpoints. Thus, if | P (F )− P (M) |<| P (A)− P (Ã) |, then EqAV arN (P (R | k)) <
EqAV arG(P (R | k)) for k ∈ {F,M,A, Ã}.

L Proof of Proposition 8

Use the ex-post uninformativeness assumption to simplify problem (96):

AV arG(P (R | S)) =
∑

g∈F,M

P (g)2

S(g)

(P (NR)2P (S)2

P (S)4
P (R)P (S | g)(1− P (R)P (S | g))

+
P (R)2P (S)2

P (S)4
P (NR)P (S | g)(1− P (NR)P (S | g))

+ 2
P (NR)P (S)2P (R)

P (S)4
P (R)P (S | g)2P (NR)

)
(116)

The variance-minimizing share of men in the sample is

S(M) =
P (M)

√
P (S | M)

P (M)
√
P (S | M) + P (F )

√
P (S | F )

(117)

Multiplying by P (S | M), get the share of male scientists in the sample:

S(Scientist, Male) = P (Scientist, Male)×

√
P (S|M)
P (S|F )

P (M)
√

P (S|M)
P (S|F ) + P (F )

(118)

The sample share S(Scientist, Male) is increasing in the representativeness of scientists for men,
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P (S|M)
P (S|F ) , and is equal the population share P (Scientist, Male) if P (S|M)

P (S|F ) = 1.
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