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Abstract
Robots have radically changed the demand for skills and the role of workers in production

at an unprecedented pace, with little scope for human capital adjustments. This has affected
the job stability and the economic perspectives of large parts of the population in all indus-
trialized countries. Recent evidence on the US labor market has shown negative effects of
robots on employment and wages. In this study, we examine how exposure to robots and its
consequences on job stability and economic uncertainty have affected individual demographic
behavior. To establish this relationship, we use data from the American Community Survey
and the International Federation of Robotics and we adopt an empirical strategy that relies
on regional industry specialization before the advent of robots combined with the growth of
robot adoption by industry. We first document the differential effect of robots on the labor
market opportunities of men and women. We find that in regions that were more exposed to
robots, the gender-income and labor-force-participation gaps declined. We then show that US
regions affected by intense robot penetration experienced a decrease in new marriages, and
an increase in both divorce and cohabitation. While there was no change in overall fertility
rate, marital fertility declined, and there was an increase in out-of-wedlock births. Our find-
ings are consistent with the hypothesis that the changes in labor markets triggered by robot
adoption increased uncertainty, reduced the relative marriage-market value of men, and the
willingness to commit for the long term.
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1 Introduction

Million of workers across the world feel the growing pressure and fear of machines replacing

their jobs. Artificial intelligence (AI), machine learning, robots, and the Internet have already

transformed the nature of jobs and will continue to rapidly change our labor markets. The debate

on the effects that the development of robotics and automation will have on the future of jobs

has been lively (Brynjolfsson and McAfee, 2014; Autor et al., 2015; Graetz and Michaels, 2018;

Dauth et al., 2018; Frey and Osborne, 2017; Acemoglu and Restrepo, 2019). However, despite

the growing interest on the labor market effects of automation, we know very little about how

these structural economic changes are reshaping life-course choices. Our paper fills this gap in

the literature, by examining how the exposure to robots and its consequences on job stability

and economic uncertainty have affected individual demographic behavior. We focus on the US

labor market and base our analysis on American Community Survey (ACS) data covering years

from 2005 to 2016. We construct a measure of regional exposure to robots following Acemoglu

and Restrepo (2019), and using data from the International Federation of Robotics (IFR). These

data track the change by economic sector in the operational stock of “industrial robots”, fully

autonomous, multipurpose machines that are automatically controlled, do not need a human

operator and can be re-programmed to perform several tasks.1 These robots can easily replace

human operators in most industrial production activities that require “reaching and handling”

actions.

Over the last three decades, the stock of these operational industrial robots in the US in-

creased by more than five times (see Figure 1). In 2016, robot sales increased by 16% reaching a

new peak for the fourth year in a row. This surge is driven by the increase in electrical/electronics

industry. Yet, the automotive industry still accounts for the highest share of industrial robots.

Between 2011 and 2016, the average robot sales increase was at 12% per year. This continued

growth was pushed by the trend to automate production as a way to strengthen American in-

dustries and keep manufacturing in the US. Just since 2005, and despite the slow-down caused

by the great recession, the number of robots per thousand worker grew from 1.3 to 2.4 (see

Figure 2). We construct a measure of robots penetration in US labor markets by exploiting the

1Machinery developed and programmed to accomplish a specific task in the production chain (e.g., dedicated
assembly equipment or automated storage and retrieval systems) would thus not be considered robots.
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variation in the distribution of industrial employment across commuting zones (i.e. geographi-

cal units corresponding to regional labor markets characterized by intense daily commuting of

workers) combined with changes in the adoption of robots across industries over time. Figure

3 maps the intensity of robots penetration by commuting zone between 2004 and 2016. To miti-

gate the concern that the adoption of robots could be correlated with other demographic trends

within an industry or a commuting zone, we use the industry-level spread of robots in advanced

economies other than the US as an instrument for the adoption of robots in the US. In this way,

we only exploit the variation resulting from industries that exhibited an increase in the use of

robots in other advanced economies. This variation should capture the exogenous trends in au-

tomatability of certain sectors driven by advancements of the technological frontier, which are

plausibly independent of US demographic trends. We support this claim by showing the absence

of significant correlation between robot exposure in advanced economies other than the US and

pre-robotization trends in marital and fertility patterns.

Using this empirical strategy, first we show that robot exposure had differential effects on the

labor market opportunities of men and women. We find that a one standard deviation increase

in robot exposure reduced the gender income gap by 4% and the gender gap in labor force

participation by 2%. We then turn to investigate the effects of this labor market shocks on the

marriage market and fertility. We find that commuting zones that were more exposed to robot

penetration experienced a reduction in marriage rate and an increase in divorce and cohabitation.

A one standard deviation increase in robot exposure was associated with a 4% reduction in the

marriages, a 5% increase in divorces, and a 13% increase in cohabitations. All these effects are

significant at the 1% level. While we find a null effect of robots on overall fertility, this result

masks substantial heterogeneous effects on fertility. Indeed, we show that commuting zones that

were more exposed to robots penetration exhibit a 15% reduction in marital fertility and a 20%

increase in the rate of children born out-of-wedlock.

Overall, our findings suggest that a decrease in the relative marriage-market value of men and

the greater labor market uncertainty may be a relevant transmission mechanisms of the impact

of robot penetration on marriage and marital fertility rates.

The rest of the paper is organized as follows. Section 2 reviews the relevant literature on

technology, economic uncertainty and fertility, and presents a theoretical framework. Section 3
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describes the data used and explains our empirical strategy. Results are presented in Section 4,

followed by concluding remarks in Section 5.

2 Literature Review and Theoretical Framework

Our paper contributes to three important strands of the demographic literature. First, many

seminal papers have documented the massive impact of technology on family and fertility

choices. For instance, the literature shows how the advancements in contraceptive technology

have played a major role in the radical change in reproductive patterns in the past century, i.e.,

the “Second Demographic Transition” (Lesthaeghe, 2010) and favored human capital investments

and labor force participation of women (Goldin and Katz, 2002; Bailey, 2006). An additional di-

mension of technological change affecting the role of women within the household includes the

diffusion of household appliances in the US between 1930 and 1950, which was a key driver of

the increase in the labor market participation of women during that period and beyond (Green-

wood et al., 2005; de V. Cavalcanti and Tavares, 2008). The technological progress in the medical

field, such as the improvement in maternal and infant health, also plays an important role. This

medical progress has allowed women to reconcile work and motherhood, thereby contributing

to increase their fertility and participation in the labor market (Albanesi and Olivetti, 2016). Re-

cently, technological change has also taken the form of the “digital revolution”. Many studies

have analyzed the impacts of broadband Internet on a large array of demographic and health out-

comes, including marriage decisions (Bellou, 2015) , fertility behavior (Billari et al., 2019; Guldi

and Herbst, 2017), body weight (DiNardi et al., 2017), and sleep (Billari et al., 2018). Our paper

contributes to this discussion, by focusing on a more recent wave of technological change, i.e.,

the development of robotics and automation, that instead of playing a facilitating role for fertility

and family choices, is a potential source of disruption for them.

The second strand of the demographic literature upon which we build our work focuses on

the effects of economic downturns and uncertainty on fertility choices. Several works have docu-

mented fertility declines following economic recessions and rising unemployment rates (Cherlin

et al., 2013; Sobotka et al., n.d.; Özcan et al., 2010; Lanzieri, 2013). More recent studies have fo-

cused on the latest “Great Recession” and have confirmed previous findings on the procyclicality
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of fertility (Goldstein et al., 2013; Currie and Schwandt, 2014; Matysiak et al., 2018). By decreasing

employment and wage prospects of current workers, robotization increases economic uncertainty.

Moreover, workers who have not yet been directly affected by robots and perspective workers

might also feel that their current or future job opportunities are threatened by robots, and thus

perceive higher future economic uncertainty. As shown by Comolli (2017), individual sentiment’s

about their future financial situation – even when there is no current impact – is highly correlated

with fertility decisions. Robotization is therefore likely to impact fertility choices of a portion of

population larger than just individuals directly displaced by robots. Given the increase in actual

and/or perceived economic uncertainty triggered by robotization, we expect robots to impact fer-

tility in a similar way as economic recessions, certainly we expect the relation to go in the same

direction. However, there is evidence that the impact of the increased economic uncertainty on

fertility is the result of both a lower completed fertility rates –“quantum”– and a postponement

of fertility decisions – “tempo”– (Orsal and Goldstein, 2010; Comolli and Bernardi, 2015). There-

fore, part of the temporary fall in total fertility rates determined by economic downturns is not

translated into lower completed fertility rates, but is “recuperated” after the end of the economic

downturns. This phenomenon is strictly connected to the cyclical nature of economic recessions.

Contrary to economic recessions, the economic uncertainty caused by the process of industrial

production robotization is not cyclical in nature and has a longer-run impact. It is costly and

unlikely for adults and young adults displaced by robots to retrain so to become complementary

to this new technology. Therefore, the economic uncertainty triggered is likely to permanently

change the economic prospects of the affected workers (or the perceived economic prospects of

threatened individuals). In this respect, the scope of the negative impact of robots on fertility

and family choices could thus potentially be larger than that of economic recessions.

Third, our paper speaks to the literature on the decline of the relative marriage-value of men

and more generally of partnership formation. By replacing manufacturing jobs that have been

traditionally male-dominated, robotization has certainly concentrated its negative effects on male

workers. At the same time, there is evidence that the increase in productivity trigger by robo-

tization have translated into increases in employment opportunity in the service sector (Dauth

et al., 2018). Contrary to manufacturing jobs, service jobs tend to be more gender neutral, and

require interpersonal and social skills for which women might have a comparative advantage.
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Overall, the distributional impact of robotization might have penalized men substantially more

than women. This can in turn lower the relative value of men in the partnership formation pro-

cess and boost the degree of economic independence of women. Ample literature has focused

on the effects of the decline of manufacturing employment on partnership formation and fertil-

ity (Wilson et al., 1986; Wilson, 1987, 1996; Dorn et al., 2017). These studies theorize how the

reduced working opportunities for blue-collar workers has impacted the pool of adult men with

secure jobs and wages and reduced marriage value for women. Also Becker (1973) proposes a

theoretical framework in which a reduction in the gender wage gap should reduce the marriage

option value for women because of a reduced scope for intra-household specialization. More re-

cent papers have focused on the effect of relative wage on women’s spouse quality, marriage and

labor supply. Shenhav (2016) shows that a higher relative wage increases the quality of women’s

mates, reduces marriage and raises women’s hours worked. Schaller (2016) documents how the

heterogeneity in the responsiveness of fertility to gender-specific shocks. While improvements

in men’s labor market conditions are associated with increases in fertility rates, improvements in

women’s labor market conditions have smaller negative effects. Both Bailey and DiPrete (2016)

and Greenwood et al. (2017) provide comprehensive surveys of the literature modelling female

labor force participation, marriage, divorce, fertility and on the role of technological changes and

economic opportunities in determining life-course choices.

Finally, our paper builds upon the recent economic literature on the effects of technology and

globalization on labor markets and to studies linking labor demand shocks to marriage and fer-

tility outcomes (Ananat et al., 2013; Kearney and Wilson, 2017). Acemoglu and Restrepo (2019)

find significant negative effects of robot exposure on wages and employment. In an earlier study,

Graetz and Michaels (2018) used variation in the adoption of industrial robots across industries

in different countries to estimate the effects of automation on productivity and wages. They find

that robots had positive effects on productivity and wages, but negatively affected the employ-

ment of low-skilled workers. Dauth et al. (2018) estimate that robots accounted for almost 23%

of the overall decline of manufacturing employment in Germany between 1994 and 2014, but

this loss was offset by the jobs created in the service sector. Anelli et al. (2019) shows that the

structural economic changes induced by robotization in Europe have increased both actual and

perceived economic uncertainty of individuals, which in turn have boosted voting for nationalist
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and radical right parties. There is also increasing evidence that the labor market shocks induced

by the exposure to imports from China and Mexico negatively impacted the marriage opportu-

nities of men, with consequences on fertility rates and the rate of out-of-wedlock childbearing

(Dorn et al., 2017). The effects of robot penetration on labor market have been shown to be in-

dependent from other labor market shocks (trade, ICT and the decline of routine jobs etc.). We

contribute to this literature, by providing for the first time empirical evidence of the effects of

robots penetration on marital decision-making and fertility choices and by examining the dif-

ferential effect of robots on the labor market opportunities of men and women as the potential

mechanism, which may affect the relative marriage-market value of men and women. Moreover,

by focusing on the period 2005-2016, we provide new evidence on the effects of robots on the

US labor market outcomes relative to the study by Acemoglu and Restrepo (2019), which consid-

ered the pre-recession period. A longer term perspective on the effects of robotization allows us

to capture the long-term economic and human capital adjustments, which might counteract the

short-term negative impact.

3 Data and Methods

To document the relationship between robot exposure and demographic outcomes, we merge

data from two main sources: the International Federation of Robotics (IFR) and the American

Community Survey (ACS).

3.1 Robots Data

The data on the stock of robots by industry, country and year come from the International

Federation of Robotics (IFR), a professional organization of robot suppliers established in 1987

to promote the robotics industry worldwide. Specifically, the IFR conducts an annual survey

among its members collecting information on the number of robots that have been sold in a

given industry and country. This survey reports data on the stock of robots for 70 countries over

the period from 1993 to 2016, covering more than 90% of the world robots market. This dataset

has been employed before by Acemoglu and Restrepo (2019) for the US, Dauth et al. (2017) for
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Germany, Giuntella and Wang (2019) for China, Anelli et al. (2019) for Europe and by Graetz

and Michaels (2018) in a cross-country analysis. The IFR data provide the operational stock

of “industrial robots”, which are defined as “automatically controlled, reprogrammable, and

multipurpose machines” (IFR, 2016). Basically, industrial robots are fully autonomous machines

that are automatically controlled, do not need a human operator and can be programmed to

perform several tasks such as welding, painting, assembling, carrying materials, or packaging.

Single-purpose machines such as coffee machines, elevators and automated storage systems are,

by contrast, not robots in this definition, since they cannot be programmed to perform other

tasks, require a human operator, or both.

However, the IFR robot data present some limitations. First, information on the number of

industrial robots by sectors is limited to a sub-sample of countries for the period 1990-2003. For

example, the IFR dataset for the US provides details on the industry background only since

2004, although we do have information on the total stock of industrial robots in the US since

1993. Second, while the information is broken down at the industry level, industry classifica-

tions are coarse. Within manufacturing, we have data on the operational stock of robots for 13

industrial sectors (roughly at the three-digit level), including, for instance, food and beverages,

textiles, wood and furniture, paper, plastic and chemicals, glass and ceramics, basic metals, metal

products, metal machinery, electronics, automotive, other vehicles, and other manufacturing in-

dustries. For nonmanufacturing sectors, data on the operational stock of robots are restricted

to six broad categories, namely, agriculture, forestry and fishing, mining, utilities, construction,

education, research and development, and other non-manufacturing industries (e.g., services

and entertainment). Furthermore, approximately a third of robots are not classified. Following

Acemoglu and Restrepo (2019), we allocate unclassified robot in the same proportion as in the

classified data. An additional limitation of the IFR data is the lack of the geographical infor-

mation on the within-country distribution of robots (i.e., the smallest geographical unit is the

country). Figure 1 documents the change in the stock of industrial robots in Europe and the US

over the last 25 years. As evident from the figure, the use of industrial robots has been stably

increasing in Europe and in the US. Similarly, Figure 2 displays the rapid growth of US robots

per thousand workers since 2005. Overall, the pattern that emerges is that despite the slow-down

caused by the Great Recession, the number of robots per thousand workers has rapidly increased
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between 2005 and 2016, going from 1.3 to 2.4 robots per thousand workers (+78%). We aggre-

gate our measure of exposure to robots at the commuting zone level, since their adoption in a

plant in a given regional labor market affects employment opportunities for all individuals that

can potentially commute to that factory to work. Focusing on smaller geographical unit would

introduce substantial measurement error

3.2 American Community Survey

The American Community Survey (ACS) is an ongoing survey conducted annually by the

US Census Bureau since 2000. The survey gathers information previously contained only in the

long form of the decennial census, such as ancestry, citizenship, educational attainment, income,

language proficiency, migration, disability, employment, and housing characteristics. It collects

information on approximately 295,000 households monthly (or 3.5 millions per year). A number

of features of the ACS data make them particularly attractive for the present analysis. First,

they collect information on household structure, marital status, fertility in the previous year

and the number of children. We use this information to create our main outcomes of interest.

Second, the large sample sizes of the ACS allow us to conduct aggregate-level analyses. Finally,

our dataset contains information on individuals’ labor market behavior, such as their income

and employment. Since we expect that robot exposure will affect the labor market outcomes,

these variables enable us to shed some light on the potential mechanisms through which robot

exposure affects marital and fertility behavior.

Our working sample is constructed as follows. We consider the survey years 2005-2016 and

restrict attention to individuals aged 16-50 during the years in which outcomes were measured.2

We then aggregate the data at the commuting zone and year level, the level of variation of our

robot exposure measure. We obtain a final longitudinal sample containing 7,410 commuting

zone-year observations resulting from 741 commuting zones.

Table A.1 in the Appendix reports descriptive statistics on the main variables used in the

analysis. The average fertility rate in a given commuting zone and year is about 6% (3.4% marital

fertility and 2% out-of-wedlock fertility). The proportion of married and divorced people is 41%

and 10%, respectively. Approximately, 4% of individuals are cohabiting. The average income by

22005 is the first year in which demographic outcomes were collected in the ACS data.
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commuting zone and year is $23,388, roughly 75% of individuals are in the labor force and 69%

are employed.

3.3 Empirical Strategy

To examine how robot exposure affects the family behavior, we estimate the following linear

regression model:

Yct = α + β(Exposure to robots)US
c,t−2 + λXct + τt + ηc ++εct (1)

where the index ct denotes a commuting zone c in a given year t. Yct represents one of our

outcomes of interest, i.e., marriage, divorce, cohabitation, fertility (i.e., overall, marital and

out-of-wedlock), income, labor force participation and employment. Our variable of interest is

(Exposure to robots)US
c,t−2, which represents the exposure to robots of community zone c at time

t− 2. We decided to lag the exposure to robots by two years because in the questionnaire women

are asked whether they had a child in the previous year. Therefore, a time lag of two years allows

us to account for the additional time individuals may need to adjust their life-course choices in

response to robot exposure. Xct is a set of commuting zone-level demographic controls, such as

the share of women and the average age. The model contains survey year fixed effects (τt) to

account for possible trends in our outcomes. We also include a full set of commuting zone fixed

effects (ηc) to control for unobservable, time-invariant differences across commuting zones that

may affect the family behavior. Finally, εct represents an idiosyncratic error term. Throughout

the analysis, we cluster standard errors by commuting zone.

Following Acemoglu and Restrepo (2019), we exploit the variation in the pre-existing distri-

bution of industrial employment across commuting zones and use the evolution in the amount

of robots across industries to construct a measure of robots penetration in the US labor market.

We choose our baseline to be 1990, since most of the rise in industrial robots in the US took place

after 1990. By relying on pre-existing industrial composition of commuting zones before the

increase in the adoption of robots, we focus on historical differences in the specialization of US

commuting zones in different industries, and avoid any mechanical correlation or mean rever-

sion with changes in overall or industry-level employment outcomes. To measure the exposure
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to robots for a commuting zone, we compute the ratio of robots to employed workers in industry

i at the national level and multiply it by the commuting zone’s baseline employment share in

sector i and then sum over all sectors. Formally:

Exposure to robotsUS
c,t−2 = ∑

i∈I
l1990
ci (

RUS
i,t−2

Li,1990
) (2)

where l1990
ci identifies the 1990 distribution of employment across industries and commuting

zones; RUS
i,t denotes the stock of robots in the US by sector in year t− 2; and Li,1990 represents the

total number of individuals employed (in thousands) in sector i in 1990. Figure 3 shows the in-

tensity of robots penetration across commuting zones between 2004 and 2016 based on the above

metric. While the increase in the use of industrial robots was widespread across the US, Figure

3 documents substantial variation in the penetration of robots across commuting zones and over

time. In our analyses, we will leverage these variations in exposure to robots across commuting

zones and over time.

To address the concerns of confounding factors that may be correlated with both the industry-

level spread of robots in the US and demographic and labor market outcomes, we rely on the

identification strategy proposed by Acemoglu and Restrepo (2019) and exploit the industry-level

spread of robots in other economies, which are meant to proxy improvements in the world

technology frontier of robots. In particular, we use the average industry-level spread of robots

in the nine European countries that are available in the IFR data over the same period of time.3

Thus, we exploit only the variation resulting from industries that exhibited an increase in the

use of robots in these other economies. Our instrument for the adoption of robots in the US is

formally defined as follows:

Exposure to robotsIV
c,t−2 = ∑

i∈I
l1970
ci (p30(

ROther
i,t−2

Li,1990
)) (3)

where the sum runs over all industries in the IFR data, l1970
ci is the 1970 share of commuting

zone c employment in industry i, as computed from the 1970 Census, and (p30(
ROther

i,t−2
Li,1990

) represents

the 30th percentile of robot usage among European countries in industry i and year t− 2.

3These European countries include Denmark, Finland, France, Germany, Italy, Norway, Spain, Sweden, and the
United Kingdom.
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Model (1) is estimated using two stage least squares (2SLS), and the first stage regression is

given by:

∑
i∈I

l1990
ci (

RUS
i,t−2

Li,1990
) = π0 + π1[∑

i∈I
l1970
ci (p30(

ROther
i,t−2

Li,1990
))] + γXct + δt + σc + vct (4)

where ∑i∈I l1990
ci (

RUS
i,t−2

Li,1990
) is instrumented with [∑i∈I l1970

ci (p30(
ROther

i,t−2
Li,1990

))], the industry-level robot

from other economies (i.e., European countries). Xct, δt, σc and vct are defined in the same way

as in Model (1).

The first stage regression presented in Table A.2 shows that the adoption of robots in Europe

is strongly correlated with robot exposure in the US. With a first stage F-statistic of 607 (re-

ported at the bottom of Table 5), our instrument easily passes conventional thresholds for strong

instruments. Figure 4 confirms the relevance of the instrument.

Before presenting our main results, we provide some preliminary visual evidence about the

reduced-form relationship between our instrument (i.e., robot exposure in Europe) and the de-

mographic outcomes. In practice, we plot the long-run 2005-2016 change in our demographic

outcomes in each commuting zone against the long-run 2005-2016 change in robot exposure as

measured by our instrument. Figure 5 considers the relationship between the instrument and

marital behavior. Overall, Figure 6 indicates that robot exposure in Europe is negatively asso-

ciated with marriage, whereas it is positively associated with divorce and more weakly with

cohabitation. Figure 6 illustrates the link between our instrument and fertility behavior. We

distinguish between overall fertility, marital fertility and out-of-wedlock fertility. While there is

no correlation between robot usage in Europe and overall fertility, this lack of association masks

stark heterogeneity between marital and out-of-wedlock fertility patterns. It appears that the

pattern of marital fertility is negatively influenced by the adoption of robots in Europe, whereas

the opposite holds for out-of-wedlock fertility.
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4 Main Results

In this section, we present our main empirical results. First, we measure the impact of robotics

on economic uncertainty of all workers and separately for women and men. We then explore the

impact of industrial robots on marital behavior. Finally, we estimate the effects of robots on

fertility choices.

4.1 Effects on Labor Market Outcomes

The logical mapping of the effect of robot exposure on demographic behavior requires to first

show the relationship between specific labor market outcomes and demographic outcomes in

our data, and then estimate the impact of robot exposure on those labor market outcomes. For

instance, we expect a clear negative effect of robots on labor market outcomes to translate into

a negative impact on fertility. At the same time, we expect that differences in the labor market

impact of robots on women and men may affect the marriage market and the willingness to take

up long-run commitment, such as marriage or fertility.

In Tables 1, 2 and 3, we show the impact of income, labor force participation and employment

on marital and fertility behavior in descriptive OLS regressions. Specifically, Table 1 displays the

results of OLS regressions of income on our outcomes: marriage, divorce, cohabitation, overall

fertility, marital fertility and out-of-wedlock fertility. We find that higher annual income is asso-

ciated with higher incidence of marriages and cohabitations (see columns 1 and 3) and a lower

divorce probability (see column 3). Interestingly, while marriage is positively associated with

income of both men and women, divorce is positively and significantly correlated with women

income and negatively correlated with the gender gap. Higher income is also weakly, positively

associated with higher overall fertility (see column 4), strongly positively associated with mari-

tal fertility (see column 5), and strongly negatively correlated with out-of-wedlock fertility (see

column 6).

Table 1 also shows that the higher the gap between male and female income, the higher the

marital fertility (see column 5), and the lower the out-of-wedlock fertility (see column 6). Table

2 contains the corresponding OLS estimates of labor force participation and Table 3 those of em-

ployment. Both overall labor force participation and employment are not surprisingly positively
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correlated with marriage while only employment is negatively and significantly correlated to di-

vorce probability. When looking at differential associations for men and women, the higher labor

force participation of women is positively and significantly associated to higher divorce rates.

Consistently, higher levels of gender gap in labor force participation (as well as in employment

probability) is negatively associated with divorce probability. In columns 4-6 of Tables 2 and 3 we

turn to fertility behavior: while both overall labor force participation and employment appear to

have weak or null association with fertility choices in our data, there are stark association patterns

of the gender gap in labor force participation and employment with fertility. More specifically,

the higher the gap between women and men in labor force participation and employment, the

higher the marital fertility (see column 5), and the lower the out-of-wedlock fertility (see column

6).

Overall, this preliminary evidence on the relationship between labor market outcomes, mar-

ital behavior, and fertility suggests that a potential negative impact of robots on income (Ace-

moglu and Restrepo, 2017; Dauth et al., 2018) should reduce marital fertility and favor out-of-

wedlock fertility, while the impact on overall fertility is more uncertain, depending on which

of the two types of fertility effect prevails. We do not expect, instead, changes in overall labor

force participation and employment to affect overall fertility in a specific direction. The prelim-

inary analysis also highlights the importance of studying the impact of robots on labor market

outcomes separately for men and women. While lower income for both men and women are

predicted to decrease marital fertility and increase out-of-wedlock fertility, changes in labor force

participation for men and women have effects of opposite signs on fertility. This is consistent

with the idea that higher income (and thus more economic security) is beneficial to fertility

independently of its source, while the decision of women to participate (or to increase participa-

tion) might reduce fertility. Finally, our preliminary evidence shows a clear relationship pattern

between the gender gap in all three labor market outcomes and fertility. If robots lower the

gender gaps in income, labor force participation and employment by substituting workers in the

male-dominated manufacturing sector and boosting the creation in more gender-neutral service

sectors (as discussed in our theoretical framework), we should expect a drop in marital fertility

and an increase in out-of-wedlock fertility.

In Table 4, we move to exploring the direct effect of robot exposure on our three labor market
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outcomes: income, labor force participation and employment. We use the identification strat-

egy described in the Empirical Strategy section. Panel A Columns 1-3 show the impact of robot

exposure on income estimated with our OLS specification (Column 1), by regressing our out-

come directly on our instrumented exposure (Column 2) and with our two-stage-least-square

estimation (Column 3). Focusing on the IV estimate of Column 3, we find that a 1 standard

deviation increase in robot exposure decreases income by 6.8 percent. The effect for the IV es-

timate is marginally larger than for the OLS estimate. This is not surprising since we expect

the OLS estimates to be biased downward by the pro-ciclicality of robot adoption, that is more

robots are installed in period of economic growth, which are also associated with better labor

market outcomes on average. Columns 4-6 show instead no effect of robot exposure on labor

force participation, while Columns 7-9 report a positive effect on employment. These results are

consistent with empirical evidence showing that robots reduce employment in traditional well-

paid manufacturing sectors, but boost employment –through productivity spillovers– in service

sectors with lower income and slower career progression (Dauth et al., 2018). Our positive em-

ployment estimate complements the empirical evidence in Acemoglu and Restrepo (2017). While

their work focus on the on-set of robotics up to the great recession (1993-2007 period), our evi-

dence captures the impact of robotics on the more recent period (2005-2016), including the years

of post-recession economic recovery. Our results thus suggest that contrary to the earlier periods,

the overall effect of robotics on US employment might have turned positive in the recent years,

while the negative impact on income appears robust in both the short and in the long run.

On the one hand, based on our evidence on the effects of robot exposure on overall labor

market outcomes, it is hard to predict the effect of robot exposure on fertility: while we should

expect a large negative impact on income to reduce fertility for workers, the increase in employ-

ment – albeit small in magnitude – might reduce economic uncertainty for those who gained

employment. On the other hand, the evidence on the heterogenous effects of robot exposure on

labor market outcomes by gender has clear and interesting predictions.

In Table 4 Panel B, we therefore turn to studying the effect of robot exposure on labor market

outcomes separately for men, women and for the gender gap in those same outcomes. Columns

1-3 show that the effect of robots on male income (-8.3%, see column 2) is substantially larger

than that on female income (-4.3%, see column 1). This drives the gender income-gap (defined
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as the ratio between male and female income) down by 4% in areas that were more exposed to

robots penetration.4 In Columns 4-6, we provide the corresponding results of robot exposure on

labor force participation. The estimates reported in columns 4 and 5 reveal significant differences

between male and female labor force participation. Robot exposure has a negative - albeit not

statistically significant - impact on male labor force participation. Conversely, an increase in

robot exposure has a positive and highly significant effect on female labor force participation. As

a result, the gender gap in labor force participation decreases by 2% in response to more robot

adoption in the US (see column 6). Finally, also the effect on the gender gap in employment is

negative, although not statistically significant. These results on the gender gap together with the

empirical evidence of 1 -3 deliver clear predictions about the effect of robot exposure on fertility:

we should expect a clear negative effect on marital fertility and a positive one for out-of-wedlock

fertility. The expected effect on overall fertility is, however, less clear. In the next sections, we

test these predictions on fertility, by first focusing on partnership formation as a complementary

outcome of our analysis on fertility.

4.2 Effects on Marital Behavior

As described in our theoretical framework section, a decrease in gender gaps should reduce

the value of marriage (Wilson, 1987; Becker, 1973). In Table 5 we therefore test the impact of

robot exposure on partnership formation, relying on the same identification strategy used for

labor market outcomes. Panel A displays the results for marriage, whereas Panel B and C report

the estimates for divorce and cohabitation, respectively. As detailed in the Empirical Strategy

section, in each regression we include a set of commuting zone-level demographic controls, year

and commuting zone fixed effects. The OLS estimate presented in column 1 suggests that one

standard deviation increase in robot exposure decreases the probability of being married by

3.2% relative to the mean outcome. In line with the visual evidence (see Figure 5), we detect a

negative and highly-significant reduced-form relationship between the robot adoption in Europe

4Our results on the gender income-gap differ from recent empirical evidence by Aksoy et al. (2019) for European
countries. The authors find that automation has driven the gender earning gap up in Eastern European countries with
high baseline levels of gender inequality and that the effect is driven by middle-skill workers. This suggests that the
significant negative impact on the gender gap we find may be context specific.
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and marriage.5 The 2SLS estimate in column 3 implies that one standard deviation increase in

robot exposure reduce marriage by 4%, confirming the negative impact of robot penetration on

marriage. The fact that our IV coefficient is slightly larger in magnitude compared to the OLS

coefficient suggests once again that the potential endogenous bias was driven by the prociclicality

of robot adoption, that is more robots are installed during periods of economic growth, which

are likely correlated with a higher incidence of marriage relative to economic downturns.

When considering instead divorce rates as the dependent variable (see Panel B) we find a

positive relationship. The 2SLS coefficient shows that a one standard deviation increase in robot

exposure leads to a 5% increase in divorce (see column 3 of Panel B). Considering cohabitation

(see Panel C), we find that robot adoption also increases the likelihood of cohabitation.6 In partic-

ular, a one standard deviation increase in robot exposure implies a 13% increase in cohabitation

(see column 3 of Panel C). These results are consistent with the hypothesis that the uncertainty

of the labor markets and the reduced value of men in the marriage market may have reduced

the willingness to a long-run commitment, such as the marriage. They are also highly consistent

with the marital and out-of-wedlock fertility patterns presented in the following section.

While the inclusion of CZ fixed effects does control for the time-invariant differences across

commuting zones, one remaining source of concern about our regression specification is linked

to the possibility that robot adoption was somehow correlated with (or the result of) pre-existing

trends in family outcomes. To dispel this concern, we thus test whether the change in robot

adoption captured by our instrumental variable is correlated with commuting zone trends in de-

mographic outcomes that took place already before the advent of robotics. Data on demographic

outcomes are drawn from the 1980 and 1990 US Census. We find that the 1980-1990 trends in

marital behavior were, if anything, opposite to the patterns observed between 2005 and 2016

(see Table 7, columns 1-3). Furthermore, the coefficients are all relatively small, and statistically

significant only for cohabitation (see column 3). Overall, these results lend support to a causal

interpretation of the effect of robot exposure on marital behavior.

5Notice that relative to Figure 5 the estimated regression has the advantage of exploiting yearly variation and to
control for commuting zone fixed effects.

6Cohabitation is defined as the likelihood of living with an unmarried partner.
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4.3 Effects on Fertility Behavior

In Table 6, we analyze the impact of automation on fertility behavior. We focus on women,

because the ACS surveys only women on whether they had a child in the previous year.

Panel A considers overall fertility as the outcome. We estimate that the effect of robot ex-

posure on overall fertility rate is very close to zero. However, these zero fertility effects may

mask important heterogeneity along two dimensions of the fertility behavior: marital and out-

of-wedlock fertility.

Indeed, Panels B and C document opposite trends for marital and out-of-wedlock fertility.

Specifically, column 1 of Panel B reports the OLS relationship between our measure of robot ex-

posure across commuting zones and the share of married women reporting that they had a child

in the past year. A one standard deviation increase in the exposure to robots (1.90) is associated

with a 10% decrease in marital fertility with respect to the mean outcome (0.037). The reduced-

form coefficient displayed in column 2 is very similar to the OLS estimate, suggesting that a one

standard deviation increase in robot adoption as measured using data from European countries

decreases marital fertility by approximately 6% relative to the mean outcome (see column 2),

equivalent to .2 standard deviations. The 2SLS estimate in column 3 is larger than the OLS es-

timate in absolute value, suggesting that the exposure to robots penetration may be negatively

correlated with unobserved determinants of marital fertility. A one standard deviation increase

in the exposure to robots decreases marital fertility in the previous year by 15%, or .37 standard

deviations.

Panel C examines the impact of robot exposure on out-of-wedlock fertility. The OLS and

reduced-form estimates imply that a one standard deviation increase in robot exposure raises

out-of-wedlock fertility by 10% (see columns 1 and 2). The 2SLS estimate is larger in absolute

value and indicates that a one standard deviation increase in robot exposure leads to a 20%

increase in out-of-wedlock fertility.

Reassuringly, columns 4-7 of Table 7 further corroborate the causal interpretation of the esti-

mates, since the 1980-1990 trends in fertility behavior are not correlated with exposure to robots,

as measured by our instrumental variable. Specifically, we find no evidence of pre-trends in

marital fertility, and, if anything, a negative (opposite) trend in out-of-wedlock fertility.
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5 Conclusion

The impact of automation, robots and artificial intelligence on labor markets is likely to pro-

duce fundamental shifts on our daily lives. A handful of pioneering studies has examined the

impact of robots on labor markets (Acemoglu and Restrepo, 2019; Graetz and Michaels, 2018).

Yet, we know little about the ways in which these labor market shocks may affect gender dif-

ferences in labor market opportunities, and in turn family and fertility decisions. This study

estimates the impact of exposure to industrial robots on life-course choices, such as marriage, di-

vorce, cohabitation and fertility. We show that robots penetration has different effects on the labor

market opportunities of men and women, reducing the gender-gap in income. Robot penetration

has substantially lowered income, but had small positive effects on overall employment rates.

Importantly, our analysis shows that the impact on economic uncertainty was highly heteroge-

nous across gender. Male income fell at substantially higher rate than female income, decreasing

the gender income gap. Moreover, robot exposure has increased female labor force participation

substantially, while leaving the labor force participation of men unchanged. These effects con-

tribute to explain the impact of robot penetration on family formation and fertility outcomes. We

find that in areas that were more exposed to robots penetration, marriage rate decreased, while

divorce rates and cohabitation increased. We then show that exposure to robots reduced marital

fertility, but increased the fraction of children born out-of-wedlock.

We argue that robots have increased uncertainty associated with the labor market conditions

for most workers and has substantially lowered the economic value of men on the marriage

market. This in turn has contributed to reduce willingness to long-term commitments, such as

marrying. At the same time, the lower value of men has increased the value of out-of-wedlock

fertility options for women and the probability that children grow-up in cohabitating households.

Given the concerns that cohabitation may reduce children’s well-being (Manning, 2015), de-

veloping more encompassing family policies that cover more homogenously married and cohab-

itating couples could be a natural response to the effects of robotics on life-course choices. Future

research exploiting longitudinal data or matched employer-employee data may shed further light

on these mechanisms and on the impact of children’s well-being.

19



References

Acemoglu, Daron and Pascual Restrepo, “Robots and jobs: Evidence from US labor markets,”

2017.

and , “Robots and Jobs: Evidence from US Labor Markets,” Journal of Political Economy, 2019.

Aksoy, Cevat Giray, Ozkan Berkay, and Philip Julia, “Robots and the Gender Pay Gap: Evidence

from Europe,” LSE Mimeo, 2019.

Albanesi, Stefania and Claudia Olivetti, “Gender roles and medical progress,” Journal of Political

Economy, 2016, 124 (3), 650–695.

Ananat, Elizabeth Oltmans, Anna Gassman-Pines, and Christina Gibson-Davis, “Community-

wide job loss and teenage fertility: evidence from North Carolina,” Demography, 2013, 50 (6),

2151–2171.

Anelli, Massimo, Italo Colantone, and Piero Stanig, “We were the robots: Automation and

voting behavior in western europe,” BAFFI CAREFIN Centre Research Paper, 2019, (2019-115).

Autor, David H, David Dorn, and Gordon H Hanson, “Untangling trade and technology: Evi-

dence from local labour markets,” The Economic Journal, 2015, 125 (584), 621–646.

Bailey, Martha J, “More power to the pill: the impact of contraceptive freedom on women’s life

cycle labor supply,” The Quarterly Journal of Economics, 2006, 121 (1), 289–320.

and Thomas A DiPrete, “Five decades of remarkable but slowing change in US women’s

economic and social status and political participation,” RSF: The Russell Sage Foundation Journal

of the Social Sciences, 2016, 2 (4), 1–32.

Becker, Gary S, “A theory of marriage: Part I,” Journal of Political economy, 1973, 81 (4), 813–846.

Bellou, Andriana, “The impact of Internet diffusion on marriage rates: evidence from the broad-

band market,” Journal of Population Economics, 2015, 28 (2), 265–297.

Billari, Francesco C, Osea Giuntella, and Luca Stella, “Broadband internet, digital temptations,

and sleep,” Journal of Economic Behavior & Organization, 2018, 153, 58–76.

20



, , and , “Does broadband Internet affect fertility?,” Population Studies, 2019, pp. 1–20.

Brynjolfsson, Erik and Andrew McAfee, The second machine age: Work, progress, and prosperity in

a time of brilliant technologies, WW Norton & Company, 2014.

Cherlin, Andrew, Erin Cumberworth, S Philip Morgan, and Christopher Wimer, “The effects

of the Great Recession on family structure and fertility,” The ANNALS of the American Academy

of Political and Social Science, 2013, 650 (1), 214–231.

Comolli, Chiara Ludovica, “The fertility response to the Great Recession in Europe and the

United States: Structural economic conditions and perceived economic uncertainty,” Demo-

graphic research, 2017, 36, 1549–1600.

and Fabrizio Bernardi, “The causal effect of the great recession on childlessness of white

American women,” IZA Journal of Labor Economics, 2015, 4 (1), 21.

Currie, Janet and Hannes Schwandt, “Short-and long-term effects of unemployment on fertility,”

Proceedings of the National Academy of Sciences, 2014, 111 (41), 14734–14739.

Dauth, Wolfgang, Sebastian Findeisen, Jens Südekum, and Nicole Woessner, “German robots-
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Figure 1: Industrial Robots in the US and Europe

Notes - Data are drawn from the International Federation of Robotics.
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Figure 2: Robots per 1000 workers in the US

Notes - Data are drawn from the International Federation of Robotics.
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Figure 3: Industrial Robots across US Commuting Zones, ∆2004−2016

Notes - Data are drawn from the International Federation of Robotics.
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Figure 4: First Stage: Change in Robot Exposure in the US and Exposure to Robots in Europe

Notes - Data are drawn from the International Federation of Robotics.
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Figure 5: Reduced Form: Change in Marital Behavior and Robot Exposure (IV) - Residuals

Notes - Data on robot penetration are drawn from the International Federation of Robotics. Data on marital behavior are drawn
from the American Community Survey (2005-2016).
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Figure 6: Reduced Form: Change in Fertility Behavior and Robot Exposure (IV) - Residuals

Notes - Data on robot penetration are drawn from the International Federation of Robotics. Data on fertility behavior are drawn
from the American Community Survey (2005-2016).
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Tables

Table 1: Effects of Income on Marital and Fertility Behavior - OLS Estimates

(1) (2) (3) (4) (5) (6)
Dep. var.: Fertility

Marriage Divorce Cohabitation Overall Marital Out-of-wed

Income - All 0.095*** -0.009*** 0.004** 0.005* 0.018*** -0.010***
(0.006) (0.003) (0.002) (0.003) (0.002) (0.002)

Income - Women 0.037*** 0.009*** 0.004*** 0.004 0.008*** -0.004**
(0.005) (0.003) (0.002) (0.003) (0.002) (0.002)

Income - Men 0.074*** -0.013*** 0.002 0.003 0.013*** -0.008***
(0.004) (0.002) (0.001) (0.002) (0.002) (0.002)

Income - Gender gap 0.025*** -0.014*** -0.001 -0.001 0.003** -0.003**
(0.003) (0.002) (0.001) (0.002) (0.001) (0.001)

Mean of dep. var. 0.412 0.0986 0.0398 0.0594 0.0337 0.0196
Std. dev. of dep. var. 0.0612 0.0213 0.0120 0.0180 0.0135 0.0116
Observations 7,410 7,410 7,410 7,410 7,410 7,410

Notes - Standard errors are reported in parentheses and are clustered at the commuting zone level. All models control for CZ-level
demographic characteristics (average age and share of females), as well as commuting zone and year fixed effects.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table 2: Effects of Labor Force Participation on Marital and Fertility Behavior - OLS Estimates

(1) (2) (3) (4) (5) (6)
Dep. var.: Fertility

Marriage Divorce Cohabitation Overall Marital Out-of-wed

LFP - All 0.183*** -0.000 0.045*** 0.006 0.009 -0.001
(0.017) (0.009) (0.005) (0.010) (0.008) (0.007)

LFP - Women 0.011 0.017** 0.023*** -0.011 -0.019*** 0.012**
(0.012) (0.007) (0.004) (0.008) (0.006) (0.006)

LFP - Men 0.191*** -0.017** 0.026*** 0.019** 0.030*** -0.013***
(0.012) (0.007) (0.004) (0.008) (0.006) (0.005)

LFP - Gender gap 0.063*** -0.014*** -0.000 0.011** 0.018*** -0.009***
(0.006) (0.003) (0.002) (0.004) (0.003) (0.003)

Mean of dep. var. 0.412 0.0986 0.0398 0.0594 0.0337 0.0196
Std. dev. of dep. var. 0.0612 0.0213 0.0120 0.0180 0.0135 0.0116
Observations 7,410 7,410 7,410 7,410 7,410 7,410

Notes - Standard errors are reported in parentheses and are clustered at the commuting zone level. All models control for CZ-level
demographic characteristics (average age and share of females), as well as commuting zone and year fixed effects.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

Table 3: Effects of Employment on Marital and Fertility Behavior - OLS Estimates

(1) (2) (3) (4) (5) (6)
Dep. var.: Fertility

Marriage Divorce Cohabitation Overall Marital Out-of-wed

Employment - All 0.206*** -0.026*** 0.036*** -0.011 0.007 -0.016**
(0.015) (0.008) (0.005) (0.010) (0.007) (0.006)

Employment - Women 0.033*** 0.006 0.022*** -0.015** -0.015*** 0.003
(0.012) (0.006) (0.004) (0.008) (0.005) (0.005)

Employment - Men 0.192*** -0.033*** 0.020*** 0.002 0.021*** -0.020***
(0.010) (0.006) (0.004) (0.007) (0.005) (0.004)

Employment - Gender gap 0.060*** -0.015*** -0.001 0.005 0.013*** -0.008***
(0.005) (0.003) (0.002) (0.003) (0.002) (0.002)

Mean of dep. var. 0.412 0.0986 0.0398 0.0594 0.0337 0.0196
Std. dev. of dep. var. 0.0612 0.0213 0.0120 0.0180 0.0135 0.0116
Observations 7,410 7,410 7,410 7,410 7,410 7,410

Notes - Standard errors are reported in parentheses and are clustered at the commuting zone level. All models control for CZ-level
demographic characteristics (average age and share of females), as well as commuting zone and year fixed effects.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table 5: Effects of Robot Exposure on Marital Behavior

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Marriage

Robot exposure -0.013*** -0.016***
(0.004) (0.005)

Robot exposure - IV -0.009***
(0.003)

Mean of dep. var. 0.412 0.412 0.412
Std. dev. of dep. var. 0.0612 0.0612 0.0612
First stage F statistic 607.4

Panel B: Divorce

Robot exposure 0.004** 0.005***
(0.002) (0.002)

Robot exposure - IV 0.003***
(0.001)

Mean of dep. var. 0.0986 0.0986 0.0986
Std. dev. of dep. var. 0.0213 0.0213 0.0213
First stage F statistic 607.4

Panel C: Cohabitation

Robot exposure 0.002* 0.005***
(0.001) (0.001)

Robot exposure - IV 0.003***
(0.001)

Mean of dep. var. 0.0398 0.0398 0.0398
Std. dev. of dep. var. 0.0120 0.0120 0.0120
First stage F statistic 607.4
Observations 7,410 7,410 7,410

Notes - Standard errors are reported in parentheses and are clustered at the commuting zone level. All models control for CZ-level
demographic characteristics (average age and share of females), as well as commuting zone and year fixed effects.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table 6: Effects of Robot Exposure on Fertility Behavior

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Overall Fertility

Robot exposure -0.000 0.001
(0.002) (0.002)

Robot exposure - IV 0.001
(0.001)

Mean of dep. var. 0.0594 0.0594 0.0594
Std. dev. of dep. var. 0.0180 0.0180 0.0180
First stage F statistic 607.4

Panel B: Marital Fertility

Robot exposure -0.003*** -0.005***
(0.001) (0.001)

Robot exposure - IV -0.003***
(0.001)

Mean of dep. var. 0.0337 0.0337 0.0337
Std. dev. of dep. var. 0.0135 0.0135 0.0135
First stage F statistic 607.4

Panel C: Out-of-Wedlock Fertility

Robot exposure 0.002** 0.004***
(0.001) (0.001)

Robot exposure - IV 0.002***
(0.001)

Mean of dep. var. 0.0196 0.0196 0.0196
Std. dev. of dep. var. 0.0116 0.0116 0.0116
First stage F statistic 607.4

Observations 7,410 7,410 7,410

Notes - Standard errors are reported in parentheses and are clustered at the commuting zone level. All models control for CZ-level
demographic characteristics (average age and share of females), as well as commuting zone and year fixed effects.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Appendix A: Supplemental Tables

Table A.1: Descriptive Statistics - Observations: 7,410

Mean Standard deviation Min Max

Panel A: Outcome variables
Fertility 0.059 0.018 0.003 0.160
Marital fertility 0.034 0.014 0 0.117
Nonmarital fertility 0.020 0.012 0 0.084
Married 0.412 0.061 0.214 0.662
Divorced 0.099 0.021 0.037 0.187
Cohabiting 0.040 0.012 0.005 0.110
Income 23,388 4,824 12,105 51,834
Labor Force Participation 0.750 0.060 0.534 0.907
Employed 0.685 0.073 0.434 0.871

Panel B: Covariates
Robot exposure 1.841 1.963 0.123 20.508
Robot exposure - IV 1.233 0.935 0.244 10.815
Age 32.620 0.894 27.786 34.987
Female 0.489 0.018 0.391 0.557

Notes - Data are drawn from the International Federation of Robotics and the American Community Survey over the period 2005-
2016.
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Table A.2: First Stage: Effects of Robot Exposure IV on Robot Exposure in the US

(1)
Dep. var.: Robot exposure

Robot exposure - IV 0.567***
(0.023)

Mean of dep. var. -0.0546
Std. dev. of dep. var. 0.944
Observations 7,410

Notes - Standard errors are reported in parentheses and are clustered at the commuting zone level. All models include CZ-level
demographic characteristics (average age adn share of females), as well as commuting zone and year fixed effects.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

38


	Introduction
	Literature Review and Theoretical Framework
	Data and Methods
	Robots Data
	American Community Survey
	Empirical Strategy

	Main Results
	Effects on Labor Market Outcomes
	Effects on Marital Behavior
	Effects on Fertility Behavior

	Conclusion

