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1 Introduction

In the coming decades, hundreds of millions of people are expected to be exposed to the

impacts of climate change. Extreme weather events, such as heatwaves and droughts,

could increasingly become the norm. This trend is expected to have serious impacts on

agricultural production (IPCC, 2014) and, by implication, to disproportionately affect

poor economies where agriculture continues to be the main source of employment, liveli-

hood, and income (see e.g., Barrios et al., 2010). In light of a large influx of asylum

applicants and a strong shift in the political landscape in favor of a reduction of immi-

gration in recent years, European policymakers are concerned that the changing climate

can exacerbate migration pressures (EC, 2020).1

In fact, when faced with worsening conditions, an important channel of adjustment

for people may be international migration (see e.g., Black et al., 2011a; Cattaneo et al.,

2019). While the effects of extreme weather events might increase the desire to migrate,

they may simultaneously decrease the ability to migrate due to lower income or more

severe liquidity constraints where the dependency on the agriculture sector is relatively

strong (Cai, 2020; Black et al., 2011b). It is therefore unclear how migration will change

as a result of climate change, and the current literature using country-level, decadal data

finds contradicting results. For instance, Beine and Parsons (2017) find zero impacts for

poor countries, but a decrease in migration among middle-income countries. Cattaneo

and Peri (2016) find the opposite, with higher temperatures in middle-income economies

increasing migration rates, while decreasing migration in poor countries.2

In this paper, we analyze the impact of slow-onset climate anomalies on international

migration, using data that are disaggregated in both time and space for West Africa, in

order to contribute to the existing literature in three ways.3 First, the high level of spatial

1According to Eurostat data, nearly one million people arrived from Sub-Saharan Africa alone between
2010 and 2017 (Connor, 2018).

2This does not only hold for studies examining slow onset events but also studies concerned with
natural disasters (Cattaneo et al., 2019).

3Slow-onset events are considered ones that take a longer period to develop such as warming, droughts,
and land degradation, as compared to fast-onset events like floods, storms, and hurricanes that happen
quite quickly.

2



and temporal granularity in our data (monthly information at the 55 x 55km sub-national

cell level) allows for a more precise estimate of the association between climate anomalies

and international migration by exploiting climate anomalies occurring over a short period

of time and comparing changes within cells. Second, we are arguably better able to link the

migration impacts of climate change to the channel of agricultural production by using

deviations in soil moisture from the historic mean as a measure of climate anomalies.

Combining temperature and precipitation in one single measure allows us to describe

agricultural droughts more accurately at a fine temporal and spatial scale.

Third, we are the first to use a new migration dataset that is collected by the In-

ternational Organization for Migration (IOM) during the process of migration in West

Africa and captures migration both regionally and to Europe.4 Commonly used census

data may miss a large portion of migrants if measured at the origin (due to entire fami-

lies migrating and not being captured in the data) or destination (due to lower response

rates from undocumented migrants).5 These data enable us to directly relate, for the

first time, sub-national variation in climate anomalies with migration directed to Europe.

Understanding this relationship is of particular interest to European policymakers who

have increasingly focused their migration policy on West Africa, where a large share of

asylum applicants are stemming from.6

Our identification strategy relies on soil moisture deviations from the month-and-cell-

specific long-run average calculated using different time periods and the cell-specific crop

growing season. We use cell fixed effects in our regression analyses. In doing so, we are

comparing differences over time in these deviations from the long-term average across

cells. We analyze the impact of soil moisture anomalies on the probability to migrate and

the total number of migrants from a cell. The empirical strategy follows the seminal work

of Harari and la Ferrara (2018), which studies the impact of worsening climatic conditions

4IOM FMS data have been used so far only to study self-selection of refugees (Aksoy and Poutvaara,
2019).

5Also, survey data on intentions as used in Abu et al. (2014) may misrepresent migration events if
people that want to migrate are not able to.

6More than fifty percent of arrivals by sea to Italy in 2017 and 2018 are from individuals originating
from West and Central Africa (Abdel Jelil et al., 2018).
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on the probability that conflict occurs at the cell level. Besides the outcome variable, we

deviate from their work by using both a finer geographical and temporal disaggregation.

Following existing theoretical work (e.g., Cattaneo et al., 2019), we explore agricultural

production as a key mechanism through which weather shocks affect migration. Signif-

icantly lower soil moisture signals a drought which leads to lower crop production and

therefore decreased income. This could lead to higher migration if affected individuals

choose to seek opportunities to earn income elsewhere. It may also lead to lower migration

if households that otherwise might have sent a migrant abroad now have reduced income

and can no longer cover the cost of migration. Migration may also decrease if drought

leads to liquidity constraints as households may no longer be able to borrow against their

future harvest to cover the cost of migration for someone in the household.

Our results reveal a statistically significant positive relationship between soil moisture

from the cell long-run mean and international migration. When distinguishing between

positive and negative soil moisture anomalies, we find that drier soil conditions have a

strong negative impact on the probability to migrate and on the number of migrants.

Compared with normal soil moisture conditions, drier soil conditions by more than one

standard deviation decrease the probability to migrate by 2 percentage points and lead

to about 25% fewer migrants originating from the cell. This effect is only seen during

the growing season, highlighting the relevance of favorable soil moisture conditions for

agricultural yields. In contrast to previous literature, we also look at the impacts of pos-

itive weather shocks, and find suggestive evidence that wetter soil conditions (improving

weather conditions) are related to a higher probability to migrate and a higher total num-

ber of migrants at the cell level. These findings may be explained by a general migration

desire of many West African farmers, who are only able to realize their migration plans

when agricultural yields are large enough to help cover the associated costs.

Consistent with this interpretation, our results show that migration responses to cli-

mate anomalies depend on the poverty level of the affected areas. In particular, with the

high level of granularity of the data at hand, we find no effect of climate events for areas

at the extremes of the income distribution, but a decrease in international migration as
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a result of drier weather conditions for areas in the middle of the income distribution.

This finding suggests that financial constraints indeed offset the positive impact of climate

anomalies on migration desires, corroborating the conclusion of previous studies that the

impact of climatic change first of all affects individuals’ financial constraints. Importantly,

however, this does not imply that poor economies are excluded from the consequences of

climate anomalies in terms of international migration. Indeed, there are sufficiently pros-

perous areas within poor economies where climate anomalies reduce emigration. This

means that farming families in West Africa who, under normal circumstances, could af-

ford international migration tend to be no longer able to finance the move as a result of

climate anomalies.

These findings highlight how dire the consequences of climate change are for vulnerable

populations like many farming households in West Africa. Not only are their agricultural

yields negatively affected, they are also not able to revert to migration as a coping mech-

anism due to an even more severe lack of monetary resources. It seems therefore very

important that additional adaptation policy actions are taken that protect livelihoods in

order to support the well-being of those adversely affected by the shocks.

This paper is structured as follows. The next section presents the literature review

and the background on international migration and climate conditions in West Africa.

Section 3 describes the data sources that we use in the empirical analysis and provides

descriptive statistics. Section 4 outlines the identification strategy. Section 5 presents the

results and Section 6 concludes.

2 Background

2.1 Literature Review

A growing body of literature has investigated the impact of climate change on internal

and international migration, mostly focusing on slow-onset events (see, e.g., Beine and

Jeusette, 2019; Cattaneo et al., 2019). The empirical evidence has shown contradicting
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heterogeneous impacts of climate change on migration across countries.

Several studies rely on cross-country comparisons and emphasize agriculture as the

leading factor through which climate change relates to international migration. On the

one hand, some studies find that rainfall variability (Coniglio and Pesce, 2015) and ris-

ing temperatures (Backhaus et al., 2015) increase migration from agriculture-dependent

countries to OECD countries (Cai et al., 2016). By focusing on migration to OECD coun-

tries, which makes up only 43% of migration for non-OECD countries and only 27% for

Sub-Saharan Africa7, these studies provide an incomplete view of the relationship between

migration and climate change that fails to capture the role of intra-regional migration.

On the other hand, Beine and Parsons (2015), using a decade panel of bilateral migra-

tion flows with a broader set of destination countries, show that climate anomalies have

neither a direct impact on internal nor on international migration. Cattaneo and Peri

(2016) and Beine and Parsons (2017) aim to explain the lack of statistical significance

with effect heterogeneity across country income levels and report results that differ from

one another. Cattaneo and Peri (2016) show that increasing temperatures are associated

with significantly higher emigration rates in middle-income countries and lower migra-

tion rates in low-income countries. Beine and Parsons (2017) find a negative impact of

temperature anomalies on international migration for middle income countries, and no

impact for poor countries. The authors argue that anomalies eliminate scale effects and

capture deviations in weather from the norm.8 Yet, as discussed by Bertoli et al. (2020),

these analyses conducted at the country level could be influenced by other time-varying,

country-specific factors occurring during the period that might happen to be correlated

with weather events. This is particularly true of studies using temperature over time,

which has followed a steady increasing pattern.

The majority of studies using sub-national level data focus on internal migration. For

instance, Henderson et al. (2017) estimate the impact of long-run soil moisture changes

7Calculated using data from UNPD on migration stocks for 2019.
8They calculate climatic anomalies as deviations from the countries’ precipitation and temperature

long-run average, divided by the corresponding standard deviation. The paper shows that not controlling
for the long-run volatility of climatic conditions can lead to results with the opposite sign.
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on within-district urbanization using census data for a panel of African countries. The

findings suggest that unfavorable climatic conditions lead to greater urban population

growth. However, the effects are confined to districts that can absorb the potential excess

of labor. The only study focusing on international migration using data at the sub-

national level for West Africa is Bertoli et al. (2020).9 The study exploits the Standardized

Precipitation Evapotranspiration Index (SPEI) and finds that deviations in the index

exert a heterogeneous effect across countries on the intentions to move locally. While

migration intentions could be a predictor of migration outcomes (see, e.g., Docquier et al.,

2014; Bertoli and Ruyssen, 2018), worsening climate conditions have most likely a larger

impact on the financial possibilities to migrate, rather than on the desire to move (Beine

and Parsons, 2017). Additionally, Docquier et al. (2014) find a much lower correlation

between migration intentions and migration outcomes for the less educated (which is most

aligned with the sample of potential migrants that are affected through the agricultural

production mechanism). In this study, we build on Bertoli et al. (2020) and use a soil

moisture index to measure weather anomalies and their impact on migration behavior,

at an even finer spatial granularity. This paper also relates to literature that looks at

migration costs and the role of budget restrictions and wealth on migration (McKenzie

and Rapoport (2007); Angelucci (2015); Dustmann and Okatenko (2014); Bazzi (2017)).

While these studies use household level data and for the most part focus on a single

country, we similarly find that it is the middle of the income distribution whose migration

decision is affected by financial constraints. One main difference is that these studies

look at decreases in costs or decreases in financial constraints, while in this research we

examine the impacts of events that can lower income and increase financial constraints,

finding that these decrease migration among the middle-income cells.

9Other studies that use sub-national level data include Bazzi (2017), who combines census and survey
data at the village level for Indonesia and finds that positive rainfall shocks are associated with higher
migration in villages with a greater number of small landholders. Mastrorillo et al. (2016) focus on inter-
district migration in South Africa and find that increasing temperatures as well as positive and negative
rainfall shocks increase migration of the disadvantaged population. Studies using individual level data for
Indonesia (Bohra-Mishra et al., 2014), Pakistan (Mueller et al., 2014), and Mexico (Jessoe et al., 2018)
find that heat stress is associated with an increase in long-term international migration outcomes (mostly
from rural areas). However, these studies differ from ours because they focus only on one country.
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2.2 Migration and Climate in West Africa

About 2.5% of Sub-Saharan Africans live abroad and this share has remained almost

constant since the 1960s (European Commission, 2020). In West and Central Africa, mi-

gration patterns are characterized by international movements which mainly occur within

the region given the free-movement regulations established by the Economic Community of

West African States (ECOWAS) and strong networks among ethnic groups (IOM, 2020).

In 2017, 70% of Sub-Saharan African migrants remained within the region (European

Commission, 2020). These intra-regional flows are mostly due to seasonal or permanent

labor mobility along established migration corridors such as Burkina Faso-Ivory Coast

and Sierra Leone-Guinea. Intra-regional migrants tend to be low-skilled and their occu-

pations are related to trade or agriculture (Devillard et al., 2015). The main direction of

the flows is from north to south, particularly from Sahel West African countries towards

the coast, which is richer in minerals and plantations.

Additional relevant flows include migration to Europe, e.g., along the West Mediter-

ranean and Central Mediterranean routes. From 2008 to 2016 the number of first residence

permits from the EU to West African citizens increased from 93 thousand to 101 thou-

sand.10 The main three sending countries were Nigeria, Senegal, and The Gambia. The

number of first-time asylum claims saw huge increases during the same time period. From

2010 to 2015, the number of registered asylum claims increased from 18 to 121 thousand

(mainly driven by an increase in claims from Nigeria). However, first-time asylum claims

have much higher irregularity, with a sudden drop to 61 thousand in 2019.11

Climate conditions in Western Africa are tied to the West African monsoon, which

starts in May over the Guinean Coast, reaches the Sahel in August, and retreats in

October. This period concentrates over 70% of the annual precipitation in the region

(Sultan and Gaetani, 2016). Therefore, the climate is subject to the high variability of

the monsoon which can differ year-to-year. For this region, climate change could lead

to the coexistence of longer dry spells and periods with extreme precipitation intensity
10Estimated using data on first residence permits for West African citizens with a duration of 12 or

more months issued by the EU-28 excluding permits granted for humanitarian reasons (Eurostat, 2020).
11The figures include first-time asylum claims of West African citizens to the EU-28 (Eurostat, 2020).
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(Sylla et al., 2016).

In Sub-Saharan Africa, agriculture is sensitive to climate with 95% of crops being

rainfed (IPCC, 2019). An increasing degree of unpredictability in rainfall patterns poses

a water-scarcity threat for the agricultural sector increasing its vulnerability (UNCCD,

2016). More than half of the total labor force is employed in agriculture in Sub-Saharan

Africa, and smallholder farms constitute approximately 80% of all farms, directly em-

ploying around 175 million people (OECD-FAO, 2016). Therefore, a large part of the

population in Sub-Saharan Africa is at risk of experiencing negative income shocks due

to extreme weather events.

Reports from the Food and Agriculture Organization from the United Nations (FAO)

provide a summary of the main weather events that caused stress to the region during

2018-2019. In the beginning of 2018, the food security situation in the Sahel was alarming

given the poor performance of the 2017 rainy season. Compared to the past five years,

Chad, Mauritania, Senegal, Burkina Faso, Mali, and Niger expected agricultural pro-

duction deficits (FAO, 2018). However, the rainy season in 2018 had an overall positive

outcome. In certain countries, e.g., Burkina Faso and Nigeria, above-average rainfall was

registered leading to an increase in agricultural production (FAO, 2019). The outcome of

the rainy season in 2019 was negative in several countries along the coast of West Africa

due to a poor and erratic distribution of rainfall. Rainfall deficits were registered com-

pared to the long-term average in The Gambia, Mauritania, and Senegal, which affected

seed germination and crop growth. By September 2019, crop production estimates were

17% lower than the five-year average (FAO, 2020). Table A1 presents a summary of the

main weather events for the region.

3 Data

We use high-frequency, geo-referenced data from different sources to build a database

covering 17 West and Central African countries during 2018 and 2019. The countries

included in the sample are Benin, Burkina Faso, Cameroon, Chad, Ivory Coast, The
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Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Sene-

gal, Sierra Leone, and Togo.

Migration data. The data to measure migration outcomes come from the Flow Mon-

itoring Surveys conducted by the IOM in Western and Central Africa in 2018 and 2019.

The IOM established Flow Monitoring Points (FMP) in areas of significant transit in the

region. The FMPs are located in strategic places such as border crossing posts, bus sta-

tions, rest areas, police stations, and reception centers to quantify migration flows, trends,

and routes. The surveys collect data on a sample of people in transit at each FMP to

provide a better understanding of inter- and intra-regional migration patterns.12

The data currently cover the period January 2018 to December 2019 and report infor-

mation on 118,000 individuals. One of the most attractive features of the data is that it

provides high-frequency migration data as the surveys are conducted daily. The surveys

collect information on the region of origin at a small aggregate level, i.e., village or city,

the intended final destination, trip characteristics (e.g., transportation means, number of

people traveling together, and difficulties faced during trip), demographic characteristics,

planned length of stay at the destination country, and reason for the journey. Each person

is only interviewed once along the route.13

We identify migrants based on the planned length of stay at destination and the reason

for the journey (economic, family reunification, or displacement due to conflict or natural

disasters). Thus, we exclude from the sample individuals who report they are traveling for

business, to attend a family or religious event, for tourism, and those who plan to return

within the week (about 21 thousand individuals). We exclude individuals who departed

from regions outside West and Central Africa (9 thousand). We also exclude return

migrants (9 thousand), individuals for whom the information on the village of departure

(14 thousand) or the country of destination (6 thousand) is missing, and internal migrants

(11 thousand). Our final sample consists of 45,789 international migrants.14

12As of 2018, the IOM had about 35 FMPs in place (see Figure 1).
13The first question of the survey filters out migrants who previously answered the questionnaire.

Migrants are asked whether they had already participated in the survey and the country where they were
surveyed.

14Of those included in the sample, 88% report the main reason to migrate as being "Economic" with
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To compute the number of migrants per cell, we geo-coded the place of departure at

the individual level using the centroid of the village where migrants first departed from.

We then aggregate observations at the monthly level based on the survey date. Figure 1

illustrates both the location of the IOM monitoring points (red) and the centroids of the

villages where migrants originate from (green). For cells with no international migrants,

we use gridded population data to distinguish cells with insufficient population numbers

from those with sufficient population and no migration. As a reference, we take the

smallest population size of cells where we observe at least one migrant, which is about

200 people. Thus, we assume that total migration equals zero for the specific cell and

month if the cell has a minimum population of 200 and we do not observe a migrant

originating from the cell, and we exclude cells with a population below 200. Most of the

cells excluded from the analysis are located in the Sahel region, where the number of

inhabitants is too small.

To confirm the quality of the data, we aggregate the number of international migrants

into two destinations: within and outside Africa to the national level and compare the

data with other official databases. In Table 1, we show the comparison between the

aggregate IOM data and UNPD international migrant stocks. In general, the table shows

that the proportion of intra-regional migrants and migrants outside Africa is similar when

comparing both databases. The largest differences are found in countries without FMPs

in place.

Our data cover two years. Thus, we capture a set of short-run responses to soil moisture

anomalies which may differ from the long-run responses to climate change. However, little

is known about how the affected population reacts right after the shock to weather shocks

that potentially affect agricultural yields. Even if our estimates do not capture long-run

effects, they are informative about the immediate response of the affected population.

It is challenging to use the data for measuring internal migration given the location of

FMPs and their function of capturing international migration flows. While international

migration is not the only mechanism through which individuals can adapt to weather

another 7% citing family reunification and 3% access to services.
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shocks, previous evidence shows that rural-to-urban migration matters if urban areas can

absorb the excess of labor (Henderson et al., 2017). In West Africa, limited employment

opportunities in urban areas have led to important seasonal and circular rural-to-rural

international migration in the region (FAO, 2017).

Climate data. Soil moisture is an important determinant for plant growth and, to-

gether with precipitation and evotranspiration, is a basic component of the hydrological

cycle. Thus, our climate measure is based on the Soil Moisture Anomalies index (SMA) at

the cell-by-month level. The SMA index is standardized and determines the start and du-

ration of potential meteorological and agricultural droughts. Meteorological droughts are

periods with a precipitation deficit compared to the long-run average or due to increased

evapo-transpiration caused by higher temperatures. Agricultural droughts occur after a

meteorological drought, when the deficit in soil moisture limits the water availability for

crops and affects crop growth and yield (EDO, 2019). The SMA index represents the

deviation of current conditions from the usual water availability in the soil, and captures

the spatial extension of droughts as well as their severity and duration. Higher values of

the index correspond to higher soil moisture. Values smaller than −1 translate to drought

conditions.

We calculate the SMA index following the methodology of the Copernicus European

Drought Observatory technical description (EDO, 2019).15 For each cell, the SMA is

calculated as SMA = (SMIt − SMI)/σSMI , where SMIt is the soil moisture index for

the month at time t. SMI is the SMI long-run average and σSMI the standard deviation,

both are calculated using the first year the data are available to the last available full year

(i.e, 1948 to 2017 for the index in 2018).

We calculate the soil moisture index (SMI) using the CPC Soil Moisture data (NOAA

ESRL PSD, 2020) which provides monthly means from 1948/01 to 2019/12 at a grid

size of .5x.5 degrees. The SMI is calculated as SMI = 1 −
(

1
1+( θ

θ50
)6

)
. θ represents soil

moisture at time t and θ50 is the mean between the wilting point and the field capacity.16

15We deviate from their methodology by using monthly averages instead of a 10-day anomaly.
16The wilting point refers to the minimum amount of water in the soil a plant requires not to wilt.

The field capacity is the amount of water that stays in the soil after excess water has drained.
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We obtain the wilting point and field capacity data from the Global Gridded Surfaces of

Selected Soil Characteristics database (Global Soil Data Task Group, 2000) available at

a 5 arc minutes resolution.

For the regressions, we calculate the average SMA index for different time periods.

We calculate the SMA at time t = t − 1 and estimate a running average of the past two

to the past twelve months. To avoid extreme outliers we recode the highest and lowest

.05% of the SMA index values as missing. Based on this average measure, we build a

categorical variable that takes the value 1 if the SMA ranged between -1 and 1, i.e., if

soil moisture conditions are normal; 2 if the SMA is below -1, i.e., if soil moisture is drier

than the long-run average; and 3 if the SMA is above 1, i.e., if soil moisture is wetter than

normal. Finally, following Bertoli et al. (2020) we calculate the share of months during

which the SMA index varied by more than one standard deviations. We estimate the soil

moisture indicators for the months that belong to the cell-specific crop-growing season.

Crop calendar data. To identify the months during which climatic conditions affected

agricultural production the most, we retrieve crop calendar data from MICRA 2000 (Port-

mann et al., 2010). These data are available at a grid size of .5x.5 degrees and provide

information on the total cultivated area of rainfed and irrigated crops as well as their

respective crop-growing season. The data include the crop calendar for 26 irrigated and

rainfed crops including major food crops and regionally relevant crops. For this analysis,

we identify the most important rainfed crop based on the largest harvested area by cell

(e.g., Cassava, Maize, or Sorghum). We create a binary variable indicating if a certain

month of the year is part of the crop-growing season of a specific cell. In some cells,

we identified perennial crops (e.g., cocoa and coffee), which means that the crop-growing

season spans the whole year.

Population data. We further complement our database using spatial population data

provided by WorldPop for 2018 (WorldPop, 2018). The data are available at 30 arc minute

resolution. The data provide an estimate of the number of people per cell (see A3).

Poverty data. We proxy poverty at the cell level using data on infant mortality rates

(IMR). The data are taken from the Global Subnational Infant Mortality Rates, V2 2015
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(CIESIN, 2018). The IMR represents the number of children who died before their first

birthday for every 1,000 live births. The data consist of a grid at a spatial resolution of 30

arc seconds. We calculate the average child mortality for each cell in our grid (see Figure

A4) and use it as a proxy for poverty since other measures such as GDP per capita are

not available at the sub-national level.

We report descriptive statistics in Table 2. The first two columns report the mean and

standard deviation for the full sample, columns III and IV for the sub-sample of cells with

crops, and the last two columns for the sample of cells that have at least one migrant.

For the empirical analysis, we restrict the sample to cells with rainfed crops because we

expect the effect of soil moisture anomalies to operate through decreases in agricultural

yields. Most of the excluded cells are located in the Sahara desert. Besides the extreme

climatic conditions of the area (lack of vegetation and rainfall), the population is mostly

nomadic and may exhibit different mobility patterns than in other regions.

On average, 8% of observations (cell-by-month) have at least one migrant and have

about one migrant per month. The mean SMA index is -0.081 indicating weather con-

ditions through 2018 and 2019 that have been slightly less favorable than compared to

the historical mean. FMPs are found in only 1% of the observations. However, 27% of

observations are located within a 200 km radius of an FMP.

The growing season indicator shows that about 35% of observations occur during the

crop-growing season, which usually spans from May to October. The average population

per cell is about 165 thousand inhabitants and the average child mortality rate is 63

(defined as the number of children who die before their first birthday for every 1,000 live

births).17 The descriptive statistics for the sample of cells with crops and for the group

of cells with at least one migrant are similar. The main difference observed is that these

cells have a larger number of inhabitants and, accordingly, have more migrants per cell.

To show the sources of variation in our data, we plot the number of international

migrants and the SMA index for 2018 and 2019 at the cell level. First, Figure 2 shows

that international migrants mainly originate from the northern region and from the coastal

17The average mortality rate in OECD countries for 2017 was 3.8 (OECD, 2017).
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hinterland of West Africa. Comparing international migration in 2018 and 2019, we

observe similar areas of origin, except for Nigeria where a large decrease in the number

of international migrants can be observed.

Figure 3 plots the average SMA index for 2018 and 2019. The upper figures present

the average SMA index from January to December for 2018 and 2019, respectively. The

lower figures present the average SMA index from January to December, but restricted to

growing-season months of the respective cells (for the subset of cells with rainfed crops).

The figure shows a similar pattern as discussed in Section 2. In general, soil moisture

in 2018 was slightly above average, while 2019 was a drier year. For this year, the SMA

index reveals drier conditions in northeastern Nigeria, Cameroon and to a lesser extent

in Senegal, The Gambia, and Guinea-Bissau.

In Figure A1 and A2, we highlight the advantage of focusing on small geographical

units over aggregating the data at the country level. The figures show a close-up of the

countries located close to the Gulf of Guinea. Figure A1 plots the average SMA index for

March and August in 2018, which correspond to the months before the arrival and retreat

of the seasonal monsoon, and the average SMA index in 2018. Panel A, B, and C illustrate

the average SMA at the cell level and Panel D, E, F the average SMA at the country level.

At the cell level, the maps show important regional differences. For example, North-East

Nigeria faced severe drought conditions; but in the rest of the country, soil moisture was

above average. When calculating the SMA at the country level, the maps show these

extremes net out and soil moisture conditions for the country appear close to normal.

Similarly, Figure A2 plots total migration for March and August 2018 as well as the total

number of migrants in 2018. The figure shows that by aggregating the data, we loose

regional variation in sending areas.

4 Empirical strategy

The empirical analysis uses a panel data approach. We construct a database where

variables are defined for each raster grid of size .5x.5 degrees of longitude. The unit
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of observation is the cell-by-month level. To estimate the impact of climate anomalies

on international migration, we exploit soil moisture deviations from the long-run mean.

We implement a panel data approach that controls for time-invariant cell, month, and

country-by-year fixed effects and estimate the following model:

Migc,i,m,t = α + β1SMAc,m,t + β2Xc,t + δc + λm + µi,t + εc,i,m,t (1)

The dependent variable Migc,i,m,t is an indicator of out-migration from cell c, located

in country i, measured at month m during year t. We measure migration using (i) a

binary variable indicating whether the cell has at least one migrant and (ii) the total

number of migrants from the cell at time m, t. We estimate a cell fixed effects linear

probability model for the binary dependent variable.18 To account for the count nature

and high number of zeros of the continuous dependent variable, we estimate cell fixed

effects Negative Binomial regressions. For the total number of migrants, the standard

deviation (7.96) is much larger than the mean, which justifies our choice of model. The

Negative Binomial model fits the distribution of the dependent variable and allows for

overdispersion. Poisson-type models are frequently used by studies looking at migration

flows (see, e.g., Mastrorillo et al., 2016; Belot and Ederveen, 2012) given that simply

transforming the dependent variable to logarithms and estimating a linear model would

lead to misleading elasticities because heteorskedasticity is ignored (Silva and Tenreyro,

2006).19

The variable of interest, SMA refers to the Soil Moisture Anomalies Index (SMA). We

exploit three main definitions of our variable of interest: (i) the continuous SMA index

to estimate the relationship between soil moisture and migration; (ii) a categorical vari-

able indicating if the cell experienced normal, drier, or wetter soil conditions to estimate

18Alternatively, we estimate regressions using a Logit model when focusing on the probability to
migrate: In Table 4 in the robustness section, we report these results.

19Estimates of Negative Binomial Fixed Effects models may suffer from the “incidental parameters”
problem. However, the estimator has good properties (see, e.g., Guimaraes, 2008) and has been used
in recent studies (see, e.g., Michalopoulos and Papaioannou, 2016; Aghion et al., 2013; Bloom et al.,
2013). To address concerns about the strong distributional assumptions of the model, we also estimate
all regressions using a PPML model, and obtain similar results. We report PPML estimates of the main
specification in Table 5 in the robustness section. The remaining results are available upon request.
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the impact of positive and negative shocks; and (iii) the share of months (during the

past twelve months) during which the SMA index deviated by more than one standard

deviation to measure the intensity of negative shocks, following Bertoli et al. (2020).

Most of the literature has focused on temperature or rainfall measures. Yet, plant

growth is a function of both rainfall and temperature. The advantage of using an index

is that it incorporates the interaction of both measures to identify extreme events. For

example, the impact of below average rainfall on agricultural yields could be further

exacerbated by above average temperatures (Bertoli et al., 2020).

β1 is the coefficient of interest and captures the causal effect of local soil moisture

anomalies on international migration. Identification of the effect that climate anomalies

have on international migration comes from soil moisture deviations from the cell-specific

long-run mean. The main assumption behind our approach is that conditional on the set

of fixed effects and control variables, soil moisture anomalies are orthogonal to unobserved

determinants of migration at the cell level.

X is a vector of time-varying cell-specific variables to control for the presence and

distance to a Flow Monitoring Point (FMPs). We control for the number of FMPs in the

cell to take into account a higher (lower) probability of registering migrants who originate

from the cell after the opening (closing) of a monitoring point. To control for cells that

do not have an FMP, but are located close to one, we control for the presence of an FMP

in a 200 km radius.20

δc captures unobserved cell-level time-invariant characteristics such as geographical

features which may facilitate or hinder migration from the region, e.g., location of the

cell and terrain characteristics. λm corresponds to monthly fixed effects which capture

migration seasonal effects, e.g., higher intra-regional migration during the harvesting sea-

son. µi,t controls for country-by-year fixed effects to rule out yearly common shocks at the

country level. To define the country fixed effects, we assign cells that are shared among

more than one country to the country with the largest cell’s area. εc,i,t is the error term.

The standard errors are clustered at the cell level.

20The results remain unchanged if we control for the distance from a cell to the closest FMP.
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The main threats to our identification strategy are threefold. First, unobservable

factors affecting migration at the cell level could be correlated with climate anomalies.

Changes in climatic conditions are exogenous and in principle randomly assigned by nature

(see e.g. Henderson et al., 2017). Dell et al. (2014) finds that an equation that controls

for climate indicators and other variables that could be influenced by these indicators

e.g., socio-political environment, probability of conflict, among others, would not capture

the total net effect of climate anomalies on migration. Thus, following Dell et al. (2014)

and Cattaneo and Peri (2016) we remain parsimonious in our specification by including

only fixed effects as controls to identify the total net effect of climate on international

migration.

Second, given the specific location of FMPs to capture international migration flows

in West Africa, it could be possible that the migration data are not representative of

the overall population of migrants in the region. In the robustness section we exclude

all cells located within a 200 km radius of an FMP to show that migrants originating

from these cells are not driving the results. Additionally, as shown in the previous section

when comparing the IOM data with official statistics, the data appears to align better in

countries with at least one FMP. Therefore, given that lack of an FMP in a country could

lead to underestimates of migration for the country, in the robustness section we conduct

the analysis restricting the sample to the countries with at least one FMP.

Finally, we measure the number of international migrants at the cell level using self-

reported information on the destination country, while migrants are on-transit. Our

measure of international migration could reflect “intentions to migrate”, if the individual

is not able to complete the journey. In the robustness section, we estimate our model

using an alternative measure of international migration taking into account individuals

who were surveyed in a different country than their country of origin. Even if migrants

have not reached their final destination, they have at least crossed one border and are

considered international migrants.
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5 Results

This section reports our findings, starting with the main findings in sub-section 5.1. We

present the relationship between the continuous SMA index and international migration,

but then we present results for a categorical variable that distinguishes drier, normal, and

wetter soil conditions. We use this categorical definition for the rest of the paper in order

to investigate the effect of anomalies on international migration and to be able to distin-

guish between negative and positive events. The findings suggest that drier conditions

are associated with a decrease in the probability to migrate and in the total number of

migrants. Wetter conditions, on the other hand, seem to be positively associated with

migration, though the relationship is not consistently significant. When we differentiate

between migration to Europe and within the region, the results remain unchanged. Sub-

section 5.2 shows heterogeneous effects by poverty quintile. We find that the effect is

driven by cells in the middle of the distribution. For cells at the extremes, we find no

significant effects. Sub-section 5.3 shows possible channels that explain our results. We

find that the effects are concentrated in areas with crops, during the growing season, and

with little access to irrigation systems. Finally, sub-section 5.4 shows that our results are

robust to a number of alternative specifications.

5.1 Main Results

A. Soil Moisture and International Migration

To identify the effect of soil moisture anomalies on international migration, as a first

step, we estimate the impact of the average SMA index calculated at different time in-

tervals ranging from the past month to the past twelve months on i) the probability to

migrate and ii) the total number of migrants from a cell. The sample consists of cells

with rainfed crops and the SMA index is calculated during growing season months

The estimated coefficients and respective confidence intervals are plotted in Figure

4. The upper figure plots the results using the probability to migrate as the dependent

variable. The coefficients show that increases in soil moisture, i.e., improving weather

19



conditions in a cell – due to more rainfall or less extreme temperatures – increase the

probability to migrate. All coefficients are positive and statistically significant except

for when the SMA is calculated over the past 12 months. Similar results are found in

the lower panel, which provides the estimates using the total number of migrants as the

dependent variable.

Better weather conditions at the cell level are correlated with more outflow of interna-

tional migrants, and conversely that would mean that worsening weather conditions are

associated with a decrease in migration. On average, a one standard deviation increase

in the SMA index leads to an increase in the probability to migrate by 1.5 percentage

points and in the total number of migrants by 25%. This suggests that favorable climate

conditions lead to higher agricultural yields allowing individuals to afford the costs of

migration.

In general, we observe that including additional months to calculate the average SMA

index reduces the variation of the indicator, i.e., extreme months are attenuated leading

to point estimates that are closer to zero and to larger standard errors. This illustrates

the implications of using coarse levels of aggregation. The results for the full sample are

similar, but the size of the effect is smaller (see Tables A2 and A3 in the Appendix.).

B. Positive and Negative Shocks

While the previous subsection demonstrates a positive correlation between higher soil

moisture and migration, the mechanism for this relationship remains unclear. To explore

the mechanism, we differentiate between positive and negative soil moisture shocks for the

baseline results. We use a categorical variable that indicates if soil moisture conditions

are normal, wetter (SMA index> 1), or drier (SMA index< −1) than the long-run mean.

Given the aridity of the area, wetter conditions are usually considered as positive shocks.

We report the coefficients and respective confidence intervals in Figure 5. The estimates

are interpreted with respect to the baseline category: normal conditions. The upper panel

presents the results focusing on the probability to migrate as the dependent variable and

the lower panel on the total number of migrants.

The figure shows that drier and wetter soil moisture conditions trigger migration
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responses in different directions. Compared to normal soil conditions, increases in soil

moisture are associated with a higher probability to migrate. All the estimated coefficients

are positive; however, they are only statistically significant in some specifications. When

focusing on the total number of migrants, we observe positive coefficients for the average

SMA in the past month to the past seven months. Yet, by including additional months

to the average, the coefficients drop to zero and are not statistically significant.

Compared with normal conditions, a decrease in soil moisture is associated with a

decrease in the probability to migrate ranging between 1.5 to 3.5 percentage points and

with a decrease in the number of migrants ranging between 20 to 30%. Taking the un-

conditional mean at the cell-by-year level, our estimates would translate to a decrease in

the number of international migrants by 3.2.21 The relationship holds across all specifi-

cations using the average SMA index in different time periods. Our results suggest that

even if negative shocks broaden the income gap between the affected area and potential

destinations, this does not necessarily spur international migration in the region. These

results are in line with previous evidence suggesting that hotter and drier climate reduce

the ability of rural populations to migrate (Cattaneo and Peri, 2016)22, and they con-

tradict previous evidence showing that decreases in rainfall and increases in temperature

spur international migration in Sub-Saharan Africa (Marchiori et al., 2012; Barrios et al.,

2006).

A possible explanation for our results is that Sub-Saharan Africa is more affected by

drier conditions given the rural nature of the countries and rare investments in irrigation,

which makes the region highly dependent on seasonal rainfall. The lack of rainfall has

a direct impact on agricultural production which inhibits the possibility to migrate in

order to mitigate the shock. While climate stress can increase the incentives to move as

shown by Bertoli et al. (2020), we show that it can also limit the capacity of moving. In

sub-section 5.3, we further investigate if the decrease in migration after a shock is mainly

observed in agricultural areas.

21There are, on average, 13 migrants by cell at the yearly level.
22The study finds that a 1% increase in temperature would lead to a decrease in the emigration rate

of poor countries by 22%.
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C. Migration to Europe

We further investigate whether climate shocks have a different impact by destination

region. We calculate total migration from the cell to all destinations within the region

i.e., to another African country, and total migration to European countries.23 The esti-

mates presented in Figure 6 are interpreted with respect to the baseline category: normal

conditions. The upper panel presents the results focusing on the probability to migrate as

the dependent variable and the lower panel on the total number of migrants. The black

points show the results using total migration in transit to Europe and the gray points

total migration to other countries within the region.

The results show that negative soil moisture shocks decrease the probability to migrate

and the number of migrants for both intra-regional migration and migration to European

countries. While Beine and Parsons (2017) find that natural disasters, in general, deter

migration from low-income countries to neighboring countries, but spur migration to

former colonial powers, we find that negative shocks decrease international migration to

all destinations. The latter finding is of particular relevance in light of concerns in Europe

about rising influx of West African asylum applicants. It does not support the view that

climate change increases migration pressures in the European Union. When looking at

climate anomalies in West Africa, the opposite, in fact, seems to be the case.

5.2 Heterogeneous Effects

In this section, we build on the previous results and estimate heterogeneous responses to

soil moisture deviations. We start by analyzing how positive and negative soil moisture

shocks affect the probability to migrate and total migration by poverty quintile. To proxy

poverty at the cell level, we use raster data on child mortality. In the absence of gridded

poverty data, child mortality is a good proxy because it correlates with poverty-related

metrics such as income, education, and health status (see, e.g., Barbier, 2015; Barbier and

Hochard, 2018a,b). We classify the cells into poverty quintiles and interact this variable

23In our sample of international migrants 71.7% migrate to another country within the region, 27.9%
to a European country, and only 0.4% to other international destinations.
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with the categorical indicator if the cell registered normal, drier, or wetter conditions

during the crop-growing season.

Figure 7 plots the estimated coefficients and respective standard errors for wetter and

drier soil conditions focusing on the probability to migrate and Figure 8 focusing on total

migration. The coefficients are interpreted with respect to the reference category: normal

soil conditions in the cell.

Both figures show a similar pattern. For the richest quintiles (first and second), we

do not observe significant differences in the probability to migrate or in the number of

migrants for cells that experienced drier or wetter soil conditions. At the top of the

distribution, the population might not depend on weather conditions to afford the costs

of migration. For the third and fourth quintiles, we observe that wetter soil conditions

(positive shocks) lead to an increase in migration and drier soil conditions (negative

shocks) to a decrease in migration. We argue that the population in these quintiles

depends on their agricultural yields to be able to afford the costs of migration. Decreases

in soil moisture have a direct impact on agricultural yields, hindering the possibility to

move. For the fifth quintile, the estimated coefficients are not significantly different from

zero. At the bottom of the distribution, people are so poor they cannot afford the costs

of international migration even before the shock, thus we find no significant differences.

Our results are related to previous literature on migration and inequality which shows

that an inverse U-shaped relationship between migration and wealth exists (McKenzie and

Rapoport, 2007). At the top of the income distribution, people could afford to migrate but

lack the incentives to do so, while people at the bottom of the distribution cannot afford

to migrate. Those who are in the middle of the distribution have both the means and the

incentives to migrate. If their liquidity is directly affected after a negative weather shock,

this will limit their capacity to migrate. Figure A5 in the Appendix plots the correlation

between the number of migrants and the infant mortality rate, and shows that indeed an

inverse U-shaped relationship exists and that most international migrants originate from

the middle of the distribution.

In contrast to the findings in Cattaneo and Peri (2016) and Beine and Parsons (2017),
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our results present a more complex setting where responses are heterogeneous within

countries. Drier soil conditions have a direct impact on income, potentially through the

reduction of agricultural yields. After a shock, the affected population in the middle of

the income distribution may not be able to afford to cover the costs of migration such as

transportation or housing (Bryan et al., 2014).

5.3 Channels: Agricultural Shocks

In this section, we focus on negative soil moisture shocks to further support our argu-

ment that the decrease in international migration mainly operates through a reduction

of agricultural yields. We analyze the impact of soil moisture decreases focusing on the

intensity of the drought. For this, we construct a continuous variable indicating the share

of months – during the past twelve months – in which the SMA index registered values

lower than a standard deviation of the local long-term average. Table 3 shows the results

focusing on the probability to migrate (Panel A) and on total migration (Panel B).

Columns I and II show the results calculating the share of months during the past

12 months in which the SMA index scored values lower than -1 for all months and only

for growing season months, respectively. The estimates in both columns are negative and

significant when focusing on total migration as the dependent variable, but the size of the

effect is larger when including only growing season months.

In columns III and IV, we conduct placebo tests. In column III, we define the share of

months using only non-growing season months. In column IV, we restrict the sample to

cells that experienced shocks exclusively during the non-growing season. In general, the

estimated coefficients are close to zero and not statistically significant.

Finally, in columns V and VI we show the estimations of the sub-sample of cells without

and with irrigated land, respectively. For this, we restrict the sample to cells where the

average coverage of irrigated land is higher (lower) than the mean.24 The results show no

significant impact of an increase in the share of very dry months cells with irrigated land,

but a negative and significant impact in cells with no irrigation systems in place.
24On average, a cell has about 5% of crop land which is irrigated.
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Taken together, these findings show that the main channel through which weather

anomalies have an impact on migration is likely through the reduction of agricultural

production. The decrease in international migration can be explained by shocks that

occur during the growing season and in areas that highly depend on seasonal rainfall for

crop production. Finally, to show that our results are not driven by long-term trends, we

identify i) cells that experienced no droughts during the growing season in the past 5 years,

ii) cells that experienced one drought, iii) cells that experienced two or more droughts.

We find that the impacts do not vary significantly across areas that experienced more

or less droughts in the past. These results focusing on the probability to migrate are

reported in Figure A6 in the Appendix.25

5.4 Robustness Checks

We conduct several robustness tests using our categorical measure of the SMA index

which identifies drier and wetter conditions during the crop-growing season and report

the results focusing on the probability to migrate in Table 4 and on the total number of

migrants in Table 5. We estimate the results for each average SMA measure, but report

only the results using the average SMA during the previous month, and the previous

three, six, nine and twelve months.

A first concern is that migrants are surveyed in their origin country while in transit;

therefore, the dependent variable could be capturing intentions to migrate instead of

actual international migration. We restrict the sample to migrants who were surveyed in

a different country rather than their country of origin (see Figure A7). While many of

these migrants have not reached their final destination country, they have crossed at least

one border and their outcomes reflect actual international migration and not intentions.

The results reported in Panel A are robust to the alternative measure of international

migration.

A second concern is that FMPs are located in strategic places and thus they register

a very specific type of migrant, e.g., individuals who reside close to the FMPs. Although
25The remaining results are available upon request.
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Figure 1 shows that migrants originate from different villages, we estimate the model

excluding all cells in a 200 km buffer of a monitoring point. The results remain similar

in magnitude and statistical significance. An opposite concern is that the data is not

representative of migration patterns in countries where there is no FMP because only a

selected group of migrants is captured. In Panel C, we restrict the sample to the countries

with an FMP in place i.e., Burkina Faso, Chad, Guinea, Mali, Niger, Nigeria, and Senegal.

The results remain robust.

As previously mentioned, migration patterns in Nigeria have been affected by conflict,

which led to the internal displacement of over 2 million people and to an increase in the

number of asylum claims in Europe. However, migration flows for this region started to

decrease in 2016. Figure 2 shows a large decrease in the number of migrants originating

from Nigeria. Thus, we conduct the regressions excluding all cells located in Nigeria

and report the results in Panel D. The coefficients remain similar in magnitude and are

significant in all columns.

An additional concern is that cells that contain borders are assigned to the country

with the largest overlapping area. As our definition of the dependent variables is calcu-

lated at the cell level, in some cases, we could be capturing migration from two different

countries. To show that this is not driving our results, we estimate the regressions exclud-

ing all cells that contain a border and report the results in Panel E. The results remain

robust in all columns.

In Panel F, we show that the results are not driven by our choice of grid size by

conducting the analysis at a different aggregation level. For this, we construct a database

at a grid size of 1x1 degrees (4 times larger than our baseline grid) and calculate all the

variables using this aggregation level. The estimated coefficients are negative and remain

statistically significant.

In Panel G, we report estimates using alternative models. For the binary dependent

variable, we estimate a logit model and report the marginal effects. For the continuous

variable, we report the estimates of a PPML model – traditionally used by the literature

looking at migration flows. In both models, the point estimates and statistical significance
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remain robust.

Finally, In Panel H we estimate the linear probability model taking into account

spatial correlation in terms of distance and time. We estimate Spatial HAC standard

errors as suggested by Conley (2008) taking into account a distance of 200 km and a

temporal correlation of 12 months. The standard errors are similar to those estimated in

our baseline specification.26

6 Conclusion

In this paper, we provide evidence on the effect of climate anomalies on international

migration using spatially disaggregated data that allows us to better associate weather

events to the populations affected and their responses. Our empirical strategy relies

on within-cell deviations from the month-and-cell-specific long-run average conditions to

identify the effect. We also use soil moisture as a measure of droughts, which allows us to

more directly isolate agricultural production as a mechanism. Finally, we use a new source

of data for migration that systematically captures data during the process of migration,

which helps to address some of the biases associated with typical census data, migration

intention data or other survey data collected at origin or destination.

We find that drier soil conditions decrease the probability to migrate and the number

of migrants at the cell level. Our results suggest that, compared to normal soil moisture

conditions, drier conditions are associated with a 20 to 30% decrease in the total number

of migrants. This translates to a decrease of 3.2 migrants by cell and month. We find no

substantial differences in the size of the effect when focusing on intra-regional migration

or migration to European countries. Finally, our results show that migration responses to

climate anomalies depend on the poverty level of the affected areas, showing substantial

sources of heterogeneity within countries. While we find no effect of soil moisture anoma-

lies for areas at the extremes of the income distribution, we find a decrease in international

26The results are also robust to increasing the distance and temporal threshold. These results are
available upon request. For the estimations, we use the code by Fetzer (2014) which accounts for spatial
correlation with high-dimension fixed effects, an extension of Hsiang (2010).
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migration for areas in the middle of the income distribution.

Taken together, our results show that even if climate anomalies increase the incentives

to move (Bertoli et al., 2020), they can also limit the capacity of moving, especially among

the middle class in poor economies. These findings challenge the idea that the population

is forced to move in order to adapt to weather shocks and instead present a scenario where

the population is trapped because they cannot afford the costs of migration (Black et al.,

2011b; Bryan et al., 2014; Cai et al., 2016; Gazeaud et al., 2019). Our results further

support previous findings stating that climate change can increase inequality by widening

the gap between the rich and the poor (Burzyńskia et al., 2019). For policymakers, our

results indicate that to avoid climate-related humanitarian crises, preventive measures are

needed to address the impacts of climate change, such as local-disaster reduction systems

and risk diversification (see e.g., Premand and Stoeffler, 2020a,b), i.e., improving the

provision of irrigation systems, as well as supporting sustainable development for more

resilient rural and urban communities.

28



References

Abdel Jelil, M., Corral Rodas, P. A., Dahmani Scuitti, A., Davalos, M. E.,

Demarchi, G., Demirel, N. N., Do, Q.-T., Hanna, R. N., Houeix, D. J. M.,

Lenehan, S. and Mugera, H. K. (2018). Asylum Seekers in the European Union:

Building Evidence to Inform Policy Making. World Bank Group, Washington, D.C.

Abu, M., Codjoe, S. N. A. and Sward, J. (2014). Climate Change and Internal

Migration Intentions in the Forest-Savannah Transition Zone of Ghana. Population

and Environment, 35, 341––364.

Aghion, P., Van Reenen, J. and Zingales, L. (2013). Innovation and Institutional

Ownership. American Economic Review, 103 (1), 277–304.

Aksoy, C. G. and Poutvaara, P. (2019). Refugees’ and Irregular Migrants’ Self-

Selection into Europe: Who Migrates Where? CESifo Working Paper.

Angelucci, M. (2015). Migration and Financial Constraints: Evidence from Mexico.

Review of Economics and Statistics, 97 (1), 224–228.

Backhaus, A., Martinez-Zarzoso, I. and Muris, C. (2015). Do Climate Variations

Explain Bilateral Migration? A Gravity Model Analysis. IZA Journal of Migration, 4.

Barbier, E. B. (2015). Climate Change Impacts on Rural Poverty in Low-Elevation

Coastal Zones. Policy Research Working Paper No. 7475, World Bank.

— and Hochard, J. P. (2018a). Land Degradation and Poverty. Nature Sustainability,

1 (11), 623–631.

— and— (2018b). The Impacts of Climate Change on the Poor in Disadvantaged Regions.

Review of Environmental Economics and Policy, 12 (1), 26–47.

Barrios, S., Bertinelli, L. and Strobl, E. (2006). Climatic Change and Rural-

Urban Migration: The Case of Sub-Saharan Africa. Journal of Urban Economics,

60 (3), 357–371.

29



—, — and — (2010). Trends in Rainfall and Economic Growth in Africa: A Neglected

Cause of the African Growth Tragedy. The Review of Economics and Statistics, 92 (2),

350–366.

Bazzi, S. (2017). Wealth Heterogeneity and the Income Elasticity of Migration. American

Economic Journal: Applied Economics, 9 (2), 219–55.

Beine, M. and Parsons, C. (2015). Climatic Factors as Determinants of International

Migration. The Scandinavian Journal of Economics, 117 (2), 723–767.

— and Parsons, C. R. (2017). Climatic Factors As Determinants of International Mi-

gration: Redux. CESifo Economic Studies, 63 (4), 386–402.

Beine, M. A. and Jeusette, L. (2019). A Meta-Analysis of the Literature on Climate

Change and Migration. IZA Working Paper No. 12639.

Belot, M. and Ederveen, S. (2012). Cultural Barriers in Migration Between OECD

Countries. Journal of Population Economics, 25 (3), 1077–1105.

Bertoli, S., Docquier, F., Rapoport, H. and Ruyssen, I. (2020). Weather Shocks

and Migration Intentions in Western Africa: Insights from a Multilevel Analysis. CESifo

Working Paper No. 8064.

— and Ruyssen, I. (2018). Networks and Migrants’ Intended Destination. Journal of

Economic Geography, 18 (4), 705–728.

Black, R., Adger, W. N., Arnell, N. W., Dercon, S., Geddes, A. and Thomas,

D. (2011a). The Effect of Environmental Ehange on Human Migration. Global Envi-

ronmental Change, 21, S3–S11.

—, Bennett, S. R. G., Thomas, S. M. and Beddington, J. R. (2011b). Migration

as Adaptation. Nature, 478 (7370), 447–449.

Bloom, N., Schankerman, M. and Van Reenen, J. (2013). Identifying Technology

Spillovers and Product Market Rivalry. Econometrica, 81 (4), 1347–1393.

30



Bohra-Mishra, P., Oppenheimer, M. and Hsiang, S. M. (2014). Nonlinear Perma-

nent Migration Response to Climatic Variations but Minimal Response to Disasters.

Proceedings of the National Academy of Sciences, 111 (27), 9780–9785.

Bryan, G., Chowdhury, S. and Mobarak, A. M. (2014). Underinvestment in a

Profitable Technology: The Case of Seasonal Migration in Bangladesh. Econometrica,

82 (5), 1671–1748.

Burzyńskia, M., Deuster, C., Docquier, F. and de Melo, J. (2019). Climate

Change, Inequality, and Human Migration. IZA Working Paper No. 12623.

Cai, R., Feng, S., Oppenheimer, M. and Pytlikova, M. (2016). Climate Variability

and International Migration: The Importance of the Agricultural Linkage. Journal of

Environmental Economics and Management, 79, 135–151.

Cai, S. (2020). Migration Under Liquidity Constraints: Evidence from Randomized

Credit Access in China. Journal of Development Economics, 142, 102247.

Cattaneo, C., Beine, M., Fröhlich, C. J., Kniveton, D., Martinez-Zarzoso,

I., Mastrorillo, M., Millock, K., Piguet, E. and Schraven, B. (2019). Human

Migration in the Era of Climate Change. Review of Environmental Economics and

Policy, 13 (2), 189–206.

— and Peri, G. (2016). The Migration Response to Increasing Temperatures. Journal

of Development Economics, 122, 127–146.

CIESIN – Center for International Earth Science Information Network,

Columbia University (2018). Global Subnational Infant Mortality Rates, Version

2. Available at: https://doi.org/10.7927/H4PN93JJ NY: NASA Socioeconomic Data

and Aplications Center(SEDAC).

Coniglio, N. D. and Pesce, G. (2015). Climate Variability and International Mi-

gration: An Empirical Analysis. Environment and Development Economics, 20 (4),

434–468.

31

https://doi.org/10.7927/H4PN93JJ


Conley, T. G. (2008). Spatial Econometrics, London: Palgrave Macmillan UK, pp. 1–9.

Connor, P. (2018). At Least a Million Sub-Saharan Africans Moved

to Europe Since 2010. Sub-Saharan migration to the United States

also growing. Available at: http://www.pewglobal.org/2018/03/22/

at-least-a-million-sub-saharan-africans-moved-to-europe-since-2010/.

EDO – Copernicus European Drought Observatory (2019). EDO Indica-

tor Factsheet: Soil Moisture Anomaly. Available at: https://edo.jrc.ec.europa.eu/

documents/factsheets/factsheet_soilmoisture.pdf.

Dell, M., Jones, B. F. and Olken, B. A. (2014). What Do We Learn from the

Weather? The New Climate-economy Literature. Journal of Economic Literature,

52 (3), 740–98.

Devillard, A., Bacchi, A. and Noack, M. (2015). A Survey on Migration Policies

in Western Africa. Available at: https://www.icmpd.org/fileadmin/ICMPD-Website/

ICMPD_General/Publications/2015/A_Survey_on_Migration_Policies_in_West_

Africa_EN_SOFT.pdf Comission by the International Centre for Migration Policy

Development and the International Organization for Migration.

Docquier, F., Peri, G. and Ruyssen, I. (2014). The Cross-Country Determinants of

Potential and Actual Migration. International Migration Review, 48 (1), 37–99.

Dustmann, C. and Okatenko, A. (2014). Out-migration, wealth constraints, and the

quality of local amenities. Journal of Development Economics, 110, 52–63.

NOAA ESRL PSD – Earth System Research Laboratory (2020). CPC Soil

Moisture. Available at: https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.

html.

European Commission (2020). Many More to Come? Migration from and within

Africa. Publications Office of the European Union, Luxembourg. Available at: doi:

10.2760/1702.

32

http://www.pewglobal.org/2018/03/22/at-least-a-million-sub-saharan-africans-moved-to-europe-since-2010/
http://www.pewglobal.org/2018/03/22/at-least-a-million-sub-saharan-africans-moved-to-europe-since-2010/
https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_soilmoisture.pdf
https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_soilmoisture.pdf
https://www.icmpd.org/fileadmin/ICMPD-Website/ICMPD_General/Publications/2015/A_Survey_on_Migration_Policies_in_West_Africa_EN_SOFT.pdf
https://www.icmpd.org/fileadmin/ICMPD-Website/ICMPD_General/Publications/2015/A_Survey_on_Migration_Policies_in_West_Africa_EN_SOFT.pdf
https://www.icmpd.org/fileadmin/ICMPD-Website/ICMPD_General/Publications/2015/A_Survey_on_Migration_Policies_in_West_Africa_EN_SOFT.pdf
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
doi:10.2760/1702
doi:10.2760/1702


EC – European Comission (2020). Preventing Forced Migration and Adapting to

a Changing Climate. Available at: https://ec.europa.eu/international-partnerships/

stories/preventing-forced-migration-and-adapting-changing-climate_en.

Eurostat (2020). Asylum and Managed Migration Database. Available at: https://ec.

europa.eu/eurostat/web/asylum-and-managed-migration/data/database.

Fetzer, T. (2014). Can Workfare Programs Moderate Violence? Evidence from India.

STICERD Working Paper.

FAO – Food and Agriculture Organization of the United Nations (2017).

Rural Africa in Motion: Dynamics and Drivers of Migration South of the Sahara.

Available at: http://www.fao.org/3/I7951EN/i7951en.pdf.

FAO – Food and Agriculture Organization of the United Nations (2018).

Early Warning Early Action Report: July-September 2018. Available at: http://www.

fao.org/3/CA0353EN/ca0353en.pdf.

FAO – Food and Agriculture Organization of the United Nations (2019).

Early Warning Early Action Report: April-June 2019. Available at: http://www.fao.

org/3/ca4132en/ca4132en.pdf.

FAO – Food and Agriculture Organization of the United Nations (2020).

Early Warning Early Action Report: January-March 2020. Available at: http://www.

fao.org/3/ca7557en/ca7557en.pdf.

Gazeaud, J., Mvukiyehe, E. and Sterck, O. (2019). Cash Transfers and Migra-

tion: Theory and Evidence from a Randomized Controlled Trial. CSAE Working Paper

WPS/2019–16.

Global Soil Data Task Group (2000). Global Gridded Surfaces of Selected Soil

Characteristics. Available at: http://www.daac.ornl.gov from Oak Ridge National Lab-

oratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.

33

https://ec.europa.eu/international-partnerships/stories/preventing-forced-migration-and-adapting-changing-climate_en
https://ec.europa.eu/international-partnerships/stories/preventing-forced-migration-and-adapting-changing-climate_en
https://ec.europa.eu/eurostat/web/asylum-and-managed-migration/data/database
https://ec.europa.eu/eurostat/web/asylum-and-managed-migration/data/database
http://www.fao.org/3/I7951EN/i7951en.pdf
http://www.fao.org/3/CA0353EN/ca0353en.pdf
http://www.fao.org/3/CA0353EN/ca0353en.pdf
http://www.fao.org/3/ca4132en/ca4132en.pdf
http://www.fao.org/3/ca4132en/ca4132en.pdf
http://www.fao.org/3/ca7557en/ca7557en.pdf
http://www.fao.org/3/ca7557en/ca7557en.pdf
http://www.daac.ornl.gov


Guimaraes, P. (2008). The Fixed Effects Negative Binomial Model Revisited. Eco-

nomics Letters, 99 (1), 63–66.

Harari, M. and la Ferrara, E. (2018). Conflict, Climate, and Cells: A Disaggregated

Analysis. Review of Economics and Statistics, 100 (4), 594–608.

Henderson, J. V., Storeygard, A. and Deichmann, U. (2017). Has Climate

Change Driven Urbanization in Africa? Journal of Development Economics, 124, 60–

82.

Hsiang, S. M. (2010). Temperatures and Cyclones Strongly Associated with Economic

Production in the Caribbean and Central America. Proceedings of the National Academy

of sciences, 107 (35), 15367–15372.

IPCC – Intergovernmental Panel on Climate Change (2014). Climate Change

2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects.

Available at: https://www.ipcc.ch/report/ar5/wg2/.

IPCC – Intergovernmental Panel on Climate Change (2019). Climate Change

and Land: A special report on climate change, desertification, land degradation,

sustainable land management, food security, and greenhouse gas fluxes in terrestrial

ecosystems. Available at: https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_

Approved_Microsite_FINAL.pdf.

IOM – International Organization for Migration (2020). World Migration

Report 2020. Available at: https://publications.iom.int/system/files/pdf/wmr_2020.

pdf.

Jessoe, K., Manning, D. T. and Taylor, J. E. (2018). Climate Change and Labour

Allocation in Rural Mexico: Evidence from Annual Fluctuations in Weather. The Eco-

nomic Journal, 128 (608), 230–261.

Marchiori, L.,Maystadt, J.-F. and Schumacher, I. (2012). The Impact of Weather

34

https://www.ipcc.ch/report/ar5/wg2/
https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf
https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf
https://publications.iom.int/system/files/pdf/wmr_2020.pdf
https://publications.iom.int/system/files/pdf/wmr_2020.pdf


Anomalies on Migration in Sub-Saharan Africa. Journal of Environmental Economics

and Management, 63 (3), 355–374.

Mastrorillo, M., Licker, R., Bohra-Mishra, P., Fagiolo, G., Estes, L. D. and

Oppenheimer, M. (2016). The Influence of Climate Variability on Internal Migration

Flows in South Africa. Global Environmental Change, 39, 155–169.

McKenzie, D. and Rapoport, H. (2007). Network Effects and the Dynamics of Mi-

gration and Inequality: Theory and Evidence from Mexico. Journal of Development

Economics, 84 (1), 1–24.

Michalopoulos, S. and Papaioannou, E. (2016). The Long-Run Effects of the Scram-

ble for Africa. American Economic Review, 106 (7), 1802–48.

Mueller, V., Gray, C. and Kosec, K. (2014). Heat Stress Increases Long-term Hu-

man Migration in Rural Pakistan. Nature Climate Change, 4 (3), 182–185.

OECD (2017). Infant Mortality. Available at: https://www.oecd.org/social/family/CO_

1_1_Infant_mortality.pdf.

OECD-FAO (2016). Agriculture in Sub-Saharan Africa: Prospects and Challenges for

the Next Decade. Available at: https://doi.org/10.1787/agr_outlook-2016-en.

Portmann, F. T., Siebert, S. and Döll, P. (2010). MIRCA2000 – Global Monthly

Irrigated and Rainfed Crop Areas around the Year 2000: A New High-Resolution Data

Set for Agricultural and Hydrological Modeling. Global Biogeochemical Cycles, 24 (1).

Premand, P. and Stoeffler, Q. (2020a). Do Cash Transfers Foster Resilience? Evi-

dence from Rural Niger.

— and — (2020b). Transfers, Diversification and Household Risk Strategies: Experimen-

tal Evidence with Lessons for Climate Change Adaptation.

Silva, J. S. and Tenreyro, S. (2006). The Log of Gravity. The Review of Economics

and Statistics, 88 (4), 641–658.

35

https://www.oecd.org/social/family/CO_1_1_Infant_mortality.pdf
https://www.oecd.org/social/family/CO_1_1_Infant_mortality.pdf
https://doi.org/10.1787/agr_outlook-2016-en


Sultan, B. and Gaetani, M. (2016). Agriculture in West Africa in the Twenty-First

Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Fron-

tiers in Plant Science, 7, 1262.

Sylla, M. B., Nikiema, P. M., Gibba, P., Kebe, I. and Klutse, N. A. B. (2016).

Climate Change Over West Africa: Recent Trends and Future Projections. In Adapta-

tion to Climate Change and Variability in Rural West Africa, Springer, pp. 25–40.

UNCCD – United Nations Convention to Combat Desertification (2016).

Land Restoration: A Solution to West Africa’s Rural Exodus. Available at: https:

//www.unccd.int/news-events/land-restoration-solution-west-africas-rural-exodus.

UNPD – United Nations Population Division (2019). International Migrant

Stock. Available at: https://esa.un.org/unmigration/.

WorldPop (2018). Spatial Distribution of Population in 2018. Available at: https:

//www.worldpop.org School of Geography and Environmental Science, University of

Southampton; Department of Geography and Geosciences, University of Louisville;

Departement de Geographie, Universite de Namur, and Center for International Earth

Science Information Network (CIESIN), Columbia University (2018). Global High Res-

olution Population Denominators Project - Funded by The Bill and Melinda Gates

Foundation.

36

https://www.unccd.int/news-events/land-restoration-solution-west-africas-rural-exodus
https://www.unccd.int/news-events/land-restoration-solution-west-africas-rural-exodus
https://esa.un.org/unmigration/
https://www.worldpop.org
https://www.worldpop.org


Figures

IOM FMP

Village centroid
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Figure 1: Location of FMPs and Villages of Origin
Source: Authors’ analysis using data from IOM (2019).

Notes: – The red dots indicate the exact location of the FMPs established by the IOM to monitor migration flows. The
green dots indicate the centroid of all origin-villages of migrants.
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Figure 2: Total Number of Migrants by Cell and Year
Source: Authors’ analysis using data from IOM (2019).
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Figure 3: Average SMA Index for 2018 and 2019
Source: Authors’ analysis using data from NOAA ESRL PSD (2020); EDO (2019).

Notes: – Figures A and B illustrate the average SMA index by cell for 2018 and 2019, respectively. Figures C and D
illustrate the average SMA index calculated for the specific crop growing season of the cell in 2018 and 2019, respectively.
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Figure 4: Effect of SMA index on International Migration

Notes: – The figure presents the results of regression models including as the main variable of interest the average SMA
index. The index is calculated using growing season months and different time spans ranging from the past month to the
past twelve months. For the upper figure, the dependent variable is the probability to migrate. For the lower figure, the
dependent variable is the total number of migrants. The regressions include the full set of control variables and fixed
effects as presented in Equation (1). – Confidence intervals are calculated at the 95% level and the standard errors are
clustered at the cell level.
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Figure 5: Effect of Positive and Negative Soil Moisture Shocks on
International Migration

Notes: – The figure presents the results of regression models including as the main variable of interest a categorical
indicator based on the SMA index calculated during growing season months. Drier conditions are SMA index values
lower than -1, wetter conditions are SMA values higher than 1. The reference category is “normal conditions” which
occur when the SMA index scores between -1 and 1. The dependent variable is the probability to migrate for the upper
figures and the number of migrants for the lower figures. The regressions include the full set of control variables and fixed
effects as presented in Equation (1). – Confidence intervals are calculated at the 95% level and the standard errors are
clustered at the cell level.
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Figure 6: Effect of Positive and Negative Soil Moisture Shocks by
Destination

Notes: – The figure presents the results of regression models including as the main variable of interest a categorical
indicator based on the SMA index calculated during growing season months. Drier conditions are SMA index values
lower than -1, wetter conditions are SMA values higher than 1. The reference category is “normal conditions” which
occur when the SMA index scores between -1 and 1. The dependent variable is the probability to migrate for the upper
figures and the number of migrants for the lower figures. The regressions include the full set of control variables and fixed
effects as presented in Equation (1). – Confidence intervals are calculated at the 95% level and the standard errors are
clustered at the cell level.
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Figure 7: Effect of Soil Moisture Shocks on Probablity to Migrate by
Poverty Quintile

Notes: – The figure presents the results of regression models including as the main variable of interest a categorical
indicator based on the SMA index calculated during growing season months. Drier conditions are SMA index values
lower than -1, wetter conditions are SMA values higher than 1. The reference category is “normal conditions” which
occur when the SMA index scores between -1 and 1. The regressions include the full set of control variables and fixed
effects as presented in Equation (1). – Confidence intervals are calculated at the 95% level and the standard errors are
clustered at the cell level.
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Figure 8: Effect of Soil Moisture Shocks on Number of Migrants by
Poverty Quintile

Notes: – The figure presents the results of regression models including as the main variable of interest a categorical
indicator based on the SMA index calculated during growing season months. Drier conditions are SMA index values
lower than -1, wetter conditions are SMA values higher than 1. The reference category is “normal conditions” which
occur when the SMA index scores between -1 and 1. The regressions include the full set of control variables and fixed
effects as presented in Equation (1). – Confidence intervals are calculated at the 95% level and the standard errors are
clustered at the cell level.
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Tables

Table 1: Comparison of International Migration Within an Outside
Africa: FMP vs UN Stocks

UN Stocks IOM FMPs

Within Outside Total Within Outside Total ∆ Outside
in % in % in % in % (IOM-UN)b

Benin 94.71 5.29 666, 357 91.60 8.40 238 3.11
Burkina Fasoa 97.99 2.01 1, 581, 083 92.41 7.59 3, 704 5.58
Cameroon 35.35 64.65 383, 029 85.43 14.57 357 −50.08
Chada 89.85 10.15 206, 400 92.56 7.44 766 −2.71
Côte d’Ivoire 81.84 18.16 1, 114, 003 62.61 37.39 1, 471 19.23
The Gambia 17.39 82.61 118, 483 47.89 52.11 1, 324 −30.50
Ghana 49.34 50.66 970, 625 90.07 9.93 292 −40.73
Guineaa 77.95 22.05 530, 963 78.20 21.80 17, 384 −0.25
Guinea-Bissau 56.72 43.28 103, 587 69.80 30.20 255 −13.08
Liberia 48.05 51.95 219, 338 57.52 42.48 226 −9.47
Malia 90.10 9.90 1, 264, 700 59.31 40.69 5, 036 30.79
Mauritania 73.67 26.33 128, 506 96.47 3.53 482 −22.80
Nigera 94.40 5.60 401, 653 98.85 1.15 4, 801 −4.45
Nigeriaa 43.83 56.17 1, 438, 331 38.63 61.37 6, 782 5.20
Senegala 44.61 55.39 642, 654 57.83 42.17 1, 992 −13.22
Sierra Leone 30.45 69.55 187, 102 62.74 37.26 475 −32.29
Togo 86.29 13.71 543, 277 87.25 12.75 204 −0.96
Total 71.87 28.13 10, 500, 091 71.68 28.32 45, 789 0.19

Notes: – aAt least one FMP in the country. – The stocks data were obtained from the UNPD In-
ternational Migrant Stock Data (UNPD, 2019). We use the stock of international migrants in all
destinations to calculate the number of international migrants within Africa and outside Africa by
origin country. – bReports the difference between the percentage of migrants residing outside Africa
for the IOM and UN data (column V minus column II).

Table 2: Descriptive Statistics
All cells Cells with crops Cells with a migrant

Mean S.D. Mean S.D. Mean S.D.

Dependent variables
At least one migrant 0.081 0.272 0.122 0.327 0.285 0.451
Number of migrants 0.719 7.996 1.087 9.902 2.539 15.010
Independent variables
SMA index −0.081 0.732 −0.071 0.836 −0.080 0.779
Num. of FMPs

No FMP in cell 0.991 0.097 0.987 0.112 0.974 0.158
One FMP in cell 0.009 0.094 0.012 0.109 0.024 0.153
Two FMP in cell 0.000 0.022 0.001 0.027 0.002 0.042

FMP in 200km radius 0.265 0.442 0.305 0.460 0.352 0.478
Growing season 0.348 0.476 0.538 0.499 0.522 0.500
Population (in thousands) 165.312 470.121 252.579 564.878 452.678 803.984
Child mortality rate 62.938 21.257 70.244 18.499 70.502 17.065

Observations 60,528 39,126 16,754

Notes: – The table reports the mean and standard deviation for the full sample, the sample
of cells with rainfed crops, and for the sample of cells where at least one migrant is observed.
The values are calculated at the cell-by-month level.
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Table 3: Intensity of Negative Soil Moisture Shocks and Impact on
International Migration

I II III IV V VI

All Growing Non-growing No crop No irrigation Irrigation
months months months cells cells cells

A. Probability to migrate
Intensity >1sda −0.025 −0.035∗ −0.013 −0.034 −0.033 −0.112

(0.018) (0.021) (0.037) (0.031) (0.021) (0.145)
Observations 39,126 39,126 39,126 21,375 36,129 2,997

B. Total migration
Intensity >1sda −0.335∗∗ −0.734∗∗∗ −0.001 −5.137 −0.824∗∗∗ −0.170

(0.131) (0.195) (0.221) (3.359) (0.206) (0.944)
Observations 16,754 16,754 16,754 543 15,125 1,629

Cell FE yes yes yes yes yes yes
Month FE yes yes yes yes yes yes
Country-by-year FE yes yes yes yes yes yes

Notes: – Results are obtained from a linear probability model for Panel A and from a negative binomial model
for Panel B. – aRefers to the share of months that the SMA index registered values smaller than −1 during
the past 12 months. – Standard errors in parenthesis (clustered at the cell level). – ∗∗∗ p < 0.01; ∗∗ p < 0.05;
∗ p < 0.1.
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Table 4: Effect of Positive and Negative Soil Moisture Shocks on the
Probability to Migrate: Robustness Checks

1 month 3 months 6 months 9 months 12 months

A. On the move
SMA Ref:. Normal conditions

Drier than normal −0.011∗ −0.023∗∗∗ −0.015∗∗∗ −0.007 −0.009
(0.006) (0.006) (0.005) (0.005) (0.006)

Wetter than normal −0.006 −0.002 0.005 0.003 0.005
(0.005) (0.004) (0.005) (0.004) (0.005)

Observations 21,087 26,441 34,368 39,117 39,126

B. No FMP in a 200 km buffer
SMA Ref:. Normal conditions

Drier than normal −0.021∗∗∗ −0.017∗∗ −0.018∗∗∗ −0.013∗ −0.019∗∗

(0.008) (0.007) (0.007) (0.007) (0.010)
Wetter than normal 0.014∗ 0.007 0.009 0.008 0.005

(0.007) (0.007) (0.008) (0.007) (0.008)
Observations 15,274 19,024 24,280 27,194 27,202

C. Only countries with an FMP
SMA Ref:. Normal conditions

Drier than normal −0.041∗∗ −0.042∗∗ −0.032∗∗ −0.029∗∗ −0.033
(0.017) (0.017) (0.014) (0.015) (0.021)

Wetter than normal 0.025∗∗∗ 0.026∗∗∗ 0.023∗∗ 0.007 0.008
(0.009) (0.009) (0.009) (0.008) (0.010)

Observations 11,151 15,121 21,043 24,729 24,737

D. Excluding Nigeria
SMA Ref:. Normal conditions

Drier than normal −0.018∗∗ −0.031∗∗∗ −0.024∗∗∗ −0.018∗∗ −0.017∗

(0.008) (0.008) (0.008) (0.008) (0.010)
Wetter than normal 0.001 0.008 0.011∗ 0.000 −0.003

(0.006) (0.006) (0.006) (0.007) (0.010)
Observations 17,659 21,934 28,273 32,016 32,019

E. Excluding cells with a border
SMA Ref:. Normal conditions

Drier than normal −0.024∗∗∗ −0.023∗∗∗ −0.018∗∗ −0.021∗∗ −0.022∗∗

(0.009) (0.009) (0.008) (0.008) (0.011)
Wetter than normal 0.015∗∗ 0.017∗∗ 0.014∗ 0.002 0.008

(0.007) (0.008) (0.008) (0.008) (0.009)
Observations 16,008 19,910 25,691 29,168 29,173

F. Grid size 1x1
SMA Ref:. Normal conditions

Drier than normal −0.087∗∗∗ −0.088∗∗∗ −0.038∗ −0.008 −0.017
(0.020) (0.019) (0.019) (0.021) (0.025)

Wetter than normal 0.021 0.028 0.038∗ 0.019 −0.028
(0.019) (0.020) (0.020) (0.018) (0.023)

Observations 5,340 6,672 8,657 9,843 9,845

G. Logit model
SMA Ref:. Normal conditions

Drier than normal −0.062∗ −0.077∗∗∗ −0.059∗∗∗ −0.050∗∗ −0.075∗∗∗

(0.032) (0.024) (0.018) (0.023) (0.028)
Wetter than normal 0.036 0.054∗ 0.050∗∗ 0.019 0.015

(0.023) (0.030) (0.023) (0.023) (0.026)
Observations 7,215 9,801 14,059 16,414 16,418

H. Spatial correlation
SMA Ref:. Normal conditions

Drier than normal −0.022∗∗ −0.025∗∗∗ −0.018∗∗ −0.015∗ −0.020∗

(0.009) (0.008) (0.008) (0.009) (0.010)
Wetter than normal 0.013∗ 0.017∗∗ 0.017∗∗ 0.006 0.005

(0.007) (0.007) (0.007) (0.008) (0.010)
Observations 21,087 26,441 34,368 39,117 39,126

Notes: – Results are obtained from a linear probability model. – The categorical
variable indicating drier, normal, and wetter soil moisture conditions is constructed
using the average SMA index during the growing season of the cell during the past
1, 3, 6, 9 and 12 months. – Drier conditions are SMA index values lower than
−1, wetter conditions are SMA values higher than 1. The reference category is
“normal conditions” which occur when the SMA index scores between −1 and 1.
– Standard errors in parentheses (clustered at the cell level). – ∗∗∗ p < 0.01; ∗∗

p < 0.05; ∗ p < 0.1.
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Table 5: Effect of Positive and Negative Soil Moisture Shocks on Total
Migration: Robustness Checks

1 month 3 months 6 months 9 months 12 months

A. On the move
SMA Ref:. Normal conditions

Drier than normal −0.297∗∗∗ −0.361∗∗∗ −0.209∗∗∗ −0.110 −0.074
(0.073) (0.073) (0.072) (0.078) (0.097)

Wetter than normal 0.036 0.004 0.097 0.031 0.003
(0.092) (0.112) (0.117) (0.098) (0.094)

Observations 5,352 6,676 8,772 10,099 10,099

B. No FMP in a 200 km buffer
SMA Ref:. Normal conditions

Drier than normal −0.322∗∗∗ −0.210∗∗∗ −0.222∗∗∗ −0.199∗∗ −0.261∗∗

(0.076) (0.073) (0.076) (0.083) (0.106)
Wetter than normal 0.109 0.083 0.288∗∗ 0.063 0.020

(0.090) (0.123) (0.131) (0.111) (0.111)
Observations 5,321 6,757 9,129 10,471 10,475

C. Only countries with an FMP
SMA Ref:. Normal conditions

Drier than normal −0.328∗∗∗ −0.364∗∗∗ −0.345∗∗∗ −0.353∗∗∗ −0.255∗∗

(0.102) (0.092) (0.084) (0.093) (0.115)
Wetter than normal 0.129 0.349∗∗∗ 0.368∗∗∗ 0.015 −0.015

(0.086) (0.095) (0.091) (0.077) (0.075)
Observations 4,978 7,177 10,977 13,069 13,073

D. Excluding Nigeria
SMA Ref:. Normal conditions

Drier than normal −0.265∗∗∗ −0.552∗∗∗ −0.330∗∗∗ −0.305∗∗∗ −0.177∗

(0.090) (0.093) (0.081) (0.085) (0.101)
Wetter than normal 0.052 0.264∗∗ 0.232∗∗ −0.108 −0.184∗∗

(0.085) (0.104) (0.099) (0.082) (0.079)
Observations 5,144 6,868 9,715 11,296 11,296

E. Excluding cells with a border
SMA Ref:. Normal conditions

Drier than normal −0.308∗∗∗ −0.303∗∗∗ −0.260∗∗∗ −0.286∗∗∗ −0.164
(0.078) (0.074) (0.072) (0.080) (0.101)

Wetter than normal 0.053 0.265∗∗∗ 0.321∗∗∗ −0.047 −0.010
(0.080) (0.099) (0.098) (0.086) (0.083)

Observations 6,000 7,920 11,122 12,859 12,861

F. Grid size 1x1
SMA Ref:. Normal conditions

Drier than normal −0.339∗∗∗ −0.473∗∗∗ −0.294∗∗∗ −0.093 −0.220∗∗

(0.077) (0.079) (0.074) (0.076) (0.092)
Wetter than normal 0.138 0.408∗∗∗ 0.181∗ 0.085 −0.064

(0.093) (0.089) (0.096) (0.082) (0.089)
Observations 3,503 4,546 6,116 7,042 7,044

G. PPML model
SMA Ref:. Normal conditions

Drier than normal −0.386∗∗∗ −0.335∗∗∗ −0.199∗∗ −0.186∗ −0.030
(0.092) (0.082) (0.096) (0.104) (0.096)

Wetter than normal 0.030 0.357∗∗∗ 0.337∗∗∗ −0.287∗∗ −0.149
(0.078) (0.108) (0.104) (0.139) (0.123)

Observations 7,490 10,014 14,335 16,738 16,742

Notes: – Results are obtained from a negative binomial model. – The categorical
variable indicating drier, normal, and wetter soil moisture conditions is constructed
using the average SMA index during the growing season of the cell during the past
1, 3, 6, 9 and 12 months. Drier conditions are SMA index values lower than −1,
wetter conditions are SMA values higher than 1. The reference category is “normal
conditions” which occur when the SMA index scores between −1 and 1. – Standard
errors in parenthesis (clustered at the cell level). – ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗

p < 0.1.
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Appendix
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Figure A1: SMA Index: March, August, and Yearly Average at the Grid
and Country Level for 2018

Source: Authors’ analysis using data from NOAA ESRL PSD (2020); EDO (2019).
Notes: – Upper panel: Figures A and B illustrate the average SMA index by cell for March and August 2018. Figure C

illustrates the average SMA index in 2018. Lower panel: Figures D and E illustrate the average SMA index at the
country level for March and August 2018. Figure F illustrates the average SMA index at the country level for 2018.
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Figure A2: Migration: March, August, and Yearly Average at the Grid
and Country Level for 2018

Source: Authors’ analysis using data from NOAA ESRL PSD (2020); EDO (2019).
Notes: – Upper panel: Figures A and B illustrate the total migration by cell for March and August 2018. Figure C

illustrates total migration in 2018. Lower panel: Figures D and E illustrate total migration at the country level for March
and August 2018. Figure F illustrates total migration at the country level for 2018.
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Figure A3: Total Population in 2018
Source: Authors’ analysis using data from WorldPop (2018).

Notes: – The figure shows the sum of the total population at the cell level for 2018 using a grid size of 0.5x0.5 degrees.
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Figure A4: Infant Mortality Rate in 2015
Source: Authors’ analysis using data from CIESIN (2018).

Notes: – The figure shows the average infant mortality rate at the cell level for 2015 using a grid size of 0.5x0.5 degrees.
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Figure A5: Number of migrants and Infant Mortality Rate
Source: Authors’ analysis using data from IOM (2019) and CIESIN (2018).

Notes: – The continuous line depicts an overlaid quadratic fitted prediction of the scatterplot.

51



-.2
-.1

0
.1

.2
Pr

ob
ab

ilit
y 

to
 m

ig
ra

te

No previous drought One drought Two or more droughts
 

Wetter conditions

-.0
8-

.0
6-

.0
4-

.0
2

0
.0

2
Pr

ob
ab

ilit
y 

to
 m

ig
ra

te

No previous drought One drought Two or more droughts
 

1 month 3 months 6 months 9 months 12 months

Drier conditions

Figure A6: Effect of Soil Moisture Shocks on Probablity to Migrate by
Number of Droughts in the Past 5 Years

Notes: – The figure presents the results of regression models including as the main variable of interest a categorical
indicator based on the SMA index calculated during growing season months. Drier conditions are SMA index values
lower than -1, wetter conditions are SMA values higher than 1. The reference category is “normal conditions” which
occur when the SMA index scores between -1 and 1. We interact this variable with an indicator if cells experienced i) no
droughts in the past 5 years, ii) one drought, or iii) two or more droughts. The regressions include the full set of control
variables and fixed effects as presented in Equation (1). – Confidence intervals are calculated at the 95% level and the
standard errors are clustered at the cell level.
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Figure A7: International migration in West and Central Africa: On the
Move

Source: Authors’ analysis using data from IOM (2019).
Notes: – Figure A and B show the total number of international migrants who were surveyed in a different country than
their country of origin for 2018 and 2019, respectively. The sample includes individuals who have at least crossed one

international border.
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Table A1: Summary of Main Weather Events in West Africa

Year Outcome of rainy
season

Agricultural output

2017 Negative Alarming food security situation in
Chad, Mauritania, Senegal.

2018 Positive Burkina Faso, Nigeria register
above average rainfall and increase
agricultural production.

2019 Negative Crop production estimates 17%
lower for Gambia, Mauritania,
Senegal.

Notes: – Based on reports by the Food and Agriculture Organization (FAO, 2018, 2019, 2020)

Table A2: Effect of SMA Index on Probability to Migrate
1 month 3 months 6 months 9 months 12 months

SMA index 0.014∗∗∗ 0.017∗∗∗ 0.014∗∗∗ 0.010∗∗∗ 0.007
(0.002) (0.002) (0.003) (0.003) (0.004)

Num. of FMPs Ref:. No FMP
One FMP in cell 0.210∗∗∗ 0.210∗∗∗ 0.210∗∗∗ 0.211∗∗∗ 0.211∗∗∗

(0.061) (0.060) (0.061) (0.061) (0.061)
Two FMP in cell 0.376∗∗∗ 0.375∗∗∗ 0.378∗∗∗ 0.379∗∗∗ 0.380∗∗∗

(0.128) (0.127) (0.130) (0.130) (0.130)
FMP in 200km radius 0.036∗∗∗ 0.036∗∗∗ 0.038∗∗∗ 0.039∗∗∗ 0.039∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007)
Constant 0.059∗∗∗ 0.058∗∗∗ 0.056∗∗∗ 0.057∗∗∗ 0.057∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

Cell FE yes yes yes yes yes
Month FE yes yes yes yes yes
Country-by-year FE yes yes yes yes yes

Observations 61,729 61,729 61,729 61,729 61,729
R2 0.539 0.539 0.539 0.538 0.538

Notes: – Results are obtained from a linear probability model. – The table presents
the results of regression models including as the main variable of interest the
average SMA index. The index is calculated for different time spans ranging
from the past month to the past twelve months. – Standard errors in parentheses
(clustered at the cell level). – ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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Table A3: Effect of SMA Index on Total Migration
1 month 3 months 6 months 9 months 12 months

SMA index 0.226∗∗∗ 0.289∗∗∗ 0.264∗∗∗ 0.130∗∗∗ 0.069∗

(0.021) (0.024) (0.029) (0.034) (0.040)
Num. of FMPs Ref:. No FMP

One FMP in cell 0.251∗∗ 0.248∗∗ 0.249∗∗ 0.258∗∗ 0.260∗∗

(0.112) (0.113) (0.113) (0.112) (0.112)
Two FMP in cell 0.157 0.089 0.117 0.228 0.272

(0.351) (0.356) (0.353) (0.346) (0.344)
FMP in 200km radius 0.217∗∗∗ 0.226∗∗∗ 0.243∗∗∗ 0.239∗∗∗ 0.232∗∗∗

(0.073) (0.073) (0.073) (0.073) (0.073)
Constant 1.010 1.037 0.858 1.252 1.427

(1.005) (1.032) (0.943) (1.255) (1.431)

Cell FE yes yes yes yes yes
Month FE yes yes yes yes yes
Country-by-year FE yes yes yes yes yes

Observations 17,519 17,519 17,519 17,519 17,519

Notes: – Results are obtained from a negative binomial model. – The table presents
the results of regression models including as the main variable of interest the
average SMA index. The index is calculated for different time spans ranging
from the past month to the past twelve months. – Standard errors in parentheses
(clustered at the cell level). – ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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