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Abstract

This paper shows that local heat shocks spill over to other regions through multi-

national firms’ internal networks. Using novel global data on the headquarter-affiliate-

relationships for a quarter of a million business group firms operating in 32 countries be-

tween 2002 to 2012, we find that local heat shocks from longstanding affiliates in countries

with hot climates translate into a strong decline in the economic output of headquarter

firms that are not directly affected by any heat shock. The vertical spillovers incurred at

the headquarter level are higher than the corresponding first order effect at the local sub-

sidiary level, suggesting that firms’ internal networks can substantially amplify climate

change related risks.
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1 Introduction

The body of evidence for the economic costs of climate changes is overwhelming. Extreme

weather and high temperatures in particular have been identified as one of the main drivers

that strongly lower local economic output in many world regions (Dell et al. 2014, Burke

et al. 2015, Kalkuhl and Wenz 2020, Kahn et al. 2021, Kotz et al. 2022). At the same time,

the world economy has grown increasingly integrated. As a result, local temperature shocks

may not only lead to economic declines for firms and sectors in the affected region but also

in distant other regions (Wenz and Willner 2022). Such spillovers are particularly likely

in multinational business groups, which are an important pillar of the global economy. For

instance, multinational companies account for around a third of total global output and half of

global exports (OECD 2018). These companies integrate supply, production and sales within

their firm networks that can span different economic sectors, world regions and climatic zones

(Altomonte and Rungi 2013). Despite their economic importance, the potential impacts of

climate change on global business groups and the potential transmission of shocks within

their networks has received little attention by both researchers and policymakers.

The extent to which climate related risks can spill over within networks of firms is an

empirical question. On the one hand, local temperature shocks might be absorbed in geo-

graphically diversified firm networks of multinationals. The adverse effects of heat on eco-

nomic activity of an affiliate firm in one region in a given year could be compensated by other

affiliates experiencing more favorable temperatures elsewhere. On the other hand, given the

compelling evidence that heat distorts individual, firm, and aggregate economic performance,

it is unclear whether multinational firms are flexible enough to effectively recompose their

supply, production, and sales mix in case of ever more frequent heat events. In fact, the

broader economics literature on firm networks suggests that firm-level idiosyncratic shocks

often propagate across firms, sectors and countries (Cravino and Levchenko 2017, Giroud and

Mueller 2019).

This paper examines spillovers of local heat shocks within the networks of more than

a quarter of a million business group firms operating in 32 countries. We build a data set

that consistently combines information on firm ownership and location with financial data to

recover the spatial network of multinational firms across time and climate zones. Our focus is

on long-term headquarter-affiliate-relationships that are of particular strategic importance in

firm networks. We first replicate previous studies by assessing the direct impact of local heat

events on economic output. Specifically, we quantify the adverse impact of yearly exogenous
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variation in local heat from 2002 to 2012 on the output of affected affiliates in our business

group sample. Subsequently, we test whether the weighted local heat shocks from affiliates

translate into a decline in the economic output of the headquarter firms that are not directly

affected by any heat shock. In doing so, we provide new evidence on vertical spillovers that

occur upstream, i.e. from a subsidiary to the headquarter.

We find that an additional day with temperature above 32°C leads to a drop in the locally

affected affiliates’ sales by 1.3%. This direct adverse effect is driven by firms that operate

in countries with hot climates, i.e. average yearly temperature above 13°C. Furthermore, we

find that longstanding affiliates hit by heat locally impose significant output losses on their

headquarters. More specifically, we find that the weighted local heat shocks from affiliates

translate into an on average drop in headquarter revenues by 4.2% per additional heat day.

The finding that transmitted shocks are more sizeable than the initial local shocks suggests

that heat shocks may be amplified by the complex, interlocking supply, production, and sales

networks of multinationals.

The contributions of this study relate to two fields of research. First, in the field of cli-

mate economics, our study contributes to a better understanding and more comprehensive

assessment of the true cost of climate change, which is crucial for the evaluation of optimal

climate policy. In the first place, it provides estimates for the direct impacts of temperature

on output in a global context, measured at a granular scale. Global evidence across heteroge-

neous climatic regions is scarce due to limitations with respect to econometric identification

and data availability. Cross-country studies use data at the sector, county, state or country

level and thus cannot adequately control for heterogeneous firm responses (e.g. Burke et al.

2015, Burke and Tanutama 2019, Kalkuhl and Wenz 2020, Kahn et al. 2021). Studies that

do use firm data are often constrained to analyzing a single sector in a specific country (e.g.

Zhang et al. 2018). This paper attempts to resolve these issues by delivering a cross-country

analysis based on global firm data that accounts for firm, sector and country heterogeneity.

The results confirm previous findings of a non-linear temperature-output relationship with

strong responses at high temperatures for a cross-country sample of business group firms

that comprises different world regions and climatic zones. We also find that responses to

heat are particularly robust and driven by companies that operate in countries with aver-

age yearly temperature above 13°C. In addition, our study illuminates a new facet in the

climate-economy relationship by showing that heat-induced economic losses are not necessar-

ily confined to the affected area but can spill over within firm networks, thereby amplifying
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the total loss. Such cross-border spillover effects, although potentially critical for damage

functions, have remained largely under-investigated in the climate-economy literature so far

and are lacking from estimates of the cost of climate change (Dell et al. 2014, Auffhammer

2018). Our findings contribute to recent sector-level studies that show that local temperature

induced losses can cascade through value chains (Wenz and Levermann 2016, Kuhla et al.

2021).

Second, our paper contributes to a growing literature in macro-, and financial economics

that studies the transmission of shocks throughout the economy. The economic response in

production networks to external shocks is a long-standing issue in theoretical and empirical

studies (Bena and Erel 2017). Our paper complements recent empirical research showing that

natural disasters propagate in production networks (Barrot and Sauvagnat 2016), that sales

growth between subsidiaries and headquarters co-move and that source-country shocks are

transmitted to foreign affiliates (Cravino and Levchenko 2017), that network structures can

provide additional resilience to their subsidiaries (Giroud and Mueller 2019) and that cus-

tomer firms respond to perceived changes in their suppliers’ climate-risk exposure (Pankratz

and Schiller 2021).

The remainder of this paper is structured as follows: Section 2 details the identification

strategy. Section 3 describes the data. Section 4 presents the empirical results. Section 5

concludes with a discussion of the results.

2 Empirical framework

Similar to Barrot and Sauvagnat (2016), we conduct a two-step analysis to estimate the

impact of heat shocks on global business groups. In a first stage, we estimate the direct effect

of extreme local temperatures on firm output for a global sample of affiliate firms that are

part of a business group at some point in time. In a second step, we analyze how temperature

shocks at the subsidiary level affect economic outcomes at the level of headquarters.

2.1 Direct temperature effects on affiliate output

To estimate the direct effect of extreme local temperatures on the output (proxied by op-

eration revenue) of affiliate firms, we adopt the well established semi-parametric approach

by Deschênes and Greenstone (2011) that allows temperature to affect economic output in

a non-linear manner without making assumptions about the functional form of their rela-

tionship (see also Deryugina and Hsiang (2014) and Auffhammer (2018)). To this end, we
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divide the annual temperature distribution into m = 1. . . 10 bins. Each temperature bin m

corresponds to the number of days per year that fall into the given category. The binning

preserves the daily variation in temperature which is important to capture the impact of heat

days on economic output (Dell et al. 2014). The bins are constructed at a 6-7°C width with

temperatures below minus 12°C at the lower end and temperatures above 32°C at the upper

end. The 16-20°C bin is our reference category.

For firm i in year t, we employ the following log-linear regression specification:

yit =
∑
m

βm1 T
m
it + δWit +Dit +Xit + εit; (1)

where yit is the natural logarithm of operating revenue and Tm
it is the number of days

in year t where firm i experienced temperatures that fall in bin m. In addition, we control

for linear and quadratic effects of total annual precipitation in vector Wit (compare e.g.

Blanc and Schlenker (2017), Burke and Emerick (2016), and Kalkuhl and Wenz (2020)). To

account for the potential bias arising from past weather shocks (Zhang et al. 2018, Burke

and Tanutama 2019, Kotz et al. 2022), we also include one years lags of precipitation and

temperature bins in Wit.

We exploit the panel structure of our data to isolate the effect of temperature on economic

output from any time-invariant and time-varying factors that could be associated with tem-

perature and economic output (Hsiang 2016, Blanc and Schlenker 2017, Kolstad and Moore

2020). To this end, we first include vectors of fixed effects Dit. Included are firm fixed ef-

fects, country-industry fixed effects (accounting for sector and country specific characteristics

such as technology), sector-year fixed effects (to account for overall technological progress or

changes in input or output prices), and country-year fixed effects (capturing country-specific

annual shocks such as economic progress). Second, in our preferred specification, we also in-

clude a set of control variables Xit to account for important time-variant developments at the

firm level, namely total assets, return on assets and firm age. Since these variables might be

affected by weather and are potentially endogenous, we follow Barrot and Sauvagnat (2016)

and interact binary year indicators with terciles of the variables measured pre-treatment.

Our main identifying assumption is that variation in temperature is random conditional

on the set of fixed effects (Deschênes and Greenstone 2007, Deschênes and Greenstone 2011,

Auffhammer 2018). Then, the coefficient βm1 is a semi-elasticity that measures the marginal

effect of an additional day in temperature bin m relative to a day in the 16-20°C bin.
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2.2 Indirect temperature effects on headquarter output through firm net-

work

To test whether the local heat shocks from affiliates are transmitted to the headquarter

firms by affecting their output as well, we examine whether headquarter revenue responds to

linkage-weighted local temperature shocks that occur at the subsidiary level. More specifi-

cally, similar to Giroud and Mueller 2019, each local weather shock at the subsidiary level is

weighted by the affiliate’s annual share in total operating revenue of the entire business group

to which it belongs. Accordingly, a local temperature shock affecting an affiliate i matters

more for a headquarter firm h if the respective parent firm is more exposed to affiliate i as

measured by the revenue of firm i relative to other firms the business group h owns.

We estimate the following equation:

yht =
∑
m

βm1 T
m
ht +

∑
m

βm2 TAm
ht + δWht +Dht +Xht + εht; (2)

where Tm
ht is the number of days in year t where the headquarter firm h experiences

temperatures that falls in bin m; TAm
ht is the sum of weighted temperature bins with TAm

ht =∑
iwhitT

m
hit, where whit is the weight for each affiliate i of parent firm h in year t and Tm

hit is

the respective temperature experienced by affiliate i in each bin m. As in equation 1, Wht

comprises linear and quadratic effects of precipitation (and, in our preferred specification,

past weather shocks, i.e. lagged precipitation and temperature bins). Dht holds a set of fixed

effects. Xht includes control variables at the headquarter-level, namely total assets, return

on assets and firm age but also the number of affiliates the firm holds (to control for the size

of the firm network). Again we generate these controls by interacting binary year indicators

with terciles of the variables measured pre-treatment (Barrot and Sauvagnat 2016).

3 Data

We construct a novel database that is suitable for assessing the impacts of temperature

variation on business groups in a global cross-country setting. For the period of 2002-2012, we

bring together three sources of data: Firm financial data and information on firm ownership

from ORBIS and weather data from the WATCH-Forcing-Data-ERA-Interim meteorological

data set (WFDEI).
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3.1 Firm financial and location data

Our main source of data is the ORBIS database as provided by Bureau van Dijk (BvD).

ORBIS compiles firm data from administrative sources, such as detailed balance sheets,

income statements, and profit and loss accounts. The database is constantly being updated

and particularly suitable for cross-country comparisons: Information on firm financials and

ownership is harmonized across countries and delivered in a global standard format. The

financial data that we use was retrieved by BvD in the last week of November 2015. The

data comprises all firms above total assets of 2 million Euro, a turnover of one million Euro,

or a total number of 15 employees in 2015. This corresponds to a sample of around 12.5

million firms. We employ unconsolidated financial data from local registry filings to ensure

a high quality of the raw information. Industries are classified according to their four-digit

industry NACE Rev. 2 codes.

We then follow a thorough three-step procedure of data cleaning that is based on Gopinath

et al. (2017). First, we account for reporting mistakes and drop observations with missing

information or implausible values. If data is missing for one year between two periods with

reported values, we interpolate data for one period. Second, we assess the internal consis-

tency of the balance sheet data. For example, we calculate the sum of tangible fixed assets,

intangible fixed assets, and other fixed assets as a ratio of their respective aggregate, i.e. total

fixed assets. 1 We then estimate the distribution of this ratio and remove extreme values

(below the 0.1 percentile and above the 99.9 percentile. Third, we winsorize all variables at

the 1 and 99 percentiles. In order to properly identify shocks in business groups, we drop any

firms that are part of the financial services industries and government-related sectors (Bena

and Erel 2017).

All nominal variables used in our analysis are reported in thousands of Euros and deflated

with a yearly GDP price deflator as retrieved from the Worldbank.2 This procedure ensures

that the growth rates of the variables are not driven by price changes (Gal 2013). After

deflating all financial covariates over time, we account for price differences across countries

and then convert all variables into a common currency (USD). In order to mitigate the

influence of fluctuating exchange rates, we fix the exchange rate at the middle of the sample

period, in 2007 (Gal 2013).

1This process is also applied to the following aggregates: total assets, total current assets, total shareholder
funds and liabilities.

2As retrieved from https://data.worldbank.org/indicator/NY.GDP.DEFL.ZS
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We then identify latitudes and longitudes for each firm location. For this step, we apply

algorithms provided by OpenCage and Google3 to the address data contained in ORBIS

(street, postal code, city, region and country) to obtain each geographic location. For each

country, we conduct a thorough testing process and assess (i) general quality of the match

and (ii) precision based on the respective indicators provided by each algorithm. We also

compare geo-coded output on location and addresses with the address data in ORBIS and own

identification done via Google Maps and Open Street Maps. We then account for systematic

matching errors and adjust the matching algorithms accordingly. For 94% of the matched

sample, the precision is very high, i.e. within a grid cell radius of less than 2 km. For 4%, the

grid cell radius is less than 15 km. We remove any firms with a grid cell radius above 15 km

(2%). Given that the spatial correlation of weather is high, especially in small geographical

grid cells, measurement error should be small (Auffhammer et al. 2013).

3.2 Weather data

Weather data is obtained for the period of 2002-2012 from the WATCH-Forcing-Data-ERA-

Interim meteorological data set (WFDEI, Weedon et al. (2018) and Dee et al. (2011)). This

dataset provides extensive coverage on a complete global grid all while providing the variation

of high frequency daily average weather data.4 The temperature data are converted into

Celsius and sorted into bins. Annual precipitation is obtained by adding snowfall to rainfall

data, converted into mm/day and aggregated to a full year.5

We then match the geographic location of each firm in ORBIS with the corresponding

0.5x.0.5 grid cell in the WFDEI data. We also match each firm location with its respective

administrative area as contained in the GADM database of Global Administrative Areas.6

Matching and mapping exercises are conducted via shape files and algorithms in GNU R.

Hence, we obtain for each firm-year-combination in ORBIS the average weather in the re-

spective cell.

For the matched ORBIS dataset, Figure 1 plots the distribution of unique firm obser-

vations along with the temperature data on a world map. Figure 2 zooms into Europe.

3Available on https://opencagedata.com/ and https://developers.google.com/maps/documentation/geocoding/
4ERA-interim reanalysis data combines information from ground stations, satellites and other sources with a
climate model to create gridded weather data and extend global coverage. This data is then bias corrected
such that the monthly temperature means correspond to observational data. In contrast, many other datasets
either suffer from incomplete coverage in certain world regions and/or deliver only monthly weather averages.
We refer to Dell et al. (2014) and Auffhammer et al. (2013) for an overview and discussion of different weather
data types in the context of econometric analyses.

5The data was provided by the Inter-Sectoral Impact Model Intercomparison Project
(https://www.isimip.org/). The steps were conducted via Python.

6The data can be retrieved from https://gadm.org/
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Administrative areas are presented according to the GADM classification system. For each

area, we calculate (i) the average daily temperature based on the corresponding grid cells and

(ii) the total number of firms. Black dots constitute administrative areas with less than 10,000

firms. Bubbles represent areas with up to more than 70,000 firms. Regions are ranked with

respect to their heat exposure using the average number of days with average temperature

above 27°C in 2002-2012. The dataset covers a wide range of climatic zones. As it is common

in ORBIS, data availability differs substantially across world regions. While most firms are

concentrated in European countries, the sample still covers firms from several non-European

countries.

We then apply the three country-based criteria established by Cravino and Levchenko

(2017) to construct data that is suitable for a global analysis of firm networks in ORBIS:

(i) countries need to have at least 750 firms on average in 2002-2012, (ii) aggregate revenues

in ORBIS need to cover at least 40% of aggregate economic output and (iii) the correlation

between the growth rates in GDP as measured by the Worldbank and in aggregate revenues

in ORBIS needs to be above 0.50. We limit our sample to the 32 countries that jointly

meet these criteria.7 We consider this restriction crucial for obtaining empirically meaningful

results both in terms of a consistent global analysis of business groups and the analysis of

shock transmissions within them.

For the heterogeneity analysis, we divide our sample broadly along the lines of the stan-

dard Koeppen-Geiger climate classification system (Beck et al. 2018) and define countries

with average yearly temperature above 13°C as having a moderate to hot climate. For the

period of our analysis, this definition applies to 10 out of 32 countries in the sample.8

3.3 Ownership data

we draw on aus dem Moore et al. (2019) to consistently identify business groups based

on the raw information on firm ownership in ORBIS. In principle, firms with more than

50.01% ownership shares are linked until the top of the command chain is reached. This

allows the identification of each firm belonging to a certain network along with the network’s

global ultimate owner (GUO). For a detailed description of the methodology we refer to aus

7The selected countries are Austria, Australia, Belgium, Bulgaria, the Czech Republic, Germany, Estonia,
Spain, Finland, France, Great Britain, Greece, Croatia, Hungary, Ireland, Italy, Japan, South Korea, Lithua-
nia, Latvia, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Sweden, Singapore, Slovenia,
Slovak Republic, Turkey and Ukraine.

8The selected countries for the Southern sample are Australia, Bulgaria, Croatia, Greece, Italy, Portugal,
Romania, Singapore, Spain and Turkey. This corresponds for instance to countries with mostly dry or hot
summer climates under the Koeppen-Geiger classification (Beck et al. 2018).
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Figure 1: Firm coverage and temperature distribution: World

dem Moore et al. (2019). The novelty of this approach is that, unlike the static approaches

employed in the vast majority of empirical studies, the data allows to track ownership relations

across time, i.e. for each firm and each year in 2002-2012. Many empirical studies have used

time-invariant information based on the last year of the panel thus introducing a potentially

strong measurement error.

However, the yearly ownership data contains substantial amounts of noise as the data in

ORBIS is constantly updated and extended (aus dem Moore et al. 2019). Missing information

over longer periods of time can impede the proper tracking of network structures and severely

hamper the identification of shock transmission (Cravino and Levchenko 2017), e.g. through

unobserved changes in ownership.

To address the constant updating of ownership data contained in ORBIS and to account

for potential missing information over longer periods of time, we clean the ownership data in

various steps. First, we fill in ownership gaps if the information before and after the gap is

identical.9 This is done for up to four consecutive years. The vast majority of observations

recuperated from this interpolation stems from one-year gaps. Second, we require firms to

report at least ownership information for one year meaning that they are either a subsidiary

and/or a GUO at some point in time and thus discard any firms with continuously missing

information.

Summary statistics are reported in Table 1. It shows that the final sample contains around

a quarter of a million firms (Column 1) that at some point between 2002 and 2012 are either

9For instance, if a subsidiary is owned by the same firm in the years 2002 and 2004, but the information in
the year 2003 is missing, we take this firm as the respective GUO in year 2003.
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Figure 2: Firm coverage and temperature distribution: Europe

a subsidiary (Column 2) and/or a GUO (Column 3). The sample is dominated by firms

operating in European countries (around 240,000) but still retains around 10,000 firms from

the rest of the world and covers a range of climatic zones.

In the spillover analysis, we have a particular focus on relationships where in the period

of 2002-2012 a subsidiary has (i) full ownership information and (ii) is owned by the same

GUO. While this restriction reduces sample size, it allows us to focus specifically on the

transmission of shocks withing long-standing networks between affiliates and GUOs based on

high panel data quality. The ”long-standing relationship” sample still contains more than

5,100 GUOs that own a total of around 105,000 subsidiaries.
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Table 1: Summary statistics: Firm observations

# Obs # Firms

Total 1,971,108 250,767
Subsidiaries 1,184,481 213,931
Global ultimate owners (GUOs) 253,839 67,474
Independent 532,788 172,030

Note: Number of subsidiary firms plus number of GUO firms exceeds number of total firms as firms can be
subsidiaries and GUOs at different points in time.

4 Results

4.1 Effects on directly affected affiliate firms

Table 2 presents the results for the direct effect of temperature on affiliate output proxied by

operating revenue for three specifications with increasing stringency. For our most stringent

and preferred specification (3) with firm-level control variables and lagged temperature and

precipitation, effects for the hot section of the temperature spectrum are significant at the

5% level for temperatures between 27 and 32°C and above 32°C. In economic terms, the

magnitude of the effect of extreme temperature days are important. Relative to a day in the

16-20°C bin, an extra day with temperature above 32°C decreases output by 1.3% (0.1% for

temperature between 27-32°C). Coefficients for the cold section of the temperature spectrum

are negative, but largely insignificant.

We subsequently examine whether the response of output to local temperature shocks

varies by climate regions. Table 3 compares our baseline estimates (1) with estimates for

subsamples of ”hot” countries (with average yearly temperature above 13°C) (2) and ”cold”

countries (with average yearly temperature below 13°C) (3). For the sample of comparatively

hot countries, effects for three temperature bins of the hot part of the spectrum are highly

significant at the 1% level (21-27°C bin, 27-32°C bin, and ¿32°C bin). Again, the magnitude

for the coefficient of extreme heat days is economically important. Relative to a day in the

16-20°C bin, an extra day with temperature above 32°C decreases output by 1.6% (0.14% for

the 27-32°C bin and 0.06% for the 21-27°C bin). Compared to the results for the full sample

(1.26%), the effect is more pronounced in magnitude. For the Northern sample, we do not

find any evidence for temperature effects.

In sum, our findings suggest that temperature responses at the global level appear to be

driven by differences in long-term climate exposure. Strong negative effects from hot temper-

atures are driven by firms operating in countries with relatively hot climates. Only shocks
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Table 2: Direct temperature effects on output of affiliated firms

(1) (2) (3)

< - 12°C -0.0005 -0.0009 0.0001
(0.0007) (0.0007) (0.0006)

≥ - 12°C; ≤ - 7°C -0.0009* -0.0011** -0.0007
(0.0005) (0.0005) (0.0005)

> - 7°C; ≤ - 1°C -0.0004 -0.0007** -0.0003
(0.0004) (0.0004) (0.0003)

> - 1°C; ≤ 4°C -0.0002 -0.0005 -0.0002
(0.0003) (0.0002) (0.0003)

> 4°C; ≤ 10°C -0.0001 -0.0003 -0.0001
(0.0002) (0.0002) (0.0002)

> 10°C; ≤ 16°C 0.0001 0.0000 0.0000
(0.0002) (0.0002) (0.0002)

> 21°C; ≤ 27°C -0.0002 -0.0002 -0.0002
(0.0002) (0.0002) (0.0002)

> 27°C; ≤ 32°C -0.0011*** -0.0011*** -0.0010**
(0.0004) (0.0004) (0.0004)

> 32°C -0.0113** -0.0127*** -0.0128**
(0.0048) (0.0046) (0.0050)

precipitation 2.24 1.31 1.59
(1.619) (1.577) (1.567)

precipitation sq -37.39 -26.43 -21.64
(39.831) (39.020) (38.872)

Firm FE Yes Yes Yes
Year x country FE Yes Yes Yes
Country x industry FE Yes Yes Yes
Year x industry FE Yes Yes Yes

Firm-level control variables - Yes Yes
Temperature t-1, precipitation t-1 - - Yes

Observations 1,511,588 1,511,588 1,287,622

Standard errors (in parentheses) are clustered at the firm level.
* p<0.10, ** p<0.05, *** p<0.01
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Table 3: Heterogeneity in temperature effects on output of affiliated firms

Baseline Southern Countries Northern Countries

(1) (2) (3)

< - 12°C 0.0001 0.0052 0.0001
(0.0006) (0.0034) (0.0007)

≥ - 12°C; ≤ - 7°C -0.0007 -0.0019 -0.0006
(0.0005) (0.0015) (0.0006)

> - 7°C; ≤ - 1°C -0.0003 -0.0001 -0.0002
(0.0003) (0.0007) (0.0004)

> - 1°C; ≤ 4°C -0.0002 -0.0005 0.0001
(0.0003) (0.0005) (0.0003)

> 4°C; ≤ 10°C -0.0001 0.0000 0.0001
(0.0002) (0.0004) (0.0003)

> 10°C; ≤ 16°C 0.0000 0.0004 0.0000
(0.0002) (0.0003) (0.0002)

> 21°C; ≤ 27°C -0.0002 -0.0006** -0.0001
(0.0002) (0.0003) (0.0003)

> 27°C; ≤ 32°C -0.0010** -0.0014** -0.0004
(0.0004) (0.0006) (0.0006)

> 32°C -0.0128** -0.0158*** -0.0064
(0.0050) (0.0057) (0.0098)

precipitation 1.59 1.77 .23
(1.567) (3.609) (1.749)

precipitation sq -21.64 29.67 -3.42
(38.872) (137.131) (40.038)

Firm FE Yes Yes Yes
Year x country FE Yes Yes Yes
Country x industry FE Yes Yes Yes
Year x industry FE Yes Yes Yes

Firm-level control variables Yes Yes Yes
Temperature t-1, precipitation t-1 Yes Yes Yes

Observations 1,287,622 398,034 889,588

Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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from extreme heat, i.e. temperatures above 32°C, appear to be economically meaningful.

This evidence for a comprehensive sample of 32 countries is in line with previous firm level

studies that focus on specific countries and sectors. For instance, Zhang et al. (2018) detect

for the Chinese manufacturing sector an inverted-U-shape relation, strong negative effects of

extreme heat and differences among comparatively hot and cold sub-national regions. Simi-

lar effects have been found among world regions by studies using comprehensive county- and

country-level data (Burke et al. 2015, Burke and Tanutama 2019).

4.2 Spillover of affiliate-level temperature shocks on headquarter firms

Table 4: Spillover effect of temperature shocks to affiliate firms on the output of headquarter
firms

(1)

< - 12°C 0.0122
(0.0124)

≥ - 12°C; ≤ - 7°C -0.0008
(0.0045)

> - 7°C; ≤ - 1°C 0.0017
(0.0014)

> - 1°C; ≤ 4°C 0.0007
(0.0009)

> 4°C; ≤ 10°C 0.0012
(0.0007)

> 10°C; ≤ 16°C 0.0008
(0.0006)

> 21°C; ≤ 27°C 0.0009
(0.0008)

> 27°C; ≤ 32°C 0.0010
(0.0009)

> 32°C -0.0421**
(0.0213)

precipitation -6.87
(8.223)

precipitation sq 54.52
(212.729)

Firm FE Yes
Year x country FE Yes
Country x industry FE Yes
Year x industry FE Yes

Firm level control variables Yes
Temperature, precipitation (headquarter) Yes
Temperature t-1, precipitation t-1 (subsidiary) Yes

Observations 36,302

Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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The results presented in Table 4 show that extreme temperature shocks of subsidiary firms

induce output losses at the headquarter level. These estimates are based on temperature

shocks to subsidiary firms operating in hot climates. Relative to a day in the 16-20°C bin,

an additional day with temperature above 32°C at the subsidiary level decreases annual

output at the headquarter level by 4.2% and the effect is significant at the 5% percent level.

Compared to the local effect on business group firms in the Southern sample (1.6%) reported

in Table 3, the transmission effect of extreme heat days at the headquarter level is clearly

more pronounced in magnitude. This finding suggests that output losses due to extreme

temperatures can be amplified by economic linkages within firm networks.

5 Conclusion

Recent studies on climate economics have aimed to substantially improve damage estimates

of climate change. This paper contributes to this effort by shedding new light on a potentially

important cost driver: The transmission of temperature shocks within global business groups.

We show that headquarter output falls by about 4% if affiliated firms of the business group

are exposed to an additional day with local temperatures above 32°C. Importantly, losses

incurred at the headquarter level are higher than the corresponding first order effect at

the local subsidiary level, which indicates that temperature shocks are amplified within the

internal firm network.

Given the nature of our data, it appears plausible that our estimates are driven by higher

order effects, i.e. losses incurred by the specific structure of economic dependencies within

the network (Wenz and Levermann 2016). Stable, long-term ownership can possibly capture

relationships that are of important value to the network. For instance, Barrot and Sauvagnat

(2016) show that shock propagation between supplier and customer firms is substantially

stronger and more significant if the supplier produces specific inputs that are hard to replace.

The divergence between first and higher order effect sizes might also be related with subsidiary

firms being more resilient to shocks as the bulk of the impact is absorbed by the network.

Giroud and Mueller (2019) demonstrate that subsidiaries have smaller employment elasticities

with respect to local shocks than independent companies. However, more research on the

interplay between shock exposure and structural business group features is needed.

The strong impacts of extreme heat on and within business groups are in line with re-

cent findings on economic outcomes. For instance, studies demonstrated that average global

incomes could decrease by up to 23% by 2100 (Burke et al. 2015) or that losses in Chinese
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manufacturing could incur yearly GDP losses of around 5% by 2050 (Zhang et al. 2018).

Wenz and Levermann (2016) find that inter-sectoral trade can greatly amplify heat-induced

losses. While we cannot provide representative aggregate estimates with our dataset, the

firm-based estimates suggest that the effects are economically important. Given the overlap

in current and future weather distributions, the results can provide us with a useful estimate

of potential medium-run impacts of climate change induced heat stress.

An important empirical question is to what degree the effects we obtain for the medium-

run persist into the long-run. Although firms that operate in relatively hot climates had

sufficient time to adapt, the magnitude of the coefficients is sizeable which suggests that

effects may continue into the future. However, no clear consensus has emerged so far on

adaptation with some studies detecting limited potentials and other studies indicating the

opposite (Behrer and Park 2018, Pankratz and Schiller 2021). More research on how to

alleviate the impacts of extreme temperature, particularly using longer time horizons, is

needed (Kalkuhl and Wenz 2020).

From a policy perspective, it is important to understand if local shocks can be contained

and prevented from spreading to the regional and global level. In terms of adaptation, one

would expect business groups to move their subsidiary locations or to integrate new, less

exposed firms into their networks. In fact, Pankratz and Schiller (2021) find evidence that

customer firms are more likely to replace suppliers if these suppliers climate risk exposure is

higher than expected. However, the empirical literature on network production also demon-

strates that switching costs can be substantial and thus impede adaptation to economic

shocks at least in the short run (Antràs and Yeaple 2013, Bernard and Moxnes 2018). In line

with recent evidence (Barrot and Sauvagnat 2016), our results suggest that the importance

of switching costs may be high when it comes to specific long-standing relationships. More

research on the persistence of effects and the importance of switching costs in the long run

as well on how to alleviate these impacts is needed.
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Antràs, Pol and Stephen Yeaple (2013). Multinational Firms and the Structure of Interna-

tional Trade. url: http://www.nber.org/papers/w18775.

Auffhammer, M., S. M. Hsiang, W. Schlenker, and A. Sobel (2013). “Using Weather Data

and Climate Model Output in Economic Analyses of Climate Change”. en. In: Review

of Environmental Economics and Policy 7(2), pp. 181–198. issn: 1750-6816, 1750-6824.

doi: 10 . 1093 / reep / ret016. url: https : / / academic . oup . com / reep / article -

lookup/doi/10.1093/reep/ret016 (visited on 01/06/2020).

Auffhammer, Maximilian (2018). Climate Adaptive Response Estimation: Short And Long

Run Impacts Of Climate Change On Residential Electricity and Natural Gas Consumption

Using Big Data. en. Tech. rep. w24397. Cambridge, MA: National Bureau of Economic

Research, w24397. doi: 10.3386/w24397. url: http://www.nber.org/papers/w24397.

pdf (visited on 01/06/2020).

aus dem Moore, Nils, Philipp Großkurth, and Michael Themann (2019). “Multinational

corporations and the EU Emissions Trading System: The specter of asset erosion and

creeping deindustrialization”. en. In: Journal of Environmental Economics and Man-

agement 94, pp. 1–26. issn: 00950696. doi: 10 . 1016 / j . jeem . 2018 . 11 . 003. url:

https://linkinghub.elsevier.com/retrieve/pii/S0095069617305521 (visited on

01/04/2020).
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