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Characterizing people’s occupations is important for both policy and research. However, as large scale
administrative records are increasingly being used to describe labor market activity, it will become im-
portant to find new automated approaches to describing occupations. We apply new machine learning
techniques to new sources of data and investigate the potential of using algorithms to classify occupa-
tions. We find that job titles are both inherently noisy and inconsistent across organizations, but a subset
of them can be assigned algorithmically, with little impact on accuracy.
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1. Introduction

Characterizing the work that people do on their jobs is a long-standing and core is-
sue in survey research. Traditionally, classification has been done manually, but there
is an extensive body of literature on the associated challenges, well summarized in
an influential paper by Mellow and Sider [1] and in a later paper by Mathiowetz [2].
Many survey organizations are beginning to investigate the potential of using new
computational tools to automatically classify workers’ occupations.

At the same time, there has been a surge of interest in using administrative wage
records to directly capture occupations in order to inform the design of training cur-
ricula and to permit deeper longitudinal analysis of career outcomes, the effects of
training, and changes in inequality. Senator Ronald Wyden’s amendment to the Bor-
der Security, Economic Opportunity, and Immigration Modernization Act (S.744,
113" Congress, 2013) was supported by a broad range of unions and associations.!
The Secretary of Labor’s congressionally mandated expert advisory group — the
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Workforce Information Advisory Council® — as well as its predecessor, the Work-
force Information Council, produced reports in both 2018 and 2015 that strongly
recommended the inclusion of occupations in wage records; the Secretary of Labor
responded that this inclusion was, indeed, a high priority [3,4]. In 2018, the United
States Chamber of Commerce convened public and private organizations to report
on ways to gather more granular job competency data from employers [5]. However,
manual classification of occupations is not feasible, given that the administrative
records, which report data on all jobs for all workers in the covered sector, consist of
hundreds of millions of records per quarter [6].

The potential is enormous. If it were possible to combine new computational tools
and administrative wage records to generate an automated crosswalk between job
titles and occupations, millions of dollars could be saved in labor costs, data pro-
cessing could be sped up, data could become more consistent, and it might be possi-
ble to generate, without a lag, current information about the changing occupational
composition of the labor market.

This paper examines the potential to assign occupations to job titles contained in
administrative data using automated, machine-learning approaches. Although there
has been little research that directly ties firm-level human resource (HR) data on
job titles to occupational classifications, traditional methods of classification using
surveys provide an intellectual foundation for occupational coding. The first founda-
tion is conceptual: to define each occupation. The second is operational: to translate
concepts to standardized protocols. The third is statistical: to infer occupations from
the information at hand. The fourth pertains to resources: the implementation of
such classifications at a national scale given the limited resources available. More
generally, we contribute to a much larger set of classification problems, which are
increasing in salience with the availability of more transaction data. It is important
to understand which tools and approaches are effective at using the new, rich, but
unstructured data, while minimizing the need for expensive and slow manual classi-
fication.

We use a new extraordinarily rich and detailed set of data from transactional HR
records of large firms (universities) in a relatively narrowly defined industry (pub-
lic institutions of higher education) to identify the potential for machine-learning
approaches to classify occupations. This is, to our knowledge, the first large-scale
dataset that draws from such HR records across multiple institutions. These data
have several advantages. First, the institutions are relatively large and complex, and
they use HR systems similar to those of other large and complex organizations in the
rest of the economy. Second, the focus on one industry limits the number of possible
occupational categories, permitting a targeted analysis. Third, the focus on public
universities is attractive because the HR descriptions associated with job titles are
available online, and can be used to provide additional information for classification

2https://www.doleta.gov/wioa/wiac/.
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purposes. Finally, the industry is interesting in its own right. Indeed, the produc-
tion of research often involves the use of intangible assets, particularly labor inputs,
and accurate classification of those labor inputs is important for the measurement of
scientific productivity.

We build a training dataset from the HR records using human curation and addi-
tional rich data sources. First, university staff and trained students manually assign
occupations to job titles. That manual curation is then enhanced with additional in-
formation from online job descriptions as well as Census Bureau micro-level infor-
mation on demographic characteristics and earnings. The data are then used to train
machine learning models to predict occupations from job titles. Finally, the results
are evaluated.

While our results suggest that occupations can be assigned from job titles, they
also point to real challenges. In particular, our analysis suggests that there are sub-
stantial limits to using machine learning to create discrete occupational categories,
even with rich data sources. There are two core problems. The first is that occupa-
tional classifications are inherently noisy, so it is difficult to identify ground truth,
particularly in a dynamic and changing economy. The second is that job titles have
insufficient consistency or detail across institutions necessary for robust supervised
machine learning. We do find that a large number of relatively sparsely populated
job titles — a quarter of the titles have only one employee, and over half have fewer
than ten employees — could be assigned algorithmically, greatly reducing cost with
little impact on accuracy.

2. Background

A major reason for developing occupational classifications is to provide an easy-
to-measure pathway from generally understood job activities to skill needs in the
economy. The need to capture information on occupations to inform businesses,
government agencies, students, and career counsellors about the levels, trends, and
changes in skill needs is a continuing theme in national and local workforce pol-
icy [7]. There are also academic reasons. Occupational classification is deeply rooted
in sociology [8] —indeed, it is intrinsic to the measurement of inequality, social strati-
fication, and class mobility. Occupational classification is also essential in economic
analyses, describing structural changes caused by technological advancement, au-
tomation, globalization, and changes in immigration laws [9].

The current approach to occupational classifications is thorough and thoughtful,
but quite costly. In addition to cost, the measurement challenges of categorizing
worker occupations on surveys are well known: they are notoriously noisy [2]. In
probably the best known analysis, Mellow and Sider find that only 83.3% of CPS
respondents’ major (1-digit) occupations match their employer’s reports and that
share falls to 59.7% for detailed (3-digit) occupations (these rates are considerably
lower than those for industry of employment, at 93.1% and 85.4% for major and
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detailed industry) [1]. Bound et al. find similar discrepancies in their overview of
measurement errors [10], as do Abraham and Spletzer [11]. Fisher and Houseworth
find identify systematic inflation of occupations for lower-skilled individuals [12].

As noted in the introduction, there has been high-level interest in requiring firms
to report occupational data as part of their federal reporting requirements. Both the
Workforce Information Advisory Council, an expert group formed to advise the
Secretary of Labor, and its predecessor, the Workforce Information Council, rec-
ommended adding occupational classifications to unemployment insurance wage
records [3,4]. In the latter case the group surveyed forty-four states and territories,
forty-seven national, state, and regional organizations (representing over 20 million
data users in business, education, labor, policy development, economic research, and
workforce preparation fields), and rated the need for capturing occupational infor-
mation as one of the highest of their priorities. The interest in using unemployment
insurance wage records for decision-making was also highlighted in the recent re-
port by the Commission on Evidence Based Policy Making [13], and is certainly
part of the focus of implementing the legislation that resulted from their recommen-
dations [14].

However, the cost of collecting occupational data manually might well be pro-
hibitive — the state of Texas surveyed businesses and estimated “that the initial cost
to employers could range from $478 million to $1.2 billion, with annual recurring
costs of $342 million to $715 million. Costs to the Texas Work Commission were
estimated at $3.1 million in the first year, and a total five-year cost of $7.9 million to
collect this data” (Texas Workforce Commission 2016, p. 17).

Machine learning has become part of the analytical toolkit used by social scientists
to automate both classification and prediction tasks [16,17]; it “develops algorithms
designed to be applied to datasets, with the main areas of focus being prediction
(regression), classification, and clustering or grouping tasks” [16]. A good overview
can be found in the machine learning chapter by Ghani and Schierholz in our re-
cent book [18]. In the particular context of occupational classifications, there have
been attempts to incorporate machine-learning methods by using open-ended survey
questions to inform classifications [19,20]. These works found that automated cod-
ing was feasible if there is sufficient training data. They emphasized the importance
of data preprocessing, algorithmic quality, and thoughtful use of distance metrics
in improving occupational prediction. They also suggested that machine learning
might also have value by providing responders with candidate occupations as part of
a learned cluster, rather than as part of a constructed and hierarchical decision tree.
This approach, which is very different from ours, places a higher burden on respon-
dents. In contrast, we use administrative information on job titles, rather than survey
responses. We provide more detail in the technical discussion below.

3. Data and framework

The administrative data we use are derived from the UMETRICS project, which
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builds on and extends the federal STAR METRICS effort [21]. These data are main-
tained by the Institute for Research on Innovation and Science (IRIS) at the Uni-
versity of Michigan and currently contain record-level information on all wage pay-
ments made to individuals through research grants at 26 participating research uni-
versities [21,22]. In the interest of homogeneity, we only use large public research
universities in the Big 10 for our analysis.?

Although multiple files are provided by the universities, we focus on the employee
file, which contains, for each federally funded project, all payroll charges for all pay
periods (period start to end date). In addition, the file contains each employees’ in-
ternal de-identified employee number and their job title, which we manually assign
to occupation categories (see below). The UMETRICS program has also incorpo-
rated information on the name and date of birth for each employee, which facilitates
linkage to other data sources.

We view these data as a valuable laboratory for quantifying the prospects for a
machine-learning approach to occupation classification. In some ways these univer-
sities are well-suited for a machine-learning approach — they are large, generally
similar, and highly structured. Thus, we can identify many different categories of
workers for each institution and then assess our ability to identify similar workers at
other institutions. On the other hand, the uniformity of these institutions makes our
task somewhat more challenging because we must make relatively fine distinctions
(e.g. a dataset comprised of longshoremen and financial analysts would have more
variability than our data).

In determining occupational classifications, we drew heavily on standard prin-
ciples. We were particularly interested in building a classification system that de-
scribed the way people are used in the production of research. Our classification
system benefited from extensive consultation with universities, which identified five
core characteristics that distinguish personnel employed on research projects: (i) Per-
manence in their position (ii) Research Role, (iii) Professorial Track, (iv) Scientific
Training, and (v) Clinical Association. These core characteristics are similar to ones
used in Standard Occupational Classification (SOC) system: classification principle
#2 reads “Occupations are classified based on work performed and, in some cases,
on the skills, education, and/or training needed to perform the work at a competent
level.”

Based on this input, we iteratively developed a hierarchical occupation classifi-
cation system. In the end, we identified a two-level classification system. The first
level is based on a person’s relationship to the university — faculty, undergraduate,
graduate student, postdoc, or staff/other. In the second level, we subdivide staff/other
based on function. Figure 1 lays out our classification system and Appendix I pro-
vides illustrative job titles for the occupations.

3The universities are Indiana, Wisconsin, lowa, Michigan, Minnesota, Penn State, Rutgers, and Ohio
State University.
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Fig. 1. Classification system.

As we discuss in detail in the following sections, we manually assigned an occupa-
tion from our classification system to job titles from the eight universities. Then we
used this manually curated data linking job titles to occupations as a training dataset
for a supervised machine learning approach that algorithmically assigns occupations
to job titles.*

4. Creating a training dataset from HR records

The first step was to manually classify occupations based on job titles, which
points to the scale of the problem and hence the value of an automated approach.
First, the total number of job titles varied from the low hundreds to low thousands
across universities — it is likely that similar variation occurs in firms in other sectors
of the economy.

The composition of the research personnel by occupation is shown in Table 1.3
Also shown in Table 1 is the average number of person-years by occupation for
the four largest and four smallest universities (i.e., those universities whose total
number of person-year counts is above or below the median). Big universities have,

40ur sample consists of individuals appearing in the UMETRICS employee file between 2012 and
2014. Universities that are missing records in any year between 2012 and 2014 were dropped. Universi-
ties that had fewer than 100 employees in any occupational class were also dropped because the accuracy
of classification algorithms may not be reliably calculated. Eight universities satisfied these sample re-
strictions.

5The occupations “Staff and “Others” were combined into a single category because the distinction
between the two classes is somewhat ambiguous and less important. The unit of observation is a person-
year. That is, an individual can be counted up to three times, once per calendar year between 2012 and
2014. Because career transitions can happen within a calendar year (e.g., an individual changing his or
her occupation from graduate student to postdoctoral researcher over the summer), only individuals who
appeared in the employee table under the same job title both before July 1 and after September 30 were
included in our sample.
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Table 1
Number of employees paid by research grant by occupation

Occupation ~ All universities total ~ Big universities average ~ Small universities average

Faculty 16,000 2,600 1,500
Graduate 17,000 3,100 1,200
Staff/other 29,000 4,700 2,600
Postdoc 6,900 1,100 650
Undergrad 9,700 2,000 450
Total 79,000 13,000 6,400

Note. The table shows the number of employees paid by research grants at all universities in our
data and those with more than and fewer than the median number of person-year pairs. Numbers
are rounded for disclosure protection reasons.

Table 2
Variation in the volume and size of job titles across universities
All Universities with ~ Universities with
universities coarse job titles detailed job titles
Total number of job titles 3,200 1,100 2,200
(across universities)
Total number of employees 79,000 48,000 31,000
(across universities)
Average # employees per title 24.4 44.4 14.5
(at each university)
1 employee 25% 16% 30%
2-10 employees 54% 52% 55%
11-100 employees 17% 26% 13%
> 100 employees 4% 7% 2%

Note. The table shows the distribution of the number of employees per title at all univer-
sities in our data, the four universities with the smallest, and the four universities with
the largest numbers of employees per job title. The bottom half of the table shows the
percentage of titles falling in each bracket.

on average, twice as many research personnel paid by research grants, and the share
of graduate and undergraduate students is somewhat larger for the big universities.

It is also worth noting that there is substantial variation in the number of people
with each job title, as reflected in the average number of people per job title and the
fractions of job titles that contain different numbers of people. We divide universities
into two groups — the four with the “coarsest” and the four with the most “detailed”
job titles. As shown in Table 2, for the universities that use more detailed job titles, as
many as 30% of job titles had only one employee. For the universities that use coarse
job titles, the proportion occupied by the job titles with more than 100 employees is
nontrivial, and job titles with more than 1000 employees were not uncommon. This
has important implications for our work — some job titles have a disproportionate
effect on accuracy of the entire occupation classification.

Even using the relatively straightforward categorization depicted in Fig. 1, we
identified three separate measurement challenges that will almost surely be mani-
fested in other firms across the economy. Each results in issues that affect the quality
of the training data.
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First, when different employees with the same job title perform different tasks, the
same job title can map to two distinct occupations. For instance, consider employees
with the job title of “program coordinator”. In some cases, these employees may be
managing the business operations of a scientific research program at a university cen-
ter and should thus be assigned the occupation “Research Facilitation Staff”. In other
cases, these employees may be involved in educational or student experiences and
should thus be assigned the occupation “Instructional Staff”. In this case, different
people with the same job title perform different tasks and should thus be assigned to
different occupations. This implies that a full classification must operate at the level
of individuals rather than job titles.

Second, some job titles are at the margins of categories. For instance, consider em-
ployees with the job title “laboratory supervisor”. In many cases, these employees
appeared to perform some tasks that would suggest assigning them the occupation
“Research Facilitation Staff” and other tasks that would suggest assigning them the
occupation of “Research Staff”. For instance, a laboratory supervisor may serve as
an administrator for a university research lab and also conduct research within the
lab. Because such employees’ work encompasses the responsibilities of two occu-
pations, it can be argued that they fall at the margin of the occupational categories,
which points to the value of a task/skill-based classification versus a categorical clas-
sification. This measurement challenge is conceptually distinct from the first insofar
as a single individual performs functions that cross categories, rather than two sepa-
rate people with the same job title performing different functions.®

The third measurement challenge is ambiguity: vague titles limited our ability to
confidently assign occupations to job titles. “Administrative support”, “coordinator”,
and “professional aide” are examples of unclear job titles. Some employees with
these titles work in human resources, undergraduate admissions, or a wide range of
offices supporting general university functions, while other employees with these ti-
tles are directly involved in supporting or conducting scientific research. To a large
extent, this ambiguity reflects a fundamental noisiness in occupational classifications
in their own right.” When the occupation to which a job title should be assigned is
ambiguous, the choice of occupation can influence an algorithm’s learning process.
For example, the job title “Student help” can belong to either a student who provides
help or a staff member who helps students. If we assign this title to a student occu-
pation, we implicitly reinforce the association between the word “student” in the job
title and the title belonging to a student occupation, potentially increasing the chance

6 Although jobs at the margins of categories are not limited to managerial jobs (and our categories are
carefully chosen to minimize such uncertainty), managerial jobs often lie at the margins of categories
because they require expertise in different kinds of skillsets. One way to address this issue is to create
management occupations. For our data, the number of job titles at the margins of categories is relatively
small; therefore, we proceeded without creating managerial occupations.

"We benefited tremendously from input from member universities that provided extensive input on
our classification approach up front, provided a wealth of data, and that have, in many cases, provided
extensive feedback on our classification of their employees, especially to address the issues above.
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of misclassification for job titles such as “Student learning center coordinator”. An-
other example of this type is “Fellowship”, which may be intended to mean “fellow”
(usually a graduate student) or a staff member who handles administrative work in-
volving fellowship. Addressing title ambiguity is conceptually straightforward, but
it requires a great degree of cooperation from data-submitting organizations.

It is worth noting that the same person can have multiple relationships to a univer-
sity. For instance, a student may hold a staff position or a staff member can become
a student to take advantage of a discount on tuition. In this case, the person would
be both a staff member and a student. Such multiple relationships pose a challenge,
but also present an opportunity for obtaining unique data on career paths. The ideal
handling of such cases depends on the intended use of the data. If one wants to mea-
sure the inputs to a production function, then the preferred approach would likely be
to assign the person to the staff title (i.e., to the role that he or she is playing on the
sponsored project in question). If the goal is to identify people who have studied at
the university, the preferred approach would be to assign the person to the appropri-
ate student occupation. Our data tend to favor the first approach because the primary
classification is based on the job title.

Another issue that generates a challenge, but also has the potential to enrich the
data greatly, is that people’s relationship to a university may change over time. An
undergraduate may graduate and enter a graduate program at the same school or take
a job as a staff member. A graduate student may take a staff, faculty, or postdoc
position upon completion of his or her degree. Obviously, some such pathways are
more likely than others. These transitions potentially provide additional leverage on
the classification of specific job titles and also provide rich data on career paths.

4.1. Incorporating additional external information

We use several different sources of external information to classify job titles into
occupation categories — these include online job descriptions, publicly available elec-
tronic salary databases, university and professional networking websites, and histor-
ical administrative earnings and employment data.

Many firms will have HR descriptions that map directly onto job titles. This infor-
mation could, in principle, provide substantial external information that can be lever-
aged for occupational classification. In our case, the eight universities had searchable
databases for employment and job postings on university HR websites. These typi-
cally provided detailed descriptions of specific job titles to confirm the nature of an
employee’s work. When these descriptions failed to provide the necessary informa-
tion to correctly classify a position, electronic salary databases for public universities
proved to be particularly helpful sources of information on employee names. Using
names and job titles enabled us to examine individual profiles on university and pro-
fessional networking websites, both of which offered detailed explanations of em-
ployees’ work. Specific information on actual employees rather than just their titles
enabled a more careful classification of similarly related positions in some cases.
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Placement and earnings are obtained by linking UMETRICS data to data at the
U.S. Census Bureau. Given large differences in age and earnings between various
occupations in our data, information on an individual’s age and earnings can provide
valuable information about the individual’s occupation. Employees in the UMET-
RICS data are linked to Census data using a Protected Identification Key (PIK),
Census’s internal anonymized individual identifier.

5. Measurement and standardization

The development of clear standardized protocols for interviewers is critical for
consistent measurement across individuals. Similarly, good measurement is criti-
cally dependent on developing consistent protocols for preprocessing the data so
that measures can be standardized across businesses. This is particularly important
since each business will have different shorthand to classify job titles. In this section,
we will illustrate the challenges of standardizing data collected across multiple orga-
nizations with different conventions. We will focus on the abbreviated nature of job
titles, but we expect similar challenges will arise in processing texts describing job
responsibilities, salary grade, retirement benefits, and other information that may be
available.

To automate the classification process, we first need to convert job titles to nu-
meric values because most machine-learning algorithms accept only numeric in-
puts. For short texts like job titles, the most common way of converting texts to
numeric features (equivalent of regressors in regression analysis) is to record the
presence/absence of keywords. For example, if we have job titles “research ana-
lyst” and “research support”, the array of feature names is [“research”, “analyst”,
“support”] and the text-to-feature conversion would return the vector [1, 1, 0] for
“research analyst” and [1, 0, 1] for “research support”. These vectors will then be
used as inputs for machine-learning algorithms that predict occupations.

One problem with this approach is different abbreviations/synonyms in the job
titles may represent the same feature. For example, it is clear to humans that “as-
sistant” and “asstnt” both represent “assistant”, but machines treat them as different
features. To avoid creating separate features for different abbreviations of the same
word, job titles need to be normalized before being converted to numeric vectors.®
Though developing a set of rules for determining the validity of abbreviation is not a
trivial task, we created a disabbreviation algorithm that, though imperfect, was em-
ployed for the subsequent analyses to reduce noise in the data (see Appendix I for
details).

8Because creating a normalization mapping is labor intensive, one may be tempted to use edit distance
to determine whether a string of letters is an abbreviation of a word. However, generic edit distance fails
to address challenges that are specific to abbreviations: for instance, both “busin” and “buses” are formed
by deleting three letters from “business” and therefore have the same edit distance; however, the former
is more likely to be an abbreviation for “business”.
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6. Machine learning

We first explored a wide range of classification algorithms, including linear regres-
sion.” We then selected a few algorithms that seemed to work well for our project and
conducted a preliminary analysis comparing their performance. The algorithms that
made our “short list” are Multinomial Naive Bayes, Bernoulli Naive Bayes, Random
Forests, and Extra Trees (Extremely Randomized Trees). We will briefly describe
each algorithm below, but interested readers may refer to, for example, James et
al. [23] for more details.

The Naive Bayes classifiers compute the conditional probability of an observation

[TEsT]

falling in a certain class (equivalent to discrete “y” variable in a regression) given
features (equivalent to covariates “x” in a regression) using Bayes rule. The Multi-
nomial Naive Bayes classifier assumes that the conditional probability that each fea-
ture appears given a class follows a multinomial distribution. The Bernoulli Naive
Bayes classifier assumes that the conditional probability of the presence or absence
of features given a class follows a Bernoulli distribution. Because it is unlikely that
the same word appears more than once in a job title, the Bernoulli Naive Bayes clas-
sifier is more suitable for our purpose. The major disadvantage of either of the Naive
Bayes classifiers is that they both rely on the underlying assumption that the fea-
tures are independent. This means, for example, given that the job title belongs to a
graduate student, the presence of the word “research” cannot change the probability
of also observing the word “assistant” in the job title. Because the assumption of
independent features is most likely violated for our case, we rejected Naive Bayes
classifiers.

Random Forest and Extra Trees are both tree-based algorithms. We begin by de-
scribing a simple tree algorithm. Figure 2 shows part of a decision tree that classifies
employees into the main five classes from Fig. 1 (faculty, postgraduate students,
graduate students, undergraduate students, and staff/other) based on their job titles.
Each box contains (i) branching rule; (ii) Gini impurity; (iii) number of observations
contained in the node; (iv) composition of observations; and (v) majority class.

Branching rules specify the feature name and the cutoff value. For example, at the
top node, job titles that contain the word “graduate” less than or equal to 0.5 times
follow the left branch, while those that contain the word “graduate” more than 0.5
times follow the right branch. Because feature values are integers, it is equivalent
to the following: job titles without the word “graduate” follow the left branch and

9 All analyses were done in Python and the construction of random forests was done using the Scikit-
learn package [24]. The package is heavily used by social scientists because, as the authors note, it is a
Python module that integrates “a wide range of state-of-the-art machine learning algorithms for medium-
scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-
specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance,
documentation, and API consistency. It has minimal dependencies and is distributed under the simplified
BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and
documentation can be downloaded from http://scikit-learn.sourceforge.net” [24, p. 2826].
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graduage <= 0.5
gini=0.75
samples = 78600
value = [16000, 6900, 17000, 9700, 29000]
class = Other

True

False
professor <= 0.5 post <= 0.5
gini=0.73 gini = 0.09
samples = 70200 samples = 8400
value = [16000, 6500, 9000, 9700, 29000] value = [0, 400, 8000, 0, 0]
class = Other class = Graduate
True
False True False
fellow <= 0.5 gini=0
gini =0.02 samples = 300
samples = 8100 value = [0, 300, 0, 0, 0]
value = [0, 100, 8000, 0, 0] class = Postgraduate

class = Graduate

Fig. 2. Example of a decision tree. Each node has a keyword indicated at the top of the box. All obser-
vations that have the keyword in their job titles follow the right branch, while observations without the
keyword follow the left branch. When an observation reaches a terminal node like the one at the bottom
right, the class of the node becomes the predicted class for the observation.

those with the word “graduate” follow the right branch. If “graduate” is not present,
it next tests for “professor” and if “graduate” is present, it tests for “post” (as in
postgraduate). Note that the node at the bottom right does not have the branching
rule because it is a terminal node.

“Samples” represents the number of observations in each node. “Value” lists the
number of faculty, postgraduate students, graduate students, undergraduate student,
and other in that order. “Class” is the mode of the class in each node.

Finally, “Gini” reports the Gini impurity. Notice that the Gini impurity decreases
as one goes down the tree and reaches 0 when a node consists of one class (bottom
right node). It is calculated as follows:

5

G= ch(]- _pc)v

c=1

where p,. is the proportion of class c observations at the node.

Although simple and easy to interpret, the Tree algorithm tends to overfit. That is,
the algorithm uses too much information that is idiosyncratic to the training set, and
thus the predictive accuracy tends to be lower. The Random Forest classifier is in-
tended to mitigate the issue of overfitting by forming a collection of trees. The trees
in the forest are slightly different from one another. The variation is generated by
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introducing randomness to the algorithm. Specifically, each tree is created from dif-
ferent subsample of training data (this is called bagging). Also, when branching, the
algorithm does not necessarily choose the feature that minimizes the Gini impurity.
The final output (the predicted class) is the class predicted by the greatest number of
trees.

The Extra Tree classifier uses the entire training set to create each tree, but intro-
duces randomness by randomly choosing the cut point when branching rather than
choosing the optimal cut point that minimizes the Gini impurity. The random cut
point is useful for a continuous feature such as age. For example, it may be that 22 is
the optimal cut point for distinguishing undergraduate students from everyone else.
However, the Extra Tree may choose a different cut point, say, 20. The Extra Tree
can then use other features such as the absence of the word “graduate” to identify
undergraduate students who are over 20. Since our feature, the number of times each
keyword appears in a job title, is mostly binary (because it is unlikely that the same
word appears more than once in a job title), the random cut point would not cre-
ate much variation: The branching rule “The word ‘research’ appears more than 0.3
times in the job title” is the same as “The word ‘research’ appears more than 0.6
times in the job title”. For this reason, we concluded that there is little gain from
using Extra Tree classifier, and decided to use Random Forest classifier.

Our preferred random forest approach (along with the others) is a supervised ma-
chine learning algorithm. Thus, it requires a “gold standard” set of data to train the
algorithm. Once trained, the algorithm can generate estimates for other samples. In
our case, our “gold standard” data comes from job titles that have been manually
assigned to occupations for each university. Although we recognize the potential for
human error, we refer to these as the “true” classes. Because we have data on eight
institutions, throughout our analysis we estimate our models eight times — holding
out data from one university, one at a time, for testing — and use data from the re-
maining seven universities for training. Thus, for a given set of tuning parameters
(discussed below), we grow eight separate random forests, each using data from one
university for testing the accuracy of the forest and using data from the other seven
universities for training the random forest.

In our analysis, we used the predictive accuracy as a measure of performance.
Formally, the accuracy is defined as

# (predicted class = true class)

Accuracy = #total observations

Random forests have three main tuning parameters: 1) the total number of features
supplied to the random forest, 2) the number of features to be considered at each
node of the tree, and 3) the number of trees grown in the forest (i.e., the number
of samples randomly selected to build a decision tree). The tradeoff of including
more features overall is between having more features to improve prediction and
overfitting because of idiosyncratic relationships that may be present in the data.
We filter out noise in the sample by pre-selecting the features to avoid overfitting
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idiosyncratic relationships that may be present in the sample. The degree of filtering
is controlled by the total number of features used in the random forest. The number
of features that the random forest can choose between at each stage controls the
variability of the trees: the smaller the set of features to be considered, the more
variable the trees become because there is more randomness in the selection of the
feature. In the extreme case where only one feature is considered at each split, the
selection of feature is totally random (i.e., whichever feature is selected becomes the
one used for branching).

The RandomForestClassifier module of the Scikit-learn package allows the users
to change the parameters mentioned above. To determine the total number of features
supplied to the random forest, we fit a decision tree, for each training set, using all 1-
grams and 2-grams that appeared in the job titles. Then, the feature importance score
was calculated, and the features with the highest importance scores were selected,
varying the score cutoff. The total number of features fed into the model varied de-
pending on which university was reserved for testing, but was roughly 50, 100, 200,
500, and 7000, where 7000 is the total number of 1-grams and 2-grams appearing in
the job titles in the training set and 500 is the number of features that had a strictly
positive importance score. We also varied the number of features considered at each
split (default is the square root of the total number of features supplied to the random
forest). Finally, we varied the number of trees grown in the forest, in increments of
100, between 100 and 1,000.

In determining the optimal parameter setting, we considered both unweighted and
weighted accuracy. The unweighted accuracy was computed treating each job title
as one observation — no matter how many employees have that job title, the title re-
ceives a weight of 1. The weighted accuracy was computed treating each individual
as one observation; equivalently, job titles were assigned a weight equal to the num-
ber of employees that have that job title. The most important tuning parameter for
determining classification accuracy was the total number of features provided to the
random forest (which is implicitly determined by the importance score cutoff). The
fraction of features to be considered at each node and the number of trees grown
had a minimal effect on the accuracy. Based on the overall weighted and unweighted
accuracy, the optimal parameter setting limits the number of features supplied to the
random forest to about 200 and uses the default setting of the square root of the total
number of features to be considered at each node.

Figure 3 shows the accuracy (proportion of correct prediction) for each level of
predicted probability (the probability share of the predicted occupation indicated by
the posterior distribution returned by the algorithm). The overall accuracy varied
from 60% to nearly 100% regardless of whether the data are weighted by number
of job titles or individuals.'” Although random forests can potentially increase the

10Unweighted accuracy is the proportion of job titles whose predicted class matched the true class. For
weighted accuracy, the number of employees for the job title is used as a weight.
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Fig. 3. Classification accuracy relative to predicted probability. The figure shows the probability that
an occupation was correctly coded as a function of the probability that the algorithm predicts it was
correctly coded. The unweighted series treats job titles as the unit of observation. The weighted series
treats individuals as the unit of observation.

efficiency of occupational classification, an average accuracy of about 80% may not
be high enough to justify a total replacement of manual classification by automated
machine-learning algorithms. These results reinforce our belief that the predicted
probability and the number of individuals that hold a job title should be jointly used
to identify job titles for manual review.

We see two (potentially complementary) roles for machine learning in occupation
coding and other similar bucketing tasks. One approach is to use an algorithmic
approach to classify uncommon job titles. Such cases are (by construction) plentiful
and have a relatively small effect on the overall accuracy of the classification. The
second role is to accept only predictions with concentrated probability mass at one
class. In other words, to adopt the prediction only when the random forest classifier
is “confident”.

6.1. Robustness

We explored a wide range of modifications of our basic approach to try to obtain
performance improvements. Here, we outline the analyses we performed and their
main results. Appendix II provides details on both the analyses and their results.

For the eight universities used in the above analyses, the number of employees
ranged roughly from 5,000 to 20,000. When we train the random forest classifier on
seven universities, it is possible that the shape of a tree is heavily influenced by a
few universities in the training set with a large number of employees. To investigate
this possibility, the training set was modified so that universities in the training set
have roughly equal numbers of employees. The modifications were made in two



72 A. Tkudo et al. / Occupational classifications: A machine learning approach

ways: “inflating” and “deflating”. As Section A in Appendix II shows, there was no
significant change in the accuracy with these modifications.

The number of employees per job title ranged from 1 to nearly 10,000 for the
eight universities, with the average being 24.4 employees per title. Concerned that
the titles in the training set are “too noisy”, we investigated the effect of dropping
thin titles (varying the threshold at which a title is flagged as “thin” from 5 to 50
employees) from the training set. We recorded the average predictive accuracy for
titles with different numbers of employees. Again, there was no significant change
in the accuracy with these modifications. These results are discussed in Section B of
Appendix II.

We observed that some titles that could be easily classified manually like “Gradu-
ate Assistant” are not always correctly classified by our random forest. This appears
to be caused by the existence of “extraneous” information in some job titles. To
address this issue, we applied partially unsupervised learning. In particular, titles
that (after applying the job cleaning algorithm outlined in the appendix) contain the
words “faculty”, “professor”, “postgraduate”, “graduate” or “undergraduate” were
classified first and then the random forest classifier was applied to the remaining
titles (both the training set and the test set consist of titles that do not contain any
of the words listed above). The effect of this partially unsupervised learning on the
predictive accuracy is small, with our classification for some universities improving
and others degrading. See Section C of Appendix II for details.

Linking our data to data at the U.S. Census Bureau permitted us to examine
whether having information on individuals’ age and earnings increased the qual-
ity of prediction. These variables would appear to be valuable predictors, especially
in this context, because of the large differences in ages and earnings across occupa-
tions. As shown in Table A4, there is some gain, but it is not extraordinarily high
across the board. The largest gains, by far, are for undergraduates when occupations
are weighted by the number of people in them.!!

As indicated in the previous sections, people can hold multiple titles at a point
in time (or in close succession) and can transition between titles. As some transi-
tions are more common than others (i.e., transitions from undergraduate to graduate
and/or from graduate to postgraduate and/or from postgraduate to faculty are more
common than the reverse transitions), it is possible to use transitions between ti-
tles and concurrent titles (more precisely, occupational classes that are associated
with these titles) as predictors in the random forest classifier to improve predictive
accuracy. Transitional and concurrent titles can also be used to identify unlikely tran-
sitions in the “ground-truth” data, providing an opportunity for a revision. Beyond
improving the accuracy of the data, exploring concurrent positions and transitions
can add to the richness of our data by providing information on career paths. Section
D of Appendix II provides details of this analysis.

11 Because there are considerably more staff members than undergraduates overall, there is a tendency
for the random forest to misclassify undergraduates as staff.
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Using concurrent job titles and the transitions between job titles involves some
form of iterative procedure. Appendix II details a number of issues related to using
transitions and concurrent titles. As a first step toward incorporating transitional and
concurrent classes into the random forest classifiers, we included the manually clas-
sified transitional and concurrent classes in our training data in the model rather than
predicted occupations. The resulting predictive accuracy is expected to provide an
upper bound for the accuracy obtained from the iterated procedure described in Ap-
pendix II. Overall, the use of concurrent titles and transitions across titles has little
effect on overall accuracy. In our analysis, no university exhibited a clear pattern on
the effect of including transitional/concurrent class as predictors.

6.2. Limitation of machine-learning algorithms

Laying aside the issue of developing a classification system, we have discussed
three challenges to manual classification. Beyond these issues associated with man-
ually classifying occupations, comparing the predictions made by the random forest
and the true class indicated two possible causes of misclassification. One is unavoid-
able misclassification, which results from variation in the training data. The other is
avoidable misclassification, which results from the inherent limitations of the ran-
dom forest classifier.

The first type of misclassification is unavoidable because it arises from the limits
of manual classification already discussed, such as job titles that have multiple clas-
sifications over universities. This type of inaccuracy cannot be overcome by any clas-
sifier: resolution of misclassification requires familiarity with job titling convention
at each university. It should also be noted that modifiers can change the classification
of a job title within a university. For example, “director” and “associate director”
may not belong to the same category within a university.

The second type of misclassification is avoidable. Avoidable misclassifications
are due to the limitations of the random forest classifier. Below are examples of
misclassified job titles along with the prediction made by the random forest, followed
by the true class in parentheses.

Undergraduate fellow — graduate (undergraduate)
Temporary visiting faculty — staff/other (faculty)
Teaching assistant — staff/other (graduate)

Summer term ra (w/o tuit ben) — staff/other (graduate)
GR AST 1/2 — staff/other (graduate)

The first two examples illustrate the tendency of the random forest classifier to rely
too much on certain words. The word “fellow” is strongly associated with graduate
student. Thus, if “fellow” is selected as a branching rule before “undergraduate”,
the job title “undergraduate fellow” will be buried in a node that is predominantly
graduate students. Similarly, the word “temporary” is often associated with a staff
member and almost never used for faculty. The partially supervised machine learning
algorithm described in the previous section is intended to address these issues.
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The third example illustrates failure to utilize very informative words or phrases.
The presence of the phrase “teaching assistant” in a job title is a good indicator of
the employee being a graduate student. However, the absence of the phrase “teaching
assistant” in the job title is not a good indicator of the employee not being a graduate
student (i.e., there are many graduate students who are not teaching assistants). Thus,
when the phrase “teaching assistant” is used for branching, the resulting decrease in
the impurity of the succeeding node is negligible. Since the random forest classifier
selects the feature that minimizes the weighted average of impurities at succeeding
nodes, the phrase “teaching assistant” is unlikely to be selected.

The last two examples illustrate inability of the random forest classifier to use out-
side knowledge. A human classifier can infer “w/o tuit ben” means “without tuition
benefit” and conclude that the job title is associated with a student. Similarly, “1/2”
suggests that the person has a half-time appointment, and therefore is likely to be
a student. Thus, one may infer that “gr ast” means “graduate assistant”. As seen in
the previous example, these phrases are extremely informative; however, because of
their rare occurrence and applicability to only a small fraction of employees, these
pieces of information tend to be overlooked by the random forest classifier.

In theory, the misclassifications described above might be reduced by providing
more training data, adjusting parameters, appealing to other machine-learning algo-
rithms, or reverting to manual classification.

7. Conclusions

This paper used arich dataset — to our knowledge, the first dataset with detailed job
titles drawn from the HR systems of multiple organizations, combined with job de-
scriptions and information about the characteristics of workers — to examine the po-
tential of machine-learning techniques for occupational classification. We followed
the conceptual framework of survey methodologists: define each occupation, trans-
late concepts to standardized protocols, and build an approach that infers occupations
from the information at hand. Even though the data were drawn from very similar or-
ganizations, with very similar production functions, we found that machine-learning
approaches were not substantially better than manual classifications.

However, we do see our approach as promising for inexpensively assigning oc-
cupations for job titles that have relatively few people in them and/or for which the
algorithm imputes a high degree of accuracy. Because many job titles have only a few
people in them, this approach could yield substantial cost savings (almost 80% of job
titles have 10 or fewer people). At the same time, an entirely algorithmic approach
would be unwarranted in our case.

We also believe that a deeper text analysis of the job descriptions associated with
job titles might prove to be a promising approach. Job descriptions typically include
information about necessary experience, skills, and education, which is not only of
interest in its own right but could be very useful for classification purposes.
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We note that the focus on universities as a subject of analysis has weaknesses and
strengths. Major research universities are very large and complicated institutions.
There may be other industries in which it might be easier to apply machine learning
to job titles. At the same time, the institutions in our sample all come from one narrow
sector of the economy; they are relatively homogeneous and the data are based on a
very specific set of activities (research). We speculate that any classification system
for the broader economy would have to be specific to an individual sector or set of
sectors.

Acknowledgments

Any opinions and conclusions expressed herein are those of the authors and do
not necessarily represent the views of the U.S. Census Bureau. All results have been
reviewed to ensure that no confidential information is disclosed. This research was
supported by the National Center for Science and Engineering Statistics. NSF SciSIP
Awards 1064220 and 1262447; NSF Education and Human Resources DGE Awards
1348691, 1547507, 1348701, 1535399, 1535370; NSF NCSES award 1423706;
and the Ewing Marion Kaufman and Alfred P. Sloan Foundations. Lane was sup-
ported through an Intergovernment Personnel Act assignment to the US Census Bu-
reau. Weinberg is grateful for support from R24 AG048059, R24 HD058484, UL1
TRO000090, the National Institute on Aging and the Office of Behavioral and So-
cial Science Research via PO1AG039347 (on which Weinberg and his work were
supported directly by the National Bureau of Economic Research and indirectly by
Ohio State). The research agenda draws on work with many coauthors, but espe-
cially Jason Owen Smith. We also acknowledge the tremendous contributions made
to occupation coding by Gus Bradley, Larkin Cleland, Luke Fesko, Michael Frank,
Dinushi Kulasekere, Tristan Myers, Rachel Notestine, Eric Spurlino, Samantha Stel-
nicki, Tiger Sun, Varuni Sureddy, Jacob Zeiher, and especially Cameron Conrad.

References

[1] Mellow W, Sider H. Accuracy of response in labor market surveys: Evidence and implications. J
Labor Econ. 1983; 331-44.

[2] Mathiowetz NA. Errors in reports of occupation. Public Opin Q. 1992; 352-5.

[3] Workforce Information Council Administrative Wage Record Enhancement Study Group. Enhanc-
ing Unemployment Insurance Wage Records Potential Benefits, Barriers, and Opportunities [Inter-
net]. Washington DC; 2015. Available from: https://www.bls.gov/advisory/bloc/enhancing-unemp
loyment-insurance-wage-records.pdf.

[4] Workforce Information Advisory Council. Recommendations to improve the nation’s workforce
and labor market information system [Internet]. Washington DC; 2018. Available from: https://
www.doleta.gov/wioa/wiac/docs/WIAC_Recommendations_Report_2018-01-25_Final_and_
Signed.pdf.

[S] United States Chamber of Commerce. Developing an Open, Public-Private Data Infrastructure for



76

(6]
(7]

(8]
(91

[10]

[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

A. Tkudo et al. / Occupational classifications: A machine learning approach

the Talent Marketplace: Phase 1 Report [Internet]. Washington DC; 2018. Available from: https://
www.uschamberfoundation.org/sites/default/files/T3Phase1_Report_ FINAL_O.pdf.

Abowd JM, Haltiwanger JC, Lane JI, Hall I. Longitudinal Employer Household Dynamics Inte-
grated Longitudinal Employee-Employer Data for the United States; 2004.

Acemoglu D, Akcigit U, Bloom N, Kerr WR. Innovation, reallocation and growth. National Bureau
of Economic Research; 2013.

Weeden KA, Grusky DB. The case for a new class map 1. Am J Sociol. 2005; 111(1): 141-212.
Alonso-Villar O, Del Rio C, Gradin C. The extent of occupational segregation in the United States:
Differences by race, ethnicity, and gender. Ind Relations a J Econ Soc. 2012; 51(2): 179-212.
Bound J, Brown C, Mathiowetz N. Chapter 59 — Measurement Error in Survey Data. In: Handbook
of Econometrics [Internet]. 2001. pp. 3705-843. Available from: http://www.sciencedirect.com/
science/article/pii/S1573441201050127.

Abraham KG, Spletzer JR. New evidence on the returns to job skills. Am Econ Rev. 2009; 99(2):
52-17.

Fisher JD, Houseworth C. Occupation Inflation in the Current Population Survey. US Census Bur
Cent Econ Stud Pap No CES-WP-12-26; 2012.

Commission on Evidence based Policy. The Promise of Evidence-Based Policymaking [Internet].
Washington DC; 2017. Available from: www.cep.gov.

Hart N, Shaw T. Congress Provides New Foundation for Evidence-Based Policymaking [Internet].
Washington DC: Bipartisan Policy Center; 2018. Available from: https://bipartisanpolicy.org/blog/
congress-provides-new-foundation-for-evidence-based-policymaking/.

Texas Workforce Commission. Report to the Sunset Advisory Commission Study on the Collection
of Occupational Data. Austin, Texas; 2016.

Athey S. The impact of machine learning on economics. In: The Economics of Artificial Intelli-
gence: An Agenda. University of Chicago Press; 2018.

Kleinberg J, Lakkaraju H, Leskovec J, Ludwig J, Mullainathan S. Human decisions and machine
predictions. Q J Econ. 2017; 133(1): 237-93.

Ghani R, Schierholz M. Machine Learning. In: Foster I, Ghani R, Jarmin R, Kreuter F, Lane J, eds.
Big Data and Social Science: A Practical Guide to Methods and Tools. Taylor & Francis; 2016.
Bethmann A, Schierholz M, Wenzig K, Zielonka M. Automatic Coding of Occupations. Proc Stat
Canada Symp. 2014; 2931.

Tijdens KG. Reviewing the measurement and comparison of occupations across Europe. AIAS
Work Pap. 2014; 149.

Lane J, Owen-Smith J, Rosen R, Weinberg B. New linked data on science investments, the scientific
workforce and the economic and scientific results of science. Research Policy; 2014.

Weinberg BA, Owen-Smith J, Rosen RF, Schwarz L, Allen BM, Weiss RE, et al. Science funding
and short-term economic activity. Science (80-) [Internet]. 2014 Apr 4; 344(6179): 41-3. Available
from: http://www.sciencemag.org/content/344/6179/41.short and available in full at http:/www.
cssip.org/work.

James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning (Vol. 103). New
York: Springer. MATH; 2013.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
learning in python. J Mach Learn Res. 2011; 12(Oct): 2825-30.

Appendix I

1. Detailed description of occupations

This section lays out the occupation categories that we use, their conceptual def-
inition, and some illustrative job titles. The aggregate occupations are listed first.
Staff are subdivided into additional categories, which are laid out below.
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(1) Faculty

All advanced academic employees who are directly involved in scientific research
and/or scientific instruction. These included Deans, Provosts, Tenure/tenure track,
Clinical, Research, Visiting Professors, Academic specialists, Center directors.

(2) Post graduate research

All individuals holding terminal degrees (PhD, MD) who are in temporary train-
ing status. These included Postdoctoral, Medical residents/interns/fellows, Clinical
fellowships, Research Associates (depends on the university).

(3) Graduate student
Students earning advanced degrees: Graduate students (part time, full time), Med-
ical/dental/nursing/students, Research Assistants.

(4) Undergraduate

Students earning baccalaureate/other degrees including full time, part time, sum-
mer research assistants, work study; includes high school students who would likely
be acting in a similar capacity. These included Undergraduate students, High school
students, Interns/student workers, Nursing students in BA programs.

(5) Staff/other (not elsewhere classified)

Positions that support general university functions such as undergraduate educa-
tion and student activities. Employees whose titles cannot be attributed to the sci-
entific research enterprise. These included at the aggregate level: Staff Instructional,
Research, Research Facilitation, Technician, Clinical, Other Staff. The disaggregated
staff categories include the following:

1. Clinical Staff: All non-faculty health care professionals, Nurses (non-faculty),
Dieticians (non-faculty), Nutritionists, Social workers, Physical therapists,
Clinical psychologists, Dental hygienists, Genetics counselors.

2. Instructional Academic Specialists: Lecturers, Instructors, Adjunct Professors.

3. Research Facilitation: Non-faculty, high level administrators — asst. dean/asst.
provost, associate or assistant center director, Operations managers/managing
directors, Administrative/clerical staff — any kind, Finance staff, Regula-
tory staff, Clinical or clinical research support staff, Laboratory aide, Data
collection/interviewer, Media jobs: Graphics/writer/editor/communications,
Grants management & administration, Individuals who serve as managers/
coordinators/facilitators for laboratory studies/clinical trials/large facilities/
research programs (they direct and influence scientific research activity from
the level of the laboratory up to the level of the university/research center),
Research dean/provost/administrator, Facility director/administrator, Clinical
research administrator, Study coordinators, IACUC coordinators, Clinical tri-
als/research coordinator, Project/Program manager/coordinator, Lab coordina-
tor (not lab manager), Facility/repository manager/coordinator.
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4. Research Staff: Work likely focuses on scientific aspects of research. All ad-
vanced degree qualified, non-faculty scientists and engineers; Research spe-
cialist/engineer: Work likely focuses on advanced research analysis; Research
professional/specialist; Statistician, bioinformaticist; Research associate (de-
pends on the university); Skilled and specialized employees who have been
specifically trained in some area of science and technology; Science Techni-
cians: All technical staff including animal technicians, machinists, mechanics
(the category usually includes some reference to a research facility along with
the title ‘technician’); Lab manager; Medical or clinical technician; Research
data technician; Regulatory officer (environmental, chemical safety, industrial
hygienist); Technical engineer.

5. Technician: Administrative and technical employees who are not specifically
employed for scientific research purposes but perform job tasks that support
the research enterprise; Information technology managers & staff; Software
engineer; Data entry/data analyst; Network and systems support.

6. Staff Other: All other research staff that do not clearly fall into another cate-

gory.
2. Normalization

We developed a rule-based job title cleaning algorithm. In particular, we created
a mapping from abbreviation to normalized word. For example, “grad” is mapped
to “graduate” and “mngr” is mapped to “manager”. The list of abbreviations and
possible normalized words were obtained from job titles from eight universities in
the UMETRICS dataset, and mappings were created manually.

Abbreviations with multiple possible normalizations were noted (e.g., “res” can
be an abbreviation for “research” or “respiratory”; “ast” can be an abbreviation for
“assistant” or “astronomy’’). Then context-specific normalization (i.e., normalization
of phrases) was attempted. For example, both “res” and “ast” are ambiguous abbrevi-
ations; however, when they are combined, one can infer “res ast” is an abbreviation
for “research assistant”. Normalizing rules for phrases were manually generalized
using regular expressions.

When an abbreviation could represent either a person or a field (or an object) that
are closely related, we chose the field in general. For example, “scien”, “enginee”,
and “crimnl” were normalized to science, engineering, and criminology, instead of
scientist, engineer, and criminologist, respectively. The reason is that it seems more
harmful to label non-engineers in engineering departments an “engineer” than to la-
bel an engineer “engineering”. When an abbreviation is strongly associated with an
occupation, however, we normalized it to represent a person. For example, “lect” and
“consul” were normalized to lecturer and consultant instead of lecture and consult-
ing, respectively. These are somewhat ad-hoc rules, but these abbreviations are few,
and we expect they have a negligible effect on the performance of machine learning
algorithms.
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When creating the normalization mapping, we preserved common acronyms such
as “CSE” for Computer Science and Engineering and “MRI” for magnetic resonance
imaging. We expect normalizing these terms has a minimal impact on the predictive
accuracy because they identify the fields employees work in but contain little infor-
mation on tasks they perform.

At the same time the mapping was created, omissions of spaces were noted and a
decomposition mapping was created. For example, we encountered job titles such as
“rsrchanalyst”, which was added to the decomposition mapping along with the cor-
rection “rsrch analyst”. Common stems in compounds, such as bio in biochemistry
and neuro in neurosurgery, were not decomposed and compounds were treated like
words.

Finally, on the normalization list, we had some abbreviations that are only two
letters long. For example, we left “IT” as it is, assuming that it represents Informa-
tion Technology. However, these could be an abbreviation of some other words or
phrases. In our data, we did not find any instances where there was a more suit-
able normalization, but researchers should be aware that too much guessing when
standardizing could introduce more noise than it eliminates.

Aside from working out the details, the major problem with the above described
normalization algorithm is that the mapping is not comprehensive. For example,
“research” may be mapped from “resear”, “rsrch”, and “resch”, but if there is no
mapping from “resech” to “research”, “resech” will remain abbreviated. By compar-
ing manually normalized job titles and normalization returned by the algorithm, we
identified normalizations that were not captured by the normalization mapping, and
iteratively revised our normalization mapping. We also wrote regular expressions to
normalize words that frequently appear in our data such as “research”, “postdoc-
toral”, and “administrator”.

3. Coding decisions

There are also some methodological issues of interest. First, we designed our clas-
sification to increase certainty: grouping workers whose jobs were so similar that it
would be hard to separate them based on job titles (and for whom the value of distin-
guishing occupations has the least value). Second, we employed a two-level system,
where the first-level occupation can frequently be assigned with a high degree of cer-
tainty, and much of the uncertainty appears at the second level. Third, we assigned
up to two occupations to each job title to allow researchers to probe the sensitivity
of results. Fourth, we rated job titles based on the degree of certainty that they were
correctly classified on a scale of 1-5. Our coding system was:

(5) The job title serves as an immediate identifier into this classification category
or, through research, it is almost certain that it belongs in this category: e.g.
Post Doctoral Researcher; Computer Technician.

(4) The job title probably belongs in the category indicated, as supplemented by
research on university website.



80 A. Tkudo et al. / Occupational classifications: A machine learning approach

(3) The job title belongs in the category (either aggregate or disaggregate) with
moderate certainty (either very indicative job title or research result, but not
both).

(2) The job title is vague and/or ambiguous, but there is some indication that the
position belongs in this category.

(1) The job title may belong in this category, but there is little certainty, and the
classification cannot be verified through research.

After manual classification, universities were given the opportunity to review and
comment on the classification, with their attention drawn to the largest and most
ambiguous titles.

Appendix II
A. Different numbers of employees

For the eight universities used in the above analyses, the number of employees
ranged roughly from 5,000 to 20,000. When we train the random forest classifier on
seven universities, it is possible that the shape of a tree is heavily influenced by a few
universities in the training set with a large number of employees. To investigate this
possibility, the training set was modified so that universities in the training set have
roughly equal numbers of employees. The modifications were made in two ways:
inflating and deflating.

(1) Inflating

Let N, ; = number of employees at university u for job title ¢, and IV,, = number
of employees at university u.

Then the modified number of employees is

max, {N,}

N, ’
rounded to the nearest integer. For example, if university X has a total of 16,000
employees and if the largest university in the training set has a total of 20,000 em-
ployees, the number of employees for each title at university X is multiplied by 1.25

and rounded to the nearest integer. If a title has 3 employees, the inflated number of
employees is 1.25 x 3 = 3.75, so it will be rounded to 4.

Nu,t = Nu,t X

(2) Deflating

Instead of scaling up the number of employees to the level of the largest university
in the training set, deflating scales down the number of employees to the level of the
smallest university:

~ min, {N,
Nu,t = Nuﬂg X #
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For example, if university X has a total of 20,000 employees and if the smallest
university in the training set has a total of 5,000 employees, the number of employees
for each title at university X is multiplied by 0.25 and rounded to the nearest integer.
If a title has 10 employees, the deflated number of employees is 10 x 0.25 = 2.5, so
it will be rounded to 3. If a title has 1 employee, the deflated number of employees is
1 x 0.25 = 0.25, so it will be rounded to 0. In other words, the title will be dropped
from the training set.

Results

As evident in Table Al, inflating and deflating the number of employees in the
training set has no meaningful effect on the unweighted accuracy. There is a lit-
tle improvement in the weighted accuracy for big universities when the number of
employees in the training set is deflated. One possible explanation is that deflating
reduces the noise in the training data because uncommon job titles are dropped from
the training set due to rounding if the deflated number of employees is less than 0.5.

Table Al
Accuracy when total weight is balanced across universities
Size of university Weight Benchmark  Inflating  Deflating
All universities Unweighted 0.83 0.83 0.82
Big universities Unweighted 0.87 0.86 0.86
Small universities ~ Unweighted 0.80 0.80 0.79
All universities Weighted 0.84 0.82 0.85
Big universities Weighted 0.83 0.82 0.86
Small universities ~ Weighted 0.84 0.82 0.82

B. Discarding thin titles

The number of employees per job title ranged from 1 to nearly 10,000 for the
eight universities, with the average being 24.4 employees per title. Concerned that
the sparsely populated titles in the training set are particularly “noisy”, we investi-
gated the effect of dropping thin titles from the training set. The question we tried to
answer is “Do thin titles negatively affect the learning and consequently degrade the
performance of predicting for heavily populated titles?”

For each university, we used the remaining seven universities for training and dis-
carded the titles with fewer than a certain number of employees in them from the
training set. We used the threshold of 5, 25, and 50 employees per title. Then we
recorded the average predictive accuracy for titles grouped by the number of employ-
ees per title: 1-4 employees, 5-24 employees, 25-49 employees, 50-99 employees,
100—499 employees, 500-999 employees, and 10004 employees. The idea is that
dropping titles that have fewer than a certain number of employees from the train-
ing set may have different effects on the prediction accuracy for thin titles and for
heavily populated titles.

Results
The resulting prediction accuracies are shown in Table A2. Cutoff = 0 corresponds
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to the benchmark, where all job titles are included in the training set. As the cutoff
value increases, more and more job titles are excluded from the training data. There is
a small decrease in accuracy caused by discarding uncommon titles for job titles that
are relatively thin. In contrast, the accuracy improves as the cutoff increases for job
titles with 1000 or more employees. This is expected because highly populated job
titles tend to have simple, straightforward descriptions and therefore do not benefit
from infrequently used features brought to the training set by uncommon job titles.
Indeed, excluding uncommon job titles from the training set makes the training set
less noisy, allowing the random forest classifier to construct better decision trees with
a high predictive accuracy.

Table A2
Accuracy when thin titles are discarded from the training set

Size of title Weight Cutoff =0 Cutoff =5 Cutoff =25  Cutoff = 50

<5 Unweighted 0.81 0.81 0.82 0.80
5-24 Unweighted 0.84 0.84 0.84 0.82
25-49 Unweighted 0.91 0.91 0.91 0.89
50-99 Unweighted 0.88 0.87 0.86 0.84
100-499 Unweighted 0.82 0.82 0.85 0.82
500-999 Unweighted 0.88 0.88 0.88 0.88
> 1000 Unweighted 0.75 0.83 0.92 0.92
<5 Weighted 0.82 0.82 0.83 0.81
5-24 Weighted 0.83 0.83 0.83 0.81
25-49 Weighted 0.92 0.91 0.92 0.89
50-99 Weighted 0.88 0.87 0.86 0.84
100-499 Weighted 0.80 0.79 0.82 0.80
500-999 Weighted 0.90 0.90 0.90 0.90
> 1000 Weighted 0.79 0.85 0.93 0.93

C. Fartially unsupervised learning

After observing that titles like “Graduate Assistant” are not always correctly clas-
sified, we applied partially unsupervised learning. The incorrect classification ap-
pears to happen because of “extraneous” information in some job titles. In partic-
ular, titles that contain the word (after applying the job cleaning algorithm) “fac-
ulty”, “professor”, “postgraduate”, “postdoctoral”’, “graduate” or “‘undergraduate”
were classified first and then the random forest was applied to the remaining titles
(both the training set and the test set consist of titles that do not contain any of the
words listed above).

The resulting accuracies are shown in Table A3. There is no real difference in the
unweighted accuracy between the supervised learning benchmark and partially un-
supervised learning. Contrary to our expectation, the weighted accuracy deteriorated
for the universities with granular job titles, while it improved for the universities
with coarse job titles. This suggests a possibility of overfitting; in the absence of
very important features such as “faculty” and “undergraduate”, less important fea-
tures appear to be more important than they actually are. One possible solution is to
recalibrate the parameters to filter out marginally informative features.
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Table A3
Accuracy using partially supervised learning
University Weight Benchmark  Partially unsupervised
All universities Unweighted 0.83 0.83
Universities with coarse job titles Unweighted 0.90 0.91
Universities with granular job titles ~ Unweighted 0.79 0.79
All universities Weighted 0.83 0.84
Universities with coarse job titles Weighted 0.82 0.86
Universities with granular job titles ~ Weighted 0.84 0.81

D. Using age and wage data

Census Bureau links permitted us to examine whether or not having information
on individuals’ age and earnings increased the quality of prediction. These variables
would appear to be valuable predictors, especially in this context because of the large
differences in ages and earning across occupations. As shown in Table A4, there is
some gain, but it is not extraordinarily high across the board. The largest gains, by
far, are for undergraduates when occupations are weighted by the number of people
in them. The benchmark analysis shows the predictive accuracy for all individuals
whose true occupation falls in the occupation indicated in the row heading. The col-
umn headed “age and wage” shows the predictive accuracy for individuals for whom
we have age and wage information (i.e., subset of the benchmark population). For
this subset of population, the “age” column shows the accuracy when age is used
along with job title for prediction; the “wage” column shows the accuracy when
wage is used along with job title for prediction; the “age and wage” column shows
the accuracy when both age and wage are used along with job titles for prediction.

Table A4
Accuracy using age and wage data

Actual Benchmark  Sample with age  Using age  Using wage Using age

occupation and wage data data data and wage data
Fraction of individuals whose predicted class matches the true class by true class

Faculty 0.81 0.87 0.88 0.88 0.89
Graduate 0.09 0.73 0.73 0.73 0.73
Staff/other 0.97 0.96 0.96 0.94 0.94
Postdoc 0.87 0.57 0.63 0.70 0.63
Undergrad 0.23 0.17 0.36 0.39 0.37
Overall 0.65 0.82 0.84 0.84 0.84
Fraction of job titles whose mode of predicted classes matches the true class by true class
Faculty 0.81 0.90 0.90 0.92 0.92
Graduate 0.09 0.13 0.12 0.12 0.12
Staff/other 0.97 0.95 0.97 0.95 0.96
Postdoc 0.87 0.85 0.87 0.86 0.86
Undergrad 0.23 0.10 0.08 0.10 0.09
Overall 0.65 0.78 0.79 0.79 0.79

One interesting observation is that the predictive accuracy increases drastically for
graduate students with age and wage information. This may be because common job
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titles like teaching assistant are associated with more standardized hiring procedures
that increase the chance of students’ information being stored in a more organized
way on the university system. This effect, however, disappears when the job titles are
not weighted by the number of employees associated with that job title (the bottom
half of the table). This could be due to idiosyncratic job titles and associated non-
standardized hiring processes.

The table also shows that correctly classifying undergraduate students is partic-
ularly difficult even with the information on age and wage. This is probably due
to heterogeneity within the undergraduate researcher body: there are traditional stu-
dents straight out of high school as well as adult students, who are often employed.

E. Transitional and concurrent titles

As indicated, people can hold multiple titles at a point in time (or in close succes-
sion) and can transition between titles. As some transitions are more common than
others (i.e., a transition from undergraduate to graduate to postgraduate to faculty
is more common than the reverse set of transitions), it is possible to use transitions
between titles and concurrent titles (more precisely, occupational classes that are as-
sociated with these titles) as predictors in the random forest classifier to improve
predictive accuracy. Transitional and concurrent titles can also be used to identify
unlikely transitions in the “ground-truth” data, providing an opportunity for a revi-
sion. Beyond improving the accuracy of the data, exploring concurrent positions and
transitions can add to the richness of our data by providing information on career
paths.

Using concurrent job titles and the transitions between job titles requires some
form of iterative procedure. Obviously, the complete mapping between the set of job
titles to itself is too high dimensional to be of any practical use. Thus, we use the
following approach. In the first iteration, we predict occupational class using only
job titles as predictors. In the second iteration, the predicted classes of the transi-
tional/concurrent titles from the first iteration are used as predictors, along with the
job titles. In principle, this process could be iterated until the prediction converges
according to some criterion. The example in Table SA, where an individual held three
job titles in sequence, illustrates our approach.

In this example, “postdoctoral researcher” is pivotal. Because the job title is so
informative, its predicted class during the second iteration is not affected by the
wrong prediction for the preceding title (i.e., it is unlikely to transition directly from
undergraduate to postgraduate, but it is even more unlikely for a non-postgraduate
student to have a job title “postdoctoral researcher’).

Of course, the time gap between the consecutive titles should also be taken into
account. In this example, if the time gap between “research assistant” and “postdoc-
toral researcher” is more than several years, the initial prediction of undergraduate
for the job title “research assistant” may be more appropriate than the revised pre-
diction of graduate. Here, we do not leverage the time gap between job titles in the
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Table A5
Tllustration of iterative procedure using transitions
Job title Preceding class  Concurrent class  Succeeding class Prediction

First iteration:

Student help - Staff

Research assistant - - Undergraduate

Postdoctoral researcher - Postgraduate
Second iteration:

Student help Undergraduate Undergraduate

Research assistant Staff Postgraduate Graduate

Postdoctoral researcher  Undergraduate Postgraduate
Third iteration:

Student help Graduate Undergraduate

Research assistant Undergraduate Postgraduate Graduate

Postdoctoral researcher ~ Graduate Postgraduate

model, but do include age, which contains somewhat similar information regarding
the timing of job titles.

One issue with the iterated prediction procedure is that the convergence is not
guaranteed, especially when there is no pivotal job title. For example, consider an
individual who held two job titles simultaneously shown in Table A6.

Table A6
Illustration of iterative procedure to use concurrent titles
Job title Preceding class  Concurrent class  Succeeding class Prediction

First iteration:

Tutor - Graduate

Grader - Undergraduate
Second iteration:

Tutor Undergraduate Undergraduate

Grader Graduate Graduate
Third iteration:

Tutor Graduate Graduate

Grader Undergraduate Undergraduate

Because we cannot say whether a tutor or a grader is definitely an undergraduate
or graduate, it is possible that, when making a revised prediction, the random forest
classifier will simply adopt the classification for the concurrent title predicted in the
previous iteration. As a result, the prediction will flip-flop and the algorithm will
never stop. Of course, the presence of other people in these occupations mitigates
this problem at least to some extent.

(1) Data construction

As a first step toward incorporating transitional and concurrent classes in the ran-
dom forest classifiers, we included the manually classified transitional and concur-
rent classes in our training data in the model rather than predicted occupations. The
resulting predictive accuracy is expected to provide an upper bound for the accuracy
obtained from the iterated procedure described above.
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To construct our sample, the monthly transaction records were collapsed at the
individual-title-year level. That is, for each individual, for each calendar year, for
each job title held during the year, we kept the individual-title-year record if the
individual appeared in the transaction record both before July 1 and after September
30 with the job title. This is to avoid potential noise in the data when annual income
is merged. Suppose an undergraduate student held a research assistant position from
January through June. Then he or she graduated and obtained a full-time job. If the
individual was included in our sample, it would appear that the annual income of
the individual is too high to be an undergraduate, and it can potentially mislead the
random forest classifier.

The concurrent job titles are defined to be a group of job titles that were held
by an individual within a year. When there were multiple concurrent job titles, we
selected the one for which the individual was paid the longest. The preceding job title
is defined to be a job title held by an individual in the years preceding the current
year. When there were multiple preceding job titles, we selected the most recent
one. The succeeding job title is defined to be a job title held by an individual in the
years succeeding the current year. When there were multiple succeeding job titles, we
selected the one that immediately followed the current job title. Because we restricted
our sample to individuals appearing in the transaction data between 2012 and 2014,
the occurrence of multiple concurrent or transitional job titles was rare.

Before fitting the random forest classifier, transitional and concurrent classes were
binarized because the random forest classifier cannot process categorical data. Each
of preceding, concurrent, and succeeding class variables was decomposed into five
indicator variables (faculty, postgraduate, graduate, undergraduate, and staff/other).

(2) Methodology
To properly measure the effect of including transitional/concurrent classes on the
predictive accuracy, we created the following subsets of observations:

— Everyone: Every observation

None: Observations without any transitional or concurrent titles

Prec: Observations with preceding title (may or may not have succeeding or
concurrent titles)

Succ: Observations with succeeding title (may or may not have preceding or
concurrent titles)

Conc: Observations with concurrent title (may or may not have preceding or
succeeding titles)

Any: Observations with at least one of preceding, succeeding, or concurrent
title (can have multiple)

We expect that inclusion of transitional/concurrent classes have no effect on occu-
pations where no observations have any transitional/concurrent classes while it will
have the largest effect on occupations with many cases with all of the three classes.
Each of the six subsets listed above served as a test set, and the random forest classi-
fier was fitted with and without transitional/concurrent classes as predictors.
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Regarding the training set, it is unclear whether the set should be restricted in the
same way as the test set. Consider the test set “Prec”. On the one hand, it seems
reasonable to restrict the training set to only observations with preceding titles. This
is because if observations without preceding title were to be included in the train-
ing set, the importance of the preceding class in predicting the current class may be
discounted. On the other hand, requiring observations in the training set to have pre-
ceding titles greatly reduces the number of qualified observations, possibly leading
to overfitting. Since the effect of restricting the training set is unclear, we fitted the
random forest classifier with and without restriction on the training set.

As shown in Table A7, including the concurrent and transitional occupation has
minimal effect on the predictive accuracy. This is most likely due to the limited num-
ber of relevant observations in the training set; therefore, as more universities partic-
ipate in the IRIS project and provide data over a longer time period, the concurrent
and transitional occupation may become a useful predictor.

Table A7
Accuracy using transitional and concurrent titles
Features Training set Everyone None Prec Succ Conc Any
Job title Unrestricted 0.83 0.83 0.82 0.84 0.83 0.83
Job title and occupation Unrestricted 0.82 0.82 0.83 085 0.82 0.84
Job title Restricted to relevant group 0.83 0.82 0.83 0.82 0.86 0.83

Job title and occupation Restricted to relevant group 0.82 0.83 0.83 085 0.78 0.83




Copyright of Journal of Economic & Social Measurement is the property of |OS Press and its
content may not be copied or emailed to multiple sites or posted to alistserv without the
copyright holder's express written permission. However, users may print, download, or email
articlesfor individua use.



