Why Don’t Jobseekers Search More? Barriers and Returns to Search on a Job Matching Platform

Erica Field Robert Garlick
Nivedhitha Subramanian Kate Vyborny
Motivation

- Job search is central to many labor economics questions
 - Specific search frictions influence aggregate unemployment, matching efficiency, distribution
 - Returns to search inform policies like search requirements and subsidies
Motivation

- Job search is central to many labor economics questions
 - Specific search frictions influence aggregate unemployment, matching efficiency, distribution
 - Returns to search inform policies like search requirements and subsidies
- Job search & matching platforms are useful setting to study this: increasingly common, very low search costs, sometimes very low activity by users
Motivation

- Job search is central to many labor economics questions
 - Specific search frictions influence aggregate unemployment, matching efficiency, distribution
 - Returns to search inform policies like search requirements and subsidies
- Job search & matching platforms are useful setting to study this: increasingly common, very low search costs, sometimes very low activity by users
- This paper: how non-pecuniary application costs influence search and the returns to reducing them
Economic Environment
Context & Sample

- Work in Lahore, Punjab, Pakistan
 - Adult employment 10% for women & 83% for men
 - Relatively low unemployment & formal search
Context & Sample

- Work in Lahore, Punjab, Pakistan
 - Adult employment 10% for women & 83% for men
 - Relatively low unemployment & formal search

- Sample
 - Representative listing of $\approx 50,000$ households
 - $\approx 9,000$ people sign up for Job Talash platform
 - Sample includes marginal jobseekers missing from studies that recruit only active jobseekers (J-PAL, 2022)
Context & Sample

▶ Work in Lahore, Punjab, Pakistan
 ▶ Adult employment 10% for women & 83% for men
 ▶ Relatively low unemployment & formal search

▶ Sample
 ▶ Representative listing of ≈ 50,000 households
 ▶ ≈ 9,000 people sign up for Job Talash platform
 ▶ Sample includes marginal jobseekers missing from studies that recruit only active jobseekers (J-PAL, 2022)

▶ Jobs on the platform
 ▶ ≈ 1,350 job ads from ≈ 650 firms, recruited from firm listing
 ▶ Wide range of job ads: computer operator, intern, HR manager, makeup artist, salesperson, sweeper
Job Matching Process

1. Jobseekers register, provide CVs & occupation preferences
2. Firm post ads
3. Jobseekers match to ads based on education, experience, preferences
4. Jobseekers receive batches of matches
5. Jobseekers choose whether to apply
6. Platform sends applications to firms
7. Firms invite jobseekers to interviews
Job Matching Process

1. Jobseekers register, provide CVs & occupation preferences
2. Firm post ads
3. Jobseekers match to ads based on education, experience, preferences
4. Jobseekers receive batches of matches
5. **Jobseekers choose whether to apply** \iff **outcome**
6. Platform sends applications to firms
7. **Firms invite jobseekers to interviews** \iff **outcome**
Job Matching Process

1. Jobseekers register, provide CVs & occupation preferences
2. Firm post ads
3. Jobseekers match to ads based on education, experience, preferences
4. **Jobseekers receive matches** \leftarrow *key stage*
5. Jobseekers choose whether to apply
6. Platform sends applications to firms
7. Firms invite jobseekers to interviews
Sending Matches

- Sent by text message, facilitating lower-SES access
- Jobseekers only see matched jobs
- SMS contains title, firm, salary, location of and distance to job
- ≈ 1.1 million matches
Sending Matches

Differences from most platforms:

- Sent by text message, facilitating lower-SES access
- Jobseekers only see matched jobs
- SMS contains title, firm, salary, location of and distance to job
- ≈ 1.1 million matches
Job Search on the Platform

- Job search on our platform
 - Mean matches per month: 3
 - Mean applications per month: 0.03 (not uniquely low)
 - 6% of applications yield interviews
Job Search on the Platform

- Job search on our platform
 - Mean matches per month: 3
 - Mean applications per month: 0.03 (not uniquely low)
 - 6% of applications yield interviews

- Jobseekers select into applying, but selection isn’t clearly positive or negative

- Applications are directed to better-than-average vacancies
Job Search on the Platform

- Job search on our platform
 - Mean matches per month: 3
 - Mean applications per month: 0.03 (not uniquely low)
 - 6% of applications yield interviews

- Jobseekers select into applying, but selection isn’t clearly positive or negative

- Applications are directed to better-than-average vacancies

- What would happen if users applied more?
Research Design
Experimental Design

- Design
 - Randomize jobseekers into receiving matches by **text message only** or **text message + phone call**
 - Firms are blind to jobseeker treatment assignment
 - Outcomes of interest: job applications and interviews
Experimental Design

- Design
 - Randomize jobseekers into receiving matches by text message only or text message + phone call
 - Firms are blind to jobseeker treatment assignment
 - Outcomes of interest: job applications and interviews

- Treatment is designed to shift cost of applying
 - Cost = time and/or psychic
 - Applying = evaluating matches and/or communicating decision
Experimental Design

- **Design**
 - Randomize jobseekers into receiving matches by **text message only** or **text message + phone call**
 - Firms are blind to jobseeker treatment assignment
 - Outcomes of interest: job applications and interviews

- **Treatment is designed to shift cost of applying**
 - Cost = time and/or psychic
 - Applying = evaluating matches and/or communicating decision

- **Experimental design holds roughly constant**
 - Pecuniary costs
 - Incentives or pressure to apply
 - Information content
Search & Returns to Search
Treatment Increases Job Applications

<table>
<thead>
<tr>
<th></th>
<th>(1) Applied</th>
<th>(2) Interviewed</th>
<th>(3) Interviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>0.01326 (0.00075)</td>
<td>0.00078 (0.00009)</td>
<td>0.05866 (0.00493)</td>
</tr>
<tr>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean outcome</td>
<td>0.00185</td>
<td>0.00011</td>
<td>0.00011</td>
</tr>
<tr>
<td>T = 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = 0, Applied = 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p: IV = mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = 0, Apply = 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># matches</td>
<td>1113996</td>
<td>1113996</td>
<td>1113996</td>
</tr>
<tr>
<td># jobseekers</td>
<td>9805</td>
<td>9805</td>
<td>9805</td>
</tr>
<tr>
<td>First stage F-stat</td>
<td></td>
<td></td>
<td>312.9</td>
</tr>
</tbody>
</table>

Coefficients in non-IV columns are from regressing each outcome on treatment assignment and stratification block fixed effects. Coefficients in IV columns are from regressing each outcome on application, instrumented by treatment treatment assignment, and stratification block fixed effects. Heteroskedasticity-robust standard errors shown in parentheses, clustering by jobseeker ID. Mean outcomes are for the control group.
Treatment Increases Job Interviews

<table>
<thead>
<tr>
<th></th>
<th>(1) Applied</th>
<th>(2) Interviewed</th>
<th>(3) Interviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>0.01326</td>
<td>0.00078</td>
<td>0.05866</td>
</tr>
<tr>
<td></td>
<td>(0.00075)</td>
<td>(0.00009)</td>
<td>(0.00493)</td>
</tr>
<tr>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean outcome</td>
<td>0.00185</td>
<td>0.00011</td>
<td>0.00011</td>
</tr>
<tr>
<td>T = 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean outcome</td>
<td>0.05936</td>
<td>0.937</td>
<td></td>
</tr>
<tr>
<td>T = 0, Applied = 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p: IV = mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = 0, Apply = 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># matches</td>
<td>1113996</td>
<td>1113996</td>
<td>1113996</td>
</tr>
<tr>
<td># jobseekers</td>
<td>9805</td>
<td>9805</td>
<td>9805</td>
</tr>
<tr>
<td>First stage F-stat</td>
<td></td>
<td>312.9</td>
<td></td>
</tr>
</tbody>
</table>

Coefficients in non-IV columns are from regressing each outcome on treatment assignment and stratification block fixed effects. Coefficients in IV columns are from regressing each outcome on application, instrumented by treatment treatment assignment, and stratification block fixed effects. Heteroskedasticity-robust standard errors shown in parentheses, clustering by jobseeker ID. Mean outcomes are for the control group.
Returns to Job Search

► To identify returns to marginal job applications: regress interview invitations on applications, instrumented by treatment
Returns to Job Search

- To identify returns to marginal job applications: regress interview invitations on applications, instrumented by treatment
- Identifies a LATE of application if
 1. Treatment randomly assigned
Returns to Job Search

- To identify returns to marginal job applications: regress interview invitations on applications, instrumented by treatment
- Identifies a LATE of application if
 1. Treatment randomly assigned ⇒ Holds by design
Returns to Job Search

To identify returns to marginal job applications: regress interview invitations on applications, instrumented by treatment

Identifies a LATE of application if

1. Treatment randomly assigned \(\Rightarrow\) Holds by design
2. Treatment influences applications
Returns to Job Search

- To identify returns to marginal job applications: regress interview invitations on applications, instrumented by treatment
- Identifies a LATE of application if
 1. Treatment randomly assigned ⇒ Holds by design
 2. Treatment influences applications ⇒ Already shown
Returns to Job Search

- To identify returns to marginal job applications: regress interview invitations on applications, instrumented by treatment

- Identifies a LATE of application if
 1. Treatment randomly assigned ⇒ Holds by design
 2. Treatment influences applications ⇒ Already shown
 3. Treatment influences interviews only through applications
Returns to Job Search

► To identify returns to marginal job applications: regress interview invitations on applications, instrumented by treatment

► Identifies a LATE of application if
 1. Treatment randomly assigned ⇒ Holds by design
 2. Treatment influences applications ⇒ Already shown
 3. Treatment influences interviews only through applications ⇒ Other channels are observable and have little effect
Returns to Job Search

- To identify returns to marginal job applications: regress interview invitations on applications, instrumented by treatment
- Identifies a LATE of application if
 1. Treatment randomly assigned ⇒ Holds by design
 2. Treatment influences applications ⇒ Already shown
 3. Treatment influences interviews only through applications ⇒ Other channels are observable and have little effect
 4. Treatment raises probability of application for all jobseekers
Returns to Job Search

- To identify returns to marginal job applications: regress interview invitations on applications, instrumented by treatment
- Identifies a LATE of application if
 1. Treatment randomly assigned ⇒ Holds by design
 2. Treatment influences applications ⇒ Already shown
 3. Treatment influences interviews only through applications ⇒ Other channels are observable and have little effect
 4. Treatment raises probability of application for all jobseekers ⇒ Can bound LATE if this fails
High Returns to Marginal Applications

<table>
<thead>
<tr>
<th></th>
<th>(1) Applied</th>
<th>(2) Interviewed</th>
<th>(3) Interviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>0.01326</td>
<td>0.00078</td>
<td>0.05866</td>
</tr>
<tr>
<td></td>
<td>(0.00075)</td>
<td>(0.00009)</td>
<td>(0.00493)</td>
</tr>
<tr>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean outcome</td>
<td>T = 0</td>
<td>0.00185</td>
<td>0.00011</td>
</tr>
<tr>
<td>Mean outcome</td>
<td>T = 0, Applied = 1</td>
<td>0.05936</td>
<td>0.937</td>
</tr>
<tr>
<td>p: IV = mean</td>
<td>T = 0, Apply = 1</td>
<td>0.937</td>
<td>0.937</td>
</tr>
<tr>
<td># matches</td>
<td>1113996</td>
<td>1113996</td>
<td>1113996</td>
</tr>
<tr>
<td># jobseekers</td>
<td>9805</td>
<td>9805</td>
<td>9805</td>
</tr>
<tr>
<td>First stage F-stat</td>
<td></td>
<td></td>
<td>312.9</td>
</tr>
</tbody>
</table>

Coefficients in non-IV columns are from regressing each outcome on treatment assignment and stratification block fixed effects. Coefficients in IV columns are from regressing each outcome on application, instrumented by treatment treatment assignment, and stratification block fixed effects. Heteroskedasticity-robust standard errors shown in parentheses, clustering by jobseeker ID. Mean outcomes are for the control group.
Interpreting Returns to Search

- Interview returns are equal for treatment-induced marginal applications & inframarginal applications
 - Also holds for ‘quality-weighted’ interviews
 - Contrasts with standard models of job search, which predict decreasing marginal returns
Interpreting Returns to Search

- Interview returns are equal for treatment-induced marginal applications & inframarginal applications
 - Also holds for ‘quality-weighted’ interviews
 - Contrasts with standard models of job search, which predict decreasing marginal returns
- We can test and reject that treatment changes
 - Which types of jobseekers apply
Interpreting Returns to Search

- Interview returns are equal for treatment-induced marginal applications & inframarginal applications
 - Also holds for ‘quality-weighted’ interviews
 - Contrasts with standard models of job search, which predict decreasing marginal returns
- We can test and reject that treatment changes
 - Which types of jobseekers apply
 - Where jobseekers direct applications
Interpreting Returns to Search

► Interview returns are equal for treatment-induced marginal applications & inframarginal applications
 ► Also holds for ‘quality-weighted’ interviews
 ► Contrasts with standard models of job search, which predict decreasing marginal returns

► We can test and reject that treatment changes
 ► Which types of jobseekers apply
 ► Where jobseekers direct applications
 ► Rate of receiving communication about job matches
Interpreting Returns to Search

- Interview returns are equal for treatment-induced marginal applications & inframarginal applications
 - Also holds for ‘quality-weighted’ interviews
 - Contrasts with standard models of job search, which predict decreasing marginal returns
- We can test and reject that treatment changes
 - Which types of jobseekers apply
 - Where jobseekers direct applications
 - Rate of receiving communication about job matches
 - Beliefs about job quality or offer probability
- Instead, treatment induces ‘more of the same’ search
Understanding Barriers to Search

- Given high returns to search, why don’t control group users apply more?
- Answers appears to be fixed cost of applying for each batch of matches
 - Cost is not pecuniary
 - Might be time or psychic - experiments in progress
 - Might occur at evaluation stage or communication stage - difficult to separate due to anticipation
Other Search Outcomes
Off-Platform Outcomes

- Treatment effects effects on off-platform search and employment ≈ 0, using survey data
- This result isn’t obvious *ex ante*
 - Substitution effect predicts lower off-platform search
 - Belief-based mechanisms can increase off-platform search
 - Magnitude of job offer effect is unclear and largely unknown from existing literature
- Caveats: low power, some survey non-response
Spillover Effects

- Additional search effort may have spillover effects
 - Other jobseekers: crowd-out effects
 - Firms: larger applicant pool, allowing better match quality and/or congestion costs
Spillover Effects

- Additional search effort may have spillover effects
 - Other jobseekers: crowd-out effects
 - Firms: larger applicant pool, allowing better match quality and/or congestion costs

- Our approach
 - Experiment generates random variation in % of jobseekers matched to each vacancy who are treated
Spillover Effects

- Additional search effort may have spillover effects
 - Other jobseekers: crowd-out effects
 - Firms: larger applicant pool, allowing better match quality and/or congestion costs

- Our approach
 - Experiment generates random variation in % of jobseekers matched to each vacancy who are treated
 - Increases vacancy-level # applications
 - No spillover effects on competing jobseekers
Conclusion
Conclusion

- Major results
 - Lower non-pecuniary application cost increases job applications
 - Similar returns to marginal & inframarginal job applications
 - No evidence of negative spillovers for firms or jobseekers
 - Suggests sub-optimally high search cost
Conclusion

▶ Major results
 ▶ Lower non-pecuniary application cost increases job applications
 ▶ Similar returns to marginal & inframarginal job applications
 ▶ No evidence of negative spillovers for firms or jobseekers
 ▶ Suggests sub-optimally high search cost

▶ Broader implications
 ▶ Optimal level & type of search costs & incentives on platforms & in public policy
 ▶ Importance of understanding which frictions constrain search