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1 Introduction

Learning models account for many important features of labor market behavior. Jovanovic’s

(1979) early work explains broad features of worker turnover behavior: a hump shaped

hazard of separation from a job by tenure and declining separation rates with age. Recent

models use learning to understand wage dispersion, wage growth, and occupational mobility

(for example Moscarini (2005), Farber and Gibbons (1996), Gibbons et al. (2005), and

Papageorgiou (2007)1).

For analytical tractability, the literature on learning focuses on models that make stark

assumptions about the form of learning. On one hand, matching models like Jovanovic

(1979) assume that all learning is specific to a particular job. A worker’s performance on a

particular job provides information only about that job. On the other hand, sorting models

take learning to be about a worker’s ability. In these models, a worker’s performance on

one job generates an equivalent amount of knowledge about her performance on all other

jobs. Workers then use their current belief about their ability to sort themselves into the

most profitable job. These assumptions are stark as workers learn about their ability on

a particular job and some but not all of this information is useful in determining their

productivity in other potential endeavors.

This paper constructs a search model to bridge the gap between these extreme assump-

tions in the literature. The model extends the matching framework to allow agents to learn

not only about their current match, but also allow past learning to be useful in discerning

the quality of their prospective matches when unemployed. This initial screening is similar

to Jovanovic (1984), however the amount of information contained in the signal depends on

worker’s past experience. Workers learn rapidly about their ability on a particular match and

some but not all of this learning carries over into future matches. The model parameterizes

how much learning from one job carries over to understand how productive the worker will

be in other job opportunities.

1For a summary of the literature on learning and a summary of the stylized facts on the distribution of
labor earnings see Neal and Rosen (2000).
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The model explains how young workers transition from rapid turnover to stable employ-

ment over the life cycle. During the first ten years of labor market experience, workers

transition from high job turnover into stable employment and have rapid wage growth.

About two-thirds of lifetime job turnover and wage growth occurs during these early years

(see Topel and Ward (1992), Flinn (1986)). Initial high turnover manifests itself in both

high job finding and separation rates for young workers.

The model captures the well known decline in worker turnover with age (see Clark and

Summers (1982)). Past models of turnover have focused on explaining the decline in job

separation rates. However, less focus has been paid to the observed decline in job finding

rates. The model in this paper replicates attractive features of previous learning models

including the decline in unemployment and job separation rates with age and the rise in

wages with labor market experience. Allowing experience to generate differential amounts

of learning about current and future jobs generates a theory of the patterns of job finding

rates and wage volatility by experience.

The calibrated model generates declining job finding rates with age as experience allows

workers to distinguish between good and bad job offers. For inexperienced workers jobs are

experience goods; they only learn about the quality of the match by trying it out. However,

as workers gain experience jobs become inspection goods. Market experience influences

decisions by unemployed workers about which jobs to accept. As their experience grows,

they reject more bad jobs causing the job finding rate to decline. The past literature on

learning does not generate any prediction on job finding rates. In matching models, learning

is completely job specific so employment forms a renewal process as workers are in an identical

situation each time they become unemployed. In sorting models, although information

transfers between jobs, perfect transfer of information means that workers direct their search

to the job that best fits their abilities. Embedding learning across jobs into a matching

framework generates a mechanism for past experience to alter a workers search behavior and

change their job finding rates.

The calibrated model is then used to generate novel predictions about the volatility of
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wages in new jobs. The model predicts wage volatility declines with experience. Intuitively,

more experience from previous jobs generates more information about new matches. This

implies that wages should vary less for workers starting a new job with more past experience.

This new implication from the learning model is confirmed by examining wage data from

the National Longitudinal Survey of Youth 1979 (NLSY79) data. Both the calibrated model

and the data show about a 20% decline in one year wage volatility for a worker at a new job

after 10 years of experience.

The model draws closely from Moscarini (2005) who assumes that jobs are drawn from a

distribution of only two types. Moscarini (2005) and Moscarini (2003) use this trick to embed

Jovanovic’s (1979) model into a general equilibrium framework and explore implications for

the wage distribution. Papageorgiou (2007) extends these models to explore occupational

choices. The paper also relates to a literature that seeks to explain the decline in worker

turnover as workers age. Neal (1999) presents a model where workers search for both a

career and job specific match. The empirical implications of career and job matches for

job turnover and wages are explored in Pavan (2007) and Pavan (2006) respectively. This

paper generates observed declines in job finding and separation rates without adding the

complexity of a second type of career match.

The paper proceeds as follows. Section 2 presents the model. Section 3 describes how the

parameters of the model are chosen. Section 4 presents the results from the calibrated model

about job finding and separation rates, unemployment and wage growth. Section 5 shows

that the model predictions about wage volatility are consistent with data from NLSY79.

Section 6 concludes.

2 Model

This section describes the economic environment of an individual making optimal decisions

when faced with uncertain production opportunities (jobs). She searches for production

opportunities and when confronted with one she learns about its quality.
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2.1 Production

The infinitely lived worker has preferences given by:

U =
∞�

t=1

β
t−1

ct

There is no storage technology. The worker makes two decisions: when matched with an

opportunity she decides between quitting to search for a new opportunity and continuing to

produce and when unmatched she choose to accept or reject opportunities as she finds them.

Production occurs when a worker is matched with a productive opportunity. In each

period, a match of type µ produces output:

xt = µ+ zt

where zt ∼ N(0, σ2) is independently and identically distributed noise on the output process.

Therefore, xt ∼ N(µ, σ2).

As in Moscarini (2005), the economy is composed of two types of opportunities: µ ∈

{µh, µl}. Let µh > µl so that µh denotes the productivity of a good opportunity and µl

denotes the productivity of a bad one. All production opportunities are drawn independently

from the same distribution where a fraction p0 of them are of type µh.

2.2 Learning

The worker is uncertain about the quality of her current production. She learns about the

quality of the match in two ways. First, while employed she observes her output in the

current production opportunity and updates her beliefs about the quality of the match using

Bayes’ rule. Second, when an unmatched worker finds a new opportunity she receives a

signal about its quality that depends on her past experience.

While matched, workers observe the output they produce in each period and update their

beliefs. Given the normality of output noise, for any current belief, p, the expected density
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of output is given by:

ψ(x|p) = p
1

σ
√
2π

e
− 1

2(
x−µh

σ )
2

+ (1− p)
1

σ
√
2π

e
− 1

2(
x−µl

σ )
2

With probability p output is drawn from a normal distribution with mean µh and variance σ,

while with probability 1− p it is drawn from a normal with mean µl and the same variance.

Using this known distribution of output, the worker observers her production and uses

it to update her belief about the probability that she has a good match using Bayes’ rule.

Given any current belief, p, and observed output for a given period, x, the updated belief,

p
�, is is formed using Bayes’ rule:

f(p, x) ≡ p
� = Prob(µ = µh|p, x) =

pe
− 1

2(
x−µh

σ )
2

pe
− 1

2(
x−µh

σ )
2

+ (1− p)e−
1
2(

x−µl
σ )

2

Here the numerator is proportional to the joint probability of observing output x and the

match being good where the denominator is proportional to the total probability of observing

output x.

With this updating function, define the inverse function f
−1(p�|p) to be the x required

to have posterior p� given prior p. This function is given by:

f
−1(p�|p) = σ

2

µh − µl
ln

�
p
�(1− p)

(1− p�)p

�
+

µh + µl

2

Define the distribution G(p�|p) as the distribution of updated beliefs after observing one

period of output given a current belief p. Then the p.d.f. of the G distribution, g, is given

by:

g(p�|p) = ψ(f−1(p�|p)|p)
����
df

−1(p�|p)
dp�

����

= ψ(f−1(p�|p)|p)
�

σ
2

p�(1− p�)(µh − µl)

�

When meeting a new match the worker gets an initial signal about the quality of the
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match that depends on her past experience. She receives a signal that is equivalent to

observing ατ + k observations from the output process. Where τ is months of past work

experience, α ∈ [0, 1] determines the fraction of experience that carries over from past jobs

into information about new offers, and k > 0 sets the initial distribution of beliefs for new

workers. The information that a worker with no experience gets is equivalent to observing k

periods of output from the production process. The normality assumption makes non-integer

observations well defined. Moreover, normality implies that to update beliefs after viewing

t observations the worker only needs to know her prior belief p, the average value of the

observation x̄, and the number of observations observed t, not the entire list of observations

x1, x2, . . . , xt. For a worker who observes t periods of output, the distribution of the average

output per period, x̄, is given by:

ψ̃(x̄; p, t) = p
1

σ√
t

√
2π

e

− 1
2

�
x̄−µh

σ√
t

�2

+ (1− p)
1

σ√
t

√
2π

e

− 1
2

�
x̄−µl

σ√
t

�2

Using the same updating strategy, the posterior after observing the output from t periods

is computed as:

f̃(p, x̄, t) =
pe

− 1
2

�
x̄−µh

σ√
t

�2

pe

− 1
2

�
x̄−µh

σ√
t

�2

+ (1− p)e
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2
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x̄−µl

σ√
t
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Again, inverting f̃ gives the value of x̄ needed to generate posterior p�: f̃−1(p�, p, t) = x̄.

Define H(p�|τ) as the distribution of initial beliefs from a new production opportunity. Hence

the p.d.f. of the H distribution, h, is given by:

h(p�|τ) = ψ̃(f̃−1(p�, p0, ατ + k); p0, ατ + k)

�
σ
2

p�(1− p�)(µh − µl)

�

where α and p0 are parameters. p0 is the prior probability that any new opportunity is

good2.

2The process of on the job learning can be generalized beyond the specified output process to be arbitrary
distributions G and H. The distribution G must depend on the value of the current belief, p, so the
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2.3 Wages

The worker’s period payoffs from the production in the model are given by the expected

value of output in each period. Given this output process, the wage is given by:

w(p) = pµh + (1− p)µl

This wage process is an equilibrium in an environment where there are a continuum of

production opportunities (firms) that have no cost of entering the market. The production

opportunities must make zero expected profits. Under these assumptions any wage process

that pays the average wage along with any matching rate, λ, between workers and production

opportunities can be sustained as an equilibrium outcome3.

2.4 Value Functions

This section defines the value functions for the worker’s general problem. When employed

the worker consumes her wage, ct = w(p), that depends on the probability that her job is

good. The worker can separate from the job for two reasons. First, she could receive an

unfavorable signal about the job quality and decide to quit. Second, in each period with

distribution of updated beliefs, p�, is given by G(p�|p). For a general learning process, two restrictions are
made on G. First, G is non-degenerate so that the signal conveys some information about p. Second, G is
restricted so that p is a martingale. This is a natural restriction since G is used to update an individual’s
current beliefs.
The distribution H(p�|τ) can be generalized beyond the specific normality assumptions described above.

In general, for H to provide more information about jobs it must be weakly increasing in τ in terms of second
order stochastic dominance. This means that for τ1 > τ2:

� x

0
H(p�|τ1)−H(p�|τ2)dp� ≥ 0 ∀ x ∈ [0, 1]

For higher values of τ workers get more initial information about the quality of a job. This increasing
information for experienced unemployed workers is the novel feature of the model. A sufficient condition for
second order stochastic dominance is that if τ1 > τ2 then H(p�|τ1) is a mean preserving spread of H(p�|τ2).

3This equilibrium concept assumes that production opportunities (firms) are unable to separate workers
of different levels of experience when matching. The focus of this paper is to understand the implications of
learning on worker’s job decisions. Another interesting question would be to understand how firm’s ability to
select workers of different experience levels impacts equilibrium employment outcomes. Such a contribution
is beyond the scope of this paper.
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probability δ > 0 an employed worker is exogenously separated from her job. δ captures

reasons for job separations not captured by the endogenous quits that arise from learning.

Possible examples include plant closures or geographic relocation by the worker.

Let V (p, τ) be the value function for an employed worker with belief p and experience τ .

The value is written as:

V (p, τ) = w(p) + βδU(τ + 1) + β(1− δ)

� 1

0

max{U(τ + 1), V (p�, τ + 1)}G(dp�|p) (1)

A worker with belief p and experience τ gets her expected output w(p). In the next period,

she is separated from her job with probability δ, becoming unemployed with experience τ+1.

With probability 1−δ she is not separated from her job and receives her updated belief from

the distribution G. Depending on the realization of her updated belief she can choose to

remain employed with belief p� and experience τ + 1 or quit to become unemployed with

experience τ + 1.

Unemployed workers consume the unemployment value ct = b. b is high enough that if

a worker knows for certain that a job is bad it is optimal to quit and low enough so that if

the worker knows that the job is good that she will work. These assumptions ensure that

the worker’s search problem is non-trivial.

When unemployed, the worker with experience τ gets an offer from the distribution of

jobs H(p�|τ) with probability λ . She must choose between remaining unemployed and

becoming employed with belief p�. If she does not receive a job offer she remains unemployed

with the same experience.

Let U(τ) be the value function for an unemployed worker with experience τ . The value

function is given by:

U(τ) = b+ β(1− λ)U(τ) + βλ

� 1

0

max{U(τ), V (p�, τ)}H(dp�|τ) (2)

Finally, it is assumed that the maximum experienced that can be accumulated by a worker

is T . While the infinite horizon model would in principle allow a worker to accumulated
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more experience, including a finite maximum experience attained simplifies the computation

of the model and allows analytical results to be derived4. It can be justified on two separate

grounds. First, T can be chosen to be large enough so that workers already have nearly

perfect information about new production opportunities after T periods of past experience.

Second, the finite nature of individual working lives means that workers only accumulate a

finite amount of experience before retirement. The assumption implies that the marginal

value of additional periods of experience is zero once a worker reaches T .

2.5 Model Characterization

The general learning framework described above embeds the the learning models of Jovanovic

(1979) and Gibbons et al. (2005) into a matching framework so the implications for worker

job finding and separation rates can be explored. When α = 0 there is no learning across

jobs and the model is identical to that of Jovanovic (1984) where workers search and get an

initial signal about the quality of a match. In the case of α = 1, a worker gets a signal about

the quality of an initial opportunity of equal strength to their entire past job experience.

All learning from a particular job carries over to future jobs. This case is similar to model

of Gibbons et al. (2005) where all information transfers across jobs. The case of α = 1

is however still different than Gibbons et al. (2005) as in their model workers direct their

search to the most productive job, so experience does not interact with job finding rates.

By integrating full information transfer across jobs into a matching framework, declines in

job finding rates for part of the life-cycle can still be generated in the case where α = 1.

Different choices of 0 ≤ α ≤ 1 parameterize how much information transfers from one job to

another.

The solution consists of a reservation level of productivity that depends on experience,

p̄(τ), such that workers will accept job offers or continue working as long as p ≥ p̄(τ)

4An alternate assumption would be to use a finite horizon model. Using the finite horizon model expands
the state space as the worker’s age becomes an additional state variable. While the addition a state variable
makes the model more cumbersome, the results are nearly identical beyond minor changes in the last couple
years of working life. Since the novel implications of learning are concentrated at the beginning of the workers
career the paper uses the more streamlined infinite horizon model.
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and reject offers or quit otherwise. The general model is rich enough to allow for different

relationships between experience, the reservation productivity level, the job finding rate, and

wages that are explored quantitatively in the next sections of the paper. The rest of this

section characterizes these relationships to build intuition about the workings of the model.

First, the reservation productivity level is solved for by setting the value function of a

matched worker with the reservation productivity equal to the value of an unmatched worker

for each level of experience. That is p̄(τ) solves:

V (p̄(τ), τ) = U(τ) (3)

The sign of p̄�(τ) is indeterminate.

To see why p̄(τ) might be decreasing in τ consider the following example. If a worker gets

no extra information about the quality of jobs until she gains t units of experience then she

gets a perfect signal after, there will be a space of experience just before t that the worker

will be willing to accept worse and worse opportunities just to get the payoff from getting t

units of experience. In this case, the option value of experience outweighs the current value

to the worker and can generate decreasing reservation values.

The reservation productivity level will be increasing if the marginal value of information

while employed at the reservation belief is less than the marginal value of information when

unemployed. The reservation value increases when U
�(τ + 1) ≤ U

�(τ) because extra expe-

rience can only impact a worker when unemployed seeking a new job. This condition can

be interpreted as requiring that the marginal value of experience for unmatched workers is

declining. The direct benefit from the additional unit of experience has to be greater than

the option value of the unit of experience for getting more experience later in life.

This intuition is formalized in the following proposition:

Proposition 1 If U �(τ + 1) ≤ U
�(τ), then p̄

�(τ) > 0 for all τ ∈ {0, 1, . . . , T}.

Proof. See Appendix.
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Although, Proposition 1 does not reduce the sign of p̄�(τ) to restrictions on model pa-

rameters, it provides clear intuition for when the reservation belief will be increasing in

experience. The condition that guarantees p̄�(τ) > 0 is:

Vτ (p̄(τ), τ) ≤ U
�(τ)

Using the results on the worker’s reservation decision above, it is useful to consider the

behavior of the job finding rate as a function of experience, f(τ). The job finding rate

is determined by the exogenous rate of matches combined with the workers willingness to

accept production opportunities:

f(τ) = λ(1−H(p̄(τ), |τ))

Proposition 2 If U �(τ + 1) ≤ U
�(τ) and p̄(τ) ≤ p0, then f

�(τ) > 0.

Proof. Taking the derivative of f(τ) with respect to τ gives:

f
�(τ) = −λh(p̄(τ)|τ)p̄�(τ)− λHτ (p̄(τ)|τ)

where h(p̄(τ)|τ) is the pdf of H. By Proposition 1 U
�(τ + 1) ≤ U

�(τ) implies that p̄�(τ) > 0.

This condition guarantees that the first term is negative. The second term is also negative

when p̄(τ) ≤ p0 because H(p|τ) is a mean preserving spread around p0.

The conditions in Proposition 2 generate declining job finding rates early in workers lives

where p̄(τ) ≤ p0 as workers accept most jobs to gain experience5. While generating a decline

in job finding rates does not provide a test of the model, the strength of the model is that

it generates a theory about when job finding rates will be increasing or decreasing. Job

finding rates are likely to decline early in workers careers when additional information has

diminishing returns.

5The focus of this paper is to model the initial decline in job finding rates for young workers. In certain
parameterizations, job finding rates can be increasing later in life when p̄(τ) > p0, however for most parameter
values the increase in job finding rates occurs after longer horizons than the typical length of a worker’s career.
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The final implications of the model involve the process of the worker’s current belief p

while employed. Given the binary structure of productive opportunities in the model, the

density of output ψ(x|p) is a mixture density of two normal distributions with means µh and

µl and weights of p and (1− p). The properties of the mixture density are characterized in

the following proposition:

Proposition 3 The distribution characterized by the mixture density ψ(x|p) has mean µmix =

pµn + (1− p)µl and variance σ
2
mix = p(1− p)(µh −µl)2 + σ

2 where σ
2 is the variance of each

of the two distributions in the mixture.

Proof. See Appendix.

For special case with two jobs types considered in this paper the standard deviation of

expected output depends both on the standard deviation of the output process σ2 and the

uncertainty regarding which type of job the worker has. While the noise from the output

process is constant the uncertainty depends on the current belief p. This implies that the

standard deviation of expected output peaks at p = 0.5 and decreases as p converges to zero

or one. While the model does not provide a closed form solution for the standard deviation

of G(p�|p), the above intuition shows that it is decreasing in p if p > 0.5.

This result is important to understand how workers learn. Unlike in Jovanovic (1979)

the standard deviation of output does not decrease monotonically as the worker learns more.

Instead, the standard deviation depends on the current value of p and will on average decrease

for workers as their current belief converges to either zero or one.

Next, the expected initial belief based on initial experience τ is characterized in the

following proposition:

Proposition 4 If τ̃ > τ , p̄(τ) ≤ p̄(τ̃), and p̄(τ) ≤ p0, then the expected value of the initial

beliefs for an accepted offer is higher for the worker with more experience. That is:

E[H(p|τ)|p ≥ p̄(τ)] ≤ E[H(p|τ̃)|p ≥ p̄(τ̃)]
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Proof. See Appendix.

Given the wage process:

w(p) = pµh + (1− p)µl

the behavior Proposition 3 and Proposition 4 can be used to make predictions about volatility

of wages on new jobs. The novel feature of the model is that a worker with more experience

who starts a new match will have more information about the quality of that match than

a worker with less experience. In the case where p̄(τ) > 0.5 and is increasing, the model

would predict that more experience translates to on average a higher value of p at the start

of a new job and hence lower variation in the path of future wages. These implications are

quantitively evaluated with simulations of the model.

While the above propositions derive the novel implications of the model, the model

generates many other predictions that are present in other search and learning models that

are consistent with empirical findings. Two of these implications that are particularly worth

emphasizing are that the wage tenure gradient should be declining in experience and that

expected duration of jobs is increasing in experience. The model generates a declining

wage tenure profile with more past experience as workers have more information about their

ability. This prediction is not tested as it is difficult to distinguish this channel from standard

models of human capital with diminishing returns that can generate similar wage profiles.

The implication that more past experience leads to longer job durations has been captured

in McCall’s (1990) finding that longer tenure in the first job implies lower hazard rates in

future employment as experience allows workers to reject poor second matches.

3 Calibration

To parameterize the model, assume that there are a large number of workers facing identical

decision problems. Each worker faces a different history of idiosyncratic shocks. Averaging

outcomes across workers, aggregate data are constructed from the model. In computations,

simulated data over a 40 year career is compared to actual worker outcomes. The period
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length is one month so that parameters are chosen to match monthly data on job finding

and separation rates in the United States.

To compute the model there are ten parameters that must be chosen: the maximum

amount of experience T , the initial signal k, the discount factor β, the job offer rate λ,

the expected output from a good match µh, the expected output from a bad match µl,

the probability that a match is good p0, the variance of output noise σ, the proportion of

experience used for new matches α, the exogenous separation rate δ, and the value of leisure

b.

µh is normalized to one and µl is normalized to zero. Given these normalizations the

evolution of p will be determined by the variance of output noise, σ. The evolution of p

is fully determined by the signal to noise ratio: µh−µl

σ . Because the model period is one

month, β is set to 0.9966 which corresponds to an annual interest rate of 4%. T = 480 to

corresponding to a maximum level of experience of 40 years. This is a reasonable upper

bound as it corresponds to the normal length of work for individuals in the U.S. Increasing

the maximum level of experience has no effect on the results. Finally, k = 1 give a non-

degenerate initial distribution of beliefs about a first job while still being concentrated around

p0.

The remaining parameters are chosen to match features of the decline in job finding and

separation rates in the U.S. The left panel of Figure 1 shows the decline in the job separation

rate with age in the U.S. for workers aged 18-576. The separation has a sharp initial decline

from age 18-25 followed by a gradual decline later in life.

The right panel of Figure 1 shows the decline in the job finding rate. Similarly, the job

finding rates fall fastest for the first 8-10 years, but the initial decline is less dramatic than

the separation rate and finding rates continue to decline at a greater rate for the remainder

of the workers’ careers. Notice that while job separation rates fall by about a factor of 10,

6This data was constructed by Robert Shimer using CPS monthly microdata from 1976 to 2005. The
procedure used follows Shimer (2007) to create a time series of job separation and finding rates for in-
dividuals of each age. The time series is used to create average unemployment, job finding, and job
separation rates for each age group. For additional details, please see Shimer (2007) and his webpage
http://robert.shimer.googlepages.com/flows.
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Figure 1: Monthly job separation rate in left panel and monthly job finding rate in right panel
by age for the U.S. economy.

the job finding rates only decline by about a factor of 2 over the life cycle. Taken together,

the steeper decline in the separation rate implies that the unemployment rate declines with

age.

λ is chosen to match the worker’s rate of job offers. λ provides an upper bound for the job

finding rate in the model as workers with little experience will accept nearly any productive

opportunity that they find. In the data, 17-year-old workers have a job finding rate of 0.57.

To match this feature of the data, λ is set to 0.6.

p0 determines the portion of good jobs in the economy. Since a worker with perfect

information about the quality of jobs will only accept good ones, p0 determines the amount

of decline in the job finding rate over the worker’s life. p0 is chosen to match the decline in

the job finding rate found in the data. It is set to 0.7 which allows the model to match the

job finding rate of 0.30 for 57 year old workers in the data.

Next, σ is the amount of output noise. Higher values of σ imply that workers learn

slowly about the quality of their matches. In the limit, σ = 0 implies that workers perfectly

observe the quality of the match with one observation while as σ → ∞ workers have no
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learning. σ = 4 is chosen to match the shape of the decline in job finding rates. Higher

values of σ imply that workers learn more slowly. Slower learning implies that it takes longer

to distinguish bad matches, and generates a flatter decline in job finding rates. Higher values

of σ imply that the decline in job finding rates is quick.

α determines the amount of experience that carries over in learning about new job op-

portunities. It is natural to restrict α to be in [0, 1]. α = 0 is analogous to the standard

Jovanovic (1979) model where individuals learn nothing about future jobs and the employ-

ment is a pure renewal process. α = 1 is the limit where all learning carries over to future

jobs. Higher values of α imply that workers learn faster about future jobs and therefore

have a steeper decline in both job finding and separation rates. Model results for various

values of α are shown. With the model period set to be a month, α = 1
30 . This corresponds

to getting one month worth of information about a new job for every two and a half years

of labor market experience. Higher values of α predict a steeper initial decline followed by

less learning later. This parameter is sensitive to the choice of σ. The chosen value of σ

implies that individuals learn quickly by observing output. Surprisingly, very low values of

α generate large changes in the patterns of job finding rates.

δ is the rate of exogenous job separations. An upper bound on the value of δ is lowest

observed monthly job finding probability in the data is 0.014 for 59-year-olds. A lower value

of δ = 0.0075 is chosen.

The final parameter is b. This parameter determines the relative desirability of being

employed in a bad job compared to searching for a new job. Higher values of b make

unemployment more attractive. b = 0.3 is chosen to match the level of unemployment over

a workers lifetime.

Table 1 summarizes the chosen parameters and their values.
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Name Parameter Value Target

Max Age T 480 Max 40 Years Experience
Initial Information k 1 Normalization
Discount Factor β 0.9966 4% Interest Rate
Job Offer Rate λ 0.6 Peak of Finding Rate
Good Output µh 1 Normalization
Bad Output µl 0 Normalization

Probability of Good Job p0 0.7 Decline in Finding Rate
Output Noise σ 4 Curvature in Finding Rate

Experience Rate α
1
30 Various Values Shown

Exogenous Separation Rate δ 0.0075 Minimum of Separation Rate
Value of Leisure b 0.3 Level of Unemployment

Table 1: Calibrated values of the model parameters.

≤18 19 20 21 22 23 24 ≥ 25
29.6 24.9 18.8 11.4 8.1 4.8 1.7 0.7

Table 2: Percent of populations first employment spell by age. From Topel and Ward (1992).

4 Simulated Results

This section documents the implications from the calibrated model. The novel feature of

allowing learning to transfer between jobs is that past experience now has implications for

workers while unemployed through their job search behavior. To document this, the value

functions are computed to generate reservation probabilities for workers at each experience

level. Using these decision rules, employment outcomes are simulated for individual workers.

The outcomes for 10,000 simulated workers are computed from the date that workers enter

the labor force. Monthly employment, job finding rates, job separation rates, wages, tenure,

and total experience are recorded.

To compare with labor force data, outcomes by age are constructed by entering workers

into the labor market at the age they get their first full time employment. Topel and

Ward (1992) compute the percentage of workers who enter the labor force at a given age by

assuming that workers enter when they attain their first employment that lasts at least 2
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quarters. This measure leaves out workers who take summer jobs and then return to school.

Table 2 replicates their table showing the percentage of workers who enter the labor force

at each age. When constructing the data from the model, all workers in the ≤ 18 category

enter at age 18 and all workers in the ≥ 25 category enter at age 25. The remainder of this

section compares the simulated data from the calibrated model with employment data from

the CPS.

4.1 Job Finding Rate

The first result is that the calibrated model is able to match the decline in job finding rates

with age. Since experience allows individuals to learn about the quality of new matches,

experienced workers are more selective about which jobs they choose to accept. This feature

allows the job finding rate to decline over a worker’s lifetime.

Figure 2 plots the decline in job finding rates from the simulated model against the data.

Simulated job finding rates start out slightly higher and decline to match the rates observed

in the data. The two series are almost identical after age 30. The calibrated model is able

to capture the initial steep decline in job finding rates and continued gradual decline later

in life. No previous models of learning generated any change in job search behavior so their

predicted job finding rate is constant.

To compare the fits of the model with the data a goodness of fit is computed:

Fit = 1−
�57

a=18(εa − ε̄)2
�57

a=18(ya − ȳ)2

This is similar to an R
2 measure, where εa is the difference between the model and the data

for age a, ε̄ is the average difference, ya is the level of the data for age a, and ȳ is the average

level of the data. The numerator give the sum of squared errors between the data and the

model and the denominator gives the sum of squared deviations in the data. The calibrated

model has a fit of 0.95.

To see how changes in α affect the results of the model, Figure 3 plots the job finding
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Figure 2: Job finding rate by age. Data: dots; Calibrated Model: Line.

rate from the calibrated model for different values of α. Low values imply a steeper initial

decline in job finding rates as the worker is able to distinguish between good and bad jobs

more quickly. In the cases close to the calibrated value of α = 1
30 the simulated job finding

rates decline throughout the worker’s simulated working life. However, for high values of α

the simulated job finding rate is not monotonic. In particular, when α = 1 there is a large

portion of the worker’s life for which the job finding rate is increasing. Recall that for a

worker with perfect information, the job finding rate is determined by the arrival rate of

productive opportunities λ multiplied by the fraction of those opportunities that are good

p0. This gives a job finding rate of 0.42 for the current calibration. The initial rapid decline

occurs as some information about the quality of the job initially makes the worker much

pickier about which jobs to accept. Over time better information pushes a greater portion
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Figure 3: Job finding rate by age for various values of α.

of jobs above the threshold to increase the job finding rate. The case of α = 1
48 shows

that even small amounts of learning across jobs can have dramatic effects on the predicted

worker search behavior over the life cycle. Finally, the case of α = 0 is shown to be flat.

This corresponds to the Jovanovic (1979) model where no learning transfers across jobs and

workers have a flat job finding rate for their entire life.

4.2 Job Separation Rate

Figure 4 shows the decline in separations for the calibrated model compared with the data.

The model exhibits an initial decline in the separation rate that is steeper than the data,

but is unable to generate the highest levels of separations for young workers. Some of the

high rates are due to workers moving in and out of the labor force for schooling that is not
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Figure 4: Job separation rate by age. Data: dots; Calibrated Model: Line.

captured by the model. The decline in job separations happens in the model for two reasons.

First, as in Jovanovic (1979) the job separation rate declines as workers sort themselves

to good jobs which last longer on average than bad jobs. Second, experience allows older

workers to match with better jobs than younger workers reducing the chance of separation

for new jobs acquired later in life.

The fit of the calibrated model is 0.68. Despite not capturing the high level of initial

separations in the data, the model with learning is still able to capture most of the decline

in separations. This is consistent with the predictions in other models of learning.
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Figure 5: Unemployment rate by age. Data: dots; Calibrated Model: Line.

4.3 Unemployment

It is well known that young workers face higher unemployment rates than prime aged workers.

The model is able to capture this decline in unemployment with age.

Figure 5 shows the average annual unemployment rate by age. The dots depict the

decline in unemployment found in the data where the solid line depicts the results from the

calibrated model. The data show a steady decline in unemployment with age. Unemployment

declines from about 17% for 18-year-old workers to between 3.5 and 4% for prime aged

workers. The calibrated model captures a similar decline over the life cycle, with 18-year-old

workers experiencing unemployment of 23% and declining to 4.1%. The initial decline in

unemployment is steeper in the calibrated model than in the data reflecting all 18 year old

worker entering the market unemployed. The fit calibrated model on the unemployment
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data is 0.75.

The predicted decline in unemployment from the model can be understood by combining

the results about declining job separation and job finding rates. The decline in job separation

rates drives most of the decline in unemployment while the decline in job finding rates tends

to slightly increase the unemployment rate. However, the decline in separations dominates

as it goes from about 7.5% to 1.3% over the worker’s life while the job finding rates only

decline by about a factor of 2 from about 56% to 30%.

4.4 Wage Growth

Flinn (1986) argues that wage growth and turnover are related for young workers. This

model presents a theory that accounts for both phenomena. Topel and Ward (1992) doc-

ument a number of features of wage profiles during worker’s first 10 years of experience.

They document that the first 10 years of the career account for two-thirds of lifetime wage

growth. Job changes explain about one-third of wage growth. Moreover, wages on the job

approximate a random walk. The model qualitatively replicates the behavior of wages over

the life cycle.

Figure 6 shows the average annual wages by age from the model. The pattern of wage

growth from the model is endogenous. The model generates rapid wage growth during the

first 10 years of experience and then levels off. While the model matches the general pattern

of wage growth, it doesn’t generate quite as much wage growth as found in the data where

wages about double over the lifetime. This should be expected as the model generates only

wage growth from workers moving to better matches with firms and does not include wage

growth from learning by doing or other forms of human capital gained while working. A

model would need to include these other forms of wage growth to fully account for wages

over the life cycle.
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Figure 6: Wages by age in calibrated model.

5 Wage Volatility

This section quantitatively evaluates the model’s predictions on wage variation using data

on wages and job switching from NLSY79. The novel feature of this model is that workers

who start jobs with more experience have better information about the quality of their new

job. For standard parameterizations, this information means that experienced worker’s on

average start with a higher p and hence their wages should display less variation in subsequent

periods. These predictions are first confirmed using observations simulated from the model

then the same results are documented using data from the NLSY79.

The NLSY79 is a nationally representative longitudinal survey conducted by the Bureau

of Labor Statistics that samples 12,686 individuals who were between the ages of 14 and 22

years old when first surveyed in 1979. The individuals continued to be surveyed every year
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until 1994 when the survey switched to every two years. The sample is restricted to be from

1970-1994 as yearly differences in wages are needed to construct measures of wage volatility.

NLSY79 provides a rich set of panel data for tracking worker’s career outcomes. To avoid

miscalculation of past experience, the sample is limited to workers who are 17 years old or

younger at the time of the first interview.

To construct job variables the NLSY79 provides a variable for the total number of past

jobs that the respondent has held. In the NLSY79 a job is defined as a relationship between

an individual employer and the worker. That is changes in position within a firm are not

considered new jobs. If the total number of jobs in year t is greater than in year t− 1, then

there is a new job observation. For each job observation the wage in each year is given by

the CPS wage7. Finally, experience can be constructed by taking a cumulative sum of the

weeks worked in the past year variable. The number of past weeks worked is divided by

52 so that results can be presented in terms of years of experience. To compare observed

outcomes from the NLSY79 with the model, 25 years of annual observations are simulated

for the worker’s employment status, past experience, accumulated job number, and wage

from the model. To make the samples comparable, both the simulated and NLSY79 data

are restricted to jobs where workers start with less than 15 years of prior experience.

Each worker’s employment history is broken into jobs that are characterized by a wage for

each year of tenure on the job and the initial experience level when starting the job. Wage

volatility is measured as the absolute deviation from the worker’s expected wage growth

path. The simplest measure of wage volatility is to take the absolute value of the difference

in log wages at each tenure level from the initial wage on the job. However, this measure

does not control for the expected levels of wage growth that occur at different levels of tenure

7Since wages are only recorded each year it is possible that the wages could have already changed from
the initial wage at the time of first observation. Despite this measurement issue, the same issue arises when
annual data is taken from the simulated model. In the simulated model a worker’s wages change every month
based on their updated beliefs. Treating the simulated data the same as the NLSY79 observations should
yield similar biases.
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and experience. To control for this, the wage volatility measure used is:

vt = | log(wt)− log(w0)− w̄et|

vt is the volatility of wages at tenure t on a given job8. wt is the wage observed at tenure

t, w0 is the initial wage observed on the job, and w̄et is the median log wage deviation

(log(wt) − log(w0)) observed for the two year initial experience group e and tenure level

t
9. By construction the volatility is zero for the initial wage observation (worker’s tenure of

zero). Note that the concept of wage volatility here is at the individual level rather than a

cross section across individuals. Higher volatility implies that a given individual experiences

larger changes in her wages on a given job. By subtracting w̄et the measure of volatility used

in this paper controls for median wage gains in each year of tenure at a particular job and

with experience. While most workers get wage increases from year to year, subtracting of

the expected wage growth at the tenure and experience level means that many workers are

both above and below the expectation.

While the effect of experience on wages has been explored by a large theoretical literature

(See Neal and Rosen (2000), Gibbons et al. (2005)), the previous literature has not explored

the impact of experience on individual within job wage volatility. Understanding the fea-

tures of the individual income process is important to explain a wide array of individual

behavior (see Meghir and Pistaferri (2004)). This paper shows that past job experience has

a predictable effect on individual wage volatility. Experience is shown to decrease individual

level uncertainty about wages while cross sectional heterogeneity may increase within group

8
vt is the t year measure of volatility, so v3 measures the volatility of wages over a three year increment

from starting the job. Another measure of volatility, v(t) can be defined as the one year volatility for each
year t from the previous years observed wage:

v(t) = | log(wt)− log(wt−1)− ˜̄wet|

Where ˜̄wetis the median log wage deviation (log(wt)− log(wt−1)) for the two year initial experience group e

and tenure level t. The rest of the analysis focuses on the first year volatility on a job, so these two measures
are identical.

9The median is a more appropriate measure here as it is robust to truncation. This is especially important
as there is a zero lower bound of observed wage volatility. The results are similar if the mean is used.
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Figure 7: Median wage volatility (v1) by years of past experience. Simulated model in left
panel NLSY79 data in right panel.

wage variation. The model is able to account for the individual level declines in volatility.

The novel prediction of the model is that volatility should decline with more past job

experience. To explore this prediction, it is sufficient to just look at the first year wage

volatility on each new job, v1. The left panel of Figure 7 plots the median wage volatility for

the first year in each job binned by years of past experience. The model generates a decline

in wage volatility for workers with more past work experience. Note that the model predicts

that for inexperienced workers the one year change in wages will be about 7%. Median

volatility declines to under 6% for workers with 10 years of experience. The right panel of

Figure 7 plots the median wage volatility for the first year in each job with experience binned

into yearly groups for the NLSY79 data. Just as in the simulation the data shows a decline

in wage volatility for workers with more past work experience. For inexperienced workers,

the one year change in wages is about 12%. Volatility declines at a steeper rate to under

10% for workers with 10 years of experience. The patterns of volatility with experience are

consistent with those found in the model. Note that there is a scale shift between the two

panels in the figure. Since the magnitudes of wage volatility are higher in the data, the
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Figure 8: Plot of quantile regression of first year wage volatility on past experience with error
band. Thin lines gives OLS estimate with dashed error bands. Simulated model in left panel
NLSY79 data in right panel.

model does not capture all of the observed wage volatility. However, ignoring the differences

in levels shows that in both the model and the data the median wage volatility drops by

about 20% with 10 years of experience.

To more formally assess the model’s predicted effect of experience on wage volatility, the

year one wage volatility measure v1 is regressed on the past experience associated with each

new job event. Quantile regressions are valuable for two reasons. First, they are robust to

the lower bound issues in observed volatility. Second, they provide a more details predictions

about how experience influences volatility at different points in the distribution so that the

model predictions can be more closely compared to the evidence found in the data. This

gives additional feedback about how experience influences workers at different parts of the

volatility distribution. Quantile regressions are run for the 5th, 10th, 25th, 50th, 75th, 90th,

and 95th percentiles10.

The left panel of Figure 8 shows the results for the OLS regression plotted against the

10See Koenker and Hallock (2001) for other examples of the quantile regression procedure.
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Simulated Model NLSY79 Data
Quantiles Intercept Experience Intercept Experience
OLS 0.0888∗∗∗

( 0.000691)
−0.00131∗∗∗
( 0.0000963)

0.256∗∗∗
( 0.0120)

−0.00326∗∗
(0.00136)

0.05 0.00640∗∗∗
( 0.00024)

−0.00012∗∗∗
( 0.00003)

0.00932∗∗∗
( 0.00071)

−0.00002
( 0.00012)

0.10 0.0125∗∗∗
( 0.00039)

−0.00024∗∗∗
( 0.00005)

0.0208∗∗∗
( 0.00094)

−0.00036
( 0.00015)

0.25 0.0327∗∗∗
( 0.00057)

−0.00061∗∗∗
( 0.00007)

0.0577∗∗∗
( 0.00202)

−0.00141∗∗∗
( 0.00032)

0.50 0.0701∗∗∗
( 0.00090)

−0.00115∗∗∗
( 0.00012)

0.122∗∗∗
( 0.00336)

−0.00264∗∗∗
( 0.00057)

0.75 0.128∗∗∗
( 0.00137)

−0.00175∗∗∗
( 0.00018)

0.296∗∗∗
( 0.00757)

−0.00728∗∗∗
( 0.00118)

0.90 0.192∗∗∗
( 0.00195)

−0.00249∗∗∗
( 0.00027)

0.617∗∗∗
( 0.0196)

−0.0171∗∗∗
( 0.00323)

0.95 0.233∗∗∗
( 0.00246)

−0.00303∗∗∗
( 0.00030)

0.932∗∗∗
( 0.0395)

−0.0225∗∗∗
( 0.00746)

*** p<0.01, ** p<0.05, * p<0.1.

Robust standard errors clustered by individual in parentheses.

Table 3: OLS and quantile regression results for the simulated model and the data.

quantile regression results. The graph shows that both the OLS and median quantile regres-

sion confirm a negative and significant effect on wage volatility. The quantile regressions at

other points in the distribution show that at higher percentiles of the distribution experience

causes larger decreases in wage volatility. The right panel of Figure 8 plots the regression

results of wage volatility on experience from the NLSY79 data. Again, the patterns in the

regressions confirm the model predictions. Both the OLS and median quantile regression

show a significant negative effect of experience on wage volatility. The magnitude of the

decline is between 23 and 32 basis points per year of experience depending on using the

median quantile regression or the standard OLS estimate.

The regression results for both the model and NLSY79 data are presented in Table 3. The

estimated effect for the median and mean in the model is that an extra year of experience

decreases the volatility of wages by about 13 basis points. The coefficient on experience is

negative and significant in all cases except for the 0.05 quantile. This is expected as wage

volatility is close to zero for the low quantiles and hence cannot decrease much further. The

larger declines in the upper quantiles imply that there is a greater effect of experience for jobs
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Specification
Variable I II III

Intercept 0.256∗∗∗
( 0.0120)

0.264∗∗∗
( 0.00780)

0.256∗∗∗
( 0.0120)

Experience −0.00326∗∗
( 0.00136)

−0.00341∗∗
( 0.00137)

−0.00330∗∗
( 0.00136)

Female −0.0160∗
( 0.00862)

−0.0161∗
( 0.00870)

College Degree 0.00291
( 0.0106)

Graduate Degree 0.00342
( 0.0151)

Race Dummies No No Yes
*** p<0.01, ** p<0.05, * p<0.1.

Robust standard errors clustered by individual in parentheses.

Table 4: OLS regression results for NLSY79 data with controls.

with higher wage volatility. The results from the NLSY79 data confirm this general pattern.

The OLS estimate indicates that a year of experience decreases volatility by about 33 basis

points while the median decreases by about 24. The data are negative and significant for

all points in the quantile regression except for the .05 and .1 quantiles with slightly higher

magnitudes than generated from the model.

Finally, Table 4 presents additional regression specifications for the NLSY79 data. Spec-

ification I shows the baseline results from above. Specification II includes a female dummy

variable. The estimate remains similar and the result shows that women have about 1.6%

less volatility than men. Finally, specification III includes education and race dummies.

None of the dummies are significant and the effect of experience remains unchanged. The

education dummies are important as the impact of experience on individual wage volatility

remains the same even though different education groups are known to have different wage

experience profiles11. The table confirms a robust negative relationship between past work

experience and observed wage volatility in the first year on a new job.

11See for instance Farber and Gibbons (1996) and Lange (2007) for a more recent discussion.
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6 Conclusion

This paper presents a model of learning that can explain changes workers’ job finding rates

over their life cycle. Workers’ learning about the quality of their match is important for

both observed outcomes while employed like wages and employment durations and outcomes

while unemployed. This insight motivates the model where experience gives workers both

knowledge about the quality of their current job and the ability to distinguish between good

and bad jobs when unemployed.

A model with learning about both the quality of the current match and future matches

has rich implications for labor market outcomes. It is consistent with the age profiles of

unemployment, job finding rates, job separation rates, hazard rates of separation with tenure,

wage dispersion, and wage growth. Having a model that has consistent predictions about

a broad range of labor outcomes makes it ideal to analyze the effects of policy on these

outcomes. The model is used to generate new predictions about individual worker’s wage

volatility on jobs based on their past level of experience. The prediction of lower volatility

with more past experience is found to hold in NLSY79 data.

While learning both within and across jobs accounts for many of the observed patterns

found in the evidence on individual labor earnings, it generally does not capture the entire

wage growth observed over the life cycle. Learning that transfers between jobs can be thought

of as one specific type of human capital that agents acquire while working. To account for

the entire wage patterns observed in the data it is important to distinguish between learning

and other forms of specific human capital.
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A Proof of Proposition 1

Claim 1 If U �(τ + 1) ≤ U
�(τ), then p̄

�(τ) > 0 for all τ ∈ {0, 1, . . . , T}.

Proof. Differentiating equation (3) with respect to τ gives:

p̄
�(τ)Vp(p̄(τ), τ) + Vτ (p̄(τ), τ) = U

�(τ)

p̄
�(τ) =

U
�(τ)− Vτ (p̄(τ), τ)

Vp(p̄(τ), τ)

Then p̄
�(τ) > 0 if Vτ (p̄(τ), τ) ≤ U

�(τ). It suffices to show that Vτ (p, τ) ≤ U
�(τ + 1) for all

τ ∈ {0, 1, . . . , T} and p ∈ [0, 1]. We will proceed by backward induction starting from τ = T .

For τ = T :

Vτ (p, T ) = U
�(T + 1) = U

�(T ) = 0

For T − 1:

Vτ (p, T − 1) = [βδ + β(1− δ)G(p̄(T )|p)]U �(T ) + β(1− δ)

� 1

p̄(T )

Vτ (p
�
, T )G(dp�|p)

= 0 = U
�(T )

For T − 2:

Vτ (p, T − 2) = [βδ + β(1− δ)G(p̄(T − 1)|p)]U �(T − 1)

+β(1− δ)

� 1

p̄(T−1)

Vτ (p
�
, T − 1)G(dp�|p)

= [βδ + β(1− δ)G(p̄(T − 1)|p)]U �(T − 1)

= β [δ + (1− δ)G(p̄(T − 1)|p)]U �(T − 1) < U
�(T − 1)
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Finally, assuming Vτ (p, T − n) ≤ U
�(T − n+ 1), we can solve for T − n− 1:

Vτ (p, T − n− 1) = [βδ + β(1− δ)G(p̄(T − n)|p)]U �(T − n)

+β(1− δ)

� 1

p̄(T−n)

Vτ (p
�
, T − n)G(dp�|p)

≤ [βδ + β(1− δ)G(p̄(T )|p)]U �(T − n)

+β(1− δ)(1−G(p̄(T − n)|p))U �(T − n+ 1)

≤ [βδ + β(1− δ)G(p̄(T )|p)]U �(T − n)

+β(1− δ)(1−G(p̄(T − n)|p))U �(T − n) = U
�(T − n)

The first inequality comes from the induction and the second comes from the hypothesis

that U �(τ + 1) ≤ U
�(τ) for all τ ∈ {0, 1, . . . , T}.

B Proof of Proposition 3

Claim 2 The distribution characterized by the mixture density ψ(x|p) has mean µmix =

pµn + (1− p)µl and variance σ
2
mix = p(1− p)(µh −µl)2 + σ

2 where σ
2 is the variance of each

of the two distributions in the mixture.

Proof. The density ψ(x|p) is the mixture of two normal distributions with means µh and µl

and the same variance σ
2. Letting wi denote the weights in each distribution we have that

the mean of the mixture distribution µmix is given by:

µmix =
�

i∈{h,l}

wiµi = pµh + (1− p)µl
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The variance σ
2
mix is given by:

σ
2
mix =

�

i∈{h,l}

[wi(µ
2
i + σ

2)]− µ
2
mix

= p(µ2
h + σ

2) + (1− p)(µ2
l + σ

2)− (pµh + (1− p)µl)
2

= p(1− p)µ2
h + (1− p)(1− (1− p))µ2

l − 2p(1− p)µhµl + σ
2

= p(1− p)(µh − µl)
2 + σ

2

C Proof of Proposition 4

Claim 3 If τ̃ > τ , p̄(τ) ≤ p̄(τ̃), and p̄(τ) ≤ p0, then the expected value of the initial beliefs

for an accepted offer is higher for the worker with more experience. That is:

E[H(p|τ)|p ≥ p̄(τ)] ≤ E[H(p|τ̃)|p ≥ p̄(τ̃)]

Proof. First, note that since τ̃ > τ H(p|τ̃) is a mean preserving spread of H(p|τ). By

definition of a mean preserving spread we have:

� x

0

H(p|τ)dp ≤
� x

0

H(p|τ̃)dp

for any value of x ∈ (0, 1]. Note that the lower bound on the integrals is zero as the support

of the distribution H is from zero to one. Integrating the above equation by parts on each

side gives:

xH(x|τ)−
� x

0

ph(p|τ)dp ≤ xH(x|τ̃)−
� x

0

ph(p|τ̃)dp

Subtracting the bound x from each side and adding the mean of the distribution H p0 to
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each side of the equation gives:

xH(x|τ)− x+ p0 −
� x

0

ph(p|τ)dp ≤ xH(x|τ̃)− x+ p0 −
� x

0

ph(p|τ̃)dp

−x[1−H(x|τ)] +
� 1

x

ph(p|τ)dp ≤ −x[1−H(x|τ̃)] +
� 1

x

ph(p|τ̃)dp

Factoring and simplifying each side gives:

[1−H(x|τ)]
�� 1

x ph(p|τ)dp
1−H(x|τ) − x

�
≤ [1−H(x|τ̃)]

�� 1

x ph(p|τ̃)dp
1−H(x|τ̃) − x

�

� 1

x ph(p|τ)dp
1−H(x|τ) ≤ 1−H(x|τ̃)

1−H(x|τ)

�� 1

x ph(p|τ̃)dp
1−H(x|τ̃) − x

�
+ x

E[H(p|τ)|p ≥ x] ≤ 1−H(x|τ̃)
1−H(x|τ) [E[H(p|τ̃)|p ≥ x]− x] + x

The above equation holds for any x ∈ (0, 1]. Now if x = p̄(τ) we have:

E[H(p|τ)|p ≥ p̄(τ)] ≤ 1−H(p̄(τ)|τ̃)
1−H(p̄(τ)|τ) [E[H(p|τ̃)|p ≥ p̄(τ)]− p̄(τ)] + p̄(τ)

≤ [E[H(p|τ̃)|p ≥ p̄(τ)]− p̄(τ)] + p̄(τ)

≤ E[H(p|τ̃)|p ≥ p̄(τ)]

≤ E[H(p|τ̃)|p ≥ p̄(τ̃)]

The second inequality follows from p̄(τ) ≤ p0 and the definition of a mean preserving spread

and the fourth inequality comes from p̄(τ) ≤ p̄(τ̃).
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