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Abstract

The paper develops an integrated model of optimal nonlinear in-
come taxation, public-goods provision and pricing in a large economy
with private information about labour productivities and public-goods
preferences and with binding participation constraints and/or distrib-
utive concerns. With binding participation constraints, it is desirable
to use nonlinear income taxes as well as admission fees for public-goods
�nance. With (su¢ ciently large) inequality aversion, it is desirable to
use admission fees as well as income taxes for redistribution. In either
case, optimal income taxes and admission fees on excludable public
goods satisfy a version of the Mirrlees and Ramsey-Boiteux tax formu-
lae. A renegotiation proofness condition on the consumption side of the
allocation is used to write the incentive constraints for the multidimen-
sional hidden characteristics as multiple unidimensional constraints.
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1 Introduction

This paper develops an integrated model of optimal nonlinear income tax-
ation, public-goods provision and public-sector pricing in a large economy.
The analysis shows that the availability of income taxation as a source of
government �nance alleviates the tension between incentive constraints, �-
nancing needs, redistribution concerns, and e¢ ciency in the provision of
public goods.

Normative public economics is traditionally divided into three sub�elds,
the theory of public-goods provision, the theory of indirect taxation and
public-sector pricing, and the theory of optimal income taxation. The theory
of public-goods provision is concerned with the elicitation of preferences for
public as opposed to private goods. The Ramsey-Boiteux theory of indirect
taxation and public-sector pricing studies the tradeo¤s involved in choosing
commodity taxes and public-sector prices to �nance a public-sector spending
requirement when lump sum taxation is unavailable. The theory of optimal
income taxation studies equity-e¢ ciency tradeo¤s and redistribution when
individual productivity levels are unobservable.

These sub�elds are usually studied separately. Relations between them
are little explored. As a prominent exception, Atkinson and Stiglitz (1976)
have argued that the Ramsey-Boiteux theory of indirect taxation and public-
sector pricing is moot if one allows for direct taxation with nonlinear tax
schedules. Christiansen (1981) and Boadway and Keen (1994) have extended
the Atkinson-Stiglitz critique to models with public-good provision. How-
ever, they assumed that public-goods preferences are common knowledge so
that there is no problem of preference revelation.

Conversely, the literature on preference revelation for public-goods pro-
vision neglects alternative sources of funds. This literature focuses on the
constraints that incentive considerations impose on the relation between
expressed public-goods preferences and �nancial contributions. These con-
straints are shown to induce a con�ict between �rst-best e¢ ciency, feasibility
and individual rationality so that, in some settings, e¢ cient allocations are
unattainable, and there is underprovision of any public good that must be
�nanced from voluntary contributions.1

Such arguments beg the question why public-goods �nance should be
limited to payments that people make voluntarily in order to enhance the
prospect of public-goods provision. Thus, for public goods that exhibit non-
rivalry while being excludable, Schmitz (1997), Norman (2004), and Hellwig

1Güth and Hellwig (1986), Rob (1989), Mailath and Postlewaite (1990).

2



(2007 a) have argued that the detrimental e¤ects of incentive and participa-
tion constraints can be diminished if admission fees are used as a source of
funds. With nonrivalry in consumption, admission fees induce an ine¢ ciency
because people who do not pay the fees will be excluded even though there
is no real cost to admitting them. However, the loss from this ine¢ ciency is
smaller than the loss from not having the public good provided at all. The
logic is familiar from the Ramsey-Boiteux theory of optimal deviations from
marginal-cost pricing under a government budget constraint.2

For a single excludable public good, Schmitz (1997) and Norman (2004)
actually show that, in a large economy with independent private values,
Ramsey-Boiteux (or Dupuit) pricing corresponds to an optimal Bayesian
mechanism under incentive and participation constraints. For multiple ex-
cludable public goods, Hellwig (2007 a) shows that this conclusion is still
true if, in addition to feasibility, incentive compatibility, and individual ra-
tionality, the incentive mechanism is required to satisfy a condition of rene-
gotiation proofness. Under this condition, �nal allocations of private goods
and of admission tickets for public goods must be immune to the possibility
that people might engage in unobservable, mutually bene�cial side trading.3

As usual in the Ramsey-Boiteux approach, with multiple public goods,
there is no presumption that any one public good should be self-�nancing.
Some cross-subsidization between public goods is likely to be desirable. In-
deed, cross-subsidization is needed to �nance non-excludable public goods.
The proposition that, in a large economy with independent private values,
it is impossible to have national defense expenditures funded on a voluntary
basis is moot if revenues from pay TV can be diverted to this purpose!

At this point, however, one must consider the Atkinson-Stiglitz critique
of the Ramsey-Boiteux approach. Why use admission fees at all if one can
also use direct taxes? Wouldn�t a recourse to direct taxation reduce or even
eliminate the ine¢ ciencies associated with public-goods �nance in a large
economy?

The present paper addresses this question. The aim is to integrate the

2The link between excludable public goods and the Ramsey-Boiteux theory had already
been pointed out by Samuelson (1958). Samuelson insisted that public goods were de�ned
by the property of nonrivalry in consumption and that non-excludability was irrelevant
because, in a �rst-best allocation, the ability to exclude would never be used. However,
he did acknowledge the importance of excludability for second-best analysis.

3 If renegotiation proofness is not imposed, then, in a model with multiple public goods,
the Ramsey-Boiteux solution can be dominated by schemes involving mixed bundling, i.e.,
provision of a combination ticket at a discount relative to the sum of prices for the separate
tickets, or even randomized admission schemes; see Fang and Norman (2003/2006), Hellwig
(2007 a).
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theory of income taxation with the mechanism design approach to the pro-
vision of public goods. For public-goods �nance, the question is how the
availability of income taxation as a source of funds a¤ects the provision
and admission pricing of public goods under private information. For dis-
tributive policies, the question is how the interaction of income taxation
and public-goods provision a¤ect the choice of distortionary instruments for
redistribution.

Underlying these questions is a multidimensional mechanism design prob-
lem. Atkinson and Stiglitz (1976) had assumed that people di¤er only
with respect to their earning abilities; in the public-good provision prob-
lem, people also di¤er with respect to their preferences for public versus
private goods.4 Di¤erences in public-goods preferences are an automatic
consequence of the independent-private-values speci�cation for the incen-
tive problem of public-goods provision theory.

As yet, we do not have the tools to solve a mechanism design problem
with multidimensional hidden characteristics in full generality.5 As in Hell-
wig (2007 a), I therefore impose an additional requirement of renegotiation
proofness, i.e., the requirement that �nal allocations of private goods and
of admission tickets for excludable public goods must not provide partici-
pants with an incentive to engage in (incentive-compatible) side trading. In
a large economy, this condition is satis�ed if and only if the �nal allocation
of private goods and of admission tickets for public goods is Walrasian. For
a quasi-linear speci�cation of public-goods preferences, it follows that �nal
holdings of admission tickets for any public good depend only on the values
of the preference parameter for that particular public good; in particular,
they are independent of earning abilities.

Together with a standard single-crossing property on preferences, this
independence property of the consumption side of the allocation yields a
complementary independence property for the production side, namely, a
person�s labour supply and output provision depend only on this person�s
earning ability and are independent of his or her public-goods preferences.
Incentive constraints for labour supply and output provision then take the
same form as in the standard optimal-income-tax problem with unidimen-

4Cremer et al. (2001) have pointed out that Atkinson and Stiglitz rely very heavily
on earning abilities being the only source of heterogeneity. Allowing for heterogeneity in
private-goods endowments as well as earning abilities, they obtain a rationale for redis-
tributive indirect as well as direct taxation.

5The problem is exacerbated by the fact that payo¤s are not a¢ ne in earning abili-
ties. For an account of the di¢ culties of multidimensional mechanism design with payo¤
functions that are not a¢ ne in the hidden characteristics, see Rochet and Choné (1998).

4



sional hidden characteristics. The multidimensional mechanism design prob-
lem is thus reduced to a problem with multiple unidimensional incentive
constraints.

Given this technical result, I study the role of direct taxation in public
goods �nance. Whereas Hellwig (2007 a) had shown that, in the absence of
income taxation, the problem of optimal mechanism design under renegoti-
ation proofness and participation constraints is equivalent to the Ramsey-
Boiteux problem of determining optimal admission fees under a government
budget constraint, I now show that, if direct taxation is available, some
public-goods �nance from direct taxaes is always desirable.

However, in contrast to Atkinson and Stiglitz (1976), the use of direct
taxation as a source of funds does not always make it possible to achieve �rst-
best e¢ ciency when there are no distributive concerns. First-best e¢ ciency
requires that public goods be �nanced by lump-sum payments. Incentive
compatibility requires that these payments be the same for everybody. If
the payments that are required to �nance �rst-best provision levels for public
goods are incompatible with participation constraints for some people, �rst-
best e¢ ciency cannot be achieved.

The question then is what combination of distortionary �nancing instru-
ments minimizes the total welfare loss from providing the requisite funds for
public-goods provision. The optimum is characterized by a combination of
Ramsey-Boiteux elasticities rules for admission fees and the Mirrlees formula
for marginal income tax rates. In each of these conditions, the e¢ ciency loss
from increasing a distortion at the margin is compared to the revenue e¤ects
from a higher fee or higher marginal tax rate. At an optimum, the ratio of
the two e¤ects is the same for all instruments.

The optimal income tax schedule is nonlinear: it involves a zero mar-
ginal tax rate at the top and positive marginal tax rates at all income levels
below the top. Given the nonlinearity of the tax schedule, the income tax is
not redundant and cannot be replaced by an equivalent system of indirect
taxes and public-sector prices. Whereas the Ramsey-Boiteux approach has
traditionally focussed on the greater �exibility provided by di¤erential com-
modity taxation where distortionary margins can be adapted to di¤erences
in demand elasticities, the analysis here shows that the additional �exibility
provided by the nonlinearity of the income tax schedule is also useful. A
second-best system of public-goods �nance under participation constraints
makes active use of both kinds of �exibility.

The second part of the substantive analysis considers the interaction of
income taxation and public-goods provision in dealing with distributive con-
cerns. As is well known, inequality aversion provides a rationale for distor-
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tionary taxation and pricing even when there no participation constraints.
Thus, in Atkinson and Stiglitz (1976), as in Mirrlees (1971), inequality aver-
sion gives rise to distortionary income taxation as a tool of redistribution
from people with high earning abilities to people with low earning abilities.
In Hellwig (2005), di¤erences in the enjoyment that people draw from public
goods give rise to distributive concerns; these concerns can justify the use of
admission fees as a device for redistribution from people who bene�t a lot
from the public good to people who do not care for the public good at all.

Whereas Atkinson and Stiglitz (1976) did not allow for any heterogeneity
other than di¤erences in earning abilities and Hellwig (2005) did not allow
for heterogeneity in earning abilities and for redistribution through income
taxation, the analysis here allows for multidimensional heterogeneity and
investigates the simultaneous use of income taxes and public-goods admis-
sion fees as redistribution devices. With multidimensional heterogeneity,
one must worry about correlations between the di¤erent parameters. Some
correlations will neutralize distributive concerns, others will reinforce them.
The paper shows that, if the di¤erent productivity and taste parameters
are a¢ liated, i.e., independent or positively correlated, then the distributive
concerns that are attached to the di¤erent parameters do not neutralize each
other. The �ndings from unidimensional analyses are then con�rmed or, in
the case of positive corrleations, even enhanced.

The paper shows that the traditional alignment of optimal nonlinear in-
come taxation with utilitarian concerns for distribution and of public-goods
provision and pricing with government budget constraints and �nance is
inappropriate. Nonlinear income taxation is important for covering gov-
ernment �nancing needs, and the pricing of public goods can be important
for utilitarian redistribution. Private information about public-goods pref-
erences plays a role in both contexts. The conceptual and mathematical
structure of conditions for optimal income tax rates and optimal public-
goods admission fees is independent of whether one looks at a problem of
public-goods �nance under a government budget constraint or at a roblem
of utilitarian redistribution.

The appropriate dividing line is not between instruments used for redis-
tribution and instruments used for �nance, but between instruments that are
vulnerable to arbitrage through side-trading and instruments that are not
vulnerable to such arbitrage. We should therefore start thinking in terms
a new alignment of linear schemes with renegotiation proofness constraints
and nonlinear schemes with an absence of such constraints, of government
budget constraints with participation constraints, and of redistribution con-
cerns with inequality aversion in welfare assessments.
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In the following, Section 2 lays out the basic model. Section 3 intro-
duces the notion of renegotiation proofness and explains its implications for
incentive compatibility and feasibility constraints. Section 4 studies the use
of income taxes and admission fees for public-goods �nance under partici-
pation constraints, Section 5 the use of income taxes and admission fees for
redistribution. Proofs are given in the Appendix and in the Supplementary
Material.

2 A Model with Multiple Public Goods and En-
dogenous Production

I study a large economy with one private good, m public goods and labour.
Some of the public goods are excludable, some are non-excludable. The sets
of excludable and non-excludable public goods are denoted as Je and Jne:
For each individual h in the economy, an allocation must determine how
much of the private good the individual consumes, which public goods he is
admitted to and how much labour input he provides. Let Q1; :::; Qm be the
levels at which public goods 1; :::;m are provided. Individual h with taste
parameters �hi ; i = 1; :::;m; obtains the utility

ch +
X
i2Jh

�hiQi � (yh; nh): (2.1)

if he has private-good consumption ch, if he is admitted to the enjoyment
of public goods i 2 Jh, and if he works the amount (yh; nh) to provide the
output yh � 0: In (2.1), no distinction is made between excludable and non-
excludable public goods - the individual only cares whether he is actually
excluded or not. Trivially though, one must have Jne � Jh:

The function  in (2.1) is assumed to be twice continuously di¤eren-
tiable, as well as strictly increasing and strictly convex in yh and nonin-
creasing in nh: Moreover, (0; nh) = 0; limyh#0 y(y

h; nh) = 0 for all nh; and
yn(y

h; nh) < 0 for all yh and nh:
The productivity and taste parameters nh and �h1 ; :::; �

h
m di¤er across

agents. The cross-section distribution of the vector (nh; �h1 ; :::; �
h
m) over the

di¤erent agents in the economy is denoted as F; with marginal distributions
Fn for the productivity parameter nh and F i for the taste parameter �hi ;
i = 1; :::;m: The distributions F; Fn; F i; i = 1; :::;m; have strictly positive,
continuously di¤erentiable densities f; fn and f i:

An allocation is an array that speci�es a nonnegative vectorQ = (Q1; :::; Qm)
of public-good provision levels and, for each agent h; a level ch of private-
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good consumption, a set Jh of public goods to which the agent is admitted,
and a level yh � 0 of output that the agent is required to produce. The
analysis will be restricted to allocations that satisfy an anonymity condi-
tion. Under this condition, ch; Jh; and yh depend on h only through the
productivity parameter nh and the vector �h = (�h1 ; :::; �

h
m) of taste parame-

ters. Thus, an allocation can be written in the form

(Q; c(�; �); y(�; �); �1(�; �); :::; �m(�; �)); (2.2)

where Q is the vector of public-good provision levels, and, for each (n;�) 2
[0; 1]m+1; c(n;�) and y(n;�) are the levels of private-good consumption and
output provision for an agent with characteristics (n;�); �i(n;�) is an in-
dicator variable that takes the value one if the agent is admitted to public
good i and the value zero if he is not admitted to public good i:

Allocations are assessed according to the welfare functionalZ
[0;1]m+1

W

 
c(n;�) +

mX
i=1

�i(n;�)�iQi � (y(n;�); n)
!
dF (n;�); (2.3)

where W (�) is twice continuously di¤erentiable, strictly increasing, and con-
cave. The mechanism design problem will be to choose an allocation that
maximizes the welfare functional (2.3) over a set of admissible allocations.6

Admissibility will be de�ned with reference to conditions of feasibility, in-
centive compatibility, renegotiation proofness, and, in part of the analysis,
individual rationality.

An allocation is said to be feasible if it satis�es

�i(n;�) � 1 (2.4)

for i 2 Jne andZ
[0;1]m+1

c(n;�)dF (n;�) +
mX
i=1

Ki(Qi) �
Z
[0;1]m+1

y(n;�)dF (n;�): (2.5)

These conditions ensure that non-excludable public goods are in fact treated
as non-excludable and that aggregate production su¢ ces to provide the re-
sources needed for private consumption and public-goods provision. Public-
goods provision costs are assumed to be additively separable. For i =

6With this formulation, I follow the utilitarian tradition of Mirrlees (1971) and Atkinson
(1973). By contrast to the Paretian approach to mechanism design, as embodied in the
concept of interim e¢ ciency studied by Ledyard and Palfrey (1999, 2007), the utilitarian
approach involves explicit interpersonal utility comparisons and redistribution, as well as
concerns about allocative e¢ ciency. The di¤erence is particularly relevant for the analysis
of redistributive policies in Section 5 of this paper.
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1; :::;m; Ki(Qi) indicates the amount of is the cost of per capita private-
good consumption that has to be foregone in order to provide the amount
Qi of public good i: The function Ki(�) is strictly increasing, strictly con-
vex and twice continuously di¤erentiable, with K(0) = K 0

i(0) = 0 and
limQi!1Ki(Qi) =1:

An allocation is said to be incentive-compatible if it satis�es

v(n;�) � c(n0;�0) +
mX
i=1

�i(n
0;�0)�iQi � (y(n0;�0); n) (2.6)

for all (n;�) and (n0;�0) in [0; 1]m+1; where

v(n;�) := c(n;�) +

mX
i=1

�i(n;�)�iQi � (y(n;�); n) (2.7)

is the payo¤ attained by an agent with productivity and preference para-
meters (n;�): Each agent h is assumed to have private information about
his characteristics nh and �h:7 Thus, if (nh;�h) = (n;�), there is nothing
to prevent him from claiming that (nh;�h) = (n0;�0) in order to obtain the
outcome c(n0;�0); �i(n

0;�0); i = 1; :::;m; y(n0;�0); instead of the outcome
c(n;�); �i(n;�); i = 1; :::;m; y(n;�): Incentive compatibility requires that
the agent has nothing to gain from such a claim.8

3 Renegotiation Proofness

In addition to incentive compatibility, I impose a condition of renegotiation
proofness. This condition requires that the allocation should not leave any

7For the reader who cares about the underlying stochastic speci�cation: We may think

of (nh;�h) as the realization of a random vector (~nh; ~�
h
), which is de�ned on some un-

derlying probability space (
;F ; P ) and which has the ex ante probability distribution
F; regardless of h: If h is the only person to observe (nh;�h) and if the random vari-

ables (~nh; ~�
h
) for di¤erent agents are mutually independent, nobody other than h knows

anything about (~nh; ~�
h
); apart from the fact that (~nh; ~�

h
) has the distribution F: If, in

addition, the random variables (~nh; ~�
h
) for the di¤erent agents in the continuum economy

satisfy a law of large numbers, the cross-section distribution of these random variables is
almost surely equal to F: As discussed by Judd (1985), such a law of large numbers is
consistent with, though not implied by stochastic independence. A large-economy speci�-
cation with independence in which the law of large numbers holds as a theorem is provided
by Al-Najjar (2004).

8Along the lines of Mirrlees (1971) and the subsequent literature on optimal income
taxation, this treatment of incentive compatibility presumes that (y(n;�); n) is unob-
servable.
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room for mutually bene�cial trading of public-goods admission tickets and
of the private good among the participants. As in Hammond (1979, 1987),
Guesnerie (1995), and Hellwig (2007 a), the mechanism designer is assumed
to be unable to prevent people from such side trading. If the allocation the he
stipulates leaves room for a Pareto improvement through such side trading,
people will make use of this opportunity, and the initial allocation will not
actually be the �nal allocation. Side tading will come to an end when when a
renegotiation-proof allocation has been reached. If the mechanism designer
is aware of the possibility of renegotiation and if he cares about the allocation
that is �nally reached rather than the one that is initially stipulated, his
choice may be directly expressed in terms of the �nal renegotiation-proof
allocation. Indeed, if he chooses a renegotiation-proof allocation from the
beginning, this initial allocation will also be the �nal allocation.

For a formal treatment, I introduce the concept of a net-trade alloca-
tion for private-good consumption and public-good admission tickets as
an array (zc(:; :); z1(:; :); ::; zm(:; :)) such that for each (n;�); zc(n;�) and
z1(n;�); ::; zm(n;�) are the net additions to private-good consumption and
admission ticket holdings for public goods of a consumer with productivity
parameter n and preference parameter vector �: Given an initial allocation,
a net-trade allocation (zc(:; :); z1(:; :); ::; zm(:; :)) is feasible if

�i(n;�) + zi(n;�) 2 f0; 1g (3.1)

for i = 1; :::;m and all (n;�) 2 [0; 1]m+1; and, moreover,Z
[0;1]m+1

zi(n;�)dF (n;�) = 0 (3.2)

for i = c; 1; :::;m: Condition (3.1) re�ects the fact that admission indica-
tors are binary variables: One either is admitted to a public good or not.9

Condition (3.2) re�ects aggregate resource constraints.
Given an initial allocation, the net-trade allocation (zc(:; :); z1(:; :); ::; zm(:; :))

is incentive-compatible if

zc(n;�) +
mX
i=1

zi(n;�)�iQi � zc(n
0;�0) +

mX
i=1

zi(n
0;�0)�iQi (3.3)

9 In order to eliminate the interdependence of labour input provision and public-good
consumption that arises when people with low labour incomes are unable to pay for the
admission tickets to the public goods I allow private-good consumption to take negative
values.
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for all (n;�) and (n0;�0) in [0; 1]m+1 for which �i(n;�) + zi(n
0;�0) 2 f0; 1g

for all i. Neither the holdings (c(n;�); �1(n;�); :::; �m(n;�)) of private-
good consumption and public-goods admission tickets nor the characteris-
tics (n;�) of a given agent are known by anybody else.10 If the agent claims
that his characteristics are (n0;�0); he obtains the net trade corresponding
to these characterictics: Incentive compatibility of the net-trade allocation
requires that such a claim must not provide the agent with an improvement
over the net trade that is stipulated for him.

An initial allocation is said to be renegotiation-proof11 if, starting from
this allocation, there is no feasible and incentive-compatible net-trade allo-
cation which provides a Pareto improvement in the sense that for all (n;�) 2
[0; 1]m+1; the utility gain from the net trade (zc(n;�); z1(n;�); :::; zm(n;�))
is nonnegative, i.e.

zc(n;�) +
mX
i=1

zi(n;�)�iQi � 0; (3.4)

and the aggregate utility gain is strictly positive, i.e.Z
[0;1]m+1

[zc(n;�) +
mX
i=1

zi(n;�)�iQi] dF (n;�) > 0: (3.5)

Renegotiation proofness implies, in particular, that the initial allocation
is Pareto e¢ cient. As shown in Hellwig (2007 a), therefore, the fundamental

10One might argue that the renegotiation mechanism designer knows the consumer�s
actual holdings, and therefore the incentive constraints may be loosened. Such loosening
of incentive constraints would tend to enhance the scope for renegotiations and make
the condition of renegotiation proofness even more restrictive. In the large economy
considered here, it does not actually make a di¤erence because the characterization of
renegotiation proofness that is given below remains valid. In a �nite economy, there
would be a di¤erence.
11A referee has asked how renegotiation proofness is related to the concept of coalition

proofness that was introduced by La¤ont and Martimort (1997, 2000). Both concepts rely
on the notion that coalition formation in the economy imposes constraints on the design
of incentive mechanisms. Whereas La¤ont and Martimort have coalitions manipulating
the information that serves as an input into the overall incentive mechanism, renegoti-
ation proofness allows for coalitions modifying the outcomes stipulated by the incentive
mechanism. Only modi�cations of outcomes that can be reached by voluntary sidetrad-
ing are considered. In the absence of sidetrading of labour, renegotiation proofness does
not concern output provision levels. By contrast, the manipulations of information that
are considered by La¤ont and Martimort can, in principle, a¤ect all outcome dimensions.
Moreover, if the coalition in their analysis is a subcoalition of the whole, the implica-
tions of its intervention may well be detrimental to people outside that subcoalition, i.e.,
manipulations are not limited to Pareto improvements.
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theorems of welfare economics imply that an allocation is renegotiation-
proof if and only if the allocation of private-good consumption and public-
goods admission tickets corresponds is a competitive-equilibrium allocation
for a system of markets for the private-good and for public-goods admission
tickets. This yields a characterization of such allocations in terms of prices.

Lemma 3.1 An allocation is renegotiation-proof if and only if there exist
prices p1; :::pm such that for i = 1; :::;m; and almost all (n;�) 2 [0; 1]m+1;
one has

�i(n;�) = 0 if �iQi < pi (3.6)

and
�i(n;�) = 1 if �iQi > pi: (3.7)

3.1 Implications for Incentive Compatibility

The price characterization of renegotiation-proof allocation can be used to
provide an analytically tractable characterization of incentive-compatible
allocations that are also renegotiation proof. With renegotiation proofness,
them+1-dimensional incentive constraints can actually be decomposed into
m+ 1 unidimensional constraints.

Proposition 3.2 An allocation is renegotiation-proof and incentive-compatible
if and only if there exist prices p1; :::pm and functions ŷ(�); ĉ(�); �v(�) from
[0; 1] into R+ such that the following conditions hold:

(a) the expected payo¤ function v(�) takes the form

v(n; �1; :::; �m) � �v(n) +
mX
i=1

max(�iQi � pi; 0); (3.8)

(b) for all (n;�) 2 [0; 1]m+1; the admission indicators �i(n;�); i =
1:::;m; satisfy

�i(n;�) = 0 if �iQi < pi and �i(n;�) = 1 if �iQi > pi; (3.9)

consumption of the private good satis�es

c(n;�) = �v(n) + (y(n;�); n)�
mX
i=1

pi�i(n;�); (3.10)

12



(c) for all � 2 [0; 1]m; the output provision function y(�;�) is nondecreas-
ing and satis�es

y(n;�) � ŷ(n) (3.11)

for almost all n 2 [0; 1]; for any such n; one also has

c(n;�) = ĉ(n)�
mX
i=1

pi�i(n;�); (3.12)

(d) the functions ŷ(�); ĉ(�); and �v(�) satisfy

�v(n) = ĉ(n)� (ŷ(n); n) (3.13)

and
�v(n) � ĉ(n̂)� (ŷ(n̂); n) (3.14)

for all n and n̂ in [0; 1]:

In interpreting this result, it is useful to go back to Hellwig (2007 a). For
a model with exogenous production, the main result of that paper showed
that an allocation is renegotiation-proof and incentive-compatible if and
only if there exist prices p1; :::pm such that admission rules satisfy (3.9)
and private-good consumption satis�es (3.12) with ĉ(n) replaced by the ex-
ogenously given endowment Y: The prices p1; :::pm can be thought of as
admission fees. If people can choose whether they want to pay the fee pi
and be admitted to public good i or whether they prefer to forego the en-
joyment from public good i and instead consume more of the private good,
they will in fact implement the admission rule (3.9), retaining the surplus
max(�iQi � pi; 0) as an information rent.12

Proposition 3.2 extends this result to the case of endogenous production.
It also shows that, once the implications of renegotiation proofness and in-
centive compatibility for the consumption side of the economy are taken
into account, the implications of incentive compatibility for the production
side can be studied without regard for the taste parameters �1; :::; �m: Out-
put provision levels are independent of �1; :::; �m (except possibly on a null
set). The output ŷ(n) entitles an agent to the equivalent of ĉ(n) units of
the private good, which is also independent of �1; :::; �m: He can choose how

12Without renegotiation proofness, the information rent might be smaller. In this case,
admission rules involving mixed bundling or randomized admissions can be used to extract
additional surplus, which can be used, e.g., to provide more of the public-good; see Fang
and Norman (2003/2006) or Hellwig (2007 a),
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much of this entitlement he wants to spend on admission tickets for exclud-
able public goods and how much on consumption of the private good His
consumption of the private good is equal to the di¤erence between the enti-
tlement ĉ(n) and the amount he spends on admission tickets for excludable
public goods. Because output provision levels and consumption entitlements
are independent of �1; :::; �m; incentive compatibility for the production side
of the economy reduces to the unidimensional condition that

ĉ(n)� (ŷ(n); n) � ĉ(n̂)� (ŷ(n̂); n)

for all n and n̂ in [0; 1]:
The fact that ŷ(n) is independent of �1; :::; �m is remarkable because

the requirement of renegotiation proofness as such does not concern the
production side of the economy. In principle, therefore, one could imagine
y(n;�) depending on � as well as n even though renegotiation proofness is
imposed.

The result rests on two arguments. The �rst argument combines Lemma
3.1 with incentive compatibility to show that the expected-payo¤ function
v must have the additively separable form (3.8), i.e., that �1; :::; �m a¤ect
payo¤s only through the surplus

Pm
i=1max(�iQi � pi; 0)

The second argument uses incentive compatibility and the single-crossing
condition ny < 0 to show that, for any �; one must have y(n;�) = y(n;0)
for almost all n: Incentive compatibility requires that, for any �; one has

v(n;�)� v(n̂;�) � �(y(n̂;�); n) + (y(n̂;�); n̂) (3.15)

for all n and n̂: By standard arguments, this requires that

v(n;�)� v(n̂;�) = �
Z n

n̂
n(y(n

0;�); n0)dn0 (3.16)

for all n and n̂: By (3.8), it follows that

�v(n)� �v(n̂) = �
Z n

n̂
n(y(n

0;�); n0)dn0 (3.17)

for all n and n̂: The function �v(�) is thus absolutely continuous, and�n(y(�;�); �)
is a version of the Radon-Nikodym derivative of �v(�); regardless of �: There-
fore, �n(y(n;�); n) = �n(y(n;0); n) for almost all n: Because ny < 0; it
follows that y(n;�) = y(n;0) for almost all n; regardless of �:
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3.2 Implications for Feasibility: The Government Budget
Constraint

For an allocation that is renegotiation-proof and incentive-compatible, Propo-
sition 3.2 implies that the feasibility conditions (2.4) and (2.5) take the form

pi = 0 for i 2 Jne (3.18)

and

mX
i=1

Ki(Qi) �
Z 1

0
[ŷ(n)� ĉ(n)] dFn(n) +

mX
i=1

pi(1� F i(�̂i)); (3.19)

where, for any i; �̂i; pi; Qi are related by the equation

�̂iQi = pi: (3.20)

The �rst term on the right-hand side of (3.19) can be interpreted as
aggregate net revenue from direct taxation. By the taxation principle of
Hammond (1979) and Guesnerie (1995), the integrand in this term is a
function of the output ŷ(n) and can be interpreted as an income tax. For-
mally, there exists a function T : R+ ! R such that the functions ĉ(�) and
ŷ(�) in Proposition 3.2 satisfy

ŷ(n)� ĉ(n) = T (ŷ(n)) (3.21)

for all n; and the constraint (3.19) takes the form

mX
i=1

Ki(Qi) �
Z 1

0
T (ŷ(n)) dFn(n) +

mX
i=1

pi(1� F i(�̂i)): (3.22)

The second term on the right-hand side of (3.19) or (3.22) corresponds
to the aggregate revenue from admission fees. Given the fees p1; :::; pm; for
any i; there are (1 � F i(�̂i)) participants asking for admission to public
good i: Aggregate admission fee revenue from public good i is therefore
pi(1� F i(�̂i)); which is positive if pi 2 (0; Qi) and zero if pi = 0: Aggregate
admission fee revenues from all public goods are obtained by summing over
all i = 1; :::;m:

For a renegotiation-proof and incentive-compatible allocations, the fea-
sibility constraint thus takes the form of a government budget constraint
that requires the cost

P
iKi(Qi) to be covered by total revenues from direct

taxes and from admission fees for public goods.
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4 Income Taxes and Public-Goods Finance

4.1 The Problem

In this section, I abstract from distributive concerns and assume that the
welfare function W (�) is a¢ ne, i.e., that W 00(v) = 0 for all v: The welfare
functional (2.3) then is ordinally equivalent to the aggregate surplusZ

[0;1]m+1
[c(n;�) +

mX
i=1

�i(n;�)�iQi � (y(n;�); n)] dF (n;�); (4.1)

and the cross-section distribution of utility levels is of no concern. I will
study allocations that maximize the aggregate surplus (4.1) over the set of
admissible allocations where, in addition to feasibility, incentive compati-
bility, and renegotiation proofness, admissibility also involves a requirement
of interim individual rationality. The purpose is to understand the role of
direct taxation as a source of public-goods �nance. Whereas in Hellwig (2007
a), I had assumed that all public-goods �nance comes from admission fees, I
now take account of the Atkinson-Stiglitz objection that direct taxes should
also be allowed for.

To specify participation constraints, I assume that people�s outside op-
tions are worth zero.13 An allocation is said to be individually rational if
the induced payo¤ function satis�es

v(n;�) � 0 (4.2)

for all (n;�) 2 [0; 1]m+1: If the allocation is incentive-compatible and rene-
gotiation proof, v(�; �) is nondecreasing, and (4.2) reduces to the inequality

�v(0) � 0; (4.3)

where �v(0) = ĉ(0)� (ŷ(0); 0);as speci�ed in Proposition 3.2.
For simplicity, I will refer to an allocation that maximizes the aggregate

surplus (4.1) over the set of feasible, incentive-compatible, renegotiation-
proof and individually rational allocations as an optimal admissible alloca-
tion. By Proposition 3.2, renegotiation proofness and incentive compatibility

13 If one person vetoes the allocation, no alternative scheme is put into place, no pro-
duction activity occurs, and no public goods are provided. If, instead, outside options
allow people to retain surplus from production or to enjoy public goods provided by oth-
ers, participation constraints would be more restrictive yet. The participation constraint
speci�ed in (4.2) is about the weakest that one could imagine in this setting.

16



imply that for any such allocation, the surplus (4.1) can be written in the
form Z 1

0
�v(n)fn(n)dn+

mX
i=1

Z 1

�̂i

(�iQi � pi) dFi(�i); (4.4)

where �̂i; pi; Qi are related by (3.20). The public-goods provision levels
Q1; :::; Qm; the admission fees p1; :::pm; the thresholds �̂1; :::; �̂m; and the
functions ŷ(�); ĉ(�); and �v(�) that are associated with an optimal admissible
allocation must therefore be a solution to the problem of maximizing (4.4)
subject to the feasibility constraints (3.18) and (3.19), equations (3.20) and
(3.13), the incentive compatibility condition (3.14) and the participation
constraint (4.3).

In studying this problem, it is convenient to replace pi and ĉ(n) by �̂iQi
and �v(n) + (ŷ(n); n), using (3.20) and (3.13). The objective function (4.4)
and the feasibility constraint (3.19) then take the formZ 1

0
�v(n)fn(n)dn+

mX
i=1

Z 1

�̂i

(�i � �̂i)Qi dFi(�i) (4.5)

and

mX
i=1

Ki(Qi) �
Z 1

0
[ŷ(n)� (ŷ(n); n)� �v(n)]fn(n)dn+

mX
i=1

�̂iQi(1� F i(�̂i)):

(4.6)
As is well known, the incentive compatibility condition (3.14) can also be re-
placed by the two conditions that the function �v(�) be absolutely continuous,
with a Radon-Nikodym derivative given as

�v0(n) = �n(ŷ(n); n) (4.7)

for almost all n, and that

ŷ(�) is a nondecreasing function. (4.8)

Given (4.8), the requirement that ŷ(n) be nonnegative for all n reduces to
the boundary condition

ŷ(0) � 0: (4.9)

One is thus left with the problem of choosing Qi for i = 1; :::;m; �̂i for
i 2 Je; and the functions ŷ(�) and �v(�) so as to maximize (4.5) subject to
(4.6), (4.7), (4.3), (4.8), and (4.9).
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4.2 Optimality Conditions

The following lemma provides a basis for characterizing optimal admissible
allocations.

Lemma 4.1 Consider an optimal admissible allocation. Let p1; :::pm be the
associated admissions prices, and let ŷ(�) and �v(�) be the associated output
provision and payo¤ functions as given by Proposition 3.2. Further, let
�̂1; :::; �̂m be such that �̂iQi = pi for all i. Then there exists a constant
� � 0 and there exist absolutely continuous functions ' and  such that the
following statements hold:

(a) for i = 1; :::;m;Z 1

�̂i

(�i � �̂i)dFi(�i) + ��̂i(1� Fi(�̂i)) = �K 0
i(Qi) (4.10)

(b) for i 2 Je;
(�� 1)(1� Fi(�̂i))� ��̂ifi(�̂i) = 0 (4.11)

(c) for almost all n;
'0(n) = �(1� �)fn(n); (4.12)

moreover,

'(0) � 0; '(0)�v(0) = 0; and '(1) = 0; (4.13)

(d) for almost all n;

 0(n) = ��(1� y(ŷ(n); n))fn(n) + '(n)ny(ŷ(n); n)); (4.14)

moreover,

 (0) � 0;  (0)ŷ(0) = 0; and  (1) = 0; (4.15)

(e) for all n;  (n) � 0; moreover,  (n) = 0 if ŷ(�) is strictly increasing at
n:

Statements (a) and (b) provide the usual �rst-order conditions for Qi
and �̂i. Statements (c) and (d) characterize the costate variables ' and  
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that are associated with the state variables �v and ŷ. Statement (e) re�ects
the maximum principle applied to the choice of the "slope" of ŷ(�):14

It is convenient to eliminate the costate variables ' and  from these
conditions. Given the transversality condition '(1) = 0; integration of (4.12)
yields

'(n) = �(�� 1)(1� Fn(n)) (4.16)

for all n: Given the transversality condition  (1) = 0 and (4.16), integration
of (4.14) yields

 (n) =

Z 1

n

�
�(1� y(ŷ(n0); n0))fn(n0) + ny(ŷ(n0); n0)(�� 1)(1� Fn(n0))

�
dn0

(4.17)
for all n: Now, statement (e) of the lemma implies thatZ 1

n

�
�(1� y(ŷ(n0); n0))fn(n0) + ny(ŷ(n0); n0)(�� 1)(1� Fn(n0))

�
dn0 � 0
(4.18)

for all n: If the inequality in (4.17) is strict, then ŷ(�) is constant, i.e., there
is bunching, on a neigbourhood of n. If ŷ(�) is strictly increasing at n; the
inequality in (4.17) must hold as an equation. If ŷ(�) is strictly increasing
on a neighbourhood of n; the derivative of the integral at n is equal to zero,
and one must have

�(1� y(ŷ(n); n)) fn(n) = (�ny(ŷ(n); n))(�� 1)(1� Fn(n)): (4.19)

4.3 The Main Result

The qualitative properties of optimal admissible allocations depend on the
value of the Lagrange multiplier of the feasibility constraint: By (4.16) and
the transversality condition '(0) � 0; one cannot have � < 1: If � were less
than one, the value of the Lagrangian could always be increased by adding
a constant to the function �v(�); raising people�s private-good consumption
at the expense of the government, i.e., the Lagrangian would not have a
stationary point.

Whether one has � = 1 or � > 1 depends on whether �rst-best levels of
public-good provision can be �nanced by lump-sum taxes without violating

14Given that ŷ(�) is allowed to be discontinuous, the term "slope" should be taken with
a grain of salt. If ŷ(�) were known to be piecewise smooth, statement (e) would coincide
with the corresponding condition in Ebert (1992), Brunner (1993), or Hellwig (2007 b).
The results in Hellwig (2008) imply that statement (e) characterizes the relation between
ŷ(�) and  (�), even if piecewise smoothness is not imposed.
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the participation constraint. First-best public-good provision levels are de-
�ned by the condition that the marginal cost per capita cost of increasing
the provision level of any public good i be equal to the cross-section average
marginal bene�t, i.e., thatZ 1

0
�idF

i(�i) = K 0
i(Q

�
i ); for i = 1; :::;m: (4.20)

If a lump-sum payment
P
iK(Q

�
i ) by everybody is compatible with indi-

vidual rationality, the optimal admissible allocation is �rst-best in the sense
that it maximizes (4.1) subject to feasibility only. In this case, one has � = 1,
and there are no distortions in public-good provision levels, admissions, or
output levels. However, if a lump-sum payment

P
iK(Q

�
i ) by everybody

is incompatible with individual rationality, one has � > 1; and the optimal
admissible allocation involves distortions in public-good provision levels, ad-
missions, and output levels. Formally, one obtains:

Proposition 4.2 Consider an optimal adissible allocation. Let p1; :::pm be
the associated admissions prices, and let ŷ(�) and �v(�) be the associated
output provision and payo¤ functions. Further, let �̂1; :::; �̂m be such that
�̂iQi = pi for all i.

(a) If
P
iK(Q

�
i ) � maxy[y � (y; 0)]; then Qi = Q�i and pi = 0 for all

i: Output provision levels satisfy

ŷ(n) = argmax
y
[y � (y; n)] (4.21)

for all n.
(b) If

P
iK(Q

�
i ) > maxy[y � (y; 0)]; then

0 < Qi < Q�i (4.22)

for all i: Moreover, �̂i > 0 and

0 < pi < Qi (4.23)

for all i 2 Je: Output provision levels satisfy

ŷ(n) < argmax
y
[y � (y; n)] (4.24)

for all n 2 [0; 1) and

lim
n"1

ŷ(n) = argmax
y
[y � (y; 1)]: (4.25)
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Corollary 4.3 (a) If
P
iK(Q

�
i ) � maxy[y � (y; 0)]; the tax schedule T (�)

that is associated with the optimal admissible allocation in Proposition 4.2
satis�es T (y) �

P
iK(Q

�
i ). (b) If

P
iK(Q

�
i ) > maxy[y � (y; 0)]; the tax

schedule T (�) is strictly increasing on the range of ŷ(�); i.e., ŷ(n) > ŷ(�n)
implies T (ŷ(n)) > T (ŷ(�n)): If n < 1 is such that, on a neighbourhood of n;
ŷ(�) is continuous and strictly increasing; 15 then, on this neighbourhood, the
tax schedule T (�) is continuously di¤erentiable, with

T 0(ŷ(n0)) = 1� y(ŷ(n0); n0) 2 (0; 1); (4.26)

moreover,
lim
y"ŷ(1)

T 0(y) = 0 (4.27)

If a lump-sum tax
P
iK(Q

�
i ) for everybody is compatible with individual

rationality, the Atkinson-Stiglitz critique of the neglect of direct taxation
in the Ramsey-Boiteux approach is fully con�rmed: In this case, optimal
admission fees and marginal income tax rates are zero, and public goods are
provided at �rst-best levels.

If a lump-sum tax
P
iK(Q

�
i ) for everybody is incompatible with individ-

ual rationality, the Atkinson-Stiglitz critique is partly con�rmed and partly
refuted: On the one hand, it is desirable to rely on direct taxation as a
source of funds. On the other hand, it is undesirable to rely only on direct
taxes for public-goods �nance. The optimal marginal income tax is positive
at all incomes below the maximum. To reduce the distortionary impact of
income taxation, admission fees on excludable public goods should also be
positive.

4.4 Interpretation of the Optimality Conditions

The conditions for an optimal admissible allocation combine elements of
the Ramsey-Boiteux and Mirrlees approaches. Except for the value of the
Lagrange multiplier �; conditions (4.10) and (4.11) are identical to the cor-
responding conditions for the Ramsey-Boiteux problem studied in Hellwig
(2007 a). Equation (4.10) is the relevant version of the Lindahl-Samuelson
condition for equality of the social marginal bene�ts and social marginal
costs of an increase in Qi. With � > 1; the left-hand side of (4.10), i.e., the

15 If
��yn�� is nonincreasing in y; equation (4.19) has no more than one solution for

any n; by standard arguments, this implies that ŷ(�) is continuous. For ŷ(�) to be strictly
increasing, it is then su¢ cient that the hazard rate fn=(1�Fn) and the ratio yn=(1�y)
be nondecreasing in n:
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social marginal bene�t of an increasse in Qi; is strictly less than � timesR 1
0 �idF

i(�i); one therefore has underprovision relative to the �rst-best level
Q�i :

Condition (4.11) corresponds to the degenerate form that the Ramsey-
Boiteux elasticities rule takes when marginal costs of use are equal to zero
as they are for a public good exhibiting nonrivalry in consumption. In terms
of the admission fee pi; this condition requires that

�pi fi(
pi
Qi
)
1

Qi
= (�� 1)(1� Fi(

pi
Qi
)): (4.28)

The term 1 � Fi(
pi
Qi
) on the right-hand side of (4.28) indicates the level of

aggregate demand for admissions to public good i when the price is pi and
the �quality�, i.e. the provision level, is Qi: The term f i( piQi )

1
QAi

on the

left-hand side of (4.28) indicates the absolute value of the derivative of this
demand with respect to pi: Equation (4.28) requires that the elasticity of
demand with respect to pi be equal to ��1

� ; regardless of i:16

As is well known, equation (4.28) calls for a balance between the distrib-
utive and the allocative e¤ects of a small change in pi: If pi is raised by a
small amount �; there is a distributive e¤ect because people who still ask for
admission to the public good now have to pay more; there also is an alloca-
tive e¤ect because people who previously were on the margin of indi¤erence
now no longer want to pay for admission. The fraction of the population
that is a¤ected by the distributive e¤ect is equal to (1�F i(pi+�Qi )); the frac-
tion for which the allocative e¤ect matters is approximately fi(

pi
Qi
) 1
Qi
�.

On aggregate, therefore, the price increase redistributes approximately the
amount � � (1 � Fi(

pi
Qi
)) from the private sector to the public budget; by

the allocative e¤ect, it also reduces government revenue by approximately
pi � fi( piQi )

1
Qi
�.

16 In response to a question raised by a referee, I note that, if there was a cost of use, as
well as an installation cost for the public goods, the characterization given in Lemma 4.1
and Proposition 4.2 would still be valid except that the optimality condition (4.11) would
take the form

(pi �
@Ki

@Ui
) fi(

pi
Qi
)
1

Qi
=
�� 1
�

(1� Fi(
pi
Qi
));

where Ui :=
R
�idFi is the aggregate use of public good i, and @Ki

@Ui
is the marginal cost of

raising Ui: A rearrangement of terms now yields the standard form of the inverse-elasticities
formula,

pi � @K
@Ui

pi
=
�� 1
�

� 1
�i
;

where �i := pifi
1
Qi
=(1 � Fi) is th eelasticity of demand. If @K

@Ui
= 0; this reduces to the

condition �i =
��1
�
; which is discussed in the text.
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The right-hand side of (4.28) represents the distributive e¤ect, weighted
by the di¤erence � � 1 between the marginal values of funds in the public
budget and in the private sector; the left-hand side represents the allocative
e¤ect, weighted by the marginal value � of additional funds in the public
budget. The di¤erence in weights re�ects the fact that, for the distributive
e¤ect, the government�s gain is matched by a private-sector loss; for the
allocative e¤ect, the government�s loss is not matched by any private-sector
gain.

The conditions for optimal marginal income taxes are remarkably similar
to the conditions for optimal admission fees. They have the same formal
structure as in the Mirrlees approach, but their economic interpretation is
in fact the same as the interpretation of the Ramsey-Boiteux conditions for
optimal deviations from marginal-cost pricing.

If the function ŷ(�) is continuously di¤erentiable and strictly increasing
on a neighbourhood of n; then, by (4.19) and (4.26), the optimal marginal
income tax at ŷ(n) satis�es

�T 0(ŷ(n)) fn(n) = (�� 1)(�ny)(1� Fn(n)): (4.29)

To interpret this condition, consider the e¤ects of raising the marginal in-
come tax for all y in a small interval (ŷ(n � �); ŷ(n + �)) by an amount �
that is small, even relative to �: The marginal income tax at other output
levels is left unchanged. Like an increase in an admission fee, this increase
of the marginal income tax on a small interval has a distributive e¤ect and
an allocative e¤ect.

The distributive e¤ect concerns people with earning abilities n0 > n+ �:
Their income tax payments rise from T (ŷ(n0)) to T (ŷ(n0)) + �(ŷ(n + �) �
ŷ(n� �)): If ŷ(�) is continuously di¤erentiable, the increase is approximately
equal to � �2� � dŷdn(n) per person, or � �2� �

dŷ
dn(n) � (1�F

n(n)) on aggregate.
The allocative e¤ect concerns people with earning abilities n0 2 (n �

�; n + �). If � is small,17 their output provision levels under the modi�ed
tax schedule are given by the equation

T 0(ŷ(n0;�)) + � = 1� y(ŷ(n0;�); n0): (4.30)

If the provision function ŷ(�) is continuously di¤erentiable, then, by (4.26),
the marginal tax schedule T 0(�) is also continuously di¤erentiable, and, by
17Relative to n0� (n��); of course, � is never small if n0 is close to (n��): In this case,

the reduction will only go to ŷ(n� �): At ŷ(n� �), the new income tax schedule exhibits
a kink, with a left-hand derivative equal to T 0(ŷ(n� �)) and a right-hand derivative equal
to T 0(ŷ(n� �)) + �: However, if � is small relative to �; this complication concerns only
a negligible subset of the interval (n� �; n+ �):
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the implicit function theorem, so is the function ŷ(�; �) in (4.30). The di¤er-
ence ŷ(n0;�)�ŷ(n0) is then approximately equal to�� @ŷ@�(n

0; 0). The impact
on the government�s tax revenue is approximately � � T 0(ŷ(n0)) � @ŷ@�(n

0; 0):

From (4.30), the derivatives dŷdn and
@ŷ
@� are computed as

@ŷ

@n
=

�yn
yy + T

00 and
@ŷ

@�
=

�1
yy + T

00 : (4.31)

Thus, if one multiplies the optimality condition (4.29) by 1
yy+T

00 ; one can
rewrite this equation as

� � T 0(ŷ(n)) �
���� @ŷ@�(n; 0)

���� � fn(n) = (�� 1) � @ŷ@n(n) � (1� Fn(n)): (4.32)

The interpretation of this condition is now the same as the interpretation
of the Ramsey-Boiteux formula: The right-hand side of (4.32) represents the
redistribution e¤ect of a small increase in the marginal tax rate on a small
neighbourhood of ŷ(n); weighted by the di¤erence between the marginal
values of additional funds in the public budget and in the private sector.
The left-hand side of (4.32) represents the incentive e¤ect of this increase on
people behaviours and thereby on tax revenues, weighted by the marginal
value of funds in the public budget.18

Equation (4.32) balances the incentive and redistribution e¤ects of a
small increase in marginal income tax rates in a neighbourhood of ŷ(n);
just as equation (4.28) balances the incentive and redistribution e¤ects of a
small increase in pi: In each case, the incentive e¤ect is weighted by �, and
the redistribution e¤ect is weighted by � � 1: Equations (4.28) and (4.32)
together imply that, at an optimal admissible allocation, the ratio of the
incentive e¤ects to the redistribution e¤ects of small increases in marginal
income tax rates and of small increases in admission fees must all be equal
to the same ratio ��1

� .
From (4.32), one immediately sees that, as in the utilitarian aproach of

Mirrlees (1971), the optimal marginal income tax is zero at the top of the

18 In the context of the Mirrlees model, Roberts (2000) and Saez (2001) provide similar
interpretations of the �rst-order condition for ŷ(�) at a point at which there is no bunching.
However, they both work with the distribution of income, i.e. ŷ(n); rather than the hidden
characteristic n: Roberts neglects the endogeneity of the income distribution and therefore
overlooks the fact that, in (4.32), the terms involving T 00 cancel out. Saez recognizes the
endogeneity of the income distribution and replaces the density of the actual income
distribution at any point by the density of the income distribution that would obtain if
the actual schedule T (�) were replaced by the linear schedule tangent to T (�) at the point
under consideration.
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relevant range. Because (1� Fn(n)) is close to zero if n is close to one, the
redistribution e¤ect of a small increase in the marginal income tax in a small
neighbourhood of n is negligible. In contrast, the optimal marginal income
tax is not zero at the bottom of the relevant range. Whereas in the utilitarian
aproach of Mirrlees (1971), the weight given to the redistribution e¤ect of a
small increase in the marginal income tax in a small neighbourhood of n is
close to zero if n is close to zero, here, the weight given to the redistribution
e¤ect is always �� 1:

4.5 Comparison to the Simple Ramsey-Boiteux Approach

How does the availability of income taxation as a source of funds a¤ect the
provision and admissions pricing of public goods? To answer this question,
I compare the optimal admissible allocation in Proposition 4.2 to the opti-
mal allocation in a simple Ramsey-Boiteux approach as studied in Hellwig
(2007 a). In the simple Ramsey-Boiteux approach, the government bud-
get constraint for public-goods provision levels and admission fees takes the
form

mX
i=1

Ki(Qi) �
mX
i=1

�̂i(1� Fi(�̂i)); (4.33)

where, for each i; �̂iQi = pi: This corresponds to a speci�cation of participa-
tion constraints so that people are entitled to keep the output they produce,
i.e., that

v(n;�) � y(n;�)� (y(n;�); n); (4.34)

rather than v(n;�) � 0 for all n: For an allocation that is renegotiation-
proof and incentive-compatible, Proposition 3.2 implies that this stricter
participation constraint is equivalent to the requirement that ĉ(n) � ŷ(n)
for all n so that the contribution of direct taxation to public-goods �nance,
i.e., the �rst term on the right-hand side of (3.19), is at best zero. There may
be cross-subsidization between public goods, but there is no subsidization
of public-goods provision from direct taxation.

Proposition 4.4 Let Q1; :::; Qm and �̂1; :::; �̂m be the public-goods provision
levels and critical thresholds for admissions that are associated with the op-
timal admissible allocation in Proposition 4.2. Further, let �Q1; :::; �Qm and
��1; :::; ��m be a solution to the problem of maximizing (4.5) subject to (4.33).
If, for i 2 Je; �ifi(�i)

1�Fi(�i) is increasing in �i; then

Qi > �Qi (4.35)
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for all i and
�̂i < ��i (4.36)

for i 2 Je:

The availability of income taxation as a source of funds makes it possible
to raises public-goods provision levels or to lower the critical thresholds for
admission to excludable public goods. If the elasticities �ifi(�i)

1�Fi(�i) ; i 2 J
e; are

increasing in �i; both of these options are used, i.e., optimal provision levels
are higher and optimal admission thresholds are lower when public-goods
provision is partly �nanced by income taxes.

Whether the admission fees pi = �̂iQi are lower than the fees �pi =
��i �Qi in the absence of funding from the income tax depends on whether
the di¤erence in public-good provision levels outweighs the di¤erence in
admission thresholds or not. If the currvature of the cost function Ki is
small, the di¤erence between Qi and �Qi is large, and pi exceeds �pi: If the
curvature of the cost function Ki is large, the di¤erence between Qi and �Qi
is small, and pi is less than �pi:

In practice, the wisdom of subsidizing excludable public goods from in-
come taxes may be questionable because such subsidies can provide bad in-
centives for e¢ ciency in the actual provision of such goods. Such incentive
e¤ects have been excluded from the analysis here. Developing a tractable
model for studying them and for assessing the costs and bene�ts of subsi-
dization and cross-subsidization of di¤erent activities is an important task
for future research.

5 Utilitarian Redistribution

5.1 Optimality Conditions

Turning to the roles of income taxes and admission fees as redistribution
devices, in this section, I assume that the welfare function W (�) is strictly
concave so that ceteris paribus a more even distribution of individual payo¤s
is preferred to a more dispersed distribution. Following Atkinson (1973), I
treat the relative curvature ofW; �W (�) = �

W 00(�)
W 0(�) ; as a measure of inequality

aversion.
To abstract from the �nancing roles of income taxes and admission fees,

I also assume that there are no partcipation constraints to be met. The
problem now is to maximize the functional (2.3) over the set of feasible,
incentive-compatible, and renegotiation-proof allocations. A solution to this
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problem will be referred to as an optimal utilitarian allocation. By the
same reasoning as in the preceding section, the public-goods provision levels
Q1; :::; Qm; the critical thresholds �̂1; :::; �̂m; and the output provision and
payo¤ functions ŷ(�) and �v(�) that are associated with an optimal utilitarian
allocation must maximize the functionalZ

[0;1]m+1
W

 
�v(n) +

mX
i=1

max(�i � �̂i; 0)Qi

!
dF (n;�) (5.1)

subject to the feasibility constraints (3.18) and (4.6) and the incentive com-
patibility condition (3.14). The incentive compatibility condition (3.14) can
again be replaced by conditions (4.7) and (4.8). The problem then is to
choose Q1; :::; Qm; �̂1; :::; �̂m; ŷ(�); and �v(�) so as to maximize (5.1) subject to
(4.6), (4.7), (4.8), and (4.9).

The following lemma provides the analogue of Lemma 4.1 for this opti-
mization problem. In this lemma, the expression V (�v; n;Q1; :::; Qm; �̂1; :::; �̂m)

refers to the conditional expectation ofW
�
�v +

Pm
i=1max(�i � �̂i; 0)Qi

�
given

n; the partial derivative Vv of V with respect to the �rst argument is equal to

the conditional expectation of the derivativeW 0
�
�v +

Pm
i=1max(�i � �̂i; 0)Qi

�
given n.

Lemma 5.1 Consider an an optimal utilitarian allocation. Let p1; :::pm
be the associated admissions prices, and let ŷ(�) and �v(�) be the associated
output provision and payo¤ functions. Further, let �̂1; :::; �̂m be such that
�̂iQi = pi for all i. Then there exists a constant � � 0 and there exist
absolutely continuous functions ' and  such that the following statements
hold:

(a) for i = 1; :::;m;Z
[0;1]m+1

W 0

0@�v(n) + mX
j=1

max(�j � �̂j ; 0)Qj

1Amax(�i � �̂i; 0)dF (n;�)
+��̂i(1� Fi(�̂i)) = �K 0

i(Qi) (5.2)

(b) for i 2 Je;

�(1� Fi(�̂i)� �̂ifi(�̂i))

=

Z 1

�̂i

Z
[0;1]m

W 0

0@�v(n) + mX
j=1

max(�j � �̂j ; 0)Qj

1A dF (n;�) (5.3)
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(c) for almost all n;
'0(n) = �(Vv � �)fn(n); (5.4)

moreover,
'(0) = '(1) = 0; (5.5)

(d) for almost all n;

 0(n) = ��(1� y(ŷ(n); n))fn(n) + '(n)ny(ŷ(n); n)); (5.6)

moreover,

 (0) � 0;  (0)ŷ(0) = 0; and  (1) = 0; (5.7)

(e) for all n;  (n) � 0; moreover,  (n) = 0 if ŷ(�) is strictly increasing at
n:

The conditions in this lemma and in Lemma 4.1 di¤er in two respects.
First, in (5.2) - (5.4), the slope W 0 of the welfare function W comes in
explicitly. In the corresponding conditions (4.10) - (4.12) in Lemma 4.1, W 0

does not appear explicitly because the maximand there corresponds to the
speci�cation W 0 � 1:

Second, because there is no participation constraint, the transversality
condition for �v(0) takes the form '(0) = 0: In combination with (5.4) and
the transversality condition for '(1); this gives rise to the equation

� =

Z
[0;1]m+1

W 0

0@�v(n) + mX
j=1

max(�j � �̂j ; 0)Qj

1A dF (n;�) (5.8)

for the Lagrange multiplier of the feasibility or government budget con-
straint.

As before, it is convenient to compute '(n) and  (n) by integrating '0

and  0 and using the transversality conditions. This yields

'(n) =

Z 1

n
(Vv � �)dFn(n0) (5.9)

and

 (n) =

Z 1

0
[�(1� y(ŷ(n0); n0))fn(n0)� '(n0)ny(ŷ(n0); n0))]dn0: (5.10)
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Now, statement (e) of the lemma implies thatZ 1

n

�
�(1� y(ŷ(n0); n0))fn(n0)� ny(ŷ(n0); n0)'(n0)

�
dn0 � 0 (5.11)

for all n: If the inequality in (5.11) is strict, then ŷ(�) is constant, i.e., there
is bunching, on a neigbourhood of n. If ŷ(�) is strictly increasing at n; the
inequality in (5.11) must hold as an equation. If ŷ(�) is strictly increasing
on a neighbourhood of n; the derivative of the integral at n is equal to zero,
and one must have

�(1� y(ŷ(n); n)) fn(n) = ny(ŷ(n); n)'(n): (5.12)

These conditions are the same as conditions (4.18) and (4.19) above, except
that '(n) now is given by (5.9) rather than (�� 1)(1� Fn(n)):

5.2 A¢ liatedness

The optimality conditions in Lemma 5.1 have the same formal structure as
the corresponding conditions in the unidimensional utilitarian public-good
provision problem and the unidimensional utilitarian income tax problem.19

The multidimensional nature of the problem does however appear in the
terms representing the marginal social welfare that is attached to an addi-
tional unit of private-good consumption for a person with given productivity
and taste parameters. These terms depend in a nontrivial way on all the
parameters n and �1; :::�m. The conditions for public good i; i.e., (5.2) and
(5.3) therefore require taking expectations with respect to those parameters
that are not directly relevant for public good i; i.e., n and ��i; i.e. with
respect to n and ��i; similarly, (5.9) involves taking expectations with re-
spect to the vector � of parameters not directly relevant for labour-leisure
choices.

If the di¤erent parameters are mutually independent, i.e. if F takes
the form of a product Fn � F 1 � ::: � Fm; this integration has no e¤ect
on the underlying tradeo¤s, and the �rst-order conditions have exactly the
same structure as in the corresponding unidimensional problems. However,
if the di¤erent parameters are not independent, the underlying tradeo¤s are
a¤ected by the correlations.

To see why, consider the standard argument for the positivity of the
optimal marginal income tax rate at ŷ(n) for n 2 (0; 1). If ŷ(�) is strictly
19For the utilitarian income tax problem, see Mirrlees (1971, 1976), Seade (1977, 1982),

Ebert (1992), Brunner (1993), and, most recently, Hellwig (2007 b). For the unidimen-
sional utilitarian public-good provision problem, see Hellwig (2005).
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increasing in a neighbourhood of n; then, by standard arguments, (5.12)
implies �T 0(ŷ(n))fn(n) = ny(ŷ(n); n)'(n): Undere the single-crossing con-
dition ny < 0; it follows that T 0(ŷ(n)) > 0 if '(n) < 0. For the unidi-
mensional case, where Vv � W 0; negativity of '(n) follows from (5.9) and
the monotonicity of W 0: In the multidimensional setting considered here,
something more is needed. If one rewrites (5.9) in the form

'(n) =

Z 1

n

24Z
[0;1]m

W 0

0@�v(n) + mX
j=1

max(�j � �̂j ; 0)Qj

1A dF (�jn0)� �

35 dFn(n0);
one sees that the monotonicity properties of the function n0 !

R
[0;1]mW

0dF (�jn0)
depend not only on the monotonicity properties ofW 0(�) and �v(�); but also on
the behaviour of the conditional distribution F (�jn0): The following, admit-
tedly degenerate, example shows that this can make a di¤erence for optimal
tax policy.

Example 5.2 Assume that, for some constant V; the distribution F is con-
centrated on the set

f(n;�)j max
y
[y � (y; n)] +

mX
i=1

�iQ
�
i = V g; (5.13)

where Q�1; :::; Q
�
m are the �rst-best public-good provision levels. Then any

optimal utilitarian allocation satis�es Qi = Q�i and �̂i = 0 for all i and
ŷ(n) = argmaxy[y � (y; n)] for all n: Public-goods �nance is provided by a
lump-sum tax.

In this example, n is negatively related to the taste parameters �1; ::; �m
so that the di¤erences in these parameters across people cancel out, all
achieve the same utility level, and there is no reason for redistributive inter-
vention. The example violates the assumption that the distribution F has a
density and therefore is not quite legitimate. However, this is merely a mat-
ter of expositional simplicity. It is not di¢ cult to construct a distribution
with a density so that n is again negatively correlated with �1; ::; �m in such
a way that the term Vv in the integrand in (5.9) is constant and everywhere
equal to �, and, therefore, the optimal marginal income tax is everywhere
equal to zero.

To exclude this possibility, I will assume that the productivity and taste
parameters n and �1; ::; �m are a¢ liated in the sense of Milgrom and Weber
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(1982). Thus, I assume that the joint density f of n and �1; ::; �m satis�es
the inequality

f((n;�) _ (n0;�0)) � f((n;�) ^ (n0;�0)) � f((n;�)) � f((n0;�0))

for all (n;�) and (n0;�0) in [0; 1]m+1; where (n;�)_(n0;�0) and (n;�)^(n0;�0)
refer to the vectors of component-wise maxima and component-wise minima
of (n;�) and (n0;�0): This assumption ensures that the parameters n and
�1; ::; �m are independent or positively correlated. Its implications for social
marginal valuations are given in:

Proposition 5.3 Let W be strictly concave and assume that the productiv-
ity and taste parameters n and �1; ::; �m are a¢ liated. Then, if �v(�) is a
strictly increasing function, and, for i = 1; :::;m; let Qi > 0 and �̂i < 1, the
maps

n!
Z
[0;1]m

W 0

0@�v(n) + mX
j=1

max(�j � �̂j ; 0)Qj

1A dF (�j~n = n) (5.14)

and

�i !
Z
[0;1]m

W 0

0@�v(n) + mX
j=1

max(�j � �̂j ; 0)Qj

1A dF (n;��ij~�i = �i); (5.15)

i = 1; :::;m; are stictly decreasing.

5.3 Optimal Utilitarian Allocations under A¢ liatedness

5.3.1 Income Taxation

If productivity and taste parameters are a¢ liated, optimal utilitarian in-
come tax schedules exhibit the same features as in traditional unidimen-
sional models. The optimal marginal income tax is positive in the interior
of the income range and zero at the top. By contrast to the optimal income
tax in Section 4, in the present context, it can also be desirable to have the
marginal income tax rate be zero at the bottom. The di¤erence re�ects the
di¤erence in roles of the Lagrange multipler � in the di¤erent settings.

Proposition 5.4 If the productivity and taste parameters n and �1; ::; �m
are a¢ liated, the output provision function ŷ(�) that is associated with an
optimal utiliarian allocation satis�es

ŷ(n) < argmax
y
[y � (y; n)] (5.16)
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for all n 2 (0; 1) and

lim
n"1

ŷ(n) = argmax
y
[y � (y; 1)]: (5.17)

Moreover,
lim
n#0

ŷ(n) = argmax
y
[y � (y; 0)] (5.18)

unless the monotonicity constraint on ŷ(�) is binding in a neighbourhood of
n = 0.

Corollary 5.5 The tax schedule T (�) that is associated with the optimal
utilitarian allocation in Proposition 5.4 is strictly increasing on the range of
ŷ(�); i.e., ŷ(n) > ŷ(�n) implies T (ŷ(n)) > T (ŷ(�n)): If n is such that, on a
neighbourhood of n; ŷ(�) is continuous and strictly increasing, then, on this
neighbourhood, the schedule T (�) is continuously di¤erentiable, with

T 0(ŷ(n0)) = 1� y(ŷ(n0); n0) 2 (0; 1) (5.19)

and, limy"ŷ(1) T 0(y) = 0; moreover, limy#ŷ(0) T 0(y) = 0 unless the monotonic-
ity constraint on ŷ(�) is binding in a neighbourhood of n = 0.

5.3.2 Public-Goods Provision

With a¢ liatedness, an optimal utilitarian allocation also involves underpro-
vision of public goods relative to a �rst-best allocation.

Proposition 5.6 If the productivity and taste parameters n and �1; ::; �m
are a¢ liated, an optimal utilitarian allocation satis�es

0 < Qi < Q�i (5.20)

for all i:

As in part (b) of Proposition 4.2, Qi is less than Q�i because the social
marginal bene�ts of an increase in Qi are less than � times

R 1
0 �idF

i(�i); the
social marginal bene�ts in a �rst-best setting. The economic rationale is
somewhat di¤erent though in the two cases. In part (b) of Proposition 4.2,
the discrepancy between the social marginal bene�ts of an increase in Qi and
the product of � and

R 1
0 �idF

i(�i) is primarily due to the fact that � is greater
than one. Because the participation constraint is binding and public-goods
provision is �nanced by distortionary instruments, the marginal costs of an
increase inQi are given more weight than the marginal bene�ts. By contrast,
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in Proposition 5.6, the discrepancy between the social marginal bene�ts of
an increase in Qi and the product of � and

R 1
0 �idF

i(�i) is primarily20 due to
the fact that, with inequality aversion and a¢ liatedness, there is a negative
correlation between the taste parameter ~�i and the conditional expectation,
given ~�i; of the slope W 0 of the welfare function by which the marginal
bene�t of an increase in Qi to a person with taste parameter ~�i is weighted.
This negative correlation implies that, as one aggregates across people with
di¤erent tastes for the public good, high realizations of ~�i receive relatively
lower weights than low realizations of ~�i.21

5.3.3 Admission Fees

If one rewrites the optimality condition (5.3) in the form

�pifi(
pi
Qi
))
1

Qi
= �(1� Fi(

pi
Qi
)) (5.21)

�
Z
pi
Qi

Z
[0;1]m

W 0

0@�v(n) + mX
j=1

max(�jQj � pj ; 0)

1A dF (n;��i; �i);

one sees that, here as in Section 4, the choice of admission fees for excludable
public goods involves a tradeo¤ between an allocative e¤ect and a distrib-
utive e¤ect of a price increase. The allocative e¤ect, which is represented
by the left-hand side of (5.21), is the same as before, in condition (4.28).
An increase in pi induces people who are on the margin of indi¤erence to
cease asking for admission to the public good. The distributive e¤ect arises
because a price increase makes people with �i >

pi
Qi
pay more, and the ad-

ditional proceeds can be used for redistribution; this e¤ect is represented
by the right-hand side of (5.21). Whereas in (4.28) the distributive e¤ect

20 If the admission fee pi is positive, there is an additional e¤ect. In this case, in both,
Propositions 4.2 and Proposition 5.6, some of the discrepancy between the social marginal
bene�ts of an increase in Qi and the product of � and

R 1
0
�idF

i(�i) is due to the fact that
people who do not pay the fee do not bene�t from the increase in Qi.
21 If ~n; ~�1; :::; ~�m are positively correlated, the negative correlation between ~�i and W 0

also re�ects the mechanism designer�s aversion against inequality of payo¤s induced by
di¤erences in earning abilities. As similar e¤ect is discussed by Boadway and Keen (1993)
for a model involving nonseparable utility functions. In the present model, with additively
separable payo¤s, correlations between the parameters ~n; ~�1; :::; ~�m take the place of non-
separabilities in Boadway and Keen (1993). Independence of ~n; ~�1; :::; ~�m corresponds to
the separable speci�cations in Boadway and Keen (1993), as well as Christiansen (1981).

However, because of the nondegeneracy of ~�
h

i and inequality aversion give rise to an addi-
tional distributive concern, independence does not yield �rst-best provision levels.
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was assessed merely in terms of the di¤erence � � 1 and in terms of the
number of people a¤ected, now one has to take account of the fact that
the payment increases of people with di¤erent �i above

pi
Qi
receive di¤erent

welfare weights W 0
�
�v(n) +

P
j max(�jQj � pj ; 0)

�
; moreover, these welfare

weights depend on n and ��i as well as �i:
Equation (5.21) shows that the distributive e¤ect involves a welfare gain

rather than a welfare loss if the additional welfare attached to a marginal
increase in private good consumption is lower, on average, for people with
�i >

pi
Qi
than for the population as a whole. The a¢ liatedness assumption

guarantees that this is the case. Under this assumption, the right-hand side
of (5.21) is positive unless �̂i is zero or one, in which case it is zero.

Condition (5.21) does not necessarily call for a positive admission fee. As
discussed in Hellwig (2005), this condition is always satis�ed at pi = �̂i = 0
when both the allocative and the distributive e¤ect of a small price increase
are zero, the allocative e¤ect because the people who are turned away do
not care for the public good anyway, the distributive e¤ect because the
set of people with �i > �̂i = 0 coincides with the population as a whole.
The desirability of positive admission fees cannot be assessed from �rst-
order conditions alone. If one looks at second-order conditions or, more
generally, the global properties of the welfare functional (5.1), one �nds
that positive admission fees are undesirable if inequality aversion, i.e. the
curvature �W (v) = �

W 00(v)
W 0(v) of the welfare function W (�); is uniformly small;

in contrast, positive admission fees are desirable if inequality aversion is
uniformly large.

Proposition 5.7 If p1; :::; pm and �̂1; :::; �̂m are the admission fees and thresh-
olds associated with an optimal utilitarian allocation, then:

(a) There exists a constant r > 0 such that, if �W (v) 2 (0; r] for all v;
then pi = �̂i = 0 for all i:

(b) There exists a constant R > 0 such that, if �W (v) � R; then pi > 0
and �̂i > 0 for all i 2 Je: More precisely, if fWkg is any sequence of wel-
fare functions such that limk!1 �Wk

(v) =1; uniformly in v; then, for any
associated sequence of optimal utilitarian allocations, the sequence fQki ; pki g
of provision levels and admission fees for public good i converges to a limit
(Q1i ; p

1
i ) such that, for i 2 Je; the pair (Q1i ; p

1
i ) is a solution to the

monopoly problem maxQi;pi [piQi(1 � Fi(
pi
Qi
)) � Ki(Qi)]; and, for i 2 Jne;

Q1i = p1i = 0:

If inequality aversion is small, the allocative e¤ects of admission fees
outweigh the distribution e¤ects, and, in the absence of participation con-
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straints, it is undesirable to have positive admission fees for excludable
public goods.22 If inequality aversion is large, optimal utilitarian alloca-
tions must be close to Rawlsian allocations, which maximize the payo¤
�v(0) = ĉ(0)� (ŷ(0); 0) of the worst-o¤ person in the economy. In a Rawl-
sian allocation, public-goods provision is managed as a pro�t-maximizing
monopoly so as to maximize the amount that is made available for redistri-
bution to the people who are worst o¤.

Proposition 5.7 also shows that, in the absence of participation con-
straints, �nancing considerations play hardly any role for admission fees. If
inequality aversion is small, they are zero, so all public-goods �nance comes
from direct taxes. If inequality aversion is large, admission fees are set so
that public-goods provision earns a pro�t, which can be used for redistrib-
ution. The di¤erence has to do with the tradeo¤ between distributive and
allocative e¤ects; the relation between the revenues from admission fees and
the costs of public-goods provision is irrelevant.

5.4 Utilitarian Redistribution with Participation Constraints

How are the preceding results a¤ected if the inequality-averse mechanism
designer has to respect a participation constraint? Equivalently, how are the
results of Section 4 a¤ected if the mechanism designer is inequality averse?

One easily sees that the addition of the participation constraint (4.3)
a¤ects the optimality conditions for utilitarian redistribution only through
the transversality condition for the boundary value �v(0) of the state variable
�v: In statement (c) of Lemma 5.1, the transversality condition '(0) = 0 is
replaced by the conditions

'(0) � 0 and '(0)�v(0) = 0; (5.22)

which are familiar from statement (c) of Lemma 4.1. As a result of this
change, one �nds that the Lagrange multiplier of the feasibility/government
budget constraint must satisfy the inequality

� �
Z
[0;1]m+1

W 0

0@�v(n) + mX
j=1

max(�j � �̂j ; 0)Qj

1A dF (n;�); (5.23)

22A referee has pointed out that this result is not robust to a change in the assumption
that, because of nonrivalry, the marginal cost of use is zero. If the marginal cost of use is
positive, then, starting from a price that is equal to this marginal cost, the redistributive
e¤ect of small price increase will provide a �rst-order gain because, in this case, there is
a signi�cant di¤erence between the population that pays the fee and the population that
bene�ts from the redistribution. By standard arguments, this gain from the redistributive
e¤ect outweighs the e¢ ciency loss from the price increase.
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moreover, the inequality in (5.23) is an equation if the participation con-
straint is not binding, i.e., if �v(0) > 0:

The properties of an optimal allocation now depend on whether condition
(5.23) holds as an equation or as a strict inequality. If condition (5.23)
holds as an equation, the allocation will coincide with the allocation that is
optimal when there is no participation constraint, and will exhibit the same
properties, as laid out in Propositions 5.6 - 5.4.

A little re�ection shows that this will always be the case if
P
iKi(Q

�
i ) �

maxy[y � (y; 0)]; i.e., if, in the absence of inequality aversion, a �rst-best
allocation is compatible with individual rationality. Since inequality aversion
favours redistribution towards people with n = 0; an optimal allocation with
inequality aversion is also compatible with with individual rationality.

Similarly, part (b) of Proposition 5.7 implies that condition (5.23) al-
ways holds as an equation if inequality aversion is uniformly large. In this
case, admission fees are more than enough to cover the costs of public goods;
moreover, pro�ts from public-goods and income taxes are all used to redis-
tribute resources towards people with n = 0. Given this redistribution, one
must have �v(0) > 0:

By contrast, if
P
iKi(Q

�
i ) > maxy[y� (y; 0)] and if inequality aversion

is uniformly small, the participation constraint must be binding and the
inequality in (5.23) must be strict. In this case, the optimal utilitarian
allocation of Propositions 5.6 - 5.4 involves zero admission fees, and the
redistribution through income taxation is insu¢ cient to raise the payo¤ of
people with n = 0 from maxy[y � (y; 0)]�

P
iKi(Q

�
i ) to zero.

If the inequality in (5.23) is strict, the optimal allocation will exhibit
roughly the same properties as the optimal admissible allocation in Section
4. In particular, admission fees for excludable public goods will all be posi-
tive so that the e¢ ciency losses from distortionary public-goods �nance are
spread as widely as possible.

However, with inequality aversion, the optimality condition for admis-
sion fees takes the form (5.3), for the appropriate value of �; rather than
(4.11). The di¤erence between these conditions corresponds to the di¤erence
between weighted and simple inverse-elasticities rules in the Ramsey-Boiteux
approach; see, e.g., Diamond-Mirrlees (1971). Di¤erences in admission fees
across the di¤erent public goods re�ect not only di¤erences in demand elas-
ticities, but also di¤erences in the weights that are given to the resource
losses of people who would be hit by increases in these prices.
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A Appendix: Proofs

Lemma 3.1 is practically the same as Lemma 3.1 in Hellwig (2007 a). There-
fore the reader is referred to the proof given there.

Proof of Proposition 3.2. I �rst prove the "only if" part of the
proposition. Suppose that the allocation (Q; c(�; :); y(�; �); �1(�; �); :::; �m(�; �))
is incentive-compatible and renegotiation proof. By standard arguments,
due to Mirrlees (1976) and Rochet (1987), incentive compatibility implies
that the expected-payo¤ function v(�) is continuous. Moreover, for any n;
the section v(n; �) of v(�) that is determined by n is continuous and convex
and has partial derivatives vi(�) satisfying

vi(n;�) = �i(n;�)Qi (A.1)

for i = 1; :::;m and almost all � 2 [0; 1]m: For almost every n 2 [0; 1]; (A.1)
in combination with Lemma 3.1 implies that

vi(n;�) = 0 if �iQi < pi (A.2)

and
vi(n;�) = Qi if �iQi > pi (A.3)

for i = 1; :::;m and almost all � 2 [0; 1]m: By integration, it follows that, for
almost every n 2 [0; 1]; one has

v(n; �1; :::; �m) � �v(n) +
mX
i=1

max(�iQi � pi; 0); (A.4)

for all � 2 [0; 1]m; where �v(�) := v(�;0): Because v(�) is continuous, (A.4) in
fact holds for all n 2 [0; 1] and all � 2 [0; 1]m:

To prove statement (b), I note that, for every (n;�) 2 [0; 1]m+1; (A.4)
implies that vi(n;�) satis�es (A.2) and (A.3). Upon combining (A.2) and
(A.3) with (A.1), one obtains (3.9). By the de�nition of v(�); i.e., (2.7), and
statement (a) and (c), one also has

c(n;�)� (y(n;�); n) = v(n;�)�
mX
i=1

�i(n;�)�iQi

= �v(n)�
mX
i=1

�i(n;�)pi

for all n and �:
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For statement (c), I refer the reader to the a<rgument sketched in the
text. By standard arguments, due to Mirrlees (1976), incentive compatibility
implies that, for any � 2 [0; 1]m; the function v(�;�) is absolutely continuous,
with Radon-Nikodym derivative �n(y(�;�); �): By (A.4), it follows that the
function �v(�) is also absolutely continuous, with Radon-Nikodym derivative
�n(y(�;�); �); regardless of �: For any �; one therefore has n((y(n;�); n) =
n((y(n;0); n) for almost all n: Because ny < 0; it follows that, for any �;
y(n;�) = y(n;0) for almost all n: The desired result follows by setting
ŷ(�) := y(�;0) and ĉ(�) := c(�;0):

Statement (d) follows directly from the de�nitions of �v(�); ŷ(�); ĉ(�) and
from the incentive compatibility of the allocation.

The second half of the proof establishes the �if� part of the proposi-
tion. Suppose that the allocation (Q; c(�; :); y(�; �); �1(�; �); :::; �m(�; �)) satis-
�es statements (a) - (d). By Lemma 3.1, renegotiation proofness follows
immediately from statement (b). To establish incentive compatibility, con-
sider the payo¤

v̂(n̂; �̂jn;�) = c(n̂; �̂) +
mX
i=1

�i(n̂; �̂)�iQi � (y(n̂; �̂); n) (A.5)

that an agent with type (n;�) obtains if he claims to have type (n̂; �̂): By
(3.10), one has

v̂(n̂; �̂jn;�) = �v(n̂) +
mX
i=1

�i(n̂; �̂)(�iQi � pi) + (y(n̂; �̂); n̂)� (y(n̂; �̂); n):

(A.6)
By (3.9),

mX
i=1

�i(n̂; �̂)(�iQi � pi) �
mX
i=1

�i(n;�)(�iQi � pi): (A.7)

By the monotonicity of y(�; �̂); one has y(n̂; �̂) T y(n0; �̂) as n̂ R n0: By the
single-crossing condition ny < 0; it follows that

(y(n̂; �̂); n̂)�(y(n̂; �̂); n) =
Z n̂

n
n(y(n̂; �̂); n

0)dn0 �
Z n̂

n
n(y(n

0; �̂); n0)dn0:

(A.8)
By the argument of Mirrlees (1976), statement (d) implies

�v(n̂) = �v(n)�
Z n̂

n
n(ŷ(n

0); n0)dn0: (A.9)
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Because y(n0; �̂) = ŷ(n0) for almost all n0; it follows that

�v(n̂) = �v(n)�
Z n̂

n
n(y(n

0; �̂); n0)dn0: (A.10)

Upon combining (A.6) with (A.7), (A.8), and (A.10), one obtains

v̂(n̂; �̂jn;�) � �v(n) +
mX
i=1

�i(n;�)(�iQi � pi) = v(n;�); (A.11)

which establishes incentive compatibility.

To prove Lemma 4.1, I will need the following auxiliary result, which
states that, at an optimal allocation, the provision level for at least one
public good is positive. This result will be used to show that the Regularity
Condition in Hellwig (2008) is satis�ed.

Lemma A.1 An optimal allocation satis�es Qi > 0 for at least one public
good i:

Proof. Proceeding indirectly, suppose that the lemma is false and that
one has Qi = 0 for all i: Then the aggregate surplus (4.1) and the feasibility
constraint (4.6) take the formZ 1

0
W (�v(n))fn(n)dn (A.12)

and Z 1

0
[ŷ(n)� �v(n)� (ŷ(n); n)]fn(n)dn � 0; (A.13)

a maximum of (A.12) subject to (A.13) and incentive compatibility is achieved
by setting

ŷ(n) = argmax
y
[y � (y; n)] (A.14)

and
�v(n) = ŷ(n)� (ŷ(n); n) (A.15)

for all n; without any redistribution.
As an alternative, consider the allocation which is obtained if one sets

Q1 = � > 0; p1 = 0; and if a linear income tax with tax rate t(�) serves to
�nance the cost K(�;0): People then choose output levels

ŷt(�)(n) = argmax
y
[(1� t(�))y � (y; n)]; (A.16)
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for an aggregate surplus equal toZ 1

0
[(1� t(�))ŷt(�)(n)� (ŷt(�)(n); n)]fn(n)dn+

Z 1

0
�1�f1(�1)d�1 (A.17)

The dependence of t(�) on � is given implicitly by the equation

t(�)

Z 1

0
ŷt(�)(n)fn(n)dn�K(�;0) = 0: (A.18)

At � = 0; a solution to (A.18) is given by t(�) = 0: At t = 0; one has

@

@t
[t

Z 1

0
ŷt(n)fn(n)dn�K(�;0)] =

Z 1

0
ŷ0(n)fn(n)dn > 0: (A.19)

By the implicit function theorem, it follows that, on any su¢ ciently small
neighbourhood of � = 0; equation (A.18) de�nes a continuously di¤eren-
tiable function �! t(�); with

dt

d�
(0) =

K1(0;0)R 1
0 ŷ

0(n)fn(n)dn
: (A.20)

Taking account of (A.18), (A.16), and (A.20), one computes

d

d�

�Z 1

0
[(1� t(�))ŷt(�)(n)� (ŷt(�)(n); n)]fn(n)dn+

Z 1

0
�1�f1(�1)d�1

�
(0)

=
d

d�

Z 1

0
[ŷt(�)(n)� (ŷt(�)(n); n)]fn(n)dn�K1(0;0) +

Z 1

0
�1f1(�1)d�1

=

Z 1

0
�1f1(�1)d�1 > 0 (A.21)

for the derivative of the aggregate surplus (A.17) with respect to� at� = 0:
Thus, if Qi = 0 for all i; a small increase in Q1 that is �nanced by a
linear income tax will raise aggregate surplus (without violating incentive
compatibility of individual rationality) contrary to the assumption thatQi =
0 for all i is optimal.

Proof of Lemma 4.1. The lemma will be proved as an instance of
Theorem 5.1 in Hellwig (2008). The bring the optimization problem in the
form that is assumed in that theorem, I introduce the notation

G1(Q1; :::; Qm; �̂1; :::; �̂m) :=
mX
i=1

Z 1

�̂i

(�i � �̂i)Qi dFi(�i); (A.22)
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G2(Q1; :::; Qm; �̂1; :::; �̂m) :=
mX
i=1

�̂iQi(1� F i(�̂i))�K(Q1; :::; Qm): (A.23)

Given this notation, one easily veri�es that the problem of maximizing (4.1)
over the set of feasible, incentive-compatible, rengotiation proof, and individ-
ually rational allocations is equivalent to the problem of choosing functions
Q1(�); :::; Qm(�); �̂1(�); :::; �̂m(�); �v(�);and ŷ(�) on [0; 1] so as to maximize the
objectiveZ 1

0
[�v(n) +G1(Q1(n); :::; Qm(n); �̂1(n); :::; �̂m(n))]f

n(n)dn (A.24)

subject to the constraints thatZ 1

0
[ŷ(n)��v(n)�(ŷ(n); n)+G2(Q1(n); :::; Qm(n); �̂1(n); :::; �̂m(n))]fn(n)dn � 0

(A.25)
and, for almost all n;

Q0i(n) = 0 for all i; (A.26)

�̂
0
i(n) = 0 for all i; (A.27)

�v0(n) = �n(ŷ(n); n); (A.28)

that
Qi(0) � 0 for all i; (A.29)

�̂i(0) = 0 for all i 2 Jne; (A.30)

�v(0) � 0; (A.31)

ŷ(0) � 0; (A.32)

and, �nally, that

ŷ(�) is a nondecreasing function. (A.33)

In a second step, the integral constraint (A.25) is replaced by the re-
quirement that the variable B(�) satisfying

B(0) = 0; (A.34)

and

B0(n) = [ŷ(n)��v(n)�(ŷ(n); n)+G2(Q1(n); :::; Qm(n); �̂1(n); :::; �̂m(n))]fn(n)
(A.35)
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for all n must also satisfy the boundary condition

B(1) � 0: (A.36)

The problem of maximizing (A.24) subject to (A.26) - (A.36) has the
form assumed in Theorem 5.1 of Hellwig (2008). To apply this theorem,
one must, however, verify the Regularity Condition, which requires that
(i) there is at least one state variable which is not subject to an endpoint
constraint at n = 1 and that (ii) a change in the initial value of this state
variable in an admissible direction at n = 0 has a �rst-order positive e¤ect on
the endpoint constraints to which the other state variables are subjected at
n = 1: In the present context, B(�) is the only state variable that is subjected
to explicit constraints at both endpoints. Moreover, if Qi(0) > 0 for some
i; then any small reduction in Qi(0) will have a �rst-order positive e¤ect on
B(1) : By (A.26), a reduction in Qi(0) by � > 0 reduces Qi(n) by the same
amount � for all n; by (A.24) and (A.35), this raises B(1) by approximately
�Ki(Q). By Lemma A.1, it follows that the problem of maximizing (A.24)
subject to (A.26) - (A.36) satis�es the conditions of Theorem 5.1 in Hellwig
(2008).23 Therefore, there exist absolutely continuous real-valued functions
�1; :::�m; �1; :::; �m; ';  ; �; all de�ned on [0; 1], such that the following hold:

(a) for i = 1; :::;m,

� 0i(n) = �
@G1
@Qi

� �(n)@G2
@Qi

(A.37)

for almost all n; moreover,

�i(0) � 0; �i(0)Qi(0) = 0; and �i(1)) = 0; (A.38)

(b) for i = 1; :::;m,

�0i(n) = �
@G1

@�̂i
� �(n)@G2

@�̂i
= 0 (A.39)

for almost all n; moreover,

�i(0) = �i(1)) = 0; (A.40)

(c) for almost all n;

'0(n) = �(1� �(n))fn(n); (A.41)
23Hellwig (2008) formulates the Regularity Condition in global terms, which would

require that the small reduction in Qi(0) should be feasible regardless of what Qi(0) is.
However, the proof of Theorem 5.1 only uses a local version, namely, starting from the
given solution to th econtrol problem, the small reduction in Qi(0) is feasible.
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moreover,
'(0) � 0; '(0)�v(0) = 0; and '(1) = 0; (A.42)

(d) for almost all n;

 0(n) = ��(n)(1� y(ŷ(n); n))fn(n) + '(n)ny(ŷ(n); n)); (A.43)

moreover,
 (0) � 0;  (0)ŷ(0) = 0; (A.44)

and
 (1) � 0; and  (1)ŷ(1) = 0; (A.45)

(e) for all n;  (n) � 0; moreover,  (n) = 0 if ŷ(�) is strictly increasing
at n:

(f) for almost all n;
�0(n) = 0; (A.46)

moreover,
�(1) � 0 and �(1)B(1) = 0; (A.47)

From (A.46), one infers that �(n) is the same for all n; equal to a constant
�; which, by (A.47), is nonnegative. Statements (c) - (e) of the lemma thus
follow from (c) - (e) above. To prove statement (a), I note that, because �(n)
and Q1(n); :::; Qm(n); �̂1(n); :::; �̂m(n) are independent of n; (A.37) implies
that, for any i; � 0i(n) is also independent of n; and, therefore, that

�i(1)� �i(0) = �
@G1
@Qi

� �@G2
@Qi

: (A.48)

By (A.38), it follows that, for any i;

@G1
@Qi

+ �
@G2
@Qi

� 0 and
�
@G1
@Qi

+ �
@G2
@Qi

�
Qi = 0: (A.49)

By (A.22) and (A.23), one also has

@G1
@Qi

+ �
@G2
@Qi

� ��K 0
i(Qi): (A.50)

Since Qi = 0 implies K 0
i(Qi) = 0; (A.49) and (A.50) together imply that

@G1
@Qi

+ �
@G2
@Qi

= 0; (A.51)
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regardless of whether Qi > 0 or Qi = 0: Statement (a) of the lemma follows
by computation of the derivatives. By a precisely analogous argument, using
(A.39) and (A.40) to obtain

@G1

@�̂i
+ �

@G2

@�̂i
= 0; (A.52)

one also obtains

(�� 1)Qi(1� Fi(�̂i))� ��̂iQifi(�̂i) = 0; (A.53)

so statement (b) of the lemma follows if Qi > 0: To see that this is indeed
the case, observe that, if it was optimal to have Qi = 0; then the choice of
�̂i would be a matter of indi¤erence; in particular, it would also be optimal
to set �̂i = 0: However, for �̂i = 0 and Qi = 0; (4.10) cannot hold because
the left-hand side is positive and the right-hand side is zero.

Proof of Proposition 4.2 (a). The allocation speci�ed in statement
(a) of the proposition maximizes aggregate surplus over the set of feasible
allocations. Trivially, this allocation is also incentive-compatible and rene-
gotiation proof. Moreover, if K(Q�) � maxy[y � (y; 0)]; it is compatible
with individual rationality. Any optimal admissible allocation must there-
fore be �rst-best. In particular, it must satisfy Qi = Q�i and pi = 0 for all
i; as well as (4.21).

Lemma A.2 If K(Q�) > maxy[y� (y; 0)], then the Lagrange multiplier �
that is associated with an optimal admissible allocation sati�es � > 1:

Proof. I claim that, if � = 1; one must have T (ŷ(0)) � K(Q�) for all n;
hence,

�v(0) � ŷ(0)�K(Q�)� (ŷ(0); 0);
which is nonnegative only if K(Q�) � ŷ(0) � (ŷ(0); 0): Thus, K(Q�) >
maxy[y � (y; 0)] is incompatible with � = 1: Because, as discussed in the
text, conditions (4.12) and (??) also rule out the possibility that � < 1; the
lemma then follows.

To prove that � = 1 implies T (ŷ(0)) � K(Q�), I �rst show that, if � = 1,
then T (ŷ(n)) is same for all n: For any n and �n; one has

T (ŷ(n))� T (ŷ(�n)) = ŷ(n)� ŷ(�n)� (ĉ(n)� ĉ(�n))
= ŷ(n)� ŷ(�n)� (�v(n)� �v(�n))� ((ŷ(n); n)� (ŷ(�n); �n)

=

Z n

�n
(1� y(ŷ(n0); n0))dŷ(n0)�

Z n

�n
d�v(n0)�

Z n

�n
n(ŷ(n

0); n0)dŷ(n0):(A.54)
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By the incentive compatibility condition (4.7), the last two terms cancel,
and one obtains

T (ŷ(n))� T (ŷ(�n)) =
Z n

�n
(1� y(ŷ(n0); n0))dŷ(n0): (A.55)

To prove that T (ŷ(n)) is same for all n; it thus su¢ ces to show that, if � = 1,
then y(ŷ(n

0); n0) = 1 for all n0:
If � = 1, the optimality condition (4.17) takes the formZ 1

n
(1� y(ŷ(n0); n0))fn(n0)dn0 � 0 (A.56)

for all n: I claim that this inequality must in fact hold as an equation for all
n: For suppose that the inequality in (A.56) was strict for some n: Then n
would be part of an interval (n0; n1) on which the monotonicity constraint
on ŷ(�) is binding, and one should have ŷ(n0) = ŷ(n) for all n0 2 (n0; n1).

If ŷ(n) > 0; one must haveZ 1

n0

(1� y(ŷ(n0); n0))fn(n0)dn0 = 0; (A.57)

regardless of whether n0 > 0 or n0 = 0: If n0 > 0; (A.57) holds because, at an
endpoint of a bunching interval, ŷ(�) is strictly increasing. If n0 = 0; (A.57)
follows from the transversality condition (4.14). Now conditions (A.57) and
(A.56) jointly imply that, at n = n0, the integral on the left-hand side of
(A.56) is nonincreasing in n: Hence, 1� y(ŷ(n); n0) � 0: Because yn < 0;
it follows that 1� y(ŷ(n); n0) > 0 for all n0 > n0: Therefore,Z n1

n0

(1� y(ŷ(n0); n0))fn(n0)dn0 > 0: (A.58)

However, (A.57) and (A.58) together yieldZ 1

n1

(1� y(ŷ(n0); n0))fn(n0)dn0 < 0: (A.59)

(A.59) implies that n1 < 1 and that ŷ(�) is constant in a neighbourhood of
n1. This contradicts the de�nition of n1 as the upper endpoint of a bunching
interval.

Alternatively, if ŷ(n) = 0; one has n0 = 0 and y(ŷ(n); n
0) = 0 for all n0:

Again, one obtains (A.58). Upon combining this condition with (A.56) (for
n = n0); one again obtains (A.59). By the same argument as before, this
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yields is incompatible with the assumption that n1 is the upper endpoint of
a bunching interval.

Thus, in either case, if ŷ(n) > 0 and if ŷ(n) = 0; the assumption that,
for n; condition (A.56) holds as a strict inequality leads to a contradiction.
Given that (A.56) holds as an equation for all n; the derivative of the left-
hand side with respect to nmust be equal to zero. This implies y(ŷ(n); n) =
1 for all n and, by (A.55), T (ŷ(n))� T (ŷ(�n)) = 0 for all n and �n:

By (4.11) and (4.10), � = 1 implies �̂i = 0 and Qi = Q�i for all i; as well
as T (ŷ(n)) = T (ŷ(0)) for all n: By the feasibility constraint (3.22), it follows
that � = 1 implies T (ŷ(0)) � K(Q�):

Proof of Proposition 4.2 (b). By Lemma A.2, K(Q�) > maxy[y �
(y; 0)] implies � > 1: By (4.11), one it follows that �̂i 2 (0; 1); hence
pi 2 (0; Qi) for i 2 Je: With � > 1 and �̂i 2 [0; 1) for all i; one then also has

0 <
1

�

Z 1

�̂i

(�i � �̂i)dFi(�i) + �̂i(1� Fi(�̂i)) <
Z 1

0
�idFi(�i); (A.60)

so (4.10) implies (4.22).
I next show that ŷ(n) < argmaxy[y � (y; n)] or, equivalently, that

y(ŷ(n); n) < 1 (A.61)

for all n. If n is such that (4.17) holds with equality, one must haveZ n̂

n

�
�(1� y(ŷ(n0); n0))fn(n0) + ny(ŷ(n0); n0)(�� 1)(1� Fn(n0))

�
dn0 � 0
(A.62)

for all n̂ > n: Then there exists n0 > n arbitrarily close to n such that

�(1� y(ŷ(n0); n0))fn(n0) + ny(ŷ(n0); n0)(�� 1)(1� Fn(n0)) � 0 (A.63)

and, therefore, since ny(ŷ(n
0); n0) < 0;

1� y(ŷ(n0); n0) > 0: (A.64)

Upon taking limits as n0 # n and noting that, by the monotonicity of ŷ(�),
ŷ(n) � limn0#n ŷ(n0); one obtains the desired result. Alternatively, if n is such
that (4.17) holds with a strict inequality, then n is part of an interval (n0; n1)
on which the monotonicity constraint on ŷ(�) is binding, and one has ŷ(n0) =
ŷ(n) for all n0 2 (n0; n1). If ŷ(n) = 0; one trivially has y(ŷ(n

0); n0) =
y(0; n

0) = 0 < 1 for all n0 2 [0; n1): If ŷ(n) > 0; one has n > n0 and
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n0 is such that (4.17) holds with equality, either because n0 is a point at
which ŷ(�) is increasing or because n0 = 0: By the argument just given, it
follows that (A.64) holds for n0 > n0 arbitrarily close to n0: Such n0 can be
chosen to be smaller than n: Then, with ŷ(n0) = ŷ(n); the single-crossing
condition yn < 0 implies y(ŷ(n); n) < y(ŷ(n

0); n0) and, therefore, by
(A.64), y(ŷ(n); n) < 1: This establishes (4.24).

To prove (4.28), observe that (4.17) impliesZ 1

n

�
�(1� y(ŷ(n0); n0))fn(n0)

�
dn0 �

Z 1

n

��ny(ŷ(n0); n0)�� (��1)(1�Fn(n0))dn0:
(A.65)

If one divides both sides by 1� n and takes limits as n " 1; one obtains

lim
n0"1
(1� y(ŷ(n0); n0)) = 0; (A.66)

which is equivalent to (4.28).

Proof of Corollary 4.3. (a) By Proposition 4.2(a) and equation
(A.55), T (ŷ(n)) is independent of n: Feasibility implies that the common
value of T (ŷ(n)) is at leastK(Q�): Optimality implies that it is no more than
K(Q�): (b) By Proposition 4.2(b) and equation (A.55), the tax schedule
T (�) is increasing on the range of ŷ(�): If ŷ(�) is continuous and strictly
increasing on a neighbourhood of n; then, by taking (A.55) with n̂ = n� ";
dividing by ŷ(n)� ŷ(n� "); and taking limits as " goes to zero, one obtains
T 0(ŷ(n)) = 1� y(ŷ(n); n):

Proposition 4.4 is based on the following result.

Proposition A.3 For any S � 0; let Q1(S); :::; Qm(S) and �̂1(S); :::; �̂m(S)
be a solution to the problem of maximizing

mX
i=1

Z 1

�̂i

(�i � �̂i)QidFi(�i) (A.67)

under the constraints that �̂i = 0 for i 2 Jne and
mX
i=1

Qi�̂i(1� Fi(�̂i)) + S �
mX
i=1

Ki(Qi): (A.68)

If the functions �i ! �ifi(�i)
1�Fi(�i) ; i 2 J

e; are nondecreasing, then, for S and �S

satisfying 0 � �S < S <
Pm
i=1Ki(Q

�
i ); one has Qi( �S) < Qi(S) for all i and

�̂i( �S) > �̂i(S) for all i 2 Je:
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Proof. For any S; one must have Qi(S) > 0 for all i: For suppose
that Qi(S) = 0 for some i: Then public good i makes no contribution to
the objective (A.67) or to either side of the feasiblity constraint (A.68).
However, if one sets �̂i = 1

2 ; a small increase in Qi above zero will increase
the objective (A.67), as well as the di¤erence between the revenue side and
the cost side of the constraint (A.68). The assumption that the optimal
Qi(S) is zero thus leads to a contradiction and must be false.

Given that Qi(S) > 0 for all i; the �rst-order conditions for Qi(S) require
thatZ 1

�̂i(S)
(�i � �̂i(S))dFi(�i) + �(S)�̂i(S)(1� Fi(�̂i(S)))� �(S)K 0

i(Qi(S)) = 0

(A.69)
for all i where �(S) is the Lagrange multiplier of the constraint (A.68). From
(A.69), one immediately infers that �̂i(S) < 1 for all i: Therefore, �rst-order
conditions for �̂i(S) require that

�(1� Fi(�̂i(S))) + �(1� Fi(�̂i(S))� �̂i(S)fi(�̂i(S))) � 0 (A.70)

for all i 2 Je; with equality unless �̂i(S) = 0:
I claim that, if 0 � S <

Pm
i=1Ki(Q

�
i ); then one must have �(S) > 1

and �̂i(S) > 0 for all i 2 Je: If �(S) � 1; then (A.70) implies �̂i(S) = 0;
and (A.69) implies

R
�idFi(�i) � K 0

i(Qi(S)); hence Qi(S) � Q�i : From the
constraint (A.68), it then follows that S �

Pm
i=1Ki(Q

�
i ):

If 0 � S <
Pm
i=1Ki(Q

�
i ); the �rst-order conditions (A.69) and (A.70)

can therefore be rewritten as

1

�(S)

Z 1

�̂i(S)
�idFi(�i) +

�
1� 1

�(S)

�
�̂i(S)(1� Fi(�̂i(S))) = K 0

i(Qi(S))

(A.71)
and

�i(�̂i(S)) =
�(S)� 1
�(S)

(A.72)

where, for any �i;

�i(�i) :=
�ifi(�i)

1� Fi(�i)
: (A.73)

Now consider S and �S as speci�ed in the proposition. Trivially, the
maximized value of the objective function (A.67) must be larger for S than
for �S: By inspection of (A.67), it follows that, for at least one public good
j; one must have Qj( �S) < Qj(S) or �̂j( �S) > �̂j(S):
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Suppose �rst that one has Qj( �S) < Qj(S) or �̂j( �S) > �̂j(S) for some
j 2 Je. Invoking the monotonicity assumption on �i(�); I claim that, in
fact, one must have Qj( �S) < Qj(S) and �̂i( �S) > �̂i(S): To prove this, I use
(A.72) to rewrite (A.71) in the form

(1��j(�̂j(S)))
Z 1

�̂j(S)
�jdFj(�j)+�j(�̂j(S))�̂j(S)(1�Fj(�̂j(S))) = K 0

j(Qj(S)):

(A.74)
The left-hand side of this condition depends on S only through �̂j(S):

Trivially, (A.74) implies that Qj( �S) < Qj(S) if and only if Lj(�̂j( �S)) <
Lj(�̂j(S)); where, for any �̂j ;

Lj(�̂j) := (1� �j(�̂j))
Z 1

�̂j

�jdFj(�j) + �j(�̂j)�̂j(1� Fj(�̂j)): (A.75)

From (A.75), one obtains

Lj(�̂j(S))� Lj(�̂j( �S))

=

Z �̂j(S)

�̂j( �S)
[�(1� �j(�̂j))�̂jfi(�̂j) + �j(�̂j)(1� Fj(�̂j)� �̂jfi(�̂j))]d�̂j

�
Z �̂i(S)

�̂i( �S)

Z 1

�̂j

(�j � �̂j)dFj(�j)d�j(�̂j)

= �
Z �̂i(S)

�̂i( �S)

Z 1

�̂j

(�j � �̂j)dFj(�j)d�j(�̂j);

so that, if �j(�) is an increasing function, one has Lj(�̂j( �S)) < Lj(�̂j(S))

if and only if �̂j( �S) > �̂j(S): By (A.74), it follows that Qj( �S) < Qj(S) if
and only if �̂j( �S) > �̂j(S): Hence Qj( �S) < Qj(S) or �̂j( �S) > �̂j(S) implies
Qj( �S) < Qj(S) and �̂j( �S) > �̂j(S):

By (A.72) and the monotonicity of �j(�); one then also has �j(�̂j(S)) <
�j(�̂j( �S)) and �(S) < �( �S): By (A.72), one then has �i(�̂i(S)) < �i(�̂i( �S))

for all i 2 Je: By the monotonicity of �i(�); this implies �̂i(S) < �̂i( �S) for all
i 2 Je: By the argument just given, one then also has Qi(S) > Qi( �S) for all
i 2 Je: For i 2 Jne; Qi(S) > Qi( �S) follows from (A.71) in combination with
the fact that �̂i(S) = �̂i( �S) = 0 and �(S) < �( �S):

Suppose, alternatively, that Qj( �S) < Qj(S) or �̂j( �S) > �̂j(S) for some
j 2 Jne: Because j 2 Jne implies �̂j( �S) = �̂j(S) = 0; one must actually have
Qj( �S) < Qj(S): From (A.71), one then infers that �(S) < �( �S): For i 6= j;
the desired result follows by the same argument as before.
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Proposition 4.4 is the special case of Proposition A.3 that is obtained by
setting �S = 0 and S =

R 1
0 T (ŷ(n)) dF

n(n):
The proof of Lemma 5.1 is very similar to the proof of Lemma 4.1. The

main di¤erence is that now the state variable �v(�) and the potential for
varying �v(0) are used to verify the Regularity Condition in Hellwig (2008).
The proof is given in the Supplementary Material.

Example 5.2. Let Q1; :::; Qm; �̂1; :::; �̂m; ŷ(�); �v(�) correspond to an
optimal utilitarian allocation. Then one hasZ

W

 
�v(n) +

mX
i=1

max(�i � �̂i; 0)Qi

!
dF

�
Z
W

 
max
y
[y � (y; n)] +

mX
i=1

�iQ
�
i �

mX
i=1

Ki(Q
�
i )

!
dF;

the right-hand side corresponding to the �rst-best allocation where public
goods are �nanced by lump-sum taxes. Because W is strictly concave, it
follows that Z

W 0

 
max
y
[y � (y; n)] +

mX
i=1

�iQ
�
i �

mX
i=1

Ki(Q
�
i )

!
 
�v(n) +

mX
i=1

max(�i � �̂i; 0)Qi �max
y
[y � (y; n)]�

mX
i=1

�iQ
�
i +

mX
i=1

Ki(Q
�
i )

!
dF � 0:

Under the assumption of the example, the �rst term in the integrand is equal
to W 0 (�v �

Pm
i=1Ki(Q

�
i )) ; F -almost everywhere. Therefore, one must haveZ  

�v(n) +
mX
i=1

max(�i � �̂i; 0)Qi

!
dF �

Z  
max
y
[y � (y; n)] +

mX
i=1

�iQ
�
i �

mX
i=1

Ki(Q
�
i )

!
dF;

orZ 1

0
�v(n)dFn+

mX
i=1

Z 1

�̂i

(�i��̂i)QidFi �
Z 1

0
max
y
[y�(y; n)]dFn+

mX
i=1

Z 1

0
�iQ

�
i dFi�

mX
i=1

Ki(Q
�
i ):

Because the optimal utilitarian allocation is feasible, is follows thatZ 1

0
(ŷ(n)� (ŷ(n); n))dFn +

mX
i=1

Z 1

�̂i

�iQidFi �
mX
i=1

Ki(Qi)

�
Z 1

0
max
y
[y � (y; n)]dFn +

mX
i=1

Z 1

0
�iQ

�
i dFi �

mX
i=1

Ki(Q
�
i );
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which is only possible if Qi = Q�i and �̂i = 0 for all i, and if ŷ(n) �
(ŷ(n); n) = maxy[y � (y; n)] for Fn-almost all n:

Proof of Proposition 5.3. Let n1 and n2 be such that n1 < n2; and

note that, by the concavity ofW; the function � !W 0
�
�v(n) +

Pm
i=1max(�i � �̂i; 0)Qi

�
is nonincreasing. By Theorem 5, p. 1100, of Milgrom and Weber (1982)
therefore, the a¢ liatedness assumption on F implies thatZ

[0;1]m
W 0

 
�v(n2) +

mX
i=1

max(�i � �̂i; 0)Qi

!
dF (�jn1)

�
Z
[0;1]m

W 0

 
�v(n2) +

mX
i=1

max(�i � �̂i; 0)Qi

!
dF (�jn2): (A.76)

By the strict concavity of W and the strict monotonicity of �v(�); it follows
that Z

[0;1]m
W 0

 
�v(n1) +

mX
i=1

max(�i � �̂i; 0)Qi

!
dF (�jn1)

>

Z
[0;1]m

W 0

 
�v(n2) +

mX
i=1

max(�i � �̂i; 0)Qi

!
dF (�jn2); (A.77)

which proves that the map (5.14) is strictly decreasing. A precisely anal-
ogous argument also establishes that the (5.15) is strictly decreasing. The
details are left to the reader.

Proof of Proposition 5.4. Given the strict monotonicity of the map
(5.14), there exists a unique n̂ 2 [0; 1] such that

Vv(�v(n
0); n0; Q1; :::Qm; �̂1; :::; �̂m) S � as n0 T n̂: (A.78)

From (A.78), one infers that the function n ! '(n) =
R 1
n [Vv � �] dF

n(n0)
is decreasing for n < n̂ and increasing for n > n̂: Because '(0) = '(1) = 0;
it follows that n̂ 2 (0; 1) and that '(n) < 0 for all n 2 (0; 1):

Now the argument for (5.16) and (5.17) is the same as in the proof of
(4.24) and (4.25) in Proposition 4.2 and is left to the reader. As for (5.18), I
note that, if there exists a sequence fnkg of points at which ŷ(�) is increasing,
then by Lemma 5.1, one hasZ 1

nk

�
��(1� y(ŷ(n0); n0))fn(n0) + ny(ŷ(n0); n0)'(n0)

�
dn0 = 0 (A.79)
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for all k:Z nk�1

nk

�
��(1� y(ŷ(n0); n0))fn(n0) + ny(ŷ(n0); n0)'(n0)

�
dn0 = 0 (A.80)

for all k: Then there exist sequences fn̂kg; f�nkg converging to zero such that
for all k one has

��(1� y(ŷ(n̂k); n̂k))fn(n̂k) + ny(ŷ(n̂k); n̂k)'(n̂k) � 0

and
��(1� y(ŷ(�nk); �nk))fn(�nk) + ny(ŷ(�nk); �nk)'(�nk) � 0:

Upon de�ning �y(0) := limn#0 ŷ(n) and taking limits as n̂k and �nk go to
zero, using the fact that '(�) is continuous and '(0) = 0; one obtains ��(1�
y(�y(0); 0))f

n(0) � 0 and ��(1�y(�y(0); 0))fn(0) � 0: Hence, y(�y(0); 0) =
1 and �y(0) = argmaxy[y � (y; n)]:

Corollary 5.5 follows by the same argument as Corollary 4.3.
The proofs of Propositions 5.6 and 5.7 are similar to the proofs of the cor-

responding results in Hellwig (2005). They are given in the Supplementary
Material.
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