
Why Does Difference In Difference Matching Work?∗

Sylvain Chabé-Ferret†

Toulouse School of Economics and Inra, Lerna

This version: August 26, 2014.

Very preliminary – comments welcome

Abstract

Difference In Difference (DID) Matching is one of the nonexperimental methods of
causal inference that reproduces the results of Randomized Controlled Trials (RCTs)
the best. One intuitive explanation for this success is that DID & Matching combine
their strengths: DID differences out the permanent confounders while Matching on
pre-treatment outcomes captures transitory shocks. I show that this intuitive expla-
nation is incorrect: it is both inconsistent theoretically and does not perform well
in simulations of a model of earnings dynamics and selection into a Job Training
Program (JTP). I show that DID Matching performs well when it is implemented
symmetrically around the treatment date and does not condition on pre-treatment
outcomes. I explain why this is the case and bring evidence from earlier experiments
comparing DID Matching with RCTs that strongly support this result. These results
have powerful consequences for the way DID Matching is implemented in practice, its
application to programs over that JTPs and for the neverending quest for a reliable
nonexperimental method of causal inference.

Keywords: Difference in Difference Matching - Selection Model - Treatment Effects.

JEL codes: C21, C23.

∗I thank Koen Jochmans for very constructive comments on a preliminary version of this work presented
at the French Econometrics Conference. I also thank conference participants for their useful feedback and
suggestions. All remaining errors are my own.

†Correspondence to: Sylvain Chabé-Ferret, Toulouse School of Economics – Lerna, 21 Allée de Bri-
enne, 31015 Toulouse Cedex 6, France. Email: sylvain.chabe-ferret@tse-fr.eu. Tel: +33 (0)5 61 12 88 28.
Fax:+33 (0)5 61 12 85 20.

mailto:sylvain.chabe-ferret@tse-fr.eu


1 Introduction

Developing reliable methods for causal inference is crucial for testing scientific theories

and evaluating the effect of public or private interventions. The main difficulty with causal

inference is to tell causation from correlation, the causal effect from selection bias. Se-

lection bias occurs because there exist confounding factors that simultaneously determine

the outcomes of interest and who receives the intervention. Randomization corrects for

selection bias by allocating the intervention independently of the confounders. Unfortu-

nately, randomization is not without its problems (ethical and political limits to feasibility,

randomization bias). As early as Yule (1899), economists and statisticians seek to develop

methods disentangling the effect of an intervention from that of confounding factors with-

out resorting to randomization. Since LaLonde (1986), these methods have been subjected

to tests comparing their results with an experimental benchmark. The most robust method

to survive these tests is the combination of Difference In Difference with conditioning on

observed covariates (Heckman, Ichimura, Smith, and Todd, 1998; Smith and Todd, 2005).1

Most of the evidence that we have on the performance of DID Matching is limited to

one application though: the effect of Job Training Programs (JTPs) on earnings. We do

not really know why DID Matching performs so well in these experiments, what is the

precise way to implement it that yields the best results and whether such nice behavior

can be expected in other applications as well. Intuitively, one would expect that DID and

Matching combine their strengths: DID gets rid of permanent confounders while Matching

capture selection due to transitory shocks. This is especially relevant in the case of JTPs:

it has been widely documented that participants in a Job Training Program (JTP) have

permanently lower earnings but also experience a transitory decrease in earnings before

entering the program (see Heckman, LaLonde, and Smith (1999) for a survey).

In this paper, I show that this intuitive explanation for the good performance of DID

Matching is inconsistent theoretically. In a model where selection bias is a combination

1When conditioning is performed nonparametrically, this method has been coined DID Matching
(Blundell and Costa Dias, 2000) or semiparametric DID (Abadie, 2005). When conditioning is performed
using a parametric model, this approach has been coined quasi-DID (LaLonde, 1986).
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of a permanent fixed effect with transitory shocks, combining DID with conditioning on

pre-treatment outcomes is either irrelevant or inconsistent. It is irrelevant because it is

only consistent when simple Matching is also consistent. Worse, combining DID with con-

ditioning on pre-treatment outcomes generates bias when DID is consistent. An important

case in point is when selection bias forms and dissipates at the same pace and applying DID

symmetrically around the treatment date is consistent (Chabé-Ferret, 2014). Conditioning

on pre-treatment outcomes breaks the symmetry of the dip and thus generates bias.

Results of Monte Carlo simulations of a model of earnings dynamics and self-selection in

a JTP parameterized with realistic parameter values show that the bias generated by condi-

tioning on pre-treatment outcomes can be sizable and that Symmetric DID still dominates

DID Matching even when both are inconsistent. Taking a closer look at the papers compar-

ing DID Matching with an experimental benchmark, I find that their positive results stem

from the application of DID symmetrically around the treatment date rather than from

the combination of DID with conditioning on pre-treatment outcomes. In these papers,

conditioning on pre-treatment outcomes actually worsens the performances of Symmetric

DID.

Together with those of Chabé-Ferret (2014), these results push toward the use of Sym-

metric DID instead of combining DID with conditioning on pre-treatment outcomes in

cases where we suspect selection on transitory shocks and on a permanent fixed effect.

These results are not a rebuttal of DID Matching per se, but only of the combination of

DID with Matching on pre-treatment outcomes. Actually, it is the combination of Sym-

metric DID with Matching on covariates that are constant over time that performs best

at reproducing experimental results. Indeed, nonparametrically conditioning on covariates

allows to capture differential time trends among participants and non participants. This

paper shows that this intuition suffers from a very important exception: it is not possi-

ble to capture differential trends due to pre-treatment outcomes and at the same time to

difference out unobserved fixed effects. In the course of the paper, I derive necessary and

sufficient conditions for Matching and DID to be consistent. These results are of sepa-

rate interest. Matching is consistent if and only if selection is due to transitory shocks.
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Matching on pre-treatment outcomes thus does not correct for selection on a permanent

unobserved fixed effect. DID is consistent if and only if selection is due to a fixed effect.

Related literature

The approach of using a model of outcome dynamics and selection in a program to study

the properties of nonexperimental estimators is rooted in an ancient literature. Ashenfelter

(1978) formalizes the evaluation problem as a combination of selection on a fixed effect

and on transitory shocks. Heckman (1978), Heckman and Robb (1985) and Ashenfelter

and Card (1985) combine the selection equation with the outcome dynamics equation and

introduces Symmetric Differencing. Bassi (1984) acknowledges that combining differenc-

ing with conditioning on pre-treatment changes in outcomes suffers from Nickell (1981)’s

problem: pre-treatment earnings are correlated with transitory shocks. LaLonde (1986)

introduces the quasi-differencing approach combining differencing with conditioning on

pre-treatment outcomes. DID Matching was introduced by Heckman, Ichimura, and Todd

(1997) and Heckman, Ichimura, Smith, and Todd (1998). Chabé-Ferret (2014) compares

Matching, DID and Symmetric DID when only one observation of pre-treatment outcomes

is available.

This paper is structured as follows: Section 2 formally introduces the setting, the

estimators and their bias; Section 3 presents the sufficient conditions for the consistency of

Matching, DID and DID Matching; Section 4 presents the results of simulations of a model

of earnings dynamics and selection in a JTP calibrated with realistic parameter values;

Section 5 presents evidence from comparison of JTPs with an experimental benchmark

confirming that combining DID with conditioning on pre-treatment outcomes does less

well than Symmetric DID at reproducing the results of RCTs.
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2 The model, the estimators and their bias

The model

I use a simple selection model exhibiting selection both on a fixed effect and on transitory

shocks. The outcomes in the absence of the treatment depend on time and individual fixed

effects and on transitory shocks (Equation (1a)). Transitory shocks are persistent: they

follow an AR(1) process with |ρ| < 1 (Equation (1b)).

Y 0
i,t = δt + µi + Uit (1a)

with Ui,t = ρUi,t−1 + vi,t (1b)

Di,k = 1[t ≥ k]1[θi + γY 0
i,k−1︸ ︷︷ ︸

D∗
i,k

≥ 0]. (1c)

Treatment is offered at period k. Selection into the program depends on an individual

fixed effect θi and on outcomes at date k− 1 (Equation (1c)). The two critical parameters

for selection are γ and ρθ,µ (the correlation of the fixed effect µi with the unobserved shifter

of participation θi). When γ = 0, selection is due to the fixed effect only. When ρθ,µ = 0,

selection is on the observed pre-treatment outcome Y 0
i,k−1 only. The key question that this

paper answers is whether combining DID with conditioning on Y 0
i,k−1 corrects for selection

bias when both γ and ρθ,µ are different from zero.

In order to focus the burden of selection bias on these two key parameters, I make

the following assumptions: ρ 6= 0, σ2 > 0, σ2
U0 > 0, σ2

µ > 0, σ2
θ > 0. vi,t are i.i.d.

mean-zero shocks with finite variance σ2 and Ui,0 is a mean-zero shock with variance σ2
U0 .

vi,t ⊥⊥ (µi, θi),∀t and Ui,0 ⊥⊥ (µi, θi, vi,t),∀t. I assume normally distributed error terms all

along.

Examples

Although admittedly very simple, the model described by equation (1) has several virtues.

First, it encapsulates in the simplest possible setting the problem that DID Matching is
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trying to solve: selection on a fixed effect and on transitory shocks. Second, it accounts

for various types of realistic selection processes: namely self-selection in a Job Training

Program (JTP) and a cutoff eligibility rule.

Self selection Assuming no idiosyncratic trend, no MA terms and limited information,

setting γ = −ρ and θi = αi
r
− ci, the model of entry into a JTP studied in Chabé-Ferret

(2014) simplifies to the model described by equation (1).

Eligibility rules As argued in Chabé-Ferret (2014), a program allocated when a running

variable falls below some eligibility threshold can also be described by equation (1c). In

that case, γ = −1 and θi accounts for measurement error in the variable determining

eligibility.

The estimators and their bias

The parameter of interest is the average effect of the treatment on the treated (ATT)

τ periods after the treatment date. I consider three estimators of the ATT: Matching,

DID and DID Matching (DIDM). I only study asymptotic bias, and therefore focus on

population formulae.

B(Mk,τ,1) = E[E[Y 0
i,k+τ |Di,k = 1, Y 0

i,k−1]− E[Y 0
i,k+τ |Di,k = 0, Y 0

i,k−1]|Di,k = 1] (2a)

B(DIDk,τ,τ ′) = E[Y 0
i,k+τ − Y 0

i,k−τ ′ |Di,k = 1]− E[Y 0
i,k+τ − Y 0

i,k−τ ′|Di,k = 0] (2b)

B(DIDMk,τ,1,τ ′) = E
[
E[Y 0

i,k+τ − Y 0
i,k−τ ′|Di,k = 1, Y 0

i,k−1]

− E[Y 0
i,k+τ − Y 0

i,k−τ ′ |Di,k = 0, Y 0
i,k−1]|Di,k = 1

]
. (2c)

The Matching estimator compares the expected outcomes of the treated τ periods after

the treatment to those of the untreated conditional on Y 0
i,k−1. Y 0

i,k−1 is the last pre-treatment

outcome observed before the treatment is taken and intuitively the one containing the most

relevant information for selection. Following Chabé-Ferret (2014), the bias of Matching

is the expected difference in potential outcomes in the absence of the treatment between
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participants and non participants, conditional on Y 0
i,k−1, integrated over the distribution

of Y 0
i,k−1 conditional on Di,k = 1 (Equation (2a)).

The DID estimator compares the post-treatment difference in outcomes to the difference

that existed some τ ′ periods before the treatment. Following Chabé-Ferret (2014), the bias

of DID is equal to the change over time in the difference in potential outcomes between

participants and non participants in the absence of the program (Equation (2b)).

The DIDM estimator compares the evolution in the differences in outcomes before and

after the program after conditioning on Y 0
i,k−1. The bias of DIDM is equal to the change over

time in the difference in potential outcomes between participants and non participants in

the absence of the program conditional on Y 0
i,k−1, integrated over the distribution of Y 0

i,k−1

conditional on Di,k = 1 (Equation (2c)).

Consistency

As I want to state general results on the model parameters for each of the estimators to

be consistent, I have to define the sets of periods k, τ and τ ′ for which I want the biases

of the various estimators to cancel. The usual practice is to use the estimators without

restricting their validity to any particular subset of the possible treatment dates (k) or

lag between treatment and observation of outcomes (τ). Thus, I will define consistency in

this model as requiring that the estimators are valid for all k > 0 and for all τ ≥ 0. This

requirement mainly serves to weed out special cases in which the estimators are consistent

for a peculiar combinations of dates. Similarly, for DID and DIDM, I define consistency as

the fact that the bias of the estimator is zero regardless of the pre-treatment period k− τ ′

used to construct the estimator. This reflects the common practice of DID, to the best of

my knowledge.
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3 Theoretical results

DID conditioning on pre-treatment outcomes is irrelevant

Theorem 1 The three following statements are equivalent:

(i) ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, B(DIDMk,τ,1,τ ′) = 0

(ii) ∀k > 0, ∀τ ≥ 0, B(Mk,τ,1) = 0

(iii) ρθ,µ = 0.

Theorem 1 shows that combining DID with Matching on pre-treatment outcomes is

consistent if and only if Matching also is. Thus DID Matching does not bring any additional

identifying power on top of Matching. Moreover, Theorem 1 also shows that Matching and

DID Matching are consistent if and only if selection is on observed transitory shocks only.

Thus, both these methods are inconsistent when selection is due to a fixed effect only,

or when it is a combination of a fixed effect with a transitory shock. As a consequence,

combining DID with Matching on pre-treatment outcomes is not the silver bullet we would

hope it is: it does not combine the strengths of its forefathers, but only inherits the virtues

of Matching.

Figure 1 illustrates these results. It shows the the expected value of the outcomes in

the absence of the treatment around the treatment date for the participants (circles), the

non participants (crosses) and the matched non participants (triangles), i.e. the non par-

ticipants with the same distribution of Y 0
i,k−1 as the participants. The difference between

participants and non participants measures selection bias. The difference between partic-

ipants and non participants measures the bias of Matching. The difference between the

bias of Matching before and after the treatment date measures the bias of DID Matching.

In Figure 1(a), selection is on transitory shocks only (ρθ,µ = 0). As expected from

Theorem 1, Matching is consistent since participants and matched non participants are

aligned at every period after the treatment date: the matched non participants perfectly

proxy the counterfactual outcomes of the participants. DID Matching does not generate
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bias when Matching is consistent since pre-treatment outcomes are also aligned, despite

the fact that they have not been explicitly conditioned on. This is because Y 0
i,k−1 is a

sufficient statistics for selection in that case.

In Figure 1(b), selection is both on the fixed effect and on transitory shocks. As

expected from Theorem 1, Matching is biased, which is apparent because participants and

matched non participants are not perfectly aligned after the treatment date. DID Matching

is biased because the difference between participants and matched non participants varies

over time: the difference between participants and matched non participants before the

treatment date does not proxy for the difference that exists after.

The intuition for this result is that, conditional on Y 0
i,k−1, the participants and the

matched non participants do not have the same distribution of fixed effects and transi-

tory shocks. The matched non participants have larger fixed effects on average: this is

the reason why they do not enter the treatment. The matched non participants have the

same observed pre-treatment outcomes as the participants because they experience more

negative transitory shocks before eligibility is decided. Matching is biased because once

eligibility has been decided, the matched non participants start diverging from the partic-

ipants to their higher long run mean. DID Matching is also biased because the history of

transitory shocks that makes participants and non participants similar at k−1 in terms of

pre-treatment outcomes generates differences before that date, and these differences vary

over time, making it impossible to use them to proxy for the bias of Matching.

DID conditioning on pre-treatment outcomes generates bias

When simple DID is consistent

The following theorem shows that DID is consistent if and only if selection is due to the

fixed effect only:

Theorem 2 The following two statements are equivalent:

(i) ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, B(DIDk,τ,τ ′) = 0
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(ii) γ = 0.

Theorem 2 shows that DID is consistent if and only if γ = 0. Theorem 1 shows that

Matching and DID Matching are consistent if and only if ρθ,µ = 0. DID, Matching and

DID Matching are all consistent if and only if γ = ρθ,µ = 0, i.e. in the trivial case when

there is no selection bias. When there is selection bias, both Matching and DID Matching

are inconsistent when DID is consistent (i.e. when γ = 0 and ρθ,µ 6= 0). Conditioning on

pre-treatment outcomes generates bias when simple DID is consistent.2

Figure 2 illustrates this result. Figure 2(a) shows that DID is consistent when selection

is on the fixed effect only (γ = 0). Indeed, selection bias is constant over time in that case

and the difference between participants and non participants at any pre-treatment date is

a consistent proxy for post-treatment selection bias. Figure 2(a) also shows that Matching

is biased because conditioning on Y 0
i,k−1 fails to account for selection on the fixed effect.

Indeed, Y 0
i,k−1 suffers from measurement error due to the transitory shocks. Since these

shocks are persistent, the bias of Matching varies over time, before and after treatment,

which makes it impossible for DID Matching to capture it.

When Symmetric DID is consistent

In the model described by equation (1), DID applied symmetrically around k − 1 is con-

sistent when the outcome process is stationary (see e.g. on Figure 1(b)). This is because

the dip due the transitory shock forms and dissipates at the same pace around k − 1

(see Chabé-Ferret (2014)). Because the same property holds conditional on Y 0
i,k−1, DID

Matching is consistent, but irrelevant, in that case.

In the the self-selection model under full information studied by Chabé-Ferret (2014),

DID applied symmetrically around the treatment date is consistent while Symmetric DID

2When ρ = 0, measurement error is not autocorrelated, the bias remaining after Matching is constant
over time and DID Matching is consistent. But DID is also consistent making DID Matching irrelevant.
Matching is biased when ρ = 0 since pre-treatment outcomes are an imperfect proxy for the unobserved
fixed effect.
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Matching is not. In this model, the selection equation becomes:

Df
i,k = 1[t ≥ k]1[θfi + γfY 0

i,k︸ ︷︷ ︸
D∗f
i,k

≥ 0]

Theorem 3 states the result:

Theorem 3 In the self-selection model under full information, the following two state-

ments hold when σ2
U0 = σ2

1−ρ2 :

(i) ∀k > 0, ∀τ > 0, B(DIDk,τ,τ ) = 0,

(ii) ∀k > 0, ∀τ > 0, B(DIDMk,τ,1,τ ) 6= 0 except if aσµ = −γfρ(σ2
µ + σ2

1−ρ2 ).

Theorem 3 shows that when the outcome process is stationary, Symmetric DID is

consistent. Figure 2(b) illustrates this case: selection bias forms and dissipates at the

same pace, it is symmetric around the treatment date k. Conditioning on Y 0
i,k−1 breaks the

symmetry of the dip, and renders Symmetric DID Matching inconsistent. On Figure 2(b),

the bias of Matching decreases as it gets closer to k−1, increases sharply at date k because

the last shock before selection, and decreases thereafter. Only when the asymmetry of

the dip perfectly compensates the bias due to the last shock, the bias of Symmetric DID

Matching is zero, but this is not very attractive condition. Symmetric DID Matching would

be consistent when conditioning on Y 0
i,k, but it is infeasible since the potential outcomes of

the participants are unobserved.

4 Simulation results

In this section, I use simulations in order to gauge the size of the bias of DID condition-

ing on pre-treatment outcomes and how it compares with DID, especially when applied

symmetrically around the treatment date and with simple Matching. I use a model of

earnings dynamics and selection into a JTP calibrated with realistic parameter values (see

Chabé-Ferret (2014) for details on the parameterizations and simulations).
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Figure 3 presents the results of simulations of a model with no fixed effect in the

outcome process. Matching does not perform well in this model because the outcome

process combines an AR(1) with MA terms (see Chabé-Ferret (2014)). Figure 3(a) shows

that Symmetric DID is consistent when agents have full information, as expected from

Theorem 3. Figure 3(a) also shows that conditioning on pre-treatment outcomes generates

severe bias (of the order of 100% of the treatment effect). This is because conditioning

breaks the symmetry of the dip, as illustrated in Figure 2(b). Figure 3(a) also shows that

combining DID with Matching is less bias than simple Matching. Figure 2(b) helps to

understand why: the pre-treatment difference in outcomes is of the same sign as the post-

treatment difference and is smaller in absolute value. Differencing after Matching goes

some way in reducing selection bias.

When the dip is no longer symmetric, Symmetric DID is inconsistent, whether condi-

tioning on pre-treatment outcomes or not. This is the case for example when the outcome

process is not stationary because the variance of the initial shock is smaller than the long

run variance (Figure 3(b)) or when the income process exhibits an idiosyncratic trend

((Figure 3(c)). In the latter case, not conditioning fares better in the beginning and the

middle of the life cycle, but performs less well when the trend dominates the bias term

later in life. In the former case, not conditioning fares better in the middle and the end of

the life cycle but performs less well at the beginning of the agents’ career, when the dip is

strongly asymmetric.

5 Revisiting experimental estimates

The results of studies comparing Symmetric DID with and without conditioning on pre-

treatment outcomes to an experimental benchmark confirm the theoretical predictions that

conditioning on pre-treatment outcomes increases bias.

Heckman, Ichimura, Smith, and Todd (1998) compare nonexperimental estimates of the

JTPA program obtained with Matching and DIDMatching to the experimental benchmark,

making use of the random allocation of the program. They implement DID symmetrically

13
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around the treatment date. They vary the set of control variables when assessing the

performances of DID Matching. With a coarse set of predictors (only variables that are

constant over time like age schooling and marital status), the bias of Symmetric DID

(resp. Matching) is equal to 73% (resp. 670%) of the experimental treatment effect.

When including pre-treatment earnings (model PII), the bias of Symmetric DID (resp.

Matching) worsens (resp. improves) and equals 332% (resp. 382%) of the treatment effect.

So, conditioning on pre-treatment earnings increases the bias of Symmetric DID Matching.

Figure 4 – Symmetric DID Matching not conditioning on pre-treatment
outcomes reproduces the results of RCTs the best

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

Matching on pre-treat.
Outcomes

Sym. DID Matching on pre-
treat. Outcomes

Sym. DID Matching not on
pre-treat. Outcomes

Bias (% of the treatment effect) 

HIST ST

Note: the figure presents the bias of various estimators estimated using ran-
domly allocated JTPs. HIST stand for Heckman, Ichimura, Smith, and Todd
(1998) and ST for Smith and Todd (2005). The results of the bias of Match-
ing and DID Matching from HIST are from their Table XIII on p.1062. The
coarse set of predictors does not condition on pre-treatment earnings while
the set PII does. The results of the bias of Matching from ST are from their
Table 5 p.336 and the bias of DID Matching is from their Table 6 p.340. The
LaLonde set of predictors does not contain pre-treatment earnings while the
DW set does. The sampe is the full LaLonde sample. The Matching estimator
used for the comparisons is the local linear Matching with a small bandwidth
(1.0).

Smith and Todd (2005) compare the ability of Matching and DID Matching to repro-

duce the results of the famous NSW experiment already analyzed by LaLonde (1986). They

apply DID roughly symmetrically around the treatment date, since outcomes are measured

in 1975 and 1978, and treatment allocated between 1976 and 1977. They vary the set of

control variables when assessing the performances of Matching and DID Matching. With a

coarse set of controls, the bias of DID Matching (resp. Matching) is of -2%, 22% and -16%
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(resp. -405%, -402%, -388%) of the experimental treatment effect, with the smaller (and

most efficient) bandwidth. On the same sample but with a larger set of controls, including

pre-treatment outcomes, the bias of DID Matching (resp. Matching) is of -105%, -137%

and -137% (resp. -95%, -156%, -159%). Again, conditioning on pre-treatment earnings

improves the Matching estimates but increases the bias of DID Matching.

6 Conclusion

This paper shows that the hope of correcting for selection bias due to a combination of a

fixed effect and transitory shocks by combining DID with conditioning on pre-treatment

outcomes is unfulfilled. Theoretically, combining DID with conditioning on pre-treatment

outcomes is consistent only when differencing is irrelevant. Worse, it generates bias when

DID is consistent. Performing DID symmetrically around the treatment date allows to

solve for selection bias combining a fixed effect with transitory shocks when the outcome

process is stationary. Simulations using earnings dynamics and selection into a JTP as

an example show that Symmetric DID outperforms DID conditioning on pre-treatment

outcomes even when the outcome process is not stationary and both estimators are incon-

sistent. Empirically, Symmetric DID performs better at reproducing experimental results

when not conditioning on pre-treatment outcomes.

Combined with those of Chabé-Ferret (2014), that shows that Symmetric DID domi-

nates Matching on pre-treatment outcomes in a similar setting, these results push for the

use of Symmetric DID for solving selection bias that is a combination of a fixed effect

and transitory shocks. This estimator performs well both theoretically, in simulations and

experimentally in situations in which a dips forms and dissipates around the treatment

date.

Directions for further research include a more general investigation of the dgps under

which Symmetric DID is consistent (or works well) and the identification of estimation

procedures valid when the outcome process is non stationary.
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A Proofs

Proof of Theorem 1
The following lemma proves that Matching is consistent if and only if selection is due to
the transitory shock only.

Lemma 1 ∀k > 0, ∀τ ≥ 0, B(Mk,τ,1) = 0 ⇔ ρθ,µ = 0.

Proof: First preliminary result: ∀k > 0, ∀τ ≥ 0, B(Mk,τ,1) = 0 ⇔ σYk+τ ,D
∗
k
σ2
Yk−1
−

σYk−1,D
∗
k
σYk−1,Yk+τ . By linearity of conditional expectations:

E[Y 0
i,t|D∗i,k, Y 0

k−1] = E[Y 0
i,t] + θY 0

k+τ ,D
∗
k

(
D∗i,k − E[D∗i,k]

)
+ θY 0

k+τ ,Y
0
k−1

(
Y 0
i,k−1 − E[Y 0

i,k−1]
)
,

with θY 0
k+τ ,D

∗
k

=

numk,τ︷ ︸︸ ︷
σYk+τ ,D

∗
k
σ2
Yk−1
− σYk−1,D

∗
k
σYk−1,Yk+τ

σ2
D∗
k
σ2
Yk−1

−σ2
Yk−1,D

∗
k

. As a consequence,

B(Mk,τ,1) = θY 0
k+τ ,D

∗
k
E[E[D∗i,k|Di,k = 1, Y 0

k−1]− E[D∗i,k|Di,k = 0, Y 0
k−1]|Di,k = 1].
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The result follows because E[D∗i,k|Di,k = 1, Y 0
k−1]−E[D∗i,k|Di,k = 0, Y 0

k−1] > 0 and σ2
D∗
k
σ2
Yk−1
−

σ2
Yk−1,D

∗
k
> 0.

Second preliminary result: ∀k > 0, ∀τ ≥ 0, numk,τ = σ2
Uk−1

σµa(1 − ρτ+1), with a =
ρθ,µσθ and b = a+ γσµ.

numk,τ =
[
bσµ + γρτ+1σ2

Uk−1

] [
σ2
µ + σ2

Uk−1

]
−
[
bσµ + γσ2

Uk−1

] [
σ2
µ + ρτ+1σ2

Uk−1

]
= γρτ+1σ4

Uk−1
− γρτ+1σ4

Uk−1

+ σ2
Uk−1

[
γρτ+1σ2

µ + bσµ − bσµρτ+1 − γσ2
µ

]
+ σ2

µ [bσµ − bσµ]
= σ2

Uk−1
σµ(b− γσµ)(1− ρτ+1)

From this, we have ρθ,µ = 0 ⇒ numk,τ = 0. The reciprocal follows from the fact that
σµ > 0, σθ > 0, σ2

Uk−1
> 0, ∀k > 0 and (1 − ρτ+1) > 0, ∀τ ≥ 0. Thus numk,τ = 0 ⇒

ρθ,µ = 0.
The following lemma proves the main result: DIDM is consistent if and only if selection

is only on past outcomes.

Lemma 2 ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, B(DIDMk,τ,1,τ ′) = 0 ⇔ ρθ,µ = 0.

Proof: First preliminary result: ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, B(DIDMk,τ,1,τ ′) = 0 ⇔
numk,τ − numk,−τ ′ = 0. This stems from the proof of Lemma 1.

Second preliminary result: numk,−τ ′ = σµa(σ2
Uk−1
− ρτ ′−1σ2

Uk−τ ′
).

numk,−τ ′ =
[
bσµ + γρτ

′−1σ2
Uk−τ ′

] [
σ2
µ + σ2

Uk−1

]
−
[
bσµ + γσ2

Uk−1

] [
σ2
µ + ρτ

′−1σ2
Uk−τ ′

]
= γρτ

′−1σ4
Uk−τ ′

− γρτ ′−1σ4
Uk−τ ′

+ σ2
Uk−1

σµ [b− γσµ]− ρτ ′−1σ2
Uk−τ ′

σµ [b− γσµ]
+ σ2

µ [bσµ − bσµ]
= σµ(b− γσµ)(σ2

Uk−1
− ρτ ′−1σ2

Uk−τ ′
)

Third preliminary result: σ2
Ut = 1−ρ2t

1−ρ2 σ
2 + ρ2tσ2

U0 .
We now have that:

numk,τ − numk,−τ ′ = σµa(ρτ ′−1σ2
Uk−τ ′

− ρτ+1σ2
Uk−1

)

= σµa

(ρτ ′−1 − ρτ+1) σ2

1− ρ2︸ ︷︷ ︸
B(τ,τ ′)

+ρ2(k−τ ′)
(
σ2
U0 −

σ2

1− ρ2

)
(ρτ ′−1 − ρτ+1ρ2(τ ′−1))︸ ︷︷ ︸
C(τ,τ ′)


From this, we have that ρθ,µ = 0 ⇒ B(DIDMk,τ,1,τ ′) = 0.

Since σ2
µ > 0 and σ2

θ > 0, ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, B(DIDMk,τ,1,τ ′) = 0 ⇒ either
ρθ,µ = 0 or ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, A(k, τ, τ ′) = B(τ, τ ′) + ρ2(k−τ ′)C(τ, τ ′) = 0. To
prove the final result, it remains to be shown that the second condition on A(k, τ, τ ′) is

19



not fulfilled in the model. Let’s assume that the result holds and show that this yields
to a contradiction. Fix τ and τ ′ such that τ + 2 6= τ ′. A(k, τ, τ ′) as a function of k has
at most one real root as long as B(τ, τ ′) 6= 0 or C(τ, τ ′) 6= 0. So A(k, τ, τ ′) = 0, ∀k > 0
⇒ B(τ, τ ′) = 0 and C(τ, τ ′) = 0. But B(τ, τ ′) = 0 ⇒ ρ = 0 or τ + 2 = τ ′ or σ2 = 0, a
contradiction. This proves the result.

Proof of Theorem 2

Proof: First preliminary result: ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, B(DIDk,τ,τ ′) = 0 ⇔
Cov(Y 0

i,k+τ , D
∗
i,k)− Cov(Y 0

i,k−τ ′ , D
∗
i,k) = 0.

E[Y 0
i,t|D∗i,k] = E[Y 0

i,t] +
Cov(Y 0

i,k+τ , D
∗
i,k)

Var(D∗i,k)
(
D∗i,k − E[D∗i,k]

)

E[Y 0
i,t|Di,k = 1] = E[Y 0

i,t] +
Cov(Y 0

i,k+τ , D
∗
i,k)

Var(D∗i,k)
(
E[D∗i,k|D∗i,k ≥ 0]− E[D∗i,k]

)

CD[Y 0
i,t] =

Cov(Y 0
i,k+τ , D

∗
i,k)

Var(D∗i,k)
(
E[D∗i,k|D∗i,k ≥ 0]− E[D∗i,k|D∗i,k < 0]

)
The result follows because E[D∗i,k|D∗i,k ≥ 0]− E[D∗i,k|D∗i,k < 0] > 0.

Second preliminary result: Cov(Y 0
i,k+τ , D

∗
i,k)−Cov(Y 0

i,k−τ ′ , D
∗
i,k) = γ(ρτ+1σ2

Uk−1
−ρτ ′−1σ2

Uk−τ ′
).

Cov(Y 0
i,t, D

∗
i,k) = Cov(µi + Ui,t, θi + γµi + γUi,k−1)

= bσµ + γCov(Ui,t, Ui,k−1)
= bσµ + γρ|t−k+1|σ2

Umin{t,k−1}

Third preliminary result:

Cov(Y 0
i,k+τ , D

∗
i,k)− Cov(Y 0

i,k−τ ′ , D
∗
i,k) = −γA(k, τ, τ ′)

From this, we have γ = 0 ⇒ B(DIDk,τ,τ ′) = 0. Moreover, ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0,
B(DIDk,τ,τ ′) = 0⇒ γ = 0 or ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, A(k, τ, τ ′) = 0. The same reasoning
as in the proof of Lemma 2 shows that the second condition on A(k, τ, τ ′) is not fulfilled
in the model. This proves the result.

Proof of Theorem 3

Proof: Using the same line of reasoning as the proof of Theorem 2, but modifying it
accordingly, yields the following result: ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, B(DIDk,τ,τ ′) = 0 ⇒
−γfAf (k, τ, τ ′), with:

Af (k, τ, τ ′) =
(

(ρτ ′ − ρτ ) σ2

1− ρ2 + ρ2(k−τ ′)
(
σ2
U0 −

σ2

1− ρ2

)
(ρτ ′ − ρτρ2τ ′)

)
.

This proves the consistency of Symmetric DID when σ2
U0 = σ2

1−ρ2 .
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In order to derive the bias of DIDM, it is useful to rewrite D∗fi,k as a function of D∗i,k:

D∗fi,k = θfi + γfY 0
i,k

= θfi + γfµi(1− ρ)︸ ︷︷ ︸
θi

+ γfρ︸︷︷︸
γ

Y 0
i,k−1 + γfvi,k

= D∗i,k + γfvi,k.

Following the line of the proof of Theorem 1, we have that B(DIDk,τ,τ ′) = 0 ⇔
aσµA(k, τ, τ ′) + γfρτσ2(σ2

µ + σ2
Uk−1

). When σ2
U0 = σ2

1−ρ2 , we have B(DIDk,τ,τ ) = 0 ⇔
ρτ−1σ2

(
aσµ + γfρ(σ2

µ + σ2

1−ρ2 )
)
. This proves the result.
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