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1. Introduction

Countless theoretical and applied work from the early 70’s has addressed the evaluation

problem, that is the identification of the causal effect of a policy intervention on one or more

outcomes of interest (see, for example, Heckman et al., 1999, for a review). The evidence

from almost all empirical studies points to heterogeneous effects.

The existence of such heterogeneity notwithstanding, drawing causal inference on the ef-

fects of a policy intervention has been traditionally concerned with the measurement of the

mean effect of the intervention. The role played by heterogeneity is typically investigated

by comparing the mean effect for different subgroups of the population identified by observ-

able characteristics. However, this strategy does not allow to draw definitive conclusions

about the distribution of the effects of the policy, that can only be inferred by considering

alternative parameters.

The common practise of looking at mean effects is mostly the result of a pragmatic

approach to the evaluation problem. On the one hand, well established statistical techniques

that have been developed in the literature over the years mainly focus on averages. Most

importantly, identification of characteristics of the effect distribution other than the mean is

precluded on a logical ground, since the assumptions required to achieve point identification

of the mean effect are not enough to retrieve the effect distribution. In the last decade, the

empirical relevance of investigating characteristics of the treatment effect distribution was

discussed by very many authors, starting from the seminal work by Heckman et al. (1997).

This paper derives new conditions for identification of features of the treatment effect

distribution other than the mean, thus allowing to draw policy conclusions that are more
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general than standard average treatment effect analysis. We assume that potential out-

comes are related through latent individual ability or skills, and frame the identification

problem considering a factor model that generalizes the standard specification widely used

in microeconometrics, psychology and other social sciences. This represents the first contri-

bution of the paper. The conditions needed are very general in nature, or at least as general

as those already presented in other studies estimating economic models in this setup (see,

for example, Carneiro et al., 2003, and Heckman et al., 2006). Under the factor model con-

sidered, the second contribution of this paper is to provide identification results for quantiles

of the effect distribution for participants with particular outcomes in the non-participation

state.

We derive an estimation strategy that makes use of the most recent results in the literature

on quantiles. The methodology developed is then used to evaluate the distributional effects

of an Italian policy that combines income support to eligible dismissed employees with

benefits to employers who hire them.

2. Notation and parameter of interest

The notation employed in the potential outcome approach to causal inference is used

throughout. Assume that the the variables (Y,D,W,X) are observed for a sample of units

randomly drawn from the relevant population, where Y = Y0 +D(Y1 − Y0) is a scalar con-

tinuous outcome, W is a vector of K random variables, D is the binary treatment or policy

status defining the corresponding potential outcomes (Y1, Y0), and X are control variables

exogenous to the model. To fix ideas, in what follows the vector W will include outcome

measurements which are pre-determined with respect to the policy roll out, although the

approach that we take can trivially be extended to allow for post-programme outcomes

that are different from Y . It is assumed throughout that the treatment status is randomly

allocated to units of the relevant population.1

Assumption 1. (Policy assignment mechanism). The random variables involved are in-

dependent of the policy status:

FY1Y0WX|D[y1, y0,w,x|d] = FY1Y0WX[y1, y0,w,x].

This assumption is made for convenience, as it rules out by construction any source of

selection that might result from alternative programme participation processes. Conditional

versions of this assumption may also be considered, for example reflecting selection on the

1The notation FA|B [A|b] indicates the conditional distribution of the random variable A given B = b. A

similar notation will be employed for the conditional τ -quantile function QA|B [τ |b].
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observables X or randomness of the treatment status locally with respect to a selection

threshold.

Comparisons of potential outcomes for well defined populations of individuals define a

variety of causal parameters. The treatment or policy effect is defined as ∆ ≡ Y1 − Y0,

namely the difference that results from contrasting realizations of the outcome under the

two (mutually exclusive) scenarios for the policy status. Knowledge of the distribution of

∆ allows to answer policy questions regarding, for instance, how widely treatment gains

are distributed across recipients, or to study the effect on recipients for specific values of

the base state distribution. However, even when individuals are randomized into/out of the

treatment, identification of these parameters requires additional assumptions to retrieve the

joint distribution of Y0 and Y1, and thus that of ∆, from the two marginal distributions of

potential outcomes. The unrestricted set of joint distributions consistent with the marginals

can be exploited to partially-identify the distribution of β via classical probability inequali-

ties. However, the resulting identification set is generally way too wide (see the discussion in

Heckman et al., 1997). Measures based on the marginal distributions of Y0 and Y1 are use-

ful to document the heterogeneity of the treatment across individuals investigating quantile

treatment effects.

In what follows, the parameter of interest is represented by features of the treatment

effect distribution other than the mean. In particular we focus on the quantile function of

the distribution of ∆ conditional and Y0 = y0 within cells defined by X, which is defined as

Q∆|Y0X[τ |y0,x].

3. General formulation of the problem

3.1. The model. The following latent factor structure is assumed, which we state as con-

ditional on cells defined by X:

W1 = Θ+ V1,(3.1)

Wk = δkΘ+ (1 + ξkΘ)Vk, k = 2, . . . ,K(3.2)

Y1 = λ1Θ+ (1 + γ1Θ)U1,(3.3)

Y0 = λ0Θ+ (1 + γ0Θ)U0.(3.4)

The uniqueness (U1, U0,V), where V ≡ [V1, V2, . . . , VK ], are mutually independent and

independent of the latent indicator Θ. It is assumed that the loadings λ1 and λ0 have both

the same sign, and we conventionally assume that it is positive. It is also assumed that all

the random variables involved in the factor structure are continuous, with cdf’s that are

strictly increasing on the corresponding supports. The conditions embedded in the model

can be summarized as follows.
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Assumption 2. (Factor model). The random variables defining the factor model are

mutually independent:

FU1U0ΘV|DX[u1, u0, θ,v|d,x] = FU1|X[u1|x]FU0|X[u0|x]FΘ|X[θ|x]
K∏
k=1

FVk|X[vk|x].

The advantages of using latent structures to establish identifying correspondences be-

tween data and the joint distribution of potential outcomes have already been discussed

in previous work (see, amongst others, Carneiro et al., 2003). The research question is

under which conditions realizations of (Y,D,W,X) revealed by the data and the assump-

tions made on the factor structure are enough to point identify the joint distribution of the

potential outcomes, and thus any feature of the treatment effect distribution.

Previous results discussed in the literature provide an answer by considering the standard

factor model, which follows by imposing γ0 = 0, γ1 = 0 and ξk = 0, for k = 2, . . . ,K, in the

expressions above (see Carneiro et al., 2003, for a discussion). The informational contents

of the model are easily understood by considering K = 2, which we maintain as the working

example throughout the paper. First note that the model can be written as:

W̃1 = Θ+ Ṽ1,

W̃2 = Θ+ Ṽ2,

Ỹ1 = Θ+ Ũ1,

Ỹ0 = Θ+ Ũ0,

where Ũj ≡ Uj/λj , Ỹj ≡ Yj/λj for j = 0, 1, and W̃k ≡ Wk/γk and Ṽk ≡ Vk/γk, for

k = 1, 2. A straightforward application of the Kotlarski’s (1967) theorem implies that the

distributions of the uniqueness and of Θ are non-parametrically identified from knowledge

of (Ỹ , D, W̃1, W̃2), where Ỹ = Ỹ0 +D(Ỹ1 − Ỹ0).
2 Since factor loadings are identified from

the correlation structure of (Y,D,W) (conditional on X), this in turn implies that the

distribution of (Y0, Y1) is identified from observed data. The availability of more W’s would

add a certain degree of over-identification to the model, on top of that already defined from

the availability of the D = 1 and D = 0 groups.

3.2. Contribution to the existing literature. The classical formulation of the factor

model represents a useful tool to learn about policy parameters that are different from the

average treatment effect. Yet it is worth noting that it also has some implications that,

depending on the application, may be violated in the data. To see this, note that the

2The results follows from Lemma 1, Remark 3 and Remark 4 in Kotlarski (1967). The distribution of θ

is actually over-identified.
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system of equations that we consider implies:

∆ =

(
λ1 + γ1U1

λ0 + γ0U0
− 1

)
Y0 −

(
λ1 + γ1U1

λ0 + γ0U0

)
U0 + U1,

which in turn yield:

Q∆|Y0,U0
[τ1|y0, QU0 [τ0]] =

(
λ1[τ1]

λ0[τ0]
− 1

)
y0 −

λ1[τ1]

λ0[τ0]
QU0 [τ0] +QU1 [τ1],(3.5)

λ1[τ1] ≡ λ1 + γ1QU1 [τ1],

λ0[τ0] ≡ λ0 + γ0QU0 [τ0],

which is the quantile function of the distribution of returns conditional on having Y0 = y0

and U0 = QU0 [τ0] in the policy off scenario. Similarly there is:

∇Y0Q∆|Y0,U0
[τ1|y0, QU0 [τ0]] =

(
λ1[τ1]

λ0[τ0]
− 1

)
.(3.6)

It is clear that, when the γ’s are set to zero, the value y0 of the base state distribution enters

as a location shift which is constant across quantiles of the treatment effect distribution.

Our model thus generalizes the factor structure considered in previous papers allowing for

heteroskedasticity that depends on latent ability.

4. Identification

Identification of (3.5) is established by the following correspondence:

QY1−Y0|Y0U0
[τ1|y0, QU0 [τ0]] = Hλ0[τ0],λ1[τ1]{QU0 [τ0], QU1 [τ1]},(4.1)

where H is a (known) point identifying functional. For known values of the loadings λ1[τ1]

and λ0[τ0], this establishes a correspondence between the unobserved term on the left hand

side of the equation and the two quantile functions on the right hand side. Similarly,

knowledge of the loadings is sufficient to retrieve (3.6). The relationship in (4.1) sets the

stage for analogue estimation of the quantity of interest.

4.1. Identification of quantile specific factor loadings. We first consider identification

of the factor loadings in the standard setting. This helps clarify the approach that we will

take to allow for quantile specific loadings. Consider set of equations for individuals in the

‘policy on’ regime, that is equations (3.1), (3.2) and (3.3). By substituting (3.1) into (3.2)

and (3.3), and rearranging terms there is:

Y1 = (λ1 + γ1U1)W1 − (λ1 + γ1U1)V1 + U1,(4.2)

W2 = (δ2 + ξ2V2)W1 − (δ2 + ξ2V2)V1 + V2,(4.3)
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which define the (feasible) regressions of Y1 and W2 on W1. It is easy to see that the

following moment conditions are defined:

COV {(λ1 + γ1U1)V1 − U1,W2} = 0,(4.4)

COV {(δ2 + ξ2V2)V1 − V2, Y1} = 0,(4.5)

from which there is:

(λ1 + γ1E {U1}) =
COV {Y1,W2}
COV {W1,W2}

,(4.6)

(δ2 + ξ2E {V2}) =
COV {W2, Y1}
COV {W1, Y1}

.(4.7)

The empirical counterpart of the ratios on the right hand side of the equations define the

IV estimand from the regressions of Y1 on W1 and of W2 on W1, using W2 and Y1 as

instruments, respectively.

Remark 1. It is possible to obtain the empirical counterpart on the right hand side of

equation (4.6) using standard arguments. We write (4.2) as Ẏ1 = Y1 − π1W1 = π2W2 + U ′
1,

where π1 = (λ1 + γ1E(U1)). We have then that π̂2 = (W ′
2W2)

−1W ′
2Ẏ1, and

(4.8) π̂1 = argmin
π2∈Π2

{π̂′
2(W

′
2W2)π̂2}.

By analogy, the first part of the paper is devoted to extending the identification result

to the case of quantile specific loadings, employing instrumental quantile regressions. The

result is contained in Theorem 1 and Theorem 2, for which conditions are discussed in the

next section. The results in the theorems imply that the quantity in (3.6) can be retrieved

from the data. Because of this, the standard factor model can be tested against the data,

as in this case the derivative should be constant across quantiles.

Theorem 1 (Latent structures and conditional quantile functions). If the conditions of the

model hold, P (Y1 ≤ q(θ, τ1)) = P (Y1 < q(W1, τ1)|W2) = τ1 for a linear quantile function

q(·). Similarly, P (Y0 ≤ q(θ, τ0)) = P (Y0 < q(W1, τ0)|W2) = τ0.

Proof. We show the result for the conditional quantiles of Y1. Consider:

P (Y1 ≤ q(θ, τ1)) = P (q(θ, U1) ≤ q(θ, τ1)) = P (q(W1, V1, U1) ≤ q(W1, V1, τ1))

= P (q(W1, U
′
1) ≤ q(W1, τ1)|W2)

= P (q(W1, U1) ≤ q(W1, τ1)|W2)

= P (U1 ≤ τ1|W2) = τ.

By Theorem 1 in Chernozhukov and Hansen (2005), P (U1 < τ1|W2) = τ . The proof for Y0

follows immediately from previous derivations. �
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Theorem 2 (Quantile specific loadings). Under the previous conditions, there exists a

correspondence between QY1−Y0|Y0U0
[τ1|y0, QU0 [τ0]] and Hλ0[τ0],λ1[τ1].

Proof. By Lemma 1, the τ1-specific loading λ1(τ1) in QY1(τ1|θ) = λ1(τ1)θ can be identified

from the following system of equations:

Y1 = λ1W1 − (λ1 + γ1U1)V1 + (1 + γ1W1)U1 = q(W1, V1, U1) = q(W1, U
′
1),(4.9)

W1 = δ(W2, V ),(4.10)

where δ(·) is an unknown function and V = (V1, V2). To see this, we write the moment

condition P (Y1 ≤ q(W1, τ1)|W2) = P (Y1 − q(W1, τ1) ≤ 0|W2) = P (Ẏ1 ≤ 0|W2) = τ1

as 0 = QẎ1
(τ1|W2) for all τ1 ∈ T1. Letting S(τ1, β) = Eρτ1(Ẏ − W ′

2β), we have that

β(τ1, λ1) = argminβ∈B{S(τ1, β)} and therefore:

(4.11) λ1(τ1) = argmin
λ∈L

{β(τ1, λ1)
′Aβ(τ1, λ1)}.

The identification of the quantile-specific factor loading corresponding to the conditional

distribution of Y0 can be shown similarly following the steps of the proof sketched before. �

Corollary 1. Under the previous assumptions and provided that the correspondence H has

continuos derivarives h with respect to a point in the distribution of Y0,

∇Y0Q∆|Y0,U0
[τ1|y0, QU0 [τ0]] = ∇Y0Hλ0[τ0],λ1[τ1]{QU0 [τ0], QU1 [τ1] = h(λ0[τ0], λ1[τ1]).

4.2. Identification of quantiles of uniqueness. Levels of (3.5) are identified once the

quantile functions of U1 and U0 can be retrieved from the data. The aim of this section is

to provide sufficient conditions for this to hold.

Remark 2. Under conditions of the location-shift model for predetermined outcome vari-

ables (W1,W2, ...,WK), if 0 ∈ Θ, then,

QU1(τ1) = ∇τ1QY1(τ1|θ)|θ=0

QU0(τ0) = ∇τ0QY0(τ0|θ)|θ=0.

In the model presented before, note that QU1(τ1) = QY1(τ1|θ) at QW1(τv|θ) = QVW1
(τv)).

We can use the other measures of W in a model with an intercept and obtain QY1(τ1|θ) for
which QW1(τv|θ) = QV (τv).

5. Exact calculations

To be written.
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6. Montecarlo evidence

To be written.

7. Estimation

To be written.

8. Data

To be written.
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Figure 8.1. Preliminary results using Italian data.


