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Abstract

Synthetic control methods are commonly applied in empirical research to esti-
mate the effects of treatments or interventions of interest on aggregate outcomes.
A synthetic control estimator compares the outcome of a treated unit – that is,
a unit exposed to the intervention of interest – to the outcome of a weighted
average of untreated units that best resembles the characteristics of the treated
unit before the intervention. When disaggregated data are available, construct-
ing separate synthetic controls for each treated unit may help avoid interpolation
biases. However, the problem of finding a synthetic control that best reproduces
the characteristics of a treated unit may not have a unique solution. Multiplicity
of solutions is a particularly daunting challenge in settings with disaggregated
data, that is, when the sample includes many treated and untreated units. To
address this challenge, we propose a synthetic control estimator that penalizes
the pairwise discrepancies between the characteristics of the treated units and
the characteristics of the units that contribute to their synthetic controls. The
penalization parameter trades off pairwise matching discrepancies with respect
to the characteristics of each unit in the synthetic control against matching dis-
crepancies with respect to the characteristics of the synthetic control unit as a
whole. We study the properties of this estimator and propose data driven choices
of the penalization parameter.
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1. Introduction

Synthetic control methods (Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015; Doud-

chenko and Imbens, 2016) are often applied to estimate the treatment effects of aggregate

interventions (see, e.g., Kleven et al., 2013; Bohn et al., 2014; Hackmann et al., 2015; Cun-

ningham and Shah, 2018). Suppose we observe data for a unit that is affected by the

treatment or intervention of interest, as well as data on a donor pool, that is, a set of un-

treated units that are available to approximate the outcome that would have been observed

for the treated unit in the absence of the intervention. The idea behind synthetic controls

is to match each unit exposed to the intervention or treatment of interest to a weighted

average of the units in the donor pool that most closely resembles the characteristics of the

treated unit before the intervention. Once a suitable synthetic control is selected, differences

in outcomes between the treated unit and the synthetic control are taken as estimates of the

effect of the treatment on the unit exposed to the intervention of interest.

The synthetic control method is akin to nearest neighbor matching estimators (Dehejia

and Wahba, 2002; Abadie and Imbens, 2006; Imbens and Rubin, 2015) but departs from

traditional matching methods in two important aspects. First, the synthetic control method

does not impose a fixed number of matches for every treated unit. Second, instead of using

a simple average of the matched units with equal weights, the synthetic control method

matches each treated unit to a weighted average of untreated units with weights calculated

to minimize the discrepancies between the treated unit and the synthetic control in the values

of the matching variables. Synthetic control estimators retain, however, appealing properties

of nearest neighbor matching estimators, in particular sparsity, non-negativity of the weights,

and weights that sum to one. Like for nearest neighbor matching estimators, most of the

synthetic control weights are equal to zero and a small number of untreated units contribute

positive weights to reproduce the counterfactual of each treated observation without the

treatment. Sparsity and non-negativity of the weights, along with the fact that synthetic

control weights sum to one and define a weighted average, are important features that allow

incorporating expert knowledge to evaluate and interpret the estimated counterfactuals (see
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Abadie et al., 2015). As shown in Abadie et al. (2015), similar to the synthetic control

estimator, a regression-based estimator of the counterfactual of interest – i.e., the outcome

for the treated in the absence of an intervention – implicitly uses a linear combination of

outcomes for the untreated with weights that sum to one. However, unlike synthetic control

weights, regression weights are not explicit in the outcome the procedure, they are not sparse,

and they can be negative or greater than one, allowing unchecked extrapolation outside the

support of the data and complicating the interpretation of the estimate and the nature of

the implicit comparison. While most applications of the synthetic control framework have

focused on cases where only one or a few aggregate units are exposed to the intervention

of interest, the method has found recent applications in contexts with disaggregated data,

where samples contain large numbers of treated and untreated units, and the interest lies

on the average effect of the treatment among the treated (see, e.g., Acemoglu et al., 2016;

Gobillon and Magnac, 2016; Kreif et al., 2016). In such settings, one could simply construct

a synthetic control for an aggregate of all treated units. However, interpolation biases may

be much smaller if the estimator of the aggregate outcome that would have been observed for

the treated in the absence of the treatment is based on the aggregation of multiple synthetic

controls, one for each treated unit.

Using synthetic controls to estimate treatment effects with disaggregated data creates

some practical challenges. In particular, when the values of the matching variables for a

treated unit fall in the convex hull of the corresponding values for the donor pool, it may

be possible to find multiple convex combinations of untreated units that perfectly reproduce

the values of the matching variables for the treated observation. That is, the best synthetic

control may not be unique. One practical consequence of the curse of dimensionality is

that each particular treated unit is unlikely to fall in the convex hull of the untreated units,

especially if the number of untreated units is small. As a result, lack of uniqueness is not

often a problem in settings with one or a small number of treated units and, if it arises, it

can typically be solved by ad-hoc methods, like increasing the number of covariates or by

restricting the donor pool to units that are similar to the treated units. In settings with
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many treated and many untreated units, non-uniqueness may be an important consideration

and a problem which is harder to solve.

More generally, in contrast to common aggregate data settings with a small donor pool

(see, e.g., Abadie and Gardeazabal, 2003; Abadie et al., 2010), a large number of units in

the donor pool creates a setting where single untreated units may provide close matches to

the treated units in the sample. Therefore, in such a setting the researcher faces a trade-off

between minimizing the covariate discrepancy between each treated unit and its synthetic

control as a whole (pure synthetic control case) and minimizing the covariate discrepancy

between each treated unit and each unit that contributes to its synthetic control (pure

matching case).

This paper provides a generalized synthetic control framework for estimation and infer-

ence. The framework builds on synthetic controls and introduces a penalization parameter

that trades off pairwise matching discrepancies with respect to the characteristics of each

unit in the synthetic control against matching discrepancies with respect to the character-

istics of the synthetic control unit as a whole. This type of penalization is aimed to reduce

interpolation biases by prioritizing inclusion in the synthetic control of units that are close

to the treated in the space of matching variables. Moreover, it can be shown that as long as

the penalization parameter is positive, the generalized synthetic control estimator is unique

and sparse. If the value of the penalization parameter is close to zero, our procedure selects

the synthetic control that minimizes the sum of pairwise matching discrepancies (among

the synthetic controls that best reproduce the characteristic of the treated units). If the

value of the penalization parameter is large, our estimator coincides with the pair-matching

estimator. We study the formal properties of the penalized synthetic control estimator and

propose data driven choices of the penalization parameter.

Our approach belongs to the recent literature on “machine learning” estimators for pro-

gram evaluation problems. Following Doudchenko and Imbens (2016) which represents syn-

thetic controls as a solution to complete an outcome matrix with missing entries, Athey et al.

(2017) assumes an underlying sparse factor structure for the outcome under no treatment
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and adapts matrix completion techniques to estimate a counterfactual. Their estimator pe-

nalizes the complexity of the factor structure, while our approach penalizes the discrepancy

between the treated unit and each control unit that enters the synthetic unit.

2. Penalized Synthetic Control

2.1. Synthetic Control for Disaggregated Data

We code treatment using a binary variable, D, so D = 1 for treated individuals and D = 0

otherwise. To define the object of interest we adopt the potential outcome notation in Rubin

(1974). Let Y1 and Y0 be random variables representing potential outcomes under treatment

and under no treatment, respectively. The treatment effect is Y1 − Y0. Realized outcomes

are defined as

Y =

{
Y1 if D = 1,
Y0 if D = 0.

Let X be a (p × 1)-vector of pre-treatment predictors of Y0. Consider the distributions

of the triple (Y1, Y0, X) under treatment and no treatment, with E[·|D = 1] and E[·|D = 0]

denoting the corresponding expectation operators, and E[·|X,D = 1] and E[·|X,D = 0]

denoting expectations conditional on X. Let P1 and P0 be the probability measures that

describe the distribution of X for treated and nontreated, respectively.

Assumption 1 (Sampling) {(Y1i, Xi)}i=1,...,n1
are n1 independent draws from the distri-

bution of (Y1, X) and {(Y0i, Xi)}i=n1+1,...,n are n0 independent draws from the distribution of

(Y0, X).

Combining data for treated and nontreated we obtain the pooled sample, {(Yi, Di, Xi)}ni=1,

n = n0 + n1. To simplify notation, we reorder the observations in the sample so that the

n1 treated observations are first and the n0 untreated observations are last. The quantity of

interest is the average treatment effect on the treated (ATET):

τ = E[Y1 − Y0|D = 1]. (1)

Assumption 2 (Nested support) P1 � P0, that is, P1 is absolutely continuous with re-

spect to P0.
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Assumption 3 (Unconfoundedness I) E[Y0|X,D = 1] = E[Y0|X,D = 0].

Versions of assumptions 2 and 3 are ubiquitous in the program evaluation literature (see,

e.g., Imbens, 2004). Assumption 2 states that there is no value of X for which individuals

are always treated. In other words, for any treated, it should be possible to find a non-

treated with the same value of the covariates in the population. Assumption 3 states that

conditionally on a set of observed covariates or confounding factors, X, the expected potential

outcome without the treatment is the same for treated and control individuals. Graphical

causal structures that support Assumption 3 are studied in Pearl (2000) and the subsequent

literature.

Notice that, under these two assumptions, the counterfactual E[Y0|D = 1] can be ex-

pressed as a weighted average of the outcome among the untreated,

τ = E[Y |D = 1]− E[V Y |D = 0], (2)

where V = dP1/dP0. Many econometric estimators of τ based on Assumptions 2 and 3,

whether explicitly or implicitly, employ a sample analog of equation (2),

1

n1

n∑
i=1

YiDi −
1

n0

n∑
i=1

Yi(1−Di)Vi. (3)

Popular estimators of this type in micro-econometrics include most notably regression (An-

grist and Pischke, 2008; Abadie et al., 2015), propensity score weighting (Rosenbaum and

Rubin, 1983; Hirano et al., 2003) and matching (Smith and Todd, 2005). For example, in

the case of the pair-matching estimator, the weight Vi given to control unit i is equal to an

integer counting the number of times control unit i is the nearest neighbor of a treated unit,

rescaled by n0/n1. The synthetic control method (Abadie and Gardeazabal, 2003; Abadie

et al., 2010, 2015; Doudchenko and Imbens, 2016) also belongs to this class of estimators. It

matches each treated unit to a “synthetic control”, that is, a weighted average of untreated

units with weights chosen to make the values of the predictors of the outcome variable of

each synthetic control closely match the values of the same predictors for the corresponding

treated units.
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While these assumptions are enough to recover the average treatment effect in equation

(1), identification of a wide variety of parameters can be attained by strengthening the

identifying conditions as in Assumptions 2′ and 3′ below.

Assumption 2′ (Common support) P1 � P0 and P0 � P1.

Assumption 3′ (Unconfoundedness II) Y1, Y0 ⊥⊥ D|X.

Parameters identified by the addition of Assumptions 2′ and 3′ include quantile treatment

effects, that is, differences in the quantiles of the distributions of potential outcomes (Firpo,

2007), bounds on the distribution of the treatment effect (Firpo and Ridder, 2008), or coun-

terfactual distributions (Chernozhukov et al., 2013), among others. They also include pa-

rameters describing conditional features of the distribution of potential outcomes (see, e.g.,

Crump et al., 2008) and regression parameters obtained after imposing the same distribu-

tion of X for treated and non-treated (Ho et al., 2007; Abadie and Spiess, 2016). While,

for the sake of clarity, this article focuses on the estimation of average treatment effects, the

generalized synthetic control method outlined here can be applied to estimate any of the pa-

rameters above. Moreover, Assumptions 1-3, which are adopted here for simplicity, are not

the only possible identification conditions in a synthetic control setting, nor necessarily the

least restrictive ones. In particular, Abadie et al. (2010) show that under a factor-structure

condition on the regression residual of the outcome on the covariates for the untreated, us-

ing synthetic controls that match pre-treatment outcomes for the treated help control for

unobserved confounding that arises from heterogeneity in the factor loadings.

For any (p × 1) real vector X and any (p × p) real symmetric positive-definite matrix

Γ, define the norm ‖X‖ = (X ′ΓX)1/2. Because Γ is diagonalizable with strictly positive

eigenvalues, we can always transform the vector X so that the matrix Γ becomes the (p× p)

identity matrix. As a result, without loss of generality, we will consider only Γ = I. In the

synthetic control framework, model selection – that is, the choice of the variables included

in X – is operationalized through the choice Γ, which rescales or weights each predictor in

X according to its predictive power on the outcome (see Abadie et al., 2010). In a setting
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with many treated and untreated units, the standard synthetic control estimation procedure

is as follows:

1. For each treated unit, i = 1, . . . , n1, compute the n0-vector of weightsW ∗
i = (W ∗

i,n1+1, . . . ,

W ∗
i,n) that solves

min
Wi∈Rn0

∥∥∥∥∥Xi −
n∑

j=n1+1

Wi,jXj

∥∥∥∥∥
2

(4)

s.t. Wi,n1+1 ≥ 0, . . . ,Wi,n ≥ 0,
n∑

j=n1+1

Wi,j = 1,

where W ∗
i,j is the weight given to control unit j in the synthetic control unit corre-

sponding to treated unit i.

2. Estimate τ using the mean difference between the realized outcome and the synthetic

outcome for the treated

τ̂ =
1

n1

n1∑
i=1

[
Yi −

n∑
j=n1+1

W ∗
i,jYj

]
, (5)

Notice that τ̂ is the estimator in equation (3) reweighting each nontreated unit, j = n1 +

1, . . . , n, by Vj = (n0/n1)Sj, where Sj =
∑n1

i=1W
∗
i,j is the sum of the synthetic control weights

assigned to unit j. Lemma A.2 in the appendix derives some properties of Sj.

While, to simplify notation, we described here a cross-sectional setting only, the extension

to the more common panel data setting for synthetic controls is immediate and we will use

it later.

Notice that, when Xi belongs to the convex hull of {Xn1+1, . . . , Xn}, the value of the

objective function (4) at the minimum is equal to zero and multiple solutions may exist.

By Carathéodory’s theorem, a solution with at most p + 1 non-zero weights exists in that

case. On the other hand, it is easy to show that if Xi does not belong to the convex hull of

{Xn1+1, . . . , Xn} and under weak regularity conditions (that is, if observations are in “general

position”) the solution is unique and involves at most p + 1 non-zero weights, see Theorem

1 below.

7



2.2. Penalized Synthetic Control

The main contribution of this article is to propose an alternative, penalized version of the

synthetic control estimator in equation (4). For treated unit i and given a positive constant

λ, the penalized synthetic control weights, W ∗
i,j(λ), solve

min
Wi∈Rn0

∥∥∥∥∥Xi −
n∑

j=n1+1

Wi,jXj

∥∥∥∥∥
2

+ λ
n∑

j=n1+1

Wi,j‖Xi −Xj‖2 (6)

s.t. Wi,n1+1 ≥ 0, . . . ,Wi,n ≥ 0,
n∑

j=n1+1

Wi,j = 1.

The penalized synthetic control estimator is then given by

τ̂(λ) =
1

n1

n1∑
i=1

[
Yi −

n∑
j=n1+1

W ∗
i,j(λ)Yj

]
. (7)

The tuning parameter λ sets the trade-off between componentwise and aggregate fit. The

choice of the value of λ is important and will be discussed in Section 3. The penalized syn-

thetic control estimator encompasses both the synthetic control estimator and the nearest-

neighbor matching as special polar cases. At one end of the spectrum, as λ→ 0, the penal-

ized estimator becomes the synthetic control that minimizes the sum of pairwise matching

discrepancies among the set of synthetic controls that best reproduce the characteristics of

the treated units. Our motivation to choose among synthetic controls that fit the treated

unit equally well by minimizing the sum of pairwise matching discrepancies is to reduce

worst-case interpolations biases. At the other end of the spectrum, as λ→∞, the penalized

estimator becomes the one-match nearest-neighbor matching with replacement estimator in

Abadie and Imbens (2006).

Let X0 be the (p× n0) matrix with column j equal to Xn1+j, and let ∆i be the (n0 × 1)

vector with j-th element equal to ‖Xi − Xn1+j‖2. Moreover, let ∆NN
i = minj=1,...,n0 ‖Xi −

Xn1+j‖2, be the smallest discrepancy between unit i and the units in the donor pool. Fi-

nally, let W ∗
i (λ) be a solution to (6), and ∆∗i (λ) = ‖Xi − X0W

∗
i (λ)‖2 be the square of the

discrepancy between unit i and the (penalized) synthetic control.
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Lemma 1 (Discrepancy Bounds) For any λ ≥ 0

0 ≤ ∆∗i (λ) ≤ ∆NN
i ,

and for λ > 0

∆NN
i ≤ ∆′iW

∗
i (λ) ≤ 1 + λ

λ
∆NN
i .

The first inequality states that the synthetic unit is contained in a closed ball of center Xi

and radius equal to the distance to the nearest-neighbor,
√

∆NN
i . The second inequality

shows that the tuning parameter λ controls the compound discrepancy between the treated

unit and the units that contribute to the synthetic control, ∆′iW
∗
i (λ). All proofs are in the

appendix.

Some remarks are in order to justify the choice of the penalization term in equation

(6). First, notice that the penalty term is linear rather than quadratic in the weights. This

has the advantage of producing easy-to-interpret sparse solutions, similarly to a matching

procedure.

Notice also that the optimization problem in (6) can be solved via quadratic program-

ming, like the standard synthetic control in (5). To see why notice that, in matrix notation,

program (6) is

min
W∈Rn0

(Xi −X0W )′ (Xi −X0W ) + λ∆′iW (8)

s.t. 1′n0
W = 1,W ≥ 0,

where 1n0 is the (n0 × 1) vector of ones and the inequality restriction applies to each com-

ponent of W .

A third remark has to do with uniqueness of the solution. In the absence of the penalty

term (that is, when λ = 0), the problem in (6) and (8) can be solved by projecting Xi on

the convex hull of X0. Existence of sparse solutions follows from Carathéoroy’s theorem.

However, if λ = 0 the solution to the problem in (6) and (8) may not be unique, especially if

Xi belongs to the convex hull of the columns of X0. Adopting λ > 0 penalizes solutions with

potentially large interpolation biases created by large matching discrepancies and produces

uniqueness and sparsity as stated in the following result.
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Theorem 1 (Uniqueness and Sparsity) Suppose (i) λ > 0; (ii) any submatrix of X ′0

consisting of no more than p rows has full row rank; (iii) 1p+1 does not belong to the column

space of any submatrix of X ′0 consisting of p+1 rows; (iv) any submatrix composed by p+2 or

more rows of (X ′0 1n0 ∆i) has full column rank. Then, the optimization problem in equation

(6) admits a unique solution W ∗
i (λ) with at most p+ 1 non-zero components.

Condition (i) imposes a non-zero penalization on the compound discrepancy. Condition (ii)

implies that any subset of p or fewer control observations are not linearly dependent in the

values of the predictors. Conditions (iii) and (iv) require that there is no subset of p + 1

or more control observations with values of the predictors that fall in a lower-dimensional

affine subspace. In addition, condition (iv) requires that there is no set of control units of

cardinality p + 2 or larger such that the values of the predictors belong to a sphere with

center at Xi.

Example: Consider a simple numerical example with only one covariate. Suppose, there is

one treated unit with X1 = 2 and three control units with X2 = 1, X3 = 4 and X4 = 5. This

simple setting is depicted in Figure 1.

Figure 1: A simple example

X2 X1 X3 X4

1 2 3 4 5

d d du
Notice that X1 belongs to [1, 5], the convex hull of the columns of X0. Consider first the

case with λ = 0. Then, W ∗(0) = (2/3 1/3 0)′ and W ∗∗(0) = (3/4 0 1/4)′ are the only two

sparse solutions (with number of non-zero weights not greater than p+1 = 2) to (6). The first

sparse solution, W ∗(0), interpolates X1 = 2 using X2 = 1 and X3 = 4. The second sparse

solution, W ∗∗(0) is of lower quality relative to W ∗(0) in terms of compound discrepancy,

as it uses an interpolation scheme that replaces X3 with X4, an observation farther away

from X1. As a result, W ∗(0) is preferred over W ∗∗(0) in terms of worst case interpolation

bias (e.g., under a Lipschitz bound on E[Y |X,W = 0]). However, the better compound

fit of W ∗(0) is not reflected in a better value in the objective function in (4). Moreover,
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because any convex combination of W ∗(0) and W ∗∗(0) is also a solution, the program in

(4) has an infinite number of solutions, W∗0 = {aW ∗(0) + (1 − a)W ∗∗(0) : a ∈ [0, 1]}. Let

V̄ (a) = aW ∗(0) + (1− a)W ∗∗(0). The compound discrepancy of V̄ (a) is

∆′iV̄ (a) = 3− a.

From Figure 1, it is apparent that W ∗(0), which is obtained making a = 1, produces the

lowest compound discrepancy among all the solutions to equation (4).

When λ > 0, however, the program (6) has a unique solution, which is sparse:

W ∗(λ) =

{
(2 + λ/2 1− λ/2 0)′/3 if 0 < λ ≤ 2,
(1 0 0)′ if λ > 2.

Notice that W ∗(λ) never puts any weight on X4. As λ → ∞, W ∗(λ) selects the nearest-

neighbor match, and as λ → 0, W ∗(λ) converges to W ∗(0), the (non-penalized) synthetic

control in W∗0 with the smallest compound discrepancy. �

Next theorem provides a characterization of the units contributing to a particular syn-

thetic control, X0W
∗
i (λ) with λ > 0, as vertices of the face of the Delaunay complex con-

taining X0W
∗
i (λ) in the Delaunay tessellation of Xn1+1, . . . , Xn.

Theorem 2 (Delaunay Property) LetW ∗
i (λ) be a solution to the penalized synthetic con-

trol problem in (6) with λ > 0. Consider the Delaunay tessellation induced by the columns

of X0. Then, for any control unit j = n1 + 1, . . . , n, such that Xj is not a vertex of face of

the Delaunay complex containing X0W
∗
i (λ) it holds that W ∗

i,j(λ) = 0.

This result along with the first part of Lemma 1, which bounds ‖Xi−X0W
∗
i (λ)‖, provides a

notion of proximity between each treated unit Xi and the untreated units that contribute to

its synthetic control. Theorem 2 provides also a simple way to compute the solution for the

“pure synthetic control case” (λ→ 0) that does not entail the choice of an arbitrarily small

value of λ to use in (6). Recall that when λ = 0, the problem of minimizing ‖Xi − X0W‖

subject to the weight constraints may have multiple (infinite) number of solutions, in which

case Xi = X0W for all solutions. In the presence of multiple solutions, the “pure synthetic

control case” selects the solution that produces the lowest compound discrepancy, W ′∆i,
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among all W such that Xi = X0W . Directly solving (6) for an arbitrarily small value

of λ requires, in practice, a choice for λ. It also creates computational difficulties, as the

minimization problem is close to one with multiple solutions and the dimension of W may

be large. Theorem 2 implies that the solution of (6) for λ→ 0 assigns positive weights only

to the vertices of the simplex in the Delaunay tessellation of Xn1+1, . . . , Xn that contains the

projection of Xi on the convex hull of the columns of X0.

2.3. Bias-Corrected Synthetic Control

We will also consider bias-corrected versions of synthetic control estimator. We adopt a

bias correction analogous to that implemented in Abadie and Imbens (2011) for matching

estimators. Let µ0(x) = E[Y |X = x,D = 0], and let µ̂0(x) be an estimator of µ0(x). A

bias-corrected version of the synthetic control estimator in equation (7) is

τ̂BC(λ) =
1

n1

n1∑
i=1

[(
Yi − µ̂0(Xi)

)
−

n∑
j=n1+1

W ∗
i,j(λ)

(
Yj − µ̂0(Xj)

)]
. (9)

3. Penalty Choice

In this section we present two data-driven selectors for the penalty term, λ. In the context of

treatment effects estimation, cross-validation (CV) is complicated by the absence of data on

a “ground truth” (that is, on the values of Y0 for the treated units in the post-intervention

periods, see Athey and Imbens, 2016). The first selector proposed in this section is based

on cross-validation on the outcomes on the untreated units in the post-intervention period.

The second selector uses a strategy similar to the model selection procedure in Abadie et al.

(2015), minimizing mean squared prediction error (MSPE) in a hold-out pre-intervetion

period.

3.1. Leave-One-Out Cross-Validation of Post-Intervention Outcomes for the
Untreated

This section discusses a leave-one-out cross-validation procedure to find an optimal value λ

by minimizing mean squared prediction error for the untreated units in the post-intervention
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period. Consider a balanced panel data setting with T periods and T0 < T pre-intervention

periods. Let Yit be the outcome for unit i at time t. The procedure is as follows:

1. For each control unit i = n1 + 1, ..., n, and each post-intervention period, t = T0 +

1, . . . , T , calculate

τ̂it(λ) = Yit −
n∑

j=n1+1
j 6=i

W ∗
i,j(λ)Yjt,

where W ∗
i,j(λ) is a synthetic control for unit i that is produced by the donor pool

{n1 + 1, . . . , n}\{i}.

2. Choose λ to minimize some measure of loss, such as the mean squared prediction error

for the individual outcomes,

1

n0(T − T0)

n0∑
i=1

T∑
t=T0+1

(
τ̂it(λ)

)2
.

3.2. Pre-Intervention Holdout Validation on the Outcomes of the Treated

An alternative selector of λ is based on validation over the outcomes for the treated on a

hold out pre-intervention period. This is similar in spirit to the model selection procedure in

Abadie et al. (2015). To simplify the exposition and because it is the most natural choice, we

will assume that the validation period is at the end of the pre-intervention period, although

other choices are possible. The procedure is as follows:

1. Split the pre-intervention period that contains T0 dates into T0−k initial training dates

and k subsequent validation dates.

2. For each treated individual, i, and validation period, t ∈ {T0 − k, . . . , T0}, compute

τ̂it(λ) = Yit −
n∑

j=n1+1

W ∗
i,j(λ)Yjt,

where W ∗
i,j solve (6) with X measured in the training period.
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3. Choose λ to minimize some measure of error, such as the sum of the squared prediction

for the individual outcomes,
n1∑
i=1

T0∑
t=T0−k

(
τ̂it(λ)

)2
,

or the squared prediction error of the aggregate outcomes,

T0∑
t=T0−k

(
n1∑
i=1

τ̂it(λ)

)2

.

Notice that the cross-validation procedures delineated can also be applied here to guide

model selection (i.e., choice of V ) as in Abadie et al. (2015).

4. Inference

In this section, we adapt the inferential framework in Abadie et al. (2010) to the penalized

synthetic control estimators of section 2. Like in Abadie et al. (2010), our inferential exercises

compare the value of a test statistic to its permutation distribution induced by random

reassignment of the treatment variable in the data set. We next describe three possible

implementations that employ different test statistics and permutation schemes. Alternative

test statistics and permutation schemes are possible and, in practice, the choice among

them should take into account the nature of the parameter(s) of interest (e.g., individual vs.

aggregate effects), the characteristics of the intervention that is the object of the analysis and

the structure of the data set. Randomized reassignment of the treatment in the data is taken

here as a benchmark against which we evaluate the rareness of the sample value of a test

statistic, and may not reflect the actual and typically unknown treatment assignment process

(see Abadie et al., 2010, 2015). Firpo and Possebom (2018) propose a procedure to assess

the sensitivity of permutation inference to deviations from the reassignment benchmark.

4.1. Inference on Aggregate Effects

Here we outline a simple permutation procedure that employs test statistic, T̂ , that mea-

sures aggregate effects for the treated. Examples of aggregate statistics of this type are the

synthetic controls estimators in equations (7) and (9). Similar to Abadie et al. (2010), in a

14



panel data setting T̂ can be based on the ratio between the aggregate mean square predic-

tion error in a post-intervetion period T1 ⊆ {T0 + 1, . . . , T} and a pre-intervention period

T0 ⊆ {1, . . . , T0}, ∑
t∈T0

(
n1∑
i=1

τ̂it(λ)

)2/∑
t∈T1

(
n1∑
i=1

τ̂it(λ)

)2

. (10)

Let Dobs = (D1, ..., Dn) be the observed treatment assignment. We will write T̂ (Dobs) to

indicate the value of the test statistic for the sample at hand, and T̂ (D) to indicate the value

of the test statistics when the treatment values are reassigned as in D in the data. The test

is as follows:

1. Compute the treatment effect estimate in the original sample T̂ (Dobs).

2. At each iteration, b = 1, . . . , B, permute at random the components of Dobs to obtain

T̂ (D(b)).

3. Calculate p-values as the frequency across iterations of values of T̂ (D(b)) more extreme

than T̂ (Dobs). Typically, for two-sided tests:

p̂ =
1

B + 1

(
1 +

B∑
b=1

1
{
|T̂ (D(b))| ≥ |T̂ (Dobs)|

})
.

For one sided tests:

p̂ =
1

B + 1

(
1 +

B∑
b=1

1
{
T̂ (D(b)) ≥ T̂ (Dobs)

})
,

or

p̂ =
1

B + 1

(
1 +

B∑
b=1

1
{
T̂ (D(b)) ≤ T̂ (Dobs)

})
.

4.2. Inference Based on the Sum of Rank Statistics of Unit-Level Treatment
Effects Estimates

Similar to Dube and Zipperer (2015), we propose a test based on the rank statistics of the

unit-level treatment effects. Unlike the test in Dube and Zipperer (2015), we calculate the

permutation distribution directly from the data. The test we employ is based on the sum of

15



ranks of individual treatment effects in the ordered sample combining the n1× (B+ 1) unit-

level treatment effects for the actual assignments and B random permutations. Individual

treatment effects, T̂i, may be based on differences in outcomes between treated and synthetic

controls,

Yi −
n∑

j=n1+1

W ∗
i,j(λ)Yj,

bias corrected versions of the unit-level treatment effects,

(Yi − µ̂0(Xi))−

(
n∑

j=n1+1

W ∗
i,j(λ)Yj − µ̂0(Xj)

)
,

or unit-level versions of the mean squared prediction error ratio in equation (10). The test

is implemented as follows:

1. Compute unit-level measures treatment effects for the treated, T̂i for i = 1, . . . , n1,

under the actual treatment assignment, Dobs.

2. At each iteration b = 1, . . . , B, permute at random the components of Dobs to obtain

treatment effects T̂i(D
(b)) for the treated. Denote these estimates T̂

(b)
1 , . . . , T̂

(b)
n1 (in

arbitrary order).

3. Calculate the ranks R1, . . . , Rn1 , R
(1)
1 , . . . , R

(1)
n1 , . . ., R

(B)
1 , . . . , R

(B)
n1 associated to the

n1×(B+1) individual treatment effect estimates T̂1, . . . , T̂n1 , T̂
(1)
1 , . . . , T̂

(1)
n1 , . . ., T̂

(B)
1 , . . . ,

T̂
(B)
n1 (or of their absolute values or negative values) and the sums of ranks for each

permutation, SR =
∑n1

i=1Ri, SR
(b) =

∑n1

i=1R
(b)
i , b = 1, . . . , B.

4. Calculate p-values as:

p̂ =
1

B + 1

(
1 +

B∑
b=1

1
{
SR(b) ≥ SR

})
.

5. Monte Carlo Experiment

We report the results of a Monte Carlo experiment that investigates the finite sample prop-

erties of the penalized synthetic control estimator relative to its unpenalized version (λ = 0)

and to the (nearest-neighbor) matching estimator in a panel data framework.
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Irrespective of the treatment status, the outcome at time t ∈ {1, 2} is generated by

Yi,t =
(∑p

j=1X
r
i,j

)
/β + εi,t with r a positive real governing the degree of linearity of the

outcome function. For any t, εi,t ⊥⊥ Xi and εi,t ∼ N (0, 1). For the n1 treated units, Xi,

is a vector of dimension p with iid entries distributed as U [a, b], with a, b > 0. For the n0

control units, Xi is a vector of the same dimension with iid entries distributed according to

density 2x
b−a+2h

1 {a− h < x < b+ h} with h > 0, i.e. each entry has the same distribution as
√
U where U ∼ U [a− h, b+ h]. The larger the parameter h, the smaller the support of the

treated relative to that of the controls. β is a constant set so that β2 = V
(∑p

j=1X
r
i,j|Di = 1

)

β =
√
p

√
b2r+1 − a2r+1

(b− a)(2r + 1)
−
(

br+1 − ar+1

(b− a)(r + 1)

)2

.

As a consequence V(Yi,t|Di = 1) = 2 and the signal-to-noise ratio for the treated is equal to

one.

We compare the performances of synthetic control and matching estimators. Both pro-

cedures have a tuning parameter, λ for the synthetic control and the number of neighbors M

for matching. We will consider these two estimators with a fixed and a data-driven choices

of tuning parameter. Under the fixed procedure, λ→ 0 in the synthetic control and M = 1

in the matching estimator, encompassing both polar cases of the penalized synthetic control

estimator highlighted in this paper. The case λ → 0 is referred to as the “pure synthetic

control” case that reproduces the treated as closely as possible by taking a convex combi-

nation of the vertices of the Delaunay triangle that contains the treated, when possible. Its

computation is based on the remark following Theorem 2. It is not to be confused with the

non-penalized synthetic control which does not take into account the compound discrepancy,

for which we also report results. The data-driven choice of tuning parameter uses the first

period outcome to minimize the MSE over that period. At each simulation step, both λ and

M are chosen so as to minimize their respective criteria

MSE(λ) =
1

n1

n1∑
i=1

(
Yi,1 −

n∑
j=n1+1

W ∗
i,j(λ)Yj,1

)2

,
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and

MSE(M) =
1

n1

n1∑
i=1

Yi,1 − 1

M

∑
j∈JM (i)

Yj,1

2

,

where JM(i) is the set of indices of the M control units that are the nearest to treated unit

i. We also report a bias-corrected version of the estimators as in Section 2.3, based on a

XXX specification.

The degree of the outcome function, r, is the key parameter governing the relative per-

formances of the candidate estimators. When r = 1, the outcome function is linear, which

suggests emphasizing the “synthetic control” part in (6) at the cost of a larger component-

wise discrepancy, so we expect the pure synthetic control to perform well, while the 1-to-1

matching should do relatively worse, exhibiting a notably larger variance. As a consequence,

the data-driven λ is likely to be small and the penalized synthetic control is likely to perform

similarly as the pure synthetic control. As r increases, the synthetic control with λ → 0

should suffer from a larger interpolation bias, while the performance of the 1-to-1 matching

should improve. As a consequence, the data-driven λ is expected to increase so that the

penalized synthetic control strikes a favorable compromise in the bias-variance trade-off.

Results are reported in Tables 1, 2 and 3 for n0 = 20, 40, 100 respectively. For each

configuration and each estimator τ̂ , we report four statistics computed on the treated sample

in the second period. The first is the individual-level Root Mean Squared Error (RMSE)

defined as
1

B

B∑
b=1

1

n1

n1∑
i=1

(
τ̂
(b)
i2

)2
,

the second is the aggregate-level RMSE

1

B

B∑
b=1

(
1

n1

n1∑
i=1

τ̂
(b)
i2

)2

,

the third is the aggregate absolute bias∣∣∣∣∣ 1

B

B∑
b=1

1

n1

n1∑
i=1

τ̂
(b)
i2

∣∣∣∣∣ ,
18



the last is the average sparsity defined as the average number of control units used in the

match to a given treated unit, i.e. number of non-zero entries in W ∗
i (λ) or number of matches

in the optimized matching procedure.
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6. Empirical Applications

6.1. The Value of Connections in Turbulent Times

This section revisits Acemoglu et al. (2016) on the effect of the announcement of the ap-

pointment of Tim Geithner as Treasury Secretary on November 21, 2008 on stock returns

of firms that were connected to him. To choose λ we employ the pre-intervention holdout

procedure of Section 3.2. The training sample uses stock returns over a 250-day window

that ends 30 days prior Geithner announcement. The validation sample to select the tuning

parameter λ uses returns on the following 30-day window. Abnormal returns are defined

as the difference between a connected firm returns and its synthetic match returns. The

measure of the announcement effect is the Cumulative Abnormal Returns (CAR) defined as

the sum of abnormal returns since the announcement day.

Our methodology differs in a few ways from the original study. To mitigate complications

caused by lack of uniqueness of the synthetic control estimator, Acemoglu et al. (2016)

construct synthetic controls on the basis of pretreatment stock returns and restrict the units

entering each synthetic control to the 20 untreated units with the highest correlation in

returns with the treated unit during the training window. This is a clever ad-hoc solution

to the non-uniqueness problem described in Section 1, but it does not easily generalize to

contexts where synthetic controls are constructed on the basis of multiple characteristics,

and leaves unaddressed the issue of how to decide on the maximum number of units that

contribute to the synthetic controls. Instead, we use the full sample of control units and apply

our penalized version of the synthetic control without this pre-selection step. Moreover, the

original study re-weights the CAR of each treated by goodness-of-fit instead of using a

simple average across the treated (see equation (7) in their paper). The authors argue that

treated firms for which their corresponding synthetic unit fits better its returns over the

pre-treatment period should be emphasized because they contain more information. While

this assertion makes intuitive sense, especially for cases when a lack of common support

prevents a particular treated unit from being well reproduced by a convex combination

of control units, the properties of such an estimator are unknown and not covered in the
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theoretical part of our work. As a consequence, we only use a simple average. Lastly, the 10%

firms most correlated with Citigroup are discarded, as in the original study, to exclude the

effect of the announcement of Citigroup’s bailout that could confound the effect of Geithner

announcement.

Table 5 displays our results which are qualitatively similar to the original study, albeit

more muted: significance is only obtained at the 5% level in the corrected inference proce-

dure. Figure 2 displays the Geithner announcement effect on stock returns versus the Fisher

distribution under the no-treatment effect assumption. With the selected penalty level of .1,

we find that the median number of active controls – defined as having a positive weight in

the synthetic unit – for each treated unit is 26.7 (min: 20, max: 40) which is substantially

more than in the original analysis where active controls are limited to be 20 or less. Another

key difference in our inference procedure is that we recompute the cross-validated optimal

λopt and corresponding synthetic control weights for every treated under the given permuta-

tion for each random permutation, as explained in Section 4. These two observations help

explaining the difference between our results and the original study.
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Table 5: Connections to Geithner and Reactions to Treasury Secretary Announcement,
Synthetic Control Inference. Replication of Acemoglu et al. (2016)

Estimate Q 0.5% Q 2.5% Q 5 % Q 95% Q 97.5% Q 99.5%

Penalized Synthetic Control

Day 1, CAR[0,1] 0.061** - 0.064 - 0.050 - 0.042 0.049 0.061 0.083
[ -0.0019; 0.1250]

Day 10, CAR[0,10] 0.138* - 0.128 - 0.093 - 0.075 0.126 0.150 0.202
[-0.0084; 0.2850]

Corrected Inference
Day 1, CAR[0,1] 0.061** - 0.065 - 0.049 - 0.042 0.045 0.058 0.087
Day 10, CAR[0,10] 0.138* - 0.123 - 0.091 - 0.073 0.116 0.142 0.202

Bias-corrected Estimator
Day 1, CAR[0,1] 0.058 - 0.108 - 0.080 - 0.067 0.064 0.077 0.105
Day 10, CAR[0,10] 0.125 - 0.229 - 0.171 - 0.142 0.156 0.186 0.247

Cross-val. (RMSE) λ 0.08
Mean nb. of active controls 26.7

Non-Penalized Synthetic Control

Day 1, CAR[0,1] 0.060** - 0.070 - 0.054 - 0.046 0.047 0.060 0.082
Day 10, CAR[0,10] 0.114* - 0.155 - 0.124 - 0.108 0.094 0.119 0.171

Corrected Inference
Day 1, CAR[0,1] 0.060** - 0.068 - 0.053 - 0.045 0.044 0.057 0.087
Day 10, CAR[0,10] 0.114* - 0.165 - 0.126 - 0.111 0.084 0.114 0.171

Bias-corrected Estimator
Day 1, CAR[0,1] 0.058 - 0.110 - 0.082 - 0.068 0.063 0.076 0.104
Day 10, CAR[0,10] 0.119 - 0.238 - 0.178 - 0.150 0.149 0.180 0.243

Mean nb. of active controls 40.8
Sample size (n) 525
Nb. in treatment group (n1) 12

Note: This table displays Cumulative Abnormal Returns (CAR) on day 1 and 10 corresponding to panels B and

C, columns 2 and 3, of Table 5 in Acemoglu et al. (2016). Results are obtained on their base sample which

excludes the 10% firms whose returns are most correlated with Citigroup. We define being treated as at least one

meeting between the firm and Geithner in 2007-08. The estimate column corresponds to the difference between

the treated returns and synthetic control returns accumulated for the said number of days since announcement.

The number between brackets are Fisher confidence intervals at 95% levels, based on 5,000 permutations. The

quantiles displayed in the other columns are computed as quantiles of the Fisher distribution under the no-effect

assumption. 20,000 random permutations have been used. Corrected inference discards permuted treated units for

which the in-sample MSPE was three times larger than the mean MSPE for original treated units. Bias-corrected

inference relies on a linear specification for the regression function. Asterisks denote significance levels (** = 5%,

* = 10%).
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Figure 2: Abnormal Returns after Geithner Announcement, non-corrected inference
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Appendix

Proof of Lemma 1

Notice that if the first result in Lemma 1 does not hold, then W ∗i (λ) cannot be a solution to the
problem in equation (6). We start by proving the upper bound in the second inequality. Since
W ∗i (λ) minimizes (6), it follows that

(Xi −X0W
∗
i (λ))′ (Xi −X0W

∗
i (λ)) + λ∆′iW

∗
i (λ) ≤ (Xi −XNNi)

′ (Xi −XNNi) + λ∆NN
i

Therefore,
λ∆′iW

∗
i (λ) ≤ (1 + λ)∆NN

i ,

and the result follows from λ > 0. The lower bound follows from the definition of ∆NN
i . �

Proof of Theorem 1

Without loss of generality, consider the case with only one treated, n1 = 1. Program (8) is

min
W

fλ(W ) = (X1 −X0W )′(X1 −X0W ) + λW ′∆1,

s.t. W ∈ W,

where W = {W ∈ [0, 1]n0 |W ′ιn0 = 1}. It is easy to check that the feasible set, W, is convex
and compact. Because fλ is continuous and W is compact, it follows that the function attains a
minimum on W. Moreover, X)′X0 is positive semi-definite, so fλ is convex.

Suppose that more than one solution exist. In particular, assume that W1 and W2 are solutions,
with fλ(W1) = fλ(W2) = f∗λ . Then, for any a ∈ (0, 1) we have that aW1 + (1−a)W2 ∈ W. Because
fλ is convex, we obtain

fλ(aW1 + (1− a)W2) ≤ afλ(W1) + (1− a)fλ(W2) = f∗λ .

This implies that the problem has either a unique solution or infinitely many. In addition, if there
are multiple solutions they all produce the same fitted values X0W . To prove this suppose there
are two solutions W1 and W2 such that X0W1 6= X0W2. Then, because ‖x− c‖2 is strictly convex
in c, for a ∈ (0, 1) we obtain

fλ(aW1 + (1− a)W2) = ‖X1 −X0(aW1 + (1− a)W2)‖2 + λ(aW1 + (1− a)W2)
′∆1

< a‖X1 −X0W1‖2 + (1− a)‖X1 −X0W2‖2 + λ(aW1 + (1− a)W2)
′∆1

= af∗λ + (1− a)f∗λ

= f∗λ ,

which contradicts that W1 and W2 are solutions. As a result, if W1 and W2 are solutions, then
X0W1 = X0W2. Moreover, now λ > 0 implies W ′1∆1 = W ′2∆1.

Karush-Kunh-Tucker conditions imply:

X ′j(X1 −X0W )− λ

2
∆1,j = π − γj

Wj ≥ 0, W ′ιn0 = 1, γj ≥ 0, γjWj = 0.
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Stacking the first n0 conditions and pre-multiplying by W ′, we obtain

W ′X ′0(X1 −X0W )− λ

2
W ′∆1 = π.

From this equation, it follows that the value of π is unique across solutions, because X ′0W and
W ′∆1 are unique across solutions. Given that π is unique, the equations

X ′j(X1 −X0W )− λ

2
∆1,j = π − γj

imply that the γj ’s are unique across solutions. As a result, for any solution the subvector of W

formed by the rows associated with non-zero γj ’s is equal to zero. Let X̃0 be the submatrix of X0

formed by the columns associated with zero γj ’s, and define W̃ , ∆̃1, and 1ñ0
analogously, where ñ0

is the number of columns of X̃0. Then,

X̃ ′0(X1 − X̃0W̃ ) =
λ

2
∆̃1 + π1ñ0

.

As an aside, notice that if λ > 0, then ‖X1 −X0W‖ = 0 implies that ∆̃1 is a constant vector. We
therefore obtain that if λ > 0 and ∆̃1 is not constant, then it must be the case that ‖X1−X0W‖ > 0.

Let Az = c, where

A =

(
X̃ ′0X̃0 1ñ0

1′ñ0
0

)
, z =

(
W̃
π

)
, c =

(
X̃ ′0X1 − (λ/2)∆̃1

1

)
.

Any solution to the program has to satisfy this set of linear equations, and the non-negativity
constraint on W̃ .

Assume that any submatrix of X ′0 consisting of no more than p rows has full row rank. Suppose

ñ0 ≤ p. Then, X̃ ′0X̃0 has full rank equal to ñ0. Augmenting X̃ ′0X̃0 by adding a column 1ñ0
does

not change the rank, because (X̃ ′0X̃0 1ñ0
) only has ñ0 rows. Now, adding the row (1′ñ0

0) increases

by one the number of linearly independent rows (because if u 6= 0, u′1ñ0
= 0, and u′X̃ ′0X̃0 = 1′ñ0

,

then u′X̃ ′0X̃0u = 0, which cannot be true because X̃ ′0X̃0 is full rank). Therefore, A is full rank and
there is a unique solution for z.

Now, assume ñ0 = p+1. Then, X̃ ′0X̃0 has rank p. Assume that 1p+1 does not belong to the column

space of X̃ ′0. Then, 1p+1 does not belong to the column space of X̃ ′0X̃0 (because the columns of X̃ ′0
and X̃ ′0X̃0 span the same space.) As a result, the rank of (X̃ ′0X̃0 1p+1) is p+ 1. Moreover, because

1′p+1 does not belong to the row space of X̃ ′0X̃0, adding the row (1′p+1 0) increases the rank of A
by one. In this case, again, A is full rank and there is a unique solution for z.

Now, assume ñ0 > p+ 1. In this case, A is rank deficient and X̃ ′0X̃0 is rank deficient. By the same
arguments as before rank(A) = p+ 2. Consider the rank of the augmented matrix (A c)

rank(A c) = rank

([
X̃ ′0X̃0 1ñ0

X̃ ′0X1 − (λ/2)∆̃1

1′ñ0
0 1

])
.

Assume that any matrix composed by p + 2 or more rows of (X̃ ′0 1ñ0
∆1) has full column rank.

Assume also that λ > 0. Then, there is no linear combination of the columns of (X̃ ′0X̃0 1ñ0
) that
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is equal to X̃ ′0X1 − (λ/2)∆̃1. As a result,

rank(A c) = rank(A) + 1

and the system has no solution. We conclude that, under the stated assumptions, if λ > 0 then
there is a unique solution W with at most p+ 1 non-zero components.

In contrast, for λ = 0 it is easy to obtain examples with multiple solutions for the case ñ0 > p+ 1,
even if any matrix composed by p+ 2 or more rows of (X̃ ′0 1n0 ∆1) has full column rank. �

Lemma A.1 (Optimality of Delaunay for the Compound Discrepancy, Rajan (1994))

Suppose the assumptions of Theorem 1 hold and let Z ∈ CH(X0). Consider a solution W̃ =

(W̃n1+1, . . . , W̃n)′ of the problem

min
W∈[0,1]n0

n∑
j=n1+1

Wj‖Xj − Z‖2, (A.1)

s.t. X0W = Z,

n∑
j=n1+1

Wj = 1 (A.2)

Then, non-zero values of W̃j occur only among the vertices of the face of the Delaunay complex
containing Z.

Proof of Lemma A.1

The proof of this lemma closely follows the proof of Lemma 10 in Rajan (1994) but does not
rely on general position of the set of points. For a point X ∈ Rp, consider the transformation
φ : X → (X, ‖X‖2). The images under φ of points in Rp belong to the paraboloid of revolution
P with vertical axis and equation xp+1 =

∑p
i=1 x

2
i . By Theorem 17.3.1 in Boissonnat and Yvinec

(1998), the faces of the Delaunay complex of the n0 points Xn1+1, . . . , Xn in Rp are obtained by
projecting the faces of the lower envelope of the convex hull of the n0 points φ(Xn1+1), . . . , φ(Xn),
obtained by lifting the Xj ’s onto the paraboloid P.

Now consider a point
(∑n

j=n1+1WjXj ,
∑n

j=n1+1Wj‖Xj‖2
)

subject to the constraints in A.2.

This point is equal to
(
Z,
∑n

j=n1+1Wj‖Xj − Z‖2 + ‖Z‖2
)

and belongs to the convex hull of

φ(Xn1+1), . . . , φ(Xn). Hence, a solution of A.1 for a fixed Z is given by a point with the lowest
(p+1)-th coordinate. It is a point on the lower envelope of the convex hull of φ(Xn1+1), . . . , φ(Xn),
so Z belongs to a p-face of the Delaunay complex. As a consequence, the only non-zero entries
of W̃ occur only among the vertices of the face of the Delaunay complex of the columns of X0

containing Z. �

Proof of Theorem 2

It is enough to prove that the result holds for one treated unit, so we consider the case n1 = 1 and
drop the treated units subscripts from the notation. Suppose that the synthetic control weights are
given by the vector W ∗(λ) = (W ∗2 (λ), . . . ,W ∗n(λ))′, and that W ∗j (λ) > 0 for j which is not a vertex
of the face of the Delaunay complex DT (X0) containing X0W

∗(λ). Because X0W
∗(λ) ∈ CH(X0),

it follows from Lemma A.1 that we can always choose an n0-vector of weights W̃ ∈ [0, 1]n0 , such
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that (i) X0W̃ = X0W
∗(λ), (ii)

∑n
j=n1+1 W̃j = 1, (iii) W̃j = 0 for any j that is not a vertex of

the face of the Delaunay complex containing X0W
∗(λ), and (iv) W̃ induces a lower compound

discrepancy than W ∗(λ) relative to X0W̃ = X0W
∗(λ),

n∑
j=2

W̃j‖Xj −X0W̃ (λ)‖2 <
n∑
j=2

W ∗j (λ)‖Xj −X0W
∗(λ)‖2. (A.3)

For any W ∈ [0, 1]n0 it can be easily seen that

n∑
j=2

Wj‖Xj −X1‖2 =
n∑
j=2

Wj‖Xj −X0W‖2 + ‖X1 −X0W‖2. (A.4)

Combining equations (A.3) and (A.4) with the fact that ‖X1 −X0W̃‖2 = ‖X1 −X0W
∗(λ)‖2, we

obtain
n∑
j=2

W̃j‖Xj −X1‖2 <
n∑
j=2

W ∗j (λ)‖Xj −X1‖2.

As a result

‖X1 −X0W̃‖2 + λ

n∑
j=2

W̃j‖Xj −X1‖2 < ‖X1 −X0W
∗(λ)‖2 + λ

n∑
j=2

W ∗j (λ)‖Xj −X1‖2,

which contradicts the premise that W ∗(λ) is a solution to (6). �

Lemma A.2 (Sum of Weights) For j = n1 + 1, ..., n, denote Sj(λ) =
∑n1

i=1W
∗
i,j(λ), the sum of

weights given to a particular control unit across all the synthetic units. Under Assumption 1, for
any λ > 0:

1.
∑n

j=n1+1 Sj(λ) = n1 almost surely,

2. E[Sj(λ)] = n1/n0 for every j = n1 + 1, ..., n,

3. ρ[Sj(λ), Sk(λ)] = −1/(n0−1) for any j 6= k, where ρ[Sj(λ), Sk(λ)] = Cov[Sj(λ), Sk(λ)]/V[Sj(λ)].

Proof of Lemma A.2

The first assertion holds because each of the n1 synthetic units is created as a convex combination
of control units. The second assertion is a consequence of the previous one, the linearity of the
expectation operator and exchangeability. For the third assertion, notice that the first statement
of the lemma implies V[

∑n
j=n1+1 Sj(λ)] = 0 which in combination with exchangeability leads to:

n0V[Sn1+1(λ)] + n0(n0 − 1)Cov[Sn1+1(λ), Sn1+2(λ)] = 0. (A.5)

A consequence of equation A.5 is that ρ[Sn1+1(λ), Sn1+2(λ)] = Cov[Sn1+1(λ), Sn1+2(λ)]/V[Sn1+1(λ)] =
−1/(n0 − 1). �
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