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Abstract

Synthetic control methods are commonly applied in empirical research to esti-
mate the effects of treatments or interventions of interest on aggregate outcomes.
A synthetic control estimator compares the outcome of a treated unit — that is,
a unit exposed to the intervention of interest — to the outcome of a weighted
average of untreated units that best resembles the characteristics of the treated
unit before the intervention. When disaggregated data are available, construct-
ing separate synthetic controls for each treated unit may help avoid interpolation
biases. However, the problem of finding a synthetic control that best reproduces
the characteristics of a treated unit may not have a unique solution. Multiplicity
of solutions is a particularly daunting challenge in settings with disaggregated
data, that is, when the sample includes many treated and untreated units. To
address this challenge, we propose a synthetic control estimator that penalizes
the pairwise discrepancies between the characteristics of the treated units and
the characteristics of the units that contribute to their synthetic controls. The
penalization parameter trades off pairwise matching discrepancies with respect
to the characteristics of each unit in the synthetic control against matching dis-
crepancies with respect to the characteristics of the synthetic control unit as a
whole. We study the properties of this estimator and propose data driven choices
of the penalization parameter.
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1. Introduction

Synthetic control methods (Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015; Doud-
chenko and Imbens, 2016) are often applied to estimate the treatment effects of aggregate
interventions (see, e.g., Kleven et al., 2013; Bohn et al., 2014; Hackmann et al., 2015; Cun-
ningham and Shah, 2018). Suppose we observe data for a unit that is affected by the
treatment or intervention of interest, as well as data on a donor pool, that is, a set of un-
treated units that are available to approximate the outcome that would have been observed
for the treated unit in the absence of the intervention. The idea behind synthetic controls
is to match each unit exposed to the intervention or treatment of interest to a weighted
average of the units in the donor pool that most closely resembles the characteristics of the
treated unit before the intervention. Once a suitable synthetic control is selected, differences
in outcomes between the treated unit and the synthetic control are taken as estimates of the
effect of the treatment on the unit exposed to the intervention of interest.

The synthetic control method is akin to nearest neighbor matching estimators (Dehejia
and Wahba, 2002; Abadie and Imbens, 2006; Imbens and Rubin, 2015) but departs from
traditional matching methods in two important aspects. First, the synthetic control method
does not impose a fixed number of matches for every treated unit. Second, instead of using
a simple average of the matched units with equal weights, the synthetic control method
matches each treated unit to a weighted average of untreated units with weights calculated
to minimize the discrepancies between the treated unit and the synthetic control in the values
of the matching variables. Synthetic control estimators retain, however, appealing properties
of nearest neighbor matching estimators, in particular sparsity, non-negativity of the weights,
and weights that sum to one. Like for nearest neighbor matching estimators, most of the
synthetic control weights are equal to zero and a small number of untreated units contribute
positive weights to reproduce the counterfactual of each treated observation without the
treatment. Sparsity and non-negativity of the weights, along with the fact that synthetic
control weights sum to one and define a weighted average, are important features that allow

incorporating expert knowledge to evaluate and interpret the estimated counterfactuals (see



Abadie et al., 2015). As shown in Abadie et al. (2015), similar to the synthetic control
estimator, a regression-based estimator of the counterfactual of interest — i.e., the outcome
for the treated in the absence of an intervention — implicitly uses a linear combination of
outcomes for the untreated with weights that sum to one. However, unlike synthetic control
weights, regression weights are not explicit in the outcome the procedure, they are not sparse,
and they can be negative or greater than one, allowing unchecked extrapolation outside the
support of the data and complicating the interpretation of the estimate and the nature of
the implicit comparison. While most applications of the synthetic control framework have
focused on cases where only one or a few aggregate units are exposed to the intervention
of interest, the method has found recent applications in contexts with disaggregated data,
where samples contain large numbers of treated and untreated units, and the interest lies
on the average effect of the treatment among the treated (see, e.g., Acemoglu et al., 2016;
Gobillon and Magnac, 2016; Kreif et al., 2016). In such settings, one could simply construct
a synthetic control for an aggregate of all treated units. However, interpolation biases may
be much smaller if the estimator of the aggregate outcome that would have been observed for
the treated in the absence of the treatment is based on the aggregation of multiple synthetic
controls, one for each treated unit.

Using synthetic controls to estimate treatment effects with disaggregated data creates
some practical challenges. In particular, when the values of the matching variables for a
treated unit fall in the convex hull of the corresponding values for the donor pool, it may
be possible to find multiple convex combinations of untreated units that perfectly reproduce
the values of the matching variables for the treated observation. That is, the best synthetic
control may not be unique. One practical consequence of the curse of dimensionality is
that each particular treated unit is unlikely to fall in the convex hull of the untreated units,
especially if the number of untreated units is small. As a result, lack of uniqueness is not
often a problem in settings with one or a small number of treated units and, if it arises, it
can typically be solved by ad-hoc methods, like increasing the number of covariates or by

restricting the donor pool to units that are similar to the treated units. In settings with



many treated and many untreated units, non-uniqueness may be an important consideration
and a problem which is harder to solve.

More generally, in contrast to common aggregate data settings with a small donor pool
(see, e.g., Abadie and Gardeazabal, 2003; Abadie et al., 2010), a large number of units in
the donor pool creates a setting where single untreated units may provide close matches to
the treated units in the sample. Therefore, in such a setting the researcher faces a trade-off
between minimizing the covariate discrepancy between each treated unit and its synthetic
control as a whole (pure synthetic control case) and minimizing the covariate discrepancy
between each treated unit and each unit that contributes to its synthetic control (pure
matching case).

This paper provides a generalized synthetic control framework for estimation and infer-
ence. The framework builds on synthetic controls and introduces a penalization parameter
that trades off pairwise matching discrepancies with respect to the characteristics of each
unit in the synthetic control against matching discrepancies with respect to the character-
istics of the synthetic control unit as a whole. This type of penalization is aimed to reduce
interpolation biases by prioritizing inclusion in the synthetic control of units that are close
to the treated in the space of matching variables. Moreover, it can be shown that as long as
the penalization parameter is positive, the generalized synthetic control estimator is unique
and sparse. If the value of the penalization parameter is close to zero, our procedure selects
the synthetic control that minimizes the sum of pairwise matching discrepancies (among
the synthetic controls that best reproduce the characteristic of the treated units). If the
value of the penalization parameter is large, our estimator coincides with the pair-matching
estimator. We study the formal properties of the penalized synthetic control estimator and
propose data driven choices of the penalization parameter.

Our approach belongs to the recent literature on “machine learning” estimators for pro-
gram evaluation problems. Following Doudchenko and Imbens (2016) which represents syn-
thetic controls as a solution to complete an outcome matrix with missing entries, Athey et al.

(2017) assumes an underlying sparse factor structure for the outcome under no treatment



and adapts matrix completion techniques to estimate a counterfactual. Their estimator pe-
nalizes the complexity of the factor structure, while our approach penalizes the discrepancy

between the treated unit and each control unit that enters the synthetic unit.

2. Penalized Synthetic Control

2.1. Synthetic Control for Disaggregated Data

We code treatment using a binary variable, D, so D = 1 for treated individuals and D = 0
otherwise. To define the object of interest we adopt the potential outcome notation in Rubin
(1974). Let Y; and Yy be random variables representing potential outcomes under treatment
and under no treatment, respectively. The treatment effect is Y; — Y;. Realized outcomes

are defined as
Y itD=1,
Y_{YO if D=0.

Let X be a (p x 1)-vector of pre-treatment predictors of Y. Consider the distributions
of the triple (Y3, Yy, X) under treatment and no treatment, with E[-|D = 1] and E[-|D = 0]
denoting the corresponding expectation operators, and E[-|X,D = 1] and E[-|X,D = 0]
denoting expectations conditional on X. Let P, and F, be the probability measures that

describe the distribution of X for treated and nontreated, respectively.
Assumption 1 (Sampling) {(Yi;, X))}

bution of (Y1,X) and {(Yo;, Xi)}
(Yo, X).

i—1...n, @re ny independent draws from the distri-

imni+1....n 07€ Mo independent draws from the distribution of

Combining data for treated and nontreated we obtain the pooled sample, {(Y;, D;, X;)},,
n = ng + ni. To simplify notation, we reorder the observations in the sample so that the
ny treated observations are first and the ny untreated observations are last. The quantity of

interest is the average treatment effect on the treated (ATET):
T=E[Y; - YD =1]. (1)

Assumption 2 (Nested support) P, < Py, that is, Py is absolutely continuous with re-
spect to Fy.



Assumption 3 (Unconfoundedness I) E[Y;|X,D = 1] = E[Y,|X,D =0].

Versions of assumptions 2 and 3 are ubiquitous in the program evaluation literature (see,
e.g., Imbens, 2004). Assumption 2 states that there is no value of X for which individuals
are always treated. In other words, for any treated, it should be possible to find a non-
treated with the same value of the covariates in the population. Assumption 3 states that
conditionally on a set of observed covariates or confounding factors, X, the expected potential
outcome without the treatment is the same for treated and control individuals. Graphical
causal structures that support Assumption 3 are studied in Pearl (2000) and the subsequent
literature.

Notice that, under these two assumptions, the counterfactual E[Yy|D = 1] can be ex-

pressed as a weighted average of the outcome among the untreated,
7= E[Y|D=1] - E[VY|D =0), (2)

where V' = dP;/dP,. Many econometric estimators of 7 based on Assumptions 2 and 3,

whether explicitly or implicitly, employ a sample analog of equation (2),
1 1 o
— NV, - =Y V(1 - D)V;. 3
Ly v~ Ly i ) 9

Popular estimators of this type in micro-econometrics include most notably regression (An-
grist and Pischke, 2008; Abadie et al., 2015), propensity score weighting (Rosenbaum and
Rubin, 1983; Hirano et al., 2003) and matching (Smith and Todd, 2005). For example, in
the case of the pair-matching estimator, the weight V; given to control unit 7 is equal to an
integer counting the number of times control unit 7 is the nearest neighbor of a treated unit,
rescaled by ng/n;. The synthetic control method (Abadie and Gardeazabal, 2003; Abadie
et al., 2010, 2015; Doudchenko and Imbens, 2016) also belongs to this class of estimators. It
matches each treated unit to a “synthetic control”, that is, a weighted average of untreated
units with weights chosen to make the values of the predictors of the outcome variable of
each synthetic control closely match the values of the same predictors for the corresponding

treated units.



While these assumptions are enough to recover the average treatment effect in equation
(1), identification of a wide variety of parameters can be attained by strengthening the

identifying conditions as in Assumptions 2" and 3’ below.
Assumption 2’ (Common support) P, < Py and Py < P;.
Assumption 3’ (Unconfoundedness II) Y3,Y; 1L D|X.

Parameters identified by the addition of Assumptions 2’ and 3’ include quantile treatment
effects, that is, differences in the quantiles of the distributions of potential outcomes (Firpo,
2007), bounds on the distribution of the treatment effect (Firpo and Ridder, 2008), or coun-
terfactual distributions (Chernozhukov et al., 2013), among others. They also include pa-
rameters describing conditional features of the distribution of potential outcomes (see, e.g.,
Crump et al., 2008) and regression parameters obtained after imposing the same distribu-
tion of X for treated and non-treated (Ho et al., 2007; Abadie and Spiess, 2016). While,
for the sake of clarity, this article focuses on the estimation of average treatment effects, the
generalized synthetic control method outlined here can be applied to estimate any of the pa-
rameters above. Moreover, Assumptions 1-3, which are adopted here for simplicity, are not
the only possible identification conditions in a synthetic control setting, nor necessarily the
least restrictive ones. In particular, Abadie et al. (2010) show that under a factor-structure
condition on the regression residual of the outcome on the covariates for the untreated, us-
ing synthetic controls that match pre-treatment outcomes for the treated help control for
unobserved confounding that arises from heterogeneity in the factor loadings.

For any (p x 1) real vector X and any (p X p) real symmetric positive-definite matrix
I, define the norm || X|| = (X'T'X)Y2. Because I is diagonalizable with strictly positive
eigenvalues, we can always transform the vector X so that the matrix I" becomes the (p X p)
identity matrix. As a result, without loss of generality, we will consider only I' = . In the
synthetic control framework, model selection — that is, the choice of the variables included
in X — is operationalized through the choice I', which rescales or weights each predictor in

X according to its predictive power on the outcome (see Abadie et al., 2010). In a setting



with many treated and untreated units, the standard synthetic control estimation procedure

is as follows:
1. For each treated unit, i = 1,...,n;, compute the ng-vector of weights W = (W7, .4, ...

Wi ,) that solves

2

min
W,;eR™0

Xi— Y WX, (4)

Jj=ni1+1
s.t. Wi,n1+1 > 0, ey Wi,n > 0,

where W/, is the weight given to control unit j in the synthetic control unit corre-

sponding to treated unit .

2. Estimate 7 using the mean difference between the realized outcome and the synthetic

outcome for the treated

Y, - 2”: Wi;Y;

j=ni1+1

L 1 &
T:n—l; , (5)

Notice that 7 is the estimator in equation (3) reweighting each nontreated unit, j = ny +
1,...,n, by V; = (ng/n1)S;, where S; = 7" W, is the sum of the synthetic control weights
assigned to unit j. Lemma A.2 in the appendix derives some properties of ;.

While, to simplify notation, we described here a cross-sectional setting only, the extension
to the more common panel data setting for synthetic controls is immediate and we will use
it later.

Notice that, when X; belongs to the convex hull of {X, 1,...,X,}, the value of the
objective function (4) at the minimum is equal to zero and multiple solutions may exist.
By Carathéodory’s theorem, a solution with at most p + 1 non-zero weights exists in that
case. On the other hand, it is easy to show that if X; does not belong to the convex hull of
{X,41,- -, X, } and under weak regularity conditions (that is, if observations are in “general
position”) the solution is unique and involves at most p + 1 non-zero weights, see Theorem

1 below.



2.2. Penalized Synthetic Control

The main contribution of this article is to propose an alternative, penalized version of the
synthetic control estimator in equation (4). For treated unit 7 and given a positive constant

A, the penalized synthetic control weights, W, ()), solve

A D Wiyl X = X117 (6)

j=ni1+1

N 2
> WX,

j=ni1+1
s.t. VVi,nl—i-l 2 0, ey Wi,n 2 O,

j=ni1+1

min
W; R0

The penalized synthetic control estimator is then given by

- W

j=ni+1

(7)

The tuning parameter \ sets the trade-off between componentwise and aggregate fit. The
choice of the value of X is important and will be discussed in Section 3. The penalized syn-
thetic control estimator encompasses both the synthetic control estimator and the nearest-
neighbor matching as special polar cases. At one end of the spectrum, as A — 0, the penal-
ized estimator becomes the synthetic control that minimizes the sum of pairwise matching
discrepancies among the set of synthetic controls that best reproduce the characteristics of
the treated units. Our motivation to choose among synthetic controls that fit the treated
unit equally well by minimizing the sum of pairwise matching discrepancies is to reduce
worst-case interpolations biases. At the other end of the spectrum, as A — oo, the penalized
estimator becomes the one-match nearest-neighbor matching with replacement estimator in
Abadie and Imbens (2006).

Let Xy be the (p x ng) matrix with column j equal to X, +;, and let A; be the (ng x 1)

NN
A

vector with j-th element equal to || X; — X,,,+,||>. Moreover, let = min;_q,_, || Xi —

X441, be the smallest discrepancy between unit ¢ and the units in the donor pool. Fi-
nally, let W*()\) be a solution to (6), and A¥(\) = || X; — XoW;7()\)||? be the square of the

discrepancy between unit 7 and the (penalized) synthetic control.
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Lemma 1 (Discrepancy Bounds) For any A > 0
0 < A7) < AT,

and for A > 0

ANV < AW () < FEAANY,

The first inequality states that the synthetic unit is contained in a closed ball of center X;
and radius equal to the distance to the nearest-neighbor, \/W . The second inequality
shows that the tuning parameter A controls the compound discrepancy between the treated
unit and the units that contribute to the synthetic control, AJW;(\). All proofs are in the
appendix.

Some remarks are in order to justify the choice of the penalization term in equation
(6). First, notice that the penalty term is linear rather than quadratic in the weights. This
has the advantage of producing easy-to-interpret sparse solutions, similarly to a matching
procedure.

Notice also that the optimization problem in (6) can be solved via quadratic program-
ming, like the standard synthetic control in (5). To see why notice that, in matrix notation,

program (6) is

WeRmo

st. 1, W=1,W >0,
where 1,, is the (ng x 1) vector of ones and the inequality restriction applies to each com-
ponent of W.

A third remark has to do with uniqueness of the solution. In the absence of the penalty
term (that is, when A = 0), the problem in (6) and (8) can be solved by projecting X; on
the convex hull of X. Existence of sparse solutions follows from Carathéoroy’s theorem.
However, if A = 0 the solution to the problem in (6) and (8) may not be unique, especially if
X; belongs to the convex hull of the columns of X,. Adopting A > 0 penalizes solutions with
potentially large interpolation biases created by large matching discrepancies and produces

uniqueness and sparsity as stated in the following result.



Theorem 1 (Uniqueness and Sparsity) Suppose (i) A > 0; (ii) any submatriz of X}
consisting of no more than p rows has full row rank; (iii) 1,41 does not belong to the column
space of any submatrixz of X{, consisting of p+1 rows; (iv) any submatriz composed by p+2 or
more rows of (X{ 1,y A;) has full column rank. Then, the optimization problem in equation

(6) admits a unique solution W}(X) with at most p+ 1 non-zero components.

Condition (i) imposes a non-zero penalization on the compound discrepancy. Condition (1)
implies that any subset of p or fewer control observations are not linearly dependent in the
values of the predictors. Conditions (i77) and (iv) require that there is no subset of p 4 1
or more control observations with values of the predictors that fall in a lower-dimensional
affine subspace. In addition, condition (iv) requires that there is no set of control units of
cardinality p + 2 or larger such that the values of the predictors belong to a sphere with

center at X;.

Example: Consider a simple numerical example with only one covariate. Suppose, there is
one treated unit with X; = 2 and three control units with X, =1, X3 =4 and X, = 5. This

simple setting is depicted in Figure 1.

Figure 1: A simple example

X2 X1 X3 X4
= . ‘ = =
1 2 3 4 b}

Notice that X; belongs to [1, 5], the convex hull of the columns of Xj. Consider first the
case with A = 0. Then, W*(0) = (2/3 1/3 0)' and W**(0) = (3/4 0 1/4)" are the only two
sparse solutions (with number of non-zero weights not greater than p+1 = 2) to (6). The first
sparse solution, W*(0), interpolates X; = 2 using Xy = 1 and X3 = 4. The second sparse
solution, W**(0) is of lower quality relative to W*(0) in terms of compound discrepancy,
as it uses an interpolation scheme that replaces X3 with Xy, an observation farther away
from X;. As a result, W*(0) is preferred over W**(0) in terms of worst case interpolation
bias (e.g., under a Lipschitz bound on E[Y|X,W = 0]). However, the better compound

fit of W*(0) is not reflected in a better value in the objective function in (4). Moreover,
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because any convex combination of W*(0) and W**(0) is also a solution, the program in
(4) has an infinite number of solutions, W} = {aW?*(0) + (1 — a)W**(0) : a € [0,1]}. Let
V(a) = aW*(0) + (1 — a)W**(0). The compound discrepancy of V(a) is

AlV(a) =3 —a.
From Figure 1, it is apparent that W*(0), which is obtained making a = 1, produces the
lowest compound discrepancy among all the solutions to equation (4).

When A > 0, however, the program (6) has a unique solution, which is sparse:

- { Gy e
Notice that W*(\) never puts any weight on X,;. As A — oo, W*()) selects the nearest-
neighbor match, and as A — 0, W*(\) converges to W*(0), the (non-penalized) synthetic
control in W with the smallest compound discrepancy. 0
Next theorem provides a characterization of the units contributing to a particular syn-
thetic control, XoW;(\) with A > 0, as vertices of the face of the Delaunay complex con-
taining XoW;(A) in the Delaunay tessellation of X, 41,..., X,.

Theorem 2 (Delaunay Property) Let W;(\) be a solution to the penalized synthetic con-
trol problem in (6) with A > 0. Consider the Delaunay tessellation induced by the columns
of Xo. Then, for any control unit j = ni +1,...,n, such that X; is not a vertex of face of

the Delaunay complex containing XoW;(A) it holds that W;;(\) = 0.

This result along with the first part of Lemma 1, which bounds ||.X; — XoW; ()], provides a
notion of proximity between each treated unit X; and the untreated units that contribute to
its synthetic control. Theorem 2 provides also a simple way to compute the solution for the
“pure synthetic control case” (A — 0) that does not entail the choice of an arbitrarily small
value of A\ to use in (6). Recall that when A = 0, the problem of minimizing || X; — X W||
subject to the weight constraints may have multiple (infinite) number of solutions, in which
case X; = XoW for all solutions. In the presence of multiple solutions, the “pure synthetic

control case” selects the solution that produces the lowest compound discrepancy, W’'A;,
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among all W such that X; = XyW. Directly solving (6) for an arbitrarily small value
of A requires, in practice, a choice for A. It also creates computational difficulties, as the
minimization problem is close to one with multiple solutions and the dimension of W may
be large. Theorem 2 implies that the solution of (6) for A — 0 assigns positive weights only
to the vertices of the simplex in the Delaunay tessellation of X, 11,..., X, that contains the

projection of X; on the convex hull of the columns of Xj.

2.3. Bias-Corrected Synthetic Control

We will also consider bias-corrected versions of synthetic control estimator. We adopt a
bias correction analogous to that implemented in Abadie and Imbens (2011) for matching
estimators. Let ug(x) = E[Y|X = z,D = 0], and let jip(x) be an estimator of po(z). A

bias-corrected version of the synthetic control estimator in equation (7) is

Fao(h) = o 3 | (V= () = 32 WV - m(X)] )

3. Penalty Choice

In this section we present two data-driven selectors for the penalty term, A. In the context of
treatment effects estimation, cross-validation (CV) is complicated by the absence of data on
a “ground truth” (that is, on the values of Y for the treated units in the post-intervention
periods, see Athey and Imbens, 2016). The first selector proposed in this section is based
on cross-validation on the outcomes on the untreated units in the post-intervention period.
The second selector uses a strategy similar to the model selection procedure in Abadie et al.
(2015), minimizing mean squared prediction error (MSPE) in a hold-out pre-intervetion

period.

3.1. Leave-One-Out Cross-Validation of Post-Intervention Outcomes for the
Untreated

This section discusses a leave-one-out cross-validation procedure to find an optimal value A

by minimizing mean squared prediction error for the untreated units in the post-intervention

12



period. Consider a balanced panel data setting with 7" periods and T < 1" pre-intervention

periods. Let Yj; be the outcome for unit ¢ at time ¢. The procedure is as follows:

1. For each control unit ¢+ = n; + 1,...,n, and each post-intervention period, t = Ty +
1,...,T, calculate
Tie(A) =Y — Z W:j()‘)y}'tv
j=ni+1
J#i

where W;;()) is a synthetic control for unit ¢ that is produced by the donor pool

{n1+1,...,n}\{i}.

2. Choose A to minimize some measure of loss, such as the mean squared prediction error

for the individual outcomes,

1 no T R 9
TL()(T — To) Zl t; TZt(/\))
1=1 t=TpH+1

3.2. Pre-Intervention Holdout Validation on the Outcomes of the Treated

An alternative selector of A is based on validation over the outcomes for the treated on a
hold out pre-intervention period. This is similar in spirit to the model selection procedure in
Abadie et al. (2015). To simplify the exposition and because it is the most natural choice, we
will assume that the validation period is at the end of the pre-intervention period, although

other choices are possible. The procedure is as follows:

1. Split the pre-intervention period that contains T dates into Ty — k initial training dates

and k subsequent validation dates.

2. For each treated individual, ¢, and validation period, t € {Ty — k, ..., Ty}, compute

Tit(A) = Yie — Z W:j()‘)yjt7

j=ni1+1

where W;; solve (6) with X measured in the training period.

13



3. Choose A to minimize some measure of error, such as the sum of the squared prediction

for the individual outcomes,

or the squared prediction error of the aggregate outcomes,

5" (_z atm) |

Notice that the cross-validation procedures delineated can also be applied here to guide

model selection (i.e., choice of V') as in Abadie et al. (2015).

4. Inference

In this section, we adapt the inferential framework in Abadie et al. (2010) to the penalized
synthetic control estimators of section 2. Like in Abadie et al. (2010), our inferential exercises
compare the value of a test statistic to its permutation distribution induced by random
reassignment of the treatment variable in the data set. We next describe three possible
implementations that employ different test statistics and permutation schemes. Alternative
test statistics and permutation schemes are possible and, in practice, the choice among
them should take into account the nature of the parameter(s) of interest (e.g., individual vs.
aggregate effects), the characteristics of the intervention that is the object of the analysis and
the structure of the data set. Randomized reassignment of the treatment in the data is taken
here as a benchmark against which we evaluate the rareness of the sample value of a test
statistic, and may not reflect the actual and typically unknown treatment assignment process
(see Abadie et al., 2010, 2015). Firpo and Possebom (2018) propose a procedure to assess

the sensitivity of permutation inference to deviations from the reassignment benchmark.

4.1. Inference on Aggregate Effects

A~

Here we outline a simple permutation procedure that employs test statistic, T, that mea-
sures aggregate effects for the treated. Examples of aggregate statistics of this type are the

synthetic controls estimators in equations (7) and (9). Similar to Abadie et al. (2010), in a
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panel data setting T can be based on the ratio between the aggregate mean square predic-
tion error in a post-intervetion period 71 C {7y + 1,...,T'} and a pre-intervention period

To CA{1,...,To},

Z( : @(A)) > (iatu)) . (10)

teTo teTr \i=1

Let D® = (Dy, ..., D,) be the observed treatment assignment. We will write 7(D°*) to
indicate the value of the test statistic for the sample at hand, and T\(D) to indicate the value
of the test statistics when the treatment values are reassigned as in D in the data. The test

is as follows:

1. Compute the treatment effect estimate in the original sample f(DObS).

2. At each iteration, b =1, ..., B, permute at random the components of D°?* to obtain

T(DY).

3. Calculate p-values as the frequency across iterations of values of f(D(b)) more extreme

than T (D°*). Typically, for two-sided tests:

P (1 + > 1{TD") > |f<D°bS>|}> .
b=1

For one sided tests:

or

B
1 ~ —
= (1 1{TD<b> <TD"bS} .
P (1 {10 <70
4.2. Inference Based on the Sum of Rank Statistics of Unit-Level Treatment

Effects Estimates

Similar to Dube and Zipperer (2015), we propose a test based on the rank statistics of the
unit-level treatment effects. Unlike the test in Dube and Zipperer (2015), we calculate the

permutation distribution directly from the data. The test we employ is based on the sum of
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ranks of individual treatment effects in the ordered sample combining the ny x (B + 1) unit-
level treatment effects for the actual assignments and B random permutations. Individual
treatment effects, ﬁ-, may be based on differences in outcomes between treated and synthetic

controls,

> WY,

j=ni+1

bias corrected versions of the unit-level treatment effects,

(Y; — fio(X ( > WY — (X )>,

j=ni+1

or unit-level versions of the mean squared prediction error ratio in equation (10). The test

is implemented as follows:

1. Compute unit-level measures treatment effects for the treated, ﬁ forv =1,...,nq,

under the actual treatment assignment, D°.

2. At each iteration b = 1, ..., B, permute at random the components of D to obtain
treatment effects ﬁ-(D(b)) for the treated. Denote these estimates T\l(b), e 77/1\,&(1’) (in

arbitrary order).

3. Calculate the ranks Ry,..., R,,, Rgl), cee RSR, ey RgB), cee Rgf) associated to the
ny X (B+1) individual treatment effect estimates ﬁ, o ,T\m, fl(l), o ,ﬁ(LP7 - fl(B), .
ﬁ&?) (or of their absolute values or negative values) and the sums of ranks for each

permutation, SR = 3™, R;, SR® =™ R" b=1,... B.

4. Calculate p-values as:

@>

Bil <1+Z {SR® >SR}>

5. Monte Carlo Experiment

We report the results of a Monte Carlo experiment that investigates the finite sample prop-
erties of the penalized synthetic control estimator relative to its unpenalized version (A = 0)

and to the (nearest-neighbor) matching estimator in a panel data framework.
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Irrespective of the treatment status, the outcome at time ¢ € {1,2} is generated by
Yi: = < ?:1 X7 j> /B + e with r a positive real governing the degree of linearity of the
outcome function. For any ¢, ¢;; 1l X; and ¢;; ~ N(0,1). For the n; treated units, X;,
is a vector of dimension p with iid entries distributed as U [a, b], with a,b > 0. For the ng
control units, X; is a vector of the same dimension with iid entries distributed according to

density —%5r1{a —h <2 < b+ h} with b > 0, i.e. each entry has the same distribution as

+2h
VU where U ~ U [a — h,b+ h]. The larger the parameter h, the smaller the support of the

treated relative to that of the controls. 3 is a constant set so that 82 =V ( ?:1 X1 |D; = 1>

p2r+l _ g2r+1 pr+l — gr+l \ 2
b= \/_\/ a)(2r+1) ((b—a)(r—l—l)) ’

As a consequence V(Y;;|D; = 1) = 2 and the signal-to-noise ratio for the treated is equal to

one.

We compare the performances of synthetic control and matching estimators. Both pro-
cedures have a tuning parameter, A for the synthetic control and the number of neighbors M
for matching. We will consider these two estimators with a fixed and a data-driven choices
of tuning parameter. Under the fixed procedure, A — 0 in the synthetic control and M =1
in the matching estimator, encompassing both polar cases of the penalized synthetic control
estimator highlighted in this paper. The case A — 0 is referred to as the “pure synthetic
control” case that reproduces the treated as closely as possible by taking a convex combi-
nation of the vertices of the Delaunay triangle that contains the treated, when possible. Its
computation is based on the remark following Theorem 2. It is not to be confused with the
non-penalized synthetic control which does not take into account the compound discrepancy,
for which we also report results. The data-driven choice of tuning parameter uses the first
period outcome to minimize the MSE over that period. At each simulation step, both A and

M are chosen so as to minimize their respective criteria

MSE()\):n—lz< 1 Z )2,

j=ni+1
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and

2

1« 1
MSE(M) = — Yio—— > Vil .

where [Jy/(7) is the set of indices of the M control units that are the nearest to treated unit
1. We also report a bias-corrected version of the estimators as in Section 2.3, based on a
XXX specification.

The degree of the outcome function, r, is the key parameter governing the relative per-
formances of the candidate estimators. When r = 1, the outcome function is linear, which
suggests emphasizing the “synthetic control” part in (6) at the cost of a larger component-
wise discrepancy, so we expect the pure synthetic control to perform well, while the 1-to-1
matching should do relatively worse, exhibiting a notably larger variance. As a consequence,
the data-driven A is likely to be small and the penalized synthetic control is likely to perform
similarly as the pure synthetic control. As r increases, the synthetic control with A — 0
should suffer from a larger interpolation bias, while the performance of the 1-to-1 matching
should improve. As a consequence, the data-driven A is expected to increase so that the
penalized synthetic control strikes a favorable compromise in the bias-variance trade-off.

Results are reported in Tables 1, 2 and 3 for ny = 20,40, 100 respectively. For each
configuration and each estimator 7, we report four statistics computed on the treated sample
in the second period. The first is the individual-level Root Mean Squared Error (RMSE)
defined as

liii@ﬁ
B g m D B
the second is the aggregate-level RMSE
1E (13 )
s (Ee)
the third is the aggregate absolute bias
ni

5
Zn—Zﬁ%’)

b=1 =1

Y

&~
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the last is the average sparsity defined as the average number of control units used in the
match to a given treated unit, i.e. number of non-zero entries in W} (\) or number of matches

in the optimized matching procedure.

19



"uoIduNy UoISsa43al JY3 Jo
uoiresiydads d1leapenb e uo paseq si UOI1D.440D-SeIq Y| "Sayd1ew (g o1 dn asooyd 01 sunpadoid Suiysilew syl

MOJ[B OAA T = Y'6 = Q'T° = p'QT = Tu'Qgg = Ou :aJe sielpweled ‘suolledijdas gQ'T UO Paseq S}nsay 930N

T€00°0 L16C'T ¥9¢s'C €000°0 9¢6¢'1T 89¢S'C 12000 GE6C'T 8.2¢S'C §900°0 9€62'T 9/¢S'c (0g) Buiyrey do

1¢10°0 ¢80€'T 096°C 66000 180€'T 8995°C €¢10°0 180€°T 6995°C 69100 180€'T ¢L9S8°C (0g) Buyepny

¢v00°0 020e’T 1616°C 22000 020e’T S616°C G¥00°0 610€'T 9615°C 88000 610€'T 6615°C (09) "yhs aung

¢v00°0 810€'T 9616°C T200°0 810€'T S616°C S¥00°0 L10€°T S614°C 18000 LT0€°T 8615°C (09) "wyuAs "usdun

¢L00°0 €E0E'T 192S°C T.00°0 8¢0€'T vesT £€600°0 €e0E'T 9esT GET0'0 ce0e'T L¥2Se (09) "yuAs ‘uag

0ren’e STIT'T 9cLT'1 T.E8°T 06¥1°€ 890T'T 9T’ 9€€8'T 0LvT'E L20T'T L.ST'T v1€8'T 0r9e'e 6€60'T 98¥C'T €Le8'1T Suiyarey 3do

8896°0 SS8T'T °8E6°'T €296°0 C¢SLT'T 6¢6'T 85960 669T'T 99¢6'T G€G6°0 €VOT'T L¥26'T Suiyarepy

2806°€ 8Tc0'T SLLT'T 8769'T 2806°€ €€96°0 6SCT'T TL99°T 2806°€ 12€6°0 8660'T 0S99°T 2806°€ 20060 €€L0°T 6EV9'T "YauAg aing

¥900'¥ cce0’t 8L.T'T 0§69°'T ¥900'% G€96°0 6SCT'T CTL99'T 900'% 1T€6°0 8660'T T1659°T 900 90060 T€L0'T 09’1 "YauAg uadun

croe’e 1986°0 CLST'T 0ETL'T 9T.LE°€ 9156°0 veT't T€69'T crov'e 96¢6°0 €50T'T 8€89'T vIev'e 95060 0¥80°T 6€.9°T "YIUAG “usg
9g=d

§G650°0 €188°0 6€9.L°T €950°0 12880 Ly9L'T €250°0 G188°0 929.°T €870°0 9188°0 Y19L°T (0g) Buiyey do

¢6€0°0 0206°0 TEG8'T 100 ¥206°0 vEG8'T T6€0°0 0206°0 TES8'T 8¥€0°0 €106°0 9¢S8'T (09) Suiyrepn

€ev0°0 1680 voL'T 19¥0°0 S168°0 vroL'T V00 1680 voL'T 6€0°0 9068°0 9€9.°T (09) "yuhg aung

€ev0°0 9168°0 CcIoL'T 16¥0°0 6168°0 ST9L'T V00 91680 cI9L'T ¥6€0°0 60680 L09.°T (0g) "wuAg "uadun

18€0°0 496880 STLL'T 0T¥0°0 ¥.88°0 92LL'T 06€0°0 €888°0 SCLL'T 19€0°0 €888°0 8TLL'T (09) "yhs "uag

ogcr'e T0LL°0 9660 9v.LG'T 0.8%°€ CILL0 60160 18181 09¢S°€ 06220 86960 18181 0619°€ 9.0 8960 G6.G°T Suiyarepy 1do

94190 60060 €00L'T ¢129'0 96680 0869'T 0¥2¢9°0 ¥668°0 6869'T ¥9¢9°0 ¢668°0 0T0L'T Suiyarey

cese’e 01590 9698°0 €891’ 1T cese’e 89090 Lv€80 €4SY'T cese’e 6£85°0 8.18°0 60SY'T ceSe’e 00950 ¢108°0 08’1 "Y1uAg aung

¢e86'v 2990 61,80 v.9%'1T [44:1n4 02190 18€8°0 62SY'T [44 104 09850 6618°0 [4:14 0 [44 104 06550 91080 €Syl "YauAg -uadun

1686'C 06290 16680 eyt 0L00°€ G209°0 €vE80 19/%°T 0TC0'€ 04850 1280 JAZA AN ¥620°€ PAVANI} 86080 8eLY'T “YIUAS “uad
y=d

7,000 cIv9°0 L86€°T €700°0 ceEY9°0 286€°T 05000 ¥E€¥9°0 LL6€°T 98000 9€¥9°0 C¢L6E'T (0g) Buiyarey do

€€10°0 0€69°0 9v.LS'T 81100 0€69°0 S¥.S°T €€T0°0 0€69°0 .S’ €910°0 €690 8¥.S°T (0g) Buyrepy

0100 §G€99°0 EEVY'T €600°0 ¥€99°0 CEVY'T 0100 §€99°0 EEVV'T L2100 L€99°0 SEVY'T (09) "wuhg aing

8G10°0 8999°0 STOV'T 6¥10°0 2999°0 STOV'T 6S10°0 8999°0 STOV'T 8.10°0 6999°0 LT0¥'T (09) "wuhs ‘usdun

€010°0 0899°0 STOV'T §800°0 8699°0 929v'T 9010°0 10290 ror'T 6€T0°0 00£9°0 059%'T (09) "whs "usg

096€°7 296€£°0 S199°0 80¥E'T 00T¥'¥ €070 €299°0 €6vE'T 0S¥t S60%°0 60.9°0 TrSE'T 09¢S'¥ v.1%°0 6%.9°0 €09€'T Suiysrey 1do

crico 0¥29°0 T91S'T 6¢cC0 §6¢9°0 861IG'T €6CC0 0€€9°0 €eeS'T LG€T0 89€9°0 08¢S'T Suiyarepy

9CIST 0Tcc0 20090 LTEE'T 9CIST €T1C0 86650 v9ee'T 9CIST <90T0 10090 G6EE'T 9CIS'T 600C°0 8009°0 LEVE'T "YauAg aang

S08L°TT Y61E0 6€99°0 1962°'T G08L°TT 9920 0€v9°0 V16C'T S08L°TT 19€2°0 €4€9°0 Tc6e'T S08L°TT ¥80C°0 16290 €G66C'T “YauAg cusdun

91.9°C 8¢120 0€65°0 S6veE'T 889°C ¥60C°0 494650 SYGeE'T ¥989°C 26020 08650 T09¢'T ¢689°C 060C°0 8009°0 6G9€'T "YIUAS “uag
z=d

ISISLEN [seig| ASNY Apul ISINY - Ausieds [seig| ASNY Apul ISINY - Auisieds |serg| ISNY Apul ISINY - Aisieds [serg| ISNY AIPUL ISINY
W.MHL. vMHL NHHL HHL

0g = Yu ‘T suoneuIg O[1e)-0UOIN T 9[qR],

20



"uoIduNy UoISsa43al JY3 Jo
uoiresiydads d1leapenb e uo paseq si UOI1D.440D-SeIq Y| "Sayd1ew (g o1 dn asooyd 01 sunpadoid Suiysilew syl

MOJ[B OAA T = Y'6 = Q'T° = p'QT = Tu'Qgg = Ou :aJe sielpweled ‘suolledijdas gQ'T UO Paseq S}nsay 930N

1¢100 96190 v6Cy'T 8600°0 ¥819°0 €61 6¢10°0 69190 T6Ch'1 G4910°0 98190 18¢y'T (0g) Buiyrey do

84200 02990 €841 6¥20°0 02990 €8S’ 29200 12990 €289’ 8200 12990 ¥28S'1 (0g) Buyepny

16200 19190 €607 T 1820°0 89190 €607'T §6¢0°0 29190 €607'T 10€0°0 9919°0 €607'1T (09) "yhs aung

8620°0 19190 180%°'T €620°0 8919°0 180%'T 20€0°0 29190 180%'T €1€0°0 99190 280%'T (09) "wyuAs "usdun

89¢0°0 09290 TEEV'T 0.20°0 6¥29°0 €6CV'T G820°0 ¥€29°0 €Ler't 80€0°0 §¢C9°0 89¢h'T (09) "yuAs ‘uag

0Ev.L'E §896°0 S60T'T /89T 0.88°€ §696°0 8¥0T'T C989'T 0056°€ 1196°0 9v0T'T °689'T 0,00 29960 STOT'T 6689'T Suiyarey 3do

86¢8°0 S0E0'T CLES'T 88¢8°0 €9¢0'T €1€8'T 18¢8°0 S¥co'T €0€8'T 89¢8°0 eradiny 0€8'T Suiyarepy

SSvvy 24880 8€C0'T 89.G°'T Sy S618°0 29960 18¥S'T Sy ¢S8L°0 6.€6°0 99€S°T Sy 96720 8806°0 09¢S'T "YauAg aing

¥849G°G 9068°0 ¥820°T 6L.G°T ¥8495°G 12e8'0 ¥696°0 687S'T ¥895°G €18L°0 96€6°0 99€S'T ¥8G5°S 90620 9606°0 8G¢S'T "YauAg uadun

G918°€ T0¥8°0 1766°0 ¥88G°T 768°€ 9¢08°0 9656°0 €0L8°T 18¢6°€ 66..°0 L0¥6°0 Y19S°T 8656'€ T962°0 10260 CESS'T "YIUAG “usg
9g=d

0500°0 GL€G°0 €66C'T £900°0 T9€S°0 L.6C°T 5000 09€5°0 9.6C°T 82000 €G€S°0 6.6C'T (0g) Buiyey do

10200 02650 €I8Y'T 11200 <C6S°0 Y8yl 86100 02650 €I8Y'T 9.10°0 81650 T187'1T (09) Suiyrepn

€¢10°0 9.¥5°0 990€°'T SC10°0 850 8G0E'T 61100 LL¥S°0 960€'T Cc1100 QLS80 SS0E'T (09) "yuhg aung

¢I10°0 8¥S'0 6,621 Y1100 6¥¥5°0 086¢C'T 60100 8¥vS'0 6.6C'T ¢010°0 IS0 L.6C'T (0g) "wuAg "uadun

0810°0 0SS0 cree’t v.10°0 6¥65°0 66CE'T ¥910°0 6€485°0 §S6¢E'T 19100 92440 €8ce't (09) "yhs "uag

0881t 949990 8280 st oves'v €4999°0 €828°0 86GY'T 069Gt 2999°0 66280 veor't 0099 10290 €€€8°0 069%'T Suiyarepy 1do

619%°0 a8vL0 8919'T v0L¥°0 1€G2°0 L119'T 6v.v°0 ¢LSL°0 09’1 610 6092°0 [ Z4°N8 Suiyarey

qeeL’e 050 12120 1€9¢€°'T qeeL’e 09G%°0 10890 vese't qeeL’e €6¢1°0 9¥99°0 68YE'T GeeL'e 20v'0 96%9°0 0LYE'T "Y1uAg aung

§696°0T L1¥S°0 €8€L°0 cr9e’T 969601 vviv0 02690 IrveE'T 969601 S6EY°0 ¥0.9°0 16€€'T 969601 ve0r'0 00590 €LeEET "YauAg -uadun

8IvS'€ 6€.7°0 19690 S¥8E'T ¥9.6°€ G910 00890 98.€'1T 628G°¢ 16¢v°0 ¥699°0 19/€°1 888G°¢€ TI€TV°0 6099°0 0L.€'1T “YIUAS “uad
y=d

¢S00°0 S.¥v°0 €C6T'T 8¢00°0 T6v7°0 0€6T'T ST00°0 90S¥°0 LE6T'T 10000 jra 4] 86T'T (0g) Buiyarey do

9910°0 65150 96EY'T 6S10°0 6S1S°0 L6EV'T 29100 6S1S°0 96EV'T ¢810°0 65150 96EY'T (0g) Buyrepy

§800°0 T16%°0 €ELT'T §800°0 cI6v°0 veLTT 2800°0 11670 €eLTT 88000 60670 ceLet (09) "wuhg aing

0¥00°0 S¥6%°0 L10T°T 0500°0 9¥6%°0 610C'T S¥00°0 S¥6¥°0 L1021 62000 €670 ST10C'T (09) "wuhs ‘usdun

<0100 0670 GS6C'T 1600°0 ¥687°0 896C'T 1600°0 6.8%°0 166C'T 16000 118%°0 0v6C'T (09) "whs "usg

05909 ¥90€°0 L9€5°0 T6€TT 02009 L91€°0 €EVYS0 orve'T 0286°G 91¢e0 €875°0 86¥C'T 0488'G 9¢ee0 91550 85T’ Suiysrey 1do

0EYT'0 6€€5°0 SYov'T €¢ST°0 ¢8ES0 v89%'T v.ST°0 0T¥S°0 STLY'T 929T°0 [424°10 JAVA N Suiyarepy

6£89°C O¥ET'0 ¢S67°0 €¥9C'T 6£89°C S¥CT'0 €E6¥°0 899C'T 6€89°C ¢6IT'0 L26¥°0 €L9C'T 6€89°C CEIT0 €¢67°0 S69C'T "YauAg aang

€129°LC 29920 095°0 801C'T €12¢9°L¢ 0981°0 ¢ees’o 686T'T €12¢9°L¢ ozrT'o T1¢S0 0L6T'T €12¢9°LC €600 Yr16°0 G86T'T “YauAg cusdun

134244 ceeT’o 0G6%7°0 ¥88¢C'T 991’ 96¢1°0 Sv6Y°0 0c6C'tT cevy'e §G¢T1°0 e6Y°0 ce6e'T 8Gvv'c 8G¢T°0 8v61°0 GG66C'T "YIUAS “uag
z=d

ISISLEN [seig| ASNY Apul ISINY - Ausieds [seig| ASNY Apul ISINY - Auisieds |serg| ISNY Apul ISINY - Aisieds [serg| ISNY AIPUL ISINY
W.MHL. vMHL NHHL HHL

0F = Ou ‘I suorRWIG O[RD)-DIUOIN g d[qR],

21



"uoIduNy uoIssaJ3al aY3 Jo
uoirediydads d1leapenb B uo paseq si UOI1D.440D-SeIq Y| "Saydlew (g o1 dn asooyd 01 sunpadoid Suiysiew syi

MOJ[B OAN T = Y'6’ = Q'T = p'Q] = Tw'QQT = Ou :2Je si91pwelded ‘suolledijdas gOQ‘'T UO paseq S} Nsey 930N

G910°0 jxas A 9€CT’'T v.10°0 9¢sY°0 c9¢T'T €100 YeSY'0 06¢cC'T 0€T0°0 9€4Y°0 8L¢C'T (0g) Buiyrey do

¢e10°0 29150 [413 AN 8€10°0 29150 ey’ T 8¢10°0 29160 [4 1A €110°0 €916°0 cser't (0g) Buyepny

€800°0 .90 001C'T 8000 ¢L9v°0 001C'T 12000 ¢L9%°0 001C'T ¥800°0 T.9%°0 001C'T (09) "yhs aung

0.00°0 Sv9v°0 8G0C'T 9000 99t°0 8G0C'T 9000 99t°0 860C'T 1,000 v¥9¥°0 650C'T (09) "wyuAs "usdun

6010°0 289%°0 €EET'T ¢010°0 T0.¥°0 T6CC'T 1600°0 6697°0 08¢C'T 88000 9T.¥°0 §lce't (09) "yuAs ‘uag

059t 658.°0 SET6°0 ¥0CS'T 0189t ¥498L°0 ¥€16°0 1GeS'T 0€89't 118L°0 8416°0 61€S'T 0€0L'¥ v.8L°0 8916°0 6vES'T Suiyarey 3do

29290 ¢6€8°0 €C69'T €0€9°0 80¥8°0 §689'T 12€9°0 ¥Cr8'0 €069°T 05€9°0 <ry8'0 §G269'T Suiyarepy

SEVO'S 0099°0 L1180 €507'T SEVO'S 9850 §G€SL°0 c08e’T SEVO'S 08¥S°0 8¥¢L°0 €0LE°T SEVO'S 08050 19690 €29E'T "YauAg aing

990%°ST €6.9°0 §5¢8°0 ¥90¥'T 990%°ST 896S5°0 26SL°0 T8LE'T 990%°GT 6€45°0 ¥.¢L°0 v.9€°T 990%°GT €605°0 §569°0 065€'T "YauAg uadun

06SE'7 91290 9582°0 0ST¥'T 8vv'v 9€85°0 91S.°0 896€'T 66.7't ¢84S°0 T€EEL0 c06€'T 601G ¥ §6¢S°0 v1L°0 168€°T "YIUAG “usg
9g=d

16200 ey o COLT'T 66¢0°0 GEEY'0 [4:7A0 92200 0CEY'0 ¥8LT'T ¥.20°0 €0EY'0 88LT'T (09) 8uyazey 1do

80¢0°0 9,150 L6EV'T GTc00 9.15°0 86EY'T §0¢0°0 9.15°0 L6EY'T 68100 GL16°0 L6EV'T (09) Suiymepy

€020°0 66170 966T'T S610°0 66110 966T'T 261070 66110 966T'T 80200 661710 L66T°T (09) "yuhg aung

€620°0 800 €CLT'T 8200 80t¥'0 ceLT'T 18200 8010 celLT'T €0€0°0 80¥¥°0 €CLT'T (0g) "wuAg "uadun

€200 48670 €veT'T 0€20°0 065t°0 TeeTT L1200 18G%°0 veeT't 0ceo0 S96G1°0 c9eT’T (09) "yhs "uag

0L0L°G G8.%°0 €499°0 9CIE'T 0€2¢9°'S €80 04590 TL1€'T 09499°'G ¢681°0 20990 ceee’l oveL's 9€6¥°0 8€99°0 98¢e’T Suiyarepy 1do

201€0 18090 STVS'T Y61€°0 ¥€19°0 TEVS'T 8¥2e0 99190 09YS'T Y0€E0 €029°0 €0S8S'T Suiyarey

L9GT'Y 6€€E0 82950 6.GC'T L9GT'Y ¥48C°0 8G€S0 66vC'T L9GT'Y 16620 ¢eecs’o LIvT'T L9ST'Y 92eT 0 €116°0 69vC'1T "Y1uAg aung

q9eeTy o0 0€09°0 9GvT'T q9eecy 111€°0 G650 €Lt q9eeTY €220 842S°0 €t vogeCy 19¢20 6¥05°0 L0cet "YauAg -uadun

9v.19'€ ¢L0€°0 88%¥5°0 8¢8C'1T 8v0L°¢ 81820 11€S°0 608C'T 80TL°¢ €892°0 TCES0 1e8C'T S0TL'E era:ray] 112570 898C'T “YIUAS “uad
y=d

¢vc00 §S08€°0 6ECT'T 6020°0 ST8€°0 S.CT'T T¢e00 ¥08€°0 [4:1AME 6200 ST8€°0 S8CT'T (0g) Buiyarey do

9S10°0 918%°0 66Cy' T €410°0 L18%°0 66CY'T LST0°0 918¥°0 66CY'T €910°0 918%°0 86CY'T (0g) Buyrepy

08¢0°0 8€Cy 0 et 98¢0°0 6€Cy 0 [444" €8¢0°0 8€Cy'0 [447¢" €200 9€Cy 0 orve'T (09) "wuhg aing

68¢0°0 €L2v'0 v6ET'T 92€0°0 L1ev°0 L6ET'T ¢0€0°0 ¥.ev'0 S6ET'T 0%7¢0°0 89¢¥°0 T6ET'T (09) "wuhs ‘usdun

12200 6CEY0 ¥89C'T €€20°0 6CEY'0 989C'T 0¥¢0°0 T2EY0 689C'T 6€20°0 SCEY'0 689C'T (09) "whs "usg

068.°8 16¢C0 18v¥°0 6CST'T 0€1S'8 L0€T0 LTIS¥°0 8T9T'T 06.¥°8 9S€T°0 8€SY°0 €L9T'T 0Sve'8 L0vT°0 G.S¥°0 SCLT'T Suiysrey 1do

80.0°0 818%°0 v6EY'T 86200 188%°0 14%4A" 98.0°0 §687°0 0Ery'T 91800 S06%°0 Yyl Suiyarepy

GEV8'T 6080°0 86¢Y 0 Yore'T GEV8'T 7200 06¢¥°0 99%C'T GEV8'T 6690°0 §8¢y'0 0L¥C'T GEV8'T L¥90°0 18¢v°0 SLyC'T "YauAg aang

¢Sv9'SL ¢e620 6G€S°0 Se8T'T ¢Sv9'SL SI8T°0 9¢8Y°0 8.ST'T ¢av9'SL S0CT'0 €e9Y°0 VOST'T ¢av9'aL €650°0 L1G¥°0 SLYT'T “YauAg cusdun

98.6°C 0€20°0 cLEY'0 ¥89¢C'T 9084°C ST1.0°0 €LEY0 00Lc'tT €8.6°C 80070 L9ev°0 111 085°C 88900 SLev0 velTT "YIUAS “uag
z=d

ISISLEN [seig| ASNY Apul ISINY - Ausieds [seig| ASNY Apul ISINY - Auisieds |serg| ISNY Apul ISINY - Aisieds [serg| ISNY AIPUL ISINY
W.MHL. vMHL NHHL HHL

00T = %u ‘T SUOLR[NWILG O[1E)-0JUOIN :¢ O[qRL

22



) 29/T1 [el:1q 4 v.8T°0  1SGC'T 800T'C oriT0  8TeT’T 9850'C ¥2200  L01C'T ¥5¥0'C STP0°0  920T'T 89€0°C
) G08T'T S0.T'C 0S8T°0  209T'T oEvT'T GTIT0  98¢C'T 8€0T'C 17200  6L1C'T 1160°C T/£00  601T'T v580°C
) 689C'T 120T°C eIYT'0  TISCT 69.0C 7600  €£2C'T 98€0'C 00,00  LEITT 1/20C %00 TL0C'T 0120'C
) 689C°T 120T°C IYT0  TISCT 69.0C v600  €£2C'T 98£0'C 00,00  LETTT 1/20C %00 TL0C'T 0120'C
) 0£LT'T GOTT'C €19T0  G€SC'T G680°C GTI0T'0  ZteT'T 6870°C 62,00  ISTTT 99£0°C 8600  8.0C°T 1620'C
. €€10C GGGh'T 0199'C  ¥288'T 6861 1€€V'C 0098'C  09¥8'T  E€6¥6'T 096€'C 0806C  TIZ8'T  GET6'T £61€C 0800'€  TP6LT 69681 Te8e'T
L T8Ye'T 12€5°T 16T 09261 L016°C TYSLT  9088°T 880%°C 0TELT  G9S8'T 6.7 850L'T 808’1 99Zt'T
2900 6816 0/90'S  €998'T 00961 £0VET 090'S  TEOLT  ¥S98'T %92°T 0.90'S  €8ILT 29181 z9TTT 0.90'S  TS99'T  €G9L°T S81°C
2900 6816 0/90'S  €998'T 00961 £0vET 090'S  TEOLT  ¥S98'T %92°T 0.90'S €8T 29181 z9TTT 0.90'S  TS99'T  €S9L°T G.81°C
. 18¢6'T 8YSET ¥S68'€  TTO8'T  0S06'T 962€°T ¥9.07  6EELT  65€8'T 8Y92'C S0STY  T€69'T Y9611 81€T'T TLITY TGV OPSLT 1861°C
00°0T :|INY X2AUOD 9pIsINO paieaJy ‘qu a8esane ‘g] = d
) 0SIT'T 6298'T 0910  T860°T 20v8'T 0r600  6..0°T €018'T 80600  +TL0'T 8008'T T6100  8690°T 0L6L'T
) Tw’TT G826'T G6/T0  62IT'T 0L06'T 80010  T€60°T 69.8'T 92900  1880°T 1698'T Gv20'0  L980°T 1998'T
) 8880°T v928'1 0T0T0 T80T 8008'T 96600  8£90°T Y6LL'T €8€0°0  ¥090°T STLLT TLT00  86S0°T S0LL°T
) 8880°T ¥928'T 0T0T0  T8L0°T 8008'T 96600  8£90°T Y6LL'T €8€0°0  090°T STLLT TLT00  86S0°T S0LL°T
) SYOT'T 6878'T 6610 ¥060'T 9928'T ¥1200 1201 19621 1Tv00  6.90°T 18821 99T0°0  §G90°T Gv8L'T
L T8'T 1162 ovSL'T  T999'T  896L'T 26.2T 0898'C  6I€9T  TO9LT 8EYT'T 096  TPI9OT €IV 0/22T 0/80'€  0G6S'T  €0TL'T 860C°C
L 6veLT 092€C G6VS'T  TLOL'T 786€°T TEIST 0191 r2eT 066%'T  02S9'T §L0£T €9.'T  91€9°T 8062'C
L 68LL°T 1.81°C 166Lt TLT9T  L8€L'1 £66T'C 196Lt  TerST  8999°T 8260°C 196Lv ST vYI9T 8190°C 167 OISK'T  GO.S'T 10£0°C
L 68LL°T 1.81°C 166Lv TLT9T  L8€LT £66T'C 196Lv  TerST  8999°T 8260'C 1LY GL6V'T YPIOT 8190'C 16€Lv  OTSK'T  GO.S'T 10£0°C
L 6LTLT 12LT°C veel'e  1€9ST  €069'T y8Y1I'T ¥6G8'€  090S'T  TTEO'T S00T'C €0T6'€  9SLV'T  CI09'T 6520'C G8/6'c  T9EK'T  £€99G'T 16¥0'C
00°0T :|INY X2AUO0D 9pisino pajeasy ‘qu sfesone ‘07 = d
) 1,980 529’1 6T9T°0  98¥8°0 8109'T 12600 L¥T80 9/9G'T ¥950°0  ¢rI80 8ves'T 02200 80180 16%5'T
) 8£88°0 6LTL'T GT.T0 9980 8v69'T 120T'0 2080 ¥099'T 69900 0TS0 1059'T 0100  +.28°0 05v9'T
) €9£8°0 ¥28G'T 900  €¥T8°0 ¥195'T 16700 2908°0 y0€S'T 2820°0 80080 €12S'T 91100 08610 TLIST
) €9£8°0 ¥28G'T 900  T¥T80 €195°T 16700 2908°0 €0€5'T €820°0 L0080 €12S'T LTT00 08610 TLIST
) 18680 6£19'T 19IT0  +1I+8°0 0265'T 0900  9.18°0 9665'T S0Y0°0 06080 orbS'T 19100 9v08°0 TLES'T
L T6VST 6160 0£28'C  €90V'T  G6EST 9.%0°T 08v6'C  V.8ET  6LIST 6620°C 0660°€  68L6T €051 1610°C 010z’ L€9€T  OI6V'T £010°C
L 69GF'T 08ST'C 169TT  8vvv'I SYPTT 08vT'T  90TY'T y021'T 1967 080Y'T ¥601°C 8zTTT  SY6E'T 6860°C
L ovsy'T 9TY6'T 109y €0€€T  YISK'T 2816'T 109y 68GCT  E¥8E’T AVER 109y 9TeTT  86YE'T Y6v8'T T09€y  9T8T'T  YYIET Gle8'T
. ovsy'T 9TY6'T TI9EY  €0EET  YISHT 2816'T TI9EY  68STT  E€¥SET AVE:R TI9EY  9TTTT  86VET v6v8'T TI9E'Y  9T8T'T  YIET GlT8'T
L oTEv'T 8TY6'T 606v'€  LE.TT  SOTH'T 9626'T 0z65'€  04ZTT  ST9ET 7288'T TIS9'c  L00TT  G8EET 1028'T 8v0L'€  TTLTT  TIIET y168'T
00°0T :|INY X3AUOD 9pisino paiess} ‘qu a8esane ‘g = d
) 6260 £I8h'T 09210 L6£L°0 Tvor'T 11600 9220 [ATZ A ¥220'0 8610 6LEY'T 66000  061.0 89EY'T
) G180 1809°T €81T°0 €690 L1651 10S00  0£52°0 6895'T 29100 96¥2°0 6£95'T 18100  86¥2°0 8€9G'T
) 0S£L°0 1257°T 6200 TLTL0 £0EY'T 01100  ¥.120 8GTH'T 20000 LSTL0 SITH'T 60100 99120 TATA
) 1S€L°0 GTSh'T ¥T€0°0 €220 L9€%'T 80100 V.10 09T¥'T 20000  LSTL0 61TH'T 80100 99120 oTTH'T
) TUWLO T187'T ¥650°0  G9£L°0 TEor'T 80100  ¥G2L'0 G6EY'T ¥1000  €£2L°0 PYEY'T 28100  L£2L0 Trer'T
L €6LTT 68€8'T oreo's  SITT'T  92LCT 1.€8°T 06vT'€  890T'T  T¥9T'T 0£€8'T 0bT'€  L2OT'T  L.STT y1e8'T ov9e's  6£60'T  98KT'T £128'T
) OTI6T'T Yr6'T 88960  GG8T'T T8€6'T €296'0  TGLT'T ¥626'T ¥856'0  669T'T 9926'T GEG6'0  EYOT'T 19261
. €20T'T YOTL'T €806'€  SIZOT  SGLLT'T 8v69'T €806'€  ££96'0  6GCT'T 1/99'T €806'C  [IE6'0 86601 0859'T €806'S L0060  ££.0°T 6£79'T
28021 80TL'T G900y  ¢Te0T  8LT'T 0969'T G900y  G€96'0  6STT'T 2L99'T G900y LZ€6'0  8660°T 1699'T §900% 90060  T€L0°T 0ry9'T
L TELTT 2§eLT 100€°€ 19860  TLST'T 0€TL'T 60.€'€  GIS6'0  YPTIT 1€69'T 0T0¥'€ 96260  €S0T'T 8£89'T T0Er'€ L6060  TI¥8O'T 0v29'T
06°6 :|INY XSAUOD 9pIsINo pajeasy ‘qu a8esone ‘g = d
) 12990 697€'T G8ET'0  TLEYD z8Te'T 19,00 12190 06621 S0°0 82090 818C'T TETO0  €009°0 S18T'T
) 6989°0 196%'T SO0IT'0  T€.9°0 1087°T 0rS0°0  €£59°0 9661 8v20'0  89Y9°0 Sery'T S7000  TEY9'0 SSrYT
) 8549°0 88YE'T G6200  8Y¥9°0 STEE'T 61200  9929°0 0S0€'T 8100 00290 6962 T Y100 95190 12621
) 71690 16v€°T 18100  T9¥9°0 S0EE'T 19100 9.29°0 ¥20€'T 16100 T129°0 8€6C'T 1ST00  8919°0 1681
) €6¥9°0 109€°T ¥950°0  TLEY'O yTre'T LT€00 0290 081€'T 16100  TEI9°0 960€'T 8000 96090 160€'T
) 68160 €0.6°T 0Ser'e  T0LL°0  9S.6°0 oLS'T 0.8¥'€  TTLL0  60.6°0 18151 0625'€ 06,0 86960 18151 0ST9'E  ¥9..°0 8960 §6.G°T
) TT06'0 €€0L'T 9519'0 60060 €00L'T 21290 96680 0869'T 0v29'0 16680 6869'T ¥929'0 26680 0T0L'T
) 1880 80.%'T zesE’e  0TS9°0 96980 £89%'T TESE'E 89090  L¥ESO €667 T TEGE'E  6£85°0  8L18°0 605t'T TesE'e 00950  CT08°0 08tt'T
) €868'0 LT 6186'v  ¥299°0  6..8°0 y29'T 6186'v  0CI90  .8£8°0 625’1 61867 09850  6618°0 28T 61867 06950 91080 £ShH'T
) 69980 2061 8G66'C 0690 85580 Trsy'T Tv.6'C 2090  vvES0 89.%'T 8086'C 89850  GIZ80 6vLY'T Te66'C  €1.50 20180 1€L0°T
+8'8 :||NY X2AUOD 9pisino patessy ‘qu a3esone 'y = d
) G0S5°0 9,921 9600  TEYSO orse'T 16600 6150 65€C'T €0£0°0  T6TS0 £622'T €9000 58250 1221
) 12090 rLY'T 84900  G209°0 299%'T ¥2Z€0'0 29650 655’1 8y100  8Y65°0 Y05t T 1€000 8650 T6vY'T
) 99/5°0 vE2E'T TET00 65150 191€'T 9€000 0,50 800€'T G000 00,50 TY0€'T G900'0  80.5°0 Y€0E'T
) €819°0 GE6C'T 26800  SO0T9'0 2082’1 16¥00  G665°0 809Z'T 0200 06§50 ¥852'T OYI00 89650 Ge6T'T
) €1150 Tvve'T 92€00  E€7.5°0 126€°T ¥S10'0  ST25°0 182¢'T 19000 €150 £92€'T Gv000 Y150 192€°'1
) 1699°0 18¢€°T 096€7  T96€0  S199°0 80VE'T 00Ty  €€0¥'0  €199°0 €6vE'T 0S¢’y S60v'0  609°0 TYGE'T 0925y  YLIY0  6v.9°0 £09€°T
) 61290 1G1S°T TIIZ0  0vT9'0 1915°T 62220 S629°0 8615'T €620  0£€9°0 €€TS'T LS€T0  89£9°0 082S'T
) L1090 6TEE'T ¥TIST  0T2T0  L009°0 LTEE'T $2IST  TIITO0 86650 ¥9€€'T $2IST  TY0T0 00090 G6e€'T ¥2IST 60020 80090 LEVE'T
) 29190 £20€'T €08L'TT  ¥6IE0  6£99°0 19621 €08L'TT 9920  0£¥9'0 y16C'T €08L'TT  19€T0  £S€9°0 12621 €08L'TT  ¥80T0 16290 £66C'T
) 61650 £6vE'T €67 9€1T0  T£6S0 60GE'T €687°C  801T0 19640 19G€'T €287°C 96020 18650 819€'T ¥182°C 96020  ¥109°0 189¢€'T
GE'¥ |INY XSAUOD 9pIsIno pajessl ‘qu d8esone ‘g = d
IS Apul ISNY Aisieds [seig| IS Apul ISNY - Auisiedg [seig| ISNY AIPUL ISNY - Ausiedg [seig| ISNY AIpUr ISNY - Auisiedg [seig| ASNY AIpUr ISINY
T = 8T =4 PL= T = T=u

(09) Suyarepy 1do
(0g) suymen
(09) "yauhg aing
(09) "yauhg uadun
(09) "yauhs uag
Suiyorepy 1do
Suiyorey

‘Y3uAg aing

‘Yyauhg usdun
“YuAg “usg

(09) Suyre 1do
(09) Suyaren
(09) "yauhg aung
(09) "yauks uadun
(09) "yiuhs uag
Suiyozey 3do
Suiyorey

"YIukg aing

‘YauAg uadun
‘YuAg “usd

(08) Buyepy 1do
(0g) Buyen
(09) "yauhg aing
(09) "yauhg uadun
(09) "yauhs uag
Suyozepy o
Suiyorey

‘YauAg aing

“YauAg uadun
“YuAS “usg

(2g) 3uyeny 1do
(0g) suyren
(08) "wAs aing
(09) "yauhg uadun
(09) "yauhs uag
Suiyorepy 1do
Suiyorey

‘YauAg aing

‘YauAg uadun
“YuAg “usd

(09) Buymepy 1do
(09) Suyren
(09) "yauhg aung
(09) "yauhs uadun
(09) "yiuhs uag
Suiyorepy 1do
Suiyorepy

"Yukg aing

‘YuAg ruadun
"YuAg "usg

(0g) Suyepy 1do
(0g) Suyen
(09) "yauhg aing
(09) "yauhg uadun
(09) "yauhs uag
Suiymey 1do
Suiyoren

‘YauAg aing

‘YyauAg -usdun
“YIuAg “usg

0¢ = Ou ‘] SUOIR[NWIG O[IR)-OJUOIN POPUIIXT :F O[e],

23



6. Empirical Applications

6.1. The Value of Connections in Turbulent Times

This section revisits Acemoglu et al. (2016) on the effect of the announcement of the ap-
pointment of Tim Geithner as Treasury Secretary on November 21, 2008 on stock returns
of firms that were connected to him. To choose A we employ the pre-intervention holdout
procedure of Section 3.2. The training sample uses stock returns over a 250-day window
that ends 30 days prior Geithner announcement. The validation sample to select the tuning
parameter A uses returns on the following 30-day window. Abnormal returns are defined
as the difference between a connected firm returns and its synthetic match returns. The
measure of the announcement effect is the Cumulative Abnormal Returns (CAR) defined as
the sum of abnormal returns since the announcement day.

Our methodology differs in a few ways from the original study. To mitigate complications
caused by lack of uniqueness of the synthetic control estimator, Acemoglu et al. (2016)
construct synthetic controls on the basis of pretreatment stock returns and restrict the units
entering each synthetic control to the 20 untreated units with the highest correlation in
returns with the treated unit during the training window. This is a clever ad-hoc solution
to the non-uniqueness problem described in Section 1, but it does not easily generalize to
contexts where synthetic controls are constructed on the basis of multiple characteristics,
and leaves unaddressed the issue of how to decide on the maximum number of units that
contribute to the synthetic controls. Instead, we use the full sample of control units and apply
our penalized version of the synthetic control without this pre-selection step. Moreover, the
original study re-weights the CAR of each treated by goodness-of-fit instead of using a
simple average across the treated (see equation (7) in their paper). The authors argue that
treated firms for which their corresponding synthetic unit fits better its returns over the
pre-treatment period should be emphasized because they contain more information. While
this assertion makes intuitive sense, especially for cases when a lack of common support
prevents a particular treated unit from being well reproduced by a convex combination

of control units, the properties of such an estimator are unknown and not covered in the
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theoretical part of our work. As a consequence, we only use a simple average. Lastly, the 10%
firms most correlated with Citigroup are discarded, as in the original study, to exclude the
effect of the announcement of Citigroup’s bailout that could confound the effect of Geithner
announcement.

Table 5 displays our results which are qualitatively similar to the original study, albeit
more muted: significance is only obtained at the 5% level in the corrected inference proce-
dure. Figure 2 displays the Geithner announcement effect on stock returns versus the Fisher
distribution under the no-treatment effect assumption. With the selected penalty level of .1,
we find that the median number of active controls — defined as having a positive weight in
the synthetic unit — for each treated unit is 26.7 (min: 20, max: 40) which is substantially
more than in the original analysis where active controls are limited to be 20 or less. Another
key difference in our inference procedure is that we recompute the cross-validated optimal
A" and corresponding synthetic control weights for every treated under the given permuta-
tion for each random permutation, as explained in Section 4. These two observations help

explaining the difference between our results and the original study.
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Table 5: Connections to Geithner and Reactions to Treasury Secretary Announcement,
Synthetic Control Inference. Replication of Acemoglu et al. (2016)

Estimate Q05% Q25% Q5% Q9%% Q97.5% Q99.5%

Penalized Synthetic Control

Day 1, CAR[0,1] 0.061%* -0.064 -0.050 -0042  0.049 0.061 0.083
[ -0.0019; 0.1250]
Day 10, CAR[0,10] 0.138* -0.128  -0093 -0075  0.126 0.150 0.202

[-0.0084; 0.2850]
Corrected Inference

Day 1, CARJ[0,1] 0.061** - 0.065 - 0.049 -0.042 0.045 0.058 0.087

Day 10, CAR[0,10] 0.138* -0.123 - 0.091 - 0.073 0.116 0.142 0.202
Bias-corrected Estimator

Day 1, CARJ[0,1] 0.058 - 0.108 - 0.080 - 0.067 0.064 0.077 0.105

Day 10, CARJ[0,10] 0.125 -0.229 -0.171 -0.142 0.156 0.186 0.247

Cross-val. (RMSE) A 0.08

Mean nb. of active controls 26.7

Non-Penalized Synthetic Control

Day 1, CARJ[0,1] 0.060** - 0.070 - 0.054 - 0.046 0.047 0.060 0.082
Day 10, CAR[0,10] 0.114* - 0.155 -0.124 -0.108 0.094 0.119 0.171
Corrected Inference
Day 1, CARJ[0,1] 0.060** - 0.068 - 0.053 - 0.045 0.044 0.057 0.087
Day 10, CAR[0,10] 0.114* - 0.165 -0.126 -0.111 0.084 0.114 0.171
Bias-corrected Estimator

Day 1, CARJ[0,1] 0.058 -0.110 -0.082 - 0.068 0.063 0.076 0.104
Day 10, CARJ[0,10] 0.119 - 0.238 -0.178 - 0.150 0.149 0.180 0.243
Mean nb. of active controls 40.8

Sample size (n) 525

Nb. in treatment group (n1) 12

Note: This table displays Cumulative Abnormal Returns (CAR) on day 1 and 10 corresponding to panels B and
C, columns 2 and 3, of Table 5 in Acemoglu et al. (2016). Results are obtained on their base sample which
excludes the 10% firms whose returns are most correlated with Citigroup. We define being treated as at least one
meeting between the firm and Geithner in 2007-08. The estimate column corresponds to the difference between
the treated returns and synthetic control returns accumulated for the said number of days since announcement.
The number between brackets are Fisher confidence intervals at 95% levels, based on 5,000 permutations. The
quantiles displayed in the other columns are computed as quantiles of the Fisher distribution under the no-effect
assumption. 20,000 random permutations have been used. Corrected inference discards permuted treated units for
which the in-sample MSPE was three times larger than the mean MSPE for original treated units. Bias-corrected
inference relies on a linear specification for the regression function. Asterisks denote significance levels (** = 5%,
* = 10%).
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Figure 2: Abnormal Returns after Geithner Announcement, non-corrected inference
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Note: The confidence bands are computed as quantiles of the Fisher distribution under the no-effect assump-
tion. They do not define a confidence interval for the treatment effect. When the solid red line goes out of
these bands, it means the effect is significant. 20,000 permutations are used. The shadowed grey area is the
post-announcement period.

27



Appendix
Proof of Lemma 1

Notice that if the first result in Lemma 1 does not hold, then W;*(X) cannot be a solution to the
problem in equation (6). We start by proving the upper bound in the second inequality. Since
W () minimizes (6), it follows that

(X — XoW;(N) (Xi — XoWiH(N) + AW () < (X — X)) (X — X)) + AANY
Therefore,
AW (N) < (1+ M)A,
and the result follows from A > 0. The lower bound follows from the definition of AfV N, O

Proof of Theorem 1

Without loss of generality, consider the case with only one treated, ny = 1. Program (8) is
mmi/n HW) = (X1 — XoW)' (X1 — XoW) + AW A,
st. Wew,
where W = {W € [0,1]™ |W'i,, = 1}. Tt is easy to check that the feasible set, W, is convex

and compact. Because f) is continuous and W is compact, it follows that the function attains a
minimum on W. Moreover, X ) X is positive semi-definite, so fy is convex.

Suppose that more than one solution exist. In particular, assume that W; and W5 are solutions,
with fx(W1) = fa(Wa) = f5. Then, for any a € (0, 1) we have that alV; + (1 —a)W> € W. Because
f is convex, we obtain

@Wr + (1 —a)W2) < afa(Wh) + (1 —a)fr(Wa) = f.

This implies that the problem has either a unique solution or infinitely many. In addition, if there
are multiple solutions they all produce the same fitted values XoW. To prove this suppose there
are two solutions Wi and Wy such that XoW; # XoWa. Then, because ||z — c||? is strictly convex
in ¢, for a € (0,1) we obtain
fA(aW1 + (1 - a)Wg) = ||X1 — Xo(CLW1 + (1 - a)W2)||2 + /\(an + (1 — a)Wz)/Al
< al|X; — XoWi|? + (1 — a)|| X1 — XoWal? + MaWy + (1 — a)Wa) Ay
=afy+ (1 —a)fy
= fx
which contradicts that W7 and Wy are solutions. As a result, if W7 and W5 are solutions, then
XoW; = XoWs. Moreover, now A > 0 implies W{A; = WJA;.
Karush-Kunh-Tucker conditions imply:

A
Xi(X1 — XoW) — SAL =T
Wj > 0, W/Lno = 1, Y > O, ’}/jo =0.
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Stacking the first ng conditions and pre-multiplying by W', we obtain
A
W/X(/)(Xl - X()W) - 5W’A1 = .

From this equation, it follows that the value of 7 is unique across solutions, because X)W and
W'A1 are unique across solutions. Given that 7 is unique, the equations

A
Xi(X1 — XoW) - 58 =T
imply that the 7;’s are unique across solutions. As a result, for any solution the subvector of W
formed by the rows associated with non-zero «;’s is equal to zero. Let Xy be the submatrix of Xo
formed by the columns associated with zero +;’s, and define W, Ay, and 15, analogously, where ng
is the number of columns of Xy. Then,

~ ~ ~ A\~
X(I)(Xl — X()W) = §A1 + Wlﬁo.

As an aside, notice that if A > 0, then || X7 — XoW/|| = 0 implies that A is a constant vector. We
therefore obtain that if A > 0 and A; is not constant, then it must be the case that || X1 —XoW| > 0.

Let Az = ¢, where

A XhXo 1z, L w . X)X — (M2)A '
1 0 ’ T )’ 1
0
Any solution to the program has to satisfy this set of linear equations, and the non-negativity
constraint on W.

Assume that any submatrix of X{, consisting of no more than p rows has full row rank. Suppose
no < p. Then, )?65(:0 has full rank equal to ng. Augmenting )?6)20 by adding a column 15, does
not change the rank, because ()Z'(’])Nfo 15,) only has ny rows. Now, adding the row (1%0 0) increases
by one the number of linearly independent rows (because if u # 0, v'15;, = 0, and o’ )265(0 =1z,
then v’ )Af(’))z()u = 0, which cannot be true because )Af(’))N(O is full rank). Therefore, A is full rank and
there is a unique solution for z.

Now, assume 719 = p+ 1. Then, )?(’))?0 has rank p. Assume that 1,1 does not belong to the column
space of X(). Then, 1,1 does not belong to the column space of X)Xy (because the columns of X
and X)X span the same space.) As a result, the rank of (X(Xo 1,41) is p+ 1. Moreover, because

17,1, does not belong to the row space of )?65(:0, adding the row (1;,,; 0) increases the rank of A
by one. In this case, again, A is full rank and there is a unique solution for z.

Now, assume ng > p+ 1. In this case, A is rank deficient and )?6)?0 is rank deficient. By the same
arguments as before rank(A) = p + 2. Consider the rank of the augmented matrix (A c)

o o N
rank(A c) = rank ([ XoXo 1my XoX1—(A/2)A1 D

1L 0 1

Assume that any matrix composed by p + 2 or more rows of ()N((’) 15, A1) has full column rank.
Assume also that A > 0. Then, there is no linear combination of the columns of (X{Xo 15,) that
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is equal to X{)Xl — (A/2)A;. As a result,
rank(A ¢) =rank(A4) + 1
and the system has no solution. We conclude that, under the stated assumptions, if A > 0 then

there is a unique solution W with at most p + 1 non-zero components.

In contrast, for A = 0 it is easy to obtain examples with multiple solutions for the case ng > p +1,
even if any matrix composed by p + 2 or more rows of (X, 1,, A;) has full column rank. O

Lemma A.1 (Optimality of Delaunay for the Compound Discrepancy, Rajan (1994))
Suppose the assumptions of Theorem 1 hold and let Z € CH(Xp). Consider a solution W =
(Why41s -+, Wy)' of the problem

i Wil X; — 2|2 Al
pon >, WillX; -2, (A1)
j=ni+1
st. XgW=2, > W;=1 (A.2)
j=ni1+1

Then, non-zero values of Wj occur only among the vertices of the face of the Delaunay complex
containing Z .

Proof of Lemma A.1

The proof of this lemma closely follows the proof of Lemma 10 in Rajan (1994) but does not
rely on general position of the set of points. For a point X € RP, consider the transformation
¢ : X — (X,]|X|?). The images under ¢ of points in R” belong to the paraboloid of revolution
P with vertical axis and equation 41 = Y .7_; 27. By Theorem 17.3.1 in Boissonnat and Yvinec
(1998), the faces of the Delaunay complex of the ng points X, 11,...,X, in RP are obtained by
projecting the faces of the lower envelope of the convex hull of the ny points ¢(Xp,+1), ..., ¢(Xn),
obtained by lifting the X;’s onto the paraboloid P.

Now consider a point (Z?:TH-H WX, Wj||XjH2) subject to the constraints in A.2.

This point is equal to (Z, D i1 Will X5 — Z||% + ||Z||2> and belongs to the convex hull of

d(Xny+1),---,0(Xy). Hence, a solution of A.1 for a fixed Z is given by a point with the lowest
(p+1)-th coordinate. It is a point on the lower envelope of the convex hull of ¢( Xy, 41),...,d(Xn),
so Z belongs to a p-face of the Delaunay complex. As a consequence, the only non-zero entries
of W occur only among the vertices of the face of the Delaunay complex of the columns of Xy
containing Z. O

Proof of Theorem 2

It is enough to prove that the result holds for one treated unit, so we consider the case n; = 1 and
drop the treated units subscripts from the notation. Suppose that the synthetic control weights are
given by the vector W*(\) = (W5 (A),..., W (X)), and that W7 (X) > 0 for j which is not a vertex
of the face of the Delaunay complex DT (X)) containing XoW*(X). Because XoW*(\) € CH(X)),
it follows from Lemma A.1 that we can always choose an ng-vector of weights W € [0, 1], such
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that (i) XoW = XoW*(X\), (ii) D it Wj =1, (i) Wj = 0 for any j that is not a vertex of
the face of the Delaunay complex containing XoW™*(\), and (iv) W induces a lower compound
discrepancy than W*(\) relative to XoW = XoW*()),

S WX, — XoW (M)]? < ZW* )IX; — XoW (V)12 (A.3)
Jj=2
For any W € [0, 1] it can be easily seen that
SOWIX; - XalP =) WX — XoW 2 + (|1 X7 — XoW 2. (A4)
=2 =2

Combining equations (A.3) and (A.4) with the fact that || X; — XOW]P = [| X1 — XoW*(\)||?, we
obtain

ZW 1% — Xa||* < ZW* X5 — X
As a result
1X1 — XoW | + Azn: Wil X; — X312 < | X1 — XoW* (V)| + /\Z WrNIX; - X%,
j=2
which contradicts the premise that W*()) is a solution to (6). O
Lemma A.2 (Sum of Weights) For j =mni +1,...,n, denote S;(\) = >, W/, (N), the sum of

weights given to a particular control unit across all the synthetic units. Under Assumption 1, for
any A > 0:

1. 370 41 Si(A) = na almost surely,
2. E[S;j(N)] =ni1/ng for every j =n1 +1,...,n,
3. pS;(A), Sk(N)] = =1/(no—1) for any j # k, where p[S;(A), Sp(A)] = Cov[S;(A), Sk(A)]/ VIS;(N)]-

Proof of Lemma A.2

The first assertion holds because each of the n; synthetic units is created as a convex combination
of control units. The second assertion is a consequence of the previous one, the linearity of the
expectation operator and exchangeability. For the third assertion, notice that the first statement
of the lemma implies V[3_7_ ., S;(A)] = 0 which in combination with exchangeability leads to:

nOV[Sn1+1(/\)] + nO(nO - 1)COV[SH1+1()‘)> Sn1+2()‘)] =0. (A5)

A consequence of equation A.5 is that p[Sy,+1(A), Sny+2(A)] = Cov[Sn,+1(A), Sny+2(A)]/V[Sn+1(A)] =
—1/(np — 1). O
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