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Abstract

This article presents identification results for the marginal treatment effect (MTE) when
there is sample selection. We show that the MTE is partially identified for individuals who
are always observed regardless of treatment, and we derive sharp bounds on this parameter
under four sets of assumptions. The first identification result combines the standard MTE
assumptions without any restrictions to the sample selection mechanism. The second result
imposes monotonicity of the sample selection variable with respect to the treatment, consid-
erably shrinking the identified set. Third, we incorporate a stochastic dominance assumption
which tightens the lower bound for the MTE. Finally, we provide a set of conditions that
allows point identification for completeness. Our analysis extends to discrete instruments and
distributional MTE. All the results rely on a mixture reformulation of the problem where the
mixture weights are identified. We therefore extend the Lee (2009) trimming procedure to the
MTE context. We propose some preliminary estimators for the bounds derived, provide a nu-
merical example and simulations that corroborate the bounds feasibility and usefulness as an
empirical tool. In future drafts, we plan to highlight the practical relevance of the results by
analyzing the impacts of managed health care options on health outcomes and expenditures,
following Deb, Munkin, and Trivedi (2006).
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1 Introduction

Many interesting applications in the treatment effects literature involve two simultaneous

identification challenges: endogenous selection into treatment and sample selection. For in-

stance, in labor economics, when a researcher wishes to evaluate the college wage premium,

she has to consider the individual’s decision to attend college as well as their decision to

participate in the labor market.

Similarly, when analyzing the effect of a job training program on wages, one needs to

consider the individual’s decision to attend college as well as their participation in the labor

market. In the health sciences, the same identification challenges appear when analyzing

the effect of a drug on well-being because the outcome of interest, health status, is observed

only for those who survived since taking the drug. Moreover, in randomized control trials,

non-compliance and differential attrition rates between treated and control groups lead to the

same identification concerns. This double selection problem is also present when analyzing

the effect of an educational intervention on short- and long-term outcomes and the effect of

procedural laws on litigation outcomes.1

To address both identification challenges, we analyze a generalized sample selection model

in which the realized outcome (e.g., wages) is observed only if the individual self-selects into

the sample (e.g., employment status), and the treatment choice (e.g., education) is observed

for all individuals in the data being analyzed. Furthermore, the choice of treatment is allowed

to be endogenous, and can be related to the sample selection mechanism. In this paper, we

derive novel sharp bounds on the marginal treatment effect (MTE) for individuals who would

self-select into the sample regardless of the treatment status (MTEOO). To do so, we propose

four identification strategies under increasingly restrictive sets of assumptions that extend

1Training programs are studied by Heckman, LaLonde, and Smith (1999), Lee (2009) and Chen and Flores
(2015). The college wage premium is analyzed by Altonji (1993), Card (1999) and Carneiro, Heckman, and
Vytlacil (2011). Scarring effects are discussed by Heckman and Borjas (1980), Farber (1993) and Jacobson,
LaLonde, and Sullivan (1993). Some education interventions are studied by Krueger and Whitmore (2001),
Angrist, Bettinger, and Kremer (2006), Angrist, Lang, and Oreopoulos (2009), Chetty et al. (2011) and
Dobbie and Jr. (2015). Medical treatments are analyzed by CASS (1984), Sexton and Hebel (1984) and U.S.
Department of Health and Human Services (2004). Litigation outcomes are discussed by Helland and Yoon
(2017). RCT with attrition are illustrated by DeMel, McKenzie, and Woodruff (2013) and Angelucci, Karlan,
and Zinman (2015).
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MTE identification to scenarios with endogenous sample selection.

Before detailing our identification strategies, it is important to understand the intuition

and the importance of the MTE and of the MTEOO. To do so, consider the college wage

premium example (Carneiro, Heckman, and Vytlacil, 2011). College attendance influences

both the likelihood of employment and wages, and wages are observed only for individuals

who are employed. The MTE reflects the return across different levels of the (latent) cost

of going to college. As a consequence, this parameter can be used to shed light on the

heterogeneity of college wage premia, i.e., to understand who would benefit from going to

college.2 This knowledge can, then, be used to optimally design policies focusing on college

affordability. Moreover, common parameters evaluated in the literature (e.g., ATE, ATT ,

ATU and LATE) could be positive even when most people are affected adversely by a policy,

masking its effects. Furthermore, the MTEOO reflects the returns to college at the intensive

margin, i.e., to the group of individuals that would participate in the labor force even if they

had not attended college.

Our first partial identification strategy leaves sample selection unrestricted, relying on

standard constraints on the mechanism that governs selection into treatment: the instrument

is exogenous and excluded from the outcome determination, the treatment choice is monotone

in the instrument, and the propensity score is continuous.3

Our second partial identification result tightens the bounds around the MTEOO by ex-

ploiting a “monotonicity in selection” assumption. This condition requires individuals to be

at least as likely to be observed in the sample if they are treated. In the college wage premium

example, this additional assumption imposes that the treatment can induce workers to join

the labor force, but not the opposite.

Our third partial identification strategy further reduces the identified set by imposing

a stochastic dominance assumption. This condition mandates that the subpopulation who

self-selects into the sample regardless of the treatment status has better potential outcomes

than the the subpopulation who self-select into the sample only when treated. Intuitively,

2as recently illustrated by Cornelissen et al. (2018), Bhuller et al. (2019) and Humphries et al. (2019)
3See Bjorklund and Moffitt (1987) and Heckman and Vytlacil (1999, 2001a, 2005) for a detailed discussion

about the MTE when there is no sample selection.
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workers that would be employed regardless of college attendance would earn higher wages

after attending college than those that would choose to participate in the labor force only if

they attended college.

Finally, point-identification can be achieved by imposing the strong assumption that the

treatment has no impact on the sample selection behavior. In that case, the hypothetical

workers’ employment status would not be affected by college attendance.

Importantly, our identification argument relies on a reformulation of the conditional prob-

abilities of the potential outcomes as a mixture between the latent groups of individuals who

are “always observed” and “observed only when treated.” This reformulation extends to the

MTE case the trimming procedure proposed by Imai (2008), Lee (2009) and Chen and Flores

(2015) in the context of identifying the average treatment effect (ATE) and the local aver-

age treatment effect (LATE). Crucially, since we are interested in the MTE, the trimming

is based on the distribution of the potential outcome conditional on unobserved individual

characteristics related to treatment receipt.

Our results can be used to construct bounds for any treatment effect parameter that can

be written as a weighted average of the MTEOO. For instance, one can immediately obtain

sharp bounds on the ATE, the average treatment effect on the treated (ATT), any LATE

(Imbens and Angrist, 1994) and any policy-relevant treatment effect (PRTE, Heckman and

Vytlacil, 2001b) within the always-observed subpopulation.4

We extend our main results by deriving sharp bounds to a more general object of interest,

the distributional marginal treatment effect (DMTE), which is the effect of the treatment on

the distribution of the outcome for individuals at the margin for participation. From these,

one can derive bounds on the quantile version of the marginal treatment effect, and possibly

other parameters.

We also extend the results to cases where researchers only have access to multi-valued

discrete instruments. We derive nonparametric sharp bounds on a weighted MTE for that

case, which is conceptually similar to Chen and Flores (2015), and can be seen as an extension

4The weights that combine the MTE to generate other treatment effects parameters are discussed by
Heckman and Vytlacil (2005), Carneiro and Lee (2009), and Carneiro, Heckman, and Vytlacil (2011).
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of their results which focused on binary instruments only.

We contribute to the literature on identification of treatment effect parameters using

an instrument in the presence of sample selection, which can be organized in three groups:

methods focusing on self-selection into treatment, methods focusing on sample selection and

methods addressing both problems.5

In the literature focusing on self-selection into treatment, Imbens and Angrist (1994)

establish conditions under which we can identify the LATE. Heckman and Vytlacil (1999),

Heckman and Vytlacil (2005) and Heckman, Urzua, and Vytlacil (2006) define the MTE and

explain how to compute a wide array of treatment effect parameters as a weighted average

of the MTE. However, if the support of the propensity score is not the unit interval, then it

is not possible to non-parametrically point-identify some common treatment effects, such as

the ATE, the ATT and the ATU. A parametric solution to this problem is given by Brinch,

Mogstad, and Wiswall (2017), while a nonparametric solution is given by Mogstad, Santos,

and Torgovitsky (2018).6

In the literature on identification of treatment effect parameters with sample selection,

two well established solutions are (i) the control function approach (Heckman, 1979, Ahn and

Powell, 1993, and Das, Newey, and Vella, 2003), and (ii) the use of auxiliary data (Chen,

Hong, and Tarozzi, 2008). Alternatively, one can partially identify the parameter of interest

while imposing weak monotonicity assumptions. For example, Lee (2009) imposes that sample

selection is monotone on treatment assignment and exploits that restriction to sharply bound

the ATE for the subpopulation of always-observed individuals (ATEOO).7

In the intersection of both topics, a few authors address the problem of sample selec-

tion and endogenous treatment simultaneously. By using one instrument for selection into

treatment and one instrument for selection into the sample, Fricke et al. (2015) and Lee and

5Those literatures are vast and we only briefly summarize them here.
6Other important contributions are made by Manski (1990), Manski (1997), Manski and Pepper (2000),

Heckman and Vytlacil (2001a), Bhattacharya, Shaikh, and Vytlacil (2008), Chesher (2010), Chiburis (2010),
Shaikh and Vytlacil (2011), Bhattacharya, Shaikh, and Vytlacil (2012), Chen, Flores, and Flores-Lagunes
(2017), Huber, Laffers, and Mellace (2017), Kowalski (2018), Mourifie, Henry, and Meango (2018) and Zhou
and Xie (2019).

7Other relevant contributions are made by Frangakis and Rubin (2002), Blundell et al. (2007), Imai (2008),
Lechner and Mell (2010), Blanco, Flores, and Flores-Lagunes (2013), Mealli and Pacini (2013), Huber (2014),
Behaghel et al. (2015) and Huber and Mellace (2015).
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Salanie (2018) identify the LATE and the ATE. However, since finding a credible instrument

for sample selection is challenging in some cases, developing alternative tools that only re-

quire an instrument for selection into treatment is important. Frolich and Huber (2014) point

identify the LATE by assuming that there is no contemporaneous relationship between the

censored outcomes and the sample selection problem conditioning on past non-censored out-

come variables. Chen and Flores (2015) derive bounds for ATE within the always-observed

compliers (LATEOO) by combining one instrument with a double exclusion restriction and

monotonicity assumptions on both the selection into treatment and the sample.8

We contribute to this literature by partially identify the MTE within the always-observed

subpopulation, a treatment effect parameter that has not been previous analyzed in the

presence of sample selection. Differently from Frolich and Huber (2014), we allow for a con-

temporaneous relationship between the potential censored outcomes and the sample selection

problem. Distinctively from Fricke et al. (2015) and Lee and Salanie (2018), we require only

one instrument for selection into the treatment. In comparison with Chen and Flores (2015),

we additionally consider two different sets of assumptions: the case without monotone sample

selection and the case when the treatment has no effect on selection.

The remainder of the paper is organized as follows. Section 2 presents the structural model

and sample selection mechanism considered, followed by a discussion of our four sets of iden-

tifying assumptions. In Section 3, we provide the identification results for the MTE bounds

in the case of a continuous instrument under our four sets of assumptions. Section 4 presents

a numerical illustration, while Section 5 proposes a novel estimator for the bounds proposed.

Two relevant extensions are provided in Section 6, with identification results for (i) distribu-

tional MTE, and (ii) discrete instruments. Section 7 concludes. The proofs, sharp testable

implications of the model, and a Monte Carlo simulation for the estimator’s performance are

presented in the appendix.

8Other important contributions are made by Steinmayr (2014), Blanco et al. (2017), Kédagni (2018) and
Semykina and Wooldrige (2018).
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2 Analytical Framework

Following Heckman and Vytlacil (1999, 2001a, 2005), Lee (2009) and Chen and Flores

(2015), we consider the generalized sample selection model, described in the potential out-

comes framework: 

Y ∗ = Y ∗1 D + Y ∗0 (1−D)

D = 1 {V ≤ P (Z)}

S = S1D + S0(1−D)

Y = Y ∗S

(2.1)

where Z is a vector of observable instrumental variables (e.g., local unemployment rate at

age 17, local earnings at age 17, local tuition at age 17) with support given by Z ⊂ Rdz , D

is the treatment status indicator (e.g., college education). The variable Y ∗ is the (censored)

realized outcome variable (e.g., wages) with support Y ⊂ R, while Y ∗0 and Y ∗1 are the potential

outcomes when the person is untreated and treated, respectively. Similarly, S is the realized

sample selection indicator (employment status), and S0 and S1 are potential sample selection

indicators when individuals are untreated and treated. Finally, Y is the observed outcome

(e.g., labor earnings), and V represents unobserved individual characteristics (e.g., cognitive

costs of attending college). The researcher observes only the vector (Y,D, S, Z), while Y ∗1 ,

Y ∗0 , S1, S0 and V are latent variables.9

The treatment status, D, is connected to the instrument Z and the unobserved charac-

teristics V through the unknown function P : Z → R. In this model, we assume that the

individual takes the treatment when its cost V is less than or equal to a threshold P (Z), i.e.,

we impose monotonicity of the treatment in the instrument Z (Imbens and Angrist, 1994) as

shown by Vytlacil (2002). This setup is similar to the one proposed by Heckman and Vytlacil

(2005) and leads to the definition of the marginal treatment effect (MTE),

MTE(p) = E[Y ∗1 − Y ∗0 |V = p].

9For simplicity, we drop exogenous covariates from the model. All results derived in the paper hold condi-
tionally on covariates.
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In the setting analyzed here, the task of learning about the MTE is further complicated by the

potential for nonrandom sample selection. As pointed out by Lee (2009), point identification

of ATE is no longer possible, even if if treatment is randomly assigned. This problem leads

him to develop bounds for the ATE. This paper combines the insights of these literatures to

develop sharp bounds for the MTE under sample selection while allowing for treatment to be

endogenously determined.

Similarly to the compliance groups defined by Imbens and Angrist (1994), we can also

define four latent groups based on the potential sample selection indicators. The always-

observed subpopulation is composed of individuals for whom S0 = 1 and S1 = 1, the

observed-only-when-treated subpopulation is defined by S0 = 0 and S1 = 1, the observed-

only-when-untreated subpopulation is defined by S0 = 1 and S1 = 0, and the never-observed

subpopulation is defined by S0 = 0 and S1 = 0.10 Those subgroups are summarized in Table 1.

Table 1: Employment status subgroups

subgroups S0 S1 Designation

OO 1 1 Always-observed
ON 1 0 Observed-only-when-untreated
NO 0 1 Observed-only-when-treated
NN 0 0 Never-observed

Following Zhang, Rubin, and Mealli (2008) and Lee (2009), we focus on the subpopulation

who is always-observed (S0 = 1, S1 = 1). This is the only group whose censored potential

outcomes are observed in both treatment arms. For the other three subpopulations, their

treatment effect are not point identified or bounded in a non-trivial way without further

functional form assumptions, since at least one of their potential outcomes (Y ∗0 or Y ∗1 ) is

never observed.11

Hence, our target parameter is the MTE within the subpopulation who is always observed

10Since the conditioning subpopulation is determined by post-treatment outcomes, our work is also connected
to the statistical literature known as principal stratification (Frangakis and Rubin, 2002). In particular, the
four latent groups in this framework are called strata in the principal stratification literature.

11Note that, in some applications (e.g., analyzing the impact of a medical treatment on a health quality
measure where selection is given by whether the patient is alive), the potential censored outcome Y ∗d is not
even properly defined when Sd = 0 for d ∈ {0, 1}.
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(MTEOO):

MTEOO (p) := E [Y ∗1 − Y ∗0 |V = p, S0 = 1, S1 = 1] , (2.2)

for any p ∈ [0, 1]. In labor market applications where sample selection is due to observing

wages only when agents are employed, this is the effect on wages for the subpopulation who

is always employed. In medical applications where selection is due to the death of a patient,

this is the effect on health quality for the subpopulation who survives regardless of treatment

status. In the education literature where sample selection is due to students quitting school,

it is the effect on test scores for the subpopulation who do not drop out of school regardless

of treatment status. In all those cases, the target parameter captures the intensive margin of

the treatment effect.12

Analogously to Lee (2009), identification of MTEOO is complex because sample selection

is nonrandom and is possibly impacted by the treatment. To address this issue, we consider

four sets of increasingly restrictive assumptions that allow us to partially identify the tar-

get parameter. The identified sets shrinks as the assumptions strenghten, leading to point

identification under the fourth set of assumptions.13

Following Imai (2008), Assumptions 1-5 are sufficient to partially identify MTEOO.

Assumption 1 (Random Assignment). The vector of instruments Z is independent of all

latent variables, i.e., Z |= (Y ∗0 , Y
∗

1 , S0, S1, V ).

Assumption 2 (Propensity Score is Continuous). P (z) is a nontrivial function of z and the

random variable P (Z) is absolutely continuous with support given by P ⊆ [0, 1].

Assumption 3 (Positive Mass). Both treatment groups and the always-observed subpopula-

tion exist i.e., 0 < P [D = 1] < 1 and P [S0 = 1, S1 = 1|V = p] > 0 for any p ∈ P.

12If the researcher is interested in the extensive margin of the treatment effect, captured by the MTE on
the observed outcome (E [Y1 − Y0 |V = p ]) and by the MTE on the selection indicator (E [S1 − S0 |V = p ]), she
can apply the identification strategies described by Heckman, Urzua, and Vytlacil (2006), Brinch, Mogstad,
and Wiswall (2017) and Mogstad, Santos, and Torgovitsky (2018).

13According to Tamer (2010, p. 167), this approach to identification “characterizes the informational content
of various assumptions by providing a menu of estimates, each based on different sets of assumptions, some
of which are plausible and some of which are not.” Empirically, this approach is also illustrated by Kline and
Tartari (2016).
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Assumption 4 (Finite Moments). The first population moment of the potential outcomes

for the always-observed subpopulation is finite, i.e., E [ |Y ∗d | |S0 = 1, S1 = 1] < +∞ for any

d ∈ {0, 1}.

Assumption 5 (Uniform Distribution of V ). The conditional distribution of V is uniform

over [0, 1], i.e., V ∼ U[0,1].

Assumptions 2-4 are technical assumptions to ensure that our objects of interest are well-

defined and are common in the literature about marginal treatment effects (Heckman, Urzua,

and Vytlacil, 2006). Assumption 1 is a standard IV independence assumption. Intuitively, we

rely on changes in Z shifting treatment status and, hence, sample participation to identify the

marginal treatment effect bounds. Assumption 3 is crucial for the identification results and

requires that there are always-observed individuals for all possible values of the unobserved

heterogeneity V . This can be restrictive in practice, ruling out identification of the MTE for

ranges of V in which receipt of treatment determines sample participation heavily. Assumption

5 can be seen as a normalization if one assumes that the latent variable V is absolutely

continuous. Under the same normalization, the image of the function P : Z → R is contained

in the unit interval.

Assumptions 1-5 form our first set of assumptions required for identification of the MTE for

the always-observed individuals. Under those assumptions, the function P (z) is identified and

is equal to the propensity score P [D = 1|Z = z] as described in (Heckman and Vytlacil, 2005,

p. 677). Indeed, P [D = 1|Z = z] = P [V ≤ P (z)|Z = z] = P [V ≤ P (z)] = P (z), where the

second equality holds under Assumption 1 and the last holds under Assumption 5. Moreover,

this first set of restrictions partially identifies the target parameter MTEOO, as presented in

Section 3.3.

We also stress that the identified set can be substantially tightened by imposing that the

sample selection mechanism is monotone on the treatment.

Assumption 6 (Monotone Sample Selection). Treatment has a non-negative effect on the

sample selection indicator for all individuals, i.e., S1 ≥ S0.
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This monotonicity assumption rules out the existence of the observed-only-when-untreated

subpopulation and is commonly used in the literature about sample selection (Lee, 2009, Chen

and Flores, 2015).14 To obtain some intuition on the mechanisms behind this assumption,

consider a the college wage premium example. An individual is employed when her job search

skills ϑ(D), a function of college attendance, are above a threshold US so that

S = 1 {ϑ(D) ≥ US} .

Additionally, suppose that college attendance does not decrease someone’s job search skills,

i.e., ϑ(1) ≥ ϑ(0), making it more likely that college graduates would be observed in the

data. In such a case, Assumption 6 holds. However, if college attendance raises the agents’

reservation wages, this assumption may not hold.

Assumptions 1-6 form our second set of identification assumptions and lead to the bounds

for MTEOO that are the main result of this paper, presented in Theorem 1. Importantly, this

second set of assumptions has a testable implication: the treatment positively affects sample

selection, i.e., E[S1 − S0|V = p] ≥ 0, implying

∂P [S = 1|P (Z) = p]

∂p
≥ 0 for all p ∈ P. (2.3)

In other words, the share of the population for which the outcome is observed rises with p. In

Section 3, we discuss further testable implications, while in Appendix Section B we formally

characterize sharp testable implications arising from those assumptions. In the college wage

premium example, the likelihood of employment increases with the probability of taking

attending college.

We can further shrink the identified set around the MTEOO, by adding Assumption 7

and completing the third set of identifying assumptions.

Assumption 7 (Stochastic Dominance). The distribution of the potential outcome when

14As in Lee (2009), this assumption can be stated as S1 ≥ S0 with probability 1. For the sake of simplicity, we
assume it to hold for all individuals. Manski (1997) and Manski and Pepper (2000) refer to this assumption as
the “monotone treatment response” assumption. All results can be stated with some straightforward changes
if the inequality in Assumption 6 holds in the opposite direction.
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treated for the always-observed subpopulation first-order stochastically dominates the distribu-

tion of the same random variable for the observed-only-when-treated subpopulation, i.e.,

P [Y ∗1 ≤ y|V = p, S0 = 1, S1 = 1] ≤ P [Y ∗1 ≤ y|V = p, S0 = 0, S1 = 1]

for any y ∈ Y and any p ∈ P.

This dominance assumption imposes that the always-observed subpopulation has higher

potential censored outcomes than the observed-only-when-treated group conditional on V .

This type of assumption is common in the literature (Imai, 2008, Blanco, Flores, and Flores-

Lagunes, 2013, Huber and Mellace, 2015, and Huber, Laffers, and Mellace, 2017) and is

intuitively based on the argument that some population sub-groups have more favorable

underlying characteristics than others.15

While this assumption is not directly testable, Chen and Flores (2015, Section 2.3) propose

an indirect test for this assumption that compares average baseline characteristic between the

always-observed and the observed-only-when-treated latent groups. If the always-observed

group has worse characteristics at baseline than does the observed-only-when-treated group,

than Assumption 7 is less likely to hold in the data. Intuitively, workers that would be

employed regardless of college attendance would earn higher wages after attending college

than those that would choose to participate in the labor force only if they attended college.

For completeness, note that adding Assumption 8 to Assumptions 1-5 allow us to point-

identify the MTEOO. These six restrictions form the fourth set of identifying assumptions

considered in this paper.

Assumption 8 (Unit Mass). The always-observed and never-observed subpopulations are the

only groups that exist, i.e., P [S0 = S1] = 1.

This unit mass assumption imposes that the treatment has no impact on sample selection.

Even though it is likely too strong for many applied contexts, it is stated here for theoretical

15All of our results can be stated if the inequality in Assumption 7 holds in the opposite direction, as it is
the case if larger values of the outcome harms the agent. For example, the researcher might be interested on
the effect of a drug on cholesterol levels and the selection is based on whether the patient is alive.
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completeness. In the context of the college wage premium, the workers’ employment status

would not be affected by college attendance, indicating that workers tend to have very high

or very low attachment to the labor force.

3 Identification Results

This section presents the identification results for MTEOO(p) under the different sets

of assumptions described in Section 2 that are the main results of this paper. As stepping

stones for our main identification results, Subsection 3.1 shows identification of the conditional

joint distribution of (Y ∗d , Sd)|V for any d ∈ {0, 1}, while Subsection 3.2 shows that the

distribution of the potential outcomes can be seen as a mixture of latent groups, an important

feature of the model. In the following subsections, we sharply bound the MTEOO under

increasingly restrictive assumptions. First, we bound the MTEOO without imposing any

assumption on the selection mechanism (Subsection 3.3). We then tighten those bounds by

additionally imposing the monotone sample selection assumption (Subsection 3.4) and the

stochastic dominance assumption (Subsection 3.5). For completeness, we also show that the

MTEOO is point-identified under the unit mass assumption (Subsection 3.6). Finally, in

Subsection 3.7, we discuss how to sharply bound treatment effect parameters that can be

written as weighted averages of the MTEOO(p).

3.1 Identifying the Joint Distribution of Potential Outcome and Selection

Before we discuss the identification of MTEOO, we need to point-identify the conditional

joint distribution of each potential outcome and sample selection for different levels of indi-

vidual heterogeneity, (Y ∗d , Sd)|V for d ∈ {0, 1}.

Under Assumptions 1-5, for any p ∈ int P and any Borel set A ⊆ Y, we have that

P [Y ∈ A,S = 1, D = 1|P (Z) = p] = P [Y ∗1 ∈ A,S1 = 1, V ≤ p|P (Z) = p]

= P [Y ∗1 ∈ A,S1 = 1, V ≤ p]

= P [Y ∗1 ∈ A,S1 = 1|V ≤ p]P [V ≤ p]
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=

(∫ p

0
P [Y ∗1 ∈ A,S1 = 1|V = v]

fV (v)

P [V ≤ p]
dv

)
· P [V ≤ p]

=

∫ p

0
P [Y ∗1 ∈ A,S1 = 1|V = v] dv,

where the second equality follows from Assumption 1, the third and fourth equalities follow

from the Law of Iterated Expectations, and the last equality follows from Assumption 5.

By taking the derivative of each side of the above derived equality, we point-identify the

conditional joint distribution of (Y ∗1 , S1)|V = p:

P [Y ∗1 ∈ A,S1 = 1|V = p] =
∂P [Y ∈ A,S = 1, D = 1|P (Z) = p]

∂p
. (3.1)

Similarly, we can show that

P [Y ∗0 ∈ A,S0 = 1|V = p] = −∂P [Y ∈ A,S = 1, D = 0|P (Z) = p]

∂p
. (3.2)

Note that equations (3.1) and (3.2) generate two testable implications for Assumptions 1

and 5:

0 ≤ ∂E[1 {Y ∈ A}SD|P (Z) = p]

∂p
≤ 1, (3.3)

0 ≤ −∂E[1 {Y ∈ A}S(1−D)|P (Z) = p]

∂p
≤ 1, (3.4)

for all Borel sets A ⊂ R and p ∈ (0, 1). Intuitively, when looking at people for whom observable

characteristics (Z) indicate a higher likelihood of taking treatment, the share of treated (un-

treated) individuals that self-select into the sample should increase (decrease) for any range

of the outcome.16

Similarly to the Local Instrumental Variable approach proposed by Heckman and Vytlacil

(2005), equations (3.1) and (3.2) can be used to point-identify the MTE on the probability

of being observed (E[S1 − S0|V = p]), capturing the extensive margin of the treatment. Note

16A formal characterization of the sharp testable implications implied by our model is presented in Appendix
Section B.
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that, for A = Y,

P [S1 = 1|V = p] =
∂P [S = 1, D = 1|P (Z) = p]

∂p
, (3.5)

P [S0 = 1|V = p] = −∂P [S = 1, D = 0|P (Z) = p]

∂p
, (3.6)

implying that E[S1−S0|V = p] = ∂E[S|P (Z)=p]
∂p . This effect could be of interest in itself: for ex-

ample, the researcher may want to evaluate whether a training program increases employment

levels. We can also identify the MTE on the observed outcome,

E[Y ∗1 S1 − Y ∗0 S0|V = p] =
∂E[Y S|P (Z) = p]

∂p
.

However, in general, potential outcomes are dependent on the sample selection status even

conditional on V . For example, labor force participation and potential wages both depend on

the individual’s reservation wage regardless of the education cost.

We would like to disentangle the marginal treatment on the observed outcome into the

extensive margin and the intensive margin. While the extensive margin is point-identified, we

show that the intensive margin (MTEOO) is partially identified by exploiting the fact that

the distribution of potential outcomes is a mixture of latent groups.

3.2 Potential Outcomes as Mixtures of Latent Groups

Fundamental to our identification strategy is recognizing that the treated (untreated)

group is composed only by OO and NO (ON) types, as described in Table 1. Hence, the

conditional distribution Y ∗1 |S1 = 1, V = p can be written as the mixture of these latent

distributions. For notational simplicity, let α(p) ≡ P[OO|V=p]
P[S1=1|V=p] be the share of always-observed

individuals among those for which S1 = 1 conditional on V = p. Naturally, the remainder,

P[NO|V=p]
P[S1=1|V=p] , can be described as 1− α(p). By the Law of Total Probability, we have that:

P [Y ∗1 ∈ A|S1 = 1, V = p] = α(p) · P [Y ∗1 ∈ A|S0 = 1, S1 = 1, V = p] (3.7)

+ (1− α (p)) · P [Y ∗1 ∈ A|S0 = 0, S1 = 1, V = p] .
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As a consequence, the expectation E[Y ∗1 |S1 = 1, V = p] is also a mixture of the expecta-

tion of Y ∗1 for the always-observed and for observed-only-when-treated given the unobserved

characteristic V = p

E [Y ∗1 |S1 = 1, V = p] = α (p) · E [Y ∗1 |S0 = 1, S1 = 1, V = p]

+ (1− α (p)) · E [Y ∗1 |S0 = 0, S1 = 1, V = p] .

Similarly, the conditional distribution of Y ∗0 |S0 = 1, V = p can be written as the mixture

of Y ∗d |V = p for two latent groups, the always-observed and the observed-only-when-untreated

group.

E [Y ∗0 |S0 = 1, V = p] = β (p) · E [Y ∗0 |S0 = 1, S1 = 1, V = p]

+ (1− β (p)) · E [Y ∗0 |S0 = 1, S1 = 0, V = p] ,

where β(p) ≡ P[OO|V=p]
P[S0=1|V=p] .

We exploit these mixture representations to bound the marginal treatment response of the

censored treated outcome within the always-observed subpopulation (E [Y ∗1 |S0 = 1, S1 = 1, V = p])

by considering the tails of the observed outcomes’ distribution for treated individuals. The

smallest attainable value of E[Y ∗1 |S0 = 1, S1 = 1, V = p] is obtained when we consider the

scenario in which the always-observed individuals are contained entirely in the left tail of

mass α(p) of the outcome distribution, i.e., the lowest values of Y ∗1 among the subpopulation

{S1 = 1} conditional on V being equal to p. Respectively, the largest attainable value of

E[Y ∗1 |S0 = 1, S1 = 1, V = p] is obtained in the case that the always-observed individuals

would be the right tail of the same distribution, getting the highest values of Y ∗1 on that

subpopulation. This is the same intuition behind the trimming procedure suggested by Lee

(2009) and Chen and Flores (2015).

Hence, E [Y ∗1 |S0 = 1, S1 = 1, V = p] lies within the interval [LB1(p), UB1(p)], where

LB1(p) = E
[
Y ∗1 |S1 = 1, V = p, Y ∗1 ≤ F−1

Y ∗1 |S1=1,V=p (α(p))
]
, (3.8)
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UB1(p) = E
[
Y ∗1 |S1 = 1, V = p, Y ∗1 > F−1

Y ∗1 |S1=1,V=p (1− α(p))
]

(3.9)

and F−1
Y ∗d |Sd=1,V=p(·) is the quantile function of the distribution of Y ∗d given Sd = 1 and V = p.

Similarly, the conditional distribution of Y ∗0 |S0 = 1, V = p can be written as the mixture

of Y ∗d |V = p for two latent groups, the always-observed and the observed-only-when-untreated

group. Analogously to the treated outcome, the marginal treatment response of the untreated

outcome within the always-observed subpopulation (E [Y ∗0 |S0 = 1, S1 = 1, V = p]) lies within

the interval [LB0(p), UB0(p)], where

LB0(p) = E
[
Y ∗0 |S0 = 1, V = p, Y ∗0 ≤ F−1

Y ∗0 |S0=1,V=p (β(p))
]
, (3.10)

UB0(p) = E
[
Y ∗0 |S0 = 1, V = p, Y ∗0 > F−1

Y ∗0 |S0=1,V=p (1− β(p))
]
. (3.11)

Combining the bounds around E [Y ∗1 |S0 = 1, S1 = 1, V = p] and E [Y ∗0 |S0 = 1, S1 = 1, V = p],

we find that MTEOO (p) lies within the interval

[LB1(p)− UB0(p), UB1(p)− LB0(p)].

Remark 1. The issue central to identification of the target parameter is what can be learned

about the mixture weights (α(p), β(p)), and E [Y ∗d |Sd = 1, V = p]. Note that the bounds on

the MTE of interest will be tighter for higher values of α(p) and β(p) because we learn about

E[Y ∗1 − Y ∗0 |S0 = 1, S1 = 1, V = p] by considering that the worst- and best-case outcomes

of observed treated and untreated individuals are fully attributed to the always-observed. So,

as α(p) increases, the share of the observed sample of treated individuals that are from our

group of interest increases, providing more information about their conditional expectation of

the outcomes. In the extreme case in which α(p) → 1, the E [Y ∗1 |S0 = 1, S1 = 1, V = p] will

be point identified. Similarly, if α(p) → 0, the observed sample is uninformative about the

always-observed group. A similar intuition holds regarding β(p).

In the next subsections we investigate the bounds that are generated under four alternative

sets of assumptions, described in Section 2. Intuitively, those assumptions impose different
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restrictions on the possible values of the mixture weights (α(p), β(p)), providing different sets

of information about E[Y ∗1 − Y ∗0 |S0 = 1, S1 = 1, V = p].

3.3 Identification with No Assumption on the Sample Selection Mechanism

Initially, consider the case in which the researcher is only willing to consider Assump-

tions 1-5, leaving the sample selection mechanism unrestricted. To learn about MTEOO,

we need information about the share of always-observed individuals in the total population,

P [S0 = 1, S1 = 1] and, hence, the conditional joint distribution of (S0, S1)|V = p. How-

ever, we only have information about the conditional marginal distributions S0|V = p and

S1|V = p based on equations (3.5) and (3.6). According to Imai (2008) and Mullahy (2018),

the following Boole-Fréchet bounds are sharp around the share of always-observed individuals:

P [S0 = 1, S1 = 1|V = p] ∈ [max {P [S0 = 1|V = p] + P [S1 = 1|V = p]− 1, 0} ,

min {P [S0 = 1|V = p] ,P [S1 = 1|V = p]}] . (3.12)

Combining this information with Equations (3.5) and (3.6), leads to:

Lemma 1. Under Assumptions 1-5, the share of always-observed individuals is partially iden-

tified:

P [S0 = 1, S1 = 1|V = p]

∈
[
max

{
−∂P [S = 1, D = 0|P (Z) = p]

∂p
+
∂P [S = 1, D = 1|P (Z) = p]

∂p
− 1, 0

}
,

min

{
−∂P [S = 1, D = 0|P (Z) = p]

∂p
,
∂P [S = 1, D = 1|P (Z) = p]

∂p

}]
=: Υ (p) .

These bounds are sharp.

Note that, since Υ (p) provides the identified set of possible values for the share of always-

observed individuals, we can obtain the equivalent range of possible values for α(p) and β(p),

the mixture weights described in Subsection 3.2. For brevity, let P [S0 = 1, S1 = 1|V = p] take
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any particular value, υ ∈ Υ (p). Define,

α (p, υ) := P [S0 = 1|S1 = 1, V = p] =
υ

P [S1 = 1|V = p]
=

υ
∂P[S=1,D=1|P (Z)=p]

∂p

,

β (p, υ) := P [S1 = 1|S0 = 1, V = p] =
υ

P [S0 = 1|V = p]
= − υ

∂P[S=1,D=0|P (Z)=p]
∂p

.

Let the bounds in Equations (3.8)-(3.11), for specific values of α(p, υ) and β(p, υ) in the

identified set be written as:

LB1(p, υ) = E
[
Y ∗1 |S1 = 1, V = p, Y ∗1 ≤ F−1

Y ∗1 |S1=1,V=p (α(p, υ))
]
,

UB1(p, υ) = E
[
Y ∗1 |S1 = 1, V = p, Y ∗1 > F−1

Y ∗1 |S1=1,V=p (1− α(p, υ))
]
,

LB0(p, υ) = E
[
Y ∗0 |S0 = 1, V = p, Y ∗0 ≤ F−1

Y ∗0 |S0=1,V=p (β(p, υ))
]
,

UB0(p, υ) = E
[
Y ∗0 |S0 = 1, V = p, Y ∗0 > F−1

Y ∗0 |S0=1,V=p (1− β(p, υ))
]
.

Combining the bounds around E [Y ∗1 |S0 = 1, S1 = 1, V = p] and E [Y ∗0 |S0 = 1, S1 = 1, V = p],

we find that MTEOO (p) lies within the interval [LB1(p, υ)−UB0(p, υ), UB1(p, υ)−LB0(p, υ)]

for a particular P [S0 = 1, S1 = 1|V = p] = υ.

To bound the target parameter, we find worst- and best-case scenarios for the target

parameter by varying the value υ. Explicitly, MTEOO (p) is partially identified and lies

within the interval

[
min
υ∈Υ(p)

{LB1(p, υ)− UB0(p, υ)} , max
υ∈Υ(p)

{UB1(p, υ)− LB0(p, υ)}
]
.

Note that υ has a monotone relationship to the mixture weights, which define the trimming

points in the bounds. As previously discussed, higher values for α(p) (β(p)) indicate that a

bigger share of the observed treated (untreated) population belongs to the always-observed

latent group, thus providing more information and tighter bounds for the parameter of interest.

Hence, we only need to focus on the scenario that generates the wider bounds, that is, the
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smallest admissible α(p) and β(p). Let υ` be the lower bound of Υ(p). We have:

min
υ∈Υ(p)

LB1(p, υ)− max
υ∈Υ(p)

UB0(p, υ) ≤ min
υ∈Υ(p)

{LB1(p, υ)− UB0(p, υ)} ,

min
υ∈Υ(p)

LB1(p, υ) = LB1(p, υ`), and max
υ∈Υ(p)

UB0(p, υ) = UB0(p, υ`).

Making the same argument to the upper bound, we can rewrite them as,

min
υ∈Υ(p)

{LB1(p, υ)− UB0(p, υ)} = LB1(p, υ`)− UB0(p, υ`),

max
υ∈Υ(p)

{UB1(p, υ)− LB0(p, υ)} = UB1(p, υ`)− LB0(p, υ`),

greatly simplifying our bounds because the bounds need only to be evaluated at the end points

of Υ(p).

We can combine these facts with equations (3.1), (3.2), (3.5) and (3.6) to propose the

first identification result for MTEOO, which does not impose meaningful restrictions on the

sample selection mechanism:

Proposition 1. Under Assumptions 1-5, the MTE is partially identified for the always-

observed:

∆1 (p) := E
[
Ỹ1|S = 1, D = 1, P (Z) = p, Ỹ1 ≤ F−1

Ỹ1|S=1,D=1,P (Z)=p

(
α(p, υ`)

)]
− E

[
Ỹ0|S = 1, D = 0, P (Z) = p, Ỹ0 > F−1

Ỹ0|S=1,D=0,P (Z)=p

(
1− β(p, υ`)

)]
≤MTEOO (p)

≤ E
[
Ỹ1|S = 1, D = 1, P (Z) = p, Ỹ1 > F−1

Ỹ1|S=1,D=1,P (Z)=p

(
1− α(p, υ`)

)]
− E

[
Ỹ0|S = 1, D = 0, P (Z) = p, Ỹ0 ≤ F−1

Ỹ0|S=1,D=0,P (Z)=p

(
β(p, υ`)

)]
=: ∆1 (p) ,

where the conditional distribution of Ỹd is given by

Ỹd|S = 1, D = d, P (Z) = p ∼ FỸd|S=1,D=d,P (Z)=p(y) =

∂P[Y≤y,S=1,D=d|P (Z)=p]
∂p

∂P[S=1,D=d|P (Z)=p]
∂p
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for any d ∈ {0, 1},

α
(
p, υ`

)
=

max
{
−∂P[S=1,D=0|P (Z)=p]

∂p + P [S=1,D=1|P (Z)=p]
∂p − 1, 0

}
∂P[S=1,D=1|P (Z)=p]

∂p

and

β
(
p, υ`

)
= −

max
{
−∂P[S=1,D=0|P (Z)=p]

∂p + P [S=1,D=1|P (Z)=p]
∂p − 1, 0

}
∂P[S=1,D=0|P (Z)=p]

∂p

.

Moreover, these bounds are sharp.

Remark 2. The definition of sharpness used here follows the definition of sharpness given by

Canay and Shaikh (2017, Remark 2.1.). Intuitively, for any value δ ∈
[
∆1,∆1

]
, it is possible

to construct random variables (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z) that satisfy the restrictions imposed on

the data by Assumptions 1-5 (equations (3.3) and (3.4)), induce the joint distribution on the

data (Y, S,D,Z) and achieve δ = E
[
Ỹ ∗1 − Ỹ ∗0

∣∣∣ S̃0 = 1, S̃1 = 1, Ṽ = p
]
.

Remark 3. In the special case in which the treatment D is independent of the potential

outcomes for Y ∗ and S and that Υ(p) = Υ for any p ∈ P = [0, 1], the MTE on the censored

outcome will be constant and equal to the average treatment effect for the always-observed and

the bounds derived in Proposition 1 simplify to the ones derived by Imai (2008, Proposition 1).

3.4 Bounds under the Monotonicity Assumption

In this subsection, we introduce monotonicity of treatment on the sample selection (As-

sumption 6) which considerably shrinks the identified set for MTEOO. As discussed in Section

2, under the monotonicity assumption, individuals who self-select into the sample when un-

treated (S0 = 1) would also be observed if they had been treated, ruling out the subgroup

ON . In other words, any untreated individuals observed on the sample are members of the

always-observed latent subpopulation (S0 = 1, S1 = 1).

Formally, we have that the following two events are identical: {S0 = 1} = {S0 = 1, S1 = 1}

and the mixture weight for the untreated group, β(p), equals one.

Consequently, P [S0 = 1, S1 = 1|V = p] is point-identified by equation (3.6), and we do not
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need to rely on the partial identification results in Lemma 1 anymore. Specifically, we have

that

P [S0 = 1, S1 = 1|V = p] = −∂P [S = 1, D = 0|P (Z) = p]

∂p
(3.13)

=
∂P [S = 1, D = 1|P (Z) = p]

∂p
− ∂P [S = 1|P (Z) = p]

∂p
.

This result connects the conditional share of always observed individuals to changes on the

conditional mass of observed untreated individuals when the propensity score increases. Look-

ing at the second equality, we find that the conditional probability of being always observed

is the difference between the increase in the share of observed treated individuals and the

increase in the share of observed individuals when the propensity score is equal to p.

Since {S0 = 1} = {S0 = 1, S1 = 1} (β(p) = 1), the distribution of (Y ∗0 , S0 = 1, S1 = 1)|V

is equal to the distribution of (Y ∗0 , S0 = 1)|V , implying that

P [Y ∗0 ∈ A|S0 = 1, S1 = 1, V = p] =
P [Y ∗0 ∈ A,S0 = 1|V = p]

P [S0 = 1, S1 = 1|V = p]
. (3.14)

Note that the right-hand side of equation (3.14) is point-identified according to equations

(3.2) and (3.13). Consequently, the expectation E[Y ∗0 |S0 = 1, S1 = 1, V = p] is also point-

identified. Note that, monotonicity also leads to point identification of the mixture weight,

α(p) =
P [S0 = 1, S1 = 1|V = p]

P [S1 = 1|V = p]
by Equations (3.5) and (3.13).

Then, under monotonicity, the researcher has to obtain bounds only for the potential

outcomes under treatment, which still can be written as a mixture of the always-observed and

observed-only-when-treated latent subpopulations.

As discussed in Section 3.2, the expectation E[Y ∗1 |S0 = 1, S1 = 1, V = p] lies within

the interval [LB1(p), UB1(p)], given in Equations (3.8)-(3.9). We can combine the bounds

with the identification results in equations (3.1), (3.2), (3.5), (3.13) and (3.14) to derive the

following theorem:
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Theorem 1. Under Assumptions 1-6, the MTE is partially identified for the always-observed:

∆2 (p) := E
[
Ỹ1|S = 1, D = 1, P (Z) = p, Ỹ1 ≤ F−1

Ỹ1|S=1,D=1,P (Z)=p
(α(p))

]
− E

[
Ỹ0|S = 1, D = 0, P (Z) = p

]
≤MTEOO (p)

≤ E
[
Ỹ1|S = 1, D = 1, P (Z) = p, Ỹ1 > F−1

Ỹ1|S=1,D=1,P (Z)=p
(1− α(p))

]
− E

[
Ỹ0|S = 1, D = 0, P (Z) = p

]
=: ∆2 (p) ,

where the conditional distribution of Ỹd is given by

Ỹd|S = 1, D = d, P (Z) = p ∼ FỸd|S=1,D=d,P (Z)=p(y) =

∂P[Y≤y,S=1,D=d|P (Z)=p]
∂p

∂P[S=1,D=d|P (Z)=p]
∂p

for any d ∈ {0, 1} and

α (p) = −
∂P[[S=1,D=0|P (Z)=p]

∂p

∂P[S=1,D=1|P (Z)=p]
∂p

.

Moreover, these bounds are sharp.

Remark 4. The definition of sharpness used here follows the definition of sharpness given by

Canay and Shaikh (2017, Remark 2.1.). Intuitively, for any value δ ∈
[
∆2,∆2

]
, it is possible

to construct random variables (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z) that satisfy the restrictions imposed on

the data by Assumptions 1-6 (equations (2.3), (3.3) and (3.4)), induce the joint distribution

on the data (Y, S,D,Z) and achieve δ = E
[
Ỹ ∗1 − Ỹ ∗0

∣∣∣ S̃0 = 1, S̃1 = 1, Ṽ = p
]
.

Remark 5. Notice that, by adding the Monotonicity Assumption, we increase the lower bound

and decrease the upper bound stated in Proposition 1. The length of the identified set here

is strictly shorter than the length of the identified set in Proposition 1 when the mixture

weights are not point identified.17 This improvement clearly shows the identifying power of

Assumption 6.

17That is, the set Υ (p) in Lemma 1 is not a singleton and the distributions of Y ∗0 |S1 = 1, V and Y ∗1 |S1 = 1, V
are not degenerate.
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Remark 6. In the special case in which the treatment D is independent of the potential

outcomes for Y ∗ and S, and α(p) = α for any p ∈ P = [0, 1], the MTE will be constant

and equal to the average treatment effect for the always-observed and the bounds proposed in

Theorem 1 simplify to the ones proposed in Lee (2009, Proposition 1a).

3.5 Bounds under the Monotonicity and Dominance Assumptions

In this subsection, we add the stochastic mean dominance assumption (Assumption 7)

to tighten the identified set for MTEOO under Assumptions 1-7. The stochastic dominance

assumption and equation (3.7) imply that

P [Y ∗1 ≤ y|S1 = 1, V = p] ≥ P [Y ∗1 ≤ y|S0 = 1, S1 = 1, V = p]

for any y ∈ Y. As a consequence, the following inequality holds

E [Y ∗1 |S1 = 1, V = p] ≤ E [Y ∗1 |S0 = 1, S1 = 1, V = p]

This tightens the lower bound for E[Y ∗1 |S0 = 1, S1 = 1, V = p] as we no longer need to

focus on the lowest α(p) mass of outcomes as the lower bound, since the stochastic dominance

assumption guarantees that the expectation of outcomes for the always observed subpopula-

tion will be larger than the one of the observed treated individuals which mixes OO and NO

types. Hence, E[Y ∗1 |S0 = 1, S1 = 1, V = p] lies within the interval [LB3(p), UB3(p)], where

LB3(p) = E [Y ∗1 |S1 = 1, V = p] ,

UB3(p) = E
[
Y ∗1 |S1 = 1, V = p, Y ∗1 > F−1

Y ∗1 |S1=1,V=p (1− α(p))
]
.

Note that the upper bound remains unchanged. Naturally, that leads to tighter identified sets

relative to the ones in Theorem 1, which are presented in the following theorem:
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Theorem 2. Under Assumptions 1-7, the MTE is partially identified for the always-observed:

∆3 (p) := E
[
Ỹ1|S = 1, D = 1, P (Z) = p

]
− E

[
Ỹ0|S = 1, D = 0, P (Z) = p

]
≤MTEOO (p)

≤ E
[
Ỹ1|S = 1, D = 1, P (Z) = p, Ỹ1 > F−1

Ỹ1|S=1,D=1,P (Z)=p
(1− α(p))

]
− E

[
Ỹ0|S = 1, D = 0, P (Z) = p

]
=: ∆3 (p) ,

where the conditional distribution of Ỹd is given by

Ỹd|S = 1, D = d, P (Z) = p ∼ FỸd|S=1,D=d,P (Z)=p(y) =

∂P[Y≤y,S=1,D=d|P (Z)=p]
∂p

∂P[S=1,D=d|P (Z)=p]
∂p

for any d ∈ {0, 1}. and

α (p) = −
∂P[S=1,D=0|P (Z)=p]

∂p

∂P[S=1,D=1|P (Z)=p]
∂p

.

Moreover, these bounds are sharp.

Remark 7. The definition of sharpness used here follows the definition of sharpness given

by Canay and Shaikh (2017, Remark 2.1.). Intuitively, for any value δ ∈
[
∆3,∆3

]
, it is

possible to construct random variables (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z) that satisfy the restrictions im-

posed on the data by Assumptions 1-7 (equations (2.3), (3.3) and (3.4)), satisfy the stochastic

dominance assumption, induce the joint distribution on the data (Y, S,D,Z) and achieve

δ = E
[
Ỹ ∗1 − Ỹ ∗0

∣∣∣ S̃0 = 1, S̃1 = 1, Ṽ = p
]
.

Remark 8. The lower bound proposed here is strictly greater than the one proposed in The-

orem 1 when α (p) ∈ (0, 1) and the distribution of Y ∗1 |S1 = 1, V is not degenerate. This

improvement shows the identifying power of Assumption 7.

Remark 9. In the special case in which the treatment D is independent of the potential

outcomes for Y ∗ and S, and α(p) = α for any p ∈ P = [0, 1], the MTE will be constant

and equal to the average treatment effect for the always-observed and the bounds proposed in

Theorem 1 simplify to the ones proposed in Imai (2008, Equation (8)).
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3.6 Point-identification under the Unit Mass Assumption

In this subsection we provide point-identification results for MTEOO under Assumptions

1-5 and 8. The key difference from the last three subsections is that, under these assumptions,

the distributions of Y ∗0 |S1 = 1, V and Y ∗1 |S1 = 1, V are not mixtures of the distributions

of two latent groups. Now, both distributions are exclusively composed of always-observed

individuals, that is α(p) = β(p) = 1. Consequently, we have that

P [Y ∗0 ∈ A|S0 = 1, S1 = 1, V = p] =
P [Y ∗0 ∈ A,S0 = 1|V = p]

P [S0 = 1|V = p]

P [Y ∗1 ∈ A|S0 = 1, S1 = 1, V = p] =
P [Y ∗1 ∈ A,S1 = 1|V = p]

P [S0 = 1|V = p]
,

where the right-hand sides of both equations are point-identified according to equations (3.1),

(3.2), (3.5) and (3.6). Consequently, the expectations E[Y ∗0 |S0 = 1, S1 = 1, V = p] and

E[Y ∗1 |S0 = 1, S1 = 1, V = p] are also point-identified. Using this result, we can derive the

following proposition:

Proposition 2. Under Assumptions 1-5 and 8, the MTE is point-identified for the always-

observed:

MTEOO (p) =

∂E[Y S|P (Z)=p]
∂p

∂E[SD|P (Z)=p]
∂p

.

Remark 10. If we additionally impose that all individuals in the population are always-

observed, then the unconditional MTE is equal to MTEOO and is point-identified. Moreover,

the unconditional MTE is equal to the Heckman and Vytlacil (2005) estimand:

E[Y ∗1 − Y ∗0 |V = p] =
∂E[Y |P (Z) = p]

∂p
.

An alternative to achieve point-identification of the unconditional MTE is to assume that

potential sample selection status (S0, S1) is independent of the potential outcomes (Y ∗0 , Y
∗

1 )

given the unobserved characteristics V , i.e., (S0, S1) |= (Y ∗0 , Y
∗

1 )|V . In this case, the distri-

butions P [Y ∗1 ≤ y|V = p] and P [Y ∗0 ≤ y|V = p)] are point-identified since P [Y ∗d ≤ y|V = p] =
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P [Y ∗d ≤ y|Sd = 1, V = p] for d ∈ {0, 1}, which is identified from Equations (3.1) and (3.2).

Consequently, the unconditional MTE is point-identified as follows:

E[Y ∗1 − Y ∗0 |V = p] =

∂E[Y SD|P (Z)=p]
∂p

∂E[SD|P (Z)=p]
∂p

−
∂E[Y S(1−D)|P (Z)=p]

∂p

∂E[S(1−D)|P (Z)=p]
∂p

.

Even though both assumptions are likely too strong for many applied contexts, they are

stated here for completeness.

3.7 Empirical Relevance of Bounds for the MTEOO

The novel partial identification results for MTEOO presented in this section are relevant

for a vast array of empirical objectives. First, bounds for the MTEOO can illuminate the

heterogeneity of the treatment effect, allowing researchers to better understand who would

benefit from a specific treatment. This is important because common parameters (e.g., ATE,

ATT , ATU and LATE within the always-observed subpopulation) can be positive even when

most people are adversely affected by a policy. Moreover, knowing, even partially, theMTEOO

function can be useful to optimally design policies that provide incentives to agents to take

some treatment. Second, the MTEOO bounds can be used to partially identify alternative

treatment effect parameters that are described as a weighted integral of MTEOO (p) because

∫
P

(∆t (p) · ω (p)) dp ≤
∫
P

(
MTEOO (p) · ω (p)

)
dp ≤

∫
P

(
∆t (p) · ω (p)

)
dp,

where t ∈ {1, 2, 3}, ∆t and ∆t are described in Proposition 1, Theorem 1 or Theorem 2,

and ω(·) is a known or identifiable weighting function. Moreover, those bounds are sharp as

summarized in the following proposition:

Proposition 3. Let ω : P → R be a known or identifiable weighting function and define the

treatment effect parameter TE :=
∫
PMTEOO (p) · ω (p) dp.
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Under Assumptions 1-5, the treatment effect parameter TE is partially identified:

∫
P

(∆1 (p) · ω (p)) dp ≤ TE ≤
∫
P

(
∆1 (p) · ω (p)

)
dp.

Under Assumptions 1-6, the treatment effect parameter TE is partially identified:

∫
P

(∆2 (p) · ω (p)) dp ≤ TE ≤
∫
P

(
∆2 (p) · ω (p)

)
dp.

Under Assumptions 1-7, the treatment effect parameter TE is partially identified:

∫
P

(∆3 (p) · ω (p)) dp ≤ TE ≤
∫
P

(
∆3 (p) · ω (p)

)
dp.

Moreover, these bounds are sharp according to the definition given by Canay and Shaikh

(2017, Remark 2.1).

Tables 2 and 3 show some of the treatment effect parameters that can be partially identified

using Proposition 3. More examples are given by Heckman, Urzua, and Vytlacil (2006, Tables

1A and 1B) and Mogstad, Santos, and Torgovitsky (2018, Table 1).

Table 2: Treatment Effects as Weighted Integrals of the MTE

ATEOO = E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1] =
∫ 1

0 MTEOO (p) dp

ATTOO = E [Y ∗1 − Y ∗0 |D = 1, S0 = 1, S1 = 1] =
∫ 1

0 MTEOO (p) · ωATT (p) dp

ATUOO = E [Y ∗1 − Y ∗0 |D = 0, S0 = 1, S1 = 1] =
∫ 1

0 MTEOO (p) · ωATU (p) dp

LATEOO(p, p) = E
[
Y ∗1 − Y ∗0

∣∣V ∈ [p, p] , S0 = 1, S1 = 1
]

=
∫ 1

0 MTEOO (p) · ωLATE (p) dp
Source: Heckman, Urzua, and Vytlacil (2006) and Mogstad, Santos, and Torgovitsky (2018).
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Table 3: Weights

ωATT (p) =

∫ 1
p fP (Z) (u) du

E [P (Z)]

ωATU (p) ==

∫ p
0 fP (Z) (u) du

1− E [P (Z)]

ωLATE (p) =
1
{
p ∈

[
p, p
]}

p− p
Source: Heckman, Urzua, and Vyt-
lacil (2006) and Mogstad, Santos, and
Torgovitsky (2018).

4 Numerical Illustration

In this section, we highlight the feasibility and usefulness of the bounds proposed in

Section 3 by considering a numerical illustration of a simple structural model with endogenous

treatment and sample selection. We present the bounds for MTEOO based on Proposition 1

and on Theorem 1. The illustration provides insights on the functioning of the bounds as well

as the mechanisms driving how informative those bounds are. Consider the following data

generating process (DGP):



Y = Y ∗S

Y ∗ = Y ∗1 D + Y ∗0 (1−D)

S = 1 {US ≤ δ0 + δ1D}

D = 1 {V ≤ Φ(Z)}

(4.1)

We set 

V = Φ(θ)

US = 1√
2
(θ + εS)

Y ∗0 = T · β0,1θ + γ0 + (1− T ) · (−β0,0θ − γ0)

Y ∗1 = T · β1,1θ + γ1 + (1− T ) · (−β1,0θ − γ1)

(4.2)

where (θ, εS , γ0, γ1, Z, ξ)
′ ∼ N(0, I), T = 1 {ξ ≥ 0}, I is the identity matrix, Φ(.) is the

standard normal CDF, and Φ−1(·) its inverse. The potential outcomes equations has random
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coefficients in this illustration, which can be intuitively understood as having two sets of

individuals that might face different returns to treatment due to, for example, their gender or

race. From a technical perspective, this choice guarantees reasonable overlap for treated and

untreated groups in the observed population over the support of the the outcome conditional

on V .

We present the bounds for the MTEOO described in Proposition 1 (∆1,∆1) in Figure 1,

and Theorem 1 (∆2,∆2) in Figure 2 for parameters δ0 = 0.1, δ1 = 0.4, β0,0 = β0,1 = β1,0 = 1

and β1,1 = 5.18
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(b) Bounds as a function of P [S0 = 1|V = p] +
P [S1 = 1|V = p]− 1

Notes: The solid lines are the true values of the MTEOO. The red dotted lines and the blue dashed lines are,
respectively, the values of the upper and lower bounds around the MTEOO computed by numerical integration
using 100,000 simulated points for each value of the propensity score.

Figure 1: Numerical Bounds based on Proposition 1

As can be seen on Subfigure 1(a), the bounds based on Proposition 1 are not very in-

formative for a large part of the support of V . In this DGP, when the propensity score is

small (p is close to zero), υ` — the lower bound on the proportion of the always-observed

(P [S0 = 1|V = p] + P [S1 = 1|V = p]− 1) — approaches 1 and the MTEOO is almost point-

identified as the bounds are close to each other. On the other hand, when p is larger than

18Note that these bounds can be computed using numeric integration. See Appendix C for more details.
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0.664, the lower bound on the proportion of the always-observed becomes exactly zero, the

MTEOO is not identified and the bounds diverge. Nevertheless, the sign of MTEOO is iden-

tified for propensity scores smaller than 0.28.

Subfigure 1(b) plots the identified interval for MTEOO against υ` on the horizontal axis,

emphasizing the important role of the lower bound on the proportion of the always-observed.

As υ` increases, the observed expectation of the outcomes conditional on V = p is fully com-

posed by the always-observed group, leading to point identification of the MTEOO. Moreover,

they also illustrate that we can only non-trivially bound the MTEOO when the lower bound

on the proportion of the always-observed is strictly positive.

Figure 2 plots the MTEOO and the its bounds based on Theorem 1, i.e., under the

monotonicity assumption. The bounds presented on Subfigure 2(a) are in general informative.

Similarly to the discussion above, when the propensity score is small (p is close to zero), the

proportion of the always-observed (α (p)) approaches 1 and the MTEOO is almost point-

identified. When p is close to 1, the proportion of the always-observed decreases and the

identified set around the MTEOO increases. Moreover, The sign of the MTEOO is identified

for p < 0.409, illustrating that Assumption 6 allow us to identify the sign of the MTEOO in

more cases than in Figure 1.

Subfigure 2(b) plots the same curves with α(p) on the horizontal axis, emphasizing the

importance of the trimming proportion. As α(p) → 1 , the observed expectation of the

outcomes conditional on V = p is fully composed by the always-observed group, leading to

point identification of the MTEOO. Moreover, they also illustrate that, under Assumption 6,

α(p) never reaches zero, allowing us to non-trivially bound the MTEOO for all values of the

propensity score.

Figure 3 is a zoomed version of Subfigures 1(a) and 2(a). Note that the bounds based on

Theorem 1 are much tighter than the bounds based on Proposition 1, especially for larger

values of p. This is expected as the difference in trimming proportions in Proposition 1 and

Theorem 1 increases with the propensity score for this DGP.19

19Assumption 7 holds with equality in this DGP, implying that the lower bound is equal to the true MTEOO

for the case considered in Theorem 2.
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Figure 2: Numerical Bounds based on Theorem 1
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Figure 3: Comparing Proposition 1 and Theorem 1
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5 Estimation

This section presents an estimator for the bounds proposed in Theorem 1. For brevity, we

focus on the bounds identified under the monotonicity of treatment on sample selection case

(Assumptions 1-6), as it is the most relevant (and feasible) case empirically. Estimators for the

bounds proposed in Proposition 1, Theorem 2 and Proposition 2 are natural extensions of the

estimator discussed here. Subsections 5.1-5.4 present the estimation procedure. Appendix D

presents a Monte Carlo Simulation that evaluates the small sample properties of our estimator.

In order to estimate the bounds in Theorem 1, we need to obtain the cumulative distri-

bution functions:

Ỹd|S = 1, D = d, P (Z) = p ∼ FỸd|S=1,D=d,P (Z)=p(y) =

∂P[Y≤y,S=1,D=d|P (Z)=p]
∂p

∂P[S=1,D=d|P (Z)=p]
∂p

for any d ∈ {0, 1} and

α (p) = −
∂P[S=1,D=0|P (Z)=p]

∂p

∂P[S=1,D=1|P (Z)=p]
∂p

.

Consequently, we need to estimate:

Γ1 (p, y) :=
∂P [Y ≤ y, S = 1, D = 1|P (Z) = p]

∂p
, π1 (p) :=

∂P [S = 1, D = 1|P (Z) = p]

∂p
,

Γ0 (p, y) := −∂P [Y ≤ y, S = 1, D = 0|P (Z) = p]

∂p
, π0 (p) := −∂P [S = 1, D = 0|P (Z) = p]

∂p
.

Furthermore, the estimation of the propensity score P (Z) is necessary to obtain the moments

of the conditional distribution of the observed outcome.

5.1 Estimating the Propensity Score P (Z)

The procedures proposed by Carneiro and Lee (2009) to estimate P (z) = P(D = 1|Z = z)

apply directly to our case, since treatment status D is observed for all individuals, and

are summarized here. We model the probability as a partially linear additive regression

model to improve precision of the estimates while avoiding the curse of dimensionality:
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P [D = 1|Z = z] = zpcϑ +
∑d

j=1 ϕj(z
c
j), where z is composed by nonparametric (zc) and

parametric (zpc) components, zc is a continuous random vector of dimension d, ϑ is a vector

of unknown parameters and ϕj(·) are unknown functions.

Let {pκ : κ = 1, 2...} be the basis for smooth functions that we will use to approximate ϕj(·)

more closely as the number of approximating functions increases. For a given κ > 0, define

Pκ(z) = [zpc, p1(zc1), . . . , pκ(zc1), . . . , p1(zcd), . . . , pκ(zcd)]
′. Then, using Carneiro and Lee (2009)

notation, we have that P̃(Zi) = Pκ(Zi)
′θ̂κ, where θ̂κ = [

∑n
i=1 Pκ(Zi)Pκ(Zi)

′]−1 [
∑n

i=1 Pκ(Zi)Di].

As discussed in Carneiro and Lee (2009), the estimated probabilities might fall outside of the

[0, 1] interval in finite samples. As a consequence, it is preferable to use the trimmed version,

P̂i ≡ P̂(Zi) = P̃(Zi) + (1−λ− P̃(Zi))1(P̃(Zi) > 1) + (λ− P̃(Zi))1(P̃(Zi) < 0), for a suitably

small positive λ. Alternatively, a typical conditional probability estimator of P (·) based on a

logit or probit model could be used, so that the fitted probability always lies between 0 and

1.

5.2 Estimating π1 (p), π0 (p) and α (p)

In order to estimate π1 (p) and π0 (p), we consider the local polynomial estimators (Fan

and Gijbels, 1996):

π̂1(p) := e2 argmin
c0,c1,c2

n∑
i=1

[
SiDi − c0 − c1(P̂i − p)− c2(P̂i − p)2

]2
K

(
P̂i − p
h

)
,

π̂0(p) := −e2 argmin
c0,c1,c2

n∑
i=1

[
Si(1−Di)− c0 − c1(P̂i − p)− c2(P̂i − p)2

]2
K

(
P̂i − p
h

)

where eg is a conformable row vector of zeros with g-th element equal to one, K(·) is a kernel

function and h is a bandwidth. Recent developments in Calonico, Cattaneo, and Farrell

(2018) for nonparametric inference establish higher-order improvements that can be obtained

by utilizing a robust bias-corrected (RBC) procedure for the estimation of those terms, which

we adopt. Furthermore, Calonico, Cattaneo, and Farrell (2019a) develop optimal bandwidth

and kernel selection for optimal coverage error and interval lenght for such RBC methods.

Hence, we implement the RBC version of these estimators with optimal bandwidth choice as
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conveniently implemented in the software R, using the package nprobust. 20

To estimate α (p), we simply take its sample analog: α̂ (p) :=
π̂0 (p)

π̂1 (p)
.

5.3 Estimating Γ1 (p, y) and Γ0 (p, y)

In order to estimate Γ1 (p, y) and Γ0 (p, y), we choose a grid for the outcome variable

({y1, . . . , yKn}) and estimate the conditional density of the outcome for each bin in the grid,

leading to the following local polynomial regression (Fan and Gijbels, 1996),

γ̂1(p, k) := e2 argmin
c0,c1,c2

n∑
i=1

{[
1 {yk−1 ≤ Yi ≤ yk}SiDi − c0 − c1(P̂i − p)− c2(P̂i − p)2

]2

·K

(
P̂i − p
h

)}
,

γ̂0(p, k) := −e2 argmin
c0,c1,c2

n∑
i=1

{[
1 {yk−1 ≤ Yi ≤ yk}Si(1−Di)− c0 − c1(P̂i − p)− c2(P̂i − p)2

]2

·K

(
P̂i − p
h

)}

for any k ∈ {2, . . . ,KN}. Once more, we use the RBC procedure and the optimal band-

width selection mechanism proposed by Calonico, Cattaneo, and Farrell (2018) and Calonico,

Cattaneo, and Farrell (2019a).

Natural estimators for Γ1 (p, y) and Γ0 (p, y) are given by Γ̂1 (p, yk) :=
∑k

j=2 γ̂1(p, j) and

Γ̂0 (p, yk) :=
∑k

j=2 γ̂0(p, j) for any k ∈ {2, . . . ,KN}.

The estimation of γ̂d(p, k) is a crucial step and can be adversely affected by several features

of the population DGP and the available data. For example, these estimators will perform well

in situations for which the available data about the observed outcome covers the whole range

of possible values of Y for the values of p being considered and for both treated and untreated

individuals. One can mitigate the challenges to feasibility of the estimator by choosing wider

bins [yk−1 ≤ Yi ≤ yk], at the cost of obtaining a coarse description of the distribution of

Y ∗d |V = p. That can be particularly harmful in the region around the trimming points, and

should be considered carefully.

20See Calonico, Cattaneo, and Farrell (2019b) for details.
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5.4 Estimating MTEOO(p) Bounds

The estimators for the bounds LB2(p) and UB2(p) can be obtained as

L̂B1(p) :=

KN∑
k=2

yk · 1
{

Γ̂1 (p, yk) ≤ α̂ (p)
}
· γ̂1(p, k)

α̂ (p)
(5.1)

ÛB1(p) :=

KN∑
k=2

yk · 1
{

1− Γ̂1 (p, yk) < α̂ (p)
}
· γ̂1(p, k)

α̂ (p)
, (5.2)

where yk is the center point of each bin [yk−1, yk] for any k ∈ {2, . . . ,KN}. Moreover, we can

estimate E
[
Ỹ0|S = 1, D = 0, P (Z) = p

]
in Theorem 1 using Ξ̂OO,0(p) :=

∑KN
k=2 yk · γ̂1(p, k).

Note that the estimators for L̂B1(p), ÛB1(p) and Ξ̂OO,0(p) rely on the estimates for den-

sities and trimming points obtained in previous steps, not relying on the original data for the

observed outcomes.

Naturally, the estimated MTEOO bounds can, then, be obtained by ∆̂2 (p) := L̂B1(p) −

Ξ̂OO,0(p) and ∆̂2 (p) := ÛB1(p)− Ξ̂OO,0(p).

Analyzing the inference procedures and asymptotic properties of the proposed estimators

is beyond the scope of this paper and an exciting area for future work.

We summarize the estimation procedure in the following steps:

Step 1. Estimate P(D = 1|Z = z) and obtain P̂i = P̂(Zi) for all observations.

Step 2. Estimate γ̂0(p, yk), γ̂1(p, yk), π̂0(p) and π̂1(p) for the value p of interest.

Step 3. Estimate α̂(p) for p.

Step 4. Implement L̂B1(p), ÛB1(p) and Ξ̂OO,0(p).

Step 5. Calculate the bounds for MTEOO(p) using ∆̂2 (p) and ∆̂2 (p).

6 Extensions

We provide two extensions to our main results. In Subsection 6.1, we extend Theorem 1

to bound the distributional marginal treatment effect for the always-observed sub-population.
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Subsection 6.2 extends Theorem 1 to the case with multi-valued discrete instruments, implying

that we identify many LATE parameters for the always-observed subpopulation. In both

subsections, we focus on the case under the monotonicity restriction (Assumption 1-6) for

brevity. Similar results hold under our other identifying sets of assumptions.

6.1 Bounds for the distributional marginal treatment effect (DMTE)

In this section, we derive sharp bounds on the distributional marginal treatment effect

defined as

DMTEOO(A; p) := P [Y ∗1 ∈ A|S0 = 1, S1 = 1, V = p]− P [Y ∗0 ∈ A|S0 = 1, S1 = 1, V = p] .

Carneiro and Lee (2009) show point identification results for P [Y ∗1 ∈ A|V = p]−P [Y ∗0 ∈ A|V = p]

when there is no sample selection. However, in the presence of sample selection, the DMTE

is only partially identified.

Combining Equation (3.7) and Corollary 1.2 by Horowitz and Manski (1995), we obtain

functionally sharp bounds on the DMTEOO(A; p).

Proposition 4. Under Assumptions 1-6, sharp bounds on the DMTE are given by:

max

{
0,

P [Y ∗1 ∈ A|S1 = 1, V = p]− (1− α(p))

α(p)

}
− P [Y ∗0 ∈ A|S0 = 1, S1 = 1, V = p]

≤ DMTEOO(A; p) ≤

min

{
1,

P [Y ∗1 ∈ A|S1 = 1, V = p]

α(p)

}
− P [Y ∗0 ∈ A|S0 = 1, S1 = 1, V = p] .

6.2 Identification with discrete instruments

In many applications, the only instruments available are discrete, e.g, treatment eligibility,

number of children in the household, quarter of birth. In this section, we provide additional

identification results when the instrument is multi-valued discrete, implying the the support

of the propensity score is finite. The results here can be seen as an extension of the work

developed by Chen and Flores (2015), who analyze the case for binary instrument.

37



Assumption 9. The instrument Z is discrete with support {z1, z2, . . . , zK} and the propensity

score p` ≡ P [D = 1|Z = z`] satisfies 0 < p1 < p2 < . . . < pK < 1.

Assumption 9 requires that one can rank the probabilities of receiving treatment for the

points of P (Z) that are available, allowing the researcher to partition the [0, 1] interval into

regions [p` − p`−1] for ` = 2, ...,K. The researcher will only be able to identify an average of

the MTE within each region, i.e., a LATE. Naturally, if the instrument has more points of

positive mass (providing finer partitions of the probabilities), we are able to obtain averages

of the MTE for more specific ranges of the unobservable characteristic V .21

Remark 11. Multivalued qualitative instruments, e.g., profession, location, race, can be used

by sorting the probabilities associated with each category in ascending order for analysis.

The identification argument is similar to the one presented for the continuous instrument

case in Subsection 3.4.

Under Assumption 1, we have p` = P [V ≤ P (z`)] and P [P (z`−1) < V ≤ P (z`)] = p`−p`−1.

If Assumptions 1 and 5 hold, then P (z`) = p`. To ease the exposition, we use the shorthand

P := P (Z).

We have P [Y ∈ A,S = 1, D = 1|P = p`] = P [Y ∗1 ∈ A,S1 = 1, V ≤ p`]. Therefore,

P [Y ∗1 ∈ A,S1 = 1, p`−1 < V ≤ p`] = P [Y ∈ A,S = 1, D = 1|P = p`]

−P [Y ∈ A,S = 1, D = 1|P = p`−1] ,

which implies that

P [Y ∗1 ∈ A,S1 = 1|p`−1 < V ≤ p`] =

P [Y ∈ A,S = 1, D = 1|P = p`]− P [Y ∈ A,S = 1, D = 1|P = p`−1]

p` − p`−1
.

21If for some values of Z, the probabilities are the same, p` = p`−1, we cannot refine the partition of the unit
interval describing the probabilities and, hence, cannot improve on the detail level of the MTE identified.
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Similarly, we have

P [Y ∗0 ∈ A,S0 = 1|p`−1 < V ≤ p`] =

−P [Y ∈ A,S = 1, D = 0|P = p`]− P [Y ∈ A,S = 1, D = 0|P = p`−1]

p` − p`−1
.

Thus for A = Y, we can write

P [S1 = 1|p`−1 < V ≤ p`] =
P [S = 1, D = 1|P = p`]− P [S = 1, D = 1|P = p`−1]

p` − p`−1
,

P [S0 = 1|p`−1 < V ≤ p`] = −P [S = 1, D = 0|P = p`]− P [S = 1, D = 0|P = p`−1]

p` − p`−1
.

We know that P [Y ∗d ∈ A|Sd = 1, p`−1 < V ≤ p`] =
P[Y ∗d ∈A,Sd=1|p`−1<V≤p`]

P[Sd=1|p`−1<V≤p`] for d ∈ {0, 1}. Un-

der Assumption 6, we identify P [S0 = 1, S1 = 1|p`−1 < V ≤ p`] as P [S0 = 1|p`−1 < V ≤ p`].

To implement the trimming in this setting, we define the discrete case analog of α(p),

denoted by α̃(p`−1, p`),

α̃(p`−1, p`) :=
P [S0 = 1, S1 = 1|p`−1 < V ≤ p`]

P [S1 = 1|p`−1 < V ≤ p`]
=

E[S(1−D)|P = p`−1]− E[S(1−D)|P = p`]

E[SD|P = p`]− E[SD|P = p`−1]
.

Using the same steps as in Subsection 3.4, we derive bounds on E[Y ∗1 − Y ∗0 |S0 = 1, S1 =

1, p`−1 < V ≤ p`].

Proposition 5. Under Assumptions 1-6 and 9, the following holds: for ` = 2, . . . ,K

E
[
Y ∗1 |S1 = 1, p`−1 < V ≤ p`, Y ∗1 ≤ F−1

Y ∗
1 |S1=1,p`−1<V≤p`

(α̃(p`−1, p`))
]
− E[Y ∗0 |S0 = 1, S1 = 1, p`−1 < V ≤ p`]

≤ E[Y ∗1 − Y ∗0 |S0 = 1, S1 = 1, p`−1 < V ≤ p`] ≤

E
[
Y ∗1 |S1 = 1, p`−1 < V ≤ p`, Y ∗1 > F−1

Y ∗
1 |S1=1,p`−1<V≤p`

(1− α̃(p`−1, p`))
]
− E[Y ∗0 |S0 = 1, S1 = 1, p`−1 < V ≤ p`].

These bounds are sharp.

As mentioned above, the quantity for which we derive bounds in Proposition 5 is a average

of the MTE(p) evaluated at levels of p in the interval (p`−1, p`], i.e., we partially identify a

LATE. More can be said about the MTE if additional assumptions are made. For example, if

we assume that the MTE is flat within each interval, then Theorem 5 provides sharp bounds
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on the MTE for the always-observed. Note that Brinch, Mogstad, and Wiswall (2017) showed

how a discrete instrument can be used to identify the marginal treatment effects under some

functional structure in the absence of sample selection. An extension of their results to the

current framework is an interesting question for future research.

7 Conclusion

This paper derives sharp bounds for the marginal treatment effect for the always-observed

individuals when there is sample selection. We achieve partial identification results under

four increasingly restrictive sets of assumptions. First, we impose standard MTE assumptions

without any restrictions to the sample selection mechanism. The second case, which is the

main result of this work, imposes monotonicity of the sample selection variable with respect to

the treatment, considerably shrinking the identified set. Then, we consider a strong stochastic

dominance assumption which tightens the lower bound for the MTE. Finally, we provide a

set of conditions that allows point identification for completeness. All the results rely on the

insight that the treated individuals observed in the sample will be of two possible groups, the

ones that would always be observed regardless of treatment status and the ones that would

self-select into the sample only when treated. Hence, we can rewrite the distribution of the

observed population as a mixture of these groups, and the mixture weights can be identified.

This leads to a trimming procedure that partially identifies the target parameter, extending

Imai (2008), Lee (2009) and Chen and Flores (2015) to the context of MTE. Moreover, we

derive testable implications of our identifying assumptions. We present a numerical example

that the bounds can be informative in relevant settings. A feasible nonparametric estimator

is proposed and simulation evidence of its performance in estimating the bounds for the

parameter of interest is presented.
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Supporting Information
(Online Appendix)

A Proofs

A.1 Proof of Proposition 1

The validity of the bounds is proven in the main text. It remains to show that the bounds

are sharp. Given the restrictions that Assumptions 1-5 impose on the data (i.e., equations

(3.3) and (3.4)), we need to find joint distributions on (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z) that satisfy these

restrictions, induce the joint distribution on the data (Y, S,D,Z), and achieve any value

δ ∈
[
∆1,∆1

]
.

Assume that Y ∗ is absolutely continuous and has a strictly positive density. Fix p ∈

[0, 1] arbitrarily. Define υ := argminυ∈Υ(p) {LB1(p, υ)− UB0(p, υ)}, where LB1(p, υ) and

UB0(p, υ) are defined in Subsection 3.3. For brevity, denote the strata by OO = always

observed, NO = observed only when treated, ON = observed only when untreated and NN

= never observed, and the probability of the stratum k conditional on (Ṽ = p, Z = z) by

π̃k|p,z. The probabilities π̃k|p,z are given by:

π̃OO|p,z = υ

π̃NO|p,z =
∂P(S = 1, D = 1|P (Z) = p)

∂p
− υ

π̃ON |p,z = −∂P(S = 1, D = 0|P (Z) = p)

∂p
− υ

π̃NN |p,z = 1− π̃OO|p,z − π̃NO|p,z − π̃ON |p,z.

According to Lemma 1, the above quantities are positive. Note also that they add up to 1 by

construction.

Now, we will show that the the lower bound ∆1 is attainable. Define

FỸ ∗1 |S̃1=1,Ṽ=p,Z=z(y1) =

∂P(Y≤y1,S=1,D=1|P (Z)=p)
∂p

∂P(S=1,D=1|P (Z)=p)
∂p

47



and note that this function has to be a C.D.F. under the identifying assumptions as it is a

mixture of two distributions FY ∗1 |OO,V=p and FY ∗1 |NO,V=p. Similarly, define

FỸ ∗0 |S̃0=1,Ṽ=p,Z=z(y0) =

∂P(Y≤y0,S=1,D=0|P (Z)=p)
∂p

∂P(S=1,D=0|P (Z)=p)
∂p

and note that this function has to be a C.D.F. under the identifying assumptions as it is a

mixture of two distributions FY ∗0 |OO,V=p and FY ∗0 |ON,V=p.

Suppose that Ỹ0 ∼ FỸ ∗0 |S̃0=1,Ṽ=p,Z=z and Ỹ1 ∼ FỸ ∗1 |S̃1=1,Ṽ=p,Z=z. Define Ṽ = FỸ1(Ỹ1) and

P(Ỹ ∗1 ≤ y1|OO, Ṽ = p, Z = z) = P
(
Ỹ1 ≤ y1|Ỹ1 ≤ F−1

Ỹ1

(
π̃OO|p,z

π̃OO|p,z + π̃NO|p,z

))
,

P(Ỹ ∗1 ≤ y1|NO, Ṽ = p, Z = z) = P
(
Ỹ1 ≤ y1|Ỹ1 > F−1

Ỹ1

(
π̃OO|p,z

π̃OO|p,z + π̃NO|p,z

))
,

P(Ỹ ∗1 ≤ y1|k, Ṽ = p, Z = z) =

∂P(Y≤y1,S=1,D=1|P (Z)=p)
∂p

∂P(S=1,D=1|P (Z)=p)
∂p

, k ∈ {ON,NN}

P(Ỹ ∗0 ≤ y0|OO, Ṽ = p, Z = z) = P
(
Ỹ0 ≤ y0|Ỹ0 > F−1

Ỹ0

(
π̃ON |p,z

π̃OO|p,z + π̃ON |p,z

))
,

P(Ỹ ∗0 ≤ y0|NO, Ṽ = p, Z = z) = P
(
Ỹ0 ≤ y0|Ỹ0 ≤ F−1

Ỹ0

(
π̃ON |p,z

π̃OO|p,z + π̃ON |p,z

))
,

P(Ỹ ∗0 ≤ y0|k, Ṽ = p, Z = z) =

∂P(Y≤y0,S=1,D=0|P (Z)=p)
∂p

∂P(S=1,D=0|P (Z)=p)
∂p

, k ∈ {NO,NN} .

Finally, define the joint density (mass) function on (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z):

fỸ ∗0 ,Ỹ ∗1 ,(S̃0,S̃1),Ṽ ,Z(y0, y1, k, p, z) =
∂P(Ỹ ∗0 ≤ y0|k, Ṽ = p, Z = z)

∂y0
·

∂P(Ỹ ∗1 ≤ y1|k, Ṽ = p, Z = z)

∂y1
· π̃k|p,z · fZ(z)

for k ∈ {OO,NO,ON,NN}, where fZ(z) is the density function of Z.

Notice that the lower bound in Proposition 1 is attained by the distributions of Ỹ ∗0

∣∣∣OO, Ṽ , Z
and Ỹ ∗1

∣∣∣OO, Ṽ , Z, i.e.,

∆1 = E(Ỹ ∗1 − Ỹ ∗0 |OO, Ṽ = p, Z = z).
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Similar reasoning holds for the upper bound, ∆1. To attain any value δ ∈
(
∆1,∆1

)
, we can

use convex combinations of the joint distributions that attain the lower and upper bounds.

Moreover, note that the joint distribution of (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z) satisfy the restrictions

imposed by Assumptions 1-5 and induce the joint distribution on the data (Y, S,D,Z) by

construction.

A.2 Proof of Theorem 1

The validity of the bounds is proven in the main text. It remains to show that the bounds

are sharp. Given the restrictions that Assumptions 1-6 impose on the data (i.e., equations

(2.3), (3.3) and (3.4)), we need to find joint distributions on (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z) that satisfy

these restrictions, induce the joint distribution on the data (Y, S,D,Z), and achieve any value

δ ∈
[
∆2,∆2

]
.

Assume that Y ∗ is absolutely continuous and has a strictly positive density. Fix p ∈ [0, 1]

arbitrarily. For brevity, denote the strata by OO = always observed, NO = observed only

when treated, and NN = never observed, and the probability of the stratum k conditional on

(Ṽ = p, Z = z) by π̃k|p,z. The probabilities π̃k|p,z are given by:

π̃OO|p,z = −∂P(S = 1, D = 0|P (Z) = p)

∂p

π̃NO|p,z =
∂P(S = 1|P (Z) = p)

∂p
,

π̃NN |p,z =
∂P(S = 0, D = 1|P (Z) = p)

∂p
.

Under Assumptions 1-6, the above quantities are positive. We show that they sum up to

one. Indeed,

π̃OO|p,z + π̃NO|p,z = −∂P(S = 1, D = 0|P (Z) = p)

∂p
+
∂P(S = 1|P (Z) = p)

∂p
,

=
∂P(S = 1, D = 1|P (Z) = p)

∂p
.
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Then

π̃OO|p,z + π̃NO|p,z + π̃NN |p,z =
∂P(S = 0, D = 1|P (Z) = p)

∂p
+
∂P(S = 1, D = 1|P (Z) = p)

∂p
,

=
∂P(D = 1|P (Z) = p)

∂p

We have

P(D = 1|P (Z) = p) = P(V ≤ p|P (Z) = p) by definition,

= P(V ≤ p) under Assumption 1,

= p under Assumption 5.

Therefore, π̃OO|p,z + π̃NO|p,z + π̃NN |p,z = 1.

Now, we will show that the the lower bound ∆1 is attainable. Define

FỸ ∗1 |S̃1=1,Ṽ=p,Z=z(y1) =

∂P(Y≤y1,S=1,D=1|P (Z)=p)
∂p

∂P(S=1,D=1|P (Z)=p)
∂p

and note that this function has to be a C.D.F. under the identifying assumptions as it is a

mixture of two distributions FY ∗1 |OO,V=p and FY ∗1 |NO,V=p. Similarly, define

FỸ ∗0 |OO,Ṽ=p,Z=z(y0) =

∂P(Y≤y0,S=1,D=0|P (Z)=p)
∂p

∂P(S=1,D=0|P (Z)=p)
∂p

and note that this function has to be a C.D.F. under the identifying assumptions as it is a

mixture of two distributions FY ∗0 |OO,V=p and FY ∗0 |ON,V=p.

Suppose that Ỹ1 ∼ FỸ ∗1 |S̃1=1,Ṽ=p,Z=z. Define Ṽ = FỸ1(Ỹ1) and

P(Ỹ ∗1 ≤ y1|OO, Ṽ = p, Z = z) = P
(
Ỹ1 ≤ y1|Ỹ1 ≤ F−1

Ỹ1

(
π̃OO|p,z

π̃OO|p,z + π̃NO|p,z

))
, (A.1)

P(Ỹ ∗1 ≤ y1|NO, Ṽ = p, Z = z) = P
(
Ỹ1 ≤ y1|Ỹ1 > F−1

Ỹ

(
π̃OO|p,z

π̃OO|p,z + π̃NO|p,z

))
, (A.2)
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P(Ỹ ∗1 ≤ y1|NN, Ṽ = p, Z = z) =

∂P(Y≤y1,S=1,D=1|P (Z)=p)
∂p

∂P(S=1,D=1|P (Z)=p)
∂p

,

P(Ỹ ∗0 ≤ y0|k, Ṽ = p, Z = z) =

∂P(Y≤y0,S=1,D=0|P (Z)=p)
∂p

∂P(S=1,D=0|P (Z)=p)
∂p

, k ∈ {NO,NN} .

Finally, define the joint density (mass) function on (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z):

fỸ ∗0 ,Ỹ ∗1 ,(S̃0,S̃1),Ṽ ,Z(y0, y1, k, p, z) =
∂P(Ỹ ∗0 ≤ y0|k, Ṽ = p, Z = z)

∂y0
·

∂P(Ỹ ∗1 ≤ y1|k, Ṽ = p, Z = z)

∂y1
· π̃k|p,z · fZ(z)

for k ∈ {OO,NO,NN}, where fZ(z) is the density function of Z.

Notice that the lower bound in Proposition 1 is attained by the distributions of Ỹ ∗0

∣∣∣OO, Ṽ , Z
and Ỹ ∗1

∣∣∣OO, Ṽ , Z, i.e.,

∆2 = E(Ỹ ∗1 − Ỹ ∗0 |OO, Ṽ = p, Z = z).

Similar reasoning holds for the upper bound, ∆2. To attain any value δ ∈
(
∆2,∆2

)
, we can

use convex combinations of the joint distributions that attain the lower and upper bounds.

Moreover, note that the joint distribution of (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z) satisfy the restrictions

imposed by Assumptions 1-6 and induce the joint distribution on the data (Y, S,D,Z) by

construction.

A.3 Proof of Theorem 2

The validity of the bounds is proven in the main text. It remains to show that the bounds

are sharp. Given the restrictions that Assumptions 1-7 impose on the data (i.e., equations

(2.3), (3.3) and (3.4)), we need to find joint distributions on (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z) that satisfy

these restriction, satisfy the stochastic dominance assumption, induce the joint distribution

on the data (Y, S,D,Z), and achieve any value δ ∈
[
∆3,∆3

]
.

The proof of Theorem 2 is very similar to the one in Appendix A.1. We only have to
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modify equations (A.1) and (A.2) to:

P(Ỹ ∗1 ≤ y1|OO, Ṽ = p, Z = z) = P
(
Ỹ1 ≤ y1

)
,

P(Ỹ ∗1 ≤ y1|NO, Ṽ = p, Z = z) = P
(
Ỹ1 ≤ y1

)
.

This changes ensure that the joint distribution of (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z) satisfy the Stochastic

Dominance Assumption by construction.

A.4 Proof of Proposition 3

The validity of the bounds is proven in the main text. The joint distributions on (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z)

described in proofs A.1, A.2 and A.3 can also be used to prove that the bounds in Proposition

3 are sharp.

A.5 Proof of Theorem 5

This proof is similar to that of Theorem 1. It is given for completeness. The validity

of the bounds is proven in the main text. It remains to show that the bounds are sharp.

Given the restrictions that Assumptions 1, 5, 6 and 9 impose on the data, we need to find a

joint distribution on (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z) that satisfies these assumptions, induces the joint

distribution on the data (Y, S,D,Z), and achieves the lower bound, and similarly for the

upper bound.

Assume that Y is absolutely continuous and has a strictly positive density. Denote π̃k|p,z

the probability of the stratum k given (Ṽ = p, Z = z). For a given p ∈ (p1, pK), there exists

a unique ` ∈ {2, . . . ,K} such that p`−1 < p ≤ p`. Define the distribution on the strata:

π̃OO|p,z = −P(S = 1, D = 0|P = p`)− P(S = 1, D = 0|P = p`−1)

p` − p`−1
,

π̃NO|p,z =
P(S = 1|P = p`)− P(S = 1|P = p`−1)

p` − p`−1
,

π̃NN |p,z =
P(S = 0, D = 1|P = p`)− P(S = 0, D = 1|P = p` − 1)

p` − p`−1
.
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Under Assumptions 1, 5, and 6, the above quantities are positive. We will now show that

they sum up to one. Indeed,

π̃OO|p,z + π̃NO|p,z =
P(S = 1, D = 1|P = p`)− P(S = 1, D = 1|P = p`−1)

p` − p`−1
.

Then

π̃OO|p,z + π̃NO|p,z + π̃NN |p,z =
P(D = 1|P = p`)− P(D = 1|P = p`−1)

p` − p`−1
,

=
p` − p`−1

p` − p`−1
= 1

Define

P(Ỹ ∗1 ≤ y1, S̃1 = 1|Ṽ = p) =

P(Y ≤ y1, S = 1, D = 1|P = p`)− P(Y ≤ y1, S = 1, D = 1|P = p`−1)

p` − p`−1
,

P(Ỹ ∗0 ≤ y0, S̃0 = 1|Ṽ = p) =

−P(Y ≤ y0, S = 1, D = 0|P = p`)− P(Y ≤ y0, S = 1, D = 0|P = p`−1)

p` − p`−1
,

and

P(Ỹ ∗d ≤ yd|S̃d = 1, Ṽ = p) =
P(Ỹ ∗d ≤ yd, S̃d = 1|p`−1 < Ṽ ≤ p`)

P(S̃d = 1|p`−1 < Ṽ ≤ p`)
for d ∈ {0, 1},

where P(S̃d = 1|Ṽ = p) = limyd→∞ P(Ỹ ∗d ≤ yd, S̃d = 1|p`−1 < Ṽ ≤ p`), and

P(Ỹ ∗0 ≤ y0|S̃0 = 1, Ṽ = p) = P(Ỹ ∗0 ≤ y0|S0 = 1, S1 = 1, Ṽ = p).

Suppose that Ỹ1 ∼ FỸ ∗1 |S1=1,Ṽ=p. Define Ṽ = FỸ1(Ỹ1) and

P(Ỹ ∗1 ≤ y1|S0 = 1, S1 = 1, Ṽ = p, Z = z) = P
(
Ỹ1 ≤ y1|Ỹ1 ≤ F−1

Ỹ1

(
π̃OO|p,z

π̃OO|p,z + π̃NO|p,z

))
,
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P(Ỹ ∗1 ≤ y1|NE, Ṽ = p, Z = z) = P
(
Ỹ1 ≤ y1|Ỹ1 > F−1

Ỹ

(
π̃OO|p,z

π̃OO|p,z + π̃NO|p,z

))
,

P(Ỹ ∗1 ≤ y1|NN, Ṽ = p, Z = z) =

P(Y ≤ y1, S = 1, D = 1|P = p`)− P(Y ≤ y1, S = 1, D = 1|P = p`−1)

p` − p`−1
,

P(Ỹ ∗0 ≤ y0|k, Ṽ = p, Z = z) =

−P(Y ≤ y0, S = 1, D = 0|P = p`)− P(Y ≤ y0, S = 1, D = 0|P = p`−1)

p` − p`−1
, k ∈ {NO,NN} .

Finally, define the joint density (mass) function on (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1, Ṽ , Z):

fỸ ∗0 ,Ỹ ∗1 ,(S̃0,S̃1),Ṽ ,Z(y0, y1, k, p, z) =
∂P(Ỹ ∗0 ≤ y0|k, Ṽ = p, Z = z)

∂y0
∗

∂P(Ỹ ∗1 ≤ y1|k, Ṽ = p, Z = z)

∂y1
∗ π̃k|z ∗ fZ(z),

k ∈ {OO,NO,NN} ,

where fZ(z) is the probability mass function of Z.

Notice that the lower bound in Theorem 5 is

LB = E
[
Ỹ1|Ỹ1 ≤ F−1

Ỹ1

(
π̃OO|p,z

π̃OO|p,z + π̃NO|p,z

)]
− E[Ỹ ∗0 |S0 = 1, S1 = 1, Ṽ = p],

and is attained by the proposed joint distribution.

Similar reasoning holds for the upper bound, which is

UB = E
[
Ỹ1|Ỹ1 > F−1

Ỹ1

(
1−

π̃OO|p,z

π̃OO|p,z + π̃NO|p,z

)]
− E[Ỹ ∗0 |S0 = 1, S1 = 1, Ṽ = p].
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B Sharp testable implications for Assumptions 1, 5 and 6

Suppose that Z contains at least one continuous instrument. Whenever Assumptions 1, 5

and 6 hold, inequalities (3.3), (3.4) and (2.3) must hold, i.e.,

0 ≤ ∂E[1 {Y ∈ A}SD|P (Z) = p]

∂p
≤ 1, (B.1)

0 ≤ −∂E[1 {Y ∈ A}S(1−D)|P (Z) = p]

∂p
≤ 1, (B.2)

0 ≤ ∂P(S = 1|P (Z) = p)

∂p
≤ 1 (B.3)

for all borel sets A ⊂ R and p ∈ (0, 1), where the last inequality holds because

P(NO|V = p) =
∂P(S = 1|P (Z) = p)

∂p
.

In addition to the inequalities above, the following equalities must hold:

P(Y ∈ A,S = 1, D = 1|Z = z) = P(Y ∈ A,S = 1, D = 1|P (Z) = P (z)), (B.4)

P(Y ∈ A,S = 1, D = 0|Z = z) = P(Y ∈ A,S = 1, D = 0|P (Z) = P (z)), (B.5)

P(S = 0, D = 1|Z = z) = P(S = 0, D = 1|P (Z) = P (z)), (B.6)

P(S = 0, D = 0|Z = z) = P(S = 0, D = 0|P (Z) = P (z)). (B.7)

These equalities hold trivially when P (z) is strictly monotone in z.

Theorem 3. Consider the model (2.1).

(i) If Assumptions 1, 5 and 6 hold, then inequalities (B.1) to (B.3) and equalities (B.4) to

(B.7) hold.

(ii) If inequalities (B.1) to (B.3) and equalities (B.4) to (B.7) hold, then there exists a vector

(Ỹ ∗0 , Ỹ
∗

1 , Ṽ , S̃0, S̃1, , Z) that satisfies model (2.1) and Assumptions 1, 5 and 6.

These testable implications are identical to those in Heckman and Vytlacil (2005) when

there is no sample selection, i.e., S = 1 almost surely. If the instrument Z is binary, these
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testable implications become

0 ≤ P(Y ∈ A,S = 1, D = 1|Z = 1)− P(Y ∈ A,S = 1, D = 1|Z = 0) ≤ 1,

0 ≤ −(P(Y ∈ A,S = 1, D = 0|Z = 1)− P(Y ∈ A,S = 1, D = 0|Z = 0)) ≤ 1,

0 ≤ P(S = 1|Z = 1)− P(S = 1|Z = 0) ≤ 1.

These inequalities generalize those in Balke and Pearl (1997) and Heckman and Vytlacil (2005)

to the sample selection case, and can therefore be tested using the procedures proposed by

Machado, Shaikh, and Vytlacil (2018), Mourifié and Wan (2017), Kitagawa (2015) or Huber

and Mellace (2015).

Proof. (i) Inequalities (B.1) to (B.3) have been shown in the main text. It remains to show

equalities (B.4) to B.7). We show (B.4) and the proofs for the other equalities can be

obtained similarly.

P(Y ∈ A,S = 1, D = 1|Z = z) = P(Y ∗1 ∈ A,S1 = 1, V ≤ P (z)|Z = z),

= P(Y ∗1 ∈ A,S1 = 1, V ≤ P (z)),

= P(Y ∗1 ∈ A,S1 = 1, V ≤ P (z)|P (Z) = P (z)),

= P(Y ∗1 ∈ A,S1 = 1, V ≤ P (Z)|P (Z) = P (z)),

= P(Y ∗1 ∈ A,S1 = 1, D = 1|P (Z) = P (z)),

= P(Y ∈ A,S = 1, D = 1|P (Z) = P (z)),

where the second and third equalities hold under Assumption 1.

(ii) Define P (z) = P(D = 1|Z = z), and π̃k|p,z the probability of the stratum k given

(Ṽ = p, Z = z). Define the distribution on the strata:

π̃OO|p,z = −∂P(S = 1, D = 0|P (Z) = p)

∂p
,

π̃NO|p,z =
∂P(S = 1|P (Z) = p)

∂p
,
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π̃NN |p,z =
∂P(S = 0, D = 1|P (Z) = p)

∂p
.

Inequalities (B.1) to (B.3) imply that the above quantities are positive and they sum

up to one. Define

FỸ ∗1 |S̃1=1,Ṽ=p,Z=z(y1) =

∂P(Y≤y1,S=1,D=1|P (Z)=p)
∂p

∂P(S=1,D=1|P (Z)=p)
∂p

This function has to be a c.d.f. under the identifying assumptions as it is a mixture of

two distributions FY ∗1 |S0=1,S1=1,V=p and FY ∗1 |NO,V=p. Similarly,

FỸ ∗0 |S0=1,S1=1,Ṽ=p,Z=z(y0) =

∂P(Y≤y0,S=1,D=0|P (Z)=p)
∂p

∂P(S=1,D=0|P (Z)=p)
∂p

Define

P(Ỹ ∗1 ≤ y1|S0 = 1, S1 = 1, Ṽ = p, Z = z) = P(Ỹ ∗1 ≤ y1|S̃1 = 1, Ṽ = p),

P(Ỹ ∗1 ≤ y1|NO, Ṽ = p, Z = z) = P(Ỹ ∗1 ≤ y1|S̃1 = 1, Ṽ = p),

P(Ỹ ∗1 ≤ y1|NN, Ṽ = p, Z = z) =

∂P(Y≤y1,S=1,D=1|P (Z)=p)
∂p

∂P(S=1,D=1|P (Z)=p)
∂p

,

P(Ỹ ∗0 ≤ y0|k, Ṽ = p, Z = z) =

∂P(Y≤y0,S=1,D=0|P (Z)=p)
∂p

∂P(S=1,D=0|P (Z)=p)
∂p

, k ∈ {NO,NN} .

Define the joint conditional distribution of (Ỹ ∗0 , Ỹ
∗

1 , S̃0, S̃1) given (Ṽ = p, Z = z):

P(Ỹ ∗0 ≤ y0, Ỹ
∗

1 ≤ y1, (S̃0, S̃1) = k, |Ṽ = p, Z = z) = P(Ỹ ∗0 ≤ y0|k, Ṽ = p, Z = z) ∗

P(Ỹ ∗1 ≤ y1|k, Ṽ = p, Z = z) ∗ π̃k|z,

k ∈ {OO,NO,NN} ,
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P(Ṽ ≤ p|Z = z) = p.

Finally, define



Ỹ ∗ = Ỹ ∗1 D̃ + Ỹ ∗0 (1− D̃)

D̃ = 1

{
Ṽ ≤ P (Z)

}
S̃ = S̃1D̃ + S̃0(1− D̃)

Ỹ = Ỹ ∗S̃

(B.8)

We can show that (Ỹ , S̃, D̃, Z) has the same joint distribution as (Y, S,D,Z).

P(Ỹ ≤ y, S̃ = 1, D̃ = 1|Z = z) = P(Ỹ ∗1 ≤ y, S̃1 = 1, Ṽ ≤ P (z)|Z = z),

= P(Ỹ ∗1 ≤ y, S̃1 = 1|Ṽ ≤ P (z), Z = z)P(Ṽ ≤ P (z)|Z = z),

= P(Ỹ ∗1 ≤ y, S̃1 = 1|Ṽ ≤ P (z), Z = z)P (z),

=

∫ P (z)

0
P(Ỹ ∗1 ≤ y, S̃1 = 1|Ṽ = v, Z = z)

fṼ |Z=z(v)

P (z)
dv ∗ P (z),

=

∫ P (z)

0
P(Ỹ ∗1 ≤ y, S̃1 = 1|Ṽ = v, Z = z)dv,

=

∫ P (z)

0
P(Ỹ ∗1 ≤ y|S̃1 = 1, Ṽ = v, Z = z)P(S̃1 = 1|Ṽ = v, Z = z)dv,

=

∫ P (z)

0

∂P(Y ≤ y, S = 1, D = 1|P (Z) = v)

∂v
dv,

= P(Y ≤ y, S = 1, D = 1|P (Z) = P (z))

= P(Y ≤ y, S = 1, D = 1|Z = z).

Similarly,

P(Ỹ ≤ y, S̃ = 1, D̃ = 0|Z = z) = P(Y ≤ y, S = 1, D = 1|Z = z),

P(S̃ = 0, D̃ = 1|Z = z) = P(S = 1, D = 1|Z = z),

P(S̃ = 0, D̃ = 0|Z = z) = P(S = 0, D = 0|Z = z).

Finally, by construction, Assumptions 1, 5 and 6 hold.
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C Details on the numerical illustration

This brief appendix lists the relevant densities, expectations and objects of interest implied

by the DGP used in Section 4 and Appendix D. We have that

P [S0 = 1, S1 = 1|V = p] = Φ
(
δ0

√
2− Φ−1 (p)

)
,

P [S0 = 1|V = p] = Φ
(
δ0

√
2− Φ−1 (p)

)
,

P [S1 = 1|V = p] = Φ
(
δ0

√
2 + δ1

√
2− Φ−1 (p)

)
,

α
(
p, υ`

)
= max

{
1 +

Φ
(
δ0

√
2− Φ−1 (p)

)
− 1

Φ
(
δ0

√
2 + δ1

√
2− Φ−1 (p)

) , 0} ,
β
(
p, υ`

)
= max

{
1 +

Φ
(
δ0

√
2 + δ1

√
2− Φ−1 (p)

)
− 1

Φ
(
δ0

√
2− Φ−1 (p)

) , 0

}
,

α (p) =
Φ
(
δ0

√
2− Φ−1 (p)

)
Φ
(
δ0

√
2 + δ1

√
2− Φ−1 (p)

) ,
E [Y ∗1 − Y ∗0 |T = 1, S0 = 1, S1 = 1, V = p] = (β1,1 − β0,1) · Φ−1(p),

E [Y ∗1 − Y ∗0 |T = 0, S0 = 1, S1 = 1, V = p] = (β0,0 − β1,0) · Φ−1(p),

E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1, V = p] = (β1,1 − β1,0 − β0,1 + β0,0) · Φ−1(p)

2
,

P [Y ∗0 ≤ y|T = 1, S0 = 1, V = p] = Φ
(
y − β0,1Φ−1 (p)

)
,

P [Y ∗1 ≤ y|T = 1, S1 = 1, V = p] = Φ
(
y − β1,1Φ−1 (p)

)
,

P [Y ∗0 ≤ y|T = 0, S0 = 1, V = p] = Φ
(
y + β0,0Φ−1 (p)

)
,

P [Y ∗1 ≤ y|T = 0, S1 = 1, V = p] = Φ
(
y + β1,0Φ−1 (p)

)
,

P [Y ∗0 ≤ y|S0 = 1, V = p] =
1

2
Φ
(
y − β0,1Φ−1 (p)

)
+

1

2
Φ
(
y + β0,0Φ−1 (p)

)
,

P [Y ∗1 ≤ y|S1 = 1, V = p] =
1

2
Φ
(
y − β1,1Φ−1 (p)

)
+

1

2
Φ
(
y + β1,0Φ−1 (p)

)
.

D Monte Carlo Simulation

In this appendix, we use the DGP described in Section 4 to produce Monte Carlo simu-

lations using the estimator proposed in the main text. We analyze two sets of parameters:

(i) δ0 = 0.75, δ1 = 1.5, β00 = β01 = β10 = 0.1, β11 = 0.2 and (ii) δ0 = 0.2, δ1 = 2.0,
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β00 = β01 = β10 = 0.1, β11 = 0.2. The first set of parameters is ideal for the proposed esti-

mator in the sense that the effective sample size is large since the trimming proportion α (p)

is never small and the sample selection problem is not severe. The second set of parameters

intentionally decreases the trimming proportion α (p), reducing the effective sample size and

worsening the sample selection problem. We find that our estimator performs adequately in

both DGPs when the sample size is equal to n = 10, 000.

Based on the procedure describe in the Section 5, we need to specify the propensity score

estimator, the grid points for the observed outcome variable ({y1, . . . , yKn}) and the evaluation

points for the unobserved characteristic V . We estimate the propensity score with a logit esti-

mator whose index is linear in the instrument Z, implying that the propensity score estimator

is misspecified. For the grid points ({y1, . . . , yKn}), we choose the sample percentiles 0.0, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, implying that Kn = 11. For the evaluation points of

the the unobserved characteristic V , we choose p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

In this simulation, we focus on the performance of six estimators: α̂ (p), Ξ̂OO,0 (p), L̂B1 (p),

ÛB1 (p), ∆̂2 (p) and ∆̂2 (p). Table 4 reports the true value of their estimands for the first and

second sets of parameters in Panel A and B, respectively. The important distinction between

Panels A and B is the value of α (p).

Table 5 reports the average bias of our estimators, while Table 6 presents the mean squared

error (MSE) of our estimators after normalizing it by the sample size (n = 10, 000). For

the first set of parameters (Panel A), the estimators’ average bias and MSE is smaller for

intermediate values of the propensity score. In this DGP, the treatment is determined by

D = 1 {V ≤ Φ(Z)}, implying that the data becomes sparser at low values of the propensity

score for the treated group and at high values of the propensity score for the untreated

group. As a consequence, the estimator’s performance is worse when the propensity score

is either small or large. Moreover, when the propensity score is large, the sample selection

problem reduces the effective sample size, worsening the estimator’s performance. Despite

those challenges, the estimator’s average bias and MSE are reasonably small for both set of

parameters.
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Û
B

1
(p

)
5
5
8.

54
2
79

.0
9

22
3.

32
31

5.
69

41
3.

11
57

9.
47

87
8
.9

4
20

19
.9

5
1
47

33
.9

2
(1

2
25

.8
)

(2
42

.8
9)

(2
42

.0
7)

(2
88

.4
2)

(3
66

.0
6)

(4
90

.2
3)

(7
79

.2
6
)

(2
47

7.
3
2)

(3
4
13

5.
5
)

∆̂
2

(p
)

1
5
38

.8
7

3
26

.6
3

15
0.

56
18

1.
28

22
9.

65
28

5.
19

37
0
.4

9
8
18

88
04

.4
8

(2
20

3
.9

)
(5

0
4.

4)
(2

13
.2

2)
(2

31
.9

1)
(2

86
.4

3)
(3

47
.3

8)
(4

7
8.

2
6)

(1
1
59

.3
5
)

(9
72

2.
8
5)

∆̂
2

(p
)

1
3
37

.3
4

4
09

.2
6

28
1.

66
37

9.
82

49
1.

03
67

4.
47

10
0
8.

0
6

2
18

6
1
52

99
.4

2
(2

2
5
9.

27
)

(5
17

.5
4)

(3
31

.1
7)

(3
87

.4
5)

(4
76

.4
1)

(6
20

.8
9)

(9
72

.2
8
)

(2
63

7.
3
6)

(3
4
93

3.
8
1)

N
o
te

:
W

e
d
efi

n
e
θ 0

a
s

th
e

tr
u
e

p
o
p
u
la

ti
o
n

va
lu

e
o
f
th

e
es

ti
m

a
n
d
,
θ̂

a
s

th
e

es
ti

m
a
to

r
o
f
θ 0

a
n
d

Ξ
O
O
,0

(p
)

: =
E

[Y
∗ 0
|S

0
=

1
,S

1
=

1
,V

=
p
].

T
h
e

re
su

lt
s

a
re

b
a
se

d
o
n

1
,0

0
0

M
o
n
te

C
a
rl

o
re

p
et

it
io

n
s.

T
h
e

sa
m

p
le

si
ze

in
ea

ch
g
en

er
a
te

d
a
ta

se
t

is
n

=
1
0
,0

0
0
.

63


	1 Introduction
	2 Analytical Framework
	3 Identification Results
	3.1 Identifying the Joint Distribution of Potential Outcome and Selection
	3.2 Potential Outcomes as Mixtures of Latent Groups
	3.3 Identification with No Assumption on the Sample Selection Mechanism
	3.4 Bounds under the Monotonicity Assumption
	3.5 Bounds under the Monotonicity and Dominance Assumptions
	3.6 Point-identification under the Unit Mass Assumption
	3.7 Empirical Relevance of Bounds for the MTEOO

	4 Numerical Illustration
	5 Estimation
	5.1 Estimating the Propensity Score P(Z)
	5.2 Estimating 1(p), 0(p) and (p)
	5.3 Estimating 1(p, y) and 0(p, y)
	5.4 Estimating MTEOO(p) Bounds

	6 Extensions
	6.1 Bounds for the distributional marginal treatment effect (DMTE)
	6.2 Identification with discrete instruments

	7 Conclusion
	A Proofs
	A.1 Proof of Proposition 1
	A.2 Proof of Theorem 1
	A.3 Proof of Theorem 2
	A.4 Proof of Proposition 3
	A.5 Proof of Theorem 5

	B Sharp testable implications for Assumptions 1, 5 and 6
	C Details on the numerical illustration
	D Monte Carlo Simulation

