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Abstract

Consider a setting in which a policy maker assigns subjects to treatments, observing
each outcome before the next subject arrives. Initially, it is unknown which treatment is
best, but the sequential nature of the problem permits learning about the effectiveness
of the treatments. While the multi-armed-bandit literature has shed much light on the
situation when the policy maker compares the effectiveness of the treatments through
their mean, economic decision making often requires targeting purpose specific charac-
teristics of the outcome distribution, such as its inherent degree of inequality, welfare
or poverty. In the present paper we introduce and study sequential learning algorithms
when the distributional characteristic of interest is a general functional of the outcome
distribution. In particular, it turns out that intuitively reasonable approaches, such
as first conducting an experiment on an initial group of subjects followed by rolling
out the inferred best treatment to the population, are dominated by the policies we
develop and of which we show that they are optimal.
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1 Introduction

In sequential decision making, a policy maker who seeks to assign subjects to the treatment
with the highest mean outcome, but who initially does not know which treatment is best,
can draw on a rich body of literature on “multi-armed bandits” in Machine Learning and
Statistics. This literature provides assignment strategies that efficiently balance exploration
and exploitation. In economic decision making, however, one often faces the problem that
the quality of treatments cannot be reasonably compared according to the mean of the out-
come distribution. Rather, a policy maker may want to incorporate other distributional
characteristics, such as the inequality, welfare or poverty implications of a treatment, or may
want to compare the quality of the treatments according to a robust measure such as the
median or another quantile. While much progress has been made concerning inference on
distributional policy effects, most of the literature deals with a “static” setting, in which the
dataset has already been collected. Nevertheless, the subjects to be treated often arrive se-
quentially. For example, workers, who become unemployed throughout the year, or patients,
who fall ill at different points in time, must be assigned to treatments as they arrive. Thus,
the policy maker can actually adjust the composition of the data set as treatment outcomes
are observed. This opportunity, which is not present in the static viewpoint, can be seized to
design better policies. In this article, we consider a sequential treatment assignment problem
and a policy maker who seeks to minimize regret compared to always assigning the unknown
best treatment, according to a general functional of interest. That is, the policy maker
wishes to use a policy that is nearly as good as the infeasible policy of always assigning the
best treatment. In order to achieve a low regret, the policy maker must sequentially learn
the distributional characteristic of interest for the available treatments, yet treat as many
subjects as well as possible. In the following paragraphs we discuss our results. Related
literature is discussed thereafter.

A common approach to solving the policy maker’s sequential regret minimization problem
are explore-then-commit policies: In an attempt to infer which treatment is best, one first
conducts a randomized controlled trial (RCT) on an initial segment of subjects. Based on
the outcome, one then assigns all remaining subjects to the inferred best treatment. Note
that due to estimation uncertainty, the inferred best treatment is typically not guaranteed
to be the optimal one. We show in Theorem 2.10 that if the policy maker does not know in
advance the total number of treatments to be made, then the maximal expected regret of any
explore-then-commit policy grows linearly in the number of treatments n. This is remarkable,
because in our setting a linearly growing maximal expected regret is the worst possible rate
that any policy can incur. Not knowing in advance the total number of treatments to be
made is common, because the policy maker indeed often does not know a priori the number
of subjects to be treated since, e.g., the number of individuals becoming unemployed in the
course of the year is not known in advance. Theorem 2.10 furthermore shows that if the
number of assignments to be made is known in advance, such that the policy maker can
adapt the length of the RCT to this horizon, any explore-then-commit policy leads to a
maximal expected regret that increases at least at the rate n?3. We show in Theorem 2.11
that this optimal rate is attained for an empirical-success-type decision rule, if the sample
size used for experimentation is chosen of order n?/3.



Having studied policies that strictly separate the exploration and exploitation phase, we
next study a policy that interweaves these two phases. The policy is inspired by a standard
algorithm in the multi-armed-bandit literature. More precisely, we study a Functional Upper
Confidence Bound (F-UCB) policy, which is an extension of the Upper Confidence Bound
(UCB) policy to the case where functionals other than the mean of the outcome distribution
are targeted. In Theorem 2.12 we establish an upper bound on the maximal expected regret
of the F-UCB policy. Most importantly, this upper bound is lower than the lower bounds on
maximal expected regret of any explore-then-commit policy. This indicates that, in terms of
maximal expected regret, one should prefer the F-UCB policy to any explore-then-commit
policy. Next, by establishing lower bounds on maximal expected regret valid for all policies,
we show in Theorem 2.13 that the F-UCB policy is near minimax rate optimal. The F-UCB
policy achieves this near optimality even without knowing in advance the total number of
treatments to be made in the course of the treatment period.

The finding that for large classes of functional targets explore-then-commit policies are
dominated by the F-UCB policy in terms of maximal expected regret does, of course, by no
means discredit RCTs and subsequent testing for other purposes. For example, RCTs are
often used to test for a causal effect of a treatment, cf. Imbens and Wooldridge (2009) for
an overview and further references. The goal of the present article is not to test for a causal
effect, but to assist the policy maker in minimizing regret, i.e., to keep to a minimum the
sum of all losses due to assigning subjects wrongly. This goal, as pointed out in, e.g., Manski
(2004), Manski and Tetenov (2016) and Manski (2019b), is only weakly related to testing.
For example, the policy maker may care about more than just controlling the probabilities
of Type 1 and Type 2 errors. In particular the magnitude of the losses when errors occur
are important components of regret.

Up to this point, we have discussed results for a situation where no covariates are observed.
This provides important qualitative insights. Oftentimes in practice, however, a policy maker
wants to incorporate covariate information into the decision making process. Therefore, we
also consider a setting where the policy maker observes a vector of characteristics of the
subject to be treated prior to treatment allocation. For each subject the best treatment is
now the one that maximizes a functional of the conditional treatment outcome distribution
given the vector of characteristics. In this setup, we show in Theorem 3.5 that policies that
ignore covariates have linearly increasing regret, unless the best treatment can be chosen
independently of the covariate outcome. We then introduce a version of the F-UCB policy
which incorporates covariate information. In Theorem 3.6 and Corollary 3.7 we study how
this generalized F-UCB policy performs in terms of its maximal expected regret. By deriving
lower bounds on maximal expected regret in Theorem 3.8, we establish the near minimax
rate optimality of the generalized F-UCB policy. We also show in Theorem 3.3 that the
assumptions under which the upper bounds on regret are established are essentially minimal.
Even a slight relaxation of the assumptions implies that every policy incurs the worst-case
linear maximal expected regret.

The results discussed in the preceding paragraph are obtained without restricting the sim-
ilarity of the best and second best treatment. Intuitively, this similarity crucially influences
the difficulty of the decision problem. One may thus ask whether the F-UCB policy au-
tomatically adapts in an optimal way to the degree of similarity. To answer this question



affirmatively, we first derive an upper bound on maximal expected regret of the F-UCB pol-
icy over classes of distributions that restrict the level of similarity (cf. Theorem 3.12), and
then establish matching lower bounds in Theorem 3.14. Furthermore, over such restricted
classes of distributions, it is now possible to show that the expected number of suboptimal
assignments made increases as slowly as possible in the number of assignments (cf. Theo-
rem 3.13). The latter result can be interpreted as an ethical guarantee on the F-UCB policy:
only few persons will receive a treatment which is not optimal for them.

1.1 Related literature

Our paper is related to several strands of literature. In econometrics, our work relates to the
literature on statistical treatment rules. This literature has focused on developing policies,
the goal of which is to ensure near minimax optimal regret. Here Manski (2004) did seminal
work in proposing conditional empirical success rules, and in giving sufficient conditions
for productive use of covariates in terms of minimax optimality. Stoye (2009) shed further
light on this by an exact finite sample analysis of the problem, while Hirano and Porter
(2009) studied asymptotically optimal decisions in the limiting experiment. Furthermore,
our work is related to the recent paper by Kitagawa and Tetenov (2018), who focus on
minimax optimal treatment rules, when these are restricted to belong to certain classes for,
e.g., ethical, legislative or political reasons. Athey and Wager (2017) have used concepts
from semiparametric efficiency theory to construct asymptotically minimax optimal policies,
even when propensity scores are unknown. Other papers on statistical treatment rules in
econometrics include Chamberlain (2000); Dehejia (2005); Bhattacharya and Dupas (2012);
Stoye (2012); Tetenov (2012). A recent overview of statistical treatment rules in economics
is provided by Hirano and Porter (2018).

While we also study minimax optimal expected regret properties of statistical treatment
rules, one distinguishing feature of the setting studied in the present article is that the
subjects to be treated arrive sequentially. Thus, we do not presuppose that a data set of
size n is at our disposal from the outset, based on which the best treatment must be inferred.
Instead the dataset is gradually constructed during the learning process. We emphasize that
our sequential setting is different from the dynamic one in, e.g., Robins (1997), Lavori et al.
(2000), Murphy et al. (2001), Murphy (2003) and Murphy (2005), where the same subjects
are treated repeatedly.

Another distinguishing feature of the setting studied in the present article is that we fo-
cus on the problem of a policy maker who targets a general functional of the outcome
distribution of the treatments, as opposed to only focusing on the mean. The importance
of considering other characteristics of the outcome distribution than its mean has previ-
ously been underscored in a non-sequential setting by many contributions, e.g., Gastwirth
(1974), Manski (1988), Thistle (1990), Mills and Zandvakili (1997), Davidson and Duclos
(2000), Abadie et al. (2002), Abadie (2002), Chernozhukov and Hansen (2005), Davidson
and Flachaire (2007), Barrett and Donald (2009), Hirano and Porter (2009), Schluter and
van Garderen (2009), Rostek (2010), Rothe (2010, 2012), Kitagawa and Tetenov (2017) and
Manski (2019a). Concerning the functionals we permit, our theory is very general and we
verify that it covers many inequality, welfare, and poverty measures, such as the Schutz co-



efficient, the Atkinson-, Gini- and Kolm-indices (cf. Section 4 for details). We also show that
our theory covers quantiles, U-functionals and generalized L-functionals, cf. Appendix D.
In contrast to much of the existing theoretical results concerning inference on inequality,
welfare, or poverty measures, we do not investigate (first or higher-order) asymptotic ap-
proximations, but we establish exact finite sample results with explicit constants. To this
end we cannot rely on classical asymptotic techniques, e.g., distributional approximations
based on linearization arguments.

The sequential setting adopted in this paper is akin to the one encountered in multi-armed
bandit problems studied in machine learning and statistics. In terms of theoretical per-
formance guarantees, Robbins (1952) pioneered this literature by introducing an algorithm
whose average reward will converge to that of the best arm. One of the policies studied
in the present paper, the F-UCB policy, resembles the Upper Confidence Bound (UCB)
strategy of Lai and Robbins (1985) (to which it reduces in case of the mean functional);
cf. also Auer et al. (2002) for finite-sample results concerning the regret properties of the
UCB strategy. There are relatively few papers on multi-armed-bandit problems in which a
functional of the reward distribution is targeted instead of the mean: Cassel et al. (2018)
consider bandit problems, where the target can be a general (risk) measure defined on the
empirical distribution functions of the path of assignments. Furthermore, Tran-Thanh and
Yu (2014) consider a multi-armed bandit problem, where the target is a functional, e.g.,
some risk or information measures, but where a completely different regret environment is
considered. Besides targeting different types of regret than we do, neither of the two articles
studies optimality of the algorithms proposed (i.e., minimax lower bounds, which are crucial
for our purpose), or how covariate information can be incorporated.

While the F-UCB policy is inspired by the UCB policy, the analysis of it poses new chal-
lenges, as witnessed in the proof of Theorem 2.12 and its supporting lemmas. We also stress
that the lower bounds on expected maximal regret are throughout established under very
weak conditions. In particular, they hold over very small, actually parametric, classes of
distributions that depend on the functional under consideration. This settles rather firmly
what can and cannot be achieved in a functional sequential treatment assignment problem.
Furthermore, we provide a rigorous comparison (in terms of upper and lower bounds on
maximal expected regret) of explore-then-commit policies based on an RCT to bandit-type
policies. Explore-then-commit policies were recently studied (in a 2-arm Gaussian setting,
without covariates, and targeting the mean) by Garivier et al. (2016). Besides not being re-
stricted to a parametric setup and the mean functional as a target, our results contribute to
this literature by characterizing optimal explore-then-commit policies in terms of the length
of the exploration period. This can be useful in case a policy maker must use a policy of
this type.

As we also study a setting in which the distribution of treatment outcomes can depend
on covariates, the works of Rigollet and Zeevi (2010) and Perchet and Rigollet (2013) are
related to our paper. Both consider a setting where one targets the distribution with the
highest conditional mean. Kock and Thyrsgaard (2017) consider a setting in which the policy
maker is also interested in how risky a treatment is and takes this into account by targeting
a tradeoff between expected outcome and variance of the treatments (a very specific class
of functionals, which excludes many measures of relevance for economic decision making).



For a good general overview of multi-armed bandit problems we refer to, e.g., Bubeck and
Cesa-Bianchi (2012) and Lattimore and Szepesvéri (2019).

2 Functional sequential treatment allocation without
covariates

In this section we consider a treatment allocation problem without covariates. This stripped
case allows us to introduce and motivate the most important concepts, assumptions, and
terminology in a fairly clean environment. Furthermore, the setting without covariates is
sufficiently rich to demonstrate certain differences in performance of policies that fully exploit
the sequential nature of the treatment problem to policies based on randomized controlled
trials and, more generally, to explore-then-commit policies. The results in the present section
are also instrumental for establishing some of the results in later sections.

2.1 Setup

We consider a setting, where at each point in time ¢ = 1,...,n a policy maker must assign a
subject to one out of K treatments. Each subject is only treated once. Thus, the index ¢ can
equivalently be thought of as indexing subjects instead of time. The observational structure
is the one of a multi-armed bandit problem: After assigning a treatment, its outcome is
observed, but the policy maker does not observe the counterfactuals. Having observed the
outcomes of treatments 1,...,¢ — 1, subject ¢ arrives, and must be assigned to a treatment.
The assignment can be based on the information gathered from all previous assignments and
their outcomes, and, potentially, randomization. Thus, the data set is gradually constructed
in the course of the treatment program. Without knowing a priori the identity of the “best”
treatment, the policy maker seeks to assign subjects to treatments so as to minimize maximal
expected regret (which we introduce in Equation (3) further below).

This setting is a sequential version of the potential outcomes framework with multiple treat-
ments. Note also that restricting attention to problems where only one of the K treatments
can be assigned does not exclude that a treatment consists of a combination of several other
treatments (for example a combination of several drugs) — one simply defines this combined
treatment as a separate treatment at the expense of increasing the set of treatments.

The precise setup is as follows: let the random variable Y;; denote the outcome of assigning
subject t € {1,...,n} to treatment s € Z := {1,..., K}.! That is, the potential outcomes
of subject t are Y; = (Yi4,...,Yks). We assume that a < Y;; < b, where a < b are
real numbers. Furthermore, for every ¢, let GG; be a random variable, which can be used for
randomization in assigning the t-th subject. Throughout Section 2, we assume that Y, for t €
N are independent and identically distributed (i.i.d.); and we assume that the sequence G,
is i.i.d., and is independent of the sequence Y;. Note that no assumptions are imposed

"'We do not explicitly consider the case of individuals arriving in batches. However, in our setup, one may
also interpret Y; ; as a summary statistic of the outcomes of batch ¢, when all of its subjects were assigned to
treatment i. For a more sophisticated way of handling batched data in case of targeting the mean treatment
outcome, we refer to Perchet et al. (2016).



concerning the dependence between the components of each random vector Y;. We think
of the randomization measure, i.e., the distribution of G, as being fixed, e.g., the uniform
distribution on [0,1]. We denote the cumulative distribution function (cdf) of Y;,; by F* €
D.qs([a, b]), where D g4 ([a, b]) denotes the set of all cdfs F such that F'(a—) = 0 and F(b) = 1.
The cdfs F* for i = 1,..., K are unknown to the policy maker.

A policy is a triangular array of (measurable) functions 7 = {m,;:n € N;1 <t <n}.
Here 7, denotes the assignment of the ¢-th subject out of n subjects. In each row of the
array, i.e., for each n € N, the assignment m,; can depend only on previously observed
treatment outcomes and randomization. Formally,

T & [0, 0D xR = 7. (1)

Given a policy m and n € N, the input to 7, is denoted as (Z;_1, G;), where Z;_; is defined
recursively: The first treatment 7, ; is a function of G; alone, as no treatment outcomes have
been observed yet (we may interpret (Zy, G1) = G1). The second treatment is a function of
the outcome of the first treatment 7, := Y, (g,),1 and of Go. For t > 3 we have

Zt—l = (Yﬂn7t_1(Zt_2,Gt_1),t717 Zt—Q)'

The (¢t — 1)-dimensional random vector Z;_; can be interpreted as the information available
after the (t — 1)-th treatment outcome was observed. We emphasize that Z;_; depends on
the policy 7 via 7, 1,...,m,—1. In particular, Z;,_; also depends on n and on Gy, ...,G;_q,
which we do not show in our notation. For convenience, the dependence of m,(Z;—1, Gt)
on Z;_ and GY is often suppressed, i.e., we often abbreviate 7, +(Z;—1, G¢) by m,, if it is clear
from the context that the actual assignment m,(Z;_;, G;) is meant, instead of the function
defined in Equation (1).

Remark 2.1 (Concerning the dependence of 7,; on the horizon n). We have chosen to
allow the assignments 7, 1,...,m,, to depend on n, the total number of assignments to be
made. Consequently, for ny < ny it may be that {m,,; : 1 <t < ny} does not coincide with
the first n; elements of {m,,;: 1 <t < ny}. This is crucial, as a policy maker who knows n
may choose different sequences of allocations for different n. For example, one may wish to
explore the efficacies of the available treatments in more detail if one knows that the total
sample size is large, such that there is much opportunity to benefit from this knowledge later
on. We emphasize that while our setup allows us to study policies that make use of n, we
devote much attention to policies that do not. The latter subclass of policies is important.
For example, a policy maker may want to run a treatment program for a year, say, but it is
unknown in advance how many subjects will arrive to be treated. In such a situation, one
needs a policy that works well irrespective of the unknown horizon. Such policies are called
“anytime policies,” as m; := 7, does not depend on n.

The ideal solution of the policy maker would be to assign every subject to the “best”
treatment. In the present paper, this is understood in the sense that the outcome distribution
for the best treatment maximizes a given functional

T: Doy([a,b]) — R. (2)



We do not assume that the maximizer is unique, i.e., arg max;.7 T(F*) need not be a single-
ton. The specific functional chosen by the policy maker will depend on the application, and
encodes particular characteristics of the distribution that the policy maker is interested in.
For a streamlined presentation of our results it is helpful to keep the functional T abstract at
this point (see Section 2.1.1 below for a specific example, and a brief overview of examples
we study in detail).

The ideal solution of the policy maker of always choosing the best treatment is infeasible,
simply because it is not known in advance which treatment is best. Therefore, every policy
will make mistakes. To compare different policies, we define the regret of a policy m at
horizon n as

n
Ry(w) = Ry(mF', ... F* Z,_1,Gy,...,Gy) =) [r?eaIxT(Fi) — T(FreZe=n GOy | (3)
t=1

The unknown outcome distributions F',..., FX are assumed to vary in a pre-specified
class of cdfs. Following the minimax-paradigm, we evaluate policies according to their worst-
case behavior over such classes. We refer to Manski and Tetenov (2016) for further details
concerning the minimax point-of-view in the context of treatment assignment problems, and
for a comparison with other approaches such as the Bayesian. Formally, we seek a policy 7
that minimizes maximal expected regret, that is, a policy that minimizes

sup E[R,(7)],
i1k

where 7 is a subset of D.g([a,b]). The supremum is taken over all potential outcome
vectors Y; such that the marginals Y;; for ¢ = 1,..., K have a cdf in 4. The set Z will
typically be nonparametric, and corresponds to the assumptions one is willing to impose on
the cdfs of each treatment outcome, i.e., on F',... FX. Note that the maximal expected
regret of a policy 7 as defined in the previous display depends on the horizon n. We will
study this dependence on n. In particular, we will study the rate at which the maximal
expected regret increases in n for a given policy m; furthermore, we will study the question
of which kind of policy is optimal in the sense that the rate is optimal.

The following assumption is the main requirement we impose on the functional T and the
set 2. We denote the supremum metric on D.4([a, b]) by || - ||e, i.€., for cdfs F' and G we
let [|F — G = sup,c [F(x) — G(z)].

Assumption 2.2. The functional T : D.g([a,b]) = R and the non-empty set Z C D4 (|a, b))
satisfy

IT(F) —T(G)| <C||F —G|lws for every F € 2 and every G € Deg([a,b])  (4)
for some C' > 0.

Remark 2.3 (Restricted-Lipschitz continuity). Assumption 2.2 implies that the functional T
is Lipschitz continuous when restricted to & (the domain being equipped with || - ||~). We
emphasize, however, that if 2 # D.4([a,b]), the functional T is not necessarily required
to be Lipschitz-continuous on all of D.4([a,b]). This is due to the asymmetry inherent
in the condition imposed in Equation (4), where F' varies only in &, but G varies in all

Of Dcdf([a, b])



Remark 2.4. A simple approximation argument? shows that if Assumption 2.2 is satisfied
with 2 and C, then Assumption 2.2 is also satisfied with Z replaced by the closure of ¥ C
D ([a,b]) (the ambient space D.q([a,b]) being equipped with the metric || - ||o) and the
same constant C.

Remark 2.5. The set 2 encodes assumptions imposed on the cdfs of each treatment out-
come. In particular, the larger 2, the less restrictive is F* € 2 for i € Z. Ideally, one
would thus like 2 = D.4([a, b]), which, however, is too much to ask for some functionals.
Furthermore, there is a trade-off between the sizes of C' and &, in the sense that a larger
class & typically requires a larger constant C'. The reader who wants to get an impression
of some of the classes of cdfs we consider may want to consult Section 4.1, where several
important classes of cdfs are defined.

2.1.1 Functionals that satisfy Assumption 2.2: A summary of results in Sec-
tion 4 and Appendix D

In the present paper, we do not contribute to the construction of functionals for specific
questions. Rather, we take the functional as given. To choose an appropriate functional,
the policy maker can already draw on a very rich and still expanding body of literature;
cf. Lambert (2001), Chakravarty (2009) or Cowell (2011) for textbook-treatments. To equip
the reader with a specific and important example of a functional T, one may think of the
Gini-welfare measure (cf. Sen (1974))

T(F) = / 2dF(z) — % / / (1 — 2ol dF (21)dF (). (5)

Because all of our results impose Assumption 2.2, a natural question concerns its generality.
To convince the reader and practitioner that Assumption 2.2 is often satisfied, and to make
the policies studied implementable (as they require knowledge of C'), we show in Section 4
that Assumption 2.2 is satisfied for many important inequality, welfare, and poverty measures
(together with formal results concerning the sets 2 along with corresponding constants C').
For example, it is shown that for the above Gini-welfare measure, Assumption 2.2 is satisfied
with 2 = D.g([a, b]), i.e., without any restriction on the treatment cdfs ', ..., F¥ (apart
from having support [a, b]), and with constant C' = 2(b—a). At this point we highlight some
further functionals that satisfy Assumption 2.2:

1. The inequality measures we discuss in Section 4.2 include the Schutz-coefficient (Schutz
(1951), Rosenbluth (1951)), the Gini-index, the class of linear inequality measures of
Mehran (1976), the generalized entropy family of inequality indices including Theil’s
index, the Atkinson family of inequality indices (Atkinson (1970)), and the family of
Kolm-indices (Kolm (1976a)). In many cases, we discuss both relative and absolute
versions of these measures.

2. In Section 4.3 we provide results for welfare measures based on inequality measures.

? Let F' € Degr([a,b]) be such that ||, — Flloo — 0 as m — oo for a sequence F,, € &, and let G €
Degs([a,b]). Then, [T(F) —T(G)| < [T(F) — T(Fn)| + |T(Fn) — T(G)|, which, by Assumption 2.2, is not
greater than 2C||F' — Fp,|lcc + C|F — Glloc = C||F — G| as m — 0.



3. The poverty measures we discuss in Section 4.4 are the headcount ratio, the family of
poverty measures of Sen (1976) in the generalized form of Kakwani (1980), and the
family of poverty measures suggested by Foster et al. (1984).

The results in Sections 4.2, 4.3, and 4.4 mentioned above are obtained from and supplemented
by a series of general results that we develop in Appendix D. These result verify Assump-
tion 2.2 for U-functionals defined in Equation (107) (i.e., population versions of U-statistics),
quantiles, generalized L-functionals due to Serfling (1984) defined in Equation (112), and
trimmed U-functionals defined in Equation (117). These techniques are of particular interest
in case one wants to apply our results to functionals T that we do not explicitly discuss in
Section 4.

The results in Section 4 and Appendix D could also be of independent interest, be-
cause they immediately allow the construction of uniformly valid (over &) confidence in-
tervals and tests in finite samples. To see this, observe that Assumption 2.2 together with
the measurability Assumption 2.6 given below and the Dvoretzky-Kiefer-Wolfowitz-Massart
inequality in Massart (1990) implies that, uniformly over F' € &, the confidence inter-
val T(E,) + C+/log(2/a)/(2n) covers T(F) with probability not smaller than 1 — ; here F,,
denotes the empirical cdf based on an i.i.d. sample of size n from F'.

2.1.2 Further notation and an additional assumption

Before we consider maximal expected regret properties of certain classes of policies, we need
to introduce some more notation: Given a policy m and n € N, we denote the number of
times treatment ¢ has been assigned up to time ¢ by

Z]l{ﬂ'ns -1, Gs) =i}, (6)

and we abbreviate S;,(n) = S;(n). Defining the loss incurred due to assigning treatment ¢
instead of an optimal one by A; := maxez T(F*) — T(F?), the regret R,(w), which was
defined in Equation (3), can equivalently be written as

= > A Z“M (Zi-1,Gy) =i} = > AiSin (7)

:A; >0 t=1 1:A;>0

On the event {S;,,(t) > 0} we define the empirical cdf based on the outcomes of all subjects

in {1,...,t} that have been assigned to treatment i
Fipn(z) = Sia(t) Z 1{Y,s <=z}, forevery z€R. (8)
1<s<t

71'n,s(ZS—lsz):i

Note that the random sampling times s such that m, (Zs_1,Gs) = ¢ depend on previously
observed treatment outcomes.

We shall frequently need an assumption that guarantees that the functional T evaluated
at empirical cdfs, such as thn just defined in Equation (8), is measurable.
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Assumption 2.6. For every m € N, the function on [a,b]™ that is defined via x
T(m™! Z;n:l IL{z; <-}), t.e., T evaluated at the empirical cdf corresponding to x1,..., Ty,
15 Borel measurable.

Assumption 2.6 is typically satisfied and imposes no practical restrictions.

Finally, and following up on the discussion in Remark 2.1, we shall introduce some no-
tational simplifications in case a policy 7 is such that m,, is independent of n, i.e., is an
anytime policy. It is then easily seen that the random quantities S;,(t) and thn do not
depend on n, as long as ¢t and n are such that the quantities are well defined, i.e., as long
as n > t. Therefore, for such policies, we shall drop the index n in these quantities.

2.2 Explore-then-commit policies

A natural approach to assigning subjects to treatments in our sequential setup would be
to first conduct a randomized controlled trial (RCT) to study which treatment is best, and
then to use the acquired knowledge to assign the inferred best treatment to all remaining
subjects. Such policies are special cases of explore-then-commit policies, which we study
next. Informally, an explore-then-commit policy deserves its name as it (i) uses the first n,
subjects to explore, in the sense that every treatment is assigned, in expectation, at least
proportionally to ny; and (ii) then commits to a single (inferred best) treatment after the
first n, treatments have been used for exploration. Here, n; may depend on the horizon n.

Formally, an explore-then-commit policy is defined as follows.

Definition 2.7 (Explore-then-commit policy). A policy 7 is an explore-then-commit policy,
if there exists a function ny : N — N and ann € (0,1), such that for every n € N we have
that ny(n) < n, and such that the following conditions hold for every n > K:

1. Ezxploration Condition: We have that

inf ot B[S (m(n)] = ().
E<

Here, the first infimum is taken over all potential outcome vectors Y; such that the
marginals Y;, fori=1,..., K have a cdf in 9.

[That is, regardless of the (unknown) underlying marginal distributions of the poten-
tial outcomes, each arm is assigned, in expectation, at least nnqi(n) times among the
first nq(n) subjects.]

2. Commitment Condition: There exists a function 7€ : [a, b]™ ™ — T such that, for
every t =ni(n) + 1,...,n, we have

Tna (21, 0) = T (2 Jor every z_1 € [a, b and every g € R,

where z,,(n) 15 the vector of the last ni(n) coordinates of z_.

[That is, the subjects t = ny(n)+1,...,n are all assigned to the same treatment, which
is selected based on the ni(n) outcomes observed during the exploration period.]
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It would easily be possible to let the commitment rule 7t depend on further external
randomization. For simplicity, we omit formalizing such a generalization. We shall now
discuss some important examples of explore-then-commit policies.

Example 2.8. A policy that first conducts an RCT based on a sample of ny(n) < n subjects,

followed by any assignment rule for subjects ny(n) 4+ 1,...,n that satisfies the commitment

condition in Definition 2.7, is an explore-then-commit policy, provided the concrete random-

ization scheme used encompasses sufficient exploration. In particular, m,(Z;—1,Gt) = Gy
1

with P(G; = i) := & for every 1 < ¢ < ny(n) and every i € T satisfies the exploration

condition in Definition 2.7 with n = %; more generally, if

inf P(G; = ) > 0,
then Definition 2.7 is satisfied with 7 the infimum in the previous display. Alternatively, a
policy that enforces balancedness in the exploration phase through assigning subjects ¢ =
1,...,n1(n) to treatments “cyclically,” i.e., m,+(Z;—1,G¢) = (t mod K) + 1, satisfies the
exploration condition in Definition 2.7 with n = 1/(2K) if ny(n) > K for every n > K.
Concrete choices for commitment rules for subjects ny(n) + 1,...,n include:

1. In case K = 2, a typical approach is to assign the fall-back treatment if, according
to some test, the alternative treatment is not significantly better, and to assign the
alternative treatment if it is significantly better. The sample size n;(n) used in the RCT
is typically chosen to ensure that the specific test used achieves a desired power against
a certain effect size. We refer to the description of the ETC-T policy in Section 2.4.1
for a specific example of a test and a corresponding rule for choosing n;.

2. As an alternative to test-based commitment rules, one can use an empirical success
rule as in Manski (2004), which in our general context amounts to assigning an element
of arg max;.; T(Fim(n),n) to subjects ni(n) + 1,...,n. A specific example of such a
policy, together with a concrete way of choosing ny, is discussed in the description of

the ETC-ES policy in Section 2.4.1.

We now consider the case K = 2 and establish regret lower bounds for the class of explore-
then-commit policies. To exclude trivial cases, we assume that & (which is typically convex)
contains a line segment on which the functional T is not everywhere constant.

Assumption 2.9. The functional T : Deg([a,b]) — R satisfies Assumption 2.2, and 2
contains two elements Hy and Hy, such that

Jr=THi+(1—7)Hy € 9  for every T € [0,1], 9)
and such that T(Hy) # T(H,).

Since there only have to exist two cdfs H; and Hy as in Assumption 2.9, this is a condition
that is practically always satisfied.

The next theorem considers general explore-then-commit policies, as well as the subclass
of policies where n;(n) < n* holds for every n € N for some n* € N. This subclass models
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situations, where the horizon n is unknown or ignored in planning the experiment, and the
envisioned number of subjects used for exploration n* is fixed in advance (here ny(n) = n*
for every n > n*, and ny(n) = n, else); the subclass also models situations where the sample
size that can be used for experimentation is limited due to budget constraints.

Theorem 2.10. Suppose K = 2 and that Assumption 2.9 holds. Then the following state-
ments hold:?

1. There exists a constant ¢; > 0, such that, for every explore-then-commit policy m that
satisfies the exploration condition with n € (0,1), and for any randomization measure,
it holds that

sup E[R,(7)] > nen®?  for every n > 2.
Fie{qulfg[o,l]}

2. For every n* € N there exists a constant ¢; = c¢;(n*), such that, for every explore-
then-commit policy 7 that satisfies (i) the exploration condition with n € (0,1) and
(i) ni(-) < n*, and for any randomization measure, it holds that

sup E[R.(7m)] > nen  for every n > 2.

Fie{J,T€[0,1]}
=12

The first part of Theorem 2.10 shows that, under the minimal assumption of & containing a
line segment on which T is not constant, any explore-then-commit policy must incur maximal
expected regret that increases at least of order n?/? in the horizon n. The second part implies
in particular that when n is unknown, such that the exploration period n; can not depend
on it, any explore-then-commit policy must incur linear maximal expected regret. We note
that this is the worst possible rate of regret, since by Assumption 2.2 no policy can have
larger than linear maximal expected regret.

The lower bounds on maximal expected regret are obtained by taking the maximum only
over all potential outcome vectors with marginal distributions in the line segment in Equa-
tion (9), i.e., a one-parametric subset of Z.

We now prove that the maximal expected regret of rate n?/® is attainable in the class of
explore-then-commit policies. In particular, employing an empirical success type commit-
ment rule after the exploration phase as discussed in Example 2.8 yields a maximal expected
regret of this order. To be precise, we consider the following policy, which in contrast to
test-based commitment rules (which require the choice of a suitable test and taking into
account multiple-comparison issues in case K > 2) can be implemented seamlessly for any
number of treatments:

3The constants ¢; depend on properties of the function 7 + T(J;) for 7 € [0,1]. More specifically, the
constants depend on the quantities € and ¢_ from Lemma A.4. The precise dependence is made explicit in
the proof.
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Policy 1: Explore-then-commit empirical-success policy 7
fort =1,...,n1(n) := min(K[n?3],n) do
| assign 7,4(Zi—1, Gi) = Gy, with G uniformly distributed on Z
end
fort=ny(n)+1,...,ndo

assign 7, (Zi—1,Gy) = min  argmax  T(F ,, (n)n)
Z.:Si,n(nl(n))>0

end

Note that the policy 7 is an explore-then-commit policy that requires knowledge of the
horizon n, which by Theorem 2.10 is necessary for obtaining a rate slower than n. The outer
minimum in the second for loop in the policy is just taken to break ties (if necessary). Our
result concerning 7 is as follows (an identical statement can be established for a version of 7
with cyclical assignment during the exploration phase as discussed in Remark 2.8; the proof
follows along the same lines, and we skip the details).

Theorem 2.11. Under Assumptions 2.2 and 2.6, the explore-then-commit empirical-success
policy T satisfies
sup E[R,(7)] < 6CKn*?  for every n € N. (10)
i21 K
Theorems 2.10 and 2.11 together prove that within the class of explore-then-commit poli-
cies, the policy 7 is rate optimal in n. We shall next show that policies which do not
separate the exploration and commitment phase can obtain lower maximal expected regret.
In this sense, the natural idea of separating exploration and commitment phases turns out
to be suboptimal from a decision-theoretic point-of-view in functional sequential treatment
assignment problems.

2.3 Functional UCB policy and regret bounds

We now introduce the Functional Upper Confidence Bound (F-UCB) policy and study its
properties. It is inspired by the UCB strategy of Lai and Robbins (1985) for multi-armed
bandit problems. While the UCB policy was designed for targeting the mean of a distribu-
tion, the F-UCB policy can target any functional (and reduces to the UCB policy in case
one targets the mean). The F-UCB policy has the practical advantage of not needing to
know the horizon n, cf. Remark 2.1 (recall also the notation introduced in Section 2.1.2).
Furthermore, no external randomization is required, which will therefore be notationally
suppressed as an argument to the policy. The policy is defined as follows, where C' is the
constant from Assumption 2.2.
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Policy 2: F-UCB policy 7
Input: 5 > 2
fort=1,...,K do

| assign m(Z;q) =t
end
fort > K +1do

assign 7;(Z;—1) = min arg max, {T(ﬁ’i7t,1) + C'/Blog(t)/(2S:(t — 1))}
end

After the K initialization rounds, the F-UCB policy assigns a treatment that i) is promising,
in the sense that T(F},_;) is large, or ii) has not been well explored, in the sense that S;(t—1)
is small. The parameter S is chosen by the researcher and indicates the weight put on
assigning scarcely explored treatments; i.e., treatments with low S;(t—1). An optimal choice
of B, minimizing the upper bound on maximal expected regret, is given after Theorem 2.12

below. We use the notation log(z) := max(log(x), 1) for z > 0.

Theorem 2.12. Under Assumptions 2.2 and 2.6, the F-UCB policy 7t satisfies

sup E[R,(7)] < cy/ Knlog(n)  for everyn € N,

Fic9
i=1,...K

where ¢ = c(B,C) = C+/28+ (B+2)/(B —2).

The upper bound on maximal expected regret just obtained is increasing in the number
of available treatments K. This is due to the fact that it becomes harder to find the best
treatment as the number of available treatments increases. Note also that the choice § =
2 + /2 minimizes ¢(3, C) and implies ¢ < v/11C.

The proof of Theorem 2.12 is inspired by the proof of Theorem 2.1 in Bubeck and Cesa-
Bianchi (2012). However, in contrast to their argumentation, we cannot exploit the specific
structure of the mean functional and related concentration inequalities. Instead we rely
on the high-level condition of Assumption 2.2 and the Dvoretzky-Kiefer-Wolfowitz-Massart
inequality as established by Massart (1990) to obtain suitable concentration inequalities,
cf. Equation (106) in Appendix D. To use this reasoning, we also need to show that the
empirical cdfs defined in (8) are based on ii.d. random variables, which is done via the
optional skipping theorem of Doob (1936).

The lower bound in Theorem 2.10 combined with the upper bound in Theorem 2.12 shows
that the maximal expected regret incurred by any explore-then-commit policy grows much
faster in n than that of the F-UCB policy. What is more, the F-UCB policy achieves this
without making use of the horizon n. Thus, in particular when n is unknown, a large
improvement is obtained over any explore-then-commit policy, as the order of the regret
decreases from n to \/nlog(n). Thus, in terms of maximal expected regret, the policy maker
is not recommended to separate the exploration and commitment phases.

Theorem 2.12 leaves open the possibility that one can construct policies with even slower
growth rates of maximal expected regret. We now turn to establishing a lower bound on
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maximal expected regret within the class of all policies. In particular, this also includes
policies that incorporate the horizon n.

Theorem 2.13. Suppose K = 2 and that Assumption 2.9 holds. Then there exists a constant
c; > 0, such that for any policy ™ and any randomization measure, it holds that

sup E[R, ()] > ¢!/ for every n € N. (11)

Fic{J;:7€[0,1]}
1=1,2

Under the same assumptions used to establish the lower bound on maximal expected regret
in the class of explore-then-commit policies, Theorem 2.13 shows that any policy must incur
maximal expected regret of order at least n'/2. In combination with Theorem 2.12 this shows
that, up to a multiplicative factor of 1/log(n), no policy exists that has a better dependence
of maximal expected regret on n than the F-UCB policy. In this sense the F-UCB policy is
near minimax (rate-) optimal.

2.4 Numerical illustrations

We now illustrate the theoretical results established so far by means of numerical exam-
ples. Throughout the section, the treatment outcome distributions F* will be taken from
the Beta family, a parametric subset of D.4([0,1]), which has a long history in modeling
income distributions; see, for example, Thurow (1970), McDonald (1984) and McDonald
and Ransom (2008). An appealing characteristic of the Beta family is its ability to replicate
many “shapes” of distributions. We emphasize that the policies investigated do not exploit
that the unknown treatment outcome distributions are elements of the Beta family.

Our numerical results cover different functionals T, with a focus on situations where the
policy maker targets the distribution that maximizes welfare, and where we consider the
case a = 0 and b = 1. In all our examples the feasible set for the marginal distributions of
the treatment outcomes 2 = D4 ([0, 1]).

The specific welfare measures we consider are as follows (and correspond to the Gini-,
Schutz- and Atkinson- inequality measure, respectively, through the transformations detailed
in Section 4.3, to which we refer the reader for more background information):

1. Gini-index-based welfare measure: W(F') = — 3 [ [ |z1—xa|dF (21)dF (22), where
pW(F) := [xdF(z) denotes the mean of F.

[Assumption 2.2 is satisfied with 2 = D.4([0,1]) and C' = 2, cf. the discussion after
Lemma 4.9.]
2. Schutz-coefficient-based welfare measure: W(F) = pu(F) — 5 [ | — p(F)|dF(x).

[Observing that W(F') = pu(F')—Saps(F) with Sgps as deﬁned in Equation (22), it follows
from Lemmas 4.1 and 4.9 that Assumption 2.2 is satisfied with 2 = D.4([0, 1]) and
C=2]

3. Atkinson-indez-based welfare measure: W(F) = [[ 21=2dF(z)]*/1=9) for a parameter
€ (0,1)U(1,00).
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[Restricting attention to € € (0, 1), the mean value theorem along with Example D.4 in
Appendix D yield that Assumption 2.2 is satisfied with Z = D.4([0,1]) and C = ﬁ
We shall consider € € {0.1,0.5}.]

2.4.1 Implementation details

We focus on scenarios where the total number of assignments to be made is not known from
the outset. Thus, the policies we study do not make use of the horizon n. Throughout, we
consider the case of K = 2 treatments. In the following, the symbol W shall denote one of
the welfare measures just defined in the above enumeration.

We consider explore-then-commit policies as in Section 2.2, and the F-UCB policy from
Section 2.3. A detailed description concerning the implementation of the policies investigated
is as follows.

e Explore-then-commit policies: In all explore-then-commit policies we consider,
Treatments 1 and 2 are assigned cyclically in the exploration period. This ensures that
the number of assignments to each treatment differs at most by 1 (cf. also Remark
2.8 in Section 2.2).* Given this specification, the policy maker must still choose i) the
length of the exploration period n;, and ii) a commitment rule to be used after the
exploration phase. The choice of n; depends on the commitment rule, of which we now
develop a test-based and an empirical-success-based variant:

1. ETC-T: This policy is built around a test-based commitment rule. That is, one

uses a test for the testing problem “equal welfare of treatments,” i.e., W(F?!) =
W(F?), in deciding which treatment to choose after the exploration phase. Given
a test that satisfies a pre-specified size requirement, the length of the exploration
phase is chosen such that the power of the test against a certain deviation from
the null (effect size) is at least of a desired magnitude. A typical desired amount
of power against the deviation from the null of interest is 0.8 or 0.9. The deviation
from the null that one wishes to detect is clearly context dependent. We refer
to Jacob (1988), Murphy et al. (2014) and Athey and Imbens (2017), as well as
references therein, for in-depth treatments of power calculations.
To make this approach implementable, we need to construct an appropriate test.
Given a € (0,1), and for n; > 2, we shall consider the test that rejects if (and
only if) [W(Fy,) — W(Fyn,)| > co with ¢, = 1/21log(4/a)C?/|n1/2]. Under the
null, i.e., for every pair F' and F? in D.4([0,1]) such that W(F') = W(F?), this
test has rejection probability at most « (a proof of this statement is provided in
Appendix B.3.1). Hence, the size of this test does not exceed a.

For this test, in order to detect a deviation of A := |W(F') — W(F?)| > 0 with

8log(4/ min(a,n))C?
=2 g(/AQ( m) ]

probability at least 1 —n, where n € (0, 1), it suffices that n;
(for a proof of this statement, see Appendix B.3.2).

4Investigating policies with randomized assignment in the exploration phase would necessitate running
the simulations repeatedly, averaging over different draws for the assignments in the exploration phase. The
numerical results are already quite computationally intensive, which is why we only investigate a cyclical
assignment scheme. This scheme already reflects to a good extent the average behaviour of a randomized
assignment with equal assignment probabilities.
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In our numerical studies we set n = a = 0.1. We consider A € {0.15,0.30},
which amounts to a small and moderate desired detectable effect size, respectively.
Note that while choosing A small allows one to detect small differences in the
functionals by the above test, this comes at the price of a larger ny. Thus, we
shall see that neither A = 0.15 nor A = 0.30 dominates the other uniformly
(over t € N) in terms of maximal expected regret. The commitment rule applied
is to assign arg max; ;< W(E,nl) if the above test rejects, and to randomize the
treatment assignment with equal probabilities otherwise. Finally, we sometimes
make the dependence of ETC-T on A explicit by writing ETC-T(A).

~

2. ETC-ES: This policy assigns 75, (Z,, ) := min arg max, «;« x W(F; », ) tosubjects t =
ny + 1,...,n, which is an empirical success commitment rule inspired by Man-
ski (2004) and Manski and Tetenov (2016). Here, given a 6 > 0, ny is chosen
such that the maximal expected regret for every subject to be treated after the
exploration phase is at most ¢; i.e., n; satisfies

sup E (I?GElIXW(Fi) — W(FW%(Z’H)) <.

We prove in Appendix B.3.3 that ny, = 2[16C?/(6% exp(1))] suffices.

In our numerical results, we consider § € {0.15,0.30}, which should be contrasted
to the treatment outcomes taking values in [0, 1]. Note that the n; required to
guarantee a maximal expected regret of at most ¢ for every subject treated after
the exploration phase is decreasing in §. Thus, we shall see that it need not be the
case that choosing ¢ smaller will result in lower overall maximal expected regret.
Finally, we sometimes make the dependence of ETC-ES on § explicit by writing
ETC-ES(9).

e F-UCB policy: Implemented as described in Policy 2 in Section 2.3 with § = 2.01.

The following display summarizes the numerical implementation.

Input: n = 100,000, » = 20 and

G ={0.1,0.75,0.85,0.95,0.975,1,1.025, 1.05, 1.15, 1.25, 5} .

for p; € G such that py < 5 do

for p, € G, p» > p; do

fori=1,...,r do
Generate n independent observations from Beta(1, p;) ® Beta(1, p2).
fort=1,...,ndo

| Calculate the regret of each policy over all assignments s = 1,...,¢.

end

end

Estimate expected regret for each policy and for t =1,...,n by the

arithmetic mean of regret over the r data sets.

end

end
Estimate, for every ¢t = 1,...,n, the maximal expected regret by maximizing the
arithmetic means over the |G|(|G| — 1)/2 = 55 parameter vectors (p1, pz).
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Since maximizing expected regret over all Beta distributions would be numerically infea-
sible, we have chosen to maximize expected regret over a subset of all Beta distributions
indexed by G as defined in the previous display. We stress that since none of the three
policies above needs to know n, the numerical results also contain the maximal expected
regret of the policies for any sample size less than n = 100,000.

2.4.2 Results

The left panel of Figure 1 illustrates the maximal expected regret for the F-UCB, ETC-T and
ETC-ES policies in the case of Gini-welfare. Each point on the five graphs is the maximum of
expected regret over the 55 different distributions considered. In accordance with Theorems
2.10 and 2.12, the maximal expected regret of the policies in the explore-then-commit family
is generally higher than the one of the F-UCB policy. For ¢t = 100,000, the maximal expected
regret of F-UCB is 498 while the corresponding numbers for ETC-T(0.15), ETC-ES(0.15),
ETC-T(0.30) and ETC-ES(0.30) are 3,896, 777, 6,424 and 778, respectively. Note also that
no matter the values of A and 0, the maximal expected regret of ETC-ES(6) is much lower
than the one of the ETC-T(A) policy.” In fact, we shall see for all functionals considered that
the F-UCB policy generally incurs the lowest maximal expected regret followed by ETC-ES
policies, which in turn perform much better than ETC-T policies.
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Figure 1: The figure contains the maximal expected regret for F-UCB, ETC-T(A) with A €
{0.15,0.30} and ETC-ES(9) with 6 € {0.15,0.30}. The left panel is for Gini-welfare while the right
panel is for Schutz-welfare.

The shape of the graphs of the maximal expected regret of the explore-then-commit policies
can be explained as follows: in the exploration phase maximal expected regret is attained by

5This result on the ranking of test-based vs. empirical success-based commitment rules is similar to an
analogous finding in a non-sequential setting in Manski and Tetenov (2016).
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a Py, say, for which the value of the Gini-welfare differs strongly at the marginals. However,
such distributions are also relatively easy to distinguish, such that none of the commitment
rules (testing or empirical success) assigns the suboptimal treatment after the exploration
phase. This results in no more regret being incurred and thus a horizontal part on the
maximal expected regret graph. For ¢ sufficiently large, however, maximal expected regret
will be attained by a distribution P, say, for which the marginals are sufficiently “close” to
imply that the commitment rules occasionally assign the suboptimal treatment. For such
a distribution, the expected regret curve will have a positive linear increase even after the
commitment time n; and this curve will eventually cross the horizontal part of the expected
regret curve pertaining to P;. This implies that maximal expected regret increases again (as
seen for ETC-T(0.30) around ¢ = 18,000 and ETC-ES(0.30) around ¢ = 23,000 in the left
panel of Figure 1). Eventually, such a kink also occurs for ETC-T(0.15) and ETC-ES(0.15).
Thus, the left panel of Figure 1 illustrates the tension between choosing n; small in order
to avoid incurring high regret in the exploration phase and, on the other hand, choosing n,
large in order to ensure making the correct decision at the commitment time.

The right panel of Figure 1, which contains the maximal expected regret for the Schutz-
welfare, yields results qualitatively similar to the ones for the Gini-welfare. The best explore-
then-commit policy again has a terminal maximal expected regret that is more than 50%
higher than that of the F-UCB policy.
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Figure 2: The figure contains the maximal expected regret for F-UCB, ETC-T(A) with A €
{0.15,0.30} and ETC-ES(9) with § € {0.15,0.30} in the case of Atkinson welfare. The left panel is
for € = 0.1, while the right panel is for e = 0.5.

We next turn to the two welfare measures in the Atkinson family. The left panel of Figure 2
contains the results for the case of ¢ = 0.1. While F-UCB incurs the lowest maximal
expected regret uniformly over ¢ = 1,...,100,000, the most remarkable feature of the figure is
that maximal expected regret of all all explore-then-commit policies is eventually increasing
within the sample considered. The reason for this is that ¢ = 0.1 implies a low value
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of n; such that i) the steep increase in maximal expected regret becomes shorter and ii)
more mistakes are made at the commitment time. The ranking of the families of polices is
unaltered with F-UCB dominating ETC-ES, which in turns incurs much lower regret than
ETC-T.

The right panel of Figure 2 considers the case of Atkinson welfare when ¢ = 0.5. The
findings are qualitatively similar to the ones for the Gini- and Schutz-based welfare measures.

3 Functional sequential treatment allocation with co-
variates

The results in the previous section are important in highlighting the main theoretical differ-
ences between explore-then-commit policies and the F-UCB policy. They are obtained in a
simple setting, which does not include covariates. In a situation where covariate information
is present, however, it seems reasonable to incorporate this into the policy. For example, a
medical treatment may work well for one person, while it may be dangerous to a person who,
e.g., is allergic to some of its substances. Similarly, an unemployment program that works
well for individuals with low education may not be effective for highly educated individuals.

The goal of the present section is to study how a policy maker can optimally assign subjects
to treatments in the presence of covariates. To this end, we now introduce an observational
structure that incorporates covariates, generalize the F-UCB policy to this setting, and study
its optimality properties. Since we already know that in terms of maximal expected regret
it is not recommendable to separate exploration and commitment phases, we do not further
consider explore-then-commit policies.

3.1 The setup and two impossibility results

Formally, the setup is similar to the one described in Section 2.1. However, we now suppose
that prior to assigning subject ¢ to a treatment, the policy maker observes the realization
of a random vector X, of covariates. For simplicity we assume throughout that X, € [0, 1]%.
As in Section 2.1 the vector of potential outcomes is denoted as Y;. Throughout Section 3,
we assume that (Y;, X¢) = (Yis,...,Yke, Xy) for t € N are i.i.d.; and we assume that the
sequence of randomizations G, is i.i.d., and is independent of the sequence (Y;, X;). We
denote the distribution of (Y;, X;) as Py x, and by Px the marginal distribution of X;. The
conditional cdf of Y;; given X; = =z is defined as F'(y,z) = K'((—o0,y],z), where K’ :
B(R) x [0,1] — [0, 1] denotes a regular conditional distribution (as defined in, e.g., Liese
and Miescke (2008) Definition A.36) of Y;; given X;. We shall often impose the following
condition (cf. also Remark 3.10).

Assumption 3.1. The distribution Px is absolutely continuous w.r.t. Lebesgue measure
on [0,1]%, with a density that is bounded from below and above by ¢ > 0 and ¢, respectively.

Similarly as in Section 2.1, a policy 7 is a triangular array {m,; : n € N, 1 <t < n}. However,
now the assignment 7, ; takes as input the covariates X, previously observed outcomes and

21



covariates (i.e., the complete observational history), and randomization. We therefore have

t—1
T [0,1]% % [[a, b] x [0, 1]d] xR - T.
Given a policy 7 and n € N, the input to m,, is denoted as (X, Z;_1, G¢), where Z;_ is
defined recursively: The first treatment ,; is a function of (X1, Zy, G1) = (X1,G1). The
second treatment is a function of Xy, of Z1 := (Yz, | (x1,20,¢1),1, X1), and of Gy. For t > 3 we
have

Ziq = (Ynn,t,l(Xt,l,zt,g,Gt,l),tq7 X1, Zt72>'
The (¢t — 1)(d + 1)-dimensional random vector Z;_; can be interpreted as the information
available after the (t—1)-th treatment outcome has been observed and before the ¢-th subject
arrives. We use similar notational simplifications as the ones mentioned in Section 2.1.
Remark 2.1 also applies in the present context.

The policy maker observes the covariates before making the assignments. Therefore, treat-
ments will still be evaluated according to a functional as in Equation (2), but now applied
to cdfs conditional on the covariates: The best assignment for a subject with covariate
vector z € [0,1]? is defined as

7*(x) = min arg max T(F'(-, x)),
i€
where the minimum has been taken as a concrete choice of breaking ties. Correspondingly,
in the presence of covariates, the regret of a policy 7 is defined as

Ru(m) = Ry(m; FY, ... FX X, Z 1, Gy, ..., Gy)

- Z [T(FW*(Xt)(WXt)) - T(Fwn’t(Xt’Zt_l’Gt)('vXt)>] ’
t=1

In this section, we continue considering a policy maker who seeks a policy 7 that minimizes
the maximal expected regret. But now the maximum will be taken over sets of possible
joint distributions Py x. Similarly to Section 2, we denote the (“parameter”-) space of all
potential conditional cdfs F'(-,z) by 2. More precisely, we assume that

{Fi(;a):i=1,...,K and 2 € [0,1]*} C 2, (12)

where 2 is typically a large and nonparametric subset of D.4([a,b]); cf. Section 4.1 for
specific examples. When establishing lower bounds on maximal expected regret we shall
often impose the following condition, which is slightly stronger than Assumption 2.9, but
still very weak. Similarly to Assumption 2.9, it guarantees that there is a minimal amount
of variation in the functional over a small subset of Z.

Assumption 3.2. The functional T : Deg([a,b]) — R satisfies Assumption 2.2, and P
contains two elements Hy and Hsy, such that

Jy=THi+(1—7)Hy € 9  for every T € [0,1],
and such that for some c_ > 0 we have

T(Jr) —T(Jry) > c_(ro—11)  for every 1y < 15 in [0, 1]. (13)
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We emphasize that Equation (13) in Assumption 3.2 is satisfied if, e.g., 7 — T(J;) is
continuously differentiable on [0, 1] with an everywhere positive derivative.

Up to this point no assumption has been imposed on the dependence of the conditional
cdfs Fi(-,x) on z € [0,1]%. Keeping this dependence unrestricted would allow two subjects
with similar covariates to have completely different conditional outcome distributions. We
now prove that the maximal expected regret of any policy increases linearly in n if the
dependence of F'(-,x) on x is not further restricted. It even turns out that this statement
continues to hold if one imposes the restriction that subjects with similar covariates have
similar outcome distributions in the sense that

{F'(y,-):i=1,...,K and y € R} is uniformly equicontinuous.® (14)
The theorem is as follows.

Theorem 3.3. Suppose K = 2 and that Assumption 3.2 is satisfied. Then there exists a
constant c¢; > 0, such that for every policy m and any randomization measure, we have

supE[R,(7)] > an  for every n € N,

where the supremum is taken over all (Y;, X) ~ Py x fort =1,...,n, where Py x satisfies
Equations (12) and (14), and where Py is the uniform distribution on [0, 1]¢.

Since Assumption 2.2 (which is a part of Assumption 3.2) implies that T is bounded,
Theorem 3.3 shows that every policy incurs the worst case linear maximal expected regret.
Therefore, further assumptions beyond the uniform equicontinuity condition in Equation (14)
are needed. We shall from now on impose a Holder equicontinuity condition on F*(-, z).
This condition is only slightly stronger than uniform equicontinuity, but will turn out to
be enough to ensure existence of (near) minimax optimal policies with nontrivial maximal
expected regret.

Assumption 3.4. There exist a v € (0,1] and an L > 0, such that for every i =1,..., K
and every y € R, we have

‘Fi(ywrl) - Fz(y7x2)| < LH$1 - xQH’Y fOT’ every Ty, Ty € [07 1]d

Before further considering policies that incorporate covariate information, one may wonder
whether one could not just use the F-UCB policy, i.e., Policy 2 as introduced in Section 2;
or another policy that ignores covariates, in the sense that it is a policy as defined in
Equation (1). Our next result shows that any policy that ignores covariates incurs linear
expected regret (unless all covariates happen to be irrelevant).

Theorem 3.5. Let K = 2, suppose T : D.y([a,b]) — R satisfies Assumption 2.2, and
let Py x satisfy Assumption 3.4. Define the sets

Ay i={z €[0,1]": T(F'(-,2)) > T(F*(,z))},
Ay = {z € [0,1]Y: T(F'(-,2)) < T(F?(-,z))}.

6The assumption in Equation (14) imposes that: for every € > 0 there exists a 6 > 0 such that ||z —z»| <
§, for || - || the Euclidean norm, implies |F(y,z1) — F'(y,z2)| < € for every i = 1,..., K and every y € R.
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Then, there exists a ¢; > 0, such that for every policy m ignoring covariates, and any ran-
domization measure, we have

E[R,(7)] > ¢y min(Px (A1), Px(As))n  for every n € N. (15)

Thus, the expected regret of any policy ignoring covariates must increase at the worst-
case linear rate in n, for any distribution Py x for which the identity of the best treatment
depends on the covariates in the sense that

min (Px(A;),Px(42)) > 0.

Note that the lower bound in the previous theorem is even valid pointwise, as it makes a
statement about any fixed distribution Py, x.

3.2 The F-UCB policy in the presence of covariates

We now introduce a version of the F-UCB policy that incorporates covariate information.
The idea is to group subjects with similar values of the covariates, and to run the F-UCB
policy without covariates 7 as defined in Policy 2 of Section 2 for each group separately. Here,
two covariate vectors x1 and x5 are considered similar, if they fall into the same element of a
given partition By1, ..., By ym) of [0,1]%, where every B, ; is a non-empty Borel set. Given
a partition, the F-UCB policy with covariates is defined as follows.

Policy 3: F-UCB policy with covariates 7
Inputs: 3 > 2, Partition B, 1,..., By yn)
Set: N; = 1 and W7 the empty vector for j =1,..., M(n)
fort=1,...,ndo
for j=1,...,M(n) do
if X, € B, ; then
assign @y, (W7)
W7 (Y, Wiyt W)
Nj — Nj +1
end

end

end

Note that one could use this partitioning method to extend any policy as defined in Equa-
tion (1) that does not depend on the horizon to incorporate covariates through partitioning.
We focus on studying the F-UCB policy, however, because it has near-optimal maximal
expected regret properties in the no-covariates case, cf. Section 2.3.

Partitioning effectively amounts to targeting the treatment that is best “on average” in
each group, instead of fully individualizing the treatments. On B, ; with Px (B, ;) > 0 this
means that the policy targets a treatment that attains max;cr T(Fj;,j), where Fﬁj is the
conditional cdf of Y;; given X; € B, ;, i.e.,

FL0) = gy, P (16)
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In general arg max,c; T(F} ;) # argmax;cz T(F'(-,x)). Hence, targeting max;ez T(F}, ;) re-
sults in a bias. The choice of the partition B,, 1, ..., By a(n) needs to balance this bias against

an increase in variance due to having fewer subjects in each group. This is akin to choosing
a bandwidth to balance variance and bias terms in nonparametric estimation problems.

3.3 An upper bound on the maximal expected regret of the F-
UCB policy with covariates

The following theorem gives an upper bound on the maximal expected regret of the F-UCB
policy in the presence of covariates, and for any choice of partition. This flexibility may be
useful since the policy maker is often constrained in the way groups can be formed. The
result quantifies how the partitioning affects the regret guarantees.

Theorem 3.6. Suppose Assumptions 2.2 and 2.6 hold. Assume further that & is convex.
Consider the F-UCB policy with covariates &, and let V,; = Sup,, 4,ep, , |21 — 22| be the
diameter of B,, ;. Then, for ¢ = c¢(B,C) as in Theorem 2.12, it holds that

M(n)
sup E[R,(7)] < Z {c\/KnPX(anj)Eg(nIP’X(Bm)) +20LV,] nPx (B, ;)| for everyn € N,
j=1

(17)
where the supremum is taken over all (Y;, X¢) ~ Py x fort =1,...,n, where Py x satisfies
Equation (12), and Assumption 3.4 with L and ~."

Each of the summands j = 1,..., M(n) in the upper bound on the maximal expected regret

in Equation (17) consists of two parts: The first part is very similar to the upper bound of
Theorem 2.12. The difference is that the total number of subjects to be treated, n, has now
been replaced by nPPx (B, ;), the number of subjects expected to fall into B,, ;. Inspection of
the proof shows that the first part is the regret we expect to accumulate on B, ;, compared to
always assigning the treatment that is best for the “average subject” in B, ;, i.e., compared
to always assigning an element of argmax; 7 T(Fé,j), where we recall the definition of Ffu
from Equation (16). The second part in each summand in the upper bound in (17) is a bias
term: It is the approximation error incurred due to 7 effectively targeting max;ez T(Fﬁ”)
instead of T(F™ ®)(-,z)) for every z € B, .

An important class of partitions of [0,1]¢ are hypercubes, which are obtained by hard
thresholding each coordinate of X;. The so-created groups may not only result in low regret,
but are also relevant due to their simplicity and resemblance to ways of grouping subjects in
practice. More precisely, fix P € N and define for every k = (ky,...,kg) € {1,..., P}? the
hypercube

ky—1

{:c c[0,1)%:

where < is to be interpreted as < for k; = P, and as < otherwise. This defines a partition
of [0,1]% into P4 hypercubes with side length 1/P each. We now order these hypercubes

k
gxljﬁl,lzl,...,d}, (18)

"Here Px (B, j)log(nPx (B, ;)) is to be interpreted as 0 in case Px (B, ;) = 0.
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lexicographically according to their index vector k, to obtain the corresponding cubic par-
tition BY, ... ,Blfd. The following results specializes Theorem 3.6 to this specific partition
and for a choice of P that will be shown to be optimal below.

Corollary 3.7. Suppose Assumptions 2.2 and 2.6 hold. Assume further that & is convex.
Let v € (0,1]. Consider the F-UCB policy with covariates 7, based on a cubic partition B, ; =
BY for j=1,...,M(n) = P? as defined in Equation (18), and with P = [nY/ G+, Then
there exists a constant ¢ = ¢(d, L,~,¢,C, 5) > 0, such that

supE [R,(7)] < cy/Klog(n) n'"# @ for every n € N,

where the supremum is taken over all (Y;, X;) ~ Py x fort =1,...,n, where Py x satisfies
Equation (12), Assumption 3.1 with ¢ (and any c), and Assumption 3.4 with L and ~.

Corollary 3.7 reveals that it is possible to achieve sublinear (in n) maximal expected re-
gret under the Holder equicontinuity condition imposed through Assumption 3.4. This is
interesting also in light of Theorem 3.3, which showed that under the slightly weaker as-
sumption of uniform equicontinuity, every policy has linearly increasing maximal expected
regret. Hence, there is little room for weakening Assumption 3.4. Note that a “curse of
dimensionality” is present, in the sense that the upper bound in Theorem 3.7 gets close to
linear in n, as the number of covariates d increases. This is due to the fact that as a part
of the regret minimization, one sequentially estimates the conditional distributions F*(y, )
of the treatment outcomes, where each cdf is a function of d variables. Finally, we observe
that the upper bound is increasing in the number of available treatments K. Intuitively, this
is because more observations must be used for experimentation when more treatments are
available.

The partitioning used in Corollary 3.7 results in a near-minimax optimal policy, as we show
in the following theorem.

Theorem 3.8. Suppose K = 2 and that Assumption 3.2 is satisfied. Let v € (0,1]. Then,
for every e € (0,7v/(2y + d)), every policy m and any randomization measure, we have

sup E[R,(7)] > n'"=7 n~*¢)(e)  for everyn € N,

where the supremum is taken over all (Y;, X;) ~ Py x fort = 1,...,n, where Py x satis-
fies Equation (12), Assumption 3.4 with parameters v and L = 1//17, Px is the uniform
distribution on [0,1]%, and where

e (e) = 64O (8d(c_20) 7 4 )V with  ale) = (2y + d)e /.

Comparing the lower bound on maximal regret in Theorem 3.8 to the upper bound on max-
imal expected regret established in Corollary 3.7, reveals that the F-UCB policy with a cubic
partition and with P = [n'/(27*97 is near-optimal: If a policy with strictly smaller maximal
expected regret exists, the order of improvement must be o(n®) for all € € (0,7/(27+d)), e.g.,
logarithmic. In particular this also means that if nothing prohibits cubic partitioning, not
much can be gained from a maximal expected regret point-of-view in searching for “better”
partitions under the given set of assumptions.
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Remark 3.9 (Unknown horizon and the doubling trick). The policy 7 with cubic parti-
tioning P = [n'/7*9] as considered in Corollary 3.7, can be used in practice only if one
knows n, i.e., the policy is not anytime. If, n is unknown, however, one can instead use the
“doubling trick” to construct a policy with an upper bound on the maximal expected regret
that is of the same order as in Corollary 3.7, but with higher multiplicative constants. In
essence, the doubling trick works by “restarting” the policy at times 2™, m € N. The dou-
bling trick is a standard tool in games of unknown horizon and we refer to Shalev-Shwartz
(2012) and the recent work of Besson and Kaufmann (2018) for more details.

Remark 3.10 (Discrete covariates). We mostly focus on the case of continuous covariates
(although this is not formally required in Theorem 3.6). A natural, and also minimax rate-
optimal, solution to incorporate discrete covariates would be to fully condition on these, i.e.,
to apply the F-UCB policy separately for each combination of discrete covariates. In this
article, we omit formal statements concerning discrete covariates, but we emphasize that
corresponding results can be obtained from the results provided by conditioning arguments.

3.4 Stronger regret guarantees and number of suboptimal assign-
ments

Besides mild conditions on Py, our results so far have only assumed that the conditional
distributions of the treatment outcomes are Holder equicontinuous. In particular, the sets of
distributions over which the F-UCB policy has been shown to be optimal does not restrict
the (unknown) similarity of the best and second best treatment. Therefore, the results so
far do not convey information about whether the F-UCB policy optimally incorporates this
degree of similarity. It is clear that identifying the best treatment becomes easier, as the
difference between the best and the remaining treatments gets more pronounced. In the
present section, we shall see that in classes of distributions where the best and second best
treatment are “well-separated,” the upper bound on maximal expected regret of the F-UCB
policy can be lowered (without changing the policy), and that the F-UCB policy optimally
adapts to the degree of similarity of the best and the remaining treatments.

Besides being of interest in its own right, the results in the present section are instrumental
to proving our impossibility result Theorem 3.3 and to establishing the regret lower bound
in Theorem 3.8. Additionally, the “well-separateness condition” imposed will also allow us
to bound the expected number of suboptimal assignments of the F-UCB policy.

To formally define the well-separateness condition we shall work with, we need to de-
fine for every x € [0, 1]¢ the second best treatment 7(z); note that in principle there can
be multiple treatments that are as good as the best treatment 7*(z). For x € [0,1]¢, if
miner T(F'(-,z)) < T(F™@(-,z)) we define the second best treatment as

7*(2) := min arg max {T(F’(,a:)) :T(F'(, 7)) < T(F”*(z)(-,x))} ;

1€T

and we set 7¥ () = 1 otherwise, i.e., if all treatments are equally good. We can now introduce
the margin condition.
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Assumption 3.11. There exists an a € (0,1) and a Cy > 0, such that®
Py (g; €[0,17:0 < T(F"@ (-, 2)) = T(F~@(-,2)) < 5) < Cy6® for all § € [0, 1.

The margin condition restricts how likely it is that the best and second best treatment are
close to each other. In particular, it limits the probability of these two treatments being
almost equally good, i.e., being within a J-margin. Assumptions of this type have previously
been used in the works of Mammen and Tsybakov (1999), Tsybakov (2004), and Audibert
and Tsybakov (2007) in the statistics literature. In the context of statistical treatment rules,
the margin condition has recently been used in the work of Kitagawa and Tetenov (2018),
who considered empirical welfare maximization in a static treatment allocation problem.
Finally, the margin condition was used by Perchet and Rigollet (2013) in the context of a
multi-armed bandit problem targeting the mean.

Adding the margin condition, the maximal expected regret of the F-UCB policy based on
cubic partitions can be bounded as follows.

Theorem 3.12. Suppose Assumptions 2.2 and 2.6 hold. Assume further that 2 is convex.
Lety € (0,1]. Consider the F-UCB policy with covariates 7, based on a cubic partition B, ; =
BY for j=1,...,M(n) = P?, as defined in Equation (18), and with P = [n*/@F97]. Then
there exists a constant ¢ = ¢(d, L,v,¢c, ¢, C,Cy, «r, B) > 0, such that
—_— y(1+a)

supE [R,(7)] < cKlog(n)n'~ S+d for every n € N, (19)
where the supremum is taken over all (Y;, Xi) ~ Py x fort =1,...,n, where Py x satisfies
Equation (12), Assumption 3.1 with ¢ and ¢, Assumption 3.4 with L and v, and Assump-
tion 3.11 with a € (0,1) and Cy > 0.

Compared to Corollary 3.7 the exponent on n in the upper bound on regret is smaller, the
difference depending on «. Thus, in the presence of Assumption 3.11, the regret guarantee
of the F-UCB policy is stronger, even without incorporating « into the policy. We shall see
in Theorem 3.14 below that the upper bound on maximal regret in Theorem 3.12 is optimal
in n up to logarithmic factors.

The margin condition does not only allow us to prove a lower upper bounds on maximal
expected regret than in Corollary 3.7. It also allows us to prove an upper bound on the
number of suboptimal assignments made by the F-UCB policy. We shall define the total
number of suboptimal assignments for a policy 7 over the course of a total of n assignments
as

Sp(m) = Sp(m; FY o FR X, Z 1, Gy, GY)

= 1 {mi(Xs, Zi1,Gy) € argmax {T(F'(-,X,)) :i=1,...,K}}.

t=1

We now establish a uniform upper bound on E[S,,(7)] for the F-UCB policy 7 based on cubic
partitions.

8We note that the events in the displayed equation of Assumption 3.11 are not necessarily Borel measur-
able. Therefore, Assumption 3.11 implicitly imposes measurability on all events considered. Note, however,
that in case Assumptions 2.2 and 3.4 as well as the inclusion in Equation (12) are assumed, this measurability
condition is easily seen to be satisfied.
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Theorem 3.13. Suppose Assumptions 2.2 and 2.6 hold. Assume further that & is convez.
Let~ € (0,1]. Consider the F-UCB policy with covariates 7, based on a cubic partition B, ; =
BY for j=1,...,M(n) = P?, as defined in Equation (18), and with P = [n*/@*97. Then
there exists a constant ¢ = ¢(d, L,~,c,¢,C,Co, e, ) > 0, such that

supE [S,,(7)] < c[Klog(n)]Tan'"®+  for every n € N,

where the supremum is taken over all (Y;, X) ~ Py x fort =1,...,n, where Py x satisfies
Equation (12), Assumption 3.1 with ¢ and ¢, Assumption 3.4 with L and v, and Assump-
tion 3.11 with a € (0,1) and Cy > 0.

The upper bound in Theorem 3.13 is a useful theoretical guarantee, because it limits the
number of subjects who receive suboptimal treatments. As the last result in this section, we
prove that the upper bounds in Theorems 3.12 and 3.13 are near minimax optimal. This
ensures, in particular, that the good behavior of the maximal expected regret of the F-UCB
policy does not come at the price of excessive experimentation, leading to unnecessarily
many suboptimal assignments.

Theorem 3.14. Suppose K = 2 and that Assumption 3.2 is satisfied. Let v € (0,1]. Then
for every policy ™ and any randomization measure, we have

supE[R, ()] > nl_gim)/ [641“/“(00 + 1)1/‘1] for every n € N, (20)

and o
sup E[S,,(m)] > n'" @57 /32 for everyn € N, (21)
where both suprema are taken over all (Y, X;) ~ Py x fort =1,...,n, where Py x satisfies

Equation (12), Assumption 3.4 with parameters v and L = 1772 Assumption 3.11 with a €
(0,1) and Cy = 8d(c_2L)~%, and where Py is the uniform distribution on [0, 1]%.

The statement in Equation (20) in Theorem 3.14 shows that the F-UCB policy is near
minimax optimal in terms of maximal expected regret. Similarly, the lower bound in Equa-
tion (21) of Theorem 3.14 together with Theorem 3.13 proves that the F-UCB policy assigns
the minimal number of suboptimal treatments.

4 Assumption 2.2 for inequality, welfare, and poverty
measures

To illustrate the scope of our results, and to facilitate their implementation in practice, we
shall now discuss several functionals of interest in applied economics that satisfy Assump-
tion 2.2. We also provide a corresponding set 2 and a constant C'. Appendix D contains a
toolbox of general methods for verifying Assumption 2.2. The results in the present section
are established using these techniques. Therefore, in addition to their intrinsic importance,
the following results, and in particular their proofs, also provide a pattern as to how Assump-
tion 2.2 can be verified for functionals that we do not explicitly discuss. Before we proceed
to these results, we introduce some nonparametric classes of cdfs & which will play a major
role. The proofs of all results discussed in the present section can be found in Appendix C.
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4.1 Important classes of cdfs ¥

Recall that a < b are throughout assumed to be real numbers. We shall consider the following
classes of cdfs.

1. 2°(Ja,b]): The subset of all ' € D.g([a,b]) that are continuous when restricted
to [a, ], and are right-differentiable on (a, b), with right-sided derivative F'*, say, sat-
isfying F*(x) < s for all x € (a,b).

2. 2.(la,b]): The subset of all F' € D, 4([a, b]) that are continuous when restricted to [a, b],
and right-differentiable on (a,b), with F*(z) > r for all € (a,b).

3. @i([av b]) = @s([av b]) N @r([a’b])

4. Furthermore, the subset of all F' € Z°([a, b]) that are (everywhere) continuous shall be
denoted by €*([a,b]), and we correspondingly define %,([a,b]) and €?*([a, b]).

Note that if F' € D.g([a,b]) is differentiable with a density f = F’ that, on [a,b], is
bounded from below by r and from above by s, then F' € €°([a,b]). The set €*([a,b]) is
contained in all classes of cdfs defined in 1.-4. above. Hence, one can think of the (strongest)
assumptions imposed above as putting a lower or an upper bound on the unknown densities
of the (conditional) outcome distributions.

4.2 Inequality measures

In this section we verify Assumption 2.2 for functionals that aim to measure the degree
of inequality inherent to an (e.g., income, wealth or productivity) distribution F. Such
inequality measures are relevant in situations where one intends to select that treatment
(e.g., one out of several possible taxation schemes) which leads to the most “equal” outcome
distribution. To avoid possible misunderstandings, we emphasize that it is neither our goal
to discuss theoretical foundations of inequality measures, nor to point out their relative
advantages and disadvantages. The functional must be chosen by the applied economist,
who can—in making such a choice—rely on excellent book-length treatments, e.g., Lambert
(2001), Chakravarty (2009) or Cowell (2011), as well as the original sources, some of which
we shall point out further below. Rather, our goal is to demonstrate that Assumption 2.2
is satisfied for a broad range of practically relevant functionals. We also emphasize that
the inequality measures discussed in the present section are important building blocks in
constructing welfare measures, which we will be the topic of discussion in Section 4.3.

We first discuss inequality measures that derive from the Lorenz curve (cf. Gastwirth (1971)
or Equation (26) below for a formal definition). The first such inequality measure we consider
is the Schutz-coefficient S, (cf. Schutz (1951), Rosenbluth (1951)), say, which is also known
as the Hoover-index or the Robin Hood-index. Formally,

S F) = 3 [ o = u(P)IdF(@),

provided the mean p(F) := [xdF(x) exists and is nonzero. The subindex “rel” in S, (F)
signifies that this index is defined “relative” to the mean. Note that, as a consequence, if one
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multiplies each income by the same (positive) amount this does not result in a change of the
inequality index, i.e., the index is scale independent. A corresponding “absolute” variant,
i.e., a measure which remains unchanged if one adds to every income the same amount, is
obtained by multiplying the relative measure S, by the mean functional, and is denoted by

1

Sun(F) = 5 [ o = u(P)|dF(z). (22)

For a discussion of relative and absolute inequality measures we refer to Kolm (1976a,b),
who calls them “rightist” and “leftist,” respectively. As a general rule, absolute inequality
indices require less restrictive assumptions on & than their relative counterparts in order to
satisfy Assumption 2.2. This is due to the fact that division by p(F") is highly instable for
small values of pi(F"). The following lemma provides conditions under which the relative and
absolute Schutz-coefficient satisfy Assumption 2.2.

Lemma 4.1. Let a < b be real numbers. Then the absolute Schutz-coefficient T = S
satisfies Assumption 2.2 with P = D4 ([a,b]) and C =b— a. Next, assume that a > 0, and
define for every ¢ € (a,b) and every s > 0 the set

PD(s,0) :={F € €°([a,b]) : u(F) > 6}

Then, for every 6 € (a,b) and every s > 0, the relative Schutz-coefficient T = S, (defined
as 0 for the cdf corresponding to point mass 1 at 0) satisfies Assumption 2.2 with 9 = 9(s, )
and C = (b—a)(2s +671) + 5.

The next inequality measure we consider is the Gini-indezr. Formally, its relative variant is
defined as

Goa(F) = 2M2—F) / / (1 — 2oldF(21)dF (2), (23)

provided that the expression is well defined. A corresponding absolute inequality measure is

1
Guan(F) = 3 / / 21 — 2ol dF (20)dF (). (24)
The following lemma provides conditions under which Assumption 2.2 is satisfied for these
two Gini-indices.

Lemma 4.2. Let a < b be real numbers. Then the absolute Gini-index T = Gy satisfies
Assumption 2.2 with 9 = D.4(|a,b]) and C = b — a. Next, assume that a > 0, and define
for every 6 € (a,b) the set

2(0) :=A{F € Deg([a,b]) : u(F) > 6}. (25)

Then, for every § € (a,b), the relative Gini-index T = G, (defined as 0 for the cdf corre-
sponding to point mass 1 at 0) satisfies Assumption 2.2 with 9 = 2(5) and C = 25" (b—a).

The Gini-index belongs to the class of linear inequality measures introduced by Mehran
(1976) (cf. in particular Equation 3 there). An inequality measure is called linear, if it is a
functional of the form

P | LRIV (), where  L(Fw) = p(F)” /[0 GolPyda, (20
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and where W is a function on [0, 1] that is fixed (i.e., independent of F') with finite total
variation. Here ¢, (F) := inf{x € R : F(z) > a} is the usual a-quantile of the cdf F,
and L(F;u) is the Lorenz curve corresponding to F' evaluated at u (cf. also the discussion
around our Equation (114)). The following lemma provides conditions under which a linear
inequality measure satisfies Assumption 2.2. The result relies on properties of the Lorenz
curve established in Lemma D.14 in Appendix D. The class of linear inequality measures is
large, and the lemma thus applies quite generally. However, the generality is bought at the
price of adding further regularity conditions on &; in particular a > 0 has to be assumed.
This trade-off in generality and strength of assumptions becomes apparent by comparing
the regularity conditions to the ones in Lemma 4.2. Nevertheless, the result shows that
Assumption 2.2 can be expected to be quite generically satisfied.

Lemma 4.3. Let a < b be positive real numbers and let r > 0. Assume that W : [0,1] - R

has finite total variation k, say. Then the functional defined in Equation (26) satisfies
Assumption 2.2 with 9 = %,(|a,b]) and C' = ka ' (r~' + (b — a)a™'b).

An absolute version of the linear inequality measure in Equation (26) can be obtained
through multiplication by u(F), i.e.,

F— [Ol](u(F)u—Q(F,u))dW(u), where  Q(F,u) ::/[0 ]qa(F)da. (27)

The following result provides conditions under which such absolute linear inequality measures
satisfy Assumption 2.2. As usual, the regularity conditions on & required are weaker than
the ones needed for the relative version. In particular a > 0 does not need to be assumed.

Lemma 4.4. Let a < b be real numbers and let v > 0. Assume that W : [0,1] — R has finite
total variation k, say. Furthermore, denote |f[0 1 udW (u)| =: ¢. Then the functional defined

in Equation (27) satisfies Assumption 2.2 with 9 = €,(|a,b]) and C = c¢(b — a) + r~'k.

Another important family of scale-independent inequality measures is the so-called gener-
alized entropy family, cf. Cowell (1980): Given a parameter ¢ € R, an inequality measure is
obtained via (if the involved expressions are well defined)

& |@/) = 1] aF) ifed {01}
Ec(F) = [ (z/p(F))log (z/pu(F)) dF(z) ifc=1
[log (u(F)/x) dF (x) if ¢ =0.
The inequality measure corresponding to ¢ = 1 is known as Theil’s entropy index (cf. also
Theil (1967)), and the measure corresponding to ¢ = 0 is the mean logarithmic deviation
(cf. Lambert (2001), p.112). A formal result providing conditions under which a generalized
entropy measure satisfies Assumption 2.2 is presented next. The regularity conditions we

need to impose depend on c. Note in particular that support assumptions implicit in & are
somewhat weaker for ¢ € (0, 1).

Lemma 4.5. Let 0 < a < b be real numbers, and let ¢ € R.
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1. If ¢ € (0,1), then, for every 6 € (a,b), the functional T = E. (defined as 0 for
the cdf corresponding to point mass 1 at 0) satisfies Assumption 2.2 with 2 = 2(6)
(¢f. Equation (25)) and C' = |c(c — 1)|7H [67¢(b¢ — a®) + 67 (b — a)].

2. If ¢ ¢ [0,1] and a > 0, then the functional T = E. satisfies Assumption 2.2 with 9 =
Deg([a,b]) and C = |c(c — 1) a™°|b® — a®| + |¢| max ((a/b)*7 L, (b/a)?**7') a™ (b — a)].

3. If c€ {0,1} and a > 0, then the functional T = E. satisfies Assumption 2.2 with 9 =
D4 ([a,b]) and C = (b—a)/a+log(b/a) if c = 0, and with C = f[a/b,b/a] |1+log(z)|dx+
b(b—a) {log(b/a) + 1} if c = 1.

a2

We continue with a family of relative inequality indices introduced by Atkinson (1970).
This family depends on an “inequality aversion” parameter ¢ € (0,1) U (1, 00). For a fixed ¢
in that range, the index obtained equals (if the involved quantities are well defined)

A(F)=1- ﬁ { / xl—EdF(x)] e :

It is well known (cf., e.g., Lambert (2001) p.112) that A. can be written as

A(F) =1—[e(e = )E,_(F) + 1]/ (28)
Together with Lemma 4.5, this relation can be used to obtain the following result:
Lemma 4.6. Let 0 < a < b be real numbers, let € € (0,1) U (1,00) and set c¢(e) =1 —e.

1. If e € (0,1), then, for every 6 € (a,b), the functional T = A. (defined as 0 for
the cdf corresponding to point mass 1 at 0) satisfies Assumption 2.2 with 9 = 2(9)

(cf. Equation (25)) and C' = c(e)~! [5"3(5)(196(5) —a“®) + 671 (b—a)|.

2. Ife € (1,00) and a > 0, then the functional T = A, satisfies Assumption 2.2 with 9 =
Deg([a,b]) and

C = (e —1)74b/a)[a=®(a"® — b)) + ¢(e)(a/b)*Eta (b — a)].
As the last example in this section, we proceed to an important family of absolute in-

equality indices, the Kolm-indices (Kolm (1976a), cf. also the discussion in Section 1.8.1 of
Chakravarty (2009)). Given a parameter £ > 0 the corresponding index is defined as

K.(F) = r"'log ( / e””[“(F)“]dF(x)) .

The following lemma verifies Assumption 2.2 for this class of inequality indices.

Lemma 4.7. Let a < b and let k > 0. Then the functional T = K, satisfies Assumption 2.2
with 9 = D ([a,b]) and C = "t~V [b — a] + ke b[e " — e7Y].
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4.3 Welfare measures

The structurally most elementary welfare measures are of the form

F /u(z)dF(w), (29)

for a utility function u. Functionals as in Equation (29) are accessible to our theory, but are
not our main focus, as they fall into the standard multi-armed bandit framework, because a
mean is targeted.

There are many important welfare measures that are not of the simple form (29), but can
be obtained as a function of the mean functional and an inequality measure.” Many such
exceptional measures are related to a relative inequality measure F' — |, (F'), say, via the
transformation

W(EF) = p(F) (1 = bLa(F)); (30)

or are related to an absolute inequality measure F' + l,5(F'), say, via the transformation
W(F) = u(F) = laps(F); (31)

we refer to Blackorby and Donaldson (1978), Blackorby and Donaldson (1980) and Dagum
(1990) for theoretical background on this relationship between inequality and welfare mea-
sures.

While many important welfare measures are of this form, we do not argue that any relative
or absolute inequality measure implies a reasonable welfare measure through one of the above
two relations. In particular, to arrive at a reasonable welfare measure, one may want to
impose additional restrictions on the inequality measure, e.g., one may want to assume that
the relative inequality measure in Equation (30) satisfies 0 < l,; < 1, and that the absolute
inequality measure in Equation (31) satisfies 0 < l,ps < p. These conditions are satisfied by
many inequality measures; otherwise, they can often be achieved by re-normalization in case
the inequality measures are nonnegative and bounded from above, cf. also the discussion
in Chakravarty (2009) p.30. Apart from a boundedness condition concerning the relative
inequality measures, such restrictions are not needed in our proof verifying Assumption 2.2
for welfare measures obtained through (30) and (31), and are therefore not incorporated into
the lemma given below.

Example 4.8. The Gini-welfare measure from Equation (5) is obtained upon choosing l,,s =
Gaps (cf. Equation (23)) in Equation (31). That 0 < Gups < p is well known; an argument
may be found in the proof of Lemma 4.2.

The following result allows one to use the results from the preceding section in establishing
Assumption 2.2 for welfare measures derived via (30) and (31) from an inequality measure.

9Historically, the theoretical foundation of inequality measures was based on a social welfare function,
e.g., Dalton (1920) and Atkinson (1970). That is, contrary to our presentation, which started with a
discussion of inequality measures, inequality measures were derived from a given social welfare functions.
For our presentation, however, it is convenient to base the welfare functions on inequality measures. Articles
that start with an inequality measure and derive a corresponding welfare measures from it are Blackorby
and Donaldson (1978), Blackorby and Donaldson (1980) or Dagum (1990).
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Lemma 4.9. Let a < b be real numbers. Then, the following holds:

1. Let the relative inequality measure . satisfy Assumption 2.2 with Dy and C. Suppose
further that |1 — |,y < < 0o holds. Then the welfare measure W derived via Equa-
tion (30) satisfies Assumption 2.2 with 9 = Dye; and constant y(b—a)+max(|al, |b])C.

2. Let the absolute inequality measure |45 satisfy Assumption 2.2 with Pys and C. Then
the welfare measure W derived via Equation (31) satisfies Assumption 2.2 with 9 =
Daps and with constant (b —a) + C.

Note that if an absolute inequality measure |, and a relative inequality measure |, are
related via lups(F') = p(F)le(F) for every F' (Blackorby and Donaldson (1980) then call I,
a “compromise index”, cf. their Section 5), then the welfare measures obtained via Equa-
tion (30) and Equation (31), respectively, coincide. One can then verify Assumption 2.2 via
Part 1 or Part 2 in Lemma 4.9. We note that in such a situation Part 2 of the lemma will
typically imply weaker restrictions.

Together with the results in the preceding section, Lemma 4.9 verifies Assumption 2.2 for
many specific welfare measures. For example, Lemma 4.2 can be used to show that the
Gini-welfare measure satisfies Assumption 2.2 with a < b real numbers, Z = D.4/([a, b]),
and constant C' = 2(b — a). Similarly, Lemma 4.4 can be used to verify Assumption 2.2 for
all welfare measures corresponding to linear inequality measures. The latter class of welfare
measures was recently considered in a different context by Kitagawa and Tetenov (2017).

4.4 Poverty measures

Poverty indices are typically based on a poverty line, i.e., a threshold z below which an, e.g.,
income is classified as “poor.” There are two basic approaches to defining z: The absolute
approach considers z as fixed (i.e., independent of the underlying income distribution F'),
whereas the relative approach views z = z(F') as a functional of the “income distribution” F.
In the relative approach, the poverty line adapts to growth or decline of the economy. To
make this formal and to give an example, the following poverty line functional combines both
approaches (cf. Kakwani (1986) and Lambert (2001), p.139) in taking a convex combination
of a fixed amount zy and a centrality measure of the underlying income distribution:

Zm72075(F) = 2zo + 5(m(F) — Zo) (32)

where 2o > 0, 0 < < 1, and m is a location functional that either coincides with the mean
functional f, or the median functional ¢; /5. Note in particular that zy, ., 0 = 20 and zq, 2,1 =
m, i.e., this definition nests both an absolute and a relative approach. Lemma C.1 in Ap-
pendix C summarizes conditions under which the poverty line functionals in the family (32)
satisfy Assumption 2.2.

The first poverty measure we shall consider is the so-called headcount ratio, which is the
proportion in a population F' that, according to a given poverty line z, qualifies as poor:



For the sake of generality, the following lemma establishes conditions under which the head-
count ratio satisfies Assumption 2.2 under high-level conditions concerning the poverty line
functional z. Specific constants and domains for the concrete family of poverty lines de-
fined in Equation (32) can immediately be obtained with Lemma C.1 in Appendix C. An
analogous remark applies to the poverty measures introduced further below, and will not be
restated.

Lemma 4.10. Let a < b be real numbers, and let z : Dog([a,b]) — R denote a poverty line
functional that satisfies Assumption 2.2 with 2, and constant Cy, say. Let s > 0. Then, H,
satisfies Assumption 2.2 with 9 = 2, N 2*°(|a,b]) and C = C,s + 1.

Certain disadvantages of the headcount ratio motivated Sen (1976) to introduce a different
family of poverty measures using an axiomatic approach. We shall now discuss this fam-
ily in the generalized form of Kakwani (1980). Given a poverty line z and a “sensitivity
parameter” k > 1, say, each element of this family of poverty indices is written as

Psi(Fiz, k) = (5 + 1) /[O’Z(F)] {1 - %} [1 - %rdﬂw),

with the convention that 0/0 := 0. A result discussing conditions under which Pgx (F’;z, k)
satisfies Assumption 2.2, and which is again established under high-level assumptions on the
poverty line z, is provided next. Note that in case F' is supported on [0, 00), the poverty line
in Equation (32) is greater or equal to (1 — §)zg, which is positive unless § = 1.

Lemma 4.11. Let a = 0 < b, k > 1, and let z : D.4(]a,b]) — R denote a poverty line
functional that satisfies Assumption 2.2 with 9, and constant C,, say. Suppose further
that z > z, > 0 holds for some real number z,. Let s > 0. Then T = Pgk(-;z, k) satisfies
Assumption 2.2 with 9 = 2,0 2*([a,b]) and C = (k + 1){1 + (bz7% + 2ks + 5)C, + 4k}

Finally, we consider a family, each element of which can be written as

Pror(Fiz, A) = / A (1 [e/2(F)]) dF (x), (33)

[0,2(F)]

where A : [0,1] — [0,1] is non-decreasing and Lipschitz continuous. This class contains
(at least after monotonic transformations), e.g., the measures of Foster et al. (1984) or
Chakravarty (1983) as special cases (cf. Lambert (2001) Chapter 6.3, and also the more recent
review in Foster et al. (2010)). The following result provides conditions under which Pprgr
satisfies Assumption 2.2. Again the result is established under high-level assumptions on the
poverty line z.

Lemma 4.12. Let a = 0 < b and let z : D.g([a,b]) — R denote a poverty line functional
that satisfies Assumption 2.2 with &, and constant C,, say. Suppose further thatz > z, > 0
holds for some real number z,, and that A : [0,1] — R is non-decreasing, Lipschitz continuous
with constant Cy, and satisfies A(0) = 0. Then, T = Ppar(+;z,A) satisfies Assumption 2.2
with 9 = 9, and C = bz;2C\C, + A(1).

36



As a direct application of Lemma 4.12, we note that given a poverty line z the poverty
measure of Foster et al. (1984) is obtained upon setting A(x) = x® for some a > 0 in
Equation (33). The conditions in the preceding lemma are satisfied for & > 1 (in which
case C\ = «). The preceding lemma does not cover the case where v = 0. However, note
that the functional corresponding to A(z) = z* with a = 0 coincides with the headcount
ratio, which is already covered via Lemma 4.10.
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Appendices

Throughout the appendices, the (unique) probability measure on the Borel sets of R corre-
sponding to a cdf F' € D 4(R) will be denoted by pp (cf., e.g., Folland (1999), p.35).

We shall freely use standard notation and terminology concerning stochastic kernels (also
referred to as Markov kernels or probability kernels) and semi-direct products (i.e., the joint
distribution corresponding to a stochastic kernel and a probability measure) see, e.g., Ap-
pendix A.3 of Liese and Miescke (2008) in particular their Equation A.3. Furthermore, the
random variables and vectors appearing in the proofs are defined on an underlying probabil-
ity space (€2, A,P) with corresponding expectation E, which is (without loss of generality)
assumed to be rich enough to support all random variables we work with. Furthermore, we
shall denote by w a generic element of €).

We also recall from, e.g., Definition 2.5 in Tsybakov (2009), that the Kullback-Leibler
divergence between two probability measures P and ) on a measurable space (X,9)) is
defined as
[y log(dP/dQ)dP if P < Q,

(34)
o0 else.

KL(P,Q) := {
The integral appearing in this definition is well-defined, because the negative part of the
integrand is P-integrable. The positive part of the integrand is not necessarily P-integrable.
Therefore, KL(P, Q) = oo might hold even in case P < (). Furthermore, KL(P, Q) is non-
negative, and equals 0 if and only if P = ). Proofs for the just-mentioned facts can be found
in Section 2.4 of Tsybakov (2009). Note that the definition of KL does not depend on how
one defines log(0) (for completeness, we set log(0) := 0 in the sequel).

A  Auxiliary results

This section develops some auxiliary lemmas that will be used in Appendix B. The following
result is a general “chain rule” for Kullback-Leibler divergences. Although well-documented
under stronger assumptions, we could not find a reference containing a proof of the following
statement, which only requires one of the two o-algebras involved to be countably generated.

Lemma A.1 (“Chain rule” for Kullback-Leibler divergence). Let (X,20) and (Y,B) be
measurable spaces. Suppose that B is countably generated. Let A/B : B x X — [0,1] be
stochastic kernels, and let P and Q) be probability measures on (X,21). Then,

KLIA® P,B®Q) = / KL(A(-,z),B(-,2))dP(z) + KL(P,Q) = KL(A® P,B® P)+ KL(P, Q).
X

(35)
Remark A.2. Inspection of the proof of Lemma A.1 shows that the assumption of B being
countably generated is only used to verify (via Proposition 1.95 in Liese and Miescke (2008))
that (i) « — KL(A(,x),B(-,2)) is measurable, and (ii) that [, KL(A(-,z),B(-,z))dP(x)
coincides with KL(A ® P,B® P). In situations where B fails to be countably generated, the
conclusion in the previous lemma still holds if (i) and (ii) are satisfied.
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Proof. We conclude from Proposition 1.95 in Liese and Miescke (2008) that the integral
[ KL(A(-,z), B(-, 2))dP(x) appearing in Equation (35) is well-defined (i.e., the non-negative
integrand = — KL(A(-, z), B(-, z)) is measurable), and coincides with KL(A® P,B® P). This
proves the second equality in Equation (35).

To prove the first equality in Equation (35), assume first that AQ P €« B® Q). Then, KL(A®
P,B® Q) = oo by definition of the KL-divergence. Observe that if P < @ and A(-,z) <
B(:,z) for P-almost every x would hold, then A ® P < B ® @ would follow. Therefore,
either P « @ holds, or P < @ and A(-,z) €« B(-,z) for all z in a set of positive P measure.
In both cases the statement in the first equality in Equation (35) holds true by definition
and non-negativity of the KL-divergence.

Consider now the case A® P <« B ® (. Corollary 1.71 of Liese and Miescke (2008)
implies KL(A ® P,B ® Q) > KL(P, Q). Therefore, if KL(P,Q) = oo Equation (35) holds
true. Hence, we can assume that KL(P,Q) < oo. Choose a density 0 < a = d(A ®
P)/d(B® @), and let p := dP/dQ denote the corresponding (marginal) Q-density of P.
Denote by [log(a)]™ and [log(a)]~ the positive and negative parts, respectively, of log(a).
The negative-part [log(a)]™ is A ® P-integrable (cf. the discussion immediately after Equa-
tion (34)). Furthermore, since KL(P, Q) is finite, log(p) is A ® P-integrable, implying
that [log(a)]” +log(p) is A® P-integrable, and we can thus write KL(A® P,B® Q) —KL(P, Q)
(the first summand might be infinite) as

/ log(a)]*d(A ® P)
XxY

/ llog(a)]~d(A & P) + / log(p)d(A ® P)
XXy XxY

XxY

_ /X Jlos(a)"d(Ae P)+ / ~ ([log(a)]~ + log(p)) d(A ® P),

which, since [log(a)]* is clearly non-negative and measurable, equals (cf., e.g., Theorem 4.1.10
in Dudley (2002))

[ log() ~togwldtaw P) = | tog(a/p)i{p > 0)d(Ae P)
X xY XxY

the equality following from {(x,y) : a(y,x) = 0 or p(x) = 0} being an A ® P-null set.
Since (a/p)1{p > 0} = d(A ® P)/d(B ® P), the right-hand side in the previous display
equals KL(A ® P,B ® P), establishing that

KLA® P,B® Q) =KL(A® P,B® P)+ KL(P,Q).
The already established second equality in Equation (35) thus establishes the first. [

Lemma A.3. Consider probability measures p; and v; for i = 0,...,m on a countably
generated measurable space (¥,B). Set p = Y " pip; and v = Y " q;v;, where p; > 0
and g; > 0 hold for every i =0,...,m and >,  p; =1=> 1 q. Then

KL(p,v) < (piKL (i, ) + (pi — @)/ i) -

L

I
=)

7
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Proof. Define stochastic kernels A : B x {0,...,m} — [0,1] and B: B x {0,...,m} — [0, 1]
via A(A, 1) = p;i(A) and B(A,7) = 1;(A), respectively. Let P be the measure on the power set
of {0,...,m} defined via P(i) = p;, and let @) be the measure on the power set of {0,...,m}
defined via Q(i) = ¢;. From Theorem 1.70 in Liese and Miescke (2008) and the Chain Rule
from Lemma A.1 we obtain

KL(p,v) SKLA® P,B® Q) = > piKL (i, vi) + KL(P, Q).
=0

But KL(P, Q) is not greater than x?(P,Q), the x2-divergence between P and @ (cf., e.g.,
Lemma 2.7 in Tsybakov (2009)), the latter being equal to > 1" (p; — ¢:)*/ . O

Lemma A.4. Suppose Assumption 2.9 holds. Then there exist H and H' in D4 ([a,b]), c— >
0 and e € (0,1/2) such that the following properties hold:

1. Letting H, == (1/2 —v)H + (1/2 + v)H', the set H = {H, : v € [-1/2,1/2]} is
contained in {J, : 7 € [0,1]}.

2. The function v — T(H,) defined on [—1/2,1/2] is Lipschitz continuous.

3. For every v € [0,¢] it holds that

T(Hy) —T(H-,) >cv and T(H,) —T(Hy) > c_v, (36)
and that
SR g S— (37
! ! 0.52 — &2

Proof. Without loss of generality, we can assume that H; and H, in Assumption 2.9 sat-
isfy T(Hy) < T(H,); otherwise swap the indices. From Assumption 2.2, which is imposed
through Assumption 2.9, it follows that the function h(7) := T(J;) for 7 € [0, 1] is Lipschitz
continuous (recall the definition of J; from Equation (9)), and hence almost everywhere
differentiable. Furthermore, since T(H,) < T(H;), the derivative of h must be positive at
some point 7* € (0,1), say. Consequently, there exists a ¢ > 0 (e.g., half the derivative of h
at 7*) and an € € (0,1/2) satisfying [7* — e, 7* 4+ ¢] C (0, 1), such that

h(r) = h(7")

——=>c forevery 7 € [1" —¢,7" +¢l. (38)
T—T

Finally, let H := J,«_. and H' := J.«,. and set ¢. = 2ce. Note that H, = J« 9, for
every v € [—1/2,1/2]. Hence, the first part of the present lemma follows. The second part
follows from T(H,) = T(Jr190e) = h(7* + 2ve), recalling that h is Lipschitz continuous. The
statements in Equation (36) follow immediately from Equation (38). Lemma A.3 (applied
with m =1, po = v9 = py and gy =7 = pgr, po = 1/2 4+ v and gy = 1/2 — v) and a simple
calculation shows that KL(ug_,, i) < ~22, which establishes (37). O

0.52—¢2>
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B Proofs of results in Sections 2.2, 2.3, 2.4 and 3

B.1 Proofs of results in Section 2.2
B.1.1 Proof of Theorem 2.10

Let 7 be an explore-then-commit policy as in Definition 2.7 that satisfies the corresponding
exploration condition with € (0,1). Fix n > 2, and fix the randomization measure Pg (i.e.,
a probability measure on the Borel sets of R). Since n is fixed, we shall abbreviate 7, ; = m;
in the sequel. Furthermore, we write 7¢ = 7¢. By Lemma A.4 there exists a one-parametric
family H = {H, :v e [-1/2,1/2]} C {J, : 7 € [0,1]} C 2, a real number c_ > 0, and
an € € (0,1/2), such that for every v € [0, €]

2
T(Hy) —T(H_,) > c_v, T(H,) — T(Hy) > c_v, and KL!/2 , < .
( 0) ( ) - ( ) ( 0) - (Mva :qu) = m

Fix v € (0,¢]. We need some further notation: For j € {—v,v} and every t = 1,...,n, we
denote by P? ; the distribution of Z; = (Yr,(z,_,,c)ts - - -5 Ymi(ci),1) on the Borel sets of R,

for Y, iid. pp, ® pm; and Gy i.i.d. Pg. The expectation corresponding to ]ﬁ’;’j will be denoted

(39)

by IEE” We shall use z; € R? as a generic symbol for a realization of Z;, and g, € R as a
generic symbol for realization of G;. We abbreviate G* := (Gy,...,G1). Furthermore, we
denote by RI(m) the regret of policy m under Y; i.id. pp, ® py; and Gy iid. Pg. We
abbreviate ni(n) = n; and ny = n — ny, and denote the joint distribution of (Z,,G")
(under Y; ii.d. pp, ® pg, and Gy ii.d. Pg) by Py ., with corresponding expectation E ..
From Equation (39) we conclude T(H_,) < T(Hy) < T(H,). Hence, Treatment 2 is inferior
under g, @ i, , but superior under py, ® pg,. Therefore, recalling the definition of \S; ,,(¢)
and the corresponding notational convention in case ¢t = n from Equation (6) and using the

expression for R, () given in Equation (7), we obtain (with some abuse of notation'?)

sup EIRi(r) >
je{fvv’u}

(B! _ R."(m) +E" R’(m))

,—v'n Tt tn

(T(Ho) — T(H_))E; _,Sa(n) + (T(H) — T(Ho))E2, (1))

>t (B2 S2(n) + B2, S1(n))

where the third inequality follows from (39). Using Definition 2.7, the last expression equals

C_U Cc_vV
T <]E:,1—v52,n(n1> + Eﬁ}vslvn(n1)> + TTLQ (EZ,I—'U]]' {WC(ZM) - 2} + Ez,lv]l {7T6<Zn1) - 1}) 3

furthermore, for j € {—v,v} and i = 1,2, it holds that E";S; ,,(n1) > nn,. Therefore,

C_v

5 (EZ}?ngm(nl) + EZ}?USLn(nl)) > c_vnny.

10Here and at many other places in the appendices, it is occasionally convenient to interpret quantities
such as RY (m) and S1(n) as functions on the image space of (Z,, G™), as opposed to the random variables
obtained by plugging (Z,,, G™) into these functions.
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Noting that
Ept 1 {n(2n,) = 2} + ER 1 {n(2,) = 1} = Ep 1 {7%(20,) = 2} + 1 = ERL1 {n(25,) = 2},

which is the sum of Type 1 and Type 2 errors of the test 1 {7°(z,,) = 2} for the testing
problem IP7’_ against P71, it follows from Theorem 2.2(iii) in Tsybakov (2009) that

V)

T,—v)

1 ~ ~
EZ}—’U]I {WC(an) = 2} + IE:Lr,IU]1 {WC(an) = 1} 2 Z €xp (_KL(]P)TL1 ]P)?r,lv)) :

Summarizing, we obtain

sup E[R,(7)] > - ny + (n —ny)exp (_KL(PZI—m P;Uv))} : 4
Fie{J.:Te[0,1]} 8 ' ’ (40)
i=1,2

To obtain an upper bound on KL(P™ Ip’?r}v), we argue as follows: Let j € {—v, v}, let Y}

be iid. pp, ® pyj, and let Gy be iid. Pg. Let t € {1,...,n1}. It is easy to verify that the
stochastic kernel

(A, (21, 90) = oo (A) L fmy oo g=13 + bz, (A) Wiz 1 g0)=2)

defines a regular conditional distribution (as defined in, e.g., Liese and Miescke (2008) Def-
inition A.36) of Yz, (z_,.c,+ given (Z;—1,G;) (dropping the quantities with index ¢ — 1 in
case t = 1). Since the joint distribution of (Z,,,_1, G,,) is I@’Z}{l ® P, we can write I@ﬁlj ®Pq
as the semi-direct product

PZ}] @ ]P)G B (MHO]l{ﬂnl (201 —1,9ny)=1} + 'qu]l{ﬂ'"l (Zn1—1:gn1):2}> ® (]P)Z,lj_l ® IEDG):

where in case ny = 1 the arguments z,, ; and the factor P™ ! need to be dropped. The

Tr7j

chain rule in Lemma A.1 (and Tonelli’s theorem) hence implies

KL(Pr,, P7,) = KL(PLL, © P, 7, @ Pg)
= KL(P-) @ Pg, P! @ Pg) + B2 Eg (1{%1(%1,1,%1):2}) KL(im,, po,)
< K'—(M:ﬁﬁ:fﬁ) + KL(pw_,, pem, )-

By induction, it follows that

KL(INPnl IF)Z}U) < anL(:quwljJHu) < C+U2’I’L1

for ¢t = ¢T(e) = m, the second estimate following from (39). This upper bound
on KL(@Q}_U, I@Zlv) and Equation (40) imply that for every v € [0, e] we have
sup  E[R,(m)] > el [nl + (n —nq) exp (—C+02n1)}
Fic{J,re01]} 8
i=1,2 (41)
> C_Unn exp (—c+v2n1) .

-8
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To establish the first claim in the theorem, we use that the supremum in Equation (41)
is bounded from below by the average of the first lower bound appearing in that Equation
applied to v = € and to v = ¢/y/n1. In particular, after dropping two nonnegative terms in
this average, the supremum is found to be bounded from below by

cige ny + n\;n_?l exp(—c+52)] : (42)

We consider two cases: On the one hand, if ny > n/2, the quantity in (42) is not smaller
than “*n. On the other hand, if ny < n/2, then the quantity in (42) is not smaller than

c_ne
16

n

2. /m

The infimum is attained at z* = c()n~Y/% for c(e) := 473 exp(—c*(£)e?/3), implying the
lower bound

ny +

2 > C-_TE : f
exp(—c'e )] = 16 ze(0.00)

2*n + g exp(—c+52)] :
z

1
2
c(e) +
0+ 7
Combining the two cases proves the first statement with constant ¢; = %= min(0.5, ¢*(¢) +
7@ OXP(—c()e?)).

Upon replacing n; by n* and setting v = € in the second line in Equation (41), the second
statement in the theorem follows with constant ¢;(n*) = <= exp(—c*(e)e?n*).

c_ne
16

exp(—c+(6)€2)] /3,

B.1.2 Proof Theorem 2.11

Let Y; be i.i.d. such that the marginal Y;,; has cdf Fie @fori=1,...,K. We denote A :=
{i: A; > 0}. If A =, then the statement in the theorem trivially holds. Thus, we assume
henceforth that A # (). Let n € N be fixed. In the following, we will abbreviate Tt = Tt
for t =1,...,n, and will write n; = ny(n) := min(K [n?3],n). We consider two cases:

1) Suppose that n < K[n?*3]: Note that trivially R,(7) < Cn < CK[n?/?] < 2CKn*?,
where we used that Assumption 2.2 implies A; < C. Hence, Equation (10) holds.

2) Suppose that n > K [n?/?]: Note that n; = K[n*?3]. Equations (6) and (7) show that

i€EA i€A t=1
Decomposing the last sum, and using A; < C yields

n

R, (7) < cin{ﬁt(zﬂ,et) €AY+ A Y UF(Zim1, Gy) =i}

€A t=n1+1
We thus obtain .
ER,(7) < Cni+ Y Y AP(F(Zi-1,Gy) =1i).

t=n1+1 ;A
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By definition, for t =n; +1,...,n,

A

7t(Zi—1,Gy) = minarg max{T (Fj,, n) : Sin(n1) > 0}, (43)
which, in particular, is constant in ¢t =n; + 1,...,n. Hence,
ER,(7) < Cny + (n = n1) Y AP(Fn,11(Zny, Gy1) = ). (44)
ieA

We now develop an upper bound for the probabilities appearing in the previous display.
Note that A £ {1,..., K}, fix i* € A°:={1,..., K}\A, and let i € A. From Equation (43)
it follows that P(7,, +1(Zn,, Gny+1) = %) is bounded from above by

P(T(Eynyn) > T(Fiepyn)s Sie (1) > 0, S0 (n1) > 0) + P(Sj- p(n1) = 0).

For j € {i,i*}, we denote by ¢; the ni-dimensional random vector with ¢-th coordinate equal
to 1 if Gy = j, and equal to 0 otherwise. Furthermore, for every ¢ € {0,1}™ such that ¢ # 0,
we define the empirical cdf G(c, j) := ||c||;* > tzo H{Yje <}, || - [l1 denoting the 1-norm.

A A

We now define the event {T(F,,.n) = T(Fppnyn)} =t M(i,i*), and write the first probability
in the previous display as

> > P(M(ii%),u = a,ue =b) (45)

a€{0,1}71\{0} be{0,1}"1\{0}
Recall that for every t =1,...,n; we have
7(Zi—1,Gy) = Gy,  with Gy uniformly distributed on Z = {1,..., K}. (46)
On the event where ¢; = a and ¢;+ = b, we can use Equations (8) and (46) to write
M,i%) = {T(Gla,) = TG, ')},

Because, for j € {i,7*}, the random vector ¢; is a measurable function of G™ = (G, ..., G,,),
and since Y7, ..., Y, is independent of G™, it follows that M (i,i*) and {¢; = a,t; = b} are
independent, and we can write the double sum in Equation (45) as

> > P(T(Gla i) = T(G(b,i%)))P(s; = a, 1 = b). (47)

a€{0,1}"1\{0} be{0,1}1\{0}
Since A; = T(F"") — T(F"), we can bound every P(T(G(a,4)) > T(G(b,i*))) from above by

P(IT(G(a,4)) = T(F)| + [T(F") = T(G(b, ")) > A)
< P(|T(G(a,d)) = T(F)] = Ai/2) + P(IT(G(b, ")) = T(F")

> A;/2).

Using Assumption 2.2, we can bound the latter sum by

P([|G(a,i) — F'lls > Ai/(2C)) + P(||G(b,5*) — F* ||« = A;/(20))
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Hence, the double sum in Equation (47) is seen to be bounded from above by

Z P(|G(a,3) — F'lloo > Ai/(2C))P(1; = a)
ae{0,1}"1\{0}

+ ) P(|G®,i7) - F"
be{0,1}"1\{0}

(48)

s > N;/(2C))P(1 = b).

The Dvoretzky-Kiefer-Wolfowitz-Massart inequality (note that Equation 1.5 in Massart
(1990) obviously remains valid if “>” is replaced by “>") implies that the first sum in
Equation (48) is bounded from above by

= 20 < 1
S 26y = m) < Y2X S LBl = m),
Ai m

m=1 m=1
where, to obtain the inequality, we used that e’ < (26)*1/2 < 1/2 for every z > 0. An
analogous upper bound holds for the second sum in Equation (48). Noting that ||¢;]; =
S;n(n1), and since the distribution of S;,(ny) does not depend on j € {i,i*} (cf. Equa-
tion (46)), we therefore see that the double sum in Equation (48) is bounded from above
by £ 5" | —LP(||t;+] = m). Summarizing the argument we started after Equation (44),

m=1 V2m
we now obtain

ER,(7) < Cny+ (n—my) Y |4C (Z \/%_mP(Si*m(nl) = m)) + AP(Sie (1) = 0) ]

i€eA
which (using that v2m > y/m + 1 for m > 1, A; < C, and Jensen’s inequality) gives

ER, (%) < Cny 4 4C(n — ny) K [E[1/(Si n(n1) +1)]] 2.

From Equations (6) and (46) it follows that S, (n;) is Bernoulli distributed with success
probability K—! and “sample size” n;. Equation 3.4 in Chao and Strawderman (1972)
establishes

1-(1-KYHhmtl K

E (1/[Sin(n1) +1]) = K — < -~

Therefore,
ER,(7) < Cny +4C(n — nl)K3/2n1_1/2 < 20Kn?? 4+ 4CK (n?? — n?) < 6CKn?/?,

where the second inequality was obtained from 2Kn?/3 > n; = K[n?3] > Kn?/3.

B.2 Proofs of results in Section 2.3
B.2.1 Proof of Theorem 2.12

Let n € N be fixed, and let F* € 2 for i = 1,..., K. We need to show that E[R,(7)] <
c(Knlog(n))®? for ¢ = ¢(B3,C) as defined in the statement of the theorem. Note that this
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inequality trivially holds if T(F') = ... = T(F¥). Therefore, we will assume that T(F") is
not constant in i € {1,..., K}. Because 7 is an anytime policy, we shall make use of the
notational simplifications discussed right after Assumption 2.6 (e.g., we write S;(t) instead
of S;.(t) and Fiﬂg instead of thn)

We now claim that for every ¢ with A; > 0 it holds that

2C%*Blog(n) B +2
STAr G2

Before proving this claim, recall from Equation (7) that E[R,(7)] = > ;a0 AE[Si(n)],
which, together with the claim in Equation (49) and A; < C' (by Assumption 2.2), yields

E[Si(n)] < (49)

< \/2C2Blog(n) + C2(B+2)/(B — 2) Z VE[Si(n)] < {0(570) @(n)} VEKn,

2:;>0

the last inequality following from the Cauchy-Schwarz inequality and ;. x o E[Si(n)] < n.
Therefore, to conclude the proof, it remains to prove the statement in Equation (49).

To this end, let ¢ be such that A; > 0. We first note that if n < K, then S;(n) < 1,
hence Equation (49) is trivially satisfied in this case. Consider now the case where n > K.
We set i* := minargmax;_, x T(F'). For t > K, from the definition of 7, it follows
that S;(t — 1) > 1. We now abbreviate {7;(Z;—1) = i} by {7 = i}, and will argue that
for t > K we have {m, =i} C A, U B;; UC,;,, where

A= {T(Fe 1) + CV/Blog{0)] (25— 1) < T(F7)},

Biy i= {T(Fi1) > T(FY) + C/Blog(D)/(25:(t - 1))}, (50)
Ciy 1= {Ai < 20/Blog(n)/(25:(t — 1)) } {Si(t — 1) < 28C2log(n)/A%} .
Indeed, on the complement of A; U B;; U C;; we have
T(Fey 1)+ Cy/Blog(t) /(25 (t — 1)) > T(F") = T(F') +
> T(F") + 20\/5 log(n)/(25;(t — 1))
> T(F") +2C/Blog(t)/(2Si(t — 1))
> T(Fy_1) + C/Blog(t)/(2S:(t — 1)),

which implies 7;(Z;—1) # i. Hence {7, = i} € A, UB;, UC;,; for t > K. Setting u :=
(202510g(n)/Aﬂ , we therefore obtain (recalling that n > K + 1, and by definition of 7)

Zﬂ{m iy T Z Tgmy = 14 Y Ty

t=K+1 t=K+1 (51>

= 1 “I’ Z ]l{ﬁ't:i}mciyt + Z ]l{ﬁ't:l}ﬁclc,t S u + Z ]]‘AtUBi,t7
=K+l t=K+1 t=K+1
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where, to obtain the inequality, we used 1 + Z?:K 1 Lg=inne,, < u. To see the latter
inequality, we consider two cases: On the one hand, if w € € is such that w ¢ C;; for
every t = K + 1,...,n, then the inequality trivially holds, because u > 1. On the other
hand, denoting by ¢* the largest ¢t € {K + 1,...,n} such that w € C;4, it follows that

L+ Y Tgm=inc, @ <Zﬂ{m (@) = Si(t) (W) < Si(t* = 1)(w) +1 < u,

t=K+1

where, for the last inequality, we used the second expression for C;; in Equation (50). From
the upper bound in Equation (51) we get

We will show further below that for t = K + 1,...,n we have:

P(A,) <ZIP Fp ) +Cy/Blog(t)/(2s) < T(F™)

(52)

B, <ZIP F;,) > T(F) + C\/Blog(t)/(2s))

where for every s € {1,...,t} and every I € {i,i*} we define F}; := s >°°_ | 11y, <. From
Equation (52), Assumption 2.2 and the Dvoretzky-Kiefer-Wolfowitz-Massart inequality (note
that Equation 1.5 in Massart (1990) obviously remains valid if “>” is replaced by “>"), we
then obtain

t
Ay) < ZP(HFZ-*,S -
P(Bi, <ZIP>||ES F|| > +/Blog(t)/(25)) <zz

s=1

o >/ Blog(t)/(2s)) <2Zt6 ﬁ

The identity

n

1 <1 1 1
< = dr = <
t=K+1 o=t /K w1 (B—2)KF27 3—2 (53)

combined with u < 1+ 2C?Slog(n)/A? now establishes (49).
It remains to verify the two inequalities in Equation (52). We need the following two
results, the proofs of which are given below.

Lemma B.1. For everyi € {1,..., K}, every r € N, and every w € ) we have

tir(w) ;= inf {S eN: Z]]'{ﬁj(zjfﬂzz'}(w) _ T} cN.

J=1
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The preceding lemma and Doob’s optional skipping theorem (cf. Doob (1936), see also Kallen-
berg (2005) for a modern formulation) establishes the following result.

Lemma B.2. Foreveryi € {1,..., K} and everym € N the joint distribution of Yi1,...,Yim
coincides with the joint distribution of Yig, \,...,Y;

)ti,m °

Now, to obtain the upper bounds in Equation (52), let t € {K +1,...,n}, and note that

P(Bis) = P(T(Fim1) > T(F') + Cy/Blog(t)/(28:(t — 1))

t
=3 P(T(Fiym1) > T(F) + C\/Blog(t)/(2s), Si(t = s).
s=1

On the event {S;(t — 1) = s}, we have Fj;_; = s~ > =1 M{Yis,, <-}. Hence, the sum in
the second line of the previous display is not greater than

t s

ST Y 10, < ) > T + OV Tog0)/ 25
s=1 j=1

Lemma B.2 now shows that the joint distribution of Y, ,..., Y, coincides with the joint

distribution of ¥;1,..., Y. It thus follows that we can replace Y, ..., Yis, by Yi1, ..., Vi

in the previous display. In other words, we can replace s™! ijl 1{Y;s, . < -} by Fi (deﬁned

after Equation (52)), from which the upper bound on P(B;;) in Equathm_n (52) follows. The
upper bound on P(A;) is obtained analogously.

Proof of Lemma B.1: We argue by contradiction. Suppose there would exist a triple [, r, w
such that 37 Tz, =1y (w) = Si(s)(w) < r for every s € N, implying that

1< Z]l{ﬂ-j(zjil):l}(W) = k(w) <, (54)
j=1

where we used that ¢, ;(w) = [. From the definition of 7 it follows for ¢t > K that

#1(Zi1(w)) € argmax {T(Fj,t_m-)(w)) +0\/Blog(1)/(25,(t - 1><w>>} '

JjET

For notational convenience, we shall write Fj, ;(w) instead of Fj, 1(-)(w). From Equa-
tion (54) and the previous display, it follows that for all ¢ large enough

T(Fry(zr @)1 (@) + C\/ﬁ log(t)/(25%:(z-1(w (t = 1)(w))
> T(E1(w)) + CV/Blog(t)/(25,(t — 1)(w)),

which is equivalent to (recall that C' > 0 from the discussion in the first paragraph of the
present subsection)

ay [T(Ffrt(thl(w)),t—l(w)) — T(Fl,t—l(w»} > [[51(75 — D) = [Se i)t — 1)(00)]71/2] 7
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where a; 1= [Cy/Slog(t)/2]7! — 0 as t — oo. The sequence on the left hand side of the
previous inequality converges to 0 as t — 0o. To see this, let F' € & and note that

T(Erzia@)i-1(@) = T(E 1 @) SITEr 2 s @)1 (@) = TE) + [T(F) = T(E (w)|
<2C.

It thus follows that

tim sup [[Si(t — 1)(@)] 72 = [,z 2o (t = D)) 2] <0,

t—o00

or equivalently, noting that lim; . Si(t — 1)(w) = k(w) by Equation (54), that

lin Sup Sz, ) ( = 1)(w) < A(w).
This, however, implies that lim; .., S;(t — 1)(w) < oo for every j = 1,..., K. To see the
latter, suppose limy_,, S;(t —1)(w) = oo holds for treatment j. Define the subsequence ¢’ :=
{t e N: 7(Z;_1(w)) = j} of N (if limy_,o Sj(t — 1)(w) = oo this is indeed a subsequence).
Next, observe that the sequences S;(t' — 1)(w) = Sz, (z,_, () (t' — 1)(w), a contradiction to
the previous display. O

Proof of Lemma B.2: We apply Doob’s optional skipping theorem, cf. Proposition 4.1 in
Kallenberg (2005). To verify the conditions there, denote by F the natural filtration cor-
responding to the i.i.d. sequence (Y;)ien. By Lemma B.1, for every r € N, the function ¢;,
takes its values in N; furthermore, it is easy to see that {t;, = s} € F,_; for every s € N.
Therefore, ¢;, is an F-predictable time. In addition, ¢;; < --- < ¢;,,, holds by definition.
The statement in the lemma now follows from Proposition 4.1 in Kallenberg (2005) (the
remaining assumptions there following immediately as (Y})ien is i.1.d). O

B.2.2 Proof of Theorem 2.13

Proof of Theorem 2.13. Let m be a policy and let n € N. Fix the randomization measure Pg.
Since n is fixed, we shall abbreviate 7, ; = 7, in the sequel. As in the proof of Theorem 2.10,
we obtain from Lemma A.4 a one-parametric family H C {J, : 7 € [0,1]}, a ¢ > 0 and
an € € (0,1/2), such that the statement in Equation (39) holds for every v € [0,¢], from
which it follows that

2
—————— min |T(H;)— T(H for every v € |0, ¢]. 55
c_/0.52 — £2 je{-vw} IT(H)) (Ho)l y [0, €] (55)

For ease of notation, we set ¢ :=

KLl/Z(IU/H—qﬂ IL[/H’U) S

ﬁ and define f(v) := (min ey [T(H;) — T(Ho)|

for every v € [0,¢]. Note that f(0) = 0, and that f(¢) > 2¢/v/0.52 — €2 > 0 by (39). By con-
tinuity of f (following from continuity of v — T(H,) as guaranteed by Lemma A.4) and the
intermediate-value theorem, we can choose a,, € (0,¢| such that f?(a,) = min(f?(¢),8)/n.
As in the proof of Theorem 2.10, for j € {—a,,a,} and every t = 1,...,n, we denote
by I@frj the distribution induced by Z; = (Y z,_1.¢ots- - Ym(ay)a) for Yz idd. pp, ® pg;
and Gy i.i.d. Pg. We abbreviate G := (G4, ..., G1); denote by R (7) the regret of policy 7
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and denote the joint distribution of (Z,,G") by P} ; (each under Y; i.i.d. pg, ® pg; and G;
i.i.d. Pg), with corresponding expectation E7 ;
Arguing similarly as around the second display in the proof of Theorem 2.10, we obtain

f(C )E" o, 52(n)  and  E CRit(m) > f(éln)

E* . R, "(m) >

T,—an" 'n

(n—E7,,S2(n)), (56)
and

sup BN RI(m) > flan) (E;‘ L Sa(n) + [n_]E: ansz(”)D s fan aer,, e an)
je{—an,an} ’ 2 8C

the second inequality following from Theorem 2.2(iii) in Tsybakov (2009), using that n=1Sy(n)
is a test for Hy : P7 _, against H 12 P2, . By the same argument as used after Equation (40)
(but now with n instead of ny”, and Wlth an instead of “v”), we obtain KL(P} _, P71 =
KL(pa_,, ., )Er . So(n) < f?(an)ER _, Sa2(n), the inequality being a consequence of
Equation (55). Together with the first inequality in Equation (56), which also provides a
lower bound for the supremum in Equation (11), this shows that the supremum in (11) is
bounded from below by

max (% exp <—f2<an)EZ7_anSQ(n)) , @E?_ansg(n)) )

Using max(z,y) > (z+y)/2 and recalling f*(a,) = min(f?(),8)/n leads to the lower bound

1 1 ) min(f?(¢), 8) 1 —
v 2¢ /min(f2(z), 8) o <T exp (—2) + 2) > \/n Toc Vmin(PE).8)
m

— Vi S22 T (), 8),

where we used that wexp(—z) + z > w for every z > 0 and every 0 < w < 1, and recalled

that ¢ = ;5% .

B.3 Proofs of the claims in Subsection 2.4
B.3.1 Null rejection probability of the test used in the ETC-T policy

Let F!' and F? in 9 = D.4([0,1]) be such that W(F') = W(F?). Then, for every natural
number n; > 2, we can bound P(|W(F},,,) — W(Fy,,)| > ca) from above by

gp(\vv@m)— W(E?)| > ) ZP(HM Fluooz%),

where, to obtain the inequality, we used that W satisfies Assumption 2.2 with 2 = D4([0, 1])
and C. Now, noting that the cyclical assignment rule leads to ﬁi,m being based on at
least [n1/2] independent observations from F*, we can use the Dvoretzky-Kiefer-Wolfowitz-
Massart (DKWM) inequality to further bound the double sum to the right in the previous dis-
play by 4 exp(—|n1/2]c2/(2C?)) = a, recalling that by definition ¢, = \/2log(4/a)C?/[n,/2].
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B.3.2 Power guarantee concerning the choice of n; in the ETC-T policy

Let F!' and F? in 2 = D.g([0,1]) satisfy A = |W(F') — W(F?)| > 0, let n € (0,1), and
set n; = 2[8log(4/ min(«,n))C?/A?]. Assume first that A = W(F') — W(F?) (the other
case is handled similarly). Then, the probability that the test does not reject equals
P<|W(F1,n1) - W(F2,n1)| < Ca) < P<W(F1,n1) - W(FQ,m) < Ca)
= P(W(F ) — W(FY) + W(F?) — W(Fy,,) < co — A)
) = W(EY) + W(EF?) = W(F,,) < —A/2),

1

A

é P<W(F1,TL

where we used ¢, < A/2 to obtain the last inequality. This can be upper bounded by
P(W(F) ) — W(F?) < —A/4) + P(W(F?) — W(Fy,,) < —A/4)
2
< Y P(W(E.,) —W(F)| > Af4) < dexp(—[n1/2]A%/(8C?)) < min(a,n) <,
i=1

where (as in the previous subsection) we used Assumption 2.2 and the DKWM inequality.

B.3.3 Regret guarantee concerning the choice of n; in the ETC-ES policy

Let F' and F? in 2 = D.4([0,1]) be arbitrary, let 6 > 0, and set ny = 2[16C?/(6? exp(1))].
If W(F') = W(F?), then E(max;cz W(F?) — W(F™(#~))) = 0. Suppose next that A :=
W(F') — W(F?) > 0. Then,
E(max W(F") = W(ET))) = AP(W(Fy,) > W(F,.,)
1€

= AP(W(Fy,,,) — W(F?) + W(FY) = W(F,,) > A),
which, by Assumption 2.2 and the DKWM inequality, is not greater than

4A exp(—|ni /2] A%/(20?)) < 4r£1>ag< [zexp(—[n1/2]2%/(20%))] < 4/C2/|n,/2]e/* < 6.

The remaining case where W(F?) > W(F") is established analogously.

B.4 Proofs of results in Section 3

Let By1, ..., Buar be a partition of [0, 1]¢, where every B,, ; is Borel measurable. Given such
a partition, for every j such that Px (B, ;) > 0, we shall denote by F; ; an element of {F;LJ :
i=1,..., K} (see Equation (16) for a definition of F}; ;), such that T(F} ;) = maxez T(F}, ;).
Furthermore, we often write m, ;(X;) instead of m, (X, Z;—1) in this section.

We provide two auxiliary results that will be useful in the proofs of Theorems 3.6 and 3.12.

Lemma B.3. Suppose that Assumptions 2.2 and 3.4 are satisfied (the latter with ~v € (0, 1]
and L > 0), and assume that the inclusion in Equation (12) holds. Let By, 1, ..., By be a
partition of [0,1], where every B, ; is Borel measurable. As in Theorem 3.6, we let V,, ; =
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SUD,, 4o, |71 — @2l Then, for every i € {1,...,K}, every j € {1,...,M} and every
pair x and T € B, ;, we have

|T(FZ(’$)) - T(FZ("%)” < CLVJJ and |T<F7r*(m)("x)) - T(FW*(QE)(W‘%)N <CLV,];

n,j?
(57)
furthermore, if Px (B, ;) > 0 holds, then
IT(EL) = T(F'(2)| <CLV,),  and |[T(FT@W( 2) = T(F:,)| < CLV,) ..  (58)
Proof. Fix 1, j, x and 7 as in the statement of the lemma. By Assumption 3.4
|F* (@) = F'(- @)l < Lz — 2" < LV, (59)
Assumption 2.2 and (12) thus imply the first inequality in (57), and the second follows from

|T(F”*(“”)(-,a:)) - T(F’r*(i’)(-,f)ﬂ = |max T(F'(-,z)) — max T(F'(-, 2))|

i€Z i€z
< meéLIX|T(Fi(-,x)) —T(F'(-,2)| <CLV,],.

Next, assume that Px (B, ;) > 0. For every y € R, from Equation (59), we obtain

E (y)— F* < —— F" — I dP <LV
F2) = o) € s [ 1P8) = Flwa)ldBa(s) < 2,

n.j
The first inequality in (58) is now a direct consequence of Assumption 2.2 and (12) (noting
that F} ; € Degr([a,b])), and the second inequality follows via

TEO () = T(E)| = | max TP ) —max T(F )| < max [T(F(,2)) = T(F)|.

i€l 1€L ’ €L
O

Lemma B.4. Suppose Assumption 2.2 is satisfied and that & is convex. Suppose further
that Py x is such that Equation (12) holds, and that Assumption 3.4 is satisfied. Then, for
every Borel set B C [0,1] that satisfies Px(B) > 0 and everyi=1,..., K, the cdf

G = PX(B)—l/BFi(-,x)dPX(x)

is an element of the closure of 2 C D4 (la,b]) w.r.t. || - |-
Proof. Let i € {1,...,K}. We construct a sequence of convex combinations of (finitely
many) elements of & that converges to G in || - [|-distance: To this end, let By, 1, ..., By,

for m € N be a triangular array of partitions of [0, 1]¢, such that the maximal diameter v,, :=
SUD;—1... 1, SUPs, meB,, ; |11 — T2|| — 0 as m — oo. For simplicity, define the probability
measure P* on the Borel sets of R? by P*(A) = Px (AN B)/Px(B). Write

G = /Fi(-,x)dp*(x) = i/}gm’j F'(-, x)dP*(z).
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For every m and every j, pick an x,, ; € By, ;. Note that F'(-, x, ;) € Z by Equation (12).
From Assumption 3.4, we know that for any = € B,,; we have ||F'(-, 2, ;) — F'(-,2) |l <
L||zy,; — z||” < Lv),. Thus,

Im ln
1Gi = > P (B F' (-, )l < Z/ (o) = F* (- ) oo dP () < L, — 0.
j=1 j=1"Bm;
]

B.4.1 Proof of Theorem 3.6

Fix n € N and let (Y;, X¢) ~ Pyx for ¢t = 1,...,n, where Py x satisfies Equation (12),
and Assumption 3.4 with L and 7. Because n is fixed, we abbreviate B, ; = B;, V,,; =
Vi, M(n) = M, and denote 7,,; = 7;. First, we decompose R, (7T) = Z;‘il R;(7), where

n

By(m) = 3 [T(F" 090, X)) = T(F*9 (X)L pwien (60)

t=1

where, as often done in the present section, we dropped the argument Z;,_; from 7;. Note
furthermore that the policy does not rely on an external randomization G, which is therefore
suppressed in the notation as well.

Note first that the boundedness of T on 2 (cf. Assumption 2.2) implies E(R;(7)) = 0
for every j such that Px(B;) = 0. Hence, we now fix an index j € {1,..., M}, such
that Px(B;) > 0. Then, recalling the definition of F}; ; in Equation (16), which we here
abbreviate as F, each summand in (60) can be written as

T(F™ X0 (X)) = T(FS) + T(F) — T(EFE)) 4 TRy - T(pmeo( Xt))] Lix.eB;):

which, by Lemma B.3, is not greater than T(F) —T(Fft(Xt)) +2C LV} Therefore, we obtain

Bym) < 30 [T(E) = TN | xieny + 2000 3 Tixien,). (61)
t=1 t=1

Obviously, E(3"), 11x,en,3) = nPx(B;). Hence, to prove the theorem, it remains to show
that for ¢ = ¢(5, C') (cf. Theorem 2.12) it holds that

E (Z T(E) - T(ﬂf(Xt))]ﬂ{xtij}) < e/ KnPx (B,)log(nBx(B).  (62)

t=1

To this end we will use a conditioning argument in combination with Theorem 2.12. Define
for every v = (vy,...,v,) € {0,1}" the event

Q) :={w : Iyx,epjy(w) = v for t =1,...,n},
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and denote f := Z?Zl[T(F]?*) — T(Fft(Xt))]]l{Xtij}. Then,

E(f)= Y E(lowf)= > PQ@)E(/IQ0)), (63)

ve{0,1}" ve{0,1}n
where (as usual) we define

P (QW)E(Ta f) it Q) > 0
0 else.

E(f[Q2(v)) = {

Fix v # 0. Denote the elements of {s : vy = 1} by t1,...,ts, ordered from smallest to
largest. On the event Q(v), i.e., for every w € Q(v), we can use the definition of 7 (cf. the
description of the F-UCB policy with covariates of display Policy 3) to rewrite

By definition, W* = (Yz, ,ws-1)4,, W) (where W9 is the empty vector). Hence, for w €
Q(v), f is a function of (V;,,..., Y, ), ie., f = H(Y,,,..., Y, ), say. We conclude that

E(f|Qv) =E (H(Yy, ..., Y:,)0)) = E"(H(Y,, ..., Y:,)),

where the probability measure PV corresponding to EY is defined as the P-measure with
density P~!(Q(v))Lq,). Note that for A; € B(RYX) for i = 1,...,m, we have that P'(Y;, €
Ay, ..., Y, € Ap) equals

]P()/ts € A57th € B])
P(X:, € B;)

-

P Q)P (Y, € As, ..., Y, € Am, Qv))

@
Il
-

=

©
Il
—

Hence, the image measure PVo (Y;,, ..., Y}, ) is the m-fold product of Q(-) :=P(Y; € .|[{X; €
B,}). For ii.d. random K-vectors Y, ..., Y say, each with distribution Q, it hence follows
from the definition of H that

E(H (Y, ..., Y,) Q) =EHY,...,Y:) =E (i {T(F;‘) _T (Fjrs<z:_1))D

s=1

where Z7 = (Y (25 )sr Z* 1) (and where Zj is the empty vector). The r-th marginal

of Q has cdf Fj, which by Lemma B.4 is an element of the closure of 2 C D.g([a, b])
w.rt. || - |, Which we here denote as cl(2). Therefore, it now follows from Theorem 2.12,
applied with cl(2) (cf. Remark 2.4) and with “n = m,” that the quantity in the previous

display, and thus E(f|Q(v)), is not greater than cy/Kmlog(m). From (63) (noting that f

vanishes on §2(0)) we see that

E(f)<c 3 PQ)y Kmlogm).

ve{0,1}n
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Recall, that m = )""_, v,. Hence, we can interpret m as a random variable on the set {0, 1}",
equipped with the probability mass function p(v) = P(£2(v)). Obviously, this random variable
is Bernoulli-distributed with success probability Py (B;) and “sample size” n. Thus its expec-
tation is nPx(B;). It remains to observe that the function h defined via z +— (Kzlog(z))*® is
concave on [0, 00), allowing us to apply Jensen’s inequality to upper bound the right hand side
in the previous display by ch(nPx(B;)), which establishes the statement in Equation (62).

B.4.2 Proof of Corollary 3.7

Fix n € N, and let (Y;, X)) ~ Py x for t = 1,...,n, where Py y satisfies Equation (12),
Assumption 3.1 with ¢ and ¢, and Assumption 3.4 with L and . We shall apply Theorem 3.6
to get an upper bound on E[R,(7)]. The specific partition results in M(n) = P and V,,; =
VAdP~', where P = [n'/®*9]. Furthermore, from Assumption 3.1, we obtain Px(B, ;) <
¢P~4. Therefore, Equation (17) implies the upper bound

E[R,(7)] < ¢(B,0) \/ KnéPdlog(neP~4) + 2CL(VdP~ ') né,

which (using monotonicity of log, and log(zy) < log(x) + log(y) for positive x and y) is
bounded from above by

c(B,C) \/Ké(l + log(€))log(n)nPe 4 2C Ld"*en P~ < ¢* ( Klog(n)nP? + nP‘”)

< c*y/ Klog(n) (\/m_'_ nP”) :

where ¢* := max|c(3, O)(e(1 + log(¢)))"/?,2C Ld"/?¢]. From P~ < n™/+d) and p? <
240/ (27+d) e obtain the bound

E[R.(7)] < (277 + )"/ Klog(n)n' "5,

which proves the theorem.

B.4.3 Proof of Theorem 3.12

Define ¢, := 4CLd"/? 4 1. Recall that P = [n'/27*+9)]. Note first that it suffices to establish
the inequality in Equation (19) for all n large enough (n > ng, say), such that c; P77 < 1
holds (this will allow us to apply Assumption 3.11 with § = ¢; P~7 in the arguments below).
To see this, note that, by Assumption 2.2, for all n < ng it holds (for all random vectors as
in the statement of the theorem) that E[R,(7)] < Cng. Hence, once the claimed inequality
in the theorem has been established for all n > ng, the constant ¢ in the statement of
Theorem 3.12 can be chosen large enough to deal with the initial terms smaller than n.
Hence, fix n > ng. Because n is fixed, we abbreviate B, ; = B;, V,,; = V; = VdP~', and
denote 7, ; = 7.

Let (Y;, X;) ~ Py x for t = 1,...,n, where Py x satisfies Equation (12), Assumption 3.1
with ¢ and ¢, Assumption 3.4 with L and -, and Assumption 3.11 with a € (0,1) and Cy > 0.
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- _ (4o v
We establish E[R,(7)] < cKlog(n)n' 72 for a constant that depends on the quantities
indicated in the statement of the theorem in five steps:

Step 1: Decomposition of bins into different types. To obtain the desired upper
bound, we shall treat three types of bins separately. An analogous division of bins was also
used in Perchet and Rigollet (2013) to establish the properties of their successive elimination
algorithm in a classic bandit problem targeting the distribution with the highest (conditional)
mean. The bins are split into

J = {j e{l,...,P"}: 3z e B, T(F" (. 1)) - T(F"@(, 1)) > clP"Y} :
‘-75 — {j c {1’ N .,Pd} == BJ7T(F7T*(9?)(7Q_;)) — T(Fﬂ'ﬁ(f)<7a_3)>},
Tom {5 € (Lo P20 < T(ET O ) — T(E*)(2)) < P forall o € B, ).

The bins corresponding to indices in J, Js, and J,, will be referred to as “well-behaved,”
“strongly ill-behaved” and “weakly ill-behaved” bins, respectively. Note that 7, and J U Js
are clearly disjoint. That J and J; are disjoint is shown in Step 2 below. Hence, the sets of
bins corresponding to indices in J, Js, Ju, constitute a partition of the set of all P? bins B;,
and we can thus write

E(R.(7)) = Y E(R; (7)) + Y E(B;(7) + ) E(R;(7)), (64)

JETs JE€ETw jeJ

where, as in Equation (60), we define

n

Rj(fr) . Z |:T(F7T*(Xt)(.7Xt)) _ T(Fﬁ't(Xt)<.7Xt))i| Lix,eB,}- (65)

t=1

Step 2: Strongly ill-behaved bins. For every j € Js, by definition, there exists a z €
Bj such that T(F™®) (7)) = T(F™@(. 7)). From the definition of 7 it thus follows
that T(F™@(-,z)) = T(F'(-,)) for every i € Z. Therefore, for every z € B; and every i €
7, Lemma B.3 yields

T(F™ () = T(F(2) = TFET W () = T(F () = [T(FT O, 2) = T(F(, 323)(]3)
< 20Ld?P~7 < ¢, P,

First of all, this shows that J and J; are disjoint. Furthermore, from Equations (65)
and (66), we obtain

Z Rj (ﬁ) <aP™? Z Z ]l{XtEBj}]l{O<T(F”*(Xt)(-,Xt))fT(F’Tﬁ(Xt)(-,Xt))}

<abP™ Z ]1{0<T(F7T*(Xt)(-,Xt))fT(FWMXt)(-,Xt))gclP—”f}’
t=1
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From Condition 3.11 we hence obtain:

S TE[R)(7)] < einP Py (0 < T(F7 (X)) = T(FTX(, X) < ¢, P77)
JE€Ts (67)
< Cycltonp—te)

Step 3: Weakly ill-behaved bins. Since {X; € B;} for j € J,, are disjoint subsets of
{0 < TETCI( X)) = TIFTOI(, X)) < P77,

we obtain from Condition 3.11, recall that P(X; € B;) >

> £, that

|jw\P <Y P(X,€B;) <PO<T(F7X( X)) - T(F™X( X)) < e, P7)
JE€ETw
S COC?P_’WX;

which yields |7,| < (Coc§/c)P?®. Using (61) and (62) with V; = VdP~' and Px(B;) <
¢P~? we obtain (by similar arguments as in Section B.4.2)

E[R;(7)] < ¢ < Knlog(n)P~%? + nPVd) : (68)

where ¢ depends on d, L,v, ¢, C, 3, but not on n. Combining (68) with |7,,| < (Coc§/c) P
leads to

> E[R;(7)] < ¢’ (y/ Knlog(n) P*71* 4 np~10F)), (69)
JE€EIw

where ¢’ depends on d, L, v, ¢, ¢, C, Cy, o, 3, but not on n.

Step 4: Well-behaved bins. For every j € J let z; € B; be such that

T(F™ () = T(FP () > e P, (70)

Next, define the following sets of indices (“corresponding to the optimal and suboptimal
arms given x;”):

= el : T(FTW (. a;)) = T(F'(-,z;))},
={eZ:T(FTW) (. a))) = T(F(-, ;) > a P}

Clearly 7*(x;) € I} and 7#(x;) € I} (cf. (70)). Hence I* and I? define a nontrivial partition
of Z. For every j € J we can thus decompose R;(7) defined in Equation (65) as the sum of

ZZ[ (F™ Xy ))—T(F"(-,Xt))} Lixienylim(xo=ips

'LGI* t=1

JIO ZZ [T FW*(Xt) Xt)) — T(Fi(.th))} Lixieny Lz (x)=i}-

ZEIO t=1
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Step 4a: A bound for E(Rj,[; (7)). Forany i € IF and every x € B; satisfying T(F™@ (. 2)) #
T(Fi(-,x)), the triangle inequality, the definition of 7*, and Lemma B.3 yield
0 < T(E™@(,2) = T(E (-, 2))

= T(F" (., 2) = T(F7 () + T(F' (-, 5)) = T(F'(-,2)) < 2CLd?P™7 < ¢, P77,

the last inequality following from ¢; = 4C'Ld"/? + 1. But this means (applying the inequality
chain in the previous display twice) that for any ¢ € I7 and every x € B;

T(FW*(@(" x)) - T(Fi(" x)) < Clp_v]l{U:0<T(Fﬁ*(v)(,7v))_T(Fﬂﬁ(v)(,7U))§01P_7}(33)-

We deduce

E[R; (7)) < EZ01P7V1{0<T(FW*(X0(.,Xt))—T(FW”(Xw(.7Xt))§c1va}]1{Xt€Bj} < neyrP7g;(T1)
t=1

where g; := P(0 < T(F7™ XD (., X)) = T(F™X)(., X,)) < ¢, P77, X, € B;), which is indepen-
dent of ¢t due to the X; being identically distributed.

Step 4b: A bound for E(RjJJg (7)). By Lemma B.3, noting that Px(B;) > ¢cP~¢ > 0, for
every z € B; and every i € I} we have (abbreviating F ; by F})

T(F™ @ (., 2)) = T(F'(-,2)) < |T(F}) = T(F})| + P, (72)
from which it follows that
E[R;0(7)] < Y AIES(i,n,j) + 1P Y ES(i,n, j), (73)
i€l el

where, for every i € I, welet S(i,n,j) == >\ Lix,en,) Lim (x)=iy and AL = T(F;)=T(F}).

We now claim that (this claim will be verified before moving to Step 4c below)

2C2%Blog(enP~?) N B+ 2
NE EEr)

ES(i,n, j) < (74)
Define A; := min,e o A’ We note that A; > 0 follows from inserting = x; in Equation (72),
and from using the definition of [g. Next, noting that max;c 19 A; < 2C by Assumption 2.2,
and combining Equations (73) and (74), we obtain the bound

2C% [ log(enP~9) " o P
A A

=Jj =Jj

B+2

E[éj,lf(ﬁﬂ <K

It remains to prove the claim in Equation (74). To this end we apply a conditioning
argument as in the proof of Theorem 3.6. We shall now use some quantities (in particular
the sets 2(v)) that were defined in that proof: Note that

ES(i,n,j) = Y PQ)E(S(,n, j)Q@)). (76)

ve{0,1}n
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Arguing as in the proof of Theorem 3.6, it is now easy to see that E(S(i,n,7)|2(v)) can be
written as the expected number of times arm i is selected in running the F-UCB policy 7
(without covariates) in a problem with m = ", v, (fixed) i.i.d. inputs with distribution Q
(the marginals of which have a cdf that lies in the closure of Z w.r.t. |||« as a consequence of
Lemma B.4). We can hence (cf. Remark 2.4) apply the bound established in Equation (49),
to the just mentioned problem, to obtain

2C%Blog(m) B +2

BS(n IR0 € R+ 5

We can now combine the obtained inequality with Equation (76) to see that

C?Blog(m
ESGing) < 3 PO 2R A2
ve{0,1}n J

The claim in (74) now follows from Jensen’s inequality, and (cf. the end of the proof of
Theorem 3.6) >_,c (g 1y P(€2(v))m < enP~.

Step 4c: A bound for E(R,(7)) with j € J. For all i € I? and all 2 € B; the triangle
inequality and Lemma B.3 with V; = VAP~ shows that ¢; P~ is smaller than

I T(F™ (- 2)) = T(F(, 25)))]
<T(F™@) (L)) = TFT@ (@) + |T(FETO (L 2) = T(F (L) + | TF (- 2) — T(F (-, 25)))|
<2CLdP*P™7 +|T(F™ @ (-, 2)) = T(F(-,2))|.

Recalling that ¢; = 4C' Ld"/? 4 1, we obtain
T(F™@(,2)) = T(F(-,x)) > (1 +2CLd/*)P7. (77)

[In particular, since I7 # () holds, 0 < T(F™ @ (., 2)) = T(F™@(.,z)) forall z € B; if j € J,
an observation we shall need later in Step 4d.] For every i € [ ]0 and every x € B;, (77) and
Lemma B.3 (recalling that Px(B;) > cP~ > 0) imply

AL =T(F)) - T(F) = T(FTO (-, 2)) = T(F'(-,2)) — 20Ld/*P~ > P7;

J

in particular, for any j € J, we have A; = Minge o A > P77, Recalling that R;(T) =
Rj,f;f () + 15%1]0 (7), we combine (71) and (75) (with the just observed A; > P~7) to see that
for any j € J

20%(c; + 1)K Blog(enP~%) ﬁ +2

E[R](ﬁ)] <naP ¢ +

Step 4d: A bound for ZJEJ]E[}? (7)]. Using Equation (78) and | 7| < P¢ we obtain

~ ﬁ—l— p 2C%(c; + 1)K Blog(enP~?)
j;ER < (e +20)K i 5P +ne P gty N . (79)

JjeT jeT =J
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Since the B; are disjoint, we obtain, recalling the definition of ¢; after Equation (71), that

% ¢ < P—]P’(O T(FTr*(Xl)(.’Xl)) — T(F“ﬁ(Xl)(-,Xl)) < clp—v) < Coci-‘rocnp—'y(l—i-a)’
JjET
(80)
where we used Assumption 3.11 to obtain the last inequality.

To deal with the last sum in the upper bound in (79), we need a better lower bound on
the A;-s than the already available P~7. For notational simplicity, let’s suppose that the well-
behaved bins are indexed as J = {1,2,...,j1} such that 0 < P77 < A; <A, < ... < JAVIN
Fix y € J. Then, for any k =1,...,j, we claim that:

By C {x L0 < T(FT@(,2)) = T(FP@ (1)) < A, + 2CLd7/2P‘”} . (81)

To see (81), note that, by definition, there exists an i € Z}) such that A, = T(F}y) — T(F}).
Given x € By, Lemmas B.3 and B.4 and Remark 2.4 yield (the first inequality following
from the observation after Equation (77))
0 < T(F™O(2)) = T(E™O(,2)) < TETO () = T(F(, )
< A, 4 2CLd*P™Y
<A;+20LdPP77,
and thus z is an element of the set on the right-hand-side of (81). Since all bins By, are disjoint

and A;+2CLd"*P~7 < ¢;A; (obtained by recalling ¢; = 4CLd"/?+1, and using A; > P™7),
the 1nclu81on (81) yields that for any j € J:

Px(z:0< T(F™ @ (., z)) — T(Fwﬂ(a:)( x)) < A, ) > iIP’X(Bk) > % (82)

Let’s denote jp := max{j € J : A; < 1/e;} (here interpreting the maximum of an empty
set as 0). Then, for each j € {1,...,j2} by Assumption 3.11 :
Py (0 < T(F™ (. X)) = TEZN(, X)) < 01A,) < Colerd)*. (83)

Combining (82), (83), and A; > P~7, forany j € {1,...,j2} we get A; > max (cx(§P7) l/a, P,

with constant ¢, := cflgl/anl/a. Combining this with the identity A; > 1/¢; for j > j,
we obtain that

J1

Z—<Zm1n< (P/; )Ua P7> Z 01<Zm1n< (P/j )Ua P7>+c P,

JeT _j Jj=j2+1

For P := [P% 7] (in fact for any P € {1,..., P%}, and thus in particular for our particular
choice) it holds that

P

ZHHH( Pd/] 1/0( ) Z 'y +C;1Pd/a Z jfl/a S c**Pd+’Y(1*a)’

=1 j=P+1
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for ¢ = [2+ ¢ (@t = 1)7"], where we used 3% 5. | jTHe < (a7t = 1)7TPYeT (of. (53)).
Hence, Equations (79) and (80), and the bounds in the previous two displays imply

SOE[R;(7)] < ¢ (nPT04) 4 Klog(nP )P+ Klog(nP~)PH0-2) | (84)

for a constant ¢, say, that depends on d, L,~, ¢, ¢, C,Cy, a and 3, but not on n.
Step 5: Combining. From Equations (64), (67), (69) and (84) we obtain

/11

Bl (m] < 7 (”P‘”’(”“) + \/Knlog(n) P> + Klog(nP~)P" + K@(nP‘d)PdH(l_a))

for a constant ¢”” that depends on d, L,v,c,¢ C,Cy,a and 3, but not on n. From P =
(Y7 +)] we get n < P2+ and obtain

/111

E[R.(7)] < — Klog(n) <nP_7(1+a) +n! 2P 4 2Pd+7(1‘°‘)) < " Klog(n) P,
from which the conclusion follows.

B.4.4 Proof of Theorem 3.13

To prove the theorem we just combine Theorem 3.12 and the following lemma, which allows
one to upper bound the number of suboptimal assignments made by any policy.

Lemma B.5. Suppose Assumptions 2.2 and 5.11 hold. Let Dy > max(2,Cy), and de-
fine C(a, Dy, Cy) = (1 — 1/Dy)/(CoDo)"/*. Then, for any policy w, any randomization
measure, and for all (Yy, X¢) ~ Py x, such that Py x satisfies Assumption 3.4, it holds that

1+1/«

E[R,(m)] > C(a, Dy, Co)n™ Y/ (E[S,(7)]) for every n € N. (85)

Remark B.6. In Lemma B.5 we impose Assumptions 2.2 and 3.4 to guarantee that R, ()
and S, () are random variables, and that 7* and 7# are measurable, cf. also the discussion
in the Footnote of Assumption 3.11.

Proof. Choose Dy > max(2,Cy!), implying that 1/(CoD)"/* < 1. Let n € N, and let 7 be
a policy as defined in Section 3.1. We write 7, ; = m;. Let Pg be a randomization measure.

We show that ) -
E[R,(w)] > Cn~Y/*(E[S,(x)]) "/ (86)

for C = C(a, Dy, Cp). If E[S,(7)] = 0, (86) trivially holds. Thus, suppose that E[S,(7)] > 0.
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Note that for any ¢ > 0,

Ro(m) 2 0 ; ]l{T(F”*(X”(~,Xt))fT(F"’i(Xt>(-,Xt))>6}]l {m(Xt,Zt,l,Gt)¢argmaxieI{T(Fi(-,Xt))}}

=0 (ﬂ—) -0 Zl ]I{T(F”*<Xt)('7Xt))—T(F”ﬁ<Xt)(‘7Xt))S5}]1 {Wt(Xt,thth)garg maXiEZ{T(Fi('vXt))}}
=

§Sn(7T) -0 Zl ]1{0<T(F“*(Xt)('vXt))_T(F’TMX”('vXt))§5}11{m(Xt,Zt_l,Gt)gzargmaxieI{T(Fi(th))}}
t=

> G5n(1) = 6 3 g x(on 050X ~T(P 50 X))
t=1
where the second equality used that if m (X, Z;—1, Gy) € argmax;7 {T(F*(-, X;))}, then 0 <
T(F™ (4, X)) = T(F™X(+, X,)). Choosing & := (E[S,(7)]/(nCyDy))* < 1/(CoDp)V/* <
1 (the first inequality following from E[S, (7)] < n), Assumption 3.11 yields

B[R, (7)] > (B[S, ()] — Cond®) = 6(1 — 1/Dg)E[S,(7)] = Cn~ Y (E[Sn(ﬂ_)])l—l-l/a,

which proves (86). O

B.4.5 Proof of Theorem 3.14

Let 7 be a policy, let Py be the uniform distribution on [0, 1], let Pg be a randomization
measure, and fix an n € N. To simplify notation, we abbreviate m, ; = m,. The proof of the
inequalities in (20) and (21) now proceeds in 5 steps:

Step 0: Preliminary observations and some notation. (a) From the maintained
assumptions and Assumption 2.2 (imposed through Assumption 3.2) it follows that

c(ro—1)<T(J,) = T(Jr) <C|Jry = Jr,||loc < C(m2 — 1) for every 7 < 75 in [0, 1].

Let ¢ := 2/V/17 < 1/2, set H, := Jy /a4, for every v € [—¢, €], and define the map h : [—¢, ] —
[h(—¢€), h(e)] via v — T(H,); note that h is strictly increasing because of ¢ > 0 and the
observation in the previous display. (b) The previous display also implies that h is Lipschitz
continuous with constant C', and that h(w) — h(v) > c_(w — v) for every v < w in [—¢,¢];
implying that h possesses a Lipschitz-continuous inverse function h=' : [h(—¢), h(e)] —
[—¢,¢], say, with constant c¢_'. (c) Note that the map v ~ H, (as a map from [—¢,¢]
to D.qf([a, b]) equipped with the supremum metric) is Lipschitz continuous with constant 1.
(d) Finally, we verify that for ¢ := ¢_'(0.5%> — £2)~/2 we have (recalling the notational
conventions introduced in the first paragraph of the Appendix)

KLY (urr, s pm,) < ¢ (T(Hy) — T(H,))  for every v < w in [—e,¢]. (87)

By definition T(H,) — T(H,) = h(w) — h(v). Hence, the statement in (87) follows from ob-
servation (b) once we verify KLY2(jug, , g, ) < (w—v)/+/0.52 — £2. But the latter is a simple
consequence of Lemma A.3 (and is established similarly as the last claim in Lemma A.4).
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Step 1: Construction of a family of functions C. For P € N (to be chosen in Step
4), let BY, ..., Bb, be the hypercubes defined in (18), and sorted lexicographically; we shall
drop the superscript P in the following. Let ¢;, i = 1,..., P?% denote the center of B;.
Let m := [P%7?], and observe that 1 < m < P?%. Next, let %, :== {—1,1}™, || = 2™,
and define C,, = C := {f, : 0 € ¥,,}, where for o € ¥,, we construct f, : [0,1]? — R via

fola) i= h(0) + e 3" oy (o)

for every j € {1,..., P} we denote p;(z) := 4 P77¢(2P(x — ¢;))1p,(x), where ¢(x) :=
(1 = ||z||00)”; and ||| := max;<;<q|z;| for z € R Note that every f, is continuous.

We now show that every f, is Holder continuous. More precisely, we show that for ev-
ery f, € C

[fo(@1) = fol(w)] < ce27M]wy —mol|” for every 1,22 € [0,1]7, (88)

with || - || denoting the Euclidean norm. We note that for any pair xy,z, € [0,1]¢ one
has |p(z1) — ¢(z2)| < ||z1 — 22| < ||z1 — 22||7; the second inequality is obvious, and the
first inequality follows from |p? —¢7| < |p—¢q|” for p,q > 0 and 0 < v < 1, together with the
reverse triangle inequality. Now, to show (88), we consider two cases: First, if 1,2, € B;
for j € {1,..., P}, the definition of f, and |¢(x1) — ¢(x2)| < ||x1 — 22||7 lead to (note that
if j > m, the following inequality trivially holds)

-l olwn) — Folw)] < ls(m) — i)l < lles — 2l < Sl — mll’. (89)

We remark that by continuity of f,, equation (89) continues to hold if z; and x, are
elements of the closure of Bj, i.e., of Bj. Secondly, suppose that z1 € Bj,z2 € By
for j # k. Let S := {01 + (1 — O)xz : 6 € [0,1]}. Define y; := argmin,cgp, |[2 — 22|
and y, = argmin_cgnp, ||z — 1[|. Clearly, y1 and y, are elements of the boundary of B;
and By, respectively, implying ¢;(y1) = ¢r(y2) = 0. Denote 6, = o; for i = 1,...,m
and g; = 0 for ¢ > m. We obtain

[e_e] M fol@1) = folma)| = |0505(21) — Trepr(2)] < l@j(21) — 0i(y0)| + [k (y2) — 0r(22)]
< Zlles — w7 + Il — ")
< 27|y — o7,

where for the second inequality we made use of the second inequality in (89) (cf. also the
remark immediately after (89)), and for the third inequality we combined (a”+b7) < 2'77(a+
b)" for 0 <y < landa,b > 0 with |[zy —y1||+|[y2— z2|| < [lzr =]+ |[yr —vel[+[ly2 — 22| =
||z1 — a»||. Since the hypercubes By, ..., Bps define a partition of [0,1]¢ this establishes
Equation (88).

Step 2: Construction of probability measures P; indexed by C. Recall from Ob-
servation (b) in Step 0 that h : [—e,¢] — [—h(e), h(¢)] defined via v — T(H,) permits
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a Lipschitz-continuous inverse h™' : [h(—¢), h(¢)] — [—¢,¢], say, with corresponding Lip-
schitz constant c¢_'. By construction, the range of f € C is contained in [h(—e),h(c)],
because h(e) — h(0) > c_e and similarly h(0) — h(—¢) > c_e. Hence, for every f € C the
composition Ay := h~lof :[0,1]* = [—¢,¢] is well-defined, and Equation (88) shows that Ay
is Holder-continuous with constant £/2 and exponent . Note that by definition

f@)=h(h"o f(z) =h(As(x)=T (HAJ,(,E)> for every x € [0,1]¢ and every f € C.
(90)

We next show that p, () : B(R) x [0, 1]¢ — [0,1], defined via B x x Ht g 0 (B),
is a stochastic kernel: (i) By definition, pgy A (o) is a probability measure for every z €
[0,1]%. (ii) Recall from Observation (c) in Step 0 that ||H, — Hy,|l« < |v — w]| for every
pair v, w € [—¢,¢]. From continuity of Ay it follows that z +— H4,(z)(c) = ,uHAf(I)((—oo, )
is continuous (and hence measurable) for every ¢ € R. Since {(—o0,c] : ¢ € R} is a “z-
system” that generates the Borel o-algebra on R, Lemma 1.40 of Kallenberg (2001) shows
that NHAf(.)(') : B(R) x [0,1]¢ — [0,1] is a stochastic kernel.

For every f € C, we define the probability measure

]Pf = MHy & [/J’HAf(-) ® IP)X]; (91)

noting that the product in brackets is a semi-direct product. For later reference, we note
that if (Y;, X;) ~ Py, it holds for every € [0,1]¢ that F'(-,x) = Hy and F?(-, ) = Ha, ().
In particular, Equation (12) is satisfied as a consequence of Assumption 3.2. Now, for
every t = 1,...,n, denote by P} . the probability measure on the Borel sets of RED induced
by the (recursively defined) random vector Zy = (Yr,(x,,2,1,G)t> Xt - - - » Yo (X1,G1),15 X1) With
iid. (Y3, Xy, Gy) ~ Py ® Pg. In the sequel, for ¢ = 1,...,n, the symbol 2z, will denote a
“generic” element of RV (ie., a “realization” of the random vector Z;).

We close this step with an important observation: For a vector u = (uq,...,u;) we de-
note I1_(u) = (uy,...,u;_1). Note that K, ; : B(R) x [0,1]¢ x RE=DE+D x R defined via

Bxxxz_1xg— pu(B)I{m(r,2-1,9) =1} + MHAJ,(x)(B)]l{Wt(%Zt—lag) =2} (92)

is a stochastic kernel, and that for every ¢ = 1,...,n we can write (noting that Z, =
(Y, (X0.2e1,Go)t> Xty Zi—1), interpreting Z, as the empty vector)

P, = (Kt,f ®[Px 0P} ® IPG]> oIl (93)

with the convention that in case ¢ = 1 one has to drop the factor ]P’fr’fl in the previous
display and the “z_;” in Equation (92) (to see (93), note that the probability measure in
parentheses in (93) is the joint distribution of Z; and Gy; therefore the distribution of Z;
is obtained as the image measure of this joint distribution under the map I1_). Hence,
interpreting KL(Pfrjfll,Pf;;z) = 0 in case t = 1, and with the just mentioned “dropping”-

convention, Corollary 1.71 in Liese and Miescke (2008) and the Chain Rule of Lemma A.1
imply that for fi, fo € C and any t = 1,...,n we have

KL(PY f, Prp,) <KL (K’t,fl ® [Px @ P @Pc), Ky, ® Px ® P 7, ® IP’G])

—KL(PL 1,1 + KL (Ko, @ [Px @ PL L @ Pl Ky, @ [Px @ PL ) 0P )

69



the right-hand-side being equal to the sum of KL(IP)f;flﬁPjTTfIQ) and

/ KI—([_{t,fl ('7 X, Z¢—1, 9)7 Kt,fQ ('7 X, Z¢—1, g)>d(]P)X 0y Pfrjfll X ]PDG)('Ia Zt—1, g)
[0,1]dxRE=1(d+1) xR
Using Equation (92) this sum further simplifies to

LPABEL) + [ KLl o P S B © B, 501,0)

which, noting that IP’f;fll is obtained by a coordinate projection from P7 ., implies

KL (PLy, Py, ) < KL(PELPLL) + /{ KLt s V(B O ©PG) 220 9)

By induction, it now immediately follows that for every t =1,...,n

t
KL <]P)§r,flapjr,f2> < /Z]l{ﬂ'z = Q}KL(HHAfl(I)7NHAfQ(@)d(IEDX ® PZ,ﬁ ® ]P’G)(x,zn,g). (94)
=1

Step 3: Verifying Assumptions 3.4 and 3.11 for every P;. Fix f = f, € C. To verify
Assumption 3.4 (with v and L = ¢/2 as given in the theorem, cf. Step 0 for the definition
of €) for Py, which was defined in (91), note that

1720 21) = F?(,20)llo0 = 1 Hap o) = Hagn lloo < [Af(21) = Ap(22)] < Ll — |7,
the first inequality following Observation (c) in Step 0, and the second following from Ay
being Holder-continuous with constant L = £/2 and exponent ~, as observed in Step 2 right
before Equation (90); note further that F'(-,x) = Hy, and that the previous display hence

trivially holds for F? replaced by F''. Next, to verify Assumption 3.11 (with o and Cy =
8d[c_e]~“ as given in the theorem), it suffices to show (recall that K = 2) that

Py <;c € [0, 1% 0 < [T(Ha,w) — T(Hy)| < 0755) < 8d6° for all § > 0. (95)

The statement in (95) is trivial for 6 = 0. Let § > 0. We use Equation (90) to write
[e—e] T (Hay) = T(Ho)l = Y w5(2),
j=1

where we used that B; N By, = () for j # k. Noting that } 7", ¢;(z) = 0 for z ¢ -, B;, we
obtain

Py (x € 0,10 < [T(Ha,w) — T(Hy)| < c,as) =S Py (r€ B0 < pi(x) <),

Jj=1
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which we can write as

mPx (¢ € By : 6(2P(x — 1)) < 4P6) = m(2P) / L ppeapryde

(1,14

= mP_d/ ]1{¢§4p75}d513,
[0,1]¢

where the first equality follows upon substituting u = 2P(x — ¢;), and the second equality
follows from ¢(x) being invariant to multiplying coordinates of x by —1. To upper-bound
the expression to the right in the previous display we consider two cases: If 4P7§ > 1, then

de/ Lip<aprsydr = mP~% < 2P77% < 86,
[0,1]¢

where we used m = [P47%] < P477@ 41 < 2P and a € (0,1). On the other hand,
if 4P7) S ]_, we write ]l{¢§4pw5} =1- ]l{4p~/5<¢} =1- ]l{||'Hoo<1—(45)1/A’P} to obtain

mP‘d/[ y ]1-{¢§4P“f5}dl' = mP‘d(l—/[ y ]1{||~||oo<1—(45)1/’YP}d$) — mP_d[l—(l—(él(s)l/VP)d]’
0,1 0.1

which, using (1 — (1 — s)%) < ds for s € [0,1], m < 2P47 P < (46)~Y7 and «a € (0, 1), is
bounded from above by

mP=4d(46)7 < 2d P (46)Y7 < 2d(46)* < 8d5*.

Step 4: Lower bounding the suprema in Equations (20) and (21). We start
with Equation (21). We already know that for every f € C the measure Py satisfies the
inclusion in Equation (12) and Assumptions 3.4 and 3.11. It therefore suffices to verify

SUpE(ey ey [Sn(m)] 2 ' /32,
€

where Ep,gpg)n denotes the expectation w.r.t. the product measure @,_, (P;®P¢) (here, we

interpret, with some abuse of notation, S, (7) as a function on the range space of (X, Y;, Gy)

fort =1,...,n; and we shall denote a generic realization of (X;, Y;, Gy) by (24, yt, g¢) to make

this convention explicit, where we sometimes drop the subindex ¢, if no confusion can arise).
We first observe that for Py, , denoting f, := [c_g]![f, — h(0)] = > iy 04, we have

Sn(m) = Z]l{T(Fl(th)) # T(F2(,21)), 7 () # i@, 201, 90)}

= Z ]l{fo(xt) #0, 2m (2, 2-1,Gt) — 3 F# sign(fg(xt))},

where for the second equality we used that 7*(z) = 3/2+sign(f,(z))/2 (with the convention
that the sign of 0 is —1), and where we recalled from Equation (90) that T(F!(-,z)) #
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T(F?(-,z)) is equivalent to f,(x) # 0. Noting that the random vectors X;, Z,_;, and G,
are independent, it follows that their joint distribution equals Py ® P! fl ® Pg. Using
Tonelli’s theorem, writing Eg for the expectation w.r.t. Pg, abbreviating 27rt(:c 21,9)—3 1=
7i(x, 21, g), and noting that the ¢-th summand in the previous display depends on z; only
via z;_1, we obtain

ilégE(IP’f@JP’G)"[Sn(W)] = sup ZE EG PX fa(I) #0, T2, 21, 90) # sign(fo(l‘)))}

oEXm —1

> sup Y Y EUlEg[Px(z € B : wlw, z1.90) # 05)]

erm ]:1 t=1
n

> ZLleZ N B} EolPx(r € Byt (e, 2o1,9:) #0,)], (96)

t=1 O'Ezm

where we used that m < P4 and Px(z € B; : f,(x) = 0) = 0 (and where we use a
corresponding “dropping”-convention for the index ¢t = 1 as introduced after Equation (93)).
For every j € {1,...,m} and t € {1,...,n},

Q=) E}EclPx(z € B;: (w,2-1,9) # 05)]

O’GEm

= Z Z E EG Px(l‘ € B ﬁ't(iﬁ, Zt—1>g) 7é Z)]a

0_;j€Xm-11ie{-1,1} '7

where 0_j = (0'1’ e 3 05-1,0541, - - ,O'm) and O'z] = (O'l, R 70-j*1{i7 O’jJ’,l?‘. .. ,O'm) for ¢ <
{ 1,1}. Define for every j € {1,...,m} the probability measure P via P4 (A) :=Px(AN

B)) /IP’X( ) for A € B(RY), and let E% be the corresponding expectation operator. Recall-
ing Px(B; ) P~? we obtain for any z_; € R¢=DE+1) and any ¢ € R that

Px({z € By (%, 21, 9) # i}) = Pﬂ(({x (T, 201, 9) # i})/de

from which we see that the sum over 7 in the penultimate display coincides, for every o_; €
Em—l; with

1

= e(0,4,1). (97)

. . 1
(Et ; BB g2y + 1 —EifﬁalEGE&ﬂ{m(x,zt1,g>=1}> = el
Clearly, e(o,7,t) is the sum of the Type 1 and Type 2 error of the test (x,z_1,9) —
]l{ﬁt($72t717g):1} fOI‘
Ho: Py @PL;  ©Pq against Hy:Py@P} ©Pg.
Using Theorem 2.2(iii) of Tsybakov (2009), we obtain
' 1 , B .
e(o,j,t) > 1P [—KL (IP’JX@)IEDt 1 B} ®PG,P§(®P2;1 | ®PG)]

1 t—1 t—1 (98)
= 4 &XP [—KL (Pﬂ’f ]P>7r g )} ,
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the equality following, e.g., from the Chain Rule in Lemma A.1.
To upper bound KL (]P’fr_f1 o IP’fr_fl ), we will now apply (94) with f; = f -1 and f, = for -

Note first that fy(z) = fo(z) for « ¢ B;, and that (fi(z), fa(z)) = (h(0) — c_e;(x), h(0) +
c_ep;(x)) for x € Bj, from which it follows from Equations (87) (note that Ay ) < Ay,
follows from strict monotonicity of h~%, cf. Step 0) and (90) that

[2¢c_ep;(x)]? ifz € B;,

KL(/J/HAH(“”)’/J/HAfQ(z)) = {O if v ¢ Bj.

Since [2¢c_ep;(x)]? < [(c_e27'P~7]* = FP~?" holds for x € B;, Equation (94) delivers
t—1
KL(P ;- " P;; <rP / > UG j)}dPx @ Pr | @ Pg) < TP N,
i=1 K
with G(i,7) = {(=, 20, 9) : © € B, m(x, 2zi-1,9) = 2}, Njo_, = [ >0 1{G(i,7)}d(Px ®

P S ® Pg). The dependence of N;, . on 7 has been suppressed. In combination with

Equatlons (97) and (98) we hence obtain

Z@] SO pelean=d X qpew |-,

t=1 0_;€Em_1 t=1 0_ ;€ m 1
n 2
= 1pd Z exp [ TP™""N;, g_]}
0_j€EXm—1
> om=1 ' ovp =P 27y,
- 4Pd p g] ?
the last inequality following from Jensen’s inequality and p; := 2!="™ Za,jezm_l Njo_;. Fur-

thermore, from the definition of Q{, one directly obtains via Tonelli’s theorem that

ZQJ Z > Y EY EGPX(a:eB Ti(, 2e-1, 91) 7 9)]

t=1 o_;€8,11ic{-1,1}

> Z Z Eﬂf Eg[PX(l‘ € B; s, 21, g) = 2)]

t=1 O',JGEm 1

= Z Eﬁf EGZ ]P)X l’ c B 7Tt(x Zi— lagt) 2)]

0_j€Ym—1

Combining the lower bounds in the previous two displays with (96) yields

n

1 m
sup Ep,ep)n [Sn ()] > —mZZ Qi > 5 Zmax (4pd exp [~TP™" ;] a@j) ;
=1

fec j=1t ] 1
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which can further be lower-bounded by

1 — |
Jj=1 >

mo nr
> inf
= 4FP21 g0 (4Pd+27

exp [—o] + Q) :

This lower bound holds for any P € N and corresponding m = [P?77%]. We now set P :=
[(n7/4)Y@+2)7 " and can thus use wexp(—g) + o > w for every ¢ > 0 and every 0 < w < 1
to lower bound the quantity in the last line of the previous display by

1--22
n d+2~

16

mn Ppi—op n n
> — _—pre > 4 1/(d+2v) 1
6P = 16P1 16 T 1

(/4420 4 1)

By definition, 7 = [(c_e27']? = [(0.5% — £2)~1/22271]2. Recalling ¢ = 2/+/17 implies 7 = 4.
Thus, the lower bound in the previous display simplifies to

1— -7
n d+2~

16

2770 > pl A /32,

This establishes Equation (21). Finally, Lemma B.5 (cf. Step 3, which verifies the assump-
tions needed) with Dy = 2 + C; ' shows that the lower bound established in Lemma B.5
holds for the corresponding constant (1 — (2 + C; ) ™1)/(2C, + 1) > 271(2C, + 1)~V >
2~ (+1/2)(Cy +-1)~1/*. This version of Lemma B.5 and the already established Equation (21)
proves Equation (20).

B.4.6 Proof of Theorem 3.3

Because Assumption 3.4 (for any v € (0,1] and any L > 0) implies the assumption in
Equation (14), the statement follows immediately from the lower bound in Equation (20) in
Theorem 3.14 upon letting v — 0.

B.4.7 Proof of Theorem 3.8

The statement follows from the first lower bound established in Theorem 3.14, upon set-
ting a = a(e) = (2y + d)e/~ there; note that «a(e) is an element of (0,1), because ¢ €
(0,7/(27 + d)) holds by construction.

B.4.8 Proof of Theorem 3.5

If min(Px(A;),Px(As)) = 0, then the statement in the theorem trivially holds. Hence,
assume that p := min(Px(A;),Px(A2)) > 0. Let n € N and let 7 be a policy that ignores
covariates, i.e., 7 is as defined in Equation (1). We write m,; = 7. Fix a randomization
measure Pg.
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As a preparation, for every m € N, define

Ay ={2 [0, : T(F'(-,2)) >m '+ T(F?(-,2))},

Ag = {2 € [0, 1] : T(F'(-,2)) +m™ < T(F?(-,2))}.
The sets Ay, Ay and Ay ,,, As,, for m € N are Borel measurable, because Assumptions 2.2
and 3.4 imply the continuity of z — T(F'(-,z)) for i = 1,2. Note that A;,, C A;mi1
and (J,,cn Aim = A; hold for i = 1,2. Hence, as m — oo, Px(A;m) — Px(A;) for i =
1,2. Because of p > 0, we can conclude the existence of an m € N such that ps =
min(Py (A ), Px(Asm)) > p/2. To prove the inequality in Equation (15), note that by
definition, and since 7 is a policy that does not depend on covariates,

R(m) = Y | T(F' (- X0) = T(F?(, X)) [ e (xo) e (201,603
t=1

Note furthermore that

[{Xt € Ay n}t N{m(Zi1, Gy) # 1}] U [{Xt € Agm} N {T(Zi-1, Gr) # 2}}
C {m*(Xy) # m(Zi—1,Gy) }

where the union in the first line is a disjoint union. Hence,

Rn(ﬂ) > mil Z (1A1,m (Xt)]l{ﬂ't(zt—lth)7£1} + ]1A2,m (Xt)]l{ﬂt(ztflyGtﬁ’éz}) .
t=1

Since X} is independent of Z;_; and Gy, the law of iterated expectations implies E(R,, (7)) >
np/(2m).

C Proofs of results in Section 4

Proof of Lemma 4.1: Given F,G € D.q([a,b]) it holds that |Saps(F) — Sans(G)| is not greater
than 1/2-times

/ = p(F)| — |z — p(G)]| dF () + /  — p(G)|dF(z) - / & — p(G)|dC(z)
[a,b] [a,b]

[a,b]

Using the reverse triangle inequality, the first integral in the previous display can be bounded
from above by |u(F) —pu(G)] < (b—a)||F — G|l (cf. Example D.3 for the inequality). Using
Lemma D.2, the remaining expression to the right in the previous display is seen not to
be greater than (b — a)||F — G||~. Hence, the first statement follows (noting that S.ps is
obviously well defined on all of D.4([a,b])).

Concerning the second claim, we first observe that for every F' € D4 ([a,b]) it holds that

1
L / NEGIEEE | )= 0irw). (99)

2 la,(F)]
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Next, let s > 0, 0 € (a,b), F € 2(s,0) and G € D4 ([a,b]). We consider two cases, and
start with the case where u(G) = 0 (implying that a = 0 and that G is the cdf corresponding
to point mass at 0). Then, by convention, S,q(G) = 0, and it follows from Equation (99)
(recalling that p(F) > > 0) that

[Sret(F) = Sra(G)] < /[ - 1 —a/p(F)|dF(x) < F(u(F)).

Since F'is continuous 0 = F(0) = F(u(G)) holds. It follows that F(u(F)) = |F(u(F)) —
F(u(@))]. Using the mean-value theorem of Minassian (2007) and Example D.3 we conclude
that [F(u(F)) = F(u(@)] < s(b = a)|F = Gl

Next, we turn to the case where u(G) > 0. First, we note that

/[LW(F)] mdﬂx) - /[a,u(cm dem '

Consider the first term in absolute values in the previous display: By the triangle inequality:

[Seet(F) = Srat(G)| < [F(u(F)) = G(u(@))| +

[E(u(F)) = G((G)| < [F((F)) = F(uG)] + [[F = Gl

From the mean-value theorem for right-differentiable functions as in Minassian (2007), and
the definition of €*([a, b]), we obtain |F(u(F)) — F(u(G))| < s|u(F) —uw(G)| < s(b—a)||F —
G|| o, the second inequality following from Example D.3. Now, note that (incorporating the
considerations in case u(G) = 0) it remains to show that

/[W(F)} mdﬂx) - /[a,ma)] H<G>dG(x)

To this end, denote m := min(u(F), u(G)), M = max(u(F), u(G)), let F denote a cdf
in {F, G} which realizes the latter maximum, and rewrite the difference of integrals inside
the absolute value to the left in the preceding display as

/[avm} “(HSF) = /[ann] NfF)dG(x) . /<m,M] %dﬁ(m) ! /[am [M(xF) - u(gé?)] 4G(@),

where “+” is to be interpreted as “+” in case F' = F and as “—” in case F' = G. Next, denote
the difference of the first two integrals in the previous display by A, the third integral by B
and the fourth by D, respectively. First, Lemma D.2 (applied with k = 1, ¢ = a, d = m
and ¢(z) = x/p(F)) implies (working with the upper bounds [M*| < 1 and C' < 1 in
Lemma D.2 for the special case under consideration) that |A| < 2||F' — G||~. Second, note
that the integrand in B is smaller than 1, hence

<((s+6Hb—a)+4)||F -Gl  (100)

Bl < F(M) — F(m) < F(M) — F(m) +2|[F — G|l < slu(F) — n(G)| + 2| F - Gl

where we used ||F — F|| < ||F — G| for the first inequality, and the mean-value theorem of
Minassian (2007) for the second. To obtain an upper bound for | B| we now use Example D.3
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to see that the right hand side in the previous display is not greater than [s(b— a) + 2]||F —
G||so- Concerning | D| note that (cf. Example D.3)

1(G) ‘ 'N(G) ' 1 1
DS/ — —1dG(x) < |—/= — 1| <0 |pu(G) = pu(F)| <0 (b—a)||F — G|l
|D| iy | A(E) (z) () 1(G) = p(F)] (b—a) I
Summarizing,
[Al+[B]+ D] < (s +071)(b—a) + )| F - G|,
which proves the statement in Equation (100). O

Proof of Lemma 4.2: The first statement follows from Example D.6. To prove the statement
concerning Gy, we first note that G,q is well defined on D4 ([a,b]) (note that p(F) < 0
implies that a = 0 and that pp is point mass at 0, implying that G, (F) = 0). Let F,G €
D.qf([a, b]), and assume p(F') > 6, where 6 € (a,b). Consider first the case where p(G) = 0.
Then, Ge(G) = 0 and

|Grat(F) = Grat(G)] = Grat(F) < 07 [u(F) = (G)] <071 (b — a) | F = G,

where we used that Gups(F) < u(F) (just note that |x; — x| = (21 + 22) — 2min(zy, x9)),
and Example D.3.

If, on the other hand, u(G) > 0 (recall that a > 0), we abbreviate p(z1,22) = |21 — 22,
and write

|Grer(F) = Grat(G)| < (A + B)/2,

where

A:=06""

/ / (1, 22)AF (21)dF (23) — / / o1, 22)dC (21)dC (2|
[a,b] [a,b] [a,b] J[a,b]

which, by Example D.6 is not greater than §7'2(b — a)||F — G|, and

b= / / [((F) ™" = (@) (1, 2)|dG (21)dG (22) < 2 |[W(G)/pu(F)] — 1],
la,b] J [a,b]

where we used Gaps(G) < 11(G). Note that |[u(G)/u(F)] — 1| <671 (b—a)||F — G|« (cf. the
end of the proof of Lemma 4.1). Hence, in case u(G) # 0, we obtain that

Gret(F) — Gt (G)] <2671 b — a)||F — G| o

Together with the first case, this proves the result.
O

Proof of Lemma 4.3: The functional in Equation (26) is well defined on D4 ([a,b]), be-
cause of Lemma D.13, and since a > 0 is assumed. Next, we apply Lemma D.12 together
with Lemma D.14 to obtain that for every u € [0,1] the functional F' — L(F,u) satis-
fies Assumption 2.2 with a,b and Z (as in the statement of the present lemma) and with
constant a~(r~! + (b — a)a=1b). The statement immediately follows. O
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Proof of Lemma 4.4: Arguing similarly as in the proof of Lemma 4.3, the triangle inequality,
together with Example D.3 and Lemma D.14 (which is applicable due to Lemma D.12)
immediately yield the claimed result. O]

Proof of Lemma 4.5: We start with the first statement. The functional T is obviously every-
where defined on D4 ([a,b]) (in case u(F) = 0 it follows that a = 0 and that F' corresponds
to point mass 1 at 0 in which case T(F') = 0, by definition). Next, let § € (a,b), let F' € 2(9)
and let G € D 4([a,b]). We consider first the case where u(G) = 0 (implying that T(G) =0
and a = 0). We conclude that |T(F) — T(G)| = T(F), the latter being not greater than

/ xch(x)—/ z¢dG(z)
[a,b] [a,b]

where we used Example D.4 (recall that a = 0) for the last inequality. Next, consider the
case where ;(G) > 0. We note that

1
cle — 1|o¢

b¢ — af

< - =
~ e —1|o¢

1F = Gl

(101)

| winEyare - [ @ueyrice)

[a,]

can be upper bounded by A + B with

e — g

A < |IF - Ol

/ () u(F))dF (x) - / (2/u(F))dG(z)
[a,b]

[a,b]

the inequality following from Lemma D.2, and
B = [(1/u(F))" = (1/u(G))| . 2dG(z) < |(u(G)/u(F))" =1,

the inequality following from Jensen’s inequality (recalling that ¢ € (0,1)). It remains to
observe that the simple inequality |z¢ — 1| < |z — 1| for z > 0 implies

|((G)/(F)* = 1| < |(G)/u(F) = 1| <67 (b — a) | F = G|,

where the second inequality follows from Example D.3 together with p(F) > 6. Hence, in
case pu(G) > 0 we see that

b¢ — af

T(F) = TG < (e — 1) | >

+07 (0 —a) | ||IF = Gll,

which proves the first claim.

We now prove the second claim. Since a > 0 holds in this case, u(G) and u(F') can not
be smaller than a. Hence the functional is well defined on all of D.g([a,b]). Furthermore,
the expression in Equation (101) is not greater than A + B, where A and B have been
defined above. By Lemma D.2 it holds that A is not greater than a=¢|b° — a°|||F — G||co-
Furthermore, B is not greater than

max ((a/b)", (b/a)) [(u(F)/u(G))* — 1] < |eJmax ((a/b)*7, (b/a)* ") |u(F)/(G) — 1]
< le|max ((a/b)*7, (b/a)* ") a™ (b — a)[|F — G,
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the first inequality following from |2¢—1| < |c| max((a/b)*!, (b/a)¢"1)|z—1] for z € [a/b,b/a]
(noting that this interval contains 1 and recalling that ¢ ¢ [0, 1]), and the second inequality
following from Exercise D.3.

We now turn to the last case where ¢ € {0,1} (and a > 0 guaranteeing that the functional is
then well defined on all of D4 ([a,b])). We consider first the case where ¢ = 0. Without loss
of generality, assume p(F) < u(G). The statement follows after noting that |T(F) — T(G)|
is not greater than C' 4+ D with

C = < log(b/a)|[F = G|,

log(x)dF(z) — log(z)dG (x
| s @)~ [ ros(@aci

[a,b]

the inequality following from Lemma D.2, and (using Example D.3)

D = og(u(C)/u(F)) < log(1 + *—*|IF ~ Gll) < *—

In case ¢ = 1, set f(x) := (z/u(F))log(z/w(F)) and g(z) := (z/u(G)) log(x/u(G)). Write

a
IF =Gl (102)

IT(F) = T(G)] < f@)dF(x) = [ f(2)dG(z)

[a,b] [a,b]

+ /[ 1)~ ]aca).

From Lemma D.2 it follows that the first absolute value in the upper bound is not greater
than ||F' — G|« times the total variation of f on [a,b], the latter being bounded from above
by f[a/b b/a |1 +10g(x)|dz. Finally, noting that for every z € [a, b] we have

[f(z) = g(2)| < || {IM*I(F) — (Gl log(w/u(F)| + 1 (G) |10g(/~L(F)//~L(G))\}
b(b— a)
where (in addition to a > 0) we used Example D.3 and (102). The final claim follows. [

<

{log(b/a) + 1} ||F — G||s,

Proof of Lemma 4.6: We start with Part 1: Let § € (a,b). From the first part of Lemma 4.5
we obtain that in case ¢ € (0,1) the functional e(e — 1)E..) + 1 satisfies Assumption 2.2
with 2 = 2(5) and constant [§7¢) (b°C) — a*®)) + §71(b — a)]. It remains to observe that
the function

z 1 — 21/ (103)

is Lipschitz continuous on [0, 1] with constant ¢(¢)~!. The claim then follows from Lemma D.1
(with m = 1), and the representation in Equation (28) together with the observation that 0 <
e(e—1)Ec)(F)+1 < 1 holds for every F' € D4 ([a,b]) as a consequence of Jensen’s inequality.

For Part 2 we argue similarly as in Part 1. From the second part of Lemma 4.5 we
obtain that in case ¢ € (1,00) the functional e(e — 1)E..) + 1 satisfies Assumption 2.2
with 2 = D.g([a,b]) and constant (note that 2c(e) — 1 < 0) equal to

[a_c(a) (ac(e) — bc(e)) + c(e)(a/b)Qc(e)_la_l(b —a)l.

The function in Equation (103) is Lipschitz continuous on [(b/a)®), (a/b)*®)] with con-
stant (¢ — 1)7*(b/a)®. From Equation (28), and because (b/a)*®) < e(e —1)E;_.(F) +1 <
(a/b)¥€)  trivially holds for every F € D4([a,b]) (a > 0 and c(¢) < 0), the claim follows
from Lemma D.1 (with m = 1). O
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Proof of Lemma 4.7: Clearly T is well defined on all of D.g4([a,b]). Let F' € D.g([a,b]).
Then, by Jensen’s inequality:

/ eI =lgp () > 1.
[a,0]

Since x +— log(x) restricted to [1, 00) is Lipschitz continuous with constant 1, we obtain for
any G € D.g([a,b]) that s|T(F) — T(G)| is bounded from above by

/ GH[M(F)—x}dF@)_/ e A=l g ()
[a,b]

[a,b]

= |(e™E) _ew(G))/

[a,b]

e " dF (x) 4 e (/

[a,b]

/ e_”“‘dF(:v)—/ e "*dG(x)
[a,b] (a,b]
< (keI — a] + e — ) |F - Gl

e "dF(x) — /W)] e_’“dG(a:)) ‘

< ‘enu(F) . 6HM(G)| e ke enb

where we used Example D.3 and Lemma D.2 in bounding in each of the summands on
the left hand side of the last inequality (as well as the mean-value theorem for the first
summand). O

Proof of Lemma 4.9: Obviously, the welfare function W is well defined on D4 ([a, b]) in both
parts of the lemma. The first statement follows from the assumptions and Example D.3,
noting that x1xe — y192 = (x1 — y1)T2 — y1(y2 — x2) holds for real numbers z;,y;, i = 1,2.
The second statement follows directly from the assumptions and Example D.3. ]

Lemma C.1. Let a < b be real numbers, zg > 0 and 0 < d < 1. Then, the following holds:
1. If 6 =0, then zy s satisfies Assumption 2.2 with 9 = D4 ([a,b]), and any C > 0.

2. If § > 0 and m = u(-), then zm 5 satisfies Assumption 2.2 with P = D.q([a,b])
and C'=6(b—a).

3. If 6 > 0 and m = qi5(-), then, for every r > 0, the poverty line zy ., s Ssatisfies
Assumption 2.2 with 9 = €,(|a,b]), and C' = r=14.

Proof of Lemma C.1: By definition zy, ,, s(F) = zo + 0(m(F) — zp). The first statement is
trivial; the second follows directly from Example D.3; and the third follows from Lemma D.12
and Example D.10. O

Proof of Lemma 4.10: Since z satisfies Assumption 2.2 the functional z is well defined on
all of Degs([a,b]). Thus H, is well defined on D.4([a,b]) as well. Finally, given F' € 2
and G € D.4(]a,b]), note that by definition and the triangle inequality:

H(F) = Ho(G)] < [F(2(F)) = F(2(G))] + [[F = Glloo < (Cas + D[ F = G|,

where we used that z satisfies Assumption 2.2 together with a mean-value theorem as in
Minassian (2007) for the last inequality. O
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Proof of Lemma 4.11: Obviously, Psk(+;z, k) is well defined on D4 ([a, b]) because z > z, >

0 holds by assumption, and due to our convention that 0/0 := 0 (noting also that F'(z) =0
for every x € [0,z(F)] in case F(z(F)) = 0). Next, fix F € & and G € D.4([a,b]). Define
for all z € R

f(@) = max(1 = [z/2(F)], 0)[1 = [F(x)/F(z(F))]I",
and analogously

g(x) = max(l — [z/2(G)], 0)[1 = [G(2)/G(2(G))]]".

Define m := min(z(F),z(G)) and M := max(z(F),z(G)), and the following partition
of [a, M| (using our convention 0/0 := 0):

Fr) G
F(F) ~ G(G))

A= {x e [a,m] : } B:=la,m\4, and D := (m,M],

where D = () in case m = M. Next, write

PSK(F; Z, /i) — PSK<G; Z, Ii)
k41

Y

_ /[ ,[f@-s@laF @)+

/[a SN (@) - / §(2)dC(2)

[a,b]

noting that f and g vanish for x > M and denote the right-hand side by S;+ .55, So denoting
the term in brackets to the far right. Since g([a,b]) C [0, 1] and because g is right-continuous
(G is a cdf) and non-increasing, it hence follows from Lemma D.7 that |Ss| < ||F — G| -

Concerning Sy, note that for every x € [a, m] it holds that | f(x) — g(z)| is not greater than
the sum of

| max([1 — — ——,0) < zfz(F)™" = 2(G)™
< 2z°|2(F) — 2(G)| < bz, °C,||F — G|,

(where we used that z > z, to obtain the second inequality, and that z satisfies Assump-
tion 2.2 to obtain the third) and

11— [F(2)/FE)]" = 1= [G(2)/GG)]"| < &|[F(2)/F(z(F))] - [G(x)/G(z(G))]]

(where we used k > 1, the mean-value theorem, and the reverse triangle inequality to obtain
the upper bound). For z € D, it holds that |f(z) — g(z)| < 1. It hence follows that |S;| is
bounded from above by the sum of b2 2C,||F — G|, x times

/A[F(SU)/F(Z(F))] — [G(2)/G(2(G))|dF(x) + /B[G(SU)/G(Z(G))] — [F(z)/F(z(F))|dF(z)

(104)
and [, dF(x). From the mean-value theorem in Minassian (2007), and z satisfying Assump-
tion 2.2, we conclude

/de(m) < F(M) — F(m) < sC,||F — G|se.

81



Before bounding the integrals in Equation (104), we recall that Lemma 4.10 shows that
G(z(G) = (Cos + D|IF = Gl < F(2(F)) < G(2(G)) + (Cos + D||F = Glloe. (105)

To bound the integrals in Equation (104), we now consider different cases:

Consider first the case where F(z(F)) = 0: Then, the convention 0/0 := 0 implies A = ()
and B = [a,m]. Furthermore, the integral over B in Equation (104) vanishes in this case,
because m < z(F') implies F(m) = 0 (and the integrand is non-negative). Hence, the
expression in Equation (104) is 0.

Next, consider the case where G(z(G)) = 0 and F(z(F)) > 0. It follows from our convention
that then A = {z € [a,m]| : F(x)/F(z(F)) > 0}, and that the integral over B in (104)
vanishes. The integral over A is not greater than

F(m) = F(m) - G(z(G)) < F(z(F)) = G(2(G)) < (Czs + DIF = G|,

where we used Equation (105) to obtain the last inequality. We thus see that in this case
the expression in Equation (104) does not exceed (C,s + 1)||F — G| -

Finally, consider the case where G(z(G)) and F(z(F)) are both positive. Then, we can
write the integral over A in Equation (104) as

Far)” [ £ - F(z(F))%dF(w)
< FF)™ /A [F(z) — G(2)] + (Cps + 1)||F — GHOO%CJF@;)

< F(Z(F))1AdF($)(Cz8+2)\!F—G!|w < (Ces +2)[IF = Gl

where we used Equation (105) to obtain the first inequality. Similarly, the integral over B
in Equation (104) can be shown not to be greater than (C,s 4 2)||F — G||o. Summarizing,
in this last case the expression in Equation (104) does not exceed [2C,s + 4]||F — G||oo. In
particular, this bound is bigger than the two bounds in the other two cases. Hence, we
conclude that the expression in Equation (104) is not greater than [2C,s + 4]|| F — G| -

It follows that |S;| is bounded from above by
[(b2% 4 2ks + 5)C, + 4] || F — G| so-
Recalling |Ss| < [|[F' — G|, it follows that

Psk(F;z, k) — Psk(G;z, k)
Kk+1

< S+ ]S <1+ (bz*_2 +2ks + 8)C, + 4R F — G| o-

]

Proof of Lemma 4.12: Obviously, Prar(-;z,A) is well defined on D.4(]a,b]) because z >
z, > 0 is assumed. Next, fix F' € 2 and G € D4 ([a,b]). Since A(0) = 0, we can write

Pror(Fiz, A) = / Amax(1 — [z/2(F)], 0))dF (z).

[a,0]
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Abbreviating f(z) := A(max(1—[z/z(F)],0)) and g(x) := A(max(1—[z/z(G)],0)), we obtain

PFGT<F§27A)_PFGT<G§Z;A>:/[b][f(x)_g(x)]dF(x>+

/[a | J@NF (@) - / $(2)dC(2)

[a,]

Denote the first integral on the right by A, and the term in brackets to the far right
by B. Because g : [a,b] — [0,A(1)] is continuous and non-increasing, Lemma D.7 im-
plies |B| < A(1)||F — G| Concerning A, we use the Lipschitz-continuity of A, and the
inequality | max(1 — 2z1,0) — max(1 — 29,0)| < |21 — 25| for nonnegative 21, 23, to bound

|A] < bCA|[1/2(F)] — [1/2(G)]] < bz72Cx|2(F) — 2(G)| < b2 2CACy||F — G|oo,

where we used the Lipschitz-continuity of the map x — 27! on [z,, 00) (with constant 2_?),
and the assumption that z satisfies Assumption 2.2 for obtaining the second inequality.
Together with the upper bound on |B| we obtain the claimed statement. O

D General results for establishing Assumption 2.2

In this appendix, we summarize in a self-contained way a body of techniques that turns out
to be useful for establishing Assumption 2.2 for empirically relevant functionals T. Once
Assumption 2.2 is verified for a given functional T the Dvoretzky-Kiefer-Wolfowitz-Massart
inequality delivers a concentration inequality for T of the type

P(|T(E,) — T(F)| > &) < 2¢72° /%" for every £ > 0; (106)

(here F, denotes the empirical cdf of an i.i.d. sample of size n from the cdf F € 2), a fact
which we heavily use after an optional skipping argument, e.g., in the proofs concerning
the finite-sample upper bounds on the F-UCB policy. As already mentioned at the end of
Section 2.1.1, due to its simplicity and generality, such a concentration inequality could also
be of independent interest for, e.g., constructing uniformly valid confidence intervals in finite
samples.

Applications of the results in the present section to specific functionals are discussed in
detail in Section 4. They include inequality measures (cf. Section 4.2), welfare measures
(cf. Section 4.3), and poverty measures (cf. Section 4.4).

The techniques we describe are based on decomposability-properties of the functional, its
specific structural (e.g., linearity) properties, and on properties of quantiles and quantile
functions, or related quantities such as Lorenz curves. We emphasize that the results in
the present section are elementary, but are difficult to pinpoint in the literature in the form
needed. We start with a short section concerning notation.

D.1 Notation

We denote by D(R) the Banach space of real-valued bounded cadlag functions equipped
with the supremum norm |G|/, = sup{|G(z)| : # € R}. The closed convex subset of D(R)
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consisting of all cumulative distribution functions (cdfs) shall be denoted by D4 (R). Fur-
thermore, given two real numbers a < b, we define the subset D.4((a,b]) of D.g(R) as
follows: F' € D.g((a,b]) if and only if F € D4 (R), F(a) = 0 and F(b) = 1. We also
recall the definition of D.g([a,b]) from Section 2.1: F' € D4 ([a,b]) if and only if F' €
D.4(R), F(a—) = 0 and F(b) = 1. Here F'(a—) denotes the left-sided limit of F" at a. Recall
also from the beginning of the Appendix of this article that given a cdf F, we denote by up
the (uniquely defined) probability measure on the Borel sets of R that satisfies

pr((—oo,z]) = F(z) for every z € R;

as usual, we denote the integral of a pp-integrable Borel measurable function f : R — R
by fR f (l’ f]R d,uF

In the followmg Subsectlons we shall repeatedly encounter functionals T with a domain .7 C
D.q4s(R), say, and co-domain R, which are Lipschitz continuous (.7 being equipped with the
metric induced by the supremum norm on D(R)): Recall that a functional T : .7 — R is
called Lipschitz continuous if there exists a nonnegative real number C' such that for every F
and every G € 7 it holds that

IT(F) = T(G)] < CIIF = Glle-

In this case, we call C' a Lipschitz constant of T. When we say that a functional T : 7 — R is
Lipschitz continuous with constant C', we do not imply that this is the smallest such constant.
Recall from Remark 2.3 that if a functional T is Lipschitz continuous on .7 = D.4([a, b])
for real numbers a < b, then T satisfies Assumption 2.2 with 2 = D 4 ([a, b]).

D.2 Decomposability

Oftentimes a given functional can be decomposed into a function of several “simpler” func-
tionals. It is a straightforward but useful fact that if a functional can be written as a com-
position of a number of functionals that satisfy Assumption 2.2 with a Lipschitz continuous
function on a suitable intermediating metric space, this composition satisfies Assumption 2.2
as well. A corresponding result is as follows.

Lemma D.1. Let a < b be real numbers, and let ) # 2 C D.4([a,b]). Let m € NU {oo}.

For everyi € {1,...,m}NN let T; : Dege([a,b]) — R satisfy Assumption 2.2 with 9 and with
constant Cj. Denote by C' the vector with i-th coordinate C;, and by T the vector with i-th
coordinate T;. Set 3 := {T(F) : F € D.y([a,b))} € R™. Suppose that for p € [1,00] it
holds that ||C|, = (3, |Ci|P)'/? < co. Then, (z,y) — ||z — yll, defines a metric on 3. If
the function G : 3 — R is Lipschitz continuous with constant C' (with respect to the just-
mentioned metric), then T = G o T satisfies Assumption 2.2 with 9 and constant C||C||,.

Proof. We first show that (z,y) + ||z — yl|, defines a metric on 3 € R™. To this end,
we only need to verify that ||z — y||, < oo for every z,y € J; all remaining properties
of a metric are trivially satisfied. For every =,y € J there exist F,G € D.4([a,b]) such
that x; = T;(F) and y; = T,(H) for every i. Fix an arbitrary element F* € Z. It then
follows from Assumption 2.2 that |z; — y;| < |Ti(F) — T,(F*)| + |T:(F*) — T,(H)| < 2C;.
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Hence, ||C]|, < oo implies ||z — y||, < co. Having established the first claim in the lemma,
we move on to the final claim. Let F' € 2 and H € D_4([a,b]). We have |T(F) —T(H)| =
|G(T(F))—G(T(H))| < C||T(F)~T(H)||,, the inequality following from Lipschitz continuity
of G : 3 — R. From the definition of || - ||, and Assumption 2.2 it immediately follows
that |[T(F) — T(H)|l, < ICll,|F — H||s, which proves the lemma. O

D.3 U-functionals

We here consider “U-functionals” (the corresponding sample plug-in variants being tradi-
tionally referred to as U-statistics, hence the name). The following result covers examples
such as moments and certain concentration measures or dependence measures, cf. Chapter 5
in Serfling (2009), and see also the subsequent discussion for examples.

Lemma D.2. Let a < b be real numbers and let ¢ : [a,b]* — R for some k € N. Sup-
pose that ¢ is bounded, and is symmetric in the sense that o(x1,...,25) = @(Try, ..., Tr,)
for every permutation ., ..., Ty, of x1,...,x,. Let a < c < d < b. Suppose that for ev-
ery o, ..., x5 € [e,d)*1 the function x — p(x,23,. .., x}) defined on [c,d] is continuous and
has total variation not greater than C € R. For F' € D 4([a,b]) define

Mpea(F) ::/ / olxr, o )dF (@) ... dF(ze), (107)
[e,d] [e,d]

which we abbreviate as my(-) in case ¢ = a and d =b. Then, my,.q is Lipschitz continuous
on Deg([a,b]) with constant kC*, where

C ifa=c,b=d
o — C+m* ifb=d
o+ MF ifa=c
C’—i—m*-l-M* 61567
and where
m* = sup{|p(c. x5, ... )|t a5, ap € [e.d]F)

M* = sup{|p(d,z5,...,x3)| x5, ..., 2} € [c, d]kfl}.

Proof. Note first that m,.. 4(F') is well defined (i.e., ¢ is integrable w.r.t. the k-fold product
measure @, y1r) on Dgr([a,b]) because ¢ is bounded. Next, we reduce the statement to
the case k = 1: Let F,G € D.4([a,b]), let 1 be a probability measure that dominates pp
and pg, and let f and g denote p-densities of pup and ug, respectively. Then,

Mped(F) = /[ = /[ d]gp(xl,...,xk)n Fla;)dular) - . (), (108)

and an analogous expression (replacing the density f by the density g) corresponds to m,.. 4(G).
Recall also that for arbitrary real numbers a;, b; for j = 1,..., k we may write (e.g., Witting
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and Miller-Funk (1995) Hilfssatz 5.67(a))

k j—1 k
[l =116 =2 | {ITa: | (=0 ] i} (109)
j=1 j=1 j=1 i=1 i=j+1

where empty products are to be interpreted as 1. Equipped with (109), using Equation (108),
and Fubini’s theorem, we write my.. 4(F) — my..q4(G) as

k
jz; /[C,d] o /[c,d} p(@rs s a)[f(25) = g(a))]dp(z;)dE (x1) .. dF(2j-1)dG(2j41) . . dG (2).

Using the triangle inequality to upper bound |my..q4(F) — my..q4(G)|, an application of the
symmetry condition shows that it suffices to verify that for x3,..., 2} in [c,d]*"! arbitrary

<CUF =Gl (110)

/[ ol ) - |l adG
c,d

[c,d]

Let f : R — R be a continuous function (possibly depending on z3, ..., z}) such that f(z) =
o(x,zh ..., x5) holds for every = € [¢,d], and such that f(z) — 0 as x — —oo. Integration-
by-parts (as in, e.g., Exercise 34.b on p.108 in Folland (1999)) gives

/ oz, x5 xp)dF(z) = f(x)dF(l“)=f(d)F(d)—f(C—)F(C—)—/ F(x)df (),
[e,d] [e,d] le,d]

an analogous statement holding for F' replaced by GG. Hence, the quantity to the left in the
inequality in (110) is seen to be not greater than

[F@IF(d) = G(d)] + | f(e)|F(e=) = Gle=)| +

/[ @) = Cis(e)

Noting that |f(d)| < M*, that |f(c)| < m*, that |F(d) — G(d)| = 0 if d = b, that |F(c—) —
G(c—)| = 0if a = ¢, and furthermore noting that |F(d) — G(d)| < ||F — G|| and |F(c—) —
G(c—)| < ||F — G| always hold, (110) follows from ‘f[qd] F(z) — G(x)df(a:)‘ < |IF—-GC,

a consequence of the total variation of f on [c,d]| being not greater than C. O

Example D.3 (Mean). Let a < b be real numbers. Let £k = 1 and set ¢(z) = z, i.e., we
consider the mean functional F' — u(F'), say, defined via

F— zdF(x).
[a,0]

Note that ¢ is bounded on [a, b], is trivially symmetric, and ¢ satisfies the continuity con-
dition in Lemma D.2. Furthermore, the total variation of ¢ is f[a . |/ (z)|dz = (b—a). As

a consequence of Lemma D.2 the functional m,, is thus Lipschitz continuous on D 4 ([a, b])
with constant (b — a).
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Example D.4 (Moments). For simplicity, let a = 0 and b > 0. Let k = 1 and set ¢(x) = 2P
for some p > 0, i.e., we consider the p-mean functional

F— a2PdF (x).
[0,]

Note that ¢ is bounded on [a, b], is trivially symmetric, and ¢ satisfies the continuity con-
dition in Lemma D.2. Furthermore, by monotonicity, the total variation of ¢ is b”. As a
consequence of Lemma D.2 the functional m,, is thus Lipschitz continuous on D4 ([0, b])
with constant bP.

Example D.5 (Variance). Let @ < b be real numbers. Let £k = 2 and set p(z1,22) =
0.5(z1 — x9)?, i.e., we consider the variance

Fis 05 / / (21— 22)2dF (21)dF (23) = / [xl— / 2P (1)
[a,b] / [a,b] [a,b] [a,b]

Note that ¢ is bounded on [a,b]?, is symmetric, and ¢ satisfies the continuity condition in
Lemma D.2. For every z, € [a, ] the total variation of x — 0.5(x — 22)* is [, ,; |z — 22|dz <

2

dF (xq).

(a — b)?/2. Tt follows from Lemma D.2 that the variance functional is Lipschitz continuous
with constant (a — b)2.

Example D.6 (Gini-mean difference). Let a < b be real numbers, and let ¢(x1,z5) =
|z1 — x5|. This corresponds to the functional

F— / / |£L‘1 — [E2|dF(ZE1)dF([E2)7
[a,b] J [a,b]

which constitutes the numerator of the Gini-index defined in Equation (23) (and equals twice
the absolute Gini index Ggps defined in Equation (24)), and is sometimes called the Gini-
mean difference or absolute mean difference. Clearly, ¢ is bounded on [a, b]?, symmetric, and
satisfies the continuity condition in Lemma D.2. Furthermore, for every x5 € [a, b] the total
variation of x — |r — 5| equals (b — a). It follows from Lemma D.2 that m,, is Lipschitz
continuous on D.q([a,b]) with constant 2(b — a).

The following lemma is sometimes useful, because it avoids the continuity condition of the
integrand in Lemma D.2 by working with a right-continuity and monotonicity condition.

Lemma D.7. Let a < b be real numbers and let ¢ : [a,b] — R be right-continuous, and be
non-decreasing or non-increasing. Then, the functional

F— o(x)dF (x)
[a,b]

is Lipschitz continuous on D4 (|a,b]) with constant |p(b) — v(a)].
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Proof. Note first that the functional under consideration is well defined on D.4([a, b]); and
that we only need to consider the case where ¢ is non-decreasing. To this end let F,G €
D4 ([a,b]) and note that, by the transformation theorem, we have

/ cp(x)dF(w)—/ gp(m)dG(x):/ :EdF@(a:)—/ xdG,(x),
[a,b] [a,b] [p(a),p(b)] [p(a),p(b)]

where F, € D.g4([p(a), p(b)]) denotes the cdf corresponding to the image measure g o ¢,
and G, € D.g([p(a),p(b)]) is defined analogously. An application of Example D.3 thus
shows that

< [p() = ()]l F = Golloo-

/[a ROLOR / o(2)AC(2)

[a,b]

It remains to observe that ||F, — Gyllec < [|[F'— G|, by Lemma D.8. O

Lemma D.8. Let F' and G be cdfs, and let ¢ : R — R be right-continuous, and be non-
decreasing. Then ||F, — Gylloo < ||F — G|, where F,, denotes the cdf corresponding to the
image measure g © @, and G, 1s defined analogously.

Proof. First of all, note that ||[F, — Gyllc = SUD,cc(re) [Fo(2) — Go(2)], where C(F,G) C
R is defined as the (dense) subset of points at which both F,, and G, are continuous.
Next, define ¢~ (z) := inf{y € R : p(y) > z}, i.e., a generalized inverse of ¢. Part (5) of
Proposition 1 in Embrechts and Hofert (2013) shows that for every z € R we have

A) = {z € R o) < 2} = s €R 2 < (o)}
Using this expression for A(z), we can for every z € C(F, Q) rewrite |F,(z) — G,(2)] as

|1r, (=00, 2)) = pe, (=00, 2))| = |ur(A(2)) — pa(A(2))]
=lpr({zr €eR: 2 <9 (2)}) —pnc{z eR: 2z <9 (2)})].

On the one hand, the expression to the far right in the previous display equals 0 < || F'— G|
in case ¢~ (z) € {—o00,+00}. On the other hand, if ¢~ (z) € R, the same expression is seen
to equal |F(¢ (2)—) — G(p~(2)—)| < ||F — G||o. Since this argument goes through for
every z € C(F,G), we are done. O

D.4 Quantiles, quantile functions, L-functionals, Lorenz curve,
and truncation

In the present subsection we provide some results concerning quantile-based functionals.
For o € [0, 1] we define the a-quantile of a cdf F' as usual via ¢,(F) = inf{z € R: F(z) >
a}. Note that for o = 0 we have ¢,(F) = —o0o, and that (by monotonicity) the quantile
function a + ¢ (F) is B([0,1]) — B(R) measurable. The first result is as follows:
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Lemma D.9. Let a € (0,1] and let F' € Deg([a,b]) for real numbers a < b. Sup-
pose F(qo(F')) = a and that there exists a positive real number r such that

F(go(F)—2) —a < —rx if x>0 and ¢, (F) —x > a,

111
Flq(F)4+z)—a>rx if x>0 and q(F)+x <b. (111)

Then, for every G € Degs([a, b)) it holds that |qo(F) — qo(G)| < 77H|F — G||s. Consequently,
denoting by 2 the set of all cdfs that satisfy the conditions imposed on F above, it follows
that q, satisfies Assumption 2.2 with a,b, 2 and constant C' = r~1,

Proof. To prove the first statement, we may impose the additional assumption that the
inequalities to the left in Equation (111) hold strictly for all z in the considered ranges
(to see this, just observe that Equation (111) implies the just mentioned strict version for
all 0 < r, < r, which can then be used to take care of situations where the additional
assumption is not satisfied).

Given this additional assumption, let G be an element of D 4 ([a, b]). The claimed inequality
is trivial if F' = G. Thus, we assume that F' # G. Note that F(z) = 0 < « for every z <
a, and F(z) = 1 > « for every = > b implies ¢,(F) € [a,b]; and that, by the same
reasoning, ¢,(G) € [a, b].

We first show that ¢, (G) > go(F) — r7'||G — F||oe: On the one hand, if ¢,(F) — r7 |G —
Fllo < a, then ¢,(G) > qo(F) —r7||G — F|| trivially holds. If, on the other hand, ¢, (F')—
r Y|G — Fllo > a, then, from the (strict) inequality in the first line of (111) with = =
Y G — F|oo, one obtains a > F(qo(F) — 77 |G — Flloo) + ||G — F|o, thus a > G(qa(F) —
r Y G — Fls) and hence, again, ¢,(G) > ¢o(F) — |G — F|| .

We next show that ¢,(G) < ¢o(F) +77Y|G — F|l: On the one hand, if ¢,(F) +r~ |G —
Flle > b, then ¢o(G) < qo(F) +771|G — F|| trivially holds. If, on the other hand, g, (F)+
1 Y|G—=F|s < b, then the second line in (111) with z = r~!|G — F|« shows that F(q.(F)+
T HG=Floo)—||G—F|loo > @, thus G(qo(F)+7r1|G—F||s) > «, and hence, again, q,(G) <
4o(F) + 77 G — Flloo. Summarizing yields |qo(F) — ¢o(G)| < 77 Y| F — G|oo. The last
statement is trivial. O

Example D.10 (Median). The median of a distribution F' is defined as its a = 1/2 quan-
tile q1/2(F). Let a < b and r > 0 be real numbers, and denote by Z the set of cdfs F such
that F(qi/2(F)) = 1/2, and such that Equation (111) is satisfied for & = 1/2 (Lemma D.12
provides a sufficient condition for F € ). Then, the functional F' — ¢;/2(F) satisfies
Assumption 2.2 with a,b and 2 with constant C' = r— 1.

The second result is auxiliary, and concerns not a single quantile, but the whole quan-
tile function F' — q(F) over closed subintervals of (0,1]. It follows immediately from
Lemma D.9.

Lemma D.11. Let F' € D.g4([a,b]) for real numbers a < b, and let a, < o* for o, and o*
n (0,1]. Suppose F(qo(F)) = « holds for every a € [a, a*], and that there exists a positive
real number r so that Equation (111) is satisfied for every a € [, a*|. Then, for every G €
D.qs([a, b]) it holds that

sup  [¢a(F) = 4a(G)| < 77| F = Glloe.

a€lay,a*]
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A simple sufficient condition for the assumption on F' in Lemma D.11 (and hence also for
the assumption on F'in Lemma D.9) is that F' admits a density that is bounded from below
(on the support of F):

Lemma D.12. Let a < b be real numbers and let F' € D 4 ([a,b]). Suppose F' is continuous,
and is right-sided differentiable on (a,b) with right-sided derivative F, which furthermore
satisfies F™(x) > r for every x € (a,b) for some r > 0. Then, F(q.(F)) = a and Equa-
tion (111) holds for every o € (0,1].

Proof. The condition F*(x) > r for every x € (a,b) for a r > 0 implies that F is strictly
increasing on |[a, b], which (together with continuity of F') implies F(q.(F')) = « for ev-
ery a € (0,1]. The second claim follows from the mean-value theorem for right-differentiable
functions in Minassian (2007) (noting that ¢, (F') € [a,b] for every a € (0, 1], cf. the proof of
Lemma D.9). O

The next result, which essentially follows from the previous one, concerns population ver-
sions of generalized L-statistics introduced by Serfling (1984) (cf. his Section 2), i.e., L-
functionals.

Lemma D.13. Let v be a measure on the Borel sets of [0, 1], and let J : [0,1] — R be such
that f[o 1 |J(a)|dv(a) = ¢ < 0o. Assume further that v({0}) = 0. Let a < b be real numbers

and define on D.4([a,b]) the functional
T(F) = / 4a(F)J(0)dv (). (112)
[0,1]

Let F' € D.g([a,b]) satisfy F(qa(F)) = « for every o € (0, 1], and suppose there is a positive
real number r so that Equation (111) holds for every o € (0,1]. Then, for every G €
D.qs([a, b)), it holds that

c
T(F) = T(@)] < SIF ~ G
Consequently, denoting by & the set of all cdfs that satisfy the conditions imposed on F

above, it follows that T defined in Equation (112) satisfies Assumption 2.2 with a,b, 2 and
constant C' = c/r.

Proof. That f[o 1 ¢o(F)J(a)dv(a) exists for every F' € D.4([a,b]) follows from v({0}) =
0, from ¢,(F) € [a,b] for every a € (0,1] (cf. the proof of Lemma D.9), and from the
integrability condition on J. Next, for F' and G as in the statement of the lemma, note that

IT(F) = T(G)] < /(0 , 190 (F) = 4a(G)[|J () |dr (). (113)

Note that the function a — [¢o(F) — ¢o(G)| is bounded on (0, 1]. By the monotone con-
vergence theorem, for € N\, 0 the integral f[a,l] 100 (F) — qo(G)]]|J(a)|dv(a) converges to the
integral in (113). But f[a,l] |ga(F) — qo(G)||J(a)|dv(a) < r7te||F — G|l by Lemma D.11.
The last statement in the lemma is trivial. ]
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One particularly important application of Lemma D.13 concerns the so-called Lorenz curve
associated with a cdf F' (cf. Gastwirth (1971)).

Lemma D.14. Let a < b be real numbers and define on D4 ([a,b]) the family of functionals
indexed by u € [0,1] and defined by

Q(F,u) = / Go(F)da;
[0,u]
furthermore, if a > 0, define the family of functionals indexed by u € [0, 1] via
L) = n(F) " [ qu(Fda (114)
[0,u]

Let F' € D.q([a,b]) satisfy F(qa(F)) = « for every o € (0, 1], and suppose there is a positive
real number r such that Equation (111) holds for every a € (0,1]. Then, for every G €
D.qs([a, b]) it holds that

Q(F,u) = Q(G,w)| < v ul|F = Gllae < 77| = Gl (115)

Consequently, denoting by & the set of all cdfs that satisfy the conditions imposed on F' above,
it follows that T(-) = Q(-,u) satisfies Assumption 2.2 with a,b, 2 and constant C = r~'u.
Furthermore, if a > 0, then

|L(F,u) — L(G,u)| < a '(r7' + (b —a)a 'b)u||F — G|,

and it follows that T(-) = L(-,u) satisfies Assumption 2.2 with a,b,2 and constant C' =
at(rt 4+ (b—a)a"'b)u.

Proof. For the claim in Equation (115) we just apply Lemma D.13 with v equal to Lebesgue
measure, J = 1), which satisfies the integrability condition with ¢ = v < 1. For the
second claim, note that L(-,u) is well defined on D, 4([a,b]) because a > 0. Next, observe
that for F' and G as in the statement of the lemma we can bound |L(F,u) — L(G,u)| from
above by

p(F)~ {\Q(R u) = Q(G,u)| +[1 — u(F)/u(G)| /[O ]Qa<G)da} : (116)

Since pu(G) and p(F') are not smaller than a, since ¢,(G) < b for a € (0, u], and because we
already know that
‘Q(Fa u) - Q(G7u)‘ < 7“_1u||}7 - GHOO?

it remains to observe that by Example D.3
1= (u(F)/u(G))| < (b= a)l|[F = Gllso/u(G) < (b—a)a™ | F - G|l

to conclude that the expression in (116) is not greater than a™* {r=' 4+ (b — a)a™'b} u||F —
Glloc- O
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The final result in this section concerns trimmed generalized-mean functionals. We consider
one-sidedly trimmed functionals, the trimming affecting the lower or upper tail. Two-sided
trimming can be dealt with similarly. We abstain from spelling out the details.

Lemma D.15. Let a < b be real numbers, let o : R — R, let ¢ restricted to [a,b] be

continuous, let the total variation of ¢ on [a,b] be not greater than C, and let |p(z)| < u
hold for all z € [a,b]. Furthermore, let a € (0,1). For F' € D.g4([a,b]) define

mi= (F) := x)dF (x and mtT (F) := x)dF (x). 117
= (F) / PN t (F) / PP (117)

Let F' € D.g([a,b]), assume that F' is continuous, and right-sided differentiable on (a,b),
with right-sided derivative F* satisfying r < F*(x) < k for every x € (a,b), and for positive
real numbers k and r. Then, for every G € D.4(|a,b]) it holds that

Mo (F) = MG (G)] < [C +u(l + kr D] F = G,

and
M (F) = mE ()] < [C +u(l + e D F = G,

(Y2Me?
Consequently, denotmg by _@ the set of all cdfs that satisfy the conditions imposed on F above,
it follows that m ., and m ", satisfy Assumption 2.2 with a,b, 7 and constant C+u(1+rKr~ b).

Proof. We only provide an argument for the first claimed inequality, the second is obtained
analogously. Furthermore, throughout the proof we write m ., instead of m . First, note
that the functional m, (F ) is indeed well defined for every F € D.g([a, b]) This follows
from q,(F) € [a,b] (cf. the proof of Lemma D.9), and since ¢ is bounded on |[a, b]. Next, let F
be as in the statement of the lemma and satisfy the conditions imposed. Let G € D4 ([a, b)),
implying that ¢,(G) € [a,b]. By the triangle inequality, |m,,(F) —m..,(G)| < A+ B, where
(using the notation introduced in Equation (107))

A= |m¢;a,qa(G)(F> - mcp;a,qa(G)(G)‘ < (CH+u)||F - Glloo,
the upper bound following from Lemma D.2, and
Bi= [ g@le@dF@ < u [ gle)dP(z),

where ¢(2) = |Lja,g.(7) (%) = Ljaga(c)(2)|- By continuity of F:

/ 9(2)dF (@) < |F(4a(G)) — Flga(F))|.

which, by the assumed behavior of the right-derivative of F' and a mean-value theorem for
right-differentiable functions (for example the one by Minassian (2007)), is not greater than

£l0a(G) = qa(F)| < kr 7| F = Gl
the last inequality following from Lemma D.9 together with Lemma D.12. This proves the

claim. The last statement is trivial. O
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