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Abstract

Binary treatments in empirical practice are often (i) ex-post aggregates of multiple
treatments or (ii) can be disaggregated into multiple treatment versions after assign-
ment. In such cases it is unclear whether estimated heterogeneous effects are driven
by effect heterogeneity or by treatment heterogeneity. This paper provides estimands
to decompose canonical effect heterogeneity into the effect heterogeneity driven
by different responses to underlying multiple treatments and potentially different
compositions of these underlying effective treatments. This allows to avoid spurious
discovery of heterogeneous effects, to detect potentially masked heterogeneity, and to
evaluate the underlying assignment mechanism of treatment versions. A nonparamet-
ric method for estimation and statistical inference of the decomposition parameters
is proposed. The framework allows for the use of machine learning techniques to
adjust for high-dimensional confounding of the effective treatments. It can be used to
conduct simple joint hypothesis tests for effect heterogeneity that consider all effective
treatments simultaneously and circumvent multiple testing procedures. It requires
weaker overlap assumptions compared to conventional multi-valued treatment effect
analysis. The method is applied to a reevaluation of heterogeneous effects of smoking
on birth weight. We find that parts of the differences between ethnic and age groups
can be explained by different smoking intensities. We further reassess the gender
gap in the effectiveness of the Job Corps training program and find that it is largely
explained by gender differences in the type of vocational training received.
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1 Introduction

The analysis of causal effects is at the heart of empirical research in economics, political

science, the biomedical sciences, and beyond. To evaluate and design policies, interventions,

or programs for observational units with different background characteristics, it is necessary

to develop a thorough understanding of the heterogeneities present in causal relationships.

There is now a large literature that develops and applies identification and estimation

strategies for causal or treatment parameters that explicitly take into account these

heterogeneities (see for recent overviews Athey & Imbens, 2017; Abadie & Cattaneo, 2018).

Most attention is put on the analysis of effect heterogeneity of binary treatments, while

less is given to treatment heterogeneity. In particular, many analyzed binary treatments in

applications can be conceived as actually being non-homogeneous in the sense that they

summarize underlying multi-valued treatments that directly impact the outcome of interest.

In such cases it is not clear whether effect heterogeneity defined in the canonical binary

treatment setting reflects heterogeneous effects or heterogeneity in the effective treatments.

This paper proposes new estimands and estimators to disentangle these two sources of

heterogeneity in a variety of settings where the analyzed binary indicator does not coincide

with the effective treatment. The distinction between these sources of heterogeneity is

crucial for evaluating and improving assignment mechanisms. As leading illustrations,

consider the following two common scenarios where the analyzed treatment indicator is

binary but the effective treatment is multi-valued:1

Scenario 1 (binarized treatments): Multiple or continuous treatments are ex post

subsumed into a binary indicator (e.g. different smoking intensities are subsumed into

“smoking yes/no”). The motivations for such aggregations are manifold and include

simplicity, convenience or data availability. This can have unintentional consequences:

First, discovered effect heterogeneity could be a spurious byproduct of aggregation and thus

falsely attributed to unit background characteristics. Second, actual effect heterogeneity

could be masked as a consequence of the aggregation.

Scenario 2 (multiple treatment versions): A binary treatment takes different versions

after (potentially random) assignment (e.g. access to a job training program where different
1See also Appendix A for a motivating toy example.
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specializations are possible). Here effect heterogeneity could result from a better version

targeting across groups and not from different effectiveness of the versions themselves.

Understanding this difference is crucial for policy makers to assess quality and potentially

fairness of the version assignment mechanism in place.

In this paper we propose a novel method for decomposing effect heterogeneity in a

more general scenario with observed confounders. We decompose canonical effect hetero-

geneity into new estimands that are representative of (i) heterogeneous effects and (ii)

heterogeneity stemming from different underlying treatment compositions. These decom-

position parameters can help to diagnose and understand the impact of (dis)aggregating

treatment variables. They can also serve as summary measures to evaluate the impact

of (dis)aggregating treatments on the causal analysis both on a global or on conditional

levels based on unit level characteristics such as age, gender, or income. Furthermore they

can be used by policy makers to evaluate the quality of treatment version assignment and

its potential heterogeneity across different groups.

We propose a simple but flexible nonparametric method for estimation of the de-

composition parameters and show how to conduct valid statistical inference for their

heterogeneity along a low-dimensional set of background characteristics. Our framework

allows for the use of machine learning techniques such as random forests, deep neural

networks, high-dimensional sparse regression or likelihood models in the estimation of the

required nuisance parameters. It can be used to conduct simple joint hypothesis tests

for global or conditional decomposition parameters that consider the potentially many

effective treatments simultaneously. This allows us to test necessary conditions for different

types of heterogeneity without the need for multiple testing procedures.

The large sample theory extends beyond the decomposition parameters considered

in this paper. In particular it demonstrates that, for parameters of a specific structure

such as our decomposition parameters, flexible machine learning estimators for causal

parameters can be combined with weighting schemes that are themselves estimated and

still obtain asymptotically normally distributed estimators. This asymptotic property can

then be exploited to construct simple analytical confidence intervals. Our Monte Carlo

simulations suggest that the proposed intervals have coverage rates close to the nominal
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level in finite samples.

The decomposition estimators also have superior large sample properties compared to

the ones employed in conventional multi-valued treatment effect analysis when there are

many treatments. The commitment to the decomposition parameters instead of considering

all possible treatment comparisons allows us to relax the overlap conditions compared to

conventional multi-valued treatment effect estimators and to consider potentially many

effective treatments.

We provide two applications of our decomposition method, one for each of the leading

scenarios. For the first scenario, we show that parts of the common finding that the

detrimental effect of smoking on birth weight is largest for white mothers can be explained

by white mothers smoking more heavily conditional on being smokers. Similarly, different

effects for different age groups are partly due to the fact that teenage mothers smoke less

intensive than older mothers. For the second scenario, we investigate the lower effectiveness

of access to the Job Corps training program for women compared to men. We find evidence

that this gender difference is largely explained by the vocational training curriculum, which

focuses more on lower paying service jobs for women and more on higher paying craft

jobs for men. Imposing the same mix of vocational training as part of our decomposition

method removes around three quarters of the total gender differences in the effect on

earnings.

The paper is structured as follows: Section 2 discusses the related literature. Section 3

outlines the decomposition of the causal effect parameters and discusses their identification.

Section 4 contains the estimation and inference method. Section 5 introduces the technical

assumptions and discusses the large sample properties of the proposed methodology. Section

6 contains some discussion regarding the comparison to multi-valued treatment effect

analysis. Section 7 provides the Monte Carlo study. Section 8 contains the application.

Section 9 provides some concluding remarks.
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2 Related Literature

The proposed decomposition estimands for heterogeneous effects complement the literature

that consider (dis)aggregated binary treatments. For cases like scenario 1, Lechner

(2002) discusses how to meaningfully aggregate average effects of multiple treatments

into composite treatment effects. Hotz, Imbens, and Mortimer (2005) and Hotz, Imbens,

and Klerman (2006) consider the issue of collecting different training components into

a binary indicator. They emphasize the potential lack of external validity due to the

latent treatment heterogeneities. Similarly, a more recent stream of papers formalizes the

underlying causal structure and clarifies the interpretation of such compound treatments

(Cole & Frangakis, 2009; VanderWeele, 2009; Hernán & VanderWeele, 2011; Petersen,

2011). VanderWeele and Hernan (2013) note that non-homogeneous treatments violate the

“Stable Unit Treatment Value Assumption” (SUTVA) of Rubin (1980) that consists of two

parts: (i) no interference, which rules out that potential outcomes of a unit depend on the

treatment status of other units, and (ii) no-multiple-versions-of-treatment, which requires

a homogeneous treatment or at least the treatment variation irrelevance assumption of

VanderWeele (2009). While the first part of SUTVA is discussed and addressed in numerous

studies, the second part is often ignored. Thus, VanderWeele and Hernan (2013) formalize

a setting where this assumption is violated and provide several new identification results

and estimands. The consequences of aggregating heterogeneous causal effects have also

been discussed in the context of instrumental variables estimation (e.g. Angrist & Imbens,

1995; Marshall, 2016; Andresen & Huber, 2021). While the above papers discuss the

consequences of (dis)aggregated treatments for average or unconditional causal effects, we

focus on effect heterogeneity and the additional complications arising there.

The focus on effect heterogeneity is motivated by and related to the surging literature

that develops (e.g. Imai & Ratkovic, 2013; Tian, Alizadeh, Gentles, & Tibshirani, 2014;

Athey & Imbens, 2016; Wager & Athey, 2018; Athey, Tibshirani, & Wager, 2019; Künzel,

Sekhon, Bickel, & Yu, 2019; Knaus, Lechner, & Strittmatter, 2021; Nie & Wager, 2021)

and applies (e.g. Davis & Heller, 2020; Knaus, Lechner, & Strittmatter, 2020) flexible

machine learning inspired methods to the estimation of heterogeneous causal effects. We
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build on the de-biased/double machine learning framework by Chernozhukov et al. (2018).

They use doubly robust score functions and sample splitting in conjunction with machine

learning methods to develop a theory for estimation and statistical inference on average

effect parameters. There is now a series of papers which uses such score functions as

pseudo-outcomes in auxiliary regression models to estimate conditional effect parameters

(Lee, Okui, & Whang, 2017; Zimmert & Lechner, 2019; Fan, Hsu, Lieli, & Zhang, 2020;

Semenova & Chernozhukov, 2021; Kennedy, 2020; Knaus, 2020; Curth & van der Schaar,

2021). These methods obtain functional parameters of interest by localizing the robust score

function in (nonparametric) regression or machine learning frameworks. Our theoretical

contribution is most directly linked to Semenova and Chernozhukov (2021) who analyze

the properties of linear predictor approximations for a variety of structural functions.

Like them we exploit approximation theory in the literature on series regression such

as Newey (1997) and Belloni, Chernozhukov, Chetverikov, and Kato (2015). We extend

some of the inferential results by Semenova and Chernozhukov (2021) to settings where

pseudo-outcomes are constructed as a weighted average of Neyman-orthogonal scores with

estimated weights, which might be of interest beyond the application to the decomposition

parameters of this paper.

Many studies document the detrimental effect of smoking during pregnancy on birth

weight (e.g. Almond, Chay, & Lee, 2005; Abrevaya, 2006; Cattaneo, 2010; Almond &

Currie, 2011). Our methodology allows us to understand how much of the heterogeneous

effects of this binarized treatment is spuriously attributed to subgroup characteristics

instead of to different intensities of smoking across these subgroups.

Previous studies evaluate the US training program Job Corps from different angles

based on a large scale experiment (e.g. Schochet, Burghardt, & Glazerman, 2001; Schochet,

Burghardt, & McConnell, 2008; Flores, Flores-Lagunes, Gonzalez, & Neumann, 2012;

Eren & Ozbelik, 2014; Strittmatter, 2019). While most of them document and discuss

heterogeneous effects, our new decomposition allows to disentangle how much of the effects

and their heterogeneity is driven by selection into different curricula. This provides a

complementary angle to the existing evaluations and illustrates how policy makers can

learn more about the quality of the existing assignment mechanism of treatment versions.
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3 Decomposition and Identification

3.1 The Setting

Assume we observe independent data (Yi, Di, Ti, Xi) for i = 1, . . . , n. Yi denotes the

outcome of interest, Di ∈ {0, 1} is the analyzed binary indicator, Ti ∈ T = {0, 1, . . . , J}

indicates the effective treatment, and Xi contains confounding variables. We consider

settings that are characterized by two features: (i) NotDi, but the effective treatment Ti has

a direct influence on the outcome creating potential outcomes Yi(t) for each t ∈ T . Thus,

we assume SUTVA with respect to the effective treatment such that Yi =
∑

t 1[Ti = t]Yi(t).

(ii) Conditional on Ti, the binary indicator Di is deterministic, i.e. it perfectly separates

the support T . We use directed acyclic graphs (DAGs) (see e.g. Pearl, 1995) to represent

and formalize our main scenarios in this setting.

Figure 1: Analyzed indicator is ex-post aggregate of confounded multiple treatment:

Treatment T Outcome Y

Binarized Treatment Indicator D

Confounders X

Figure 1 outlines the causal structure of Scenario 1 where the binary indicator variable

Di is the result of an ex-post aggregation and not structurally related to the outcome. In

practice, this aggregation is often conducted after the outcome realizes, which makes it

unlikely for Di to affect Yi directly. This is indicated by a missing arrow from Di to Yi.

However, as Ti is ancestor of both binarized indicator Di and outcome Yi, they are not

statistically independent of each other even conditional on Xi. For example, a statistical

relationship between birth weight (Yi) and smoking (Di) as an aggregate of the consumed

dose of cigarettes (Ti) can be derived from observational data. Conditional on the number

of cigarettes, however, smoking is deterministic and no association remains.

The DAG in Figure 2 depicts the causal structure of Scenario 2 where a randomized

binary treatment Di precedes the confounded allocation of treatment versions Ti. Here,

Di is not an ex-post variable with regards to Yi. Yi and Di are associated as the latter
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Figure 2: Randomized binary treatment precedes confounded treatment versions:

Binary Treatment D Treatment Version T Outcome Y

Confounders X

determines which treatment versions are available, but has no direct effect beyond that. Its

effect is completely mediated through the treatment versions Ti. For example, this implies

that any association between Di being access to a training program (yes/no) on earnings

Yi would disappear if we would condition on all training types including no training access

(Ti).

It is important to note that, while conceptually different in terms of the causal

interpretation, the DAGs in Figures 1 and 2 imply the same conditional independence

relationships regarding Di, Ti, and potential outcomes Yi(t). In standard Neyman-Rubin

notation for multi-valued treatments (Rubin, 1974; Imbens, 2000; Lechner, 2001; Cattaneo,

2010), we have that

Yi(0), Yi(1) . . . , Yi(J) ⊥⊥ Di | Ti (1)

Yi(0), Yi(1) . . . , Yi(J) ⊥⊥ Ti | Xi (2)

where (1) is a consequence of our setting that Di is a constant given Ti and (2)

follows from the causal structure encoded in the DAG (see Appendix B.1). Thus, from a

statistical identification point of view, we treat both scenarios as being equivalent in the

following. Note that conditions (1) and (2) and everything that follows can be extended

to apply to causal graphs where additional observed confounders can affect Di, Ti, and Yi

simultaneously (see Appendix B.2).

We use Dt,i = 1[Ti = t] to indicate that unit i is observed in treatment t and let

et(x) = P (Dt,i = 1|Xi = x) denote the corresponding generalized propensity scores.

Without loss of generality, we assume throughout that t = 0 denotes a homogeneous

control condition. Thus the binary indicator is defined as Di =
∑

t6=0Dt,i and D0,i = 1−Di

in what follows.

8



3.2 Heterogeneous effects if treatment heterogeneity is ignored

We are interested in the case where the causal structure is accurately described by DAGs

like in the previous section, but the analyst imposes the canonical setting considering only

the binary indicator Di, which is deterministic in Ti. Usually the analyst is interested

in the conditional average treatment effect (CATE) τ(x) or aggregations thereof like

the average treatment effect (ATE = E[τ(Xi)]). However, the potential outcome under

the binary indicator being one is not uniquely defined in our setting unless J = 1 and

everything collapses to the standard case. The question is then, what does the quantity

τ(x) = E[Yi|Di = 1, Xi = x]− E[Yi|Di = 0, Xi = x] identify, which is commonly deployed

based on the standard identification assuming strong ignorability for Di (see e.g. Imbens

& Rubin, 2015). Given the setting outlined in Section 3.1 we can backwards engineer the

actually identified estimand in terms of potential outcomes from the effective treatment:2

τ(x) = E[Yi|Di = 1, Xi = x]− E[Yi|Di = 0, Xi = x]

=
∑
t6=0

E [Dt,iYi(t)|Di = 1, Xi = x]− E[Yi(0)|Xi = x]

=
∑
t6=0

E[Yi(t)|Dt,i = 1, Di = 1, Xi = x]P (Dt,i = 1|Xi, Di = 1)− E[Yi(0)|Xi = x]

=
∑
t6=0

E[Yi(t)|Dt,i = 1, Xi = x]
et(x)∑
t6=0 et(x)

− E[Yi(0)|Xi]

=
∑
t6=0

E[Yi(t)− Yi(0)|Xi = x]︸ ︷︷ ︸
t−specific CATE

et(x)∑
t6=0 et(x)

+
∑
t6=0

{E[Yi(t)|Dt,i = 1, Xi = x]− E[Yi(t)|Xi = x]}︸ ︷︷ ︸
selection effect

et(x)∑
t6=0 et(x)

(3)

Equation (3) shows that the actually identified estimand consists of two compo-

nents. The first one is a weighted average of CATEs of the effective treatments,

τt(x) = E[Yi(t) − Yi(0)|Xi = x], where the weights depend on the conditional proba-

bility of being treated in the respective effective treatment. The second one is a weighted
2We use that Yi =

∑
tDt,iYi(t) and that for t 6= 0 P (Di = 1|Dt,i = 1, Xi) = 1 holds by definition and

thus by Bayes’ Law:

P (Dt,i = 1|Di = 1, Xi) =
P (Dt,i = 1|Xi)∑
t 6=0 P (Dt,i = 1|Xi)

=
et(Xi)∑
t 6=0 et(Xi)
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average of effective treatment specific selection effects. The selection effects are positive if

those with characteristics x who are actually observed in treatment t show higher potential

outcomes than the general population described by x, or negative if vice versa. This term

becomes relevant if the considered confounding variables matter beyond the selection into

the binary indicator. This can e.g. occur in the case of a randomized binary treatment

in Scenario 2 where the selected Xi might not include all confounders for the treatment

versions.

The decomposition in (3) highlights that the interpretation of the underlying estimand

becomes more nuanced in the presence of heterogeneous treatments. What is supposed to

be an easily interpretable CATE depends now on the potentially unknown distribution of

effective treatments and selection into those treatments. Thus, without further assumptions,

heterogeneous effects attributed to the binary indicator can be driven by different CATEs,

different compositions of the effective treatments, different selection effects of the effective

treatments, or combinations thereof.

To be able to meaningfully decompose estimand (3) below, we impose a strong ignora-

bility assumption at the effective treatment level:

Assumption 1 (strong ignorability of effective treatment)

(a) Unconfoundedness: Yi(t) ⊥⊥ Dt,i|Xi = x, ∀ t ∈ T and x ∈ X .

(b) Common support: 0 < P [Dt,i = 1|Xi = x] ≡ et(x), ∀ t ∈ T and x ∈ X .

Assumption 1 is a standard assumption in the multiple treatments setting (Imbens,

2000; Lechner, 2001). It imposes that a) the set of conditioning variables is rich enough

such that after conditioning all residual variation in potential outcomes is independent

of the allocated effective treatment and b) there are comparable units across effective

treatments in terms of their confounders. Under this assumption, the selection effects in

(3) disappear and the underlying estimand becomes

τ(x) =
∑
t6=0

et(x)∑
t6=0 et(x)

τt(x) ≡ nATE(x). (4)

We call this estimand the natural conditional average treatment effect (nATE(x))

because it is the result of the actual or "natural" effective treatment composition. However,
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even under Assumption 1, the differences between units characterized by x and x′ can

result from different treatment shares, different treatment CATEs, or both. We thus

could detect seemingly heterogeneous effects, even if the treatment CATEs are constant

within treatments but not homogeneous between treatments, i.e. τt(x) = τt ∀ t ∈ T , x ∈ X

but τt 6= const. ∀ t ∈ T , as long as the probabilities to be observed in the different

effective treatments are heterogeneous. In this case any difference is driven by treatment

heterogeneity:

nATE(x)− nATE(x′) =
∑
t6=0

[
et(x)∑
t6=0 et(x)

− et(x
′)∑

t6=0 et(x
′)

]
τt (5)

This should be kept in mind when interpreting heterogeneous effects even if the

underlying effective treatments are not observable. If they are observable, however, we

can further decompose heterogeneous effects of the binary indicator in what follows.

3.3 The Decomposition

In this section we demonstrate how to disentangle actual effect heterogeneity and het-

erogeneity driven by heterogeneous selection into effective treatments. We propose to

decompose the nATE(x) in two parts:

∑
t6=0

et(x)∑
t6=0 et(x)

τt(x)︸ ︷︷ ︸
nATE(x)

=
∑
t6=0

πt∑
t6=0 πt

τt(x)︸ ︷︷ ︸
rATE(x)

+
∑
t6=0

(
et(x)∑
t6=0 et(x)

− πt∑
t6=0 πt

)
τt(x)︸ ︷︷ ︸

∆(x)

(6)

where πt = E[Dt,i] are the unconditional treatment probabilities. The first component

on the right hand side fixes the composition of the effective treatments at the population

value. It resembles a situation where effective treatments are randomly allocated using

the population level selection probabilities. Thus, we refer to it as the random conditional

average treatment effect (rATE(x)). All heterogeneities in rATE(x) are thus driven by

"real" effect heterogeneity within treatments, τt(x) 6= τt(x
′) for some x, x′ ∈ X , as the

underlying treatment composition is held fixed. In other words differences in rATE(x)

describe effect heterogeneity compositionis paribus. Thus, we can consider heterogeneity
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in rATE(x) as possibility to test necessary conditions for classic (or “within”) effect

heterogeneity.

The second component of the decomposition ∆(x) is the part of nATE(x) resulting

from the interaction of non-constant effective treatment probabilities and different effective

treatments having different effects (“between” treatment effect heterogeneity). Thus,

the decomposition is redundant, i.e. ∆(x) = 0 ∀ x ∈ X , under (i) effective treatment

composition homogeneity et(x)∑
t6=0 et(x)

− πt∑
t6=0 πt

= 0 ∀ t ∈ T and x ∈ X , (ii) treatment

variation irrelevance E[Yi(t)|Xi = x] = E[Yi(t
′)|Xi = x] ∀ x ∈ X , t, t′ ∈ T of VanderWeele

(2009)3, or if (iii) positive and negative components of the sum net out to zero. Hence,

∆(x) 6= 0 is a necessary condition for unequal treatment probabilities and between

treatment effect heterogeneity. Furthermore, heterogeneity in ∆(x) is a necessary condition

for heterogeneous assignment probabilities, within treatment effect heterogeneity, or both.

Thus, the decomposition can be used to address a variety of relevant policy questions, see

also Remark 2 below. Moreover, the focus on such necessary conditions offers statistical

advantages over testing similar conditions in the standard multi-valued treatment effect

setup when there are many effective treatments. We return to this point in Section 6.

Under Assumption 1, the conditional average potential outcome of treatment t is

identified as µt(Xi) ≡ E[Yi(t)|Xi] = E[Yi(t)|Dt,i = 1, Xi] = E[Yi|Dt,i = 1, Xi] and

accordingly the decomposition terms are identified as:

nATE(x) =
∑
t6=0

et(x)∑
t6=0 et(x)

(µt(x)− µ0(x))

rATE(x) =
∑
t6=0

πt∑
t6=0 πt

(µt(x)− µ0(x))

∆(x) =
∑
t6=0

(
et(x)∑
t6=0 et(x)

− πt∑
t6=0 πt

)
(µt(x)− µ0(x)) (7)

Aggregations or projections of the three estimands are thus also identified. In particular,

3In this case τt(x) = τ(x) and consequently ∆(x) = τ(x)
∑
t 6=0

(
et(x)∑
t6=0 et(x)

− πt∑
t 6=0 πt

)
︸ ︷︷ ︸

=0

= 0, ∀ x ∈ X .
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let Zi denote a (low dimensional) subset of confounders supported on Z ⊂ X and define

nATE(z) = E[nATE(Xi)|Zi = z]

rATE(z) = E[rATE(Xi)|Zi = z]

∆(z) = E[∆(Xi)|Zi = z]. (8)

These parameters provide more concise, predictive summaries of heterogeneity or allocation

differences for specific subgroups defined by Zi = z. The unconditional decomposition

terms nATE = E[nATE(Xi)], rATE = E[rATE(Xi)], and ∆ = E[∆(Xi)] are special

cases thereof. We propose an estimation and inference method for these parameters in

Section 4.

Remark 1 : In principle, an analogous decomposition could also be constructed with

alternative weights, e.g. 1/J . However, using the unconditional effective treatment proba-

bilities ensures that nATE(x) = rATE(x) in the case of completely randomized effective

treatments.

Remark 2 : The interpretation of ∆(x) depends on the scenario:

• Scenario 1: ∆(x) and its aggregates have a descriptive interpretation. It describes

how much of nATE(x) is driven by an underlying effective treatment mix that

deviates from the population mix. Thus, it helps to understand the heterogeneous

effects resulting from the binarized treatment. A non-constant ∆(x) indicates that

the choice of the binarization has consequences for the detected heterogeneous effects.

• Scenario 2: ∆(x) and its aggregates provide interesting information for policy makers.

Positive values indicate that the assignment of treatment versions is better than

random. Negative values indicate worse than random version assignment assuming

that individuals act equivalently under the hypothetical random assignment compared

to the observational assignment (Heckman, 2020). A non-constant ∆(x) indicates

that the selection quality of versions varies across different groups. Thus, the

estimand provides an evaluation of the actual assignment mechanism.

Remark 3 : The comparison of nATE(x) and rATE(x) shows some resemblance to the
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relationship between the ATE and the average treatment effect on the treated (ATET) in

the canonical setting with a homogeneous binary treatment. The ATET gives the average

effect of those treated under the actual treatment assignment, while the ATE gives the

average effect under the hypothetical random assignment of treatment.

Remark 4: The unconditional rATE is a special case of a composite treatment effect

described in Lechner (2002). The unconditional ∆ is similar in spirit to the Population

Average Prescriptive Effect defined by Imai and Li (2021) in the context of policy learning.

4 Estimation and Inference

In this section we outline a flexible estimation approach for the (conditional) decomposition

terms and propose a method for conducting valid statistical inference. The method

accommodates the use of modern machine learning and other non- or semiparametric

methods in the estimation of the required nuisance parameters.

We propose to approximate the conditional expectations of the decomposition terms

g(z) by a linear combination of transformations b(z) of heterogeneity variables z, i.e.

g(z) = b(z)′β0 + rg(z) (9)

where β0 is the parameter vector of the best linear predictor given as the solution to the

equation E[b(Zi)(g(Zi)− b(Zi)′β0)] = 0. rg(z) is the approximation error and b(z) can be

basis transformations of the regressors of interest such as polynomials, splines, wavelets,

or other functions. The number of components in b(·) is allowed to grow with the sample

size which allows us to be agnostic about the shape of the true g-function.4

Let in the following η = η(x) = (µ0(x), . . . , µJ(x), e0(x), . . . , eJ(x))′ denote the vector

of nuisance quantities and write η = ηi = η(Xi) with argument and subscript suppressed

out of convenience. Also define π = (π0, . . . , πJ).
4We choose the series approach here due to its analytical tractability. Compared to kernel regression, it
extends easier to increasingly smooth function classes without the need for e.g. higher order kernels as
the dimensionality of the heterogeneity variables increases. We believe that, with modified assumptions,
it is possible to develop a corresponding methodology with localization using kernel or other semipara-
metric/machine learning estimators along the lines of Fan et al. (2020), Zimmert and Lechner (2019), or
Kennedy (2020) as well.

14



Table 1: Score Functions of the Decomposition Parameters

Parameter Score function ψi(η, π) = ψ
[Parameter]
i (η, π)

nATE Ψi(η)− ψ[0]
i (η)

rATE
∑
t6=0 πtψ

[t]
i (η)∑

t6=0 πt
− ψ[0]

i (η)

∆ Ψi(η)−
∑
t6=0 πtψ

[t]
i (η)∑

t 6=0 πt

The scores ψ[t]
i (η) and Ψi(η) are defined in equations (10) and (11),

respectively.

We follow the general idea of Semenova and Chernozhukov (2021) to construct robust or

“Neyman-orthogonal” scores ψi(η, π) such that g(z) = E[ψi(η, π)|Zi = z]. These scores are

defined by having an (approximate) zero Gateaux derivative with respect to the underlying

nuisance parameters at the true parameter vector (Chernozhukov et al., 2018). The robust

scores for the three decomposition parameters considered here are weighted combinations of

the well-known doubly robust scores for average potential outcomes (Robins & Rotnitzky,

1995), also known as Augmented Inverse Probability Weighting scores:

ψ
[t]
i (η) = µt(Xi) +

Dt,i(Yi − µt(Xi))

et(Xi)
(10)

Ψi(η) = E[Yi|Di = 1, Xi] +
Di(Yi − E[Yi|Di = 1, Xi])

P (Di = 1|Xi)

=

∑
t6=0 µt(Xi)et(Xi)∑

t6=0 et(Xi)
+

Di

[
Yi −

∑
t 6=0 µt(Xi)et(Xi)∑

t6=0 et(Xi)

]
∑

t6=0 et(Xi)
(11)

where ψ[t]
i (η) is the score of the treatment t specific average potential outcome and

Ψi(η) is the score for the group described by the binary indicator. Table 1 shows how we

combine these scores to form unbiased signals of our decomposition parameters. These

combinations retain Neyman-orthogonality with respect to η, see Appendix E.1, but

inference has to be adjusted for uncertainty in the estimation of π, see Section 5.

Consider now the regression of the score functions onto the space spanned by the
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k-dimensional transformation of Zi, b(Zi). This yields the estimator

β̂ =

( n∑
i=1

b(Zi)b(Zi)
′
)−1 n∑

i=1

b(Zi)ψi(η̂, π̂) (12)

where the score of a decomposition term with estimated nuisance quantities ψi(η̂, π̂) serves

as pseudo-outcome in the corresponding least squares regression on b(Zi). For π̂ we use

simple sample averages, i.e. π̂t = n−1
∑n

i=1 Dt,i. Estimation of η̂ can be done via modern

machine learning such as random forests, deep neural networks, high-dimensional sparse

likelihood and regression models or other non- and semiparametric estimation methods

with good approximation qualities for the functions at hand. For details regarding the

technical assumptions, consider Section 5. We require that all components in η̂ are obtained

via K-fold cross-fitting:

Definition 4.1 K-fold cross-fitting (see Definition 3.1 in Chernozhukov et al. (2018))

Take a K-fold random partition (If )
K
f=1 of observation indices [K] = {1, . . . , n} with each

fold size nf = n/K. For each f ∈ [K] = {1, . . . , K}, define Icf := {1, . . . , n}\If . Then for

each f ∈ [K], the machine learning estimator of the nuisance function are given by

η̂f = η̂((Yi, Xi, Ti)i∈Icf ).

Thus for any observation i ∈ If the estimated score only uses the model for η learned from

the complementary folds ψi(η̂, π̂) = ψi(η̂f , π̂).

The use of cross-fitting allows to control the potential bias arising from overfitting using

flexible machine learning methods without the need to evaluate entropy conditions for the

function class that contains true and estimated nuisance quantities. If finite parametric

models such as linear or logistic are assumed and estimated for the nuisance quantities,

the proposed methodology can be applied without the need for cross-fitting.

Under suitable assumptions, the predictions using the estimator in (12) are consistent

for g(z). Moreover, it is possible to conduct asymptotically valid inference around the best

linear predictor, i.e. for any z0 = z0,n we can construct (1− α)% confidence intervals for
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the true decomposition function as

CI1−α(g(z0)) =

[
b(z0)′β̂ ± q1−α/2

√
b(z0)′Ω̂b(z0)

n

]
(13)

where q1−α/2 denotes the (1− α/2)-quantile of the standard normal distribution and Ω̂ is

a consistent sample estimator of the asymptotic variance Ω0 (see Appendices C and D.3.2).

The estimator explicitly takes into account the additional uncertainty from estimating the

unconditional treatment probabilities in the decomposition terms. The interval in (13)

is also valid for the best linear predictor b(z0)′β0 under moderate misspecification if the

variance of the approximation error is not too large. It provides asymptotically accurate

confidence intervals around the true g-function if the approximation error vanishes at

a suitable rate as the number of basis functions or transformations increases. For the

technical details consider Section 5.

5 Large Sample Properties

In this section we provide the assumptions for the asymptotic validity of the confidence

intervals proposed in (13) and some more technical discussion. Recall that E[ψi(η, π)|Zi =

z] = g(z) where g ∈ G. g(z) = b(z)′β0 + rg(z) where β0 is the parameter of the best linear

predictor defined as the root of equation E[b(Zi)(g(Zi)− b(Zi)′β0)] = 0. Let m > 2 and

define εi = ψi(η, π)− E[ψi(η, π)|Zi]. We assume the following conditions:

A.1) (Identification) Q = E[b(Zi)b(Zi)
′] has eigenvalues bounded above and away from

zero uniformly over n.

A.2) (Basis) ξk = supz∈Z ||b(z)|| grows sufficiently slow, i.e. ξk = O((n/ log(k))
m−1
2m ).

A.3) (Approximation error) For each n and k, and approximation error rg with g ∈ G,

there exists finite constants ck such that ||rg||P,2 = O(ck) and ||rg||P,∞ = O(ck + ckξk)

with

sup
g∈G

inf
β
||g − b′β||P,∞ ≤ ck = O

(
(log(k)/n)

m−1
2m

)

17



A.4) (Disturbances) There exist finite constants σ2, σ̄m > 0 such that σ2 < inf
z∈Z

E[ε2
i |Zi = z]

and sup
z∈Z

E[|εi|m|Zi = z] < σ̄m.

A.5) (Machine learning bias) Let un = o(1) such that with probability of at least 1− un,

for all f ∈ [K], η̂f obtained via cross-fitting belongs to a shrinking neighborhood Hn

around η. Assume that uniformly over Hn we have that

Bn =
√
n sup
η∈Hn
||E[b(Zi)(ψ(η, π)− ψ(η, π))]|| = o(1)

Λn = sup
η∈Hn

E[||b(Zi)(ψ(η, π)− ψ(η, π))||2]1/2 = o(1)

κ1
n = sup

η∈Hn
E[ max

1≤i≤n
|ψ(η, π)− ψ(η, π)|] = o(n−

1
m )

κn = sup
η∈Hn

E[ max
1≤i≤n

(ψ(η, π)− ψ(η, π))2]1/2 = o(1)

A.6) (Bounded effects) The treatment specific conditional average treatment effects are

uniformly bounded, i.e. supz∈Z,t∈T |τt(z)| = O(1).

A.7) (Lipschitz constant). Let α(z) = b(z)/||b(z)||. Assume that ξLk = supz,z′∈Z,z 6=z′ ||α(z)−

α(z′)||/||z − z′|| = O(log(k)).

Assumption A.1 limits possible collinearity of the technical regressors and A.2 controls

their growth. A.3 bounds the size and variation of the approximation error universally

for any approximating class chosen for the technical transformations. A.4 imposes some

regularity on the tails of the conditional mean errors of the decomposition model.5 A.5

assumes that the cross-fitted machine learning estimates have good approximation qualities

around the true parameter with high probability. A.6 imposes bounds for the effective

treatment specific effects conditional on the heterogeneity variables. A.7 imposes some

smoothness on the technical transformations. Assumptions A.1 – A.4 combined with A.7

assure consistency and asymptotic normality with estimated variance matrix using the true

score functions as left hand side variable in the series estimation.6 These assumptions are
5Note that Assumption A.4 implicitly imposes some regularity on the doubly robust scores, i.e. it puts
restrictions on the moments of the potential outcomes and the distribution of the generalized propensity
scores. In particular, it implies regularly identified decomposition parameters (Khan & Tamer, 2010;
Heiler & Kazak, 2021).

6For the sake of brevity we just provide the asymptotic normality result here and the corresponding
ingredients that differ from Belloni et al. (2015) and Semenova and Chernozhukov (2021) in Appendix D.
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stronger than required just for consistency or asymptotic normality due to the additional

estimation of Ω0. Instead of providing sharp minimal conditions for each step, we think it

is more useful to combine them with respect to the applied goal of choosing the technical

transformations and constructing feasible confidence intervals. With true score functions,

the assumptions are implied by the conditions for equivalent results in Belloni et al.

(2015). A.5 accommodates the use of estimated nuisance quantities and is equivalent to

the conditions in Semenova and Chernozhukov (2021) required for similar results for the

conditional treatment effects.7 The stronger the tail condition in A.4, the weaker the rate

requirements in A.2, A.3, and A.5 become. A.6 is a mild heterogeneity restriction. We

obtain the following result:

Theorem 5.1 Let Φ(·) denote the Gaussian cumulative distribution function. Suppose

Assumptions A.1 - A.7 hold and β̂ and Ω̂ are estimated according to (12) and (21)

respectively. Then, for any z0 = z0,n,

lim
n→∞

sup
t∈R

∣∣∣∣P(√n b(z0)′(β̂ − β0)√
b(z0)′Ω̂b(z0)

≤ t

)
− Φ(t)

∣∣∣∣ = 0.

Moreover if the approximation error is small, i.e.
√
nrg(z0)/

√
b(z0)′Ω0b(z0)→ 0, then

lim
n→∞

sup
t∈R

∣∣∣∣P(√nb(z0)′β̂ − g(z0)√
b(z0)′Ω̂b(z0)

≤ t

)
− Φ(t)

∣∣∣∣ = 0.

Theorem 5.1 demonstrates the asymptotic validity of the confidence intervals proposed

in (13). The result accommodates the case of mild misspecification often present in

applied econometric research. It is most useful under the additional slight undersmoothing

condition that makes any misspecification bias vanish sufficiently fast.8

Note that Theorem 5.1 also applies to alternative combinations of Neyman-orthogonal

scores. In particular it extends to any weighted combination of conditional average

For the remaining approximations please consider the aforementioned papers.
7They first only assume κ1n = o(1) for the asymptotic normality with true variance which is a weaker
condition. However, for consistent variance estimation, they also require that n1/mκ1n = o(1), see their
additional assumption (ii) in Theorem 3.3. Thus there is no qualitative difference to our assumption.

8In particular, when G is in a s-dimensional ball on Z of finite diameter, then the condition simplifies to
n1/2k−(

1
2+

s
d ) log(k)→ 0. See also Belloni et al. (2015), Comment 4.3 for additional details.
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treatment effects as long as the weights are either fixed or can be estimated at the

parametric rate similarly to π̂t − πt = Op(n
−1/2). This can be useful when comparing the

heterogeneity in a given selection mechanism to alternative, hypothetical (estimated or

true) policies different from random selection as considered in this paper.

6 Decomposition versus Multi-valued Treatment Anal-

ysis under Many Treatments and Weak Overlap

In a classic multi-valued treatment effect setup, we can test for effect heterogeneity by

comparing different (conditional) potential outcomes pairwise across treatments. For

that, the estimation of many effects is required. On one hand, this requires correction for

multiple testing. On the other, estimation and inference becomes increasingly difficult

with many treatments as already in the simple unconditional effect analysis one has to

test over J(J − 1)/2 hypotheses. The decomposition, however, always consists of only

three (functional) parameters independently of the underlying dimensions of the effective

multi-valued treatment. Thus, estimation is also feasible even if there are many treatments

in large samples, i.e. if J →∞. With many treatments, the strong overlap assumption

usually required for regular identification of standard multi-valued effects will be violated

by construction and estimation and conventional statistical inference will perform poorly

(Heiler & Kazak, 2021). Strong overlap means, that all generalized propensity scores are

uniformly bounded away from zero by a positive constant. In finite samples, a very small

bound for the propensities is hard to distinguish from a zero lower bound, see Rothe (2017).

When estimating generalized propensity scores for many treatments, practitioners routinely

encounter many extreme generalized propensities close to zero (e.g. Uysal, 2015). This

problem is even exacerbated when focusing on conditional effect heterogeneity reducing

effective sample sizes. Much of this can be avoided by resorting to the decomposition

parameters instead. Relaxing the overlap requirements comes at the cost of testing weaker

conditions regarding effect heterogeneity. In the multi-valued treatment effect setting we

can test sufficient conditions for effect heterogeneity between and within all treatments,

while our decomposition tests necessary conditions for within treatment effect heterogeneity

20



and between treatment heterogeneity.

For illustration consider the case of the following sequence of probability measures

{Fn}∞n=1 such that T ≡ Tn = {0, 1, . . . , Jn} with Jn →∞. We still assume strong overlap

for control propensities, i.e infx∈X e0(x) > e > 0 almost surely for some e > 0. Now

additionally assume that almost surely for t 6= 0

et(Xi) ≡ et,n(Xi) =
et,n(Xi)

Jn
(14)

such that

inf
n≥1

inf
x∈X

et,n(x) > e > 0 (15)

sup
n≥1

sup
x∈X

et,n(x) < C (16)

for t 6= 0. (15) is a uniform strong overlap assumption for the rescaled generalized

propensities et,n(x) = Jnet,n(x). This allows the generalized propensity scores to converge

to zero, i.e. for many treatments with small selection probabilities, but controls their rate.

This assumption says that the increase in the number of treatments will qualitatively

be similar over the support of confounders, i.e. units have a somewhat comparable

decrease in their relative propensities along the sequences. Intuitively, the distributions of

the generalized propensity scores should not concentrate too quickly around zero when

multiplying with the total number of treatments along such sequences. (16) is only

for normalization. Now consider the variance of the leading terms for estimating the

unconditional rATE (or equivalently any other decomposition parameter). Along the

sequences we have that

VFn [
√
n(θ̂rATE − θrATE)] = O(1). (17)

Thus, the limiting variance is bounded independently of the number of treatments Jn. For

estimating a multivalued average treatment effect θt,t′ comparing levels t, t′ ∈ T , however,
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we obtain that

VFn [
√
n(θ̂t,t′ − θt,t′)] = O(Jn). (18)

For the derivations consider Appendix F. Thus, estimating and testing heterogeneity

will become increasingly difficult under many treatments Jn → ∞ when constructing

multi-valued effect parameters. The decomposition parameters circumvent this problem as

for all nATE, rATE, and ∆, the more problematic contributions of treatments with little

probability mass are also weighted down correspondingly. Note that, without knowledge of

the nuisance parameters, the approximation rates for the semiparametric double machine

learning framework in Section 5 are also likely to require stronger sparsity/complexity

type assumptions or cross-treatment restrictions in the many treatment setup. We leave

an extension along this line for future work.

7 Monte Carlo Study

In this section we analyze the finite sample performance of the analytical confidence

bounds proposed in Section 4. In particular we analyze the empirical coverage rates of

the corresponding confidence intervals in a setup with heterogeneous effective treatment

probabilities for all the decomposition parameters. We consider the case of three effective

treatment levels and a univariate linear model for the heterogeneity analysis using different

sample sizes and total number of confounding variables. In particular, in the final step, we

regress the estimated pseudo outcomes on a single confounder and evaluate the coverage

rates for the parameters of this linear predictor. We consider two ways to estimate the

nuisance parameters (i) correctly specified parametric models and (ii) double machine

learning estimators. For the latter we apply 2-fold cross-fitting using `1-regularized linear

regression for the outcome models as well as `1-regularized multinomial logistic regression

for the generalized propensity scores. Tuning parameter selection is done via 5-fold

cross-validation. The true models satisfy the necessary sparsity assumptions required for

high-quality approximation of the machine learning methods (Belloni & Chernozhukov,

2013; Farrell, 2015; Belloni, Chernozhukov, & Wei, 2016). For more details on the designs
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please consider Appendix G.

Table 2 contains the coverage rates of the confidence intervals based on (13) using

double machine learning at a significance level of 5%. For rATE(x) and nATE(x) all

results are very close to the nominal coverage rate. For ∆(x), there is some undercoverage

for the intercept α by 1.7 to 9.6 percentage points which increases in the number of

parameters and decreases with the sample size. The slope parameter β is accurate for any

sample or regressor set size.

Table 2: Monte Carlo Simulation: Results (Double Machine Learning)

(a) n = 1000

rATE nATE ∆
k = 10 α 0.9472 0.9494 0.8964

β 0.9456 0.9452 0.9430
k = 100 α 0.9438 0.9420 0.8538

β 0.9486 0.9476 0.9542

(b) n = 5000

rATE nATE ∆
k = 10 α 0.9516 0.9500 0.9326

β 0.9498 0.9506 0.9478
k = 100 α 0.9512 0.9508 0.9204

β 0.9534 0.9520 0.9534

The table entries contain the coverage rates under the null hypothesis for the parameters (α, β) of the
linear predictor for different number of regressors (k), sample sizes (n) and decomposition parameters
rATE, nATE and ∆. The nominal coverage rate is 95%. Results are based on 5000 simulations.

Table 3 contains the coverage rates of the confidence intervals based on (13) using

correctly specified parametric models at a significance level of 5%. All results are very

close to their nominal coverage rate. For the smallest n = 1000 and k = 100, there

is undercoverage for β of 5 percentage points for the rATE which largely vanishes for

n = 5000. For the other parameters, there are no relevant size distortions.9 Overall the

inference based on the asymptotic approximation in (13) seems to be reliable in finite

samples.

8 Applications

8.1 Smoking and Birth Weight (Scenario 1)

The detrimental effect of smoking on birth weight and its economic costs are well doc-

umented (see e.g. Almond et al., 2005; Abrevaya, 2006; Almond & Currie, 2011, and
9Note that the results are insensitive with respect to the design. We have also experimented with
other heterogeneous effects and treatment probabilities which do not seem to affect the coverage rates
substantially.
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Table 3: Monte Carlo Simulation: Results (Parametric Model)

(a) n = 1000

rATE nATE ∆
k = 10 α 0.9460 0.9456 0.9524

β 0.9444 0.9488 0.9470
k = 100 α 0.9468 0.9488 0.9518

β 0.8974 0.9434 0.9474

(b) n = 5000

rATE nATE ∆
k = 10 α 0.9486 0.9480 0.9482

β 0.9448 0.9528 0.9570
k = 100 α 0.9506 0.9508 0.9508

β 0.9380 0.9464 0.9458

The table entries contain the coverage rates under the null hypothesis for the parameters (α, β) of the
linear predictor for different number of regressors (k), sample sizes (n) and decomposition parameters
rATE, nATE and ∆. The nominal coverage rate is 95%. All results are based on 5000 simulations.

references therein). Beyond the standard average effects it is important to understand

the heterogeneous effects to e.g. identify for which subgroups interventions to reduce

smoking during pregnancy would be most beneficial. Abrevaya (2006) documents that

the negative effect of smoking is less pronounced for black compared to white mothers

in a standard subgroup analysis. A variety of papers analyze heterogeneous effects of

smoking as a function of mother’s age (Abrevaya, Hsu, & Lieli, 2015; Lee et al., 2017;

Zimmert & Lechner, 2019; Fan et al., 2020). They all document increasingly negative

effects with higher age. The aforementioned studies consider "smoking yes/no" as the

binary treatment. Cattaneo (2010) notes that smoking is not a homogeneous treatment,

but that the negative effects become more extreme for higher intensities of smoking. Thus,

the binary indicator "smoking" represents only an aggregation of smoking intensities which

directly affect birth weight. This corresponds to Scenario 1 of Figure 1. We investigate

whether the heterogeneous effects documented in the literature can be at least partly

explained by different smoking intensities of different groups.

We analyze the dataset of Almond et al. (2005) used by Cattaneo (2010) with five

intensities of smoked cigarettes per day as the effective treatment Ti ∈ T = {0, 1− 5, 6−

10, 11− 15, 16− 20, > 20}, the binary indicator defined as Di = 1[Ti > 0], the outcome Yi

being birth weight in gram, and the confounders Xi including age, education, ethnicity,

and marital status of mother and father as well as health indicators and pregnancy history

of the mother.10 The dataset comprises 511,940 observations after removing the 0.1%

of the observations with missing values in relevant variables and 52 confounders. The
10We thank Matias Cattaneo for sharing the full data. A random subsample is available on his GitHub
repository.
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Figure 3: Heterogeneous effects and decomposition by ethnicity
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Note: Point estimates of the decomposition parameters with 95%-confidence interval.

nuisance parameters are estimated with 2-fold cross-fitting using an ensemble learner

of the unconditional mean, Random Forests, Lasso and Ridge regression with 2-fold

cross-validated weights. For the propensity scores, we use logistic Lasso and Ridge.

Smoking behavior differs along the heterogeneity variables ethnicity and age showing

that white and older smoking mothers smoke more heavily.11 Combined with the result of

Cattaneo (2010) that different smoking intensities have different effects, this suggests that

at least part of the heterogeneity could be explained by different smoking intensities.

Figure 3 shows the result of the decomposition for the heterogeneity variable "ethnicity".

The upper panel shows the decomposition for each subgroup. It is obtained by running an
11Appendix H and in particular Figure H.1 provides the smoking distributions by heterogeneity variables.
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OLS regression of the estimand specific pseudo-outcome on a set of four dummy variables

indicating ethnicity of the mother without a constant. The standard errors are then

adjusted as described in Section 4. The nATE in the left part can be considered as the

result of a standard subgroup analysis. Like previous studies we find that smoking reduces

the birth weight of newborns more for white women than for Blacks, Hispanics and others.

Given that smoking is a binarized treatment, it is not clear how much is really effect

heterogeneity and how much is driven by the fact that subgroups differ in their smoking

intensity. The decomposition term rATE fixes the intensity of smoking for all subgroups

at the population level. It provides the subgroup specific effect of smoking if all groups

had the same smoking intensity. Under this harmonized smoking intensity the negative

average effect of smoking is smaller for white women and larger for the others. ∆ in

the right graph quantifies the difference between nATE and rATE. It shows relatively

small differences suggesting that different smoking intensities are not the main driver of

the differences between white mothers and the other groups. However, they are also not

negligible as the lower panel of Figure 3 shows. It quantifies the heterogeneous effects by

subtracting the effects for white mothers from the other three groups. We observe that a

significant portion of the difference between black/hispanic mothers and white mothers

is driven by different smoking intensities. For black vs. white mothers the difference in

the nATE is 69 gram of which 12% are due to different smoking intensities (∆ = 8). For

hispanic vs. white mothers it explains around 17% (∆ = 14).

Figure 4 depicts the heterogeneity analysis along age. We use B-splines as basis

functions of age. We select the nodes and order via leave-one-out cross-validation for each

parameter and apply the most flexible/low-bias model for all parameters to ensure that the

rATE and ∆ curves add up to the nATE curve. The left panel of Figure 4 replicates the

well-established findings of previous papers that the nATE is much smaller for younger

mothers than for older mothers.

In the extreme case where different smoking intensities would fully explain the het-

erogeneous nATE, we would see a flat rATE curve in the middle graph. However, we

only observe that the effect of teenage mothers would be more negative if we harmonize

smoking intensity over all age groups.
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Figure 4: Effect Heterogeneity by Age
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Notes: B-spline estimated decomposition parameters with 95%-confidence interval.

Overall, only a relatively small part of the heterogeneous effects of the binarized

smoking indicator can be attributed to different smoking intensities and the larger part

seems to be driven by different age groups actually being affected differently. This is

expected as younger mothers had less time to inflict severe long-run damage to their own

physiology also prior to pregnancy and are on average more healthy.

8.2 Job Corps (Scenario 2)

We illustrate Scenario 2 of Figure 2 with an evaluation of the Job Corps (JC) program.

JC operates since 1964 and is the largest training program for disadvantaged youth aged

16-24 in the US (see Schochet et al., 2001, 2008, for a detailed description). The roughly

50,000 participants per year receive an intensive treatment as a combination of different

components like academic education, vocational training, and job placement assistance.

Participants plan their educational and vocational curricula together with counselors. This

means that although the variable “access to JC” is a binary indicator, different versions of

JC participation are conceivable. Heterogeneous effects might thus be driven by different

effectiveness of JC for different groups, by different tailoring of the curriculum, or a
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combination thereof.

We investigate this based on data from an experiment in 1994-1996 (Schochet, Burghardt,

& McConnell, 2019).12 This experiment is basis of a variety of studies looking at different

aspects of JC. Many of them report gender differences in the effectiveness of the programs

with women benefiting less than men from access to JC (e.g. Schochet et al., 2001, 2008;

Flores et al., 2012; Eren & Ozbelik, 2014; Strittmatter, 2019). One potential explanation

for this finding is that men and women focus on average on different vocational training

within JC. In particular men receive more often training for higher paying craft jobs,

while women focus more often on training for the service sector (Quadagno & Fobes, 1995;

Inanc, Needels, & Berk, 2017).13 We apply our decomposition method to investigate this

potential explanation of the gender gap in program effectiveness.

We analyze the intention to treat effect (ITT) of the binary variable indicating random

access to JC (Di) on weekly earnings four years after random assignment (Yi). We consider

the following eleven versions of treatment (Ti): (i) No JC if eligible individuals did

not participate (non-compliers), (ii) JC without vocational training if eligible individuals

entered JC but did not receive vocational training, (iii-ix) training for jobs in the clerical,

health, auto mechanics, welding, electrical/electronics, construction, or food sector, (x)

other vocational training, (xi) training for multiple sectors.

We estimate the nuisance parameters with the same ensemble as in the previous

section with 5-fold cross-fitting. We control for 55 covariates that include pre-treatment

information about labor market history, socio-economic characteristics, education, health,

crime, and JC related variables. These control variables overlap mostly with those of Flores

et al. (2012) who also employ an unconfoundedness strategy. Considering second-order

interactions and polynomials results in a total of 1428 variables after screening nearly empty

cells (less than 1% observations) and nearly perfectly correlated variables (correlation

higher than 0.99). In total we work with a sample of 9,708 observations.

The unconditional nATE, corresponding to the ITT of eligibility for JC on monthly

earnings, is estimated at $14.2 (S.E. 3.8), which is an increase of 7% in line with previous

studies. The unconditional rATE is larger ($17.4, S.E. 4.1) indicating that randomly
12The data is available as public use file via https://doi.org/10.3886/E113269V1.
13Appendix I and in particular Figure I.1 provides the distribution of trainings by gender.
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Figure 5: Effect heterogeneity and decomposition by gender

 9.4

−6.7

16.0

(0.081)

(0.053)

(0.007)

17.8

−0.5

18.3

(0.001)

(0.790)

(0.001)

−8.5
−6.2

−2.3

(0.262)
(0.116)

(0.777)

Female Male Difference Female − Male

nATE ∆ rATE nATE ∆ rATE nATE ∆ rATE

0

10

20

Estimand

E
ffe

ct

Notes: The numbers in the bar show the point estimate and the p-value in parentheses.

allocating the curricula would have been better than the actual assignment. However,

the unconditional difference ∆ is insignificant ($− 3.1, S.E. 1.8). This suggests that, on

average, the selection of versions is not statistically distinguishable from random allocation.

Figure 5 depicts the decomposition of the gender specific effects. We observe that

the effect for women with the actual composition of vocational training (nATE) is not

significant at α = 0.05, but under the hypothetical treatment composition of the population

would show a clear positive effect. The gender gap in effectiveness basically disappears

when both groups receive the same hypothetical mix of vocational training. The right

part of Figure 5 suggests that 73% of the gender gap in the effectiveness of JC is due

to different training curricula. This means that the worse than average performance

of the assignment mechanism seen in the unconditional parameters is mostly driven by

women. While the assignment to vocational training for men is as well targeted as random

assignment, for women it is even worse. This indicates that there is room for improvement

to target vocational training in general and for women in particular. Our results suggest

that removing the worse than random targeting of vocational training for women could

decrease the gender gap in the effectiveness of access to JC.
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9 Concluding Remarks

The method proposed in this paper provides a practical way of decomposing effect hetero-

geneity obtained from analyzing a binary treatment indicator that does not coincide with

the effective multi-valued treatment. We believe that our approach can be extended to

other causal parameters and identification strategies such as continuous effective treat-

ments, selection on unobservables/instrumental variables, or mediation analysis. It would

also be interesting to see whether our ideas could be further developed to find the most

relevant dimensions of effective treatments for cases with multiple treatment versions

instead of requiring the researcher to manually specify them.

The conceptual and empirical results highlight that potential treatment heterogeneity

underlying the analyzed binary indicator should be taken more seriously and explicitly

discussed in applications, especially when interpreting heterogeneous effects. The de-

composition provides one principled way to do this. However, it requires to observe

the effective treatment. Data collection can anticipate the goal of better understanding

treatment heterogeneity by recording effective treatment information beyond a binary

indicator. Furthermore, the decomposition shows that boiling down the analysis to such

binary indicators, while facilitating the analysis, can come at the cost of a more intricate

interpretation of empirical results.

References

Abadie, A., & Cattaneo, M. D. (2018). Econometric methods for program evaluation.

Annual Review of Economics , 10 , 465–503.

Abrevaya, J. (2006). Estimating the effect of smoking on birth outcomes using a matched

panel data approach. Journal of Applied Econometrics , 21 (4), 489–519.

Abrevaya, J., Hsu, Y.-C., & Lieli, R. P. (2015). Estimating conditional average treatment

effects. Journal of Business & Economic Statistics , 33 (4), 485–505.

Almond, D., Chay, K. Y., & Lee, D. S. (2005). The costs of lower birth weight. The

Quarterly Journal of Economics , 120 (3), 1031–1083.

30



Almond, D., & Currie, J. (2011). Human capital development before age five. In Handbook

of labor economics (Vol. 4, pp. 1315–1486). Elsevier.

Andresen, M. E., & Huber, M. (2021). Instrument-based estimation with binarised

treatments: issues and tests for the exclusion restriction. The Econometrics Journal ,

utab002 , published ahead of print 29 August 2020.

Angrist, J. D., & Imbens, G. W. (1995). Two-stage least squares estimation of average

causal effects in models with variable treatment intensity. Journal of the American

Statistical Association, 90 (430), 431–442.

Athey, S., & Imbens, G. W. (2016). Recursive partitioning for heterogeneous causal effects.

Proceedings of the National Academy of Sciences , 113 (27), 7353–7360.

Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: causality and

policy evaluation. Journal of Economic Perspectives , 31 (2), 3–32.

Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. Annals of

Statistics , 47 (2), 1148 - 1178.

Belloni, A., & Chernozhukov, V. (2013). Least squares after model selection in high-

dimensional sparse models. Bernoulli , 19 (2), 521–547.

Belloni, A., Chernozhukov, V., Chetverikov, D., & Kato, K. (2015). Some new asymp-

totic theory for least squares series: Pointwise and uniform results. Journal of

Econometrics , 186 (2), 345–366.

Belloni, A., Chernozhukov, V., & Wei, Y. (2016). Post-selection inference for generalized

linear models with many controls. Journal of Business & Economic Statistics , 34 (4),

606–619.

Cattaneo, M. D. (2010). Efficient semiparametric estimation of multi-valued treatment

effects under ignorability. Journal of Econometrics , 155 (2), 138–154.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., &

Robins, J. (2018). Double/Debiased machine learning for treatment and structural

parameters. The Econometrics Journal , 21 (1), C1-C68.

Cole, S. R., & Frangakis, C. E. (2009). The consistency statement in causal inference.

Epidemiology , 20 (1), 3–5.

Curth, A., & van der Schaar, M. (2021). Nonparametric estimation of heterogeneous

31



treatment effects: From theory to learning algorithms. In Proceedings of the 24th

international conference on artificial intelligence and statistics (Vol. 130, pp. 1810–

1818). PMLR.

Davis, J. M. V., & Heller, S. B. (2020). Rethinking the benefits of youth employment

programs: The heterogeneous effects of summer jobs. The Review of Economics and

Statistics , 102 (4), 664–677.

Eren, O., & Ozbelik, S. (2014). Who benefits from Job Corps? A distributional ananlysis of

an active labor market program. Journal of Applied Econometrics , 29 (4), 586–611.

Fan, Q., Hsu, Y.-C., Lieli, R. P., & Zhang, Y. (2020). Estimation of conditional average

treatment effects with high-dimensional data. Journal of Business & Economic

Statistics , published ahead of print 14 September 2020.

Farrell, M. H. (2015). Robust inference on average treatment effects with possibly more

covariates than observations. Journal of Econometrics , 189 (1), 1–23.

Flores, C. A., Flores-Lagunes, A., Gonzalez, A., & Neumann, T. C. (2012). Estimating

the effects of length of exposure to instruction in a training program: The case of

job corps. Review of Economics and Statistics , 94 (1), 153–171.

Heckman, J. J. (2020). Epilogue: Randomization and social policy evaluation revisited.

In F. Bédécarrats, I. Guérin, & F. Roubaud (Eds.), Randomized control trials in the

field of development: A critical perspective (pp. 304–330). Oxford University Press.

doi: 10.1093/oso/9780198865360.003.0014

Heiler, P., & Kazak, E. (2021). Valid inference for treatment effect parameters under

irregular identification and many extreme propensity scores. Journal of Econometrics ,

222 (2), 1083–1108.

Hernán, M. A., & VanderWeele, T. J. (2011). Compound treatments and transportability

of causal inference. Epidemiology , 22 (3), 368–377.

Hotz, V. J., Imbens, G. W., & Klerman, J. A. (2006). Evaluating the differential dffects

of alternative welfare-to-work training aomponents: A reanalysis of the California

GAIN program. Journal of Labor Economics , 24 (3), 521–566.

Hotz, V. J., Imbens, G. W., & Mortimer, J. H. (2005). Predicting the efficacy of future

training programs using past experiences at other locations. Journal of Econometrics ,

32



125 (1-2), 241–270.

Imai, K., & Li, M. L. (2021). Experimental evaluation of individualized treatment

rules. Journal of the American Statistical Association. doi: 10.1080/01621459.2021

.1923511

Imai, K., & Ratkovic, M. (2013). Estimating treatment effect heterogeneity in randomized

program evaluation. Annals of Applied Statistics , 7 (1), 443–470.

Imbens, G. W. (2000). The role of the propensity score in estimating dose-response

functions. Biometrika, 87 (3), 706–710.

Imbens, G. W., & Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical

sciences. Cambridge University Press.

Inanc, H., Needels, K., & Berk, J. (2017). Gender segregation in training programs and

the wage gap (Tech. Rep. Nos. Cambridge, NJ: Mathematica Policy Research).

Kennedy, E. H. (2020). Optimal doubly robust estimation of heterogeneous causal effects.

arXiv:2004.14497 . Retrieved from http://arxiv.org/abs/2004.14497

Khan, S., & Tamer, E. (2010). Irregular identification, support conditions, and inverse

weight estimation. Econometrica, 78 (6), 2021–2042.

Knaus, M. C. (2020). Double machine learning based program evaluation under uncon-

foundedness. Retrieved from http://arxiv.org/abs/2003.03191

Knaus, M. C., Lechner, M., & Strittmatter, A. (2020). Heterogeneous employment

effects of job search programmes: A machine learning approach. Journal of Human

Resources , 0718-9615R, published ahead of print 26 March 2020.

Knaus, M. C., Lechner, M., & Strittmatter, A. (2021). Machine Learning Estimation of

Heterogeneous Causal Effects: Empirical Monte Carlo Evidence. The Econometrics

Journal , 24 (1), 134–161.

Künzel, S. R., Sekhon, J. S., Bickel, P. J., & Yu, B. (2019). Metalearners for estimating

heterogeneous treatment effects using machine learning. Proceedings of the National

Academy of Sciences , 116 (10), 4156–4165.

Lechner, M. (2001). Identification and estimation of causal effects of multiple treatments

under the conditional independence assumption. In M. Lechner & E. Pfeiffer (Eds.),

Econometric evaluation of labour market policies (pp. 43–58). Heidelberg: Physica.

33

http://arxiv.org/abs/2004.14497
http://arxiv.org/abs/2003.03191


Lechner, M. (2002). Program heterogeneity and propensity score matching: an application

to the evaluation of active labor market policies. The Review of Economics and

Statictics , 84 , 205–220.

Lee, S., Okui, R., & Whang, Y.-J. (2017). Doubly robust uniform confidence band for

the conditional average treatment effect function. Journal of Applied Econometrics ,

32 (7), 1207–1225.

Marshall, J. (2016). Coarsening bias: How coarse treatment measurement upwardly biases

instrumental Variable Estimates. Political Analysis , 24 (2), 157–171.

Newey, W. K. (1997). Convergence rates and asymptotic normality for series estimators.

Journal of Econometrics , 79 (1), 147–168.

Nie, X., & Wager, S. (2021). Quasi-oracle estimation of heterogeneous treatment effects.

Biometrika, 108 (2), 299–319.

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82 (4), 669–688.

Petersen, M. L. (2011). Compound treatments, transportability, and the structural causal

model: The power and simplicity of causal graphs. Epidemiology , 22 (3), 378–381.

Quadagno, J., & Fobes, C. (1995). The welfare state and the cultural reproduction of

gender: Making good girls and boys in the Job Corps. Social Problems, 42 (2),

171–190.

Richardson, T., & Robins, J. M. (2013). Single World Intervention Graphs (SWIGs):

Unifying the Counterfactual and Graphical Approaches to Causality – Presentation.

Center for the Statistics and the Social Sciences, University of Washington Series.

Working Paper , 128 .

Robins, J. M., & Rotnitzky, A. (1995). Semiparametric efficiency in multivariate regression

models with missing data. Journal of the American Statistical Association, 90 (429),

122–129.

Rothe, C. (2017). Robust Confidence Intervals for Average Treatment Effects Under

Limited Overlap. Econometrica, 85 (2), 645–660.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonran-

domized studies. Journal of Educational Psychology , 66 (5), 688–701.

Rubin, D. B. (1980). Randomization Analysis of Experimental Data: The Fisher Random-

34



ization Test Comment. Journal of the American Statistical Association, 75 (371),

591.

Rudelson, M. (1999). Random vectors in the isotropic position. Journal of Functional

Analysis , 164 (1), 60–72.

Schochet, P. Z., Burghardt, J., & Glazerman, S. (2001). National job corps study: The

impacts of job jorps on participants’ employment and related outcomes (Tech. Rep.).

Princeton, NJ: Mathematica Policy Research Inc.

Schochet, P. Z., Burghardt, J., & McConnell, S. (2008). Does job corps work? Impact

findings from the national job corps study. American Economic Review , 98 (5),

1864–1886.

Schochet, P. Z., Burghardt, J., & McConnell, S. (2019). Replication data for: Does job

corps work? Impact findings from the national job corps study. Inter-university

Consortium for Political and Social Research (ICPSR).

Semenova, V., & Chernozhukov, V. (2021). Debiased machine learning of conditional

average treatment effects and other causal functions. The Econometrics Journal ,

24 (2), 264–289.

Strittmatter, A. (2019). Heterogeneous earnings effects of the job corps by gender: A

translated quantile approach. Labour Economics , 10760 .

Tian, L., Alizadeh, A. A., Gentles, A. J., & Tibshirani, R. (2014). A simple method

for estimating interactions between a treatment and a large number of covariates.

Journal of the American Statistical Association, 109 (508), 1517–1532.

Uysal, D. (2015). Doubly robust estimation of causal effects with multivalued treatments:

An application to the returns to schooling. Journal of Applied Econometrics , 30 (5),

763–786.

VanderWeele, T. J. (2009). Concerning the consistency assumption in causal inference.

Epidemiology , 20 (6), 880–883.

VanderWeele, T. J., & Hernan, M. A. (2013). Causal inference under multiple versions of

treatment. Journal of Causal Inference, 1 (1), 1–20.

Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects

using random forests. Journal of the American Statistical Association, 113 (523),

35



1228–1242.

Zimmert, M., & Lechner, M. (2019). Nonparametric estimation of causal heterogeneity

under high-dimensional confounding. arXiv:1908.08779 . Retrieved from http://

arxiv.org/abs/1908.08779

36

http://arxiv.org/abs/1908.08779
http://arxiv.org/abs/1908.08779


Appendices
Not meant for publication but to be provided as supplementary material in

the online repositories of the Journal and the homepages of the authors.

A Toy example

Consider a setting with a binary heterogeneity variable Xi ∈ {0, 1} and three effective treat-

ments Ti ∈ {0, 1, 2}. We impose deterministic potential outcomes that are homogeneous

within treatment status, but heterogeneous between treatments:

Yi(0) Yi(1) Yi(2)

Xi = 0 0 -1 1

Xi = 1 0 -1 1

Both groups defined by Xi have the same potential outcomes under the different

treatments. This means there can be no real effect heterogeneity. However, consider now

that the probability to receive the effective treatments varies with Xi:

P (Ti = 0|Xi) P (Ti = 1|Xi) P (Ti = 2|Xi)

Xi = 0 0.5 1/8 3/8

Xi = 1 0.5 3/8 1/8

Collapsing treatments one and two into a binary treatment Di = 1[Ti > 0] and running

a subgroup analysis for the "treatment" Di results in the following conditional average

treatment effects (CATE):

CATE(Xi) = 1− 4 · P (Ti = 1|Xi) =


0.5 if Xi = 0

−0.5 if Xi = 1.

Thus, the aggregation into the binary indicator leads us to "find" a positive effect

for one group and a negative effect for another group although the effective treatments

actually do not create heterogeneous effects. Everything is just driven by them receiving a

different mix of effective treatments.
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B Identification

B.1 Conditional independencies

We can read off the conditional independencies with respect to potential, not observed,

outcomes encoded in DAGs (1) and (2) from single-world intervention graphs (SWIG)

of Richardson and Robins (2013). We intervene on Ti to read off the independencies we

require for identification of our decompositions.

Scenario 1:

Figure B.1: SWIG with intervention on Ti

T |t Y (t)

D(t)

X

Scenario 2:

Figure B.2: SWIG with intervention on Ti

D T |t Y (t)

X

Both SWIGs (B.1) and (B.2) imply the conditional independence shown in Equation

(2). This links the observed effective treatment to the unobserved potential outcomes and

justifies our assumption 1a required for identifying our decomposition terms.

B.2 Identification in Scenario 2 with confounded binary treat-

ment

Figure B.3 considers the case of a binary treatment that is potentially confounded with

both treatment version selection and outcome due to the backdoor through X̃. This could

occur e.g. in the case of the evaluation of Job Corps access on earnings when access was

38



Figure B.3: DAG: Confounded binary treatment precedes confounded treatment version:

Binary Treatment D Treatment Version T Outcome Y

Confounders X

Confounders X̃

not allocated randomly but is based on observables. In this case, the derived conditional

independence assumptions change to

Yi(0), Yi(1) . . . , Yi(J) ⊥⊥ Di | Ti, X̃i (19)

Yi(0), Yi(1) . . . , Yi(J) ⊥⊥ Ti | Xi, X̃i (20)

Thus, the adjustment set required for identification and entering estimation of the nui-

sance parameters of the decomposition terms needs to incorporate the additional set of

confounders X̃i, but all results hold equivalently.

C Estimation of Asymptotic Variance

Let En[Xi] = 1
n

∑n
i=1 Xi. Define

Q̂ = En[b(Zi)b(Zi)
′]

Ω̂ = Q̂−1Σ̂Q̂−1 (21)

For the rATE we use

Σ̂ = En

[
(b(Zi)ei + âi − ¯̂ai)(b(Zi)ei + âi − ¯̂ai)

′
]
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with

ei = ψ
[rATE]
i (η̂, π̂)− b(Zi)′β̂

âi =
∑
t6=0

En[b(Zi)(ψ
[t]
i (η̂)− ψ[0]

i (η̂))](Dt,i(1− π̂0) +D0,iπ̂t)

(1− π̂0)2

ˆ̄ai = En[âi]

π̂t = En[Dt,i]

For ∆, the ψ[rATE]
i (η̂, π̂) has to be replaced by the corresponding score function and Σ̂

changes to

Σ̂ = En

[
(b(Zi)ei − âi + ¯̂ai)(b(Zi)ei − âi + ¯̂ai)

′
]
.

For the nATE we use only Σ̂ = En[b(Zi)b(Zi)
′e2
i ] as there are no estimated unconditional

weights.

D Supplementary Material for Section 5

D.1 Notation and Outline

En[Xi] :=
1

n

n∑
i=1

Xi

Gn[Xi] :=
1√
n

n∑
i=1

(Xi − E[Xi])

||rg||P,2 :=

√∫
z∈Z

r2
g(z)dP (z)

||rg||P,∞ := sup
z∈Z
|rg(z)|

τt(z) = E[τt(Xi)|Zi = z]

Also let C > 0 denote generic constants that do not depend on n, a .P b means that

a/b = Op(1). Let bi = b(Zi) and ψ
[t,0]
i (η) = ψ

[t]
i (η) − ψ[0]

i (η) for any t and η. First we
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provide some auxiliary results. Then we derive the asymptotically linear representation

of the best linear predictor and show its asymptotic normality using the true variance

covariance matrix. In the last step we provide the necessary derivations to replace the

true variance with the estimated sample counterpart proposed in Section 4. For reference,

we refer with BCCK to Belloni et al. (2015) and with SC to Semenova and Chernozhukov

(2021).

D.2 Auxiliary results

H.1: ||γ̂t − γt|| bound

The triangle inequality and using Assumption A.5 yields

||γ̂t − γt|| = ||En[biψ
[t,0]
i (η̂)− E[biψ

[t,0]
i (η)]||

≤ ||En[bi(ψ
[t,0]
i (η̂)− ψ[t,0]

i (η0))||+ ||En[bi(ψ
[t,0]
i (η0))]− E[biψ

[t,0]
i (η)]||

≤ Op((Bn + Λn)n−1/2) +Op(n
−1/2)

= op(1)

H.2: ||γt|| rate

||γt|| = ||E[biψ
[t,0]
i (η)]|| = ||E[biτt(Zi)]|| ≤ sup

z∈Z,t∈T
|τt(z)|| sup

z
||b(z)|| = O(ξk)

H.3: Bound ||γγ′|| and ||En[γb′i(ai + εi)]|| First consider

||γγ′|| ≤ sup
z∈Z,t∈T

|τt(z)|2||E[bi]E[bi]||

≤ sup
z∈Z,t∈T

|τt(z)|2||E[bib
′
i]||

= Op(1)
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by Assumption A.1 and A.6. For the second term note that using H.2 yields

||En[γb′i]|| ≤ sup
z∈Z,t∈T

|τt(z)|(||En[bib
′
i]||+ op(1) )

= Op(1)

as En[bib
′
i] > En[bi]E[bi] w.p.a. 1 and Assumption A.1. Thus

||En[γb′i(ai + εi)]|| ≤ max
1≤i≤n

|ai + εi|||En[γb′i]||

= Op(n
1/m)Op(1)

= Op(n
1/m)

where the max rate follows from Assumption A.4 and the boundedness of ai.

D.3 Asymptotic Normality

D.3.1 Asymptotically linear representation

First we provide some additional auxiliary results:

(i) Linearization of the unconditional weights:

π̂t∑
t6=0 π̂t

− πt∑
t6=0 πt

=
π̂t

1− π̂0

− πt
1− π0

=
π̂t(1− π0)− (1− π0)πt + (1− π0)πt − πt(1− π̂0)

(1− π0)(1− π̂0)

=
1− π0

1− π̂0

1

(1− π0)2
En[([Dt,i − πt](1− π0) + [D0,i − π0]πt)]
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(ii) Simplification of estimated weights due to multiplicative structure:

√
nEn[bi(ψi(η̂, π̂)− ψi(η̂, π))]

=
∑
t6=0

En[biψ
[t,0]
i (η̂)]

√
n

(
π̂t∑
t6=0 π̂t

− πt∑
t6=0 πt

)

=
∑
t6=0

E[biψ
[t,0]
i (η)]

(1− π0)2
Gn[(Dt,i(1− π0) +D0,iπt)] +Op(n

−1/2)

= Gn

[∑
t6=0

E[biτt(Zi)](Dt,i(1− π0) +D0,iπt)

(1− π0)2

]
+Op(n

−1/2)

≡ Gn[
∑
t6=0

E[biτt(Zi)]a
[t]
i ] +Op(n

−1/2)

= Gn[
∑
t6=0

γta
[t]
i ] + op(1).

where the second equality and its remainder follows from H.1.

(iii) Simplification for the estimated nuisance part:

√
nEn[bi(ψi(η̂, π)− ψi(η, π))] =

∑
t6=0

πt∑
t6=0 πt

√
nEn[bi(ψ

[t,0]
i (η̂)− ψ[t,0]

i (η))]

implies that

√
n||En[bi(ψi(η̂, π)− ψi(η, π))]|| = Op(Bn + Λn) = o(1)

by the triangle inequality together with SC, Lemma A.3.

(iv) LLN for Q matrix (Rudelson, 1999): Let Q = 1
n

∑n
i=1E[bib

′
i] and assume

that Q has bounded eigenvalues from above and below uniformly over n.

E||Q̂−Q|| .P
ξ2
k log k

n
+

√
ξ2
k||Q|| log k

n

.P

√
ξ2
k log k

n

due to the bounded eigenvalues.

(v) Bound approximation error with Gn: Let α be a k dimensional vector of unit

norm, i.e. ||α|| = 1 (or any other constant).
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misspecification part

||α′(Q̂−1 −Q−1)Gn[biri]|| .P

√
ξ2
k log k

n
ξkck
√
k = o(1)

where the last equality comes from A.2. See BCCK, proof of Theorem 4.1 for the

derivations.

regular part We consider the simplified case with approximation term for the treatment

probabilities, i.e. γ = γt and ai = a
[t]
i as J is finite and all elements are of the same rate

and therefore this will not affect any bounds in the following. Now note that ai are iid

and bounded. Denote xi as the set of all observables for observation i. We have that

V [Gn[biεi + γai]|x1, . . . , xn] ≤ C(Q̂+ γγ′) ≤ C(Q̂+Q)

in a positive semi-definite sense. The second bound follows from H.3. Now note that

E[α′(Q̂−1 −Q−1)Gn[biεi + γai]|x1, . . . , xn] = 0.

Thus by A.1, we have that

α′(Q̂−1 −Q−1)V [Gn[biεi + γai]|x1, . . . , xn](Q̂−1 −Q−1)α

. C(||Q̂||+ ||Q||)||Q̂−1||2||||Q−1||2||Q̂−Q||2

.P
ξ2
k log k

n

by (iv). Chebyshev’s inequality then implies that

α′(Q̂−1 −Q−1)Gn[biεi + γai] .P

√
ξ2
k log k

n

(vi) Asymptotically linear representation: Now we expand the original estimator
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around the BLP:

√
nα′(β̂ − β0) = α′Q̂−1

√
nEn[bi(ψ(η̂, π̂)− b′iβ0)]

= α′Q̂−1

(√
nEn[bi(ψ(η̂, π)− ψ(η0, π))] +

√
nEn[bi(ψ(η0, π)− b′iβ0)]

+
√
nEn[bi(ψ(η̂, π̂)− ψ(η̂, π))]

)
= α′(Q−1 + (Q̂−1 −Q−1))

(√
nEn[bi(ψ(η̂, π)− ψ(η0, π))] +Gn[bi(ri + εi) + γai]

)
= α′Q−1Gn[biεi + γai] +Rn(α)

where with probability approaching one

sup
η∈Tn
||Rn(α)|| = Op(Bn ∨ Λn ∨

√
ξ2
k log k

n
(1 + ckξk

√
k ∧ ξ2

k)) = o(1)

where we use (i) - (v) from above and assumptions A.1 - A.6. The result differs in the

sense that the decomposition term has a different first order term but the remainder order

is the same as in SC under the given assumptions.

(vii) second decomposition term ∆ = nATE − rATE: Note that due to the

multiplicative structure of the decomposition we have that for any η

ψ
[nATE]
i (η, π̂)− ψ[rATE]

i (η, π̂)− (ψ
[nATE]
i (η, π)− ψ[rATE]

i (η, π))

=
∑
t6=0

ψ
[t,0]
i (η)

[
πt∑
t6=0 πt

− π̂t∑
t6=0 πt

]
= −(ψ

[rATE]
i (η, π̂)− ψ[rATE]

i (η, π))

Thus we obtain an analogous asymptotically linear representation with a simple sign

flip which does not affect the rates of any bounds used above:

√
nα′(β̂ − β0) = α′Q−1Gn[biεi − γai] +Rn(α)

Note that the interpretation of εi and ri are different as they are now estimation and

approximation error for the conditional mean of the ∆ decomposition term.
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D.3.2 Asymptotic normality with known variance

Here we show that

√
nα′(β̂ − β0)

α′Ω0α

d→ N (0, 1)

with

Ω0 = Q−1V [biεi + γai]Q
−1 = Q−1V0Q

−1.

Let

Ω0 = Q−1V [biεi + γai]Q
−1 = Q−1V0Q

−1

Ω1 = Q−1E[bib
′
iε

2
i ]Q

−1 = Q−1V1Q
−1

Ω2 = Q−1V [γai]Q
−1 = Q−1V2Q

−1

These matrices have bounded eigenvalues uniformly over n due to Assumptions A.1 and

A.6 (see also H.3 for the auxiliary step in Ω2).

Now we use the following auxiliary steps:

(viii) Ratio bounds The eigenvalue assumptions imply that the ratio of quadratic

forms are bounded, i.e. for j=1,2

0 < λ <
λmin(Ωj)

λmax(Ω0)
≤ α′Ωjα

α′Ω0α
≤ λmax(Ωj)

λmin(Ω0)
< λ̄ <∞

(ix) Square bounds for sum of two random variables. Let A, B denote two

continuous random variables. Note that for any δ > 0 we have that

E[A2
1(|A+B| > δ)] ≤ E[A2

1(|A|+ |B| > δ)(1(A > B) + 1(A ≤ B))]

≤ E[A2
1(2|A| > δ)1(A > B)] + E[B2

1(2|B| > δ)1(A ≤ B)]

≤ E[A2
1(A > δ/2)] + E[B2

1(B > δ/2)]
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Thus we obtain that

E[(A+B)2
1(|A+B| > δ)] ≤ 2E[(A2 +B2)1(|A+B| > δ)]

≤ 4(E[A2
1(A > δ/2)] + E[B2

1(B > δ/2)])

Now we use (viii), (ix), and H.2 and H.3 to examine the Lindeberg condition for the

empirical process. Without loss of generality, assume that Rn(α)→ 0. The part of the

approximation error could also be kept analogously to BCCK, proof of Theorem 4.2 under

the given assumptions. We obtain that

√
nα′(β̂ − β0)√
α′Ω0α

=
α′√
α′Ω0α

Q−1Gn[biεi + γai] + op(1)

Note that the biεi + γai are iid. Thus, by construction, the variance of the leading term is

one. Now note that for each δ > 0

n∑
i=1

E

[∣∣∣∣ α′√
α′Ω0α

Q−1(biεi + γai)

∣∣∣∣2∣∣∣∣1(∣∣∣∣ α′√
α′Ω0α

Q−1(biεi + γai)

∣∣∣∣ > δ

)]
≤ 4

n∑
i=1

((
α′Ω1α

α′Ω0α

)(
E

[∣∣∣∣ α′√
α′Ω1α

Q−1(biεi)

∣∣∣∣2∣∣∣∣1(∣∣∣∣ α′√
α′Ω1α

Q−1biεi

∣∣∣∣ > δ/2

√
α′Ω0α

α′Ω1α

)])
+

(
α′Ω2α

α′Ω0α

)(
E

[∣∣∣∣ α′√
α′Ω2α

Q−1γai

∣∣∣∣2∣∣∣∣1(∣∣∣∣ α′√
α′Ω2α

Q−1γai

∣∣∣∣ > δ/2

√
α′Ω0α

α′Ω2α

)]))
≤ 4

n∑
i=1

(
λ̄

(
E

[∣∣∣∣ α′√
α′Ω1α

Q−1(biεi)

∣∣∣∣2∣∣∣∣1(∣∣∣∣ α′√
α′Ω1α

Q−1biεi

∣∣∣∣ > δ/(2
√
λ)

)])
+ λ̄

(
E

[∣∣∣∣ α′√
α′Ω2α

Q−1γai

∣∣∣∣2∣∣∣∣1(∣∣∣∣ α′√
α′Ω2α

Q−1γai

∣∣∣∣ > δ/(2
√
λ)

)]))
= o(1)

where the last line follows from A.2 and H.3 together with the same arguments as in

BCCK, Proof of Theorem 4.2. Note that we only need a uniform integrability condition

for εi as in BCCK, not for ai as these are (uniformly) bounded random variables. The

CLT in then follows from the sufficiency of Lindeberg’s condition.
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D.4 Asymptotic Variance Estimation

D.4.1 Variance Decomposition

Define

Σ = E[(biεi − γai)(biεi − γai)′]

Σn = En[(biεi − γai)(biεi − γai)′]

Σ̂ = En[(biei − γ̂âi)(biei − γ̂âi)′]

with ei = ψi(η̂0, π̂)− b′iβ̂ and âi = ai(π̂0 − π0) obtained by replacing the true probabilities

π in ai with the sample estimates π̂. Using π̂0 here is without loss of generality as all π̂

have the same convergence rate. In the following we proof that ||Σ̂−Σ|| = op(1). Consider

the decomposition:

||Σ̂− Σn||

= ||En[(biei − biεi + γai − γ̂ai)(biei − biεi + 2biεi − [γ̂âi − γai + 2γai])]||

≤ 2(||En[(γ̂âi − γai)(γai + biεi)]||+ ||En[(biei − biεi)(γai + biεi)]||

+ ||En[(biei − biεi)(biei − biεi)′]||+ ||En[(γ̂âi − γai)(γ̂âi − γai)′]||)

= 2(M.1 +M.2 +M.3 +M.4)

where the first equality comes from the definition and the second inequality from the

binomial formula 2E[aa′] + E[bb′] ≥ E[(a+ b)(a+ b)′]. Decomposing the individual term

M.1 yields:

M.1 ≤ ||En[(γ̂ − γ)(âi − ai)(biεi + γai)
′]||+ ||E[γ(âi − ai)(biεi + γai)

′]||

+ ||E[(γ̂ − γ)ai(biεi + γai)
′]||

= M.1a+M.1b+M.1c.
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Further bounding yields

M.1a ≤ ||γ̂ − γ|||π̂0 − π0|(sup
z
||b(z)||En[|aiεi|] + ||γ||En[a2

i ])||

= Op(n
−1/2)Op(n

−1/2)[ξkOp(1) + ξkOp(1)]

= Op(xi/n)

= op(1)

where the rates come from H.1 and H.2 together with Assumption A.2. Moreover

M1.b ≤ |π̂0 − π|(||En[γb′iaiεi]||+ ||γγ′||En[a2
i ])

= Op(n
−1/2)(Op(n

1/m) +Op(1))

= op(1)

by using H.3. For the last term we have that

M1.c ≤ ||γ̂ − γ||(sup
z
||b(z)||En[|aiεi|] + ||γ||En[a2

i ])||

= Op(n
−1/2)ξkOp(1)

= op(1)

similarly to M1.a using H.1 and H.2 together with Assumption A.2. For M.2 note that

Assumption A.5 implies that max1≤i≤n |ei − εi| ≤ κ1
n with probability going to one and ai

is bounded a.s. and max1≤i≤n |εi| = Op(n
1/m) due to Assumption A.4. Thus

M.2 = ||E[(ei − εi)(biγ′ai + bib
′
iεi)]||

≤ max
1≤i≤n

|ei − εi|( max
1≤i≤n

|ai|||E[biγ
′]||+ max

1≤i≤n
|εi|||En[bib

′
i]||

≤ κ1
nOp(1) + κ1

nn
1/mOp(1)

= Op(κ
1
nn

1/m)

= op(1)
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M.3 can be found in SC in their proof of Theorem 3.3. For that note that in their proof

they rely on the conditions of BCCK on uniform error bounds for Lemma 4.2 and Theorem

4.6. It can be easily verified that these are implied by assumption A.2 and A.3. and A.7

together. They obtain that

M.3 = Op(κ
2
n) = op(1)

For the last term, using the triangle inequality and binomial formula twice yields

M.4 ≤ 4(||E[(γ̂ − γ)(γ̂ − γ)′(âi − ai)2]||+ ||E[γγ′(âi − ai)2]||+ ||E[(γ̂ − γ)(γ̂ − γ)′â2
i ||

= ||γ̂ − γ||2|π̂0 − π0|2Op(1) + ||γγ′|||π̂0 − π0|2Op(1) + ||γ̂ − γ||2Op(1)

= Op(n
−1)

= op(1)

using H.1. and H.3. Now finally note that

||Σn − Σ|| = op(1)

by (iv). The final result then follows straightforwardly from Theorem 4.6 in BCCK.

D.4.2 Adaptions to Lemma 4.2. in Belloni et al. (2015)

Here we accommodate our assumptions to obtain a result similar to Lemma 4.2 in BCCK

to use the bounds from their Theorem 4.6. Note that A.1 - A.5. imply all the assumptions

for Lemma 4.2, however the asymptotic linearization and the order of its remainder has to

be adjusted to the different empirical process at hand that also depends on the estimated

unconditional weights. In particular, we need to derive an equivalent or stronger result as

in (A.52) in BCCK. For the approximation error part, the proof works analogously.

Let ρ = (ρ1, . . . , ρn) ∈ P := {ρ ∈ Rn : ρi = α(z)′(Q̂−1 −Q−1)γai, z ∈ Z}. Define norm

||ρ||2n,2 = En[ρ2
i ]. Let ωi be independent Rademacher random variables with P (ωi = 1) =

P (ωi = −1) = 1/2 and let ω = (ω1, . . . , ωn) and Eω denote the expectation w.r.t. ω. First
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note that

sup
z
|α(z)′(Q̂−1 −Q−1)Gn[(piεi + γai)]|

≤ sup
z∈Z
|α(z)′(Q̂−1 −Q−1)Gn[piεi]|+ sup

z∈Z
|α(z)′(Q̂−1 −Q−1)Gn[γai]|

= M.5 +M.6

M.5 is controlled for in BCCK, proof of Lemma 4.2. For M.6 note that by Dudley’s

inequality

Eω[sup
z∈Z
|α(z)′(Q̂−1 −Q−1)Gn[ωiγai]|] ≤

∫ 2 supρ∈P ||ρ||n,2

0

√
logN(P, || · · · ||n,2, ε)dε

≤
∫ 2C||Q̂−1−Q̂−1||||γγ′||1/2

0

√
logN(P, || · · · ||n,2, ε)dε

as ai are bounded random variables. Now note that for any z, z′ ∈ Z

E[(α(z)− α(z′))(Q̂−1 −Q−1)γai)
2]1/2

≤ max
1≤i≤n

|ai|||(α(z)− α(z′)||||(Q̂−1 −Q−1)||||γγ′||1/2

≤ ξLkC||(Q̂−1 −Q−1)||||γγ′||1/2||z − z′||

and thus

N(P, || · · · ||n,2, ε) ≤
(
ξLkC2||(Q̂−1 −Q−1)||||γγ′||1/2/ε

)d
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for some C2 > 0. Plugging this back into the integral yields

∫ 2C||Q−1−Q−1||||γγ′||1/2

0

√
logN(P, || · · · ||n,2, ε)dε

≤ ξLkC||(Q̂−1 −Q−1)||||γγ′||1/2
∫ 2

0

√
d log(ξLkC2/ε)dε

≤ ||Q̂−Q||||Q−1||||Q̂−1||||γγ′||1/2 log(ξLk )O(1)

≤
√
ζ2
k log(k)/n log(ξLk )Op(1)

= Op

(√
ζ2
k log2(k)/n

)

where the second last line follows from (iv), H.3, and Assumption A.1. The last line

is due to Assumption A.7. This rate is clearly smaller than the rate for M.5 in BCCK

n1/m
√
ζ2
k log2(k)/n and therefore does not affect the relevant approximation error order.

Overall we obtain:

E

[
sup
z
|α(z)′(Q̂−1 −Q−1)Gn[(piεi + γai)]|

∣∣∣∣z1, . . . , zn

]
≤ CE

[
Eω

[
sup
z
|α(z)′(Q̂−1 −Q−1)Gn[ωi(piεi + γai)]|

]∣∣∣∣z1, . . . , zn

]

= Op

(
n1/m

√
ξ2
k log2(k)

n

)
= op(1)

by A.2. Using (iv) then implies that ||Ω̂ − Ω0|| = op(1). This in conjunction with the

asymptotic normality above proves Theorem 5.1.

E Supplementary Material for Section 4

E.1 Neyman-orthogonality

The key insight required here is that the nATE and rATE scores are Neyman-orthogonal

with known unconditional probabilities πt, t = 1, . . . , J . We show how the additional

estimation error can be incorporated in Appendix D. Here we are concerned with the

Gateaux derivative of the nATE and rATE scores with respect to the vector of infinite-
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dimensional nuisance parameters η = (µ(x), p(x)) = (µ0(x), . . . , µJ(x), e0(x), . . . , eJ(x))′.

As π is assumed to be known, we suppress dependence ψ(η, π) = ψ(η) out of convenience

for now. Suppressing also the dependencies of the nuisance parameters on x, we write the

path-wise derivative of the conditional expectation of a score with respect to the vector of

nuisance parameters as

∂ηE[ψi(η)|Xi = x] = ∂rE[ψi(. . . , µt + r(µ̃t − µt), . . . , et + r(ẽt − et), . . . )|Xi = x]|r=0

First, we revisit Neyman-orthogonality of the doubly robust score:

∂rE[ψ
[t]
i (η + r(η̃ − η))|Xi = x]|r=0

= ∂rE

[
(µt + r(µ̃t − µt)) +

Dt,iYi
et + r(ẽt − et)

− Dt,i(µt + r(µ̃t − µt))
et + r(ẽt − et)

∣∣∣∣Xi = x

] ∣∣∣∣
r=0

= (µ̃t − µt)−
etµt(ẽt − et)

e2
t

− e2
t (µ̃t − µt)− etµt(ẽt − et)

e2
t

= 0

where we use that E[Dt,iYi|Xi = x] = E[Dt,i

∑
tDt,iYi(t)|Xi = x] = E[Dt,iYi(t)|Xi =

x] = etµt by the observational rule and Assumption 1.

E.1.1 rATE

As the rATE score is a linear combination of doubly robust scores, it inherits the Neyman-

orthogonality of its components:

∂rE[ψ
[rATE]
i (η + r(η̃ − η))|Xi = x]|r=0

=
∑
t6=0

πt
1− π0

∂rE[ψ
[t]
i (η + r(η̃ − η))|Xi = x]|r=0

− ∂rE[ψ
[0]
i (η + r(η̃ − η))|Xi = x]|r=0

= 0
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E.1.2 nATE

The nATE score differs from the standard doubly robust scores but can still be shown to

be Neyman-orthogonal:

∂rE[ψ
[nATE]
i (η + r(η̃ − η))|Xi = x]|r=0

= ∂rE

[∑
t6=0[(µt + r(µ̃t − µt))(et + r(ẽt − et))]∑

t6=0(et + r(ẽt − et))
+

DiYi∑
t6=0(et + r(ẽt − et))

−
Di

∑
t6=0[(µt + r(µ̃t − µt))(et + r(ẽt − et))]

[
∑

t6=0(et + r(ẽt − et))]2

∣∣∣∣∣Xi = x

] ∣∣∣∣∣
r=0

− ∂rE[ψ
[0]
i (η + r(η̃ − η))|Xi = x]|r=0

=

∑
t6=0[µt(ẽt − et) + et(µ̃t − µt)]

∑
t6=0 et

[
∑

t6=0 et]
2

−
∑

t6=0 µtet
∑

t6=0(ẽt − et)
[
∑

t6=0 et]
2

−
∑

t6=0 etµt
∑

t6=0(ẽt − et)
[
∑

t6=0 et]
2

−
∑

t6=0 et
∑

t6=0[µt(ẽt − et) + et(µ̃t − µt)]
[
∑

t6=0 et]
2

+ 2

∑
t6=0 µtet

∑
t6=0(ẽt − et)

[
∑

t6=0 et]
2

− ∂rE[ψ
[0]
i (η + r(η̃ − η))|Xi = x]|r=0

= 0

where we use that E[DiYi|Xi = x] = E[Di

∑
tDt,iYi(t)|Xi = x] =

∑
t6=0 etµt by the

observational rule and Assumption 1. Consequently, the difference between the nATE

and rATE score that forms the ∆ score is Neyman-orthogonal as well:

∂ηE[ψ
[nATE]
i (η)− ψ[rATE]

i (η)|Xi = x] = 0

F Supplementary Material for Section 6

Consider the following sequence of probability measures {Fn}∞n=1 such that T ≡ Tn =

{0, 1, . . . , Jn} with Jn → ∞. We still assume strong overlap for control propensities,

i.e infx∈X e0(x) > e > 0 almost surely. Now additionally assume that almost surely for

t 6= 0

et(Xi) ≡ et,n(Xi) =
et,n(Xi)

Jn
(22)
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such that

inf
n≥1

inf
x∈X

et,n(x) > e > 0 (23)

sup
n≥1

sup
x∈X

et,n(x) < C (24)

for t 6= 0. (23) is a uniform strong overlap assumption for the rescaled generalized

propensities et,n(x) = Jnet,n(x). This allows the generalized propensity scores to converge

to zero, i.e. for many treatment with small selection probabilities but controls their rate.

This assumption says that the increase in the number of treatments will qualitatively be

similar over the support of confounders, i.e. units have a somewhat comparable decrease

in their relative propensities along the sequences. (24) is only for normalization in what

follows. Note that this also implies that the unconditional version probabilities πt ≡ πt,n

follow

πt,n = EFn [et,n(Xi)]

= EFn

[
et,n(Xi)

Jn

]
≡
πt,n
Jn

with πt,n being uniformly bounded away from zero and from above. Now we consider the

variance along sequences of probability measures for the rATE. The dominating term for

the variance of the rATE estimator is given by

√
n(θ̂rATE − θrATE) =

1√
n

n∑
i=1

∑
t6=0

πt
Di(t)εi(t)

et(Xi)

where εi(t) denotes the conditional mean error of potential outcome for version t. Without

loss of generality we assume conditional homoskedasticity E[εi(t)
2|Xi] = σ2 for all t. The
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variance is then given by

VFn [
√
n(θ̂rATE − θrATE)] = EFn

[(∑
t6=0

πt,n
Di(t)εi(t)

et,n(Xi)

)2]
= EFn

[∑
t6=0

π2
t,n

Di(t)εi(t)
2

et,n(Xi)2

]
= σ2

∑
t6=0

π2
t,nEFn

[
1

et,n(Xi)

]

where we used the iid assumption in the first equation, orthogonality of the version

dummies Di(t)Di(t
′) = 0 for all t 6= t′ in the second, and homoskedasticity as well as

treatment conditional independence Assumption 1 in the third. Plugging in the sequences

yields that

VFn [
√
n(θ̂rATE − θrATE)] = σ2

∑
t6=0

π2
t,n

J2
n

EFn

[
Jn

et,n(Xi)

]
≤ σ2Jn ×

C2

Jn
e−1

= O(1)

uniformly over n by (23) and (24). Thus the variance is always bounded along the sequences,

no matter the rate at which Jn → ∞. In contrast to that, consider the estimation of a

treatment effect in a standard multi-valued framework. Here the leading term for the

asymptotic variance for the estimator of a potential outcome t is given by

√
n(µ̂t − µt) =

1√
n

n∑
i=1

Di(t)εi(t)

et(Xi)
(25)

for every t ∈ T . Along the sequences this has variance

VFn [
√
n(µ̂t − µt)] = σ2EFn

[
1

et,n(Xi)

]
= σ2JnEFn

[
1

et,n(Xi)

]
= O(Jn)
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by (24). Thus, it diverges at the same rate as the number of treatments. An equivalent

argument applies to the effect parameter θt,t′ = µt − µt′ .

G Supplementary Material for Section 7

We simulate n observations of (Yi, Xi, Ti). Let Xi be a k-dimensional vector of uniform

random variables Xi,j ∼ U [−1, 1] for j = 1, . . . , p and εi ∼ N (0, 1). We let Yi(t) = ui for

t 6= 1 and Yi(1) = τ + ui. Treatment probabilities P (Ti = t|Xi) = et(Xi) for t = 0, 1 . . . , J

(with t = 0 denoting control) are generated under independence of irrelevant alternatives

as

e0(x) =
1

1 +
∑

j 6=0 exp(x1βj)

et(x) =
exp(x1βt)

1 +
∑

j 6=0 exp(x1βj)

with β1 = 1 and βt = 0 for all t 6= 1. Thus, conditional treatment effects are given

by τ1(x) = τ = 10 and τt(x) = 0 for all t 6= 1. This implies the following conditional

decomposition terms (II):

E[rATE(Xi)|Xi,1 = x1] = τ

[
π1

1− π0

]
E[nATE(Xi)|Xi,1 = x1] = τ

[
e1(x1)

1− e0(x1)

]
E[∆(Xi)|Xi,1 = x1] = τ

[
e1(x1)

1− e0(x1)
− π1

1− π0

]
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Note that E[Xi,1] = 0 and V [Xi,1] = 1/3. Thus the best linear approximation of

E[∆(Xi)|Xi,1] has population parameters (α, β) with

α = τE

[
e1(Xi,1)

1− e0(Xi,1)
− π1

1− π0

]
− βE[Xi,1]

= τE

[
e1(Xi,1)

1− e0(Xi,1)
− π1

1− π0

]
β =

τ

V [Xi,1]
E

[
e1(Xi,1)

1− e0(Xi,1)
Xi,1 −

π1

1− π0

Xi,1

]
= 3τE

[
e1(Xi,1)

1− e0(Xi,1)
Xi,1

]

and equivalently for the rATE and nATE. Evaluating the expectation yields the following

parameterization:

Table G.1: Monte Carlo Study: Parameterization

rATE nATE ∆

α 5.127 5.000 -.127
β 0.000 2.383 2.383

H Supplementary Material for Section 8.1

The distribution of smoking intensities is shown in Figure H.1 and Table H.1. The majority

of mothers do not smoke during pregnancy ranging from 76% for Black mothers to 96% in

the category "Other". However, the right panel of Figure H.1 shows that conditional on

smoking white mothers and older mothers smoke more heavily.

Table H.1: Distribution of smoking intensities by ethnicity (in percent)

Black Hispanic Other White All
> 20 cigs 0.7 0.5 0.2 1.2 1.1
16-20 cigs 4.4 2.7 0.9 5.5 5.1
11-15 cigs 0.7 0.5 0.2 1.3 1.2
6-10 cigs 11.5 5.4 1.5 7.4 7.8
1-5 cigs 6.7 4.0 1.2 3.0 3.6
None 76.1 87.0 96.0 81.6 81.2

Figure H.2 replicates the solid line of Figure 1 in Cattaneo (2010) with Double Machine

Learning as a byproduct. Our results are very similar and show that average potential
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Figure H.1: Distribution of smoking intensities along heterogeneity variables
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outcomes become smaller the higher the intensity of smoking.

I Supplementary Material for Section 8.2

The distribution of versions is shown in Figure I.1 and Table I.1. We observe that women

are overrepresented in clerical, health and food training, while men are more likely to be

observed in automechanics, welding, electrical and construction training.

As a byproduct of the decomposition estimation, we create the AIPW scores for

every treatment version. This allows us to inspect their often noisily estimated average

potential outcomes in Figure I.2. We observe a clear pattern. The point estimates of the

predominantly male trainings are all larger than the predominantly female ones.
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Figure H.2: Average potential outcomes of smoking intensities
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Note: Average potential outcomes estimated with Double Machine Learning using an ensemble of
Ridge, Lasso and Random Forest regression. Point estimates and 95%-confidence interval.

Figure I.1: Distribution of treatment versions by gender
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Table I.1: Share of observations in treatment versions (in percent)

Female Male All
Control 36.1 43.3 40.2
No JC 19.6 13.5 16.1
JC without voc 9.3 10.3 9.8
Clerical 11.1 2.4 6.1
Health 7.8 1.3 4.1
Auto 0.3 2.5 1.6
Welding 0.6 2.4 1.6
Electrical 0.3 1.1 0.8
Construction 1.4 8.0 5.2
Food 2.7 2.1 2.4
Other 3.6 6.2 5.1
Multiple 7.2 6.8 7.0

Figure I.2: Average potential outcomes of treatment versions
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Note: Average potential outcomes estimated with Double Machine Learning using an ensemble of
Ridge, Lasso and Random Forest regression. Point estimates and 95%-confidence interval.
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