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Abstract

We study a robust Bayesian method for the average treatment effect (ATE) un-

der unconfoundedness. This Bayesian procedure involves a correction term to prior

distributions adjusted by the propensity score. We prove asymptotic equivalence of

the robust Bayesian estimator and efficient frequentist estimators by establishing a

new semiparametric Bernstein-von Mises theorem under double robustness, i.e., the

lack of smoothness of regression functions can be compensated by high regularity of

the propensity score and vice versa. Consequently, the resulting Bayesian point esti-

mator enjoys the debiasing feature with the frequentist-type doubly robust estimator

and the Bayesian credible sets form confidence intervals with asymptotically exact

coverage probability. In simulations, we find that this corrected Bayesian procedure

leads to significant bias reduction of point estimation and accurate coverage of con-

fidence intervals, especially when the dimensionality of covariates is large relative to

the sample size and the underlying functions are complex. We illustrate our method

in an application to the National Supported Work Demonstration.
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1 Introduction

In recent years, Bayesian approaches have become increasingly popular in the causal in-

ference and program evaluation due to their excellent performance in finite samples. By

assigning nonparametric priors to the function-valued parameters in the model, modern

Bayesian inference fully utilize the flexibility of powerful machine learning algorithms. Re-

lated constructions using Gaussian Processes (GP) and Bayesian additive regression trees

(BART) have both been shown to have excellent empirical performance (Ray and Szabó,

2019; Hahn, Murray, and Carvalho, 2020). In Bayesian analysis, two fundamental aims

can be achieved at the same time: point estimation and uncertainty quantification. Re-

searchers can directly read off quantities including both the posterior means and credible

sets, once they have draws from the posterior distribution. One remarkable feature is that

the Bayesian approach is able to incorporate prior knowledge and adapt to the presence

of many covariates. Also, Bayesian approach have traditional appeal in the missing data

literature, besides their recent popularity.

This paper establishes the double-robustness for Bayesian inference on the average treat-

ment effect (ATE) under unconfoundedness given a set of pretreatment covariates. Despite

the recent success of Bayesian approaches, the literature on the asymptotic properties of

the average treatment effect estimation is mainly frequentist based. Indeed, early work on

semiparametric Bayesian approaches to the missing data problem produced negative results,

proving that many common classes of priors, or more generally likelihood-based procedures,

produce inconsistent estimates assuming no smoothness on the underlying parameters; see

the results and discussion in Robins and Ritov (1997) or Ritov, Bickel, Gamst, and Kleijn

(2014). In contrast, once the prior distribution is corrected via the propensity score, Ray

and van der Vaart (2020) establish asymptotic equivalence between the Bayesian procedure

and efficient semiparametric estimators via the so called Bernstein-von Mises (BvM) the-

orem.1 They show that their novel prior correction2 significantly reduces the smoothness

requirements on the propensity score function, but it still requires differentiability of the

order p{2 at minimum for the conditional mean in the outcome equation, where p denotes

the dimensionality of covarites.

1Strictly speaking, the main objective in Ray and van der Vaart (2020) is about the mean response in
a missing data model, which is equivalent to observing one arm (either the treatment or control) of the
causal setup.

2In an earlier unpublished working paper, Yang, Cheng, and Dunson (2015) suggested a related data-
dependent prior, which makes certain adjustment through the least favorable direction for partial linear
models. Their original purpose is to simplify the verification of the prior stability condition used in proving
the BvM theorem. However, Yang, Cheng, and Dunson (2015) did not explore the bias reduction or double
robustness property of this procedure.
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In this paper, we show that Bayesian estimators with propensity score adjusted pri-

ors satisfy the semiparametric Bernstein-von Mises theorem under much less restrictive

smoothness assumptions. Our assumptions take the double-robust form, that is, lack of

smoothness of regression functions can be compensated by high regularity of the propen-

sity score and vice versa. The proof of this result relies on important insights from the

frequentists’ study on the Riesz represantor, see Chernozhukov, Newey, and Singh (2020a)

or Hirshberg and Wager (2021). Specifically, we are able to show that a correction term

for the prior, which depends on the propensity score and forms a Riesz representer, leads

to a centered term which can be controlled by elementary methods rather than by the

more stringent stochastic equicontinuity. In addition, when we examine the prior stability

condition, we tighten the maximal inequality used by Ray and van der Vaart (2020) by

exploiting the product structure in the problem, so that the order of a negligible term is

determined by the product of the convergence rates of the outcome and selection equations.

Although this paper focuses on the average treatment effect due to its popularity in

empirical economics, the methodology per se is more general in nature and could be im-

plemented beyond the ATE example. We establish novel Bayesian procedures that build

on alternative corrections of the priors for other causal parameters such as the average

treatment effect on the treated (ATT) and the average derivative (AD).3 Similar to ATE,

the prior correction used for other parameters of interest are also closely related to the

Riesz represantors and the so-called “least favorable direction” : For ATT the correction

term consists of the treated proportion and the propensity score, and for AD it involves a

conditional density and its derivative.

Our theoretical results have appealing consequences for practitioners. Our robust

Bayesian inference procedure corrects priors based on propensity scores and thus follows

the idea of calibrated Bayes methodology advocated by Rubin (1984). The resulting cred-

ible interval is Bayesianly justifiable, as it makes use of posterior distribution conditional

on the data, we also refer to Imbens (2021) for the preference of using Bayesian posteriors

to quantify the estimation uncertainty. Our Bernstein van-Mises Theorem justifies a sound

Bayesian inference procedure with prior correction, which internalizes bias correction and

delivers asymptotically valid confidence interval. In our Monte Carlo simulations, we find

that the prior correction through the estimated propensity score significantly reduces the

3The AD is an important semiparametric estimand in its own right and it has been regained the
popularity as a structural parameter with causal interpretation when the treatment status is continuous.
For instance, Chernozhukov, Newey, and Singh (2020a,b) advocated that the particular coordinate of the
AD with respect to the continuous treatment status represents an approximation of the effect of policy
that shifts the distribution of covariates through this particular direction.
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bias of the Bayesian point estimator, which is consistent with our theory about its asymp-

totic equivalence with the frequentist doubly robust estimator. Also, the method leads

to substantial improved empirical coverage probabilities, in particular, in the presence of

many covariates relative to the sample size. Its computation can be implemented by ex-

isting software with the simple adjustment on the prior, so it offer greater flexibility for

practitioners to apply state-of-the-art Bayesian algorithms that can lead to valid inference

with minimal assumptions on the underlying functional classes.

Related Literature Our paper fits into a broader literature on the debiased or dou-

ble robust inference. Scharfstein et al. (1999) noted that an estimator originally developed

and identified as the locally efficient estimator in the class of augmented inverse probability

weighted (AIPW) estimators in missing data models in Robins et al. (1994), was double-

robust 4. Since then, many estimators with the double-robust property have been proposed.

In the literature of mean regression with missing data, AIPW is a popular method, where

both the missingness probability (encoded by the propensity score) and the data distri-

bution (or the conditional mean function) are modeled. In the earlier development, the

focus is typically on developing working parametric models for either the propensity score

or the conditional mean function. However, implausible parametric assumptions on the

data generating process are of limited applicability to complex phenomena in economics

and social sciences. Recent advance in the double machine learning literature have led to a

number of important developments in causal inference, utilizing flexible nonparametric or

machine learning algorithms. In this context, the double robustness the possibility to trade

off the estimation accuracy between nuisance functions. We refer readers to Chernozhukov,

Newey, and Singh (2020a) for a comprehensive survey of the recent development.

While the Bernstein-von Mises theorem for parametric Bayesian models is well estab-

lished (van der Vaart, 1998), the semiparametric version is still being studied very actively

when nonparametric priors are used. The area has received an enormous amount of atten-

tion (Castillo, 2012; Castillo and Rousseau, 2015; Norets, 2015; Yang, Cheng, and Dunson,

2015; Florens and Simoni, 2019; Ray and van der Vaart, 2020). Admitted, the technical

arguments in the aforementioned work all build on the so-called “no-bias” condition. This

is in the same spirit of the frequentist counterpart (van der Vaart, 1998), which generally

leads to harsh smoothness restrictions and may not be satisfied when the dimensionality

4An estimator is said to be doubly robust if it is consistent for the target parameter of interest when any
one of two nuisance parameters is consistently estimated. This property gives doubly robust estimators a
natural appeal: any possible inconsistency in the estimation of one nuisance parameter may be mitigated
by the consistent estimation of the other.
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increases. To the best of our knowledge, our new Bernstein-von Mises theorem is the first

one that possesses the double robustness property. We would like to mention the current

research area about the Bayesian inference in econometrics which are robust to partial or

weak identification (Chen, Christensen, and Tamer, 2018; Giacomini and Kitagawa, 2020;

Andrews and Mikusheva, 2022). The framework and the approach we take is different.

Nonetheless, they share the same scope of robustifying the Bayesian inference procedure.

A couple of recent papers present doubly robust Bayesian recipes. While sharing a

common goal of correcting for bias with a Bayesian lens, consensus has not reached on

how to conduct inference with propensity score adjustment. Ray and van der Vaart (2020);

Ray and Szabó (2019) and our study can be interpreted as Empirical Bayes which draws on

data dependent priors. Saarela, Belzile, and Stephens (2016) consider a Bayesian procedure

based on an analog of the double robust frequentist estimator given in (2.9), replacing the

empirical measure with the Bayesian bootstrap measure. Saarela, Belzile, and Stephens

(2016) also suggested that initial estimands for the outcome and selection equations should

be obtained by similar parametric weighted M-estimators using Bayesian bootstrap weights.

There is no formal BvM theorem presented in Saarela, Belzile, and Stephens (2016). An-

other recent paper by Yiu, Goudie, and Tom (2020) explored Bayesian exponentially tilted

empirical likelihood with the set of moment constraints that are of the double-robust type.

They proved a BvM theorem for the posterior constructed from the resulting exponentially

tilted empirical likelihood under parametric specifications. It is not clear how to extend

their analysis to incorporate flexible nonparametric modeling strategies.

The remainder of this paper is organized as follows. Section 2 presents the setup and

the semiparametric Bayesian inference procedure. In Section 3 we derive the least favor-

able direction and presents a main result: a doubly robust version of Bernstein-von Mises

Theorem with the implication of asymptotically exact confidence sets. Section 4 provides

an illustration using Gaussian priors. We provide numerical illustrations on both synthetic

and real data to demonstrate the practical implications of our theoretical results in Section

5. Proofs of main theoretical results can be found in Appendix A. Appendix B establishes

Lemmas used in the proof of the main findings. Auxiliary results can be found in Appendix

C. Additional simulation results are provided in Appendix D.

2 Setup and Implementation

This section provides the main setup of the average treatment effect and motivates the

methodology. Subsection 2.3 extends our framework to average treatment effects on the
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treated and the average derivatives.

2.1 Setup

Our standpoint remains frequentist, so there is a true data generating process (DGP)

denoted by P0. It is indexed by a fixed (and possibly infinite dimensional) parameter

η0 P H such that P0 “ Pη0 . A thorough frequentist analysis validates the insensitivity of

prior choices and confirms that the data can wash off the influence from priors as sample

size increases.

We consider the potential outcome framework of causal inference: for individual i,

consider a treatment indicator Di P t0, 1u. The observed outcome Yi is determined by

Yi “ DiYip1q ` p1 ´DiqYip0q where pYip1q, Yip0qq are the potential outcomes of individual

i associated with Di “ 1 or 0. This paper focuses on the binary outcome case where both

Yip1q and Yip0q take values in t1, 0u. Let X be a vector of covariates with the distribution

F and the density f . Let πpxq “ PrpDi “ 1|Xi “ xq denote the propensity score and

mpd, xq “ PrpYi “ 1|Di “ d,Xi “ xq for the conditional mean. Suppose that the researcher

observe an i.i.d. sample of Oi “ pYi, Di, Xiq for i “ 1, . . . , n. The parameter of interest is

the average treatment effect (ATE) χ0 “ ErYip1q´Yip0qs. For its identification, we impose

the following standard assumption of unconfoundness and overlap.

Assumption 1. (i) pYip0q, Yip1qq |ù Di | Xi and (ii) there exists π̄ ą 0 such that π̄ ă

πpxq ă 1´ π̄ for all x in the support of F .

Since outcome and treatment are binary the joint density of Oi “ pYi, Di, Xiq can be

written as

pπ,m,f poq “ πpxqdp1´ πpxqq1´dmpd, xqyp1´mpd, xqqp1´yqfpxq. (2.1)

The observed data Oi can be described by the triple pπ,m, fq. For prior construction it

will be useful to transform the parameters pπ,mq by a link function and we choose the

logistic function Ψptq “ 1{p1` e´tq here. Specifically, we consider the reparametrization of

pπ,m, fq given by η “ pηπ, ηm, ηf q where

ηπ “ Ψ´1
pπq, ηm “ Ψ´1

pmq, ηf “ log f. (2.2)

Below, we write mη “ Ψpηmq and πη “ Ψpηπq to make the dependence on η explicit. We
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are interested in the ATE, which under Assumption 1 is identified by

χη “ E rmηp1, Xq ´mηp0, Xqs . (2.3)

The efficient influence function (see Hahn (1998); Hirano, Imbens, and Ridder (2003)) is

given by

rχηpoq “ mηp1, xq ´mηp0, xq ` γηpd, xqpy ´mηpd, xqq ´ χη (2.4)

for some Riesz representor γη which is given by

γηpd, xq “
d

πηpxq
´

1´ d

1´ πηpxq
. (2.5)

Consequently, we can write asymptotically efficient estimators pχ with the following linear

representation:

pχ “ χ0 `
1

n

n
ÿ

i“1

rχ0pOiq ` oP0pn
´1{2

q. (2.6)

2.2 Bayesian Point Estimators and Credible Sets for the ATE

Our doubly robust inference procedure builds on a nonparametric Bayesian prior specifi-

cation for m that depends on a preliminary estimator for γ0. A pilot estimator for the

propensity score π0 is denoted by pπ based on an auxiliary sample. We consider a plug-in

estimator for the Riesz representor γ0 given by

pγpd, xq “
d

pπpxq
´

1´ d

1´ pπpxq
.

The use of an auxiliary data for the estimation of the propensity simplifies the technical

analysis and is common in the related Bayesian literature, see Ray and van der Vaart

(2020) or Ignatiadis and Wager (2022). In practice, we use the full data twice and do not

sample-split; we have not observed any over-fitting or loss of coverage thereby.

In order to obtain the Bayesian point estimator and the credible set from the posterior

distribution of χη through simulation draws, our procedure builds on the following three

steps:

1. Compute the propensity score-dependent prior on m:

mηpd, xq “ Ψ pηmpd, xqq and ηm “ Wm
` λ pγ (2.7)
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where Wm is a continuous stochastic process independent of the random variable λ,

which follows a prior Np0, σ2
nq for some σn ą 0. The tuning parameter λ governs

the influence strength of the propensity score on the prior distribution of m. Smaller

σn allow for larger choices of λ but we may also set σn “ 1, see Section 4 for data

driven choices of such tuning parameters. Then we draw the posterior of ηmpd, xq

and thus mηpd, xq using Gaussian process classification, also see Section 4 for more

details. Denote the mb
ηp¨q as a generic random function drawn from this posterior,

for b “ 1, . . . , B.

2. Generate Bayesian bootstrap weights M b
n1, . . . ,M

b
nn where M b

ni “ ebi{
řn
i“1 e

b
i and ebi ’s

are independently and identically drawn from the exponential distribution Expp1q for

b “ 1, . . . , B. A generic draw from the posterior distribution for the ATE χη admits

the following representation:

χ bη “
n
ÿ

i“1

M b
ni

`

mb
ηp1, Xiq ´m

b
ηp0, Xiq

˘

, b “ 1, . . . , B. (2.8)

3. Our 100 ¨ p1´ αq% confidence set for the ATE parameter χ0 is then given by

Cnpαq “
 

χ : qnpα{2q ď χ ď qnp1´ α{2q
(

,

where qnpaq denotes with the a quantile of tχ bη : b “ 1, . . . , Bu. Additionally, we may

compute the Bayesian point estimator by the posterior mean: χη “
1
B

řB
b“1 χ

b
η .

Example 2.1 (Simulation of Prior Correction). We illustrate the role of prior correction

via propensity score adjustment in finite samples. Figure 1 plots a posterior sample of χ bη ’s

in (2.15) with B “ 5, 000. For comparison, it also plots the posterior from the conventional

Gaussian process approach without the prior correction, that is, ηm “ Wm in (2.7). It

shows that the prior correction based on the (estimated) Riesz representor shifts the center

of the posterior distribution towards the true ATE. As a result, the prior corrected algorithm

described above would yield smaller bias for the point estimator (posterior mean) as well as

more accurate coverage probability for the confidence interval. This illustrative simulation

exercise is in line with our Monte Carlo simulation results in Section 5
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Figure 1: Plots of 5, 000 posterior draws from Bayesian inference method based on Gaussian

process without prior correction (GP) and the one with prior correction described above

(GP PC). Data from Design I in the simulation section, p “ 15, sample size = 1, 000.

Remark 2.1 (Bayesian bootstrap). Under unconfoundedness and the reparametriztation

in (2.2), the ATE can be written as χη “
ş

rΨ pηmp1, xqq ´ Ψ pηmp0, xqqsdF pxq. We put a

prior probability distribution Π on the function-valued parameters and consider the posterior

distribution Πp¨|Opnqq based on the observations Opnq “ pO1, O2, ¨ ¨ ¨ , Onq. This induces a

posterior distribution on the functional of interest, i.e. ATE. We consider independent

priors on ηm and F , we have the factorization of posteriors for ηm and F given that the

likelihood function also factorizes into two products. In short, we can consider the posterior

for ηm and F separately. We consider a Dirichlet process prior for F (see, for instance,

Chamberlain and Imbens (2003)). When we restrict the base measure of the Dirichlet prior

to be zero, the posterior law of F coincides with the Bayesian bootstrap (Rubin, 1981). One

key advantage of the Bayesian bootstrap is that it allows us to incorporate a broad class of

DGPs whose posterior can be easily sampled via Bootstrap algorithm. That is, we can avoid
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an additional model for the marginal density of covariates with computationally intensive

MCMC algorithms.5

Remark 2.2 (Comparison with frequentist robust estimation). For the average treatment

effect, the perhaps most popular method for asymptotic efficient inference is given by the

double-robust estimator

n´1
n
ÿ

i“1

`

pmp1, Xiq ´ pmp0, Xiq
˘

` n´1
n
ÿ

i“1

pγpDi, Xiq
`

Yi ´ pmpDi, Xiq
˘

(2.9)

based on frequentist-type pilot estimators pm of the regression function m0 and pγ of the

Riesz representer γ0, see Newey (1994), Robins and Rotnitzky (1995), Chernozhukov, Es-

canciano, Ichimura, Newey, and Robins (2017)). More recently, Chernozhukov, Newey,

and Singh (2020b) extend this approach to the high-dimensional case (using the so called

Danzig selector). Hirshberg and Wager (2021) use the minimax linear approach with a focus

to debias a plugin estimator rather (without being explicitly designed to be double-robust).

2.3 Extension to other Causal Parameters

2.3.1 Bayesian Point Estimators and Credible Sets for the ATT

We now extend the methodology to average treatment effects for the treated (ATT) given

by ErY p1q ´ Y p0q|D “ 1s. Under unconfoundedness and the reparametrization in (2.2),

the ATT parameter can be written as

χTη “ ErY ´mηp0, Xq|D “ 1s. (2.10)

Again following Hahn (1998); Hirano, Imbens, and Ridder (2003), the efficient influence

function for the ATT parameter under unconfoundedness is given by

rχTη poq “ γTη pd, xqpy ´mηpd, xqq `
d

πη

`

mηp1, xq ´mηp0, xq ´ χ
T
η

˘

for some Riesz representor γTη which is given by

γTη pd, xq “
d

πη
´

1´ d

πη

πηpxq

1´ πηpxq
(2.11)

5We also note that replacing F by the standard empirical cummulative distribution function does not
provide sufficient randomization of F as it yields underestimation of the asymptotic variance, see (Ray and
van der Vaart, 2020, Remark 2).
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We now propose a novel Bayesian estimator for the ATT under unconfoundedness.

Based on an initial estimator pπp¨q and pπ of the propensity score πp¨q and the proportion π,

we consider a plug-in estimator for the Riesz representor γT0 given by

pγT pd, xq “
d

pπ
´

1´ d

pπ

pπpxq

1´ pπpxq
.

We consider generic draws from the ATT parameter χTη by

χT, bη “

řn
i“1MniDi

`

Yi ´mηp0, Xiq
˘

řn
i“1MniDi

, b “ 1, . . . , B, (2.12)

where mηpd, xq “ Ψ pηmpd, xqq and ηm “ Wm ` λ pγT and Mni the Bayesian bootstrap

weights introduced in the previous section. Our 100 ¨ p1´ αq% confidence set for the ATT

parameter χT0 is then given by

CTn pαq “
 

χ : qTn pα{2q ď χ ď qTn p1´ α{2q
(

,

where qTn paq denotes with the a quantile of tχT, bη : b “ 1, . . . , Bu. Our Bayesian point

estimator for the ATT is χTη “
1
B

řB
b“1 χ

T, b
η .

2.3.2 Bayesian Point Estimators and Credible Sets for the AD

Upon proper change of notations, our analysis can be easily applied to average directional

derivative (Chernozhukov, Newey, and Singh, 2020b) and more generally, linear functionals

of conditional mean (Hirshberg and Wager, 2021). Considering the average directional

derivative, if one estimates the asymptotic variance of the influence function by frequentist

methods, it involves analytical or numerical function-valued parameters or their derivatives.

In contrast, the nonparametric Bayesian inference requires neither estimation of additional

nonparametric elements nor evaluation of the derivatives.

Consider the case of continuous treatment variable D. The average derivative is then

given by

χADη “ E rBdmηpD,Xqs (2.13)

where Bdm denotes the partial derivatives of m with respect to the continuous treatment

D. The efficient influence function is

rχADη poq “ Bdmηpd, xq ´ ErBdmηpd, xqs ` γ
AD
η pd, xqpy ´mηpd, xqq
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for some Riesz representor γADη which is given by

γADη pd, xq “
Bdπηpd, xq

πηpd, xq
, (2.14)

where here πη stands for the conditional density function of D given X.

We now propose a novel estimator for the AD. Based on an initial estimator pπη of the

conditional density πη, we consider a plug-in estimator for the Riesz representor γAD0 given

by

pγADpd, xq “
Bdpπηpd, xq

pπηpd, xq
.

We consider generic draws from the AD parameter χADη by

χAD, bη “

n
ÿ

i“1

M b
niBdmηpDi, Xiq, b “ 1, . . . , B, (2.15)

where mηpd, xq “ Ψ pηmpd, xqq and ηm “ Wm ` λ pγAD and M b
ni the Bayesian bootstrap

weights introduced in the previous section. Our 100 ¨ p1 ´ αq% confidence set for the AD

parameter χAD0 is based on quantiles of the bootstrap sample (2.15). We also propose the

Bayesian point estimator for the AD by χADη “ 1
B

řB
b“1 χ

AD, b
η .

3 Main Theoretical Results

Confidence or credible sets are standard means of describing uncertainty about model pa-

rameters from a frequentist or Bayesian point of view, respectively. The classical Bernstein-

von Mises (BvM) Theorem validates Bayesian approaches from a frequentist point of view

and bridges the gap between a Bayesian and a frequentist. By virtue of the BvM Theorem,

the following distributions

?
npχη ´ pχq|Opnq and

?
nppχ´ χηq|η “ η0

are asymptotically equivalent under the underlying sampling distribution. As a conse-

quence, so are the resulting credible and confidence sets6. In the above display, the first

6On a different note, Bayesians use these BvM type results to show that standard frequentist procedures
are nearly Bayesian. So not much is lost by confining attention to Bayes procedures. And frequentists
can advocate that their inferential procedures also have desirable conditional properties as the limit of the
Bayesian counterparts.
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one is the posterior, which is of interest to Bayesians, and the second one is of interest

to frequentists in asymptotic analysis. The sequence
?
nppχn ´ χ0q is then asymptotically

normal with mean zero and variance

v0 “ P0rrχ
2
0s “ E

„

V arpY p1q|Xq

π0pXq
`
V arpY p0q|Xq

1´ π0pXq
`
`

m0p1, Xq ´m0p0, Xq ´ χ0

˘2



,

which is the smallest variance possible by the efficiency bound of Hahn (1998).

Consider the one-dimensional submodel t ÞÑ ηt defined by the path

πtpxq “ Ψpηπ ` tpqpxq, mtpd, xq “ Ψpηm ` tmqpd, xq, ftpxq “ fpxqetfpxq{EretfpXqs, (3.1)

for the given direction pp,m, fq with ErfpXqs “ 0. The difficulty of estimating the parameter

χηt for the submodels depends on the direction pp,m, fq. Among them, let ξη “ pξ
π
η , ξ

m
η , ξ

f
η q

be the least favorable direction that is associated with the most difficult submodel, i.e.,

gives rise to the largest asymptotic optimal variance for estimating χηt .
7

Lemma 3.1. Consider the submodel (3.1). Under Assumption 1, the least favorable direc-

tion for estimating the ATE parameter in (2.3) is:

ξη “ pξ
π
η , ξ

m
η , ξ

f
η q :“ p0, γηpD,Xq,mηp1, Xq ´mηp0, Xq ´ χηq , (3.2)

where the Riesz representer γη satisfies (2.5). Under Assumption 1(i) and if π̄ ă πpxq

for all x in the support of F , then the least favorable direction for estimating the ATT

parameter in (2.10) is:

ξTη “

ˆ

0, γTη pD,Xq,
D

πη

`

mηp1, Xq ´mηp0, Xq ´ χ
T
η

˘

˙

, (3.3)

where the Riesz representer γTη satisfies (2.11).

In the setup of AD (see Section 2.3.2), consider the submodel t ÞÑ ηt defined by the path

mtpd, xq “ Ψpηm` tmqpd, xq, ftpd, xq “ fpd, xqetfpd,xq{EretfpD,Xqs, with ErfpD,Xqs “ 0. The

least favorable direction for estimating the AD parameter in (2.13) is:

ξADη “
`

γADη pD,Xq, BdmpD,Xq ´ ErBdmpD,Xqs
˘

, (3.4)

where the Riesz representer γADη satisfies (2.14).

7See the proof of Lemma 3.1 in the appendix for a formal definition of the least favorable direction that
follows Ghosal and Van der Vaart (2017, p.370).
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From Lemma 3.1 we see that the least favorable direction is invariant under a shift of

the nonparametric component of propensity score π. This reflects conditions for the semi-

parametric Bernstein-von Mises theorem to hold, see Ghosal and Van der Vaart (2017). Our

prior correction, which takes the form of the (estimated) least favorable direction, exactly

provides such an invariance by giving the prior an explicit component in this direction. It

provides additional robustness against posterior inaccuracy in the ‘most difficult direction’,

i.e., the one inducing the largest bias in the ATE.

We now provide additional notation and assumptions provided for the derivation of

our semiparametric Bernstein-van Mises Theorem. The posterior distribution plays an

important role in the following analysis and is given by

Π
`

pπ,mq P A,F P B|Opnq
˘

“

ż

B

ş

A

śn
i“1 ppπ,mqpOiqdΠpπ,mq

ş
śn

i“1 ppπ,mqpOiqdΠpπ,mq
dΠpF |Opnqq.

We write LΠp
?
npχη ´ pχq|Opnqq for the marginal posterior distribution of

?
npχη ´ pχq.

Because the factorization of the likelihood function and the fact that χη does not depend

on ηπ, it is unnecessary to further discuss a prior or posterior distribution on ηφ.

We first introduce assumptions, which are high-level and discuss primitive conditions

for those in the next section. Below, we consider some measurable sets Hm
n of functions ηm

such that Πpηm P Hm
n |O

pnqq ÑP0 1.

Assumption 2. [Rates of Convergence] The functional components satisfy

}pγ ´ γ0}L2pF0q ď rn and sup
ηPHm

n

}mηpd, ¨q ´m0pd, ¨q}L2pF0q ď εn for d “ 1, 0,

where maxtεn, rnu Ñ 0 and
?
nεnrn Ñ 0. Further, }pγ}8 “ OP0p1q.

We adopt the standard empirical process notation as follows. For a function h of a ran-

dom vectorO “ pY,D,XJqJ that follows distribution P , we let P rhs “
ş

hpoqdP poq,Pnrhs “
n´1

řn
i“1 hpOiq, and Gnrhs “

?
n pPn ´ P q rhs.

Assumption 3. [Complexity] For Gn “ tmηp1, ¨q ´ mηp0, ¨q : η P Hnu we assume that

supmPGn |Pnm´ P0m| “ oP0p1q. We further impose that

sup
ηPHm

n

|Gn rppγ ´ γ0q pmη ´m0qs| “ oP0p1q.
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Recall the propensity score-dependent prior onm given in (2.7), i.e., mp¨q “ Ψ pWmp¨q ` λpγp¨qq.

Below, we restrict the behavior for λ through its hyperparameter σn ą 0.

Assumption 4. [Prior Stability] Wm is a continuous stochastic process independent of

the normal random variable λ „ Np0, σ2
nq, where nσ2

n Ñ 8. The following two conditions

are imposed: (i)

Π
`

λ : |λ| ď unσ
2
n

?
n | Opnq

˘

ÑP0 1,

for some deterministic sequence un Ñ 0 and (ii) for any t P R:

Π
`

pw, λq : w ` pλ` tn´1{2
qpγ P Hm

n | O
pnq
˘

ÑP0 1

Discussion of Assumptions: Assumption 2 imposes sufficiently fast convergence rates

for the estimators for regression function m0 and the propensity score π0. In practice,

one can explore the recent proposals from Chernozhukov, Newey, and Singh (2020b) and

Hirshberg and Wager (2021). The posterior convergence rate for the conditional mean can

be derived by modifying the classical results of Ghosal, Ghosh, and van der Vaart (2000) by

accommodating the propensity score adjusted prior, in the same spirit of Ray and van der

Vaart (2020). The rate restriction is easier to satisfy if one function is easier to estimate,

which resembles Theorem 1 conditions (i) and (ii) of Farrell (2015). Remark 4.1 illustrates

that under classical smoothness assumptions, this condition is less restrictive than plug-in

method of Ray and van der Vaart (2020) or other approaches for semiparametric estimation

of ATEs Chen, Hong, and Tarozzi (2008) or Farrell, Liang, and Misra (2021). Assumption

4 is imposed to check the prior invariance property.

In contrast to our Assumption 3, Ray and van der Vaart (2020) (see their Assumption

(3.12)) require a stochastic equicontinuity condition8 supηPHm
n
Gn rmη ´m0s “ oP0p1q.

9 In

comparison, a condition similar to our Assumption 3 is also used in the frequentist liter-

ature for ATE inference under unconfoundness; see Section 2 of Benkeser, Carone, Laan,

and Gilbert (2017) or Assumption 3(a)-(c) in Farrell (2015). We argue that our formulation

significantly weakens the requirement from Ray and van der Vaart (2020) and allows for

double robustness under Hölder smoothness classes (see Remark 4.1). Hence, the complex-

ity of the functional class pm ´m0q can be compensated by certain high regularity of the

corresponding Riesz representor and vice versa. Assumption 4(i) can be established along

similar lines as in Lemma 4 of Ray and van der Vaart (2020), combined with the Gaussian

8In a different context for kernel-based semiparametric estimation, Cattanoe and Jansson (2018) relaxed
the stochastic equicontinuity condition which takes into account the slow convergence rate of the kernel
estimands, due to the small bandwidth.

9If one translates their missing data setup to the current ATE setup.
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tail bound for the prior mass of tλ : |λ| ą unσ
2
n

?
nu. Referring to Assumption 4(ii), one

can argue that this set hardly differs from the set Hm
n .

We now establish a semiparametric Bernstein–von Mises theorem, which establish asymp-

totic normality of the posterior distribution. This asymptotic equivalence result is estab-

lished using the so called bounded Lipschitz distance defined as follows. For two probability

measures P,Q defined on a metric space X with a metric dp¨, ¨q, we define the bounded

Lipschitz distance as

dBLpP,Qq “ sup
fPBLp1q

ˇ

ˇ

ˇ

ˇ

ż

O
fpdP ´ dQq

ˇ

ˇ

ˇ

ˇ

, (3.5)

where

BLp1q “

"

f : O ÞÑ R, sup
oPO

|fpoq| ` sup
o‰o1

|fpoq ´ fpo1q|

}o´ o1}`2
ď 1

*

.

Our main result is to show this sequence of marginal posteriors converges in the bounded

Lipschitz distance to a normal distribution under weaker conditions than Ray and van der

Vaart (2020).

Theorem 3.1. Let Assumptions 1–4 hold. Then we have

dBL
`

LΠp
?
npχη ´ pχq|Opnqq, Np0,v0q

˘

ÑP0 0.

We now show how Theorem 3.1 can be used to give a frequentist justification of Bayesian

methods to construct the point estimator and the confidence sets. Recall that pχBayes
η rep-

resents the posterior mean. Introduce a Bayesian credible set Cnpαq for χη, which satisfies

Πpχη P Cnpαq|Opnqq “ 1 ´ α for a given nominal level α P p0, 1q. The next result shows

that Cnpαq also forms a confidence interval in the frequentist sense for the ATE parameter

whose coverage probability under P0 converges to 1´ α.

Corollary 3.1. Let Assumptions 1–4 hold. Then under P0, we have

?
n
`

pχBayes
η ´ χ0

˘

ñ Np0,v0q. (3.6)

Also, for any α P p0, 1q we have

P0

`

χ0 P Cnpαq
˘

Ñ 1´ α.

Our estimation and inferential procedures achieve the semiparametric efficiency in the-

ory. Practically, it can accommodate high-dimensional covariates or complex covariate
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functions, given its robustness to estimation of nuisance functional components.

4 Illustration with Gaussian Process Priors

We illustrate the general methodology with Gaussian process (GP) prior modeling on the

conditional mean function for ηm. The GP regression is a popular Bayesian procedure

for learning an infinite-dimensional function by specifying a GP as the prior measure.

It has been extensively used among the machine learning community (Rassmusen and

Williams, 2006) and it been shown to have remarkable adaptive properties with respect to

the smoothness, dimensionality, or sparsity pattern of the underlying functions (van der

Vaart and van Zanten, 2008, 2009, 2011; Yang and Tokdar, 2015; Yang and Dunson, 2016).

Our study further strengthened the appealing features of this modern Bayesian toolkit,

incorporating the PS-dependent prior adjustment. We provide primitive conditions used in

our main results in the previous section. In addition, we provide details on implementation

of GP priors and discuss data driven choices of tuning parameters.

4.1 Inference based on Gaussian Process Priors

Let pWt : t P Rpq be a centered, homogeneous Gaussian random field with covariance

function of the form, for a given continuous function φ : Rp ÞÑ R,

ErWsWts “ φps´ tq. (4.1)

We consider Wt as a Borel measurable map in the space of Cpr0, 1spq, equipped with the

uniform norm } ¨}8. By Bochner’s theorem, there exists a finite Borel measure µ on Rp, the

spectral measure of W , s.t. φpt´sq “
ş

Rd e
iλJpt´sqµpdλq. The well-known squared exponen-

tial process (Rasmussen and Williams, 2006) comes with a Gaussian spectral measure, i.e.

µpλq “ 2´pπ´p{2 exp p´}λ}2{4q. The covariance function of a squared exponential process

takes the simple form ErWsWts “ expp´}s ´ t}2q, as its name suggests. We also consider

a rescaled Gaussian process pWant : t P r0, 1spq. Intuitively speaking, a´1
n can be thought

as a bandwidth parameter. For a large an (or a small bandwidth), the prior sample path

t ÞÑ Want is obtained by shrinking the long sample path t ÞÑ Wt. Hence, it employs more

randomness and becomes suitable as a prior model for less regular functions.

Below, Cspr0, 1spq denotes a Hölder space with smoothness index s. Considering the
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Hölder class, when we take

an — n1{p2sm`pqplog nq´p1`pq{p2sm`pq, (4.2)

the posterior contraction rate for the conditional mean function is the minimax rate (up

to some logarithm factor). Specifically, εn “ n´sm{p2sm`pqplog nqsmp1`pq{p2sm`pq; see Section

11.5 of Ghosal and van der Vaart (2017).

Proposition 4.1 (Squared Exponential Process Priors). Let pγ be an independent estimator

satisfying }pγ}8 “ OP0p1q and }pγ ´ γ0}8 “ OP0

`

pn{ log nq´sπ{p2sπ`pq
˘

for some sπ ą 0.

Suppose m0 P Csmpr0, 1spq for some sm ą 0 with
?
sπ sm ą p{2. Consider the propensity

score-dependent prior on m given by mpd, xq “ Ψ
`

Wm
d,x ` λ pγpd, xq

˘

where Wm
d,x is the

rescaled squared exponential process. If an is of the order as specified in (4.2) and

ˆ

n

log n

˙´sm{p2sm`pq

! σn À 1. (4.3)

then the posterior distribution satisfies Theorem 3.1.

Remark 4.1. Proposition 4.1 requires
?
sπ sm ą p{2 which is a trade-off between the

smoothness requirement for m0 and π0. In particular, we obtain double robustness, i.e., a

lack of smoothness of the regression function m0 can be mitigated by exploiting regularity of

the propensity score and vice versa. Referring to the Hölder class Csmpr0, 1spq, its complexity

measured by the bracketing entropy of size ε is of order ε´2υ for υ “ d{p2smq. One can show

that the key stochastic equicontinuity assumption in Ray and van der Vaart (2020), i.e. their

condition (3.5) is violated by exploring the Sudkov lower bound (Han, 2021), when υ ą 1

or equivalently when sm ă p{2. It turns out that this restriction is also sufficient to verify

Assumption 3 in the proof of Proposition 4.1. In contrast, our framework accommodates

this non-Donsker regime as long as
?
sπ sm ą p{2, which enables us to exploit the product

structure and a fast convergence rate for estimating the propensity score.

Remark 4.2. We have focused on the case where the tuning parameter an depends on the

smoothness level of the underlying functional class. This is not necessary. An active line

of research has demonstrated adaptiveness of nonparametric Bayesian methods when one

assigns a prior on an; see van der Vaart and van Zanten (2009); Ghosal and van der Vaart

(2017). When it comes to the corresponding BvM theorems (Rivoirard and Rousseau, 2012;

Castillo and Rousseau, 2015), the technical proof utilizes the mixed Gaussian process struc-

ture by first conditioning on the an and then averaging over the random tuning parameter.
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We believe this line argument can also be adapted to our case. Nonetheless, a detailed

verification is beyond the scope of the current paper, and will be pursued elsewhere.

Remark 4.3. We have focused on the squared exponential Gaussian process, given its

popularity among practitioners. Researchers can explore other GPs depending on different

applications. For instance, when the derivative function is of interest, the sieve priors us-

ing the B-spline basis becomes more convenient. There are also other non-Donsker regimes,

in which the posterior convergence rate for various GPs are available. If m0 P Csmr0, 1s
for sm ď 1{2, it is known that the posterior convergence rate using a Brownian motion

prior is n´α{2 (Ghosal and van der Vaart, 2017), which does not pass the standard thresh-

old oppn
´1{4q for semiparametric applications. One can certainly adapt the doubly robust

version to this model. The power of a Bayesian approach to handle this functional class

provides nice complementary options to frequentist methods. Note that the theoretical frame-

work of AK requires Lipschitz continuity, which is not satisfied by the aforementioned class.

4.2 Implementation of Gaussian Process Priors

We will place the Gaussian process (GP) prior on the function ηm “ Ψ´1pmq and pro-

vide details on implementation of propensity score adjustments. For the computation of

posterior distribution we apply standard a binary Gaussian classifier that uses Laplace

approximation (Rassmusen and Williams, 2006).

Covariance kernel: We place on ηm a zero-mean GP prior with a data-driven covariance

kernel described below. A benchmark kernel K is the commonly used squared exponen-

tial (SE) covariance function (Rasmussen and Williams, 2006, p.83) and with automatic

relevance determination. For pd, xq, pd1, x1q P Rp`1:

K ppd, xq, pd1, x1qq “ ν2 exp

ˆ

´pd´ d1q2

2λ2
0

˙

exp

˜

´

p
ÿ

l“1

pxl ´ x
1
lq

2

2λl

¸

, (4.4)

where the hyperparameter ν2 is the kernel variance, λ0, ¨ ¨ ¨ , λp are characteristic length-

scales that reflect the relevance of D and each covariate in predicting ηm. In practice, they

can be obtained by maximizing the log marginal likelihood.

Following Ray and van der Vaart (2020), we incorporate a correction term on the kernel

function K. The resulting corrected covariance kernel Kc has an additional term based on
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the (estimated) Riesz representer pγ:

Kc ppd, xq, pd
1, x1qq “ K ppd, xq, pd1, x1qq ` σ2

npγpd, xq pγpx
1, x1q, (4.5)

where pγpd, xq “ d{pπpxq ´ p1´ dq{p1´ pπpxqq. To obtain pπpxq, we apply a logistic regression

to tDi, Xi1, . . . , Xipu. The standard deviation σn governs the weight of the prior correction.

Later in the numerical exercise we choose σn such that the rate condition in Assumption

4 is satisfied. Our simulation results also suggest that the performance of our approach is

stable with respect to σn

We describe the algorithm in the following. Let W “ rX,Ds P Rnˆpp`1q be the matrix

for the training data, and W ˚ P R2nˆpp`1q for the testing data:

W ˚
“

«

X, 1n

X, 0n

ff

,

and η˚n be a 2n-vector that gives latent function values at testing points:

η˚ “ rηmp1, X1q, ¨ ¨ ¨ , η
m
p1, Xnq, η

m
p0, X1q, ¨ ¨ ¨ , η

m
p0, Xnqs

J .

Let η “ rηmpD1, X1q, . . . , η
mpDn, Xnqs

J denote the n-vector of latent function values at

training points. For matrices W ˚ and W , we define KcpW
˚,W q as a 2n ˆ n matrix

whose pi, jq-th element is KcpW
˚
i ,Wjq where W ˚

i is the i-th row of W ˚ and Wj is the

j-th row of W . Analogously, KcpW ,W q is an n ˆ n matrix with the pi, jq-th element

being KcpWi,Wjq, and KcpW
˚,W ˚q is a 2n ˆ 2n matrix with the pi, jq-th element being

KcpW
˚
i ,W

˚
j q.

Under the GP prior with mean 0 and covariance kernel Kc, the posterior of η˚ is

Gaussian with mean η̄˚ and covariance Vpη˚q can be obtained by routine procedures in

Laplace approximation, see Rasmussen and Williams (2006, Chapters 3.3 to 3.5) for details.

To be specific,

η̄˚ “ KcpW
˚,W qK´1

c pW ,W q pη,

Vpη˚q “ KcpW
˚,W ˚

q ´KcpW
˚,W q

`

KcpW ,W q `∇´1
˘´1

KJ
c pW

˚,W q,

where pη “ argmaxηppη|W ,Y q maximizes the posterior ppη|W ,Y q on the latent η and

∇ “ ´
B2 log ppY |ηq
BηBηJ is a nˆn diagonal matrix with the i-th diagonal entry being ´B

2 log ppY |ηq

Bη2
i

.
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We use the Matlab toolbox GPML for computation.10

For each posterior sample, the draw from the mean η̄˚ and covariance Vpη˚q Gaussian

distribution contains the posterior draw of rηmp1, X1q, ¨ ¨ ¨ , η
mp1, Xnqs

J and rηmp0, X1q, ¨ ¨ ¨ , η
mp0, Xnqs

J.

The posterior draw of ηmpDi, Xiq “ Diη
mp1, Xiq ` p1 ´Diqη

mp0, Xiq. Then one can com-

pute the posterior draw of ATE by equation (2.15) with mpd,Xiq “ Ψpηmpd,Xiqq where

d P t0, 1u and mpXiq “ ΨpηmpDi, Xiqq.

5 Numerical Results

The aims of the following section are mainly two-fold; (i) to validate the preceding theoret-

ical results and (ii) to demonstrate the proposed inferential procedure in a counterfactual

analysis.

5.1 Monte Carlo Simulations

Consider following data generating process:

Xi “ pXi1, . . . , Xipq
J where Xi1, . . . , Xip

i.i.d.
„ Uniformp´1, 1q,

Di | Xi „ Bernoulli pΨ rgpXiqsq ,

Yi | Xi, Di „ Bernoulli pΨ rµpXiq `DiτpXiqsq ,

where gpxq “
řp
j“1 xj{

3
?
j and µpxq “ ´2`0.2

řp
j“1 xj. We set p “ 15 and 30. We consider

two designs for the τpxq: one is linear in x and the other is nonlinear.

Design I: τpxq “ 1` 0.1
ř5
j“1 xj.

Design II: τpxq “
ř3
j“1 cospxjq{j.

The true ATE is given by χ0 “ E rΨ pµpXiq ` τpXiqq ´Ψ pµpXiqqs. The observed vari-

ables are tDi, Xi1, . . . , Xipu. To implement the Bayesian approach, we estimate the propen-

sity score pπpxq by the logistic regression and estimate mpd, xq “ Ψ pµpxq ` dτpxqq by a

Gaussian process classifier. We compare the finite sample performance of the following

inference procedures.

GP: The usual Bayesian approach based on Gaussian process, which corresponds to

(2.15) and estimate mpd, xq using the Gaussian process prior in (4.4) without correction.

10The GPML toolbox is developed by Rasmussen and Williams and can be downloaded from
http://gaussianprocess.org/gpml/code/matlab/doc/.
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GP PC: Bayesian approach with prior correction, which is calculated in the same way

as GP, but incorporates the prior correction in (4.5) to the estimation of mpd, xq.

Matching/Matching BC : The covariate matching estimator (one to one matching

with replacement) and its bias-corrected version that adjusts for the difference in covari-

ate values by regression (Abadie and Imbens, 2011). Both are computed using the R

package Matching (Sekhon, 2011).

DR TMLE: Benkeser’s doubly robust targeted minimum loss-based estimator (Benkeser,

Carone, Laan, and Gilbert, 2017). The nuisance parameters gpxq and mpxq are estimated

by a super learner which combines generalized linear regression and regression splines.

DR TMLE is computed by the R package drtmle (Benkeser, 2022).11

Tables 1 and 2 present finite sample performance of the above approaches for Designs I

and II. The Bias and RMSE columns show the performance of the ATE point estimator12

while the CP and CIL columns report the coverage rate and the average length of the

95% credible/confidence interval for ATE. The number of Monte Carlo iterations is 1, 000

and the posterior sample size is 5, 000. For GP PC, the variance of the prior correction

σn “
?
pn log n{

řn
i“1 |pγpDi, Xiq|. This choice of σn satisfies Assumption 4 and allows σn

to increase with p. Appendix D presents additional simulation evidence to show that the

performance of GP PC is stable with respect to the choice of σn, as long as the latter is

not too small.

We make the following observations regarding Tables 1 and 2. First, the bias of GP PC

is substantially smaller than that of GP, which shows that the prior correction successfully

reduces the bias of the point estimator (posterior mean). Second, the confidence interval

obtained from GP undercovers. On the other hand, GP PC significantly improves the

coverage probability and in most cases restores it to the nominal level. This highlights

the role of prior correction in Bayesian inference. Third, the matching estimator does not

yield valid confidence intervals, which is not surprising given the relative large dimension

of covariates.13 The bias-corrected matching estimator substantially improves the coverage

rate, but still does not restore it to the nominal level. Fourth, Benkeser’s DR TMLE

yields confidence interval that slightly undercovers especially when the sample size is small.

Overall, as far as the validity of inference (coverage probability) is concerned, GP PC

performs the best among all methods considered.

11See https://github.com/benkeser/drtmle.
12For Bayesian approaches, ATE point estimator is calculated by the posterior mean.
13Abadie and Imbens (2006)[p.245] noted that if p is large enough, the asymptotic distribution of a

matching estimator is dominated by the bias term.
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Table 1: Performance of ATE inference for Design I: GP = Gaussian process estimation of

m without any correction, GP PC = with prior correction, Matching = matching estimator,

Matching BC: bias-corrected matching estimator, DR TMLE = Benkeser’s doubly robust

targeted minimum loss-based estimator. True ATE χ0 « 0.15.

p “ 15 p “ 30

n Methods Bias RMSE CP CIL Bias RMSE CP CIL

500 GP 0.0200 0.0462 0.854 0.1381 -0.0725 0.1121 0.282 0.0757

GP PC 0.0023 0.0423 0.965 0.1787 0.0085 0.0544 0.941 0.2041

Matching 0.0413 0.0590 0.822 0.1658 0.0728 0.0842 0.593 0.1696

Matching BC 0.0021 0.0505 0.896 0.1670 -0.0006 0.0544 0.898 0.1739

DR TMLE 0.0059 0.0488 0.910 0.1628 0.0095 0.0550 0.886 0.1794

1,000 GP 0.0218 0.0376 0.819 0.1007 0.0440 0.0645 0.478 0.0982

GP PC 0.0006 0.0306 0.958 0.1230 -0.0004 0.0343 0.952 0.1367

Matching 0.0358 0.0461 0.782 0.1177 0.0717 0.0781 0.349 0.1210

Matching BC -0.0001 0.0339 0.914 0.1179 0.0006 0.0399 0.861 0.1214

DR TMLE 0.0021 0.0316 0.934 0.1180 0.0069 0.0378 0.916 0.1289

2,000 GP 0.0172 0.0286 0.782 0.0735 0.0400 0.0455 0.430 0.0745

GP PC 0.0001 0.0207 0.956 0.0858 -0.0027 0.0253 0.935 0.0931

Matching 0.0319 0.0384 0.689 0.0834 0.0678 0.0714 0.139 0.0861

Matching BC -0.0016 0.0243 0.908 0.0834 -0.0015 0.0290 0.865 0.0860

DR TMLE 0.0000 0.0226 0.935 0.0840 0.0012 0.0268 0.912 0.0924

23



Table 2: Performance of ATE inference for Design I: GP = Gaussian process estimation of

m without any correction, GP PC = with prior correction, Matching = matching estimator,

Matching BC: bias-corrected matching estimator, DR TMLE = Benkeser’s doubly robust

targeted minimum loss-based estimator. True ATE χ0 « 0.26.

p “ 15 p “ 30

n Methods Bias RMSE CP CIL Bias RMSE CP CIL

500 GP 0.0208 0.0464 0.887 0.1472 -0.1239 0.1829 0.281 0.0808

GP PC -0.0031 0.0462 0.952 0.1854 0.0070 0.0592 0.898 0.1942

Matching 0.0466 0.0652 0.817 0.1741 0.0807 0.0914 0.572 0.1767

Matching BC 0.0076 0.0547 0.890 0.1754 0.0088 0.0593 0.870 0.1812

DR TMLE 0.0071 0.0493 0.923 0.1762 0.0097 0.0606 0.878 0.1943

1,000 GP 0.0230 0.0383 0.827 0.1066 0.0216 0.0748 0.491 0.1003

GP PC -0.0025 0.0337 0.948 0.1292 -0.0060 0.0357 0.952 0.1428

Matching 0.0407 0.0515 0.739 0.1239 0.0770 0.0834 0.338 0.1260

Matching BC 0.0049 0.0377 0.896 0.1241 0.0049 0.0420 0.863 0.1264

DR TMLE 0.0024 0.0347 0.935 0.1280 0.0038 0.0401 0.917 0.1400

2,000 GP 0.0229 0.0320 0.761 0.0775 0.0400 0.0451 0.478 0.0783

GP PC -0.0007 0.0227 0.952 0.0909 -0.0054 0.0268 0.939 0.0985

Matching 0.0383 0.0443 0.612 0.0878 0.0749 0.0783 0.092 0.0897

Matching BC 0.0055 0.0267 0.900 0.0878 0.0067 0.0301 0.865 0.0895

DR TMLE 0.0007 0.0239 0.941 0.0909 0.0013 0.0270 0.936 0.0992

We investigate the effect of σn on the performance of GP PC. For that purpose, we set

σn “ C ˆ
?
pn log n{

řn
i“1 |pγpDi, Xiq| and vary the value of C. The results are presented

in Tables 4 and 5 of Appendix D, where the performance of GP PC appear stable when C

ranges from 0.5 to 50.14

Our theory assumes the independence between the estimated propensity score, which

appears in the prior correction, and the observations used to obtain the posterior of the

conditional mean. This assumption follows Ray and van der Vaart (2020) and simplifies

the technical analysis. On the other hand, as Ray and van der Vaart (2020)[p.3008] noted,

this independence seems unnecessary in practice. Therefore, to make the implementation

as convenient as possible, our simulation exercises so far have used the full sample in

estimating the propensity score and drawing the posterior.15 As Tables 1 and 2 show,

14GP PC reduces to GP when C “ 0. Since GP substantially undercovers in our experiments, C (and
thus σn) cannot be too small.

15This implementation strategy also follows Ray and Szabó (2019), an empirical companion paper to
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confidence intervals based on GP PC yield good coverage probabilities even when we do

not split the sample. Table 6 in Appendix D presents the results when we apply sample-

splitting in implementing the GP PC. In our empirical application below, as the sample

size is relatively small (n “ 365 after trimming out observations with extremely small or

large propensity score), we use the full sample for both the propensity score estimation and

the posterior draw.

Overall, our simulation results suggest that Bayesian inference with prior correction can

be a useful tool for conducting valid ATE inference when the model is fairly complicated.

5.2 Empirical Application

We apply our method to the data from the National Supported Work (NSW) program. The

dataset, which has been used by Dehejia and Wahba (1999), Abadie and Imbens (2011) and

Armstrong and Kolesár (2021), among others, contains a treated sample of 185 men from

the NSW experiment and a control sample of 2490 men from the Panel Study of Income

Dynamics (PSID). We also refer readers to Imbens (2004) and Abadie and Cattaneo (2018)

for comprehensive reviews related to the data. We slightly depart from previous studies

by focusing on a binary outcome Y : the unemployment indicator for year 1978, which is

defined as an indicator for zero earnings. The treatment D is the participation in the NSW

program. We consider two specifications for the selection of covariates X: Spec I follows

Table 1 of Armstrong and Kolesár (2021) and Spec II follows Table 3 of Dehejia and Wahba

(2002).

Spec I: Covariates X contain 9 variables: age, education, indicators for black and His-

panic, indicator for marriage, earnings in 1974, earnings in 1975, and unemployment

indicators for 1974 and 1975.

Spec II: Covariates X contain 15 variables: the 9 variables in Spec I and their functions:

squared age, squared education, squared earnings in 1974, squared earnings in 1975,

indicator for no degree (education ă 12), indicator for unemployment in 1974 ˆ indicator

for Hispanic.

Table 3 presents the ATE estimates from the Bayesian inference with and without prior

correction, matching with and without bias-correction and Benkeser’s DR TMLE. As a

benchmark, We also include the experimental estimates for the sample where both the

Ray and van der Vaart (2020). A similar strategy is also taken by Ignatiadis and Wager (2022)[p.8] when
they construct the confidence interval for nonparametric empirical Bayes analysis.
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treated and control subsamples are from the NSW program. Since the treated and control

groups for the nonexprimental data are higly unbalanced in covariates, we discard observa-

tions with the estimated propensity score outside the range r0.05, 0.95s. The numbers of of

treated units (n1) and control units (n0) after trimming are comparable to the experimental

data.

In Table 3, our Bayesian inference with prior correction (GP PC) finds that the job

training problem reduced the probability of unemployment by about 21% under Spec I and

about 16% under Spec II. Both are statistically significant at 5% level. The results barely

change when we vary σn. The experimental data also reveals a 5%-level significant effect

of the program in reducing unemployment, though the point estimate is smaller (around

11%). There is a considerable overlapping between the 95% credible interval of GP PC

and the experimental estimate. Under Spec II, the uncorrected Gaussian process inference

(GP) generates a much smaller estimate than other approaches. As our simulation results

(Tables 1 and 2) show that GP performs badly when the number of covariates (p) is large

and the sample size is small, we suspect that the GP estimate here is not reliable either.

The matching estimates with and without bias correction turn out insignificant at 5% level

under Spec I but become 5%-level significant under Spec II. Similar to GP PC, Benkeser’s

DR TMLE yields a negative estimate that is significant at 5% level. We also note that the

length of confidence interval is shorter for the GP PC than the frequentist approaches.
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Table 3: Nonexperimental and experimental estimates of ATE for the NSW data: n1 and

n0 are treated and control sample sizes. GP = Gaussian process estimation of m without

any correction, GP PC = with prior correction, Matching = matching estimator, Matching

BC: bias-corrected matching estimator, DR TMLE = Benkeser’s doubly robust targeted

minimum loss-based estimator. σn “ Cˆ
?
p n log n{

řn
i“1 |pγpDi, Xiq|. The asterisk denotes

5% statistical significance.

Spec n1 n0 Methods ATE 95% CI CIL

Non. Exper I 145 220 GP -.2169˚ [-.3109, -.1180] .1929

GP PC (C “ 1) -.2058˚ [-.3169, -.0904] .2266

GP PC (C “ 10) -.2026˚ [-.3172, -.0780] .2393

Matching -.1687 [-.3387, .0013] .3400

Matching BC -.1595 [-.3274, .0084] .3359

DR TMLE -.1656˚ [-.3198, -.0114] .3084

II 132 220 GP -.0217 [-.0636, .0194] .0830

GP PC (C “ 1) -.1633˚ [-.2873, -.0020] .2854

GP PC (C “ 10) -.1684˚ [-.2932, -.0047] .2885

Matching -.2043˚ [-.3861, -.0225] .3636

Matching BC -.1969˚ [-.3770, -.0167] .3603

DR TMLE -.1900˚ [-.3549, -.0252] .3297

Exper. 185 260 Mean diff. -.1106˚ [-.1957, -.0255] .1701

I Reg. with cov. -.1132˚ [-.2006, -.0258] .1747

II Reg. with cov. -.1045˚ [-.1931, -.0158] .1774

6 Conclusion

There are several directions that would be interesting to pursue in future work. First, the

template of our theoretical investigation should also be useful for complicated structural

models, where the likelihood functions are computationally intractable. These analytical

difficulties can often be alleviated by Bayesian methods, which has proven to be successful

in many areas. Second, one can extend our analysis to other interesting causal effects

other than ATE. Causal mediation analysis has attract a lot of attention recently. For a

particular causal parameter, Diaz et al. (2021) presented an explicit influence function and

proposed frequentist type efficient estimators. Because their plug-in type estimator involves

multi-dimensional integral, it is desirable to explore Bayesian tools. Further investigation
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of the possibility to generalize our methodology to nonlinear functionals is needed; see

Examples 4.2-4.4 from Castillo and Rousseau (2015). Additionally, it would be beneficial

to incorporate some more sophisticated prior such as the Bayesian additive regression trees

(BART) and prove the corresponding BvM theorem. The latter prior is shown to be

particularly attractive in the high dimensional regime and can effectively conduct variable

selection. These topics are beyond the scope of the current paper and will be examined

elsewhere.
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