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Abstract
We propose new difference-in-difference (DID) estimators for treatments continuously

distributed at every time period, as is often the case of trade tariffs, or temperatures.
We start by assuming that the data only has two time periods. We also assume that from
period one to two, the treatment of some units, the switchers, changes, while the treatment
of other units, the stayers, does not change. Then, our estimators compare the outcome
evolution of switchers and stayers with the same value of the treatment at period one. Our
estimators only rely on parallel trends assumptions, unlike commonly used two-way fixed
effects regressions that also rely on homogeneous treatment effect assumptions. Comparing
switchers and stayers with the same period-one treatment is important: unconditional
comparisons of switchers and stayers implicitly assume constant treatment effects over
time. With a continuous treatment, switchers cannot be matched to stayers with exactly
the same period-one treatment, but comparisons of switchers and stayers with the same
period-one treatment can still be achieved by non-parametric regression, or by propensity-
score reweighting. We extend our results to applications with no stayers, more than two
time periods, and where the treatment may have dynamic effects.
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1 Introduction

A popular method to estimate the effect of a treatment on an outcome is to compare over time
units experiencing different evolutions of their exposure to treatment. In practice, this idea is im-
plemented by estimating regressions that control for unit and time fixed effects. de Chaisemartin
and D’Haultfœuille (2022) find that 26 of the 100 most cited papers published by the AER from
2015 to 2019 have used a two-way fixed effects (TWFE) regression to estimate the effect of a
treatment on an outcome. de Chaisemartin and D’Haultfœuille (2020), Goodman-Bacon (2021),
and Borusyak et al. (2021) have shown that TWFE regressions are not robust to heterogeneous
effects: under a parallel trends assumption, those regressions may estimate a weighted sum of
treatment effects across periods and units, with some negative weights. Owing to the negative
weights, the treatment coefficient in TWFE regressions could be, say, negative, even if the treat-
ment effect is positive for every unit × period. Importantly, the result in de Chaisemartin and
D’Haultfœuille (2020) applies to binary, discrete, and continuous treatments.

Several alternative difference-in-difference (DID) estimators robust to heterogeneous effects have
been recently proposed (see Table 2 of de Chaisemartin and d’Haultfoeuille, 2023, for a review
of the estimators available to practitioners, depending on their research design). Some of them
apply to designs with binary treatments (see Sun and Abraham, 2021; Callaway and Sant’Anna,
2021; Borusyak et al., 2021). Others apply to designs with binary or discrete treatments (see
de Chaisemartin and D’Haultfœuille, 2020, 2022). Finally, other estimators apply to designs
where all units start with a treatment equal to 0, and then get treated with heterogeneous, po-
tentially continuously distributed treatment intensities (see de Chaisemartin and D’Haultfœuille,
2022; Callaway et al., 2021). This last set of papers is most closely related to ours, but it does
not consider the case where the treatment is continuously distributed at every period. The goal
of this paper is to complement the literature, by proposing heterogeneity-robust DID estimators
for such treatments. This extension is important: TWFE regressions have often been used to
estimate the effect of treatments continuously distributed at every time period, such as trade
tariffs (see Fajgelbaum et al., 2020) or precipitations (see Deschênes and Greenstone, 2007).

We assume that we have a panel data set, whose units could be geographical locations such as
states or counties. We start by considering the case where the panel has two time periods. We
assume that from period one to two, the treatment of some units, hereafter referred to as the
switchers, changes. On the other hand, the treatment of other units, hereafter referred to as
the stayers, does not change. Our first target parameter is the average, across all switchers, of
the effect of moving their treatment from its period-one to its period-two value scaled by the
difference between these two values. In other words, our target parameter is the average slope
of switchers’ potential outcome function, from their period-one to their period-two treatment,
hereafter referred to as the Average Of Switchers’ Slopes (AOSS). The AOSS can be interpreted
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as an average marginal effect of the treatment. We propose a regression-based estimator of the
AOSS. First, one runs a (potentially non-parametric) regression of the outcome evolution on
the period-one treatment, among stayers. Second, one uses that regression to predict switch-
ers’ counterfactual outcome evolution, had their treatment not changed. Third, one subtracts
each switcher’s counterfactual evolution to its actual evolution, and divides this DID by the
switcher’s treatment evolution, thus yielding an estimator of its period-two potential-outcome
function’s slope, between its period-one and its period-two treatment. Finally, one averages
those estimators across all switchers.

When some switchers experience a small treatment change from period one to two, estimators of
the AOSS may be noisy, owing to the small denominator of those switchers’ slope estimator (see
Graham and Powell, 2012). Accordingly, we also consider a second causal effect. This effect is a
weighted average, across all switchers, of the slope of each switcher’s potential outcome function
from its period-one to its period-two treatment, where switchers receive a weight proportional
to the absolute value of their treatment change from period one to two. Hereafter, we refer to
this causal effect as the Weighted Average Of Switchers’ Slopes (WAOSS). On top of avoiding
the small-denominator problem, another advantage of this parameter is that it can be estimated
by a regression-based estimator and by a propensity-score based estimator, thus implying that
it can also be estimated by a doubly-robust estimator. Beyond those statistical advantages, we
show that if treatments change because of the introduction of a policy, the WAOSS is the key
quantity to compute in a cost-benefit analysis of the policy.

Overall, our key idea is to compare switchers and stayers with the same value of the treatment at
period one. Comparing switchers and stayers with the same period-one treatment is important:
unconditional comparisons of switchers and stayers implicitly assume constant treatment effects
over time. With a continuous treatment, switchers cannot be matched to stayers with exactly the
same period-one treatment, but comparisons of switchers and stayers with the same period-one
treatment can still be achieved by a non-parametric regression, as implemented in our estimator
of the AOSS and in our first estimator of the WAOSS, or by propensity score reweighting, as
implemented in our second estimator of the WAOSS.

The estimators proposed so far require that there be some stayers, whose treatment does not
change from period one to two. This assumption is likely to be met when the treatment is say,
trade tariffs: tariffs’ reforms rarely apply to all products, so it is likely that tariffs of at least
some products stay constant over time. On the other hand, this assumption is unlikely to be
met when the treatment is say, precipitations: for instance, US counties never experience the
exact same amount of precipitations over two consecutive years. We show that our identification
results can be extended to the case where there are no stayers, provided there are quasi-stayers,
meaning units whose treatment barely changes from period one to two. This assumption is likely
to hold when the treatment is, say, precipitations: for every pair of consecutive years, there are
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probably some US counties whose precipitations almost do not change.

Finally, we extend our results to applications with more than two time periods, and where the
treatment may have dynamic effects. We also show how to test for pre-trends, and discuss how
our estimators can be applied to discrete treatments taking a large number of values.

Some of our estimators can be computed by the did_multiplegt Stata and R packages, while
other estimators can be computed by the did_multiplegt_dyn Stata package. Below, we give
the syntax one should use to compute them.

Related Literature

As mentioned above, our paper is related to the recent literature on heterogeneity-robust DID
estimators. The two most closely related papers are de Chaisemartin and D’Haultfœuille (2022)
and Callaway et al. (2021), who also propose DID estimators of the effect of a continuous
treatment. Here, we assume that the treatment is continuously distributed at every period,
while they rule out that possibility. For instance, Callaway et al. (2021) assume that all units
have a treatment equal to zero in period one. de Chaisemartin and D’Haultfœuille (2022)
consider more general designs, but they still do not allow units’ period-one’s treatments to be
continuously distributed. Accordingly, our paper does not overlap, with and complements those
two papers.

Our paper builds upon several previous papers in the DID literature. First, it is closely related
to the pioneering work of Graham and Powell (2012), who also propose DID estimators of the
AOSS when the treatment is continuously distributed at every time period. They also allow
for time-varying treatment effects, but rely on a linear treatment effect assumption (see their
Equation (1)) and assume that units experience the same evolution of their treatment effect over
time, a parallel-trends-on-treatment-effects assumption (see their Assumption 1.1(i) and (iii)).
Our estimators, on the other hand, do not place any restriction on treatment effects.

The idea to compare switchers and stayers with the same baseline treatment also appears in
de Chaisemartin and D’Haultfœuille (2018), de Chaisemartin and D’Haultfœuille (2020), and
de Chaisemartin and D’Haultfœuille (2022), who had used that idea to form DID estimators of
the effect of a binary or discrete treatment. With a non-continuous treatment, there will often
be switchers and stayers with the exact same baseline treatment. With a continuous treatment,
the sample will not contain switchers and stayers with the exact same baseline treatment, so
this paper’s contribution is to use non-parametric regression or propensity-score reweighting to
compare switchers and stayers “with the exact same baseline treatment”.

Finally, D’Haultfoeuille et al. (2021) also consider a DID-like estimator of the effect of a continu-
ous treatment, but their estimator relies on a common change assumption akin to that in Athey
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and Imbens (2006) rather than on a parallel trends assumption. Our first identification result
is also related to Hoderlein and White (2012), who show how to identify the average marginal
effect of a continuous treatment with panel data. The main difference is that they rule out any
systematic effect of time on the outcome.

2 Set-up and assumptions

A representative unit is drawn from an infinite super population, and observed at two time
periods. This unit could be an individual or a firm, but it could also be a geographical unit,
like a county or a region.1 All expectations below are taken with respect to the distribution
of variables in the super population. We are interested in the effect of a continuous and scalar
treatment variable on that unit’s outcome. Let D1 (resp. D2) denote the unit’s treatment at
period 1 (resp. 2), and let D1 (resp. D2) be the set of values D1 (resp. D2) can take, i.e.
its support. For any d ∈ D1 ∪ D2, let Y1(d) and Y2(d) respectively denote the unit’s potential
outcomes at periods 1 and 2 with treatment d.2 Finally, let Y1 and Y2 denote their observed
outcomes at periods 1 and 2. Let S = 1{D2 ̸= D1} be an indicator equal to 1 if the unit’s
treatment changes from period one to two, i.e. if they are a switcher.

In what follows, all equalities and inequalities involving random variables are required to hold
almost surely. For any random variables observed at the two time periods (X1, X2), let ∆X =
X2 −X1 denote the change of X from period 1 to 2.

We make the following assumptions.

Assumption 1 (Parallel trends) For all d ∈ D1, E(∆Y (d)|D1 = d,D2) = E(∆Y (d)|D1 = d).

Assumption 1 is a parallel trends assumption. It requires that ∆Y (d) be mean independent
of D2, conditonal on D1 = d. It has one key implication we leverage for identification: the
counterfactual outcome evolution switchers would have experienced if their treatment had not
changed is identified by the outcome evolution of stayers with the same period-one treatment:

E(∆Y (d)|D1 = d, S = 1) = E(∆Y (d)|D1 = d, S = 0). (1)

Accordingly, the DID estimators we propose below compare switchers and stayers with the same
period-one treatment.

Instead, one could propose DID estimators comparing switchers and stayers, without condi-
tioning on their period-one treatment. On top of Assumption 1, such estimators rest on two
supplementary conditions:

1In that case, one may want to weight the estimation by counties’ or regions’ populations. Extending the
estimators we propose to allow for such weighting would be straightforward.

2Throughout the paper, we implicitly assume that all potential outcomes have an expectation.
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(i) E(∆Y (d)|D1 = d) = E(∆Y (d)).

(ii) For all (d, d′) ∈ D2
1, E(∆Y (d)) = E(∆Y (d′)).

(i) requires that all units experience the same evolution of their potential outcome with treatment
d, while Assumption 1 only imposes that requirement for units with the same baseline treatment.
Assumption 1 may be more plausible: units with the same period-one treatment may be more
similar and more likely to be on parallel trends than units with different period-one treatments.
(ii) requires that the trend affecting all potential outcomes be the same. Rearranging, (ii) is
equivalent to assuming E(Y2(d) − Y2(d′)) = E(Y1(d) − Y1(d′)): the treatment effect should be
constant over time, a strong restriction on treatment effect heterogeneity. Assumption 1, on the
other hand, does not impose any restriction on treatment effect heterogeneity, as it only restricts
one potential outcome per unit. Overall, conditioning on D1 has two advantages: i) it makes
the parallel trends assumption more plausible, as in a DID-matching estimation strategy where
parallel trends is often more plausible after conditioning on some covariates (see, e.g., Abadie,
2005); ii) it avoids assuming that treatment effects do not vary over time.

Finally, note that because it imposes parallel trends conditional on prior treatment, Assumption
1 is connected to the sequential ignorability assumption, another commonly-used identifying
assumption in panel data models (see, e.g., Robins, 1986; Bojinov et al., 2021). Sequential
ignorability requires that treatment be randomly assigned conditional on prior treatment and
outcome, which implies parallel trends conditional on prior treatment and outcome.

Assumption 2 (Bounded treatment, Lipschitz potential outcomes, bounded outcome trends)

1. D1 and D2 are bounded subsets of R.

2. For all t ∈ {1, 2} and for all (d, d′) ∈ D2
t , there is a random variable Y ≥ 0 such that

|Yt(d) − Yt(d′)| ≤ Y |d− d′|, with sup(d1,d2)∈Supp(D1,D2) E[Y |D1 = d1, D2 = d2] < ∞.

Assumption 2 is a technical condition ensuring that all the expectations below are well defined.
It requires that the set of values that the period-one and period-two treatments can take be
bounded. It also requires that the potential outcome functions be Lipschitz (with an individual
specific Lipschitz constant). This will automatically hold if d 7→ Y2(d) is differentiable with
respect to d and has a bounded derivative.

For estimation and inference, we assume we observe an iid sample with the same distribution as
(Y1, Y2, D1, D2):

Assumption 3 (iid sample) We observe (Yi,1, Yi,2, Di,1, Di,2)1≤i≤n, that are independent and
identically distributed vectors with the same probability distribution as (Y1, Y2, D1, D2).

Importantly, Assumption 3 allows for the possibility that Y1 and Y2 (resp. D1 and D2) are
serially correlated, as is commonly assumed in DID studies (see Bertrand et al., 2004).
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3 Estimating the average of switchers’ potential-outcome’s slopes

3.1 Target parameter

In this section, our target parameter is

δ1 := E

(
Y2(D2) − Y2(D1)

D2 −D1

∣∣∣∣∣S = 1
)
. (2)

δ1 is the average, across switchers, of the effect of moving their treatment from its period-one
to its period-two value, scaled by the difference between these two values. In other words, δ1

is the average of the slopes of switchers’ potential outcome functions, between their period-one
and their period-two treatments. Hereafter, δ1 is referred to as the Average Of Switchers’ Slopes
(AOSS). Note that with a binary treatment such that all units are untreated at period 1 and
some units get treated at period 2, the AOSS reduces to the standard average treatment effect
on the treated. Thus, the AOSS generalizes that parameter to non-binary treatments and more
complicated designs.

The AOSS averages effects of discrete rather than infinitesimal changes in the treatment as in
Hoderlein and White (2012), for instance. But if one slightly reinforces Point 2 of Assumption
2 by supposing that d 7→ Y2(d) is differentiable on D1 ∪ D2, by the mean value theorem,

Y2(D2) − Y2(D1)
D2 −D1

= Y ′
2

(
D̃
)

for some D̃ ∈ (min(D1, D2),max(D1, D2)). Then, the AOSS is an average marginal effect on
switchers:

δ1 = E[Y ′
2

(
D̃
)

|S = 1]. (3)

The only difference with the usual average marginal effect on switchers E[Y ′
2(D2)|S = 1] is that

the derivative is evaluated at D̃ instead of D2.

(3) implies that unlike TWFE regression coefficients, the AOSS satisfies the no-sign reversal
property. If Y ′

2(d) ≥ 0 for all d, δ1 ≥ 0: if increasing the treatment always increases the outcome
of every switcher, the AOSS is positive.

However, the AOSS is a local effect. First, it only applies to switchers. Second, it measures
the effect of changing their treatment from its period-one to its period-two value, not of other
changes of their treatment. Still, the AOSS can be used to identify the effect of other treatment
changes under shape restrictions on the potential outcome function. First, assume that the
potential outcomes are linear: for t ∈ {1, 2},

Yt(d) = Yt(0) +Btd,
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where Bt is a slope that may vary across units and may change over time. Then, δ1 =
E (B2|S = 1): the AOSS is equal to the average, across switchers, of the slopes of their potential
outcome functions at period 2. Therefore, for all d ̸= d′, E(Y2(d)−Y2(d′)|S = 1) = (d−d′)δ1: un-
der linearity, knowing the AOSS is sufficient to recover the ATE of any uniform treatment change
among switchers. Accordingly, the AOSS can be used to evaluate other treatment changes than
the one that was effectively implemented. Of course, this only holds under linearity, which may
not be a plausible assumption. Assume instead that d 7→ Y2(d) is convex. Then, for any ϵ > 0,

E (Y2(D2 + ϵ) − Y2(D1)|S = 1) ≥ E (Y2(D2) − Y2(D1)|S = 1) + ϵδ1.

E (Y2(D2) − Y2(D1)|S = 1) can be identified following the same steps as those we use to identify
the AOSS below. Accordingly, under convexity one can use the AOSS to obtain a lower bound
of the effect of changing the treatment from D1 to a larger value than D2. For instance, in
Fajgelbaum et al. (2020), one can use this strategy to derive a lower bound of the effect of even
larger tariffs’ increases than those implemented by the Trump administration. Under convexity,
one can also derive an upper bound of the effect of changing the treatment from D1 to a lower
value than D2. And under concavity, one can derive an upper (resp. lower) bound of the effect of
changing the treatment from D1 to a larger (resp. lower) value than D2.3 Note that our results
below concerning the identification and estimation of the AOSS hold even if the aforementioned
linearity or convexity/concavity conditions fail. But those conditions are necessary to use the
AOSS to identify or bound the effects of alternative policies.

3.2 Identification

To identify the AOSS, we use a DID estimand comparing switchers and stayers with the same
period-one treatment. This requires that there be no value of the period-one treatment D1 such
that only switchers have that value, as stated formally below.

Assumption 4 (Support condition for AOSS identification) P (S = 1) > 0 and P (S = 1|D1) <
1.

Note that Assumption 4 implies that P (S = 0) > 0: while we assume that the treatments D1

and D2 are continuous, we also assume that the treatment is persistent, and thus ∆D has a
mixed distribution with a mass point at zero.

To identify the AOSS, we also start by assuming that there are no quasi-stayers: the treatment
of all switchers changes by at last c from period one to two, for some strictly positive c.

Assumption 5 (No quasi-stayers) ∃c > 0: P (|∆D| > c|S = 1) = 1.
3See D’Haultfoeuille et al. (2021) for bounds of the same kind obtained under concavity or convexity.
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We relax Assumption 5 just below.

Theorem 1 If Assumptions 1-5 hold,

δ1 = E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣S = 1
)
.

Intuitively, the effect of changing switchers’ treatment from its period-one to its period-two
value is identified by a DID comparing their outcome evolution to that of stayers with the same
period-one treatment. Then, this DID is normalized by ∆D, to recover the slope of switchers’
potential outcome function, between their period-one and their period-two treatments.

If there are quasi-stayers, the AOSS is still identified. For any η > 0, let Sη = 1{|∆D| > η} be
an indicator equal to one for switchers whose treatment changes by at least η from period one
to two.

Theorem 2 If Assumptions 1-4 hold,

δ1 = lim
η↓0

E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣Sη = 1
)
.

If there are quasi-stayers whose treatment change is arbitrarily close to 0 (i.e. f|∆D||S=1(0) > 0),
the denominator of (∆Y − E(∆Y |D1, S = 0))/∆D is very close to 0 for them. On the other
hand,

∆Y − E(∆Y |D1, S = 0)
=Y2(D2) − Y2(D1) + ∆Y (D1) − E(∆Y (D1)|D1, S = 0)
≈∆Y (D1) − E(∆Y (D1)|D1, S = 0),

so the ratio’s numerator may not be close to 0. Then, under weak conditions,

E

(∣∣∣∣∣∆Y − E(∆Y |D1, S = 0)
∆D

∣∣∣∣∣
∣∣∣∣∣S = 1

)
= +∞.

Therefore, we need to trim quasi-stayers from the estimand in Theorem 1, and let the trimming
go to 0 to still recover δ1, as in Graham and Powell (2012) who consider a related estimand
with some quasi-stayers. Accordingly, while the AOSS is still identified with quasi-stayers, it is
irregularly identified by a limiting estimand.

3.3 Estimation and inference

With no quasi-stayers, E ((∆Y − E(∆Y |D1, S = 0))/∆D|S = 1) can be estimated in three steps.
First, one estimates E(∆Y |D1, S = 0) using a non-parametric regression of ∆Yi on Di,1 among
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stayers. Second, for each switcher, one computes Ê(∆Y |D1 = Di,1, S = 0), its predicted outcome
evolution given its baseline treatment, according to the non-parametric regression estimated
among stayers. Third, one lets

δ̂1 := 1
ns

∑
i:Si=1

∆Yi − Ê(∆Y |D1 = Di,1, S = 0)
∆Di

,

where ns = #{i : Si = 1}.

To estimate E(∆Y |D1, S = 0), we consider a series estimator based on polynomials in D1,
(pk,Kn(D1))1≤k≤Kn . We make the following technical assumption.

Assumption 6 (Conditions for asymptotic normality of AOSS estimator)

1. D1 is continuously distributed on a compact interval I, with infd∈I fD1(d) > 0.

2. E[∆Y 2] < ∞ and d 7→ E[∆Y 2|D1 = d] is bounded on I.

3. P (S = 1) > 0 and supd∈I P (S = 1|D1 = d) < 1.

4. The functions d 7→ E[(1 − S)∆Y |D1 = d], d 7→ E[S|D1 = d] and d 7→ E[S/∆D|D1 = d]
are four times continuously differentiable.

5. The polynomials d 7→ pk,Kn(d), 1 ≤ k ≤ Kn, are orthonormal on I and K12
n /n → +∞,

K7
n/n → 0.

Point 3 is a slight reinforcement of Assumption 4. In Point 5, K12
n /n → ∞ requires that Kn, the

order of the polynomial in D1 we use to approximate E(∆Y |D1, S = 0), goes to +∞ when the
sample size grows, thus ensuring that the bias of our series estimator of E(∆Y |D1, S = 0) tends
to zero. K7

n/n → 0 ensures that Kn does not go to infinity too fast, thus preventing overfitting.

Theorem 3 If Assumptions 1-3 and 5-6 hold,
√
n
(
δ̂1 − δ1

)
d−→ N (0, V (ψ1)),

where

ψ1 := 1
E(S)

{(
S

∆D − E
(

S

∆D

∣∣∣∣D1

) (1 − S)
E[1 − S|D1]

)
[∆Y − E(∆Y |D1, S = 0)] − δ1S

}
.

Theorem 3 shows that without quasi-stayers, the AOSS can be estimated at the
√
n−rate, and

gives an expression of its estimator’s asymptotic variance. With quasi-stayers, we conjecture
that the AOSS cannot be estimated at the

√
n−rate. This conjecture is based on a result from
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Graham and Powell (2012). Though their result applies to a broader class of estimands, it
implies in particular that with quasi-stayers,

lim
η↓0

E

(
∆Y − E(∆Y |S = 0)

∆D

∣∣∣∣∣Sη = 1
)

cannot be estimated at a faster rate than n1/3. The estimand in the previous display is closely
related to our estimand

lim
η↓0

E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣Sη = 1
)

in Theorem 2, and is equal to it if E(∆Y |D1, S = 0) = E(∆Y |S = 0). Then, even though
the assumptions in Graham and Powell (2012) differ from ours, it seems reasonable to assume
that their general conclusion still applies to our set-up: here as well, owing to δ1’s irregular
identification, this parameter can probably not be estimated at the parametric

√
n−rate with

quasi-stayers. This is one of the reasons that lead us to consider, in the next section, another
target parameter that can be estimated at the parametric

√
n−rate with quasi-stayers.

Finally, on top of estimating the AOSS, a natural idea would be to also use the estimators
(∆Yi − Ê(∆Y |D1 = Di,1, S = 0))/∆Di to estimate the distribution of switchers’ slopes, rather
than just their average. Doing so is not straightforward, but may be achieved resorting to
deconvolution techniques, under some assumptions (see, e.g., Arellano and Bonhomme, 2012).
We do not pursue that route here.

4 Estimating a weighted average of switchers’ potential-outcome’s
slopes

4.1 Target parameter

In this section, our target parameter is

δ2 :=E
(

|D2 −D1|
E(|D2 −D1||S = 1) × Y2(D2) − Y2(D1)

D2 −D1

∣∣∣∣∣S = 1
)

=E (sgn(D2 −D1)(Y2(D2) − Y2(D1))|S = 1)
E(|D2 −D1||S = 1) .

δ2 is a weighted average of the slopes of switchers’ potential outcome functions from their period-
one to their period-two treatments, where slopes receive a weight proportional to switchers’
absolute treatment change from period one to two. δ2 gives a weight larger than one to the slopes
of switchers whose treatment increased more than the average among switchers (|D2 − D1| >
E(|D2 − D1||S = 1)), and it gives a weight lower than one to the slopes of switchers whose
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treatment increased less than the average among switchers (|D2 − D1| < E(|D2 − D1||S = 1)).
Accordingly, we refer to δ2 as the Weighted Average Of Switchers’ Slopes (WAOSS). All slopes
are weighted positively, so the WAOSS satisfies the no-sign reversal property, like the AOSS.
The WAOSS and AOSS may differ, if switchers’ slopes are correlated with |D2 −D1|.

The AOSS and WAOSS serve different purposes. As discussed above, under shape restrictions
on the potential outcome function, the AOSS can be used to identify or bound the effect of other
treatment changes than the actual change switchers experienced from period one to two. The
WAOSS cannot serve that purpose, but under some assumptions, it may be used to conduct
a cost-benefit analysis of the treatment changes that took place from period one to two. To
simplify the discussion, let us assume in the remainder of this paragraph that D2 ≥ D1. Assume
also that the outcome is a measure of output, such as agricultural yields or wages, expressed in
monetary units. Finally, assume that the treatment is costly, with a cost linear in dose, uniform
across units, and known to the analyst: the cost of giving d units of treatment to a unit at
period t is ct × d for some known (ct)t∈{1,2}. Then, D2 is beneficial relative to D1 if and only if

E(Y2(D2) − c2D2) >E(Y2(D1) − c2D1)
⇔ δ2 >c2,

where the equivalence follows from the fact we momentarily assume D2 ≥ D1. Then, comparing
δ2 to the per-unit treatment cost is sufficient to evaluate if changing the treatment from D1 to
D2 was beneficial. For instance, when studying the effects of an increase in temperatures, due
to climate change, on various economic outcomes (e.g. agricultural yields, labor productivity,
etc.), one can compare the sum of the WAOSSes of all those outcomes, a measure of the average
total economic impact of raising temperatures by one degree across switchers, to an estimate of
the per-switcher cost of reducing emissions by a sufficient amount to reduce temperatures by a
degree over the period under consideration.

4.2 Identification

We now show that δ2 is identified by a regression-based and by a propensity-score based estimand.
Though we do not formally show it here, δ2 could also be identified by a doubly-robust estimand.
This is a further advantage of considering the WAOSS rather than the AOSS: unlike the former,
the latter parameter can only be identified by a regression-based estimand.

Let S+ = 1{D2 −D1 > 0}, S− = 1{D2 −D1 < 0} and

δ2+ := E (Y2(D2) − Y2(D1)|S+ = 1)
E(D2 −D1|S+ = 1) ,

δ2− := E (Y2(D1) − Y2(D2)|S− = 1)
E(D1 −D2|S− = 1) .
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Hereafter, units with S+ = 1 are referred to as “switchers up”, while units with S− = 1 are
referred to as “switchers down”. Thus, δ2+ is the WAOSS of switchers up, and δ2− is the
WAOSS of switchers down. One has

δ2 =P (S+ = 1|S = 1)E(D2 −D1|S+ = 1)
E(|D2 −D1||S = 1) δ2+

+P (S− = 1|S = 1)E(D1 −D2|S− = 1)
E(|D2 −D1||S = 1) δ2−. (4)

To identify δ2+ (resp. δ2−) we use DID estimands comparing switchers up (resp. switchers down)
to stayers with the same period-one treatment. This requires that there be no value of D1 such
that some switchers up (resp. switchers down) have that baseline treatment while there is no
stayer with the same baseline treatment, as stated formally in Point 1 (resp. 2) of Assumption
7 below.

Assumption 7 (Support conditions for WAOSS identification)

1. 0 < P (S+ = 1), and 0 < P (S+ = 1|D1) implies that 0 < P (S = 0|D1).

2. 0 < P (S− = 1), and 0 < P (S− = 1|D1) implies that 0 < P (S = 0|D1).

Theorem 4 1. If Assumptions 1-2 and Point 1 of Assumption 7 hold,

δ2+ = E (∆Y − E(∆Y |D1, S = 0)|S+ = 1)
E(∆D|S+ = 1) (5)

=
E (∆Y |S+ = 1) − E

(
∆Y P (S+=1|D1)

P (S=0|D1)
P (S=0)

P (S+=1)

∣∣∣S = 0
)

E(∆D|S+ = 1) . (6)

2. If Assumptions 1-2 and Point 2 of Assumption 7 hold,

δ2− = E (∆Y − E(∆Y |D1, S = 0)|S− = 1)
E(∆D|S− = 1) (7)

=
E (∆Y |S− = 1) − E

(
∆Y P (S−=1|D1)

P (S=0|D1)
P (S=0)

P (S−=1)

∣∣∣S = 0
)

E(∆D|S− = 1) . (8)

If Assumptions 1-2 and Assumption 7 hold,

δ2 =E [sgn(∆D) (∆Y − E(∆Y |D1, S = 0))]
E[|∆D|] (9)

=
E [sgn(∆D)∆Y ] − E

[
∆Y P (S+=1|D1)−P (S−=1|D1)

P (S=0|D1) P (S = 0)
∣∣∣S = 0

]
E[|∆D|] . (10)

Point 1 of Theorem 4 shows that δ2+, the WAOSS of switchers-up, is identified by two estimands,
a regression-based and a propensity-score-based estimand. Point 2 of Theorem 4 shows that δ2−,
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the WAOSS of switchers down, is identified by two estimands similar to those identifying δ2+,
replacing S+ by S−. Finally, if the conditions in Point 1 and 2 of Theorem 4 jointly hold,
it directly follows from (4) that δ2, the WAOSS of all switchers, is identified by a weighted
average of the estimands in Equations (5) and (7), and by a weighted average of the estimands
in Equations (6) and (8). Those weighted averages simplify into the expressions given in Point
3 of Theorem 4.

4.3 Estimation and inference

The regression-based estimands identifying δ2+ and δ2− can be estimated following almost the
same steps as in Section 3.3. Specifically, let

δ̂r
2+ :=

1
n+

∑
i:Si+=1

(
∆Yi − Ê(∆Y |D1 = Di,1, S = 0)

)
1

n+

∑
i:Si+=1 ∆Di

δ̂r
2− :=

1
n−

∑
i:Si−=1

(
∆Yi − Ê(∆Y |D1 = Di,1, S = 0)

)
1

n−

∑
i:Si−=1 ∆Di

,

where n+ = #{i : Si+ = 1} and n− = #{i : Si− = 1}, and where Ê(∆Y |D1, S = 0) is the series
estimator of E(∆Y |D1, S = 0) defined in Section 3.3 of the paper. Then, let

ŵ+ =
n+
n

× 1
n+

∑
i:Si+=1 ∆Di

n+
n

× 1
n+

∑
i:Si+=1 ∆Di − n−

n
× 1

n−

∑
i:Si−=1 ∆Di

,

and let

δ̂r
2 =ŵ+δ̂

r
2+ + (1 − ŵ+)δ̂r

2−

be the corresponding estimator of δ2.

We now propose estimators of the propensity-score-based estimands identifying δ2+ and δ2− in
Equations (6) and (8). Let P̂ (S+ = 1) = n+/n (resp. P̂ (S− = 1) = n−/n, P̂ (S = 0) =
(n − ns)/n) be an estimator of P (S+ = 1) (resp. P (S− = 1), P (S = 0)). Let P̂ (S+ = 1|D1)
(resp. P̂ (S− = 1|D1), P̂ (S = 0|D1)) be a non-parametric estimator of P (S+ = 1|D1) (resp.
P (S− = 1|D1), P (S = 0|D1)) using a series logistic regression of Si+ (resp. Si−, 1 − Si) on
polynomials in D1 (pk,Kn(D1))1≤k≤Kn . We make the following technical assumption.

Assumption 8 (Technical conditions for asymptotic normality of propensity-score WAOSS es-
timator)

1. D1 is continuously distributed on a compact interval I, with infd∈I fD1(d) > 0.

2. E[∆Y 2] < ∞ and d 7→ E[∆Y 2|D1 = d] is bounded on I
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3. 0 < E[S+] < 1, 0 < E[S−] < 1, E[S] > 0 and supd∈I E[S|D1 = d] < 1.

4. The functions d 7→ E[∆Y (1 − S)|D1 = d], d 7→ E[S|D1 = d], d 7→ E[S+|D1 = d] and
d 7→ E[S−|D1 = d] are four times continuously differentiable.

5. The polynomials d 7→ pk,Kn(d), k ≤ 1 ≤ Kn are orthonormal on I and Kn = Cnν where
1/10 < ν < 1/6.

Let

δ̂ps
2+ :=

1
n+

∑
i:Si+=1 ∆Yi − 1

n−ns

∑
i:Si=0 ∆Yi

P̂ (S+=1|D1=Di1)
P̂ (S=0|D1=Di1)

P̂ (S=0)
P̂ (S+=1)

1
n+

∑
i:Si+=1 ∆Di

δ̂ps
2− :=

1
n−

∑
i:Si−=1 ∆Yi − 1

n−ns

∑
i:Si=0 ∆Yi

P̂ (S−=1|D1=Di1)
P̂ (S=0|D1=Di1)

P̂ (S=0)
P̂ (S−=1)

1
n−

∑
i:Si−=1 ∆Di

,

and let

δ̂ps
2 =ŵ+δ̂

ps
2+ + (1 − ŵ+)δ̂ps

2−

be the corresponding estimator of δ2. Let

ψ2+ := 1
E(∆DS+)

{(
S+ − E(S+|D1)

(1 − S)
E(1 − S|D1)

)
(∆Y − E(∆Y |D1, S = 0)) − δ2+∆DS+

}

ψ2− := 1
E(∆DS−)

{(
S− − E(S−|D1)

(1 − S)
E(1 − S|D1)

)
(∆Y − E(∆Y |D1, S = 0)) − δ2−∆DS−

}

ψ2 := 1
E(|∆D|)

{(
S+ − S− − E(S+ − S−|D1)

(1 − S)
E(1 − S|D1)

)

× (∆Y − E(∆Y |D1, S = 0)) − δ2 |∆D| (S+ − S−)
}
.

Theorem 5 1. If Assumptions 1-3 and 6 hold,
√
n
(
(δ̂r

2+, δ̂
r
2−)′ − (δ2+, δ2−)′

)
d−→ N (0, V ((ψ2+, ψ2−)′)).

and
√
n
(
δ̂r

2 − δ2
)

d−→ N (0, V (ψ2).

2. If Assumptions 1-3 and 8 hold,
√
n
(
(δ̂ps

2+, δ̂
ps
2−)′ − (δ2+, δ2−)′

)
d−→ N (0, V ((ψ2+, ψ2−)′)).

and
√
n
(
δ̂ps

2 − δ2
)

d−→ N (0, V (ψ2).
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Point 1 (resp. 2) of Theorem 5 shows that δ̂r
2+, δ̂r

2− and δ̂r
2 (resp. δ̂ps

2+, δ̂ps
2− and δ̂ps

2 ) are
√
n−consistent and jointly asymptotically normal.

δ̂r
2 can be computed by the did_multiplegt Stata command. To do so, the syntax is:

did_multiplegt Y G T D, controls((1{t = 2}pk,Kn(D1))1≤k≤Kn).
Essentially, one just needs to control for the interaction of a period-two indicator and the poly-
nomial in D1 one uses to estimate switchers’ counterfactual trend.

5 Extensions

5.1 No stayers

So far we have assumed that P (S = 0) > 0, meaning that there are units whose treatment
does not change over time. We now show that when this is not the case, the WAOSS can
still be estimated, provided there are quasi-stayers, meaning units whose treatment “barely”
changes between periods 1 and 2, a requirement we formalize below. The AOSS can also still be
estimated without stayers and with quasi-stayers, but we conjecture that the resulting estimator
will converge at an even slower rate than the estimator of the WAOSS we propose below, so we
do not consider it here.

To identify the WAOSS without stayers, we use a DID estimand comparing movers and quasi-
stayers with the same period-one treatment. This requires that there be no value of the period-
one treatment D1 such that some movers but no quasi-stayers have that value, as stated formally
below.

Assumption 9 (Support condition without stayers) P (S = 1) = 1 and for all η > 0, P (Sη =
0|D1) > 0.

Assumption 9 implies that for all η > 0, P (Sη = 0) > 0. This formalizes our requirement that
there be quasi-stayers: for any η, including very small ones, there must be a strictly positive
proportion of units whose treatment changes by less than η. Because Sη ≤ S for all η > 0,
Assumption 9 is weaker than Assumption 4. In particular, it does not require that P (S = 0) > 0.

Theorem 6 If Assumptions 1, 2, and 9 hold,

δ2 =E [sgn(∆D) (∆Y − limη↓0 E(∆Y |D1, Sη = 0))]
E[|∆D|] .

Theorem 6 shows that without stayers, δ2 is identified by a limiting regression-based estimand
similar to that in (9), except that movers are compared to quasi-stayers with the same baseline
treatment, letting quasi-stayers’ ∆D go to zero, to ensure that in the limit, their outcome
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evolution only reflects the effect of time and not the effect of their treatment change. Without
stayers, δ2 could also be identified by a limiting propensity-score-based estimand. However,
while we can rely on an existing statistical result to study the asymptotic distribution of an
estimator of the limiting regression-based estimand in Theorem 6, we are not aware of a similar
result for a limiting propensity-score-based estimand. Accordingly, we only consider the limiting
regression-based estimand.

To estimate δ2, remark that δ2 is a simple function of E(∆Y ), E(∆D) and the more complicated
term

θ0 := E
[
sgn(∆D) lim

η↓0
E(∆Y |D1, Sη = 0)

]
.

Let g(u, d1) := E[Y2 − Y1|D2 − D1 = u,D1 = d1]. Under regularity conditions, we have θ0 =
E [g(0, D1)]. Thus, θ0 corresponds to the marginal integration of the nonparametric regression
function g with respect to the distribution of D1. We then follow Linton and Nielsen (1995)
and consider a plug-in estimator where g is estimated by a local linear estimator. Specifically,
ĝ(u, d1) := β̂0(u, d1) with

(β̂0(u, d1), β̂1(u, d1), β̂2(u, d1)) := arg min
(β0,β1,β2)∈R3

n∑
i=1
kb1(∆Di − u)kb2(D1i − d1)

× (∆Yi − β0 − β1∆Di − β2D1i)2 ,

where kb(t) := k(t/b)/b, k is a kernel function and b1, b2 are bandwidths. Then, we let θ̂ :=
1
n

∑n
i=1 sgn(∆Di)ĝ(0, D1i) and the estimator of δ2 is finally

δ̂2 =
1
n

∑n
i=1 ∆Yi − θ̂

1
n

∑n
i=1 ∆Di

.

We conjecture, following Linton and Nielsen (1995) or Corollary 2 in Kong et al. (2010), that
δ̂2 is asymptotically normal but with a nonparametric rate of convergence corresponding to a
univariate nonparametric regression.

5.2 Discrete treatments

While in this paper we focus on continuous treatments, our results can also be applied to discrete
treatments. In Section 4 of their Web Appendix, de Chaisemartin and D’Haultfœuille (2020)
already propose a DID estimator of the effect of a discrete treatment. The plug-in estimator of
δ2 one can form following Theorem 4 and using simples averages to estimate the non-parametric
regressions or the propensity scores is numerically equivalent to the estimator therein. This paper
still makes two contributions relative to de Chaisemartin and D’Haultfœuille (2020) when the
treatment is discrete. First, the estimator based on Theorem 1 was not proposed therein. Second,
with a discrete treatment taking a large number of values, the estimator in de Chaisemartin and
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D’Haultfœuille (2020) may not be applicable as it requires finding switchers and stayers with
the exact same period-one treatment, which may not always be feasible. Instead, one can follow
Theorem 4, using a parametric model to estimate the regressions or the propensity scores entering
the estimands in that theorem.

5.3 More than two time periods

In this section, we assume the representative unit is observed at T > 2 time periods. Let
(D1, ..., DT ) denote the unit’s treatments and Dt = Supp(Dt) for all t ∈ {1, ..., T}. For any
t ∈ {1, ..., T}, and for any d ∈ Dt let Yt(d) denote the unit’s potential outcome at period t

with treatment d. Finally, let Yt denote their observed outcome at t. For any t ∈ {2, ..., T}, let
St = 1{Dt ̸= Dt−1} be an indicator equal to 1 if the unit’s treatment switches from period t− 1
to t. Let also S+,t = 1{Dt > Dt−1} be an indicator equal to 1 if the unit’s treatment increases
from period t − 1 to t, and let S−,t = 1{Dt < Dt−1} be an indicator equal to 1 if the unit’s
treatment decreases.

In this section, we will assume that the assumptions made in the paper, rather than just holding
for t = 1 and t = 2, actually hold for all pairs of consecutive time periods (t−1, t). For instance,
we replace Assumption 1 by the following condition.

Assumption 10 (Parallel trends) For all t ≥ 2, for all d ∈ Dt−1, E(∆Yt(d)|Dt−1 = d,Dt) =
E(∆Yt(d)|Dt−1 = d).

To preserve space, we do not restate our other assumptions with more than two periods.

Let

δ1t = E

(
Yt(Dt) − Yt(Dt−1)

Dt −Dt−1

∣∣∣∣∣St = 1
)
,

δ2+t = E (Yt(Dt) − Yt(Dt−1)|S+,t = 1)
E(Dt −Dt−1|S+,t = 1) ,

δ2−t = E (Yt(Dt−1) − Yt(Dt)|S−,t = 1)
E(Dt−1 −Dt|S−,t = 1) .

Theorem 7 If Assumption 10 and generalizations of Assumptions 2-5 to more than two periods
hold,

T∑
t=2

P (St = 1)∑T
k=2 P (Sk = 1)

δ1t =
T∑

t=2

P (St = 1)∑T
k=2 P (Sk = 1)

E

(
∆Yt − E(∆Yt|Dt−1, St = 0)

∆Dt

∣∣∣∣∣St = 1
)
.
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Theorem 8 1. If Assumption 10 and generalizations of Assumption 2 and Point 1 of As-
sumption 7 to more than two periods hold,

T∑
t=2

P (S+,t = 1)E(∆Dt|S+,t = 1)∑T
k=2 P (S+,k = 1)E(∆Dk|S+,k = 1)

δ2+t

=
T∑

t=2

P (S+,t = 1)E(∆Dt|S+,t = 1)∑T
k=2 P (S+,k = 1)E(∆Dk|S+,k = 1)

E (∆Yt − E(∆Yt|Dt−1, St = 0)|S+,t = 1)
E(∆Dt|S+,t = 1)

=
T∑

t=2

P (S+,t = 1)E(∆Dt|S+,t = 1)∑T
k=2 P (S+,k = 1)E(∆Dk|S+,k = 1)

E (∆Yt|S+,t = 1) − E
(
∆Yt

P (S+,t=1|Dt−1)
P (St=0|Dt−1)

P (St=0)
P (S+,t=1)

∣∣∣St = 0
)

E(∆D|S+,t = 1) .

2. If Assumption 10 and generalizations of Assumption 2 and Point 2 of Assumption 7 to
more than two periods hold,

T∑
t=2

P (S−,t = 1)E(−∆Dt|S−,t = 1)∑T
k=2 P (S−,k = 1)E(−∆Dk|S−,k = 1)

δ2−t

=
T∑

t=2

P (S−,t = 1)E(−∆Dt|S−,t = 1)∑T
k=2 P (S−,k = 1)E(−∆Dk|S−,k = 1)

E (∆Yt − E(∆Yt|Dt−1, St = 0)|S−,t = 1)
E(∆Dt|S−,t = 1)

=
T∑

t=2

P (S−,t = 1)E(−∆Dt|S−,t = 1)∑T
k=2 P (S−,k = 1)E(−∆Dk|S−,k = 1)

E (∆Yt|S−,t = 1) − E
(
∆Yt

P (S−,t=1|Dt−1)
P (St=0|Dt−1)

P (St=0)
P (S−,t=1)

∣∣∣St = 0
)

E(∆D|S−,t = 1) .

Theorems 7 and 8 are straightforward generalizations of Theorems 1 and 4 to settings with
more than two time periods. Note that we propose different weights to aggregate the AOSS and
WAOSS across time periods. For the AOSS, the weights are just proportional to the proportion
of switchers between t−1 and t. For the WAOSS, the weights are proportional to the proportion
of switchers times their average treatment switch.

A regression-based estimator following the first point of Theorem 8 can be computed as follows.
First, one restricts the sample to periods 1 and 2, and to stayers and switchers in whose treatment
increased. Then, one computes our regression-based estimator in that subsample, using the same
syntax as that given in the last paragraph of Section 4.3 in the paper. Then, one repeats the
same procedure, restricting the sample to periods 2 and 3, to periods 3 and 4, ..., to periods
T − 1 and T , and replacing D1 by Dt−1. Finally, one aggregates the estimators computed for
every pair of consecutive time periods, using the sample equivalents of the weights in the first
point of Theorem 8. A regression-based estimator following the second point of Theorem 8
can be computed similarly, restricting the sample to stayers and switchers out for each pair of
consecutive time periods.

5.4 Testing for pre-trends

With several time periods, one can test the following condition, which is closely related to
Assumption 10:

19



Assumption 11 (Testable parallel trends) For all t ≥ 2, t ≤ T−1, for all d ∈ Dt−1, E(∆Yt(d)|Dt−1 =
d,Dt, Dt+1) = E(∆Yt(d)|Dt−1 = d).

To test that condition, one can compute a placebo version of the estimators described in the
previous subsection, replacing ∆Yt by ∆Yt−1, and restricting the sample, for each pair of con-
secutive time periods (t− 1, t), to units whose treatment did not change between t− 2 and t− 1.
Thus, the placebo compares the average ∆Yt−1 of the t−1-to-t switchers and stayers, restricting
attention to t− 2-to-t stayers. The placebo we propose generalizes that in de Chaisemartin and
D’Haultfœuille (2020) to applications with a continuous treatment. Finally, note that in appli-
cations with no stayers, it is less straightforward to propose placebo estimators of our parallel
trends assumption. The actual estimator already does not converge at the parametric rate. A
placebo would compare the average ∆Yt−1 of t − 1-to-t switchers and quasi-stayers, restricting
attention to t − 2-to-t quasi-stayers. This placebo may converge at an even slower rate than
the actual estimator, unless a strictly positive proportion of units are t − 2-to-t − 1 stayers or
quasi-stayers.

5.5 Allowing for dynamic effects

In this subsection, we allow for dynamic effects. The results below generalize those in de Chaise-
martin and D’Haultfœuille (2022), who allow for dynamic effects, but require that groups’ period-
one treatment take a finite number of values. Here, we assume that groups’ period-one treatment
is continuously distributed. Though this is not of essence, to ease exposition we require that the
representative unit’s treatment can never get lower than their period-one treatment:

Assumption 12 (Lowest treatment at period one) For all t, Dt ≥ D1.

It may be the case that Assumption 12 fails, for instance because for some units, the treatment
is at its lowest at period one, but for other units the treatment is at its highest at period one.
In that case, one can split the sample in two, and compute the estimators based on the results
below in the first subsample, and the negative of those estimators in the second subsample.
There may also be some units that have a treatment higher than their period-one treatment at
some time periods, but a lower treatment at other time periods. One may have to discard such
units, as the dynamic treatment effects of those units may conflate together effects of increases
and decreases of the treatment, and may not be interpretable, see the discussion of Assumption
5 in de Chaisemartin and D’Haultfœuille (2022) for further details.

For all d ∈ D1 × ... × DT , let Yt(d) denote the potential outcome of the representative unit
at period t, if their treatments from period one to T are equal to d. This dynamic potential
outcome framework is similar to that in Robins (1986). It allows for the possibility that the
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outcome at time t be affected by past and future treatments. Let D = (D1, ..., DT ) be a 1 × T

vector stacking the representative unit’s treatments from period one to T .

Assumption 13 (No Anticipation) For all d ∈ D1 × ...× DT , Yt(d) = Yt(d1, ..., dt).

Assumption 13 requires that the current outcome do not depend on future treatments, the
so-called no-anticipation hypothesis. Abbring and Van den Berg (2003) have discussed that as-
sumption in the context of duration models, and Malani and Reif (2015), Botosaru and Gutierrez
(2018), and Sun and Abraham (2021) have discussed it in the context of DID models.

Let F = min{t : Dt ̸= Dt−1} denote the first date at which the representative unit’s treatment
changes, with the convention that F = T +1 if their treatment never changes. For all d ∈ D1, we
let d = (d, ..., d) denote a 1×T vector with coordinates equal to d. We also let D1 = (D1, ..., D1)
denote a 1 × T vector with coordinates equal to D1, the unit’s period-one treatment. We make
the following assumptions, which generalize Assumptions 1 and 4 to settings with more than
two time periods and dynamic effects.

Assumption 14 (Parallel trends, allowing for dynamic effects) For all t ≥ 2, for all d ∈ D1,
E(Yt(D1) − Yt−1(D1)|D) = E(Yt(D1) − Yt−1(D1)|D1).

Assumption 15 (Support condition, allowing for dynamic effects) For all t ≥ 2, 0 < P (F = t),
and for all t′ > t, the support of D1|F = t is included in that of D1|F > t− 1 + ℓ′: 0 < P (F =
t|D1) ⇒ 0 < P (F > t− 1 + ℓ′|D1).

Assumption 15 requires that the probability that the representative unit never changes its treat-
ment be strictly positive. When that condition fails, results below still hold, till the last period
where the probability of having never changed treatment is still strictly positive.

Theorem 9 below generalizes Theorems 7 and 8 to allow for dynamic effects. Let

δℓ = E (YF −1+ℓ(D) − YF −1+ℓ(D1)|F ≤ T − ℓ+ 1) .

The effects δℓ identified in Theorem 9 correspond to the non-normalized event-study effects δℓ

studied in de Chaisemartin and D’Haultfœuille (2022). We refer the reader to that paper for
further details on those effects and their interpretation.

Theorem 9 If Assumptions 13, 14 and 15 hold, for any ℓ ∈ {1, ..., T − 1},

δℓ

=
T −ℓ+1∑

t=2

P (F = t)∑T −ℓ+1
k=2 P (F = k)

E (Yt−1+ℓ − Yt−1 − E(Yt−1+ℓ − Yt−1|D1, F > t− 1 + ℓ)|F = t) (11)

=
T −ℓ+1∑

t=2

P (F = t)∑T −ℓ+1
k=2 P (F = k)

(E (Yt−1+ℓ − Yt−1|F = t)

− E

(
(Yt−1+ℓ − Yt−1)

P (F = t|D1)
P (F > t− 1 + ℓ|D1)

P (F > t− 1 + ℓ)
P (F = t)

∣∣∣∣∣F > t− 1 + ℓ

))
. (12)
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(11) shows that with a continuous period-one treatment, δℓ is identified by a regression-based
estimand, while (12) shows that it is also identified by a propensity-score-reweighting-based esti-
mand. Those estimands generalize the estimands proposed in de Chaisemartin and D’Haultfœuille
(2022) when the period-one treatment is discrete.

The non-normalized event-study effects compare, in period t − 1 + ℓ, the actual outcome of
units whose treatment changed for the first time ℓ periods ago to the counterfactual outcome
they would have obtained if they had instead kept their period-one treatment from period one
to t. Assumption 12 ensures that those effects can be interpreted as effects of increasing the
treatment, but they may aggregate together the effects of many different treatment trajectories.
de Chaisemartin and D’Haultfœuille (2022) also propose normalized event-study estimands,
that equal weighted averages of the slopes of the potential outcome function with respect to
the current treatment and its lags. Those normalized event-study effects are also identified by
regression-based and propensity-score-based estimands similar to those in Theorem 9.

A regression-based estimator following Theorem 9 can be computed by the did_multiplegt_dyn
Stata command. To do so, the syntax is:
did_multiplegt_dyn Y G T D, dynamic(ℓ) controls((∑T

t′=2 1{t = t′}pk,Kn(D1))1≤k≤Kn),
where ℓ is the number of event-study effects one wishes to estimate. Essentially, one just needs
to control for the interaction of time fixed effects and the polynomial in D1 one wishes to use to
estimate switchers’ counterfactual trend. To estimate normalized event-study effects, one just
needs to add normalized to the previous command.

6 Future work

In future work, we will use our results to revisit Fajgelbaum et al. (2020) and Deschênes and
Greenstone (2007).

7 Proofs

Hereafter, Supp(X) denotes the support of X. Note that under Assumption 2, one can show
that for all (t, t′) ∈ {0, 1}2, E(Yt(Dt′)) exists.

7.1 Theorem 1

The result is just a special case of Theorem 2, under Assumption 5 □
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7.2 Theorem 2

First, observe that the sets {Sη = 1} are decreasing for the inclusion and {S = 1} = ∪η>0{Sη =
1}. Then, by continuity of probability measures,

lim
η↓0

P (Sη = 1) = P (S = 1) > 0, (13)

where the inequality follows by Assumption 4. Thus, there exists η > 0 such that for all
η ∈ (0, η), P (Sη = 1) > 0. Hereafter, we assume that η ∈ (0, η).

We have Supp(D1|Sη = 1) ⊆ Supp(D1|S = 1) and by Assumption 4, Supp(D1|S = 1) ⊆
Supp(D1|S = 0). Thus, for all (d1, d2) ∈ Supp(D1, D2|Sη = 1), d1 ∈ Supp(D1|S = 0), so
E(Y2(d1) − Y1(d1)|D1 = d1, S = 0) = E(Y2(d1) − Y1(d1)|D1 = d1, D2 = d1) is well-defined.
Moreover, for almost all such (d1, d2),

E(Y2(d1) − Y1(d1)|D1 = d1, D2 = d2) =E(Y2(d1) − Y1(d1)|D1 = d1, D2 = d1)
=E(∆Y |D1 = d1, S = 0), (14)

where the first equality follows from Assumption 1. Now, by Point 2 of Assumption 2, [Y2(D2)−
Y2(D1)]/∆D admits an expectation. Moreover,

E

(
Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣Sη = 1
)

=E
(
E(Y2(D2) − Y1(D1)|D1, D2) − E(Y2(D1) − Y1(D1)|D1, D2)

∆D

∣∣∣∣∣Sη = 1
)

=E
(
E(∆Y |D1, D2) − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣Sη = 1
)

=E
(

∆Y − E(∆Y |D1, S = 0)
∆D

∣∣∣∣∣Sη = 1
)
, (15)

where the first equality follows from the law of iterated expectations, the second follows from
(14), and the third again by the law of iterated expectations. Next,

δ1 = Pr(Sη = 1|S = 1)E
[
Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣Sη = 1
]

+ E

[
(1 − Sη)Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣S = 1
]
.

Moreover,∣∣∣∣∣E
[
(1 − Sη)Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣S = 1
]∣∣∣∣∣ ≤ E

[
(1 − Sη)

∣∣∣∣∣Y2(D2) − Y2(D1)
∆D

∣∣∣∣∣
∣∣∣∣∣S = 1

]
≤ E

[
(1 − Sη)Y |S = 1

]
,
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where the second inequality follows by Assumption 2. Now, by (13) again, limη↓0(1 − Sη)Y = 0
a.s. Moreover, (1 − Sη)Y ≤ Y with E[Y |S = 1] < ∞. Then, by the dominated convergence
theorem,

lim
η↓0

E

[
(1 − Sη)Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣S = 1
]

= 0.

We finally obtain

δ1 = lim
η↓0

E

[
Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣Sη = 1
]
. (16)

The result follows by combining (15) and (16) □

7.3 Theorem 3

Let ∆Y = Y2 − Y1, ∆D = D2 −D1, µ1(D1) = E[(1 − S)Y |D1], µ2(D1) = E[1 − S|D1]. In what
follows we let µ(D1) = (µ1(D1), µ2(D1))′. From Theorem 1, the parameter δ1 is characterized
by the condition:

0 = E

[
S

∆D

(
∆Y − δ1∆D − µ1(D1)

µ2(D1)

)]
Define:

g(Z, δ, µ) = S

∆D

(
∆Y − µ1(D1)

µ2(D2)

)
− Sδ1

where Z = (Y1, Y2, D1, D2). Also define:

L(Z, µ, δ1, µ̃) = − S

∆D · 1
µ̃2(D1)

(
µ1(D1) − µ̃1(D1)

µ̃2(D1)
µ2(D1)

)

We verify conditions 6.1 to 6.3, 5.1(i) and 6.4(ii) to 6.6 in Newey (1994). Following his notation,
we let µ0 = (µ10, µ20)′ and δ10 represent the true parameters, and g(Z, µ) = g(Z, δ10, µ).

Step 1. We verify condition 6.1. First, since S is binary E[(S − E[S|D1])2|D1] = V [S|D1] ≤
1/4. On the other hand, E[((1 − S)∆Y − E[(1 − S)∆Y |D1])2|D1] ≤ E [∆Y 2|D1] < ∞ by part
2 of Assumption 6. Thus, condition 6.1 holds.

Step 2. We verify condition 6.2. Since pK(d1) is a power series, the support of D1 is compact
and the density of D1 is uniformly bounded below, by Lemma A.15 in Newey (1995) for each K
there exists a constant nonsingular matrix AK such that for PK(d1) = AKp

K(d1), the smallest
eigenvalue of E[PK(D1)PK(D1)′] is bounded away from zero uniformly over K, and PK(D1) is
a subvector of PK+1(D1). Since the series-based propensity scores estimators are invariant to
nonsingular linear transformations, we do not need to distinguish between PK(d1) and pK(d1)
and thus conditions 6.2(i) and 6.2(ii) are satisfied. Finally, because p1K(d1) ≡ 1 for all K, for
a vector γ̃ = (1, 0, 0, . . . , 0) we have that γ̃′pk(d1) = γ̃1 ̸= 0 for all d1. Since AK is nonsingular,
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letting γ = A−1
K

′
γ̃, γ′P k(d1) = γ̃′A−1

K PK(d1) is a non-zero constant for all d1 and thus condition
6.2(iii) holds.

Step 3. We verify condition 6.3 for d = 0. Since pK(d1) is a power series, the support of D1

is compact and the functions to be estimated have 4 continuous derivatives, by Lemma A.12 in
Newey (1995) there is a constant C > 0 such that there is π with

∥∥∥µ− (pK)′π
∥∥∥ ≤ CK−α, where

in our case α = s/r = 4 since the dimension of the covariates is 1 and the unknown functions
are 4 times continuously differentiable. Thus, condition 6.3 holds.

Step 4. We verify condition 5.1(i). By part 3 of Assumption 6, µ20(D1) = E[1 − S|D1] = 1 −
E[S|D1] ≥ 1 − cM for some constant cM>0. Let C = 1 − cM . For µ such that ∥µ− µ0∥∞ < C/2,

|g(Z, µ) − g(Z, µ0) − L(Z, µ− µ0, δ10, µ0)|

=
∣∣∣∣ S∆D

∣∣∣∣
∣∣∣∣∣µ1(D1)
µ2(D1)

− µ10(D1)
µ20(D1)

− 1
µ20(D1)

(
µ1(D1) − µ10(D1) − µ10(D1)

µ20(D1)
(µ2(D1) − µ20(D1))

)∣∣∣∣∣
≤ 1
c

∣∣∣∣∣µ1(D1)
µ2(D1)

− µ10(D1)
µ20(D1)

− 1
µ20(D1)

(
µ1(D1) − µ10(D1) − µ10(D1)

µ20(D1)
(µ2(D1) − µ20(D1))

)∣∣∣∣∣
≤ 1
c

· 2 (1 + |µ10(D1)| / |µ20(D1)|)
C2 max {|µ1(D1) − µ10(D1)| , |µ2(D1) − µ20(D1)|}2

≤ 1
c

· 2 (1 + |µ10(D1)| / |µ20(D1)|)
C2 ∥µ− µ0∥2

∞

where the first inequality follows from Assumption 5 and the second inequality follows from
Lemma S3 in the Web Appendix of de Chaisemartin and D’Haultfœuille (2018). Thus, condition
5.1(i) holds.

Step 5. We verify condition 6.4(ii). First, E[(1 + |µ10(D1)| / |µ20(D1)|)2] < ∞. For power
series, by Lemma A.15 in Newey (1995), ζd(K) = sup|λ|=d,x∈I

∥∥∥∂λpK(x)
∥∥∥ ≤ CK1+2d so setting

d = 0,

ζ0(K)
(
(K/n)1/2 +K−α

)
≤ CK

(
(K/n)1/2 +K−α

)
= C

√K3

n
+K1−α

 → 0

since α = 4 > 1/2, K7/n → 0 and K → ∞. Finally,

√
nζ0(K)2

(
K

n
+K−2α

)
≤ C2√nK2

(
K

n
+K−2α

)
= C

√K6

n
+
√

n

K4α−4

 → 0

since K7/n → 0 and for α = 4, K4α−4/n = K12/n → ∞. Hence condition 6.4(ii) holds.
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Step 6. We verify condition 6.5 for d = 1 and where |µ|d = sup|λ|≤d,x∈I

∥∥∥∂λµ(x)
∥∥∥. Since

E[(1 + |µ10(D1)| / |µ20(D1)|)2] < ∞,

|L(Z, µ, δ10, µ0)| =
∣∣∣∣∣ S∆D · 1

µ20(D1)

(
µ1(D1) − µ10(D1)

µ20(D1)
µ2(D1)

)∣∣∣∣∣
≤ 1
c(1 − cM)

(
1 +

∣∣∣∣∣µ10(D1)
µ20(D1)

∣∣∣∣∣
)

|µ|1 .

Next, the same linear transformation of pK as in Step 2, namely PK is, by Lemma A.15 in

Newey (1995), such that
∣∣∣PK

k

∣∣∣
d

≤ CK1/2+2d. As a result,
(∑

k

∣∣∣PK
k

∣∣∣2
1

)1/2
≤ CK1+2d. Then, for

d = 1,
(∑

k

∣∣∣PK
k

∣∣∣2
1

)1/2
√K

n
+K−α

 ≤ CK3

√K
n

+K−α

 = C

√K7

n
+K3−α

 → 0

since K7/n → 0 and K3−α = K−1 → 0 for α = 4. Thus, condition 6.5 holds.

Step 7. We verify condition 6.6. Condition 6.6(i) holds for

δ(D1) = [−E[S/∆D|D1]/µ20(D1)](1,−µ10(D1)/µ20(D1)).

Because the involved functions are continuously differentiable, by Lemma A.12 from Newey
(1995) there exist πK and ξK such that:

E
[∥∥∥δ(D1) − ξKp

K(D1)
∥∥∥2
]

≤
∥∥∥δ − ξKp

K
∥∥∥2

∞
≤ CK−2α

and
E
[∥∥∥µ0(D1) − πKp

K(D1)
∥∥∥2
]

≤
∥∥∥µ0 − πKp

K
∥∥∥2

∞
≤ CK−2α

were we recall that α = 4. Thus, the first part of condition 6.6(ii) follows from

nE
[∥∥∥δ(D1) − ξKp

K(D1)
∥∥∥2
]
E
[∥∥∥µ0(D1) − πKp

K(D1)
∥∥∥2
]

≤ CnK−16 → 0.

Next,
ζ0(K)4K

n
≤ C

K5

n
→ 0

and finally
ζ0(K)2E

[∥∥∥µ0(D1) − πKp
K(D1)

∥∥∥2
]

≤ CK2−2α → 0

and
E
[∥∥∥δ(D1) − ξKp

K(D1)
∥∥∥2
]

≤ CK−2α → 0.

Thus, condition 6.6 holds.
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By inspection of the proof of Theorem 6.1 in Newey (1994), condition 6.4(ii) implies 5.1(ii)
therein, conditions 6.5 and 6.2 imply 5.2 therein, and condition 6.6 implies 5.3 therein. Then,
conditions 5.1-5.3 inNewey (1994) hold, and thus by his Lemma 5.1,

1√
n

∑
i

g(Zi, δ10, µ̂) = 1√
n

∑
i

[g(Zi, µ0) + α(Zi)] + oP (1) →d N (0, V )

where

α(Z) = δ(D1)
∆Y (1 − S) − µ10(D1)

(1 − S) − µ20(D1)

 = −
E
(

S
∆D

∣∣∣D1
)

E[1 − S|D1]
(1 − S)(∆Y − µ0(D1))

and V = E
[
(g(Zi, µ0) + α(Zi)) (g(Zi, µ0) + α(Zi))′

]
. Finally note that:

√
n(δ̂1 − δ10) = n∑

i Si

· 1√
n

∑
i

g(Zi, δ10, µ̂) = 1
E[S] · 1√

n

∑
i

[g(Zi, µ0) + α(Zi)] + oP (1)

and the result follows defining ψ1 = [g(Zi, µ0) + α(Zi)]/E[S]. □

7.4 Theorem 4

We only prove the first point, as the proof of the second point is similar and (9)-(10) follow by
combining these two points. Moreoer, the proof of (5) is similar to the proof of Theorem 1 so it
is omitted. We thus focus on (6) hereafter.

For all d1 ∈ Supp(D1|S+ = 1), by Point 1 of Assumption 7, d1 ∈ Supp(D1|S = 0). Thus,
E(∆Y |D1 = d1, S = 0) is well-defined. Then, using the same reasoning as that used to show
(14) above, we obtain

E(Y2(d1) − Y1(d1)|D1 = d1, S+ = 1) = E(∆Y |D1 = d1, S = 0).

Now, let Supp(D1|S+ = 1)c be the complement of Supp(D1|S+ = 1). For all d1 ∈ Supp(D1|S =
0) ∩ Supp(D1|S+ = 1)c, P (S+ = 1|D1 = d1) = 0. Then, with the convention that E(∆Y |D1 =
d1, S+ = 1)P (S+ = 1|D1 = d1) = 0,

E(∆Y |D1 = d1, S = 0)P (S+ = 1|D1 = d1)
=E(Y2(d1) − Y1(d1)|D1 = d1, S+ = 1)P (S+ = 1|D1 = d1).

Combining the two preceding displays implies that for all d1 ∈ Supp(D1|S = 0),

E(∆Y |D1 = d1, S = 0)P (S+ = 1|D1 = d1)
=E(Y2(d1) − Y1(d1)|D1 = d1, S+ = 1)P (S+ = 1|D1 = d1).
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Hence, by repeated use of the law of iterated expectation,

E

(
∆Y P (S+ = 1|D1)

P (S = 0|D1)
P (S = 0)
P (S+ = 1)

∣∣∣∣∣S = 0
)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1)P (S+ = 1|D1)

P (S = 0|D1)
P (S = 0)
P (S+ = 1)

∣∣∣∣∣S = 0
)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1)P (S+ = 1|D1)

P (S = 0|D1)
1 − S

P (S+ = 1)

)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1)P (S+ = 1|D1)

P (S+ = 1)

)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1) S+

P (S+ = 1)

)
=E (Y2(D1) − Y1(D1)|S+ = 1) .

The result follows after some algebra. □

7.5 Theorem 5

We prove the result for the propensity-score-based estimator and drop the “ps” subscript to
reduce notation. Let µ1(d) = E[S+|D1 = d], µ2(d) = E[1 − S|D1 = d], µ3(d) = E[S−|D1 = d]
and µY (D1) = E[∆Y (1 −S)|D1]. The logit series estimators of the unknown functions µj(d) are
given by µ̂j(d) = Λ(PK(d)′π̂j) where Λ(z) = 1/(1 + e−z) is the logit function and

0 =
∑

i

(Sji − Λ(PK(D1i)′π̂j))PK(D1i)

for Sji equal to 1−Si, Si+ or Si−. Under Assumption 8, there exists a constant πj,K that satisfies:∥∥∥∥∥log
(

µj

1 − µj

)
− (PK)′πj,K

∥∥∥∥∥
∞

= O(K−α)

and we let µji,K = Λ(PK(D1i)′πj,K). We suppress the n subscript on K to reduce notation and
let µji := µj(D1i) and µ̂ji := µ̂j(D1i). Under Assumption 8 part 1, Lemma A.15 in Newey (1995)
ensures that the smallest eigenvalue of E[PK(D1)PK(D1)′], is bounded away from zero uniformly
over K. In addition, Cattaneo (2010) shows that under Assumption 8, the multinomial logit
series estimator satisfies:

∥µj,K − µj∥∞ = O(K−α), ∥π̂j − πj,K∥ = OP

√K
n

+K−α+1/2


and

∥µ̂j − µj∥∞ = OP

ζ(K)
√K

n
+K−α+1/2
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where ζ(K) = supd∈I

∥∥∥PK(d)
∥∥∥. Newey (1994) also shows that for orthonormal polynomials, ζ(K)

is bounded above by CK for some constant C, which implies in our case that ∥µ̂j − µj∥∞ =
OP

(
K
(√

K
n

+K−α+1/2
))

. Throughout the proof, we also use the fact that by a second-order
mean value expansion, there exists a π̃j such that:

µ̂ji − µji,K = Λ(PK(D1i)′π̂j) − Λ(PK(D1i)′πj,K)
= Λ̇(PK(D1i)′πj,K)PK(D1i)′(π̂j − πj,K) + Λ̈(PK(D1i)′π̃j)(PK(D1i)′(π̂j − πj,K))2

where both Λ̇(z) and Λ̈(z) are bounded.
We start by considering the δ2+ parameter and omit the “ps” superscript to reduce notation.
Recall that

δ̂2+ = 1∑
i ∆DiSi+

∑
i

{
∆YiSi+ − ∆Yi(1 − Si)

µ̂1i

µ̂2i

}
.

Thus,

√
n(δ̂2+ − δ2+) = 1

E[∆DS+] · 1√
n

∑
i

{
∆YiSi+ − ∆Yi(1 − Si)

µ̂1i

µ̂2i

− δ2+E[∆DS+]
}

+ oP (1).

Define:
Vi = ∆YiSi+ − ∆Yi(1 − Si)

µ̂1i

µ̂2i

− δ2+E[∆DS+].

Let ψ2+,i be the influence function defined in the statement of the theorem. Using the identity:

1
b̂

− 1
b

= − 1
b2 (b̂− b) + 1

b2b̂
(b̂− b)2

we have, after some rearranging,
1√
n

∑
i

Vi = E[∆DS+] · 1√
n

∑
i

ψ2+,i

− 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ̂1i − µ1i)

+ 1√
n

∑
i

(∆Yi(1 − Si) − µY i)
µ1i

µ2
2i

(µ̂2i − µ2i)

− 1√
n

∑
i

∆Yi(1 − Si)
µ1i

µ2
2iµ̂2i

(µ̂2i − µ2i)2

+ 1√
n

∑
i

∆Yi(1 − Si)
µ2

2i

(µ̂1i − µ1i)(µ̂2i − µ2i)

− 1√
n

∑
i

∆Yi(1 − Si)
µ2

2iµ̂2i

(µ̂1i − µ1i)(µ̂2i − µ2i)2

+ 1√
n

∑
i

µY i

µ2i

(Si+ − µ̂1i)

− 1√
n

∑
i

µYi
µ1i

µ2
2i

(1 − Si − µ̂2i).
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which we rewrite as:
1√
n

∑
i

Vi = E[∆DS+] · 1√
n

∑
i

ψ2+,i +
7∑

j=1
Aj,n

where each Aj,n represents one term on the above display. We now bound each one of these
terms.

Term 1. For the first term, we have that:

−A1,n = 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ̂1i − µ1i)

= 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ̂1i − µ1i,K)

+ 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ1i,K − µ1i)

= A11,n + A12,n.

Now, by a second-order mean value expansion,

A11,n = 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̇(PK(D1i)′πj,K)PK(D1i)′(π̂K − πK)

+ 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̈(PK(D1i)′π̃)(PK(D1i)′(π̂K − πK))2

= A111,n + A112,n.

Next note that

|A111,n| ≤ ∥π̂K − πK∥
∥∥∥∥∥ 1√

n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̇(PK(D1i)′πj,K)PK(D1i)′

∥∥∥∥∥ .
Now, ∥π̂K − πK∥ = OP

((√
K/n+K−α+1/2

))
. Let

Ui = (U1
i , ...U

K
i )′ :=

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̇(PK(D1i)′πj,K)PK(D1i)′.

We have E[Ui] = E[E[Ui|D1i]] = 0 and

E
[
∥Ui∥2

]
≤E

(∆Yi(1 − Si)
µ2i

− µY i

µ2i

)2 ∥∥∥PK(D1i)
∥∥∥2


≤CE
[∥∥∥PK(D1i)

∥∥∥2
]

=CE
[
trace{PK(D1i)′PK(D1i)}

]
=C × trace

(
E
[
PK(D1i)PK(D1i)′

])
=CK, (17)
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since the polynomials can be chosen such that E
[
PK(D1i)PK(D1i)′

]
= IK , see Newey (1997),

page 161. Hence,

E

∥∥∥∥∥ 1√
n

∑
i

Ui

∥∥∥∥∥
2
 =E

 K∑
j=1

(
1√
n

∑
i

U j
i

)2


=
K∑

j=1

1
n

∑
i,i′
E
[
U j

i U
j
i′

]

=
K∑

j=1

1
n

n∑
i=1

E
[
U j2

i

]
=E

[
∥U1∥2

]
.

Therefore, by Markov’s inequality,

A111,n = OP

K1/2

√K
n

+K−α+1/2

 .
Next,

|A112,n| ≤ C
√
n ∥π̂K − πK∥2 1

n

∑
i

∣∣∣∣∣∆Yi(1 − Si)
µ2i

− µY i

µ2i

∣∣∣∣∣ ∥∥∥PK(D1i)
∥∥∥2

= OP

[
√
n
(
K

n
+K−2α+1

)
E

(∣∣∣∣∣∆Yi(1 − Si)
µ2i

− µY i

µ2i

∣∣∣∣∣ ∥∥∥PK(D1i)
∥∥∥2
)]

= OP

(√
nK

(
K

n
+K−2α+1

))
,

where the first inequality follows by Cauchy-Schwarz inequality, the second by Markov’s inequal-
ity and the third by the same reasoning as to obtain (17). Hence,

A11,n = OP

K1/2

√K
n

+K−α+1/2

+OP

(√
nK

(
K

n
+K−2α+1

))
.

Finally, for A12,n we have that

E

[(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ1i,K − µ1i)

∣∣∣∣∣D1

]
= 0

and

E

∥∥∥∥∥
(

∆Yi(1 − Si)
µ2i

− µY i

µ2i

)
(µ1i,K − µ1i)

∥∥∥∥∥
2
 ≤ C ∥µ1,K − µ1∥2

∞ = O(K−2α)

and therefore

A1,n = OP

K1/2

√K
n

+K−α+1/2

+OP

(√
nK

(
K

n
+K−2α+1

))
+OP (K−α).
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Term 2. This follows by the same argument as that of Term 1 and we obtain:

A2,n = OP

K1/2

√K
n

+K−α+1/2

+OP

(√
nK

(
K

n
+K−2α+1

))
+OP (K−α).

Term 3. For the third term, since µ2i is uniformly bounded and µ̂2 converges uniformly to µ2,
for n large enough

|A3,n| ≤
√
n ∥µ̂2 − µ2∥2

∞
1
C

1
n

∑
i

|∆Yi(1 − Si)| = OP

(√
nK2

(
K

n
+K−2α+1

))
.

Term 4. For the fourth term,

|A4,n| ≤
√
n ∥µ̂1 − µ1∥∞ ∥µ̂2 − µ2∥∞

1
C

1
n

∑
i

|∆Yi(1 − Si)| = OP

(√
nK2

(
K

n
+K−2α+1

))

Term 5. For the fifth term, since µ2i is uniformly bounded and µ̂2 converges uniformly to µ2,
for n large enough

|A5,n| ≤
√
n ∥µ̂1 − µ1∥∞ ∥µ̂2 − µ2∥2

∞
1
C

1
n

∑
i

|∆Yi(1 − Si)| = OP

(
√
nK3

((
K

n

)3/2
+K−3α+3/2

))
.

Term 6. For the sixth term, let γ6,K be the population coefficient from a (linear) series ap-
proximation to the function µY (D1)/µ2(D1). Then we have that

A6,n = 1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ̂1i) + 1√

n

∑
i

PK(D1i)′γ6,K(Si+ − µ̂1i)

= 1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ̂1i)

because the last term in the second line equals zero by the first-order conditions of the logit
series estimator. Next, we have that

1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ̂1i) = 1√

n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ1i)

− 1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(µ̂1i − µ1i)

= A61,n + A62,n.

Now, for A61,n, we have that

E

[(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ1i)

∣∣∣∣∣D1

]
= 0
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and

E

(Si+ − µ1i)2
∥∥∥∥∥
(
µY i

µ2i

− PK(D1i)′γ6,K

)∥∥∥∥∥
2
 ≤ O(K−2α)

so that
A61,n = OP (K−α).

On the other hand, for A62,n, we have that

|A62,n| ≤
√
n

∥∥∥∥∥µY

µ2
− (PK)′γ6,K

∥∥∥∥∥
∞

∥µ̂1 − µ1∥∞ = OP

√
nK1−α

√K
n

+K−α+1/2


from which

A6,n = OP

√
nK1−α

√K
n

+K−α+1/2

+K−α

 .
Term 7. This follows by the same argument as that of Term 6 and we obtain

A7,n = OP

√
nK1−α

√K
n

+K−α+1/2

+K−α

 .
Collecting all the terms, if follows that under the conditions

K6

n
→ 0, K4α−6

n
→ ∞, α > 3

we obtain
√
n(δ̂2+ − δ2+) = 1√

n

∑
i

ψ2+,i + oP (1).

Setting α = 4, this implies
K6

n
→ 0, K10

n
→ ∞.

These conditions are satisfied when K = nν for 1/(4α− 6) < ν < 1/6 or in this case 1/10 < ν <

1/6.
By an analogous argument, we can show that under the same conditions

√
n(δ̂2− − δ2−) = 1√

n

∑
i

ψ2−,i + oP (1)

and the result follows by a multivariate CLT. Finally, notice that letting µ1−(d) = E[S−|D1 = d]
and µ̂ji− = µ̂1−(D1i), and using that sgn(∆Di) = Si+ − Si−, after some simple manipulations:

δ̂2 = 1∑
i |∆Di|

∑
i

{
∆Yi(Si+ − Si−) − ∆Yi(1 − Si)

(
µ̂1i − µ̂1i−

µ̂2i

)}

which is analogous to δ̂2+ replacing Si+ by (Si+ −Si−) and the denominator by ∑i |∆Di|. Thus,
under the same conditions

√
n(δ̂2 − δ2) = 1√

n

∑
i

ψ2,i + oP (1)

where ψ2,i is defined in the statement of the theorem. □
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7.6 Theorem 6

First, remark that
δ2 = E[sgn(∆D)(∆Y − (Y2(D1) − Y1(D1)))]

E[|∆D|] .

Thus, it suffices to show that a.s.,

lim
η↓0

E (∆Y |D1, Sη = 0) = E (Y2(D1) − Y1(D1)|D1, D2) . (18)

Fix η > 0. By Assumption 9, P (Sη = 0|D1) > 0. Thus, E (∆Y |D1, Sη = 0) is well-defined.
Moreover,

E (∆Y |D1, Sη = 0) =E (Y2(D2) − Y2(D1)|D1, Sη = 0)
+E (Y2(D1) − Y1(D1)|D1, Sη = 0) . (19)

Now, by Jensen’s inequality and Point 2 of Assumption 2,

|E (Y2(D2) − Y2(D1)|D1, Sη = 0)| ≤E (|Y2(D2) − Y2(D1)| |D1, Sη = 0)
≤E

(
Y |D2 −D1| |D1, Sη = 0

)
≤ηE

[
sup

(d1,d2)∈Supp(D1,D2)
E
(
Y |D1 = d1, D2 = d2

)
|D1, Sη = 0

]

≤Kη (20)

for some K < ∞. Next, by Assumption 1,

E (Y2(D1) − Y1(D1)|D1, Sη = 0) = E (Y2(D1) − Y1(D1)|D1)
= E (Y2(D1) − Y1(D1)|D1, D2) .

Combined with (19)-(20), this yields (18) □

7.7 Theorem 7

Using the same steps as in the proof of Theorem 1, one can show that for all t ≥ 2,

δ1t = E

(
Yt − Yt−1 − E(Yt − Yt−1|Dt−1, St = 0)

Dt −Dt−1

∣∣∣∣∣St = 1
)
.

This proves the result □
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7.8 Theorem 8

Using the same steps as in the proof of Theorem 1, one can show that for all t ≥ 2,

δ2+t =
E (Yt − Yt−1|S+,t = 1) − E

(
(Yt − Yt−1)P (S+,t=1|Dt−1)

P (St=0|Dt−1)
P (St=0)

P (S+,t=1)

∣∣∣St = 0
)

E(Dt −Dt−1|S+,t = 1) ,

δ2−t =
E (Yt − Yt−1|S−,t = 1) − E

(
(Yt − Yt−1)P (S−,t=1|Dt−1)

P (St=0|Dt−1)
P (St=0)

P (S−,t=1)

∣∣∣St = 0
)

E(Dt−1 −Dt|S−,t = 1) .

This proves the result □

7.9 Theorem 9

We start by proving (11). For all t ≤ T − ℓ+ 1, for every d1 in the support of D1|F = t,

E(Yt−1+ℓ − Yt−1|D1 = d1, F > t− 1 + ℓ) =E(Yt−1+ℓ(d1) − Yt−1(d1)|D1 = d1)
=E(Yt−1+ℓ(d1) − Yt−1(d1)|D1 = d1, F = t). (21)

It follows from Assumption 15 that d1 belongs to the support of D1|F = t, so E(Yt−1+ℓ −
Yt−1|D1 = d1, F > t − 1 + ℓ) is well defined. The first and second equalities follow from
Assumptions 13 and 14 and the law of iterated expectations.

Then,

E (Yt−1+ℓ − Yt−1 − E(Yt−1+ℓ − Yt−1|D1, F > t− 1 + ℓ)|F = t)
=E (Yt−1+ℓ − Yt−1 − E(Yt−1+ℓ(D1) − Yt−1(D1)|D1, F = t)|F = t)
=E (Yt−1+ℓ(D) − Yt−1(D1) − E(Yt−1+ℓ(D1) − Yt−1(D1)|D1, F = t)|F = t)
=E (E(Yt−1+ℓ(D) − Yt−1(D1) − Yt−1+ℓ(D1) + Yt−1(D1)|D1, F = t)|F = t)
=E (Yt−1+ℓ(D) − Yt−1+ℓ(D1)|F = t) .

The first equality follows from (21). The second equality follows from the definition of F and
Assumption 13. The third and fourth equalities follow from the law of iterated expectations.
This proves the result □

We now prove (12). It follows from the definition of F and Assumption 13 that

E (Yt−1+ℓ − Yt−1|F = t) = E (Yt−1+ℓ(D) − Yt−1(D1)|F = t) .

Then,

E

(
(Yt−1+ℓ − Yt−1)

P (F = t|D1)
P (F > t− 1 + ℓ|D1)

P (F > t− 1 + ℓ)
P (F = t)

∣∣∣∣∣F > t− 1 + ℓ

)

=E
(
E(Yt(D1) − Yt−ℓ−1(D1)|D1, F = t) P (F = t|D1)

P (F > t− 1 + ℓ|D1)
P (F > t− 1 + ℓ)

P (F = t)

∣∣∣∣∣F > t− 1 + ℓ

)
=E (Yt(D1) − Yt−ℓ−1(D1)|F = t) .
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The first equality follows from the law of iterated expectations and (21). The second equality
follows from the same steps as in the proof of Theorem 4. Combining the two previous displays
proves the result □
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