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Abstract

Popular randomization methods have clear limitations: stratification and pairwise
matching do not allow balancing on several continuous variables; re-randomization
makes computing valid confidence intervals challenging; and simple randomization may
lead to substantial imbalances in covariates.

In this paper, we demonstrate how the Cube method (Deville and Tillé, 2004) can
be used to overcome all these limitations. Indeed, the Cube method allows for the
selection of perfectly balanced samples on any covariate (continuous or not), ensuring
that balance tests are always passed. Furthermore, the Cube method permits the def-
inition of unambiguous confidence intervals and leads to substantial gains in precision
when covariates correlate with potential outcomes. Lastly, the Cube method allows
for freely choosing assignment probabilities, which can vary across subgroups (e.g. to
anticipate sample attrition).
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1 Introduction

Choosing a particular randomization method to create control and treatment groups is not
without consequences. The principal purpose of randomization is to avoid selection bias by
balancing potential outcomes across groups. But, in addition, the choice of a randomization
method has an impact on the precision of the estimates, the ability to balance covariates,
the possibility to use heterogeneous assignment probabilities, draw valid inferences, and
computational complexity (see Athey and Imbens, 2017).

We point to three main limitations of popular randomization methods. First, naive
randomization (in which the assignment probability of a unit to a given treatment arm
does not depend on the assignment of others) only ensures that balancing will occur on
average. As a result, an empiricist who checks for the balance for several covariates after naive
randomization will confront high probabilities of obtaining statistically significant differences
across groups. Unbalanced covariates have consequences since there is evidence of publication
bias and p-hacking when observing the empirical distribution of p-values of balance tests in
RCTs. For instance, Snyder and Zhuo (2018) estimate that the publication process eliminates
46% of p-values under 0.15. To avoid frequent unbalanced covariates, researchers may use
methods that use information about covariates that are available before randomization takes
place, like stratification, pairwise matching, and re-randomization. However, not all designs
allow balancing on all observable covariates. A second limitation derives from these methods
not using all available information, thus waiving precision gains. Last, a third limit appears
when using methods like re-randomization. Indeed, the inference for treatment estimates
might be challenging or computationally demanding, casting doubts on the determination
of confidence intervals (Imbens, 2011; Li et al., 2018).

We here introduce the Cube method and show that it is not concerned by any of the lim-
itations above-described. The Cube method was developed for survey sampling purposes by
Deville and Tillé (2004). We here show how empiricists can use the Cube method in the con-
text of RCTs. In particular, the Cube method allows researchers to obtain almost-perfectly-
balanced covariates across treatment arms, discrete or continuous. The Cube method also
increases the number of variables the empiricist can balance on. We derive exact expressions
for the asymptotic variances of the sample average treatment effect (SATE) and population
average treatment effect (PATE) estimators. Formal derivation also allows us to highlight
the precision gains obtained. In particular, one achieves substantial precision gains when
observable covariates (i.e., “baseline covariates”) correlate with the outcome of interest, a
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frequent situation in fieldwork. Interestingly, the Cube method allows also for freely choosing
assignment probabilities, which can vary across subgroups (e.g., to anticipate sample attri-
tion). Last, we illustrate the interest in the Cube method using data from existing RCTs.

We first review existing methods and provide a detailed account of association limitations.
Section 3 introduces the potential outcome framework and covariate balancing. Section 4
presents the Cube algorithm and gives insights on how to apply it to RCTs. Section 5 gives
the balancing properties of the Cube method and provides novel asymptotic expressions for
the variance of average treatment effect estimators. We then specify two ways of performing
inference based on asymptotic normality and the randomization mechanism. Finally, Section
6 simulates experiments using two datasets and provides insights into the gains from the Cube
method.

2 State of the art and literature review

2.1 Naive randomization and balance tests

To create comparable treatment and control groups, empiricists sometimes use “naive ran-
domization” methods, meaning they do not use any information previously available to design
the assignment mechanism. The most common naive method is complete randomization. In
complete randomized experiments, the empiricist chooses a fixed size for each treatment
arm and randomly draws the exact number of units for each one. Moreover, every allocation
probabilities to a treatment arm are identical across individuals. The analogous method to
complete randomization in survey sampling is simple random sampling without replacement.
Other naive methods are Bernoulli sampling and Poisson sampling. In Bernoulli sampling,
the empiricist draws independently every unit with the same probability, which means that
the average size of a treatment arm is known. The final allocation, however, generally devi-
ates from this average. Poisson sampling maintains independence when drawing units but
allows for different inclusion probabilities or propensity scores.

Naive randomization generates treatment and control groups that are, on average, iden-
tical. However, an empiricist allocates units only once. She can thus get groups that are
different from each other. To check if randomization successfully created different groups,
empiricists perform balance tests on observable covariates. Most common balance tests
compare the mean of baseline covariates between control and treatment groups. The idea
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behind these tests is: if the control and treatment groups are similar across covariates, they
are likely more comparable across potential outcomes. However, with naive randomization,
p-values converge to a uniform distribution: there exists a 10% chance of getting significant
differences at the 90%-confidence level. There always exists a high probability of obtaining
statistically significant differences. These differences incite, on the one hand, the author
to leave out the concerned covariates or to quit the experiment altogether. Statistically
significant differences encourage, on the other hand, the editor not to publish the article
in question. There is evidence of publication bias and p-hacking when observing the em-
pirical distribution of p-values related to balance tests in RCTs. For instance, Snyder and
Zhuo (2018) estimate that the publication process eliminates 46% of the p-values under 0.15.
They also evidence an overrepresentation of p-values over 0.9. Using balance tests to check
the comparability of treatment arms contributes thus to publication bias. Statisticians also
argue that doing these tests can lead to poorer estimation of treatment effects (Mutz et al.,
2019; Bruhn and McKenzie, 2009). Moreover, imbalances that concern covariates highly
correlated to potential outcomes, such as baseline outcomes, produce less precise estimators
for treatment effects.

2.2 Covariate-adaptative randomization

An alternative to checking the presence of imbalances after randomizing consists of creat-
ing a design ensuring the balance between treatment arms. We refer to the ensemble of
such methods as “covariate-adaptive randomization.” The most practiced covariate-adaptive
methods are stratified randomization, pairwise randomization, and re-randomization. These
mechanisms improve the balance between treatment and control groups but have some lim-
itations.

2.2.1 Stratification

Stratification has a long tradition in RCTs (Fisher, 1935; Higgins et al., 2016). This method
consists of using one or several baseline variables to create blocks or strata and then using
complete randomization inside each stratum. A common practice in experiments is to block
on gender, meaning that randomization is performed independently amongst male and female
units, generating the same proportion of men and women in each treatment arm. When using
dummy variables to define the strata, stratified or blocked randomization allows almost
perfect balancing of the variables used to create them. We say “almost-perfectly balanced”
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and not “perfectly balanced” because approximations are sometimes necessary (e.g., from a
population of 51 women and 49 men, it is impossible to perfectly balance gender if we want
50 units treated and 50 units in the control group).Athey and Imbens (2017) recommend
balancing on small strata since this method generates substantial precision gains. However,
stratification does not come without any limitations. Facing continuous covariates, such as
income or grades, makes it impossible to stratify without discretizing the variable in question.
This problem arises, as well, when using discrete variables with many possible values, such
as age. The empiricist will obtain an almost-perfect balance for the discretized variables
but not for the continuous ones. Moreover, as the number of balancing variables increases,
the quantity of strata rises exponentially. With ten dummy variables, for instance, we are
automatically creating 1024 possible strata, thus requiring a relatively large sample.

2.2.2 Pairing

Empiricists have also used pairwise designs for decades (Ball et al., 1973; Greevy et al., 2004;
Imai et al., 2009; Basse et al., 2019). However, results about inference and asymptotic prop-
erties are very recent (Bai, 2022; Bai et al., 2022). This method consists of creating pairs of
units based on one or several discrete variables or an aggregate of covariates if one of them
is continuous. After this step, the empiricist randomly assigns one of the units to treatment
and the other to the control group. If she uses only discrete variables to match, the empiricist
will get perfectly-balanced groups across those covariates. As for stratification, however, the
number of discrete variables the empiricist can use is o(ln(n)). When matching on an ag-
gregate of variables, such as the Mahalanobis distance, this aggregation worsens the balance
between covariates. Any extra variable will further reduce the balance quality of previous
covariates. Mechanically, pairwise randomization only allows using homogeneous treatment
probabilities equal to 1/2. Cytrynbaum (2022) proposes a generalization of pairing, local
randomization, that can account for treatment probabilities different than 1/2, but does not
resolve the problem of balancing in many covariates. Another limitation of pairing is its
computational burden, especially for large samples.

2.2.3 Re-randomization

Finally, re-randomization is another method that allows obtaining balance between covari-
ates that has gained focus in the last decades (Morgan and Rubin, 2012; Li et al., 2018;
Imbens, 2011). The main idea of re-randomization is to randomize repeatedly until having
balanced groups. Some empiricists perform re-randomization without prespecifying it. This
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repetition affects treatment probabilities in an unknown manner, which induces invalid in-
ference (Bruhn and McKenzie, 2009; Athey and Imbens, 2017). There are, however, several
ways of performing re-randomization that allow valid inferences to some extent. A simple
way consists of choosing a criterion —e.g., no imbalances for several covariates, small Maha-
lanobis distance across groups— and repeating randomization until we meet the criterion.
If one chooses the Mahalanobis distance as the criterion, one can perform valid inference
(Li et al., 2018). However, using the Mahalanobis distance as the selected criterion entails
covariate aggregation. As for the other methods, this aggregation weakens the balance qual-
ity and reduces precision when including many variables. Another form of re-randomization
is to perform several assignments and then select one randomly among those that satisfy a
pre-defined criterion. This process allows us to obtain, mechanically, balance according to
the definition of the criterion. One then can perform inference using Fisher’s exact p-values.
However, the null hypothesis for such tests is much more restrictive.

To perform valid inference and still have balance, Athey and Imbens (2017) recommend
stratification with small blocks over re-randomization and pairing. This recommendation
is similar to local randomized experiments recently proposed by Cytrynbaum (2022). We
postulate that with the Cube method, an empiricist can simultaneously increase balance
quality and the number of balanced baseline covariates, compared with these methods, and
still draw valid inferences. An empiricist that uses the Cube method to balance baseline
covariates gets rid of every significant difference in balance tests (for discrete and continuous
variables), gets precision gains, and can easily use heterogeneous treatment probabilities.

3 Setup

This section presents the potential outcome framework, provides assumptions on the data-
generating process, and formally defines covariate balancing.

3.1 Data Generating Process and Assignment Design

We consider the standard Neyman-Rubin framework of potential outcomes where Yi(0) is
the outcome of unit i when not treated and Yi(1) is the outcome when treated. We consider
Xi a vector of p covariates (including the constant for the sake of simplicity in the following).
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According to the literature, we assume IIDness and the existence of second-order moments
for all these variables.

Assumption 1
(Yi(0), Yi(1), Xi) are iid across i and E (Y (0)2 + Y (1)2 + ||X||2) < ∞

The empiricist observes (X1, . . . , Xn) for a finite sample of size n. She wants to randomly
allocate these n units to treatment according to a design Π, i.e., a distribution on the
set of the possible samples of treated {0, 1}n. If the design Π does not depend on the
potential outcomes, it balances potential outcomes in the treatment and control groups in
average, avoiding selection bias. The design Π could depend on (X1, ..., Xn): for instance,
the treatment probability of a unit i could depend on Xi for various reasons: efficiency, cost
of the treatment depending on Xi, subpopulations of particular interest,. . . . In the following,
Di is the dummy variable indicating if i is treated or untreated. Empiricist have to chose not
only each individual selection probability PΠ(Di = 1|X1, ..., Xn) but the full design Π that
determines PΠ (∩i=1,...,nDi = di|X1, ..., Xn) for any potential allocations (di)i=1,...,n ∈ {0, 1}n.
A major issue is exploiting the knowledge of (X1, ..., Xn) to define a "good" design Π to
go beyond the balancing of potential outcomes in average. To study this question, let us
formulate the assumption on the class of design we consider in the following.

Assumption 2 Empiricist observes a sample (Xi)i=1,...,n of size n and generates a random
assignment (Di)i=1,...,n according to a randomization design Π such that:

(D1, ..., Dn) ⊥⊥ (Y1(0), Y1(1), ..., Yn(0), Yn(1))|X1, ..., Xn (1)

and for any i = 1, ..., n

PΠ(Di = 1|X1, ..., Xn) = p(Xi) ∈ [c, 1 − c], (2)

where p is a function chosen by the empiricist and c is a positive constant.

Equation 1 means that assignment is independent of the unknown potential outcomes, con-
ditional on the auxiliary information X. Equation 2 specifies that the assignment probability
of unit i could depend on Xi but not on Xj for j ̸= i. It also states that the propensity score
p(Xi) fulfills a common support condition. This restriction is usual and necessary in the liter-
ature on treatment effects estimation. In many RCTs, p(Xi) = 1/2 for all i, and in that case,
there is (on average) the same number of treated and untreated units. But in some cases,
for theoretical reasons (for instance: efficiency, population of interest) or practical reasons
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(e.g., budget constraints), only a smaller fraction of units could be treated (p(Xi) < 1/2)
and/or p(Xi) could be heterogeneous across i (V(p(Xi)) > 0). In the following, we denote
the propensity score p(Xi) as πi. Our proposition of design accommodates any propensity
score type, offering complete flexibility to the empiricists concerning its definition.
After the experiment, the empiricist observes Yi = Yi(1) × Di + Yi(0) × (1 − Di). She will
thus never observe both potential outcomes for the same unit.
Empiricists are generally interested in estimating the sample and population average treat-
ment effects given by

SATE : θ0 = 1
n

n∑
i=1

Yi(1) − Yi(0) (3)

and
PATE : θ∗

0 = E [Yi(1) − Yi(0)] , (4)

respectively.†

In this paper, we will focus on the Horvitz-Thompson estimator (HT) and the Hajek esti-
mator (H), which are of central interest in RCTs. The Horvitz-Thompson estimator is

θ̂HT = 1
n

n∑
i=1

Å
YiDi

πi

− Yi(1 − Di)
1 − πi

ã
(5)

which is unbiased for both the SATE and the PATE and is the difference between the inverse
probability weighting estimators on the treated and the control group.
Hajec estimator will also be considered:

θ̂H = 1∑n
i=1

Di

πi

n∑
i=1

YiDi

πi

− 1∑n
i=1

1−Di

1−πi

n∑
i=1

Yi(1 − Di)
1 − πi

, (6)

this corresponds as well to the inverse probability weighting OLS estimator

θ̂H = arg min
θ

min
a

n∑
i=1

wi (Yi − a − θDi)2

for wi = 1
πi

if Di = 1 and wi = 1
1−πi

if Di = 0. Let nT denote the number of treated units
and nC the number of control units. When πi is constant, θ̂H = 1

nT

∑
i:Di=1 Yi − 1

nC

∑
i:Di=0 Yi

is the difference between the average on the treated group and the control group whereas
θ̂HT = 1

E(nT )
∑

i:Di=1 Yi − 1
E(nC)

∑
i:Di=0 Yi is a slight modification of this difference of averages.

†In some cases, they are interested in similar parameters for some subpopulations:
1∑n

i=1
1{Xi∈X }

∑n
i=1(Yi(1) − Yi(0))1{Xi ∈ X } or E [Yi(1) − Yi(0)|Xi ∈ X ]. Estimators of these quan-

tities are defined restricting the sample to units such that Xi ∈ X and the asymptotic properties of these
estimators follows from a straightforward adaptation of what is presented in the following.
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3.2 Balancing constraints

Under Assumption 2, as soon as E(Di|(Xi′ , Yi′(0), Yi′(1))i′=1,...,n) = πi and we have balancing
in average for the potential outcomes:

E
Ç

1
n

∑
i:Di=1

Yi(1)
πi

∣∣∣∣(Xi′)i′=1,...,n

å
= 1

n

n∑
i=1

Yi(1),

E
Ç

1
n

∑
i:Di=0

Yi(0)
1 − πi

∣∣∣∣(Xi′)i′=1,...,n

å
= 1

n

n∑
i=1

Yi(0).

for any covariates Xj for j = 1, ..., p:

E
Ç

1
n

∑
i:Di=1

Xji

πi

∣∣∣∣(Xi′ , Yi′(0), Yi′(1))i′=1,...,n

å
= E
Ç

1
n

∑
i:Di=0

Xji

1 − πi

∣∣∣∣(Xi′Yi′(0), Yi′(1))i′=1,...,n

å
= 1

n

n∑
i=1

Xji.

As explained in Sections 1 and 2, to go beyond the balancing of potential outcomes on aver-
age, empiricists can take advantage of the observation of covariates X before the experiment.
A long and natural idea (Fisher, 1926) is to balance these covariates not only in average but
also almost surely. Let us define more precisely a perfectly-balanced design.

Definition 1 (Perfectly-balanced Design)
A design Π is perfectly-balanced over X = (X1, ..., Xp)′ if for (Di)i=1,...,n sampled in Π we
always have for any j = 1, ..., p:

1
n

n∑
i=1

XjiDi

πi

= 1
n

n∑
i=1

Xji (7)

and
1
n

n∑
i=1

Xji(1 − Di)
1 − πi

= 1
n

n∑
i=1

Xji (8)

Equation (7) describes equality between the covariate sample mean and the estimated mean
in the treatment group, whereas equation (8) ensures perfect balance for the control group.
A perfectly-balanced assignment eliminates any allocation to the treatment that does not
balance perfectly the covariates between treatment and control groups. Note that when πi

is constant, conditions (7) and (8) are equivalent. But this is not the case if the πi are
heterogeneous. A common practice in experiments is to form treatment and control groups
of fixed sizes, nT , and nC = n − nT , respectively. This is equivalent to setting the constraint
in (7) with Xji = πi. Indeed, for any possible allocation (d1, ..., dn):

nT =
n∑

i=1
di =

n∑
i=1

πi = E(nT ) (9)
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In that case we also have: nC = ∑n
i=1(1 − di) = ∑n

i=1(1 − πi) = E(nC), and under such
assignment θ̂HT defined in (5) is equal to θ̂H defined in (6). Notice that, as in Tillé and
Favre (2004), we can rewrite (7), (8), (9) as

1
n

n∑
i=1

ZiDi

πi

= 1
n

n∑
i=1

Zi (10)

with Zi = (πi, X ′
i,

πi

1−πi
X ′

i)′. If assignment probabilities are homogeneous (i.e., πi = π) and if
the constant covariate is included in X, perfect balancing for the treatment group (Equation
7) implies perfect balancing on Zi (Equation 10) but this is no more the case if the πi are
heterogeneous.
The notion of perfect balancing is closely related to the balancing tests produced by em-
piricists after randomization. The balancing tests check ex-post that randomization has
balanced or not the treated and the treatment group on the covariates not in average only
but for a particular sampling according to the design Π. A perfectly-balancing design inte-
grates ex-ante the information contained in the observation of X to ensure balancing ex-post
and improve the balancing in the potential outcomes. For these reasons, debates on the con-
ciliation of randomization and balancing have a long history in statistical sciences (see for
instance Fisher, 1926). It is worth noticing that perfect balancing is not always attainable:
for instance, if n = 101 and πi = 1/2. Imposing (9) implies nT = 50.5, which is simply
impossible. But statistical analysis ensures that balancing up to a op

Ä
1√
n

ä
is sufficient to

take full advantage of the auxiliary information Xi, πi. Empiricists are then reduced to find
a design Π such that for (Di)i=1,...,n ∼ Π, we have:

1
n

n∑
i=1

ZiDi

πi

= 1
n

n∑
i=1

Zi + op

Å 1√
n

ã
for Zi =

Å
πi, X ′

i,
πi

1 − πi

X ′
i

ã′
(11)

Various randomization strategies have been proposed and used in the literature to achieve
Equation (11). Some of the oldest and widest-used strategies to do so are stratification or
blocking (Fisher, 1926), rerandomization (Student, 1938; Morgan and Rubin, 2012), pairwise
randomization (Imai et al., 2009; Greevy et al., 2004; Ball et al., 1973). We discussed
their limitations in Section 2. In this paper, we advocate the Cube method that achieves
simultaneously many desirable properties of the various usual balancing design with a large
number of covariates Z that could be as large as a O(n1/2−1/r) if covariates admit moments
of order r and as large as o(n1/2) if covariates have bounded supports. Let us briefly present
the Cube method before detailing its theoretical properties, the consequence of its use on
the estimators θ̂H and θ̂HT and on the inference about PATE and SATE.
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4 Balancing covariates with the Cube method

Deville and Tillé (2004) first introduced the Cube method to produce samples balanced to
the population. The Cube method consists of an algorithm in two steps: the flight and
landing phases. The technique gets its name from the graphical representation of a sampling
problem. Equation (10) or (11) ensure that balancing treatment and control groups in an
experimental setting for some covariates is equivalent to balancing the treatment group to
the entire sample. Let us consider the n-cube C = [0, 1]n. Each vertex of C (from 2n

possibilities) represents a possible treatment group: for instance, (1, 1, ..., 1) corresponds to
the situation where all units are allocated to treatment, (1, 0, 1, 0, ..., 1, 0) corresponds to the
case where the treatment group is {i : i odd}. A sampling design Π corresponds to how
a vertex is selected. Recall that we consider a framework where empiricists impose that
equation (2) holds for Π and a vector (πi)i=1,...,n.

We will first describe the Cube design without balancing constraints before moving to
the more interesting case where balancing constraints (11) are considered. Whatever the set
of balancing constraints, the Cube method is a discrete martingale that moves in (at most)
n steps from the interior point π(0) = (πi)n

i=0 to π(n) = (Di)n
i=0 a vertex of C. At the first

step, one chooses a random direction for π(1)−π(0) and a step size such that π(1) belongs
to a facet of C. We can then show that E[π(1)|π(0)] = π(0). After this step, because π(1)
belongs to a facet of C, one component i0 of π(1) is equal to 0 or 1, selecting Di0 = πi0(1)
one has thus assigned a first unit to either treatment or control group. Because a facet of
a n-cube is a (n − 1)-cube, one then repeats the process in a (n − 1)-cube, and so on, until
landing in a vertex of C. At the final step n, one will have (Di)i=1,...,n = π(n) ∈ {0, 1}n and
E[Di] = πi (i.e., every unit is allocated to the treatment group with the probability specified
by the empiricist). These successive steps are the flight phase and for the Cube method
without balancing constraint, allocation (Di)i=1,...,n is always determined at the end of this
phase. Figure 1 illustrates graphically the method.

In Figure 1, all the vertex of the n-cube can be selected meaning that all individuals could
be allocated to the control group. We now consider that empiricist wants to allocate a fixed
number nT of units to the treatment and nc units to the control. This can be achieved with
the Cube method as soon as ∑n

i=1 πi = nT . The condition that exactly nT units are assigned
to the treatment can be express as a balancing constraint. Indeed, because nT = ∑

i Di and∑
i πi = nT , the fixed size condition is equivalent to ∑

i
ZiDi

πi
= ∑

i Zi for Zi = πi. Let K the
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Figure 1: Cube method without balancing constraints

π(0) π(1)

π(2)

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)= π(3)

(1,1,0)

This figure depicts an example of the Cube algorithm with n = 3 when no balancing
constraint is imposed. The red arrow represents the initial treatment probabilities
(πi)i=1,...,n. Then, every blue arrow is a step of the flight phase. In this example, the
first unit is initially assigned to the treatment group. Then, the third unit is assigned
to the treatment group. Last, the second unit is assigned the control group. Therefore,
the allocation – in bold – is (1, 0, 1).

set of vector s in the n-cube C such that ∑
i si = nT . K is a closed convex set and its extreme

points are the vertex of C, that is the set of allocation that respects the fixed size constraints.
K is contained in an affine subspace of dimension n − 1 of direction V := {v : ∑n

i=1 vi = 0},
we have K = C ∩ {π(0) + v : ∑

i vi = 0}. The Cube method select randomly an element of
V for the direction of π(1) − π(0) and fix the step size such that π(1) is a border point
of K. We can show E(π(1)|π(0)) = π(0). After this first step, π(1) belongs to a facet
of C and a unit i1 is assigned either to the treatment either to the control group. Units
i ̸= i0 remains to assign and we have ∑

i:i ̸=i0 πi(1) = nT −Di0 . We can then replicate the first
step after replacing nT by nT − Di1 the sample {1, ..., n} by {1, ..., n}\{i0} and to allocate a
second unit and to update assignment probability as π(2). At step n − 1, π(n − 1) belong
to the extreme points of K, this ends the flight phase. Because the extreme points of K

are some vertices of C the assignment is achieved. Now imagine that one have 101 units to
assign with equal probability to the treatment and control groups. Perfect balancing on the
two groups sizes is not possible 101 is an odd integer and it is not possible to assign 50.5
units to the treatment. A popular solution is to consider πi = 50/101 or πi = 51/101 and to
sample randomly 50 (or 51) elements among the 101 units. However, this strategy does not
accommodate easily with heterogeneous probabilities of assignment and does not generalize
to take into account many balancing constraints. With the cube method described above,
for each step t of the flight phase we have ∑

i πi(t) = 50.5 and the extreme points of K are no
more vertices of C. In that case, at the end of the flight phase, n−1 = 100 units are assigned
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Figure 2: Cube method with fixed sample size

π(0)π(0)
π(1)

(1,1,0)

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)= π(2)

This figure depicts an example of the Cube algorithm with n = 3 when imposing the
constraint nT = 2 and

∑3
i=1 πi = 2. The red area depicts the points (s1, s2, s3) in the

cube satisfying the equation
∑3

i=1 si = 2. This condition is equivalent to imposing
the balancing constraint

∑
i

Zisi

πi
=

∑
i Zi with Zi = πi. The red arrow represents the

initial treatment probabilities. Then, every blue arrow is a step of the flight phase.
In this example, the first unit is initially assigned to the treatment group. Then,
since nT = 2, only one unit among the second and third units can be assigned to the
treatment group. In this case, the second blue arrow shows that, in the same step, the
second unit is assigned to the control group and the third one to the treatment group.
Therefore, the last allocation – in bold – is (1, 0, 1).

at the end of the flight phase with (n − 1)/2 = 50 units to the treatment and (n − 1)/2 = 50
units to the control. The Cube method can be completed with a last phase that randomly
assign to the treatment of the control the remaining unit ensuring that nT = 50 or 51 and
E(nT ) = 50.5, in that case the sizes of treatment and control groups are not exactly fixed
but almost fixed (in fact as fixed as possible as soon as we respect the initial assignment
probabilities πi = 1/2). This second phase is called landing phase. These two phases (the
flight phase and the landing phase) can be generalized to the case where the empiricist wants
to impose several balancing constraints and heterogeneous probabilities of treatment.

Let describe the Cube method with an arbitrary number of balancing constraints defined
by q covariates Zi. A point s ∈ C will satisfy an equation analog to (10) if

n∑
i=1

Zisi

πi

=
n∑

i=1
Zi. (12)

Let Ai = Zi

πi
and A = (A1, ..., An) the matrix of size q × n. Then (12) is equivalent to

n∑
i=1

Aisi =
n∑

i=1
Aiπi

⇔ As = Aπ(0)
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Figure 3: CUBE method with one balancing constraint

(a) landing phase not required

π(0)
π(1)

(1,1,0)

(0,0,0) (1,0,0)= π(2)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)

(b) landing phase required

π(0) π(1)

π(2)

(1,1,0)

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)= π(3)

This figure depicts an example of the CUBE algorithm with n = 3 where we do not
always get perfectly-balanced allocations. We consider the initial treatment probabili-
ties in (2) to be π1 = π2 = π3 = 2

3 . The red area depicts the points (s1, s2, s3) in the
cube satisfying the equation

∑3
i=1 s1 + s2 − 1

2 s3 = 1. This is equivalent to imposing
the constraint in (12) with Z1 = Z2 = 2

3 and Z3 = − 1
3 . The red arrow represents the

initial treatment probabilities. Since not every vertex of the plane is a cube vertex,
we cannot always satisfy the constraint. In both panels, the algorithm assigns the first
unit to the treatment group (first blue arrow). The second blue arrow corresponds to
the assignment of the third unit. If the algorithm assigns the third unit to the control
group (panel a), it automatically assigns the second one to treatment. However, if the
algorithm assigns the third unit to the treatment group (panel b), the second unit is in
neither group, even if we attain a plane vertex. In the landing phase, the CUBE algo-
rithm will proceed by randomly allocating the second unit. In this example, the green
arrow shows that the landing phase allocates the second unit to the control group.

⇔ s ∈ Q := π(0) + ker(A).

K = C ∩ Q is, therefore, the (n − q)-polytope that contains all the points in C such that
(12) holds. At the first step, one chooses a random direction in v ∈ ker(A) and we select
the unique λ > 0 such that π(1) := π(0) + λv is on a facet of K. One can show that
E[π(1)|π(0)] = π(0). Because any facet of K is the intersection of a facet of C with Q,
a component i0 of π(1) is 0 or 1 and defining Di0 = πi0(1) one has assigned a first unit.
Next, one applies a similar step for the facet of K instead of K and π(1) as a starting point
instead of π(0). After n − q steps, one has reached a vertex of K. This process corresponds
to the flight phase in Deville and Tillé (2004). If this vertex of K is also a vertex of C, the
flight phase allocates every unit, and the two groups are perfectly balanced (see Figures 2
and 3a). But in many cases, the vertex of K is not a vertex of C, and it remains at most
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q units to assign during the landing phase (according to the wording of Deville and Tillé,
2004) (see Figure 3b).

Say that at the end of the flight phase, one has not assigned r ≤ q units and let
π∗ = π(n − q) be the updated treatment probabilities at this stage. The landing phase
of the CUBE method assigns the r missing units such that E[Di|π∗] = π∗. Grafström and
Tillé (2013) describe two methods for the landing phase (these are also the options used in
sampling packages): (i) Linear programming: one considers all the 2r allocations for these
units and assigns probabilities to each allocation to minimize a cost function (such as dis-
tance to K) and satisfying E[Di|π∗] = π∗. Then, using these probabilities, one randomly
selects an allocation. (ii) Suppression of variables: if r > 20, solving a linear problem be-
comes computationally difficult. In that case, at the end of the flight phase, one can drop
a covariate and continue with the flight phase. One can thus successively drop variables (in
the order of preference) until attaining a vertex of C.

5 Statistical Properties of the Cube method

This Section shows how the Cube method allows obtaining an almost-perfect balance between
the treatment and control groups and relates this balance to gains in precision for treatment
effect estimators.

5.1 Balancing approximations

As explained above, designing an allocation mechanism that always produces perfectly-
balanced groups is impossible. However, we here prove that the Cube method is successful,
under certain conditions, in creating almost-perfectly-balanced samples.

To check balance properties after allocating individuals according to the design Π, em-
piricists are interested in computing the difference

∆Π
j,n = 1

n

n∑
i=1

XjiDi

πi

− Xji(1 − Di)
1 − πi

.

Because PΠ(Di = 1|(Xi′)i′=1,...,n) = πi, we have E
(
∆Π

j,n

)
and under weak conditions on

Π, we have
√

n∆Π
j,n

d−→ N
(
0,V(∆Π

j,n)
)

, (13)
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where V(∆Π
j,n) is an asymptotic variance depending on Π and the distribution of X.

For the so-called baseline balance tests, empiricists consider the t-statistic

tΠ
j,n =

√
n

∆Π
j,n»

V̂(∆Π
j,n)

where V̂(∆Π
j,n) is a consistent estimator of the asymptotic variance of ∆Π

j,n to test the null
hypothesis of perfect balance. tΠ

j,n is then associated to a p-value pΠ
j,n which take values

between 0 and 1. As explained in Sections 1 and 2, when creating balance tests for RCTs,
p-values below 0.15 are considered problematic (Snyder and Zhuo, 2018).

Let us first consider a naive mechanism that does not use baseline information to assign
units. Such situations correspond to the case where the design Π is a Poisson design, ie
a design where each unit i is allocated to the treatment independently of the allocation of
other units:

PΠ

Ç
n⋂

i=1
{Di = di}

∣∣(Xi)n
i=1

å
=

n∏
i=1

πdi
i (1 − πi)1−di .

A Poisson design does not balance any variable.
When πi = nT

n
for any i, another popular design is sampling without replacement of nT

treated units.

PΠ

Ç
n⋂

i=1
{Di = di}

∣∣(Xi)n
i=1

å
=
Ç

n

nT

å−1

1

®
n∑

i=1
di = nT

´
.

Sampling design without replacement and equal probabilityπ only balances constant vari-
ables. In that case, the sample of treated and control groups are fixed, and the design is also
balanced on the constant ∑n

i=1 Di = nT , ∑n
i=1(1 − Di) = n − nT and ∑n

i=1
Di

πi
= n.

Under such assignments and Assumptions 1 and 2 and more generally for any design
Π such that (13) holds with V(∆Π

j,n) > 0, we have ∆Π
j,n = Op

Ä
1√
n

ä
, tΠ

j,n
d−→ N (0, 1) and

pΠ
j,n

d−→ U(0, 1). This means that if one randomizes naively, control and treatment groups
will present imbalances with a strictly-positive probability. Moreover, for a confidence level
of 100(1 − α)%, there exists always 100α% chance of obtaining significant differences. If an
empiricist evaluates the balance of 10 independent covariates at the 85% confidence level
(a level retained in the literature over rejection of the balancing assumption balancing is
considered as problematic Snyder and Zhuo, 2018), there is more than 80% chance of having
at least one significant difference. This magnitude questions the mere implementation of
such widely used tests. Even if a multiple F-test with a confidence level of 85% mitigates
this rejection rate, the null hypothesis of simultaneously balanced covariates is rejected by
construction with a 15% chance.

16



The Cube method ensures that these tests are unnecessary since we can balance control
and treatment groups in any variate (Xj)j=1,...,p. This is achieved because V(∆Π

j,n) = 0 for
any j = 1, ..., p in (13). Performing these tests would not make sense since we never reject
the null hypothesis by construction. However, one might report them if the editor worries
about empiricists randomizing badly. Usual balancing strategies are stratification or pairwise
matching. These methods ensure V(∆Π

j,n) = 0 if the covariates (Xj)j=1,...,p are all discrete but
will always generate imbalances for continuous ones since the empiricist needs to discretize
or aggregate them before randomizing.

The following proposition explains how the balancing approximations are satisfied with
the Cube method. Because the number q of balancing constraints in equation (11) could be
large with the Cube method, we are also explicit on how q affects balancing approximations
to allow us to consider a framework where q tends to ∞.

Proposition 1 (Balancing approximations with the Cube method)
If Assumptions 1 and 2 hold, then

∆Cube
j,n = op

Å
q√
n

ã
.

Moreover if E [|Xj1|r] < ∞ for r ≥ 2, then ∆Cube
j,n = op

(
q

n1−1/r

)
, if Xj1 is sub-Gaussian, then

∆Cube
j,n = Op

Å
q
√

ln(n)
n

ã
, and if Xj1 has a bounded support, then

∣∣∆Cube
j,n

∣∣ < Kq
cn

for K such that

|Xj1| < K. As soon as
√

n∆Cube
j,n = op(1), we have tCube

j,n
P−→ 0, and pCube

j,n
P−→ 1.

Proposition 1 shows that, as n grows, the Cube method ensures the balancing Equation
(11) as soon as the second-order moment of X exists. Furthermore, if moment of order r > 2
exists for X, (11) holds as soon as q = O

Ä
n

1
2 − 1

r

ä
. q can even be o

(»
n

ln(n)

)
if the covariates

X are all subgaussians or o(
√

n) if they are bounded. This means that with probability
tending to one, the p-values of the balance test tend to 1 meaning that balancing is never
rejected for large n contrary to randomization under a design Π such that (11) does not hold.

5.2 Variance reduction

The balance between covariates in the control and treatment groups is also beneficial if these
variables are related to the potential outcomes. In this case, using the Cube method will
also reduce the variance of the HT estimator.
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Assumption 3
For d ∈ {0, 1},

Yi(d) = βdXi + εi(d), with E[εi(d)|Xi] = 0

.

Assumption 3 states that potential outcomes are linearly related to observable covariates.
However, we allow heterogeneity in treatment effects by specifying different equations for
control and treatment groups.

Conjecture 1 (Poisson approximation)
For any k ∈ N∗ we have with probability one:

lim
n→∞

sup
i1,...,ik

∣∣∣∣∣E
Ç

k∏
j=1

(
Dij

− πij

) ∣∣X1, ..., Xn

å∣∣∣∣∣ = 0

This conjecture establishes that as n increases, the Cube method tends to Poisson sam-
pling. As n goes to infinity, the dependence between the assignment of a finite number of
individuals disappears. We draw this conjecture from results in Deville and Tillé (2005) and
simulations that confirm it. This conjecture is unnecessary for getting results on the SATE,
but it is useful when focusing on the PATE.

In order to have a benchmark for the gains in variance decline, we compare the Cube
method with Poisson randomization, i.e., an unconstrained sampling with heterogeneous
treatment probabilities. The results also hold for simple randomization, that is, with homo-
geneous treatment probabilities.

Proposition 2 (Asymptotic variance)
Let θ0 be the SATE defined in (3), and θ̂ be the HT estimator in (5). If Assumptions 1-3
hold, and if Π is a balancing sampling using the Cube method we have:

E
[Ä

θ̂ − θ0
ä2]

= V0

n
+ O

Å 1
n2

ã
,

whereas E
[Ä

θ̂ − θ0
ä2]

= V0+Σ0
n

+ O
( 1

n2

)
for V0 = E

(
πi(1 − πi)

Ä
εi(1)

πi
+ εi(0)

1−πi

ä2)
and Σ0 =

E
î

1−πi

πi
(X ′

iβ1)2
ó

+ E
î

πi

1−πi
(X ′

iβ0)2
ó

if simple randomization is used.
Moreover, let θ∗

0 the PATE in (4). If, additionally Conjecture 1 also holds, then with the
Cube method:

E
[Ä

θ̂ − θ∗
0

ä2]
= V ∗

0
n

+ O

Å 1
n2

ã
,

whereas E
[Ä

θ̂ − θ∗
0

ä2]
= V ∗

0 +Σ∗
0

n
+O

( 1
n2

)
for V ∗

0 = (β1−β0)′V(Xi)(β1−β0)+E[ εi(1)2

πi
]+E[ εi(0)2

1−πi
]

and Σ∗
0 = E

î (X′
iβ1)2

πi

ó
+ E
î (X′

iβ0)2

1−πi

ó
if simple randomization is used.
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Proposition 2 shows the gain in asymptotic variance from balancing covariates using the
Cube method. The reduction is more substantial when X explains more of the potential
outcomes. Estimates of the ATE are thus more precise when using the Cube method. This
reduction can represent significantly lower costs when conducting an RCT. Simulations in
Section 6 estimate these gains.

5.3 Inference

This section provides properties of the Cube algorithm and methods to perform inference. We
elicit two main techniques of conducting inference, one based on the asymptotic properties
of the HT estimator and the other based on the randomization mechanism.

5.3.1 Asymptotics-based inference

Some methods, such as re-randomization, alter the inclusion probabilities in a manner that
is unclear to the empiricist (Imbens, 2011). When the criterion for selection is known and
behaves in a known way, such as the Mahalanobis distance, one can perform conservative
inference. However, balance is imperfect for numerous covariates. Since the Cube method
assigns treatment only once, we can perform asymptotic-based inference. We here give the
asymptotic properties and propose an easy way to construct less conservative confidence
intervals.

Proposition 3
Let Assumptions 1-3 hold and πi = 1

2 , ∀i ∈ {1, . . . , n}. Then, using the Cube method,

√
n
Ä
θ̂ − θ0

ä
d−→ N (0, V0) .

Moreover, if in addition of Assumptions 1-3, Conjecture 1 holds, the Cube method yields for
any πi ∈ [c, 1 − c], c > 0,

√
n
Ä
θ̂ − θ0

ä
d−→ N (0, V0)

and
√

n
Ä
θ̂ − θ∗

0

ä
d−→ N (0, V ∗

0 ) .

To construct a confidence interval, one would like to estimate either V0 or V ∗
0 . Estimating

V0/n is impossible without making assumptions on the relation between εi(1) and εi(0). This
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issue is common in RCTs. We can, nonetheless, easily construct an unbiased estimator “V
for V ∗

0 /n. Let β̂d and ε̂i(d) be the estimated coefficients and residuals, respectively, of a
regression of Yi(d) on Xi, for d ∈ {0, 1}. We then have“V = 1

n

ñÄ
β̂1 − β̂0

ä′
V̂(Xi)

Ä
β̂1 − β̂0

ä
+ 1

n

n∑
i=1

ε̂i(1)2Di

πi

+ 1
n

n∑
i=1

ε̂i(0)2(1 − Di)
1 − πi

ô
. (14)

Then, we can test the weak hypothesis

H0 : θ∗
0 = 0, (15)

and construct the confidence interval based on

θ̂ ± Φ−1 (1 − α/2)
»“V (16)

In Section 6, we perform simulations that confirm the exact coverage rate of this confi-
dence interval when n is big enough (n ≤ 200).

5.3.2 Randomized-based inference

We here study the properties of randomization-based inference when permuting treatment
status while satisfying balancing constraints. For these tests, we consider the stronger null
hypothesis:

H0 : (Yi(1), Xi) d= (Yi(0), Xi). (17)

Notice that testing this hypothesis, under Assumptions 1 and 2 is equivalent to testing
(Yi)n

i=1 ⊥⊥ (Di)n
i=1|X1, . . . Xn (Proof in Appendix).

To explain the test, we introduce some new notation. Let Gn be the set of all possible
2n assignments. Then, we can define the set of assignments GCube

n ⊆ Gn satisfying the
constraints imposed by the Cube method. That is, with Assumptions 1 and 2,

GCube
n =

ß
g ∈ Gn : ∆j,n = op

Å
q√
n

ã
for 1 ≤ j ≤ p

™
.

We note Pn = (Yi, Di, Xi)n
i=1 the observed values, and P(g)

n = (Yi, D
(g)
i , Xi)n

i=1, the new
data where we have reassigned treatment according to g ∈ GCube

n . For computational facility,
we can replace GCube

n by GB
n = {g1, . . . , gB}, such that g1 is the assignment really obtained

and (gi)B
i=1 are drawn independently from a uniform distribution on GCube

n .
Then, for a given test statistic Tn(Pn),we consider the test
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ϕrand(Pn) = 1 {Tn(Pn) > cn(Pn, 1 − α)}

with

cn(Pn, 1 − α) = inf
{

t ∈ R : 1
B

∑
g∈GB

n

1{Tn(P(g)
n ) ≤ t} ≥ 1 − α

}
.

Proposition 4
Under Assumptions 1 and 2, and the null hypothesis in (17),

E
[
ϕrand

n (Pn)
]

≤ α.

Proposition 4 indicates that if Tn(Pn) > cn(Pn, 1 − α), we reject the null hypothesis (17)
at the α level. The proof is similar to previous results on other covariate-adaptive assignment
mechanisms (Heckman et al., 2010, 2011; Lee and Shaikh, 2014; Bai et al., 2022), but it is
presented for completeness. This proposition ensures that we can compute Fisher’s p-values
by comparing our test statistic with those produced by other assignments made by the Cube
method.

6 Empirical applications

In this section, we simulate using data from Lee et al. (2021) and Gerber et al. (2020) to
show the benefits of using the Cube method. We first present how the Cube method can
improve balance significantly compared with naive randomization and stratification. We
then explicit precision gains and their consequences on sample size reduction.

For each paper, we observe the data Pn = (Yi, Xi, Di)n
i=1. First, we create Qn =

(Yi(1), Yi(0), Xi)n
i=1. For this purpose, we consider Yi(d) = Yi for d = Di, and we use machine

learning techniques to impute Yi(d) for d ̸= Di. First, we use treated and control units sepa-
rately to train two models f1(Xi) and f0(Xi), respectively, that predict potential outcomes in
each case. Then, for Di = d, we compute the residuals ûi(d) = Yi(d) − fd(Xi), and compute
variances σû(d). For each unit i, we consider d ̸= Di and impute Yi(d) = fd(Xi)+ui(d), with
ui(d) ∼ N (0, σû(d)). Finally, we compute θ0 = 1

n

∑n
i=1 YiDi − Yi(1 − Di), the parameter of

interest.
For k ∈ {1, . . . , K} , we then sample with replacement n′ ≤ n units from Qn to get

Qn′(k) = (Yik
(1), Yik

(0), Xik
)n′

ik=1. We can then choose a treatment assignment mechanism
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to generate Pn′(k) = (Yik
, Xik

, Dik
)n′

ik=1 and compute

θ̂k = 1
n′

n′∑
ik=1

Yik
Dik

πik

− Yik
(1 − Dik

)
1 − πik

and its associated p-values.

6.1 Design effect on balancing covariates

Lee et al. (2021) study the effect of mobile banking on remittances from rural-urban migrants
in Bangladesh. We consider here five balancing covariates: baseline remittances, household
size, age, gender, and primary education. Baseline remittances are a covariate of particular
interest since they correspond to the pre-treatment outcome and are continuous, making it
impossible to stratify without discretizing it. Household size and age are discrete variables
with many possible values, making it hard to stratify without creating groups. Gender and
primary education are dummy variables, making it easy to stratify. Gerber et al. (2020) at
belief updating and voting behavior after being exposed to different polls. We here consider
the beliefs about the margins of the elections as the outcome variable. We use six variables
for balancing: baseline beliefs (continuous), past voting behavior (continuous), interest in
politics (discrete), years of schooling (discrete), identification of Nancy Pelosi as the speaker
(dummy), and gender (dummy).

For simplicity, we fix treatment probabilities to 1/2. We perform 10,000 simulations and
test the balance of covariates with five different assignment mechanisms with fixed sample
size: (i) Naive Randomization, (ii) Stratification on the pre-treatment outcome (discretized
by quartiles), (iii) Cube Method on the baseline outcome, (iv) Stratification on all variables
(baseline outcomes are discretized by quartiles, and other non-dummy variables are grouped
using the median value as the cutoff), (v) and Cube Method on all the variables. We then
compute for each mechanism ℓ and variable j the average squared-mean-differences (ASMD)

ASMD(ℓ)
j = 1

K

K∑
k=1

Ç
1
n′

n′∑
ik=1

Xjik
D

(ℓ)
ik

πik

−
Xjik

(1 − D
(ℓ)
ik

)
1 − πik

å2

.

Table 1 reports the ratio ASMDℓ
j

ASMDNaive
j

for each treatment assignment mechanism. It is easy
to see the advantages of the Cube method. The Cube method outperforms stratification for
both datasets and for every single variable. First, we see that as stratification cannot per-
form balance over continuous variables without discretizing them, the Cube method is much

22



Table 1: ASMD ratio

Naive Strata Baseline Cube Baseline Strata All Cube All
(1) (2) (3) (4) (5)

Lee et al. (2021): n′ = 808
Baseline Remittances‡ 1.000 0.569 0.013 0.567 0.012
Household Size† 1.000 1.032 0.984 0.592 0.009
Age† 1.000 0.968 1.001 0.581 0.007
Female 1.000 0.940 0.943 0.315 0.004
Primary Education 1.000 1.013 0.975 0.465 0.003

Gerber et al. (2020): n′ = 6650
Baseline Beliefs‡ 1.000 0.299 0.001 0.304 0.001
Past Votes† 1.000 1.027 1.003 0.325 0.001
Interest in Politics† 1.000 0.942 0.955 0.390 0.001
Schooling† 1.000 1.002 0.996 0.296 0.001
Identifies Pelosi 1.000 1.016 1.000 0.167 0.001
Male 1.000 1.035 1.008 0.092 0.000

This table shows the ratio ASMDℓ
j / ASMDNaive

j for every mechanism. Column 1 is the reference mechanism: Naive random-
ization. Column 2 corresponds to stratified randomization on the pre-treatment outcome quartiles. Column 3 shows balance
when using the Cube Method only on the pre-treatment outcome. Column 4 presents the results for stratified randomization
on all covariates. Column 5 shows the AMSD ratio when using the Cube method to balance all covariates.
‡: When used in stratification (Columns 2 and 4), discretized by quartiles.
†: When used in stratification (Column 4), discretized by the median.

more efficient in reducing these differences. Nonetheless, the Cube method is also stronger
in providing balanced dummy variables, such as gender. When balancing several covariates,
approximations done with stratification are more frequent than with the Cube method, gen-
erating higher imbalances. More precisely, if we seek to balance the pre-treatment outcome
only, stratification by quartiles reduces the ASMD by 43% and 77%, and the Cube method
reduces the AMSD by 99% (Columns 2 and 3, respectively). If we use stratified randomiza-
tion with all variables, the balance is reduced between 53% and 91% for the binary variables
and only between 3% and 58% for the other ones (Column 4). It is not thus possible to an-
ticipate the level of balance we obtain using stratification, especially if the empiricist wants
to balance over multiple covariates. Finally, Column 5 shows that the Cube achieves its goal
completely by reducing the AMSD by 99% or 100%, depending on the variable.
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6.2 Precision gains

We now present the precision gains from using the Cube method. As explained in Section 5,
gains in precision are higher when balancing covariates are correlated to potential outcomes.
We hereon note R̂2

1 and R̂2
0, the R2s associated with the regressions of the treated and

control units, respectively. When regressing on all the covariates listed in Table 1, we get
(R̂2

1 + R̂2
0)/2 = 0.12 for Lee et al. (2021) and (R̂2

1 + R̂2
0)/2 = 0.41 for Gerber et al. (2020).

The expressions for asymptotic variances using Poisson randomization or the Cube method
in Proposition 2 entail that for πi = 1/2 the percentage reduction in variance can be closely
estimated by (R̂2

1+R̂2
0)/2. Precision gains are, therefore, much larger for Gerber et al. (2020).

However, precision gains for Lee et al. (2021) are not negligible.
Figure 4 show the advantages of using the Cube method for both experiments. For each

panel, we compare here three different methods: (i) Naive randomization with fixed-sample
size, (ii) Stratified randomization on all covariates listed in Table 1, and (iii) Randomization
with the Cube method on all covariates. Panel (a) shows precision in terms of 95% confidence
interval sizes. We see that the Cube method gives smaller confidence intervals for both
experiments. However, gains are more substantial for Gerber et al. (2020). Panel b shows
benefits in sample size: how many units should participate in the experiment to obtain the
same results as for Naive randomization. We see again that the Cube method is the better-
performing mechanism: one would need 718 units instead of 808 for Lee et al. (2021) and
3966 instead of 6650 for Gerber et al. (2020). These gains in the number of units imply
a substantial decrease in experimental costs. We see that, even if the covariates are not
very explicative of potential outcomes, there are still gains from using the Cube method.
Moreover, this mechanism always performs better than stratification, meaning that if one
has data available before randomizing, one should consider using the Cube method.
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Figure 4: Precision gains from the Cube method

(a) 95% confidence intervals
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We now show the importance of covariate selection when using the Cube method since it is
crucial in determining the precision gains. Table 2 presents the win in precision for different
balancing constraints. We propose here seven mechanisms, where we always balance at
least on the treatment group size: (1) No balancing covariates apart from treatment group
size– i.e., naive randomization – (2) Balancing on the pre-treatment outcome and ten other
covariates, (3) Balancing only on the pre-treatment outcome, (4) Balancing on the first
two moments of the pre-treatment outcome, (5) Balancing on four dummies defined by
the quartiles of the pre-treatment outcome – i.e., stratification –, (6) Balancing on the ten
covariates, and (7) balancing on a random variable.

For each mechanism, we report the explanatory power of the balancing covariates in the
form of R̂2

1 and R̂2
0, and precision gains in terms of percentage variance reduction for the

estimator using mechanism ℓ: ∆% Var(ℓ) = “V (ℓ)−“V .Naive“V Naive
, with “V defined as in (14), percentage

reduction of confidence interval size ∆% CI(ℓ) = ∆% Var(ℓ)

1+0.1
√

100+∆% Var(ℓ)
and the effective sample

size – i.e., by how much could we decrease n to obtain the same precision using than naive
randomization.

We indeed find that precision gains are related to the explanatory power of the covariates
used for balancing. For Lee et al. (2021), we see that the best option is to balance the
baseline and all the covariates. If the empiricist does so, she would reduce the variance by
11%, whereas she would only reduce it by 6% using the baseline only or 8% using all the
covariates. Here, the baseline has limited explanatory power, so she should include as much
auxiliary information as possible. With the simulated data from Gerber et al. (2020), gains
are much higher. Notably, using the Cube method to balance the baseline outcome and ten
other covariates reduces the variance by 41%. If using naive randomization, it would be
necessary to increase the sample size by 68% to obtain the same precision. We see that,
however, most of this power gain comes from balancing the pre-treatment outcome. Indeed,
mechanisms (2) and (3), which do not balance on other covariates, give similar, though
smaller, precision gains. However, using the Cube method provides advantages compared
with stratification since the baseline outcome is continuous. Indeed if we balance using
quartiles, wins in variance and sample size are almost 25% and 40% smaller, respectively,
than when balancing using the continuous one. In this case, covariates other than the baseline
outcome explain very little of observed outcome variables, so the gains when using them to
balance are small. Moreover, we check that balancing on a random variable, which is thus
not correlated to potential outcomes, is practically equivalent to using naive randomization.
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Table 2: Balancing covariates and precision gains

(1) (2) (3) (4) (5) (6) (7)
Balance on:
Treatment group size ✓ ✓ ✓ ✓ ✓ ✓ ✓

Baseline outcome (continuous) ✓ ✓ ✓

Other covariates ✓ ✓

Squared baseline outcome ✓

Baseline outcome (quartiles) ✓

Random variable ✓

Lee et al. (2021)
Explanatory power:
R̂2

1 0.000 0.117 0.050 0.063 0.054 0.091 0.002
R̂2

0 0.000 0.113 0.061 0.073 0.059 0.077 0.002
Precision gains:
∆% Var 0.000 -11.201 -5.968 -7.041 -5.661 -8.212 -0.648
∆% CI size 0.000 -5.767 -3.030 -3.585 -2.872 -4.194 -0.325
Effective sample size 808 718 760 752 764 742 804

Gerber et al. (2020)
Explanatory power:
R̂2

1 0.000 0.347 0.343 0.351 0.268 0.024 0.000
R̂2

0 0.000 0.464 0.462 0.462 0.333 0.026 0.000
Precision gains:
∆% Var 0.000 -40.375 -40.172 -40.454 -30.023 -2.416 -0.052
∆% CI size 0.000 -22.783 -22.652 -22.834 -16.347 -1.216 -0.026
Effective sample size 6650 3966 3980 3960 4654 6490 6648

This table shows the relation between covariate selection and precision gains. The first panel shows the set of se-
lected variables for each column. The first column shows the benchmark case of naive randomization with a fixed
sample size. The six mechanisms remaining use the Cube method to balance additional variables. For each ex-
perimental dataset, we check the explanatory level of selected variables on the potential outcomes and the gains in
variance reduction, confidence interval size reduction, and sample size. The latter refers to the sample size needed
to obtain the same precision as in naive randomization.

Figure 5 shows how these gains in precision change with the sample size. For this,
we take n′ ∈ {50, 100, 200, 500, 808, 1000, 2000, 6650} and check how the coverage rate of
our confidence intervals and the rejection probability change with n′. We first see that
the coverage rate of the Cube method approaches 95% as n′ increases. For sample sizes
of 50, 100, and 200, coverage rates are more liberal for the Cube method than for naive
randomization. For n′ = 200, our confidence intervals defined in (16) are very close to the
exact coverage rate. The test of the power is, furthermore, higher for the Cube method
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than for naive randomization, whatever the sample size. The much weaker precision in small
samples undermines the better coverage rate in naive randomization. The Cube method
generates estimates that are more precise, thus reducing the probability of obtaining a false
positive. This difference is even present for n′ = 1000. For Gerber et al. (2020), with the
Cube algorithm, we reject the null with 98% chance, whereas there is 88% likeliness of doing
so if we randomize naively.
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Figure 5: Sample size and Confidence Intervals

n′ 50 100 200 500 808 1000 2000 6650

Lee et al. (2021)
Coverage rate:
Naive 0.949 0.953 0.946 0.951 0.953 – – –
Cube 0.925 0.937 0.944 0.952 0.952 – – –
Power of the test:
Naive 0.078 0.098 0.170 0.349 0.519 – – –
Cube 0.112 0.127 0.195 0.392 0.561 – – –

Gerber et al. (2020)
Coverage rate:
Naive 0.950 0.950 0.950 0.951 0.949 0.949 0.953 0.949
Cube 0.910 0.933 0.943 0.949 0.950 0.948 0.951 0.951
Power of the test:
Naive 0.105 0.163 0.283 0.593 0.832 0.879 0.994 1.000
Cube 0.217 0.298 0.462 0.821 0.966 0.980 1.000 1.000
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7 Conclusion

The Cube method, first introduced by Deville and Tillé (2004) outperforms most common
methods used in experimental settings. We here provide a set of results formalizing these
gains and allowing us to implement the Cube method in the RCT context. We tackle common
issues empiricists face, such as balance, inference, sample size, and precision. Our analytical
results and simulation show that if an empiricist has data available beforehand, she should
always use the Cube method to balance characteristics between the treatment and control
groups, especially if she believes them to be rather explanatory of the outcome of interest.

Without additional costs, when compared to covariate-adaptive mechanisms, the Cube
method allows to have better balance and precision. Mechanically, all differences between
the treatment and control groups disappear, making balancing tests unnecessary and dis-
carding publication bias and p-hacking they produce. This reduction generates more precise
estimates and significantly reduces the sample size needed for a minimum detectable effect.

Several questions remain unanswered and should be the focus of further research on this
method. Notably, there are the questions of clustered assignment, multiple treatment arms,
and attrition. These questions can be treated easily by generalizing the algorithm, but some
work is needed to clarify the asymptotics in these cases.

29



References

Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T., and Weiss, B. (1996). Strong Laws
for L- and U- Statistics. Research Scholars in Residence, 348.

Athey, S. and Imbens, G. W. (2017). Chapter 3 - The Econometrics of Randomized Exper-
imentsa. In Banerjee, A. V. and Duflo, E., editors, Handbook of Economic Field Experi-
ments, volume 1 of Handbook of Field Experiments, pages 73–140. North-Holland.

Bai, Y. (2022). Optimality of Matched-Pair Designs in Randomized Controlled Trials. Amer-
ican Economic Review, 112(12):3911–3940.

Bai, Y., Romano, J. P., and Shaikh, A. M. (2022). Inference in Experiments With Matched
Pairs. Journal of the American Statistical Association, 117(540):1726–1737. Publisher:
Taylor & Francis _eprint: https://doi.org/10.1080/01621459.2021.1883437.

Ball, S., Bogatz, G. A., Rubin, D. B., and Beaton, A. E. (1973). Reading with Television:
An Evaluation of the Electric Company. A Report to the Children’s Television Workshop.
Volumes 1 and 2. Technical Report PR-73-02, ETS Program Report.

Basse, G. W., Feller, A., and Toulis, P. (2019). Randomization tests of causal effects under
interference. Biometrika, 106(2):487–494.

Bruhn, M. and McKenzie, D. (2009). In Pursuit of Balance: Randomization in Practice
in Development Field Experiments. American Economic Journal: Applied Economics,
1(4):200–232.

Chen, J. and Rao, J. N. K. (2007). Asymptotic Normality Under Two-Phase Sampling
Designs. Statistica Sinica, 17(3):1047–1064. Publisher: Institute of Statistical Science,
Academia Sinica.

Cytrynbaum, M. (2022). Designing Representative and Balanced Experiments by Local
Randomization. page 101.

Deville, J.-C. and Tillé, Y. (2004). Efficient balanced sampling: The cube method.
Biometrika, 91(4):893–912.

Deville, J.-C. and Tillé, Y. (2005). Variance approximation under balanced sampling. Journal
of Statistical Planning and Inference, 128(2):569–591.

30



Fisher, R. A. (1926). The arrangement of field experiments. Journal of the Ministry of
Agriculture, 33:503–515. Publisher: Ministry of Agriculture and Fisheries.

Fisher, S. R. A. (1935). The Design of Experiments. Oliver and Boyd.

Gerber, A., Hoffman, M., Morgan, J., and Raymond, C. (2020). One in a Million: Field Ex-
periments on Perceived Closeness of the Election and Voter Turnout. American Economic
Journal: Applied Economics, 12(3):287–325.

Grafström, A. and Tillé, Y. (2013). Doubly balanced spatial sampling with spreading
and restitution of auxiliary totals: Doubly balanced spatial sampling. Environmetrics,
24(2):120–131.

Greevy, R., Lu, B., Silber, J. H., and Rosenbaum, P. (2004). Optimal multivariate matching
before randomization. Biostatistics (Oxford, England), 5(2):263–275.

Gut, A. (2013). Probability: A Graduate Course, volume 75 of Springer Texts in Statistics.
Springer New York, New York, NY.

Heckman, J., Moon, S. H., Pinto, R., Savelyev, P., and Yavitz, A. (2010). Analyz-
ing social experiments as implemented: A reexamination of the evidence from the
HighScope Perry Preschool Program. Quantitative Economics, 1(1):1–46. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.3982/QE8.

Heckman, J. J., Pinto, R., Shaikh, A. M., and Yavitz, A. (2011). Inference with Imperfect
Randomization: The Case of the Perry Preschool Program.

Higgins, M. J., Sävje, F., and Sekhon, J. S. (2016). Improving massive experiments with
threshold blocking. Proceedings of the National Academy of Sciences, 113(27):7369–7376.
Publisher: Proceedings of the National Academy of Sciences.

Imai, K., King, G., and Nall, C. (2009). The Essential Role of Pair Matching in Cluster-
Randomized Experiments, with Application to the Mexican Universal Health Insurance
Evaluation. Statistical Science, 24(1).

Imbens, G. W. (2011). Experimental design for unit and cluster randomid trials. Technical
report, Harvard University.

Lee, J. N., Morduch, J., Ravindran, S., Shonchoy, A., and Zaman, H. (2021). Poverty and
Migration in the Digital Age: Experimental Evidence on Mobile Banking in Bangladesh.
American Economic Journal: Applied Economics, 13(1):38–71.

31



Lee, S. and Shaikh, A. M. (2014). Multiple Testing and Heterogeneous Treatment Effects:
Re-Evaluating the Effect of Progresa on School Enrollment. Journal of Applied Economet-
rics, 29(4):612–626. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jae.2327.

Li, X., Ding, P., and Rubin, D. B. (2018). Asymptotic theory of rerandomization
in treatment–control experiments. Proceedings of the National Academy of Sciences,
115(37):9157–9162. Publisher: Proceedings of the National Academy of Sciences.

Morgan, K. L. and Rubin, D. B. (2012). Rerandomization to improve covariate balance in
experiments. The Annals of Statistics, 40(2). arXiv:1207.5625 [math, stat].

Mutz, D. C., Pemantle, R., and Pham, P. (2019). The Perils of Balance Testing in Experi-
mental Design: Messy Analyses of Clean Data. The American Statistician, 73(1):32–42.
Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00031305.2017.1322143.

Snyder, C. and Zhuo, R. (2018). Sniff Tests as a Screen in the Publication Process: Throwing
out the Wheat with the Chaff. Technical Report w25058, National Bureau of Economic
Research, Cambridge, MA.

Student (1938). Comparison Between Balanced and Random Arrangements of Field Plots.
Biometrika, 29(3/4):363–378. Publisher: [Oxford University Press, Biometrika Trust].

Takacs, L. (1991). A Moment Convergence Theorem. The American Mathematical Monthly,
98(8):742–746. Publisher: Mathematical Association of America.

Tillé, Y. and Favre, A.-C. (2004). Coordination, Combination and Extension of Balanced
Samples. Biometrika, 91(4):913–927. Publisher: [Oxford University Press, Biometrika
Trust].

32



A Proofs of Propositions

A.1 Proof of Balancing Approximations for the Cube Method
(Proposition 1)

From Assumption 2 and Proposition 4 in Deville and Tillé (2004), we have:∣∣∣∣∣ 1
n

n∑
i=1

XjiDi

πi

− 1
n

n∑
i=1

Xji

∣∣∣∣∣ ≤ q

n
max

i=1,...,n

∣∣∣∣Xji

πi

∣∣∣∣ ≤ q maxi=1,...,n |Xji|
cn

.

If Assumptions 1 holds and if moment of order r exists for Xj1, from Proposition 1.5 and
Theorem 2.1 in Chapter 6 in Gut (2013), we have maxi=1,...,n |Xji| = op(n1/r). If Xji sub-
Gaussian maxi=1,...,n |Xji| = Op

Ä√
ln(n)

ä
and if Xji is bounded by K, maxi=1,...,n |Xji| ≤ K.

A.2 Proof of Asymptotic Normality for the SATE (First part of
Propositions 2 and 3)

We want to prove
√

n
Ä
θ̂HT − θ0

ä
d−→ N (0, V0)

and
√

n
Ä
θ̂H − θ0

ä
d−→ N (0, V0)
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[
πi (1 − πi)

Ä
εi(1)

πi
+ εi(0)

1−πi

ä2]
.

We first show that it is sufficient to prove asymptotic normality for one of the two estimators.
Proposition 1 ensures that if the empiricist includes a constant in the set of covariates to
balance, one has ∑n

i=1
Di

πi
= n + op

Ä
1√
n

ä
and ∑n

i=1
1−Di

1−πi
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ä
. Then, the Hajec

estimator in (6) is given by
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Then,
√

n
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θ̂H − θ0

ä
=

√
n
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ä
+ op (1)

Ä
θ̂HT − θ0

ä
.

By Slutsky’s theorem, if
√

n
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θ̂HT − θ0

ä
d−→ N (0, V0), then

√
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ä
d−→ N (0, V0). It

is thus sufficient to prove asymptotic normality of the Horvitz-Thompson estimator, i.e.,
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Under Assumptions 1 and 2, Proposition 1 ensures
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Then, we have
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Slutsky’s theorem ensures that we have to prove

1√
n

n∑
i=1

fi + giDi
d−→ N (0, V0) . (A.1)

By Assumption 3 E[f |X] = E[g|X] = 0. Then, Conjecture 1 and Lemma 2 give that,
conditional on (Xi)i≥1, 1√

n

∑n
i=1 fi + giDi

d−→ N (0, V0), with V0 = E[f 2
i + (2gifi + g2

i )πi] =
E
î
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äó
, in the sense of Definition 2. Notice that V0 does not depend on

(X1)i≥1, so convergence in distribution is unconditional. This concludes the proof.

A.3 Proof of Asymptotic Normality for the PATE (Second part
of Propositions 2 and 3)

As shown in Proof A.2, if
√
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d−→ N (0, V ∗

0 ), we have
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d−→ N (0, V ∗

0 ),
we thus restrict ourselves to proving asymptotic normality for the Horvitz-Thompson esti-
mator, i.e,
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where V ∗
0 = (β1 − β0)′V(X)(β1 − β0) + E
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Let us consider fi := f(Xi, εi(1), εi(0)) = − εi(0)
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and hi := h(Xi) = (Xi − E[Xi])′(β1 − β0).
= Under Assumptions 1-2, Proposition 1 ensures
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Slutsky’s theorem ensures that we have to prove
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By Assumption 3 E[f |X] = E[g|X] = 0. Then, Conjecture 1 and Lemma 2 give that,
conditional on (Xi)i≥1,
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. Moreover, by the central limit theorem, 1√
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02 = (β1 − β0)′V(X)(β1 − β0). Theorem 2 in Chen and Rao (2007) ensures that
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02) . This concludes the proof.

A.4 Proof of Randomized-based Inference (Proposition 4)

For completeness, we show first, as in Bai et al. (2022), that the strong null hypothesis (17)
(Yi(1), Xi) d= (Yi(0), Xi) is equivalent to stating Y1, . . . , Yn ⊥⊥ D1, . . . , Dn|X1, . . . , Xn.
Let us consider random allocations generated by the Cube Method d and d′ in the support
of D1, . . . , Dn|X1, . . . , Xn and any set A. Then we have,

P [(Y1, . . . , Yn) ∈ A|(D1, . . . , Dn) = (d1, . . . , dn), X1, . . . , Xn)]

=P [(Y1(d1), . . . , Yn(dn)) ∈ A|(D1, . . . , Dn) = (d1, . . . , dn), X1, . . . , Xn)]

=P [(Y1(d1), . . . , Yn(dn)) ∈ A|(D1, . . . , Dn) = (d1, . . . , dn), X1, . . . , Xn)]

=P [(Y1(d1), . . . , Yn(dn)) ∈ A|X1, . . . , Xn)]

=P [(Y1(d′
1), . . . , Yn(d′

n)) ∈ A|X1, . . . , Xn)]
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=P [(Y1(d′
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1, . . . , d′

n), X1, . . . , Xn)]
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n), X1, . . . , Xn)] ,

so both hypothesis are equivalent. Then, under Assumptions 1 and 2, and the strong null
hypothesis 17,
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Moreover, cn (Pn, 1 − α) = cn

(
P(g)

n , 1 − α
)

for any g ∈ GB
n ensures by definition of cn (Pn, 1 − α)

∑
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Combining equations (A.3) and (A.4) we get E
[
ϕrand

n (Pn)
]

≤ α, which concludes the proof.

B Lemmas for the Cube Method

Lemma 1 (Exchangeability)
For any permutation σ of {1, ..., n} we have:

(Dσ(i), π∗
σ(i)Xσ(i))i=1,...,n

d= (Di, Xi)i=1,...,n

Proof:
For any value of n, the Cube algorithm ensures there exists a finite collection of independent
uniform random variables (U1, ..., UK) independent of (X1, ..., Xn) such that (D1, ..., Dn, π∗

1, ..., π∗
n) =

f(X1, ..., Xn, U1, ..., UK). Because the X are iid and independent of the U , we have:

(Xσ(1), ..., Xσ(n), U1, ..., UK) d= (X1, ..., Xn, U1, ..., UK).

The result follows.
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Definition 2
Wn

d−→ N (0, σ2) conditional on (Xi)i≥1 if and only if for any h bounded Lipschitz E (h(Wn)|(Xi)i≥1)
converges almost surely to

∫
h(u) 1√

2πσ2 exp
Ä
− u2

2σ2

ä
du.

Usual criteria (Portemanteau Lemma, Levy continuity theorem, ...) to prove convergence
in distribution could be adapted to prove the convergence in distribution conditional on
(Xi)i≥1 apply if the usual expectations and probabilities are replaced by conditional ex-
pectations and probabilities and usual convergence of sequences is replaced by almost sure
convergence of random variables. More concretely, we will use the fact that if for any k ≥ 1,
E((Wn)k|(Xi)i≥1) converges almost surely to the kth-raw moment of a Gaussian distribution
of variance σ2 then Wn

d−→ N (0, σ2) conditional on (Xi)i≥1. This is an adaptation of the
theorem of Takacs (1991) that states that if for any k ≥ 1, E((Wn)k) converges to the kth-
raw moment of a Gaussian distribution of variance σ2 then Wn

d−→ N (0, σ2). Moreover,
Wn

d−→ N (0, σ2) conditional on (Xi)i≥1 if and only if ∀t ∈ R, P (Wn ≤ t|(Xi)i≥1) converges
almost surely to Φ( t√

σ2 ) for Φ the cdf of the standard Gaussian.

Lemma 2 (Asymptotic normality)
Let f and g be two functions such that for fi = f(δi(1), δi(0), Xi) and gi = g(δi(1), δi(0), Xi)
we have E(f 2

i + g2
i ) < ∞ and E[fi|Xi] = E[gi|Xi] = 0.

If Assumptions 1 and 2 and Conjecture 1 hold. Then, conditional on (Xi)i≥1,

1√
n

n∑
i=1

fi + giDi
d−→ N (0, V0) (B.1)

with V0 = E [f 2
1 + (2g1f1 + g2

1)π1] .

Proof:
First step: |fi| + |gi| bounded implies (B.1)
Let us assume it exists K > 0 such that |f1| + |g1| < K for any k ∈ N. This ensures that all
the moments of fi + giDi exist. Let Mn,k = E

[Ä
1√
n

∑n
i=1 fi + giDi

äk
|(Xi)i≥1

]
.

We have
Mn,k = E

ñ
n−k/2 ∑

1≤i1,...,ik≤n

k∏
ℓ=1

(fiℓ
+ giℓ

Diℓ
) |(Xi)i≥1

ô
.

Let us order the indices i1, . . . , ik as j1, . . . , jm for some 1 ≤ m ≤ k with each jℓ occurring
with multiplicity aℓ. Let Ak,m := {a = (a1, . . . , am) ∈ N∗m : ∑m

ℓ=1 aℓ = k} and for a ∈ Ak,m,
ck,a = k!∏m

ℓ=1 aℓ! . We have:

Mn,k =
k∑

m=1
n−k/2 ∑

1≤j1<...<jm≤n

∑
a∈Ak,m

ck,aE
ñ

k∏
ℓ=1

(fjℓ
+ gjℓ

Djℓ
)aℓ |(Xi)i≥1

ô
.
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In order to prove the convergence of moments, we will focus on the summands

Bn,k,m = n−k/2 ∑
1≤j1<...<jm≤n

∑
a∈Ak,m

ck,aE
ñ

k∏
ℓ=1

(fjℓ
+ gjℓ

Djℓ
)aℓ |(Xi)i≥1

ô
.

Notice that |Bn,k,m| ≤ n−k/2(n
m

)∑k
m=1

∑
a∈Ak,m

ck,aKk = O
(
nm−k/2). For m < k/2, we thus

have limn Bn,k,m = 0.
We focus now in the case m > k/2. For K ⊆ {1, . . . , m}, we note Kc = {1, . . . , m} \ K.
Then, the binomial theorem and the expansion ∏m

ℓ=1(xℓ + yℓ) = ∑
K⊆{1,...,m}

∏
ℓ∈K xℓ

∏
ℓ′∈Kc yℓ′

and identity Da = D for a ≥ 1 ensure

Bn,k,m

= n−k/2 ∑
1≤j1<...<jm≤n

∑
a∈Ak,m

ck,aE
ñ

k∏
ℓ=1

(fjℓ
+ gjℓ

Djℓ
)aℓ

∣∣∣(Xi)i≥1

ô
= n−k/2 ∑

1≤j1<...<jm≤n

∑
a∈Ak,m

ck,aE
ñ

m∏
ℓ=1

ñ
faℓ

jℓ
+
Ç

aℓ∑
r=1

Ç
aℓ

r

å
faℓ−r

jℓ
gr

jℓ

å
Djℓ

ô ∣∣∣(Xi)i≥1

ô
= n−k/2 ∑

1≤j1<...<jm≤n

∑
a∈Ak,m

ck,a

∑
K⊆{1,...,m}

E
ñ∏

ℓ∈K
faℓ

jℓ

∏
ℓ′∈Kc

Ç
aℓ′∑
r=1

Ç
aℓ′

r

å
f

aℓ′ −r
jℓ′ gj

jℓ′

å ∏
ℓ′′∈Kc

Djℓ′′

∣∣∣(Xi)i≥1

ô
Then, independence of (fi, gi)i≥1 across i and conditional independence (fi, gi) ⊥⊥ Di|(Xi′)i′≥1

ensure

Bn,k,m

= n−k/2 ∑
1≤j1<...<jm≤n

∑
a∈Ak,m

ck,a

∑
K⊆{1,...,m}

∏
ℓ∈K

E
[
faℓ

jℓ
|Xjℓ

] ∏
ℓ′∈Kc

Ç
aℓ′∑
r=1

Ç
aℓ′

r

å
E
î
f

aℓ′ −r
jℓ′ gr

jℓ′ |Xjℓ′

óå
E
ñ ∏

ℓ′′∈Kc

Djℓ′′

∣∣∣(Xi)i≥1

ô
.

Because m > k/2, for any a ∈ Ak,m there exists s such that as = 1. For any K, if
s ∈ K, then ∏

ℓ∈K E
[
faℓ

jℓ
|Xjℓ

]
= E [fjs|Xjs ]

∏
ℓ∈K\{s} E

[
faℓ

jℓ
|Xjℓ

]
= 0, else s ∈ Kc and∏

ℓ′∈Kc

Ä∑aℓ′
r=1

(
aℓ′
r

)
f

aℓ′ −r
jℓ′ gj

jℓ′

ä
= E(gjs|Xjs)

∏
ℓ′∈Kc\{s}

Ä∑aℓ′
r=1

(
aℓ′
r

)
f

aℓ′ −r
jℓ′ gj

jℓ′

ä
= 0. It follows that

if m > k/2 we have Bn,k,m = 0.
Let now consider the last case m = k/2. For a ∈ Ak,k/2 either there exists s such that as = 1
and by the previous reasoning, we have ∏

ℓ∈K E
[
faℓ

jℓ
|Xjℓ

]∏
ℓ′∈Kc

Ä∑aℓ′
r=1

(
aℓ′
r

)
E
î
f

aℓ′ −r
jℓ′ gr

jℓ′ |Xjℓ′

óä
=

0 for any K, either a = (2, ..., 2) and it follows

Bn,k,k/2 = n−k/2 ∑
1≤j1<...<jk/2≤n

k!
2k/2

∑
K⊆{1,...,k/2}

∏
ℓ∈K

E
[
f 2

jℓ
|Xjℓ

] ∏
ℓ′∈Kc

E
î
2fjℓ′ gjℓ′ + g2

jℓ′ |Xjℓ′

ó
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E
ñ ∏

ℓ′′∈Kc

Djℓ′′

∣∣∣(Xi)i≥1

ô
Conjecture 1 and the fact that max(|fi|2, |2figi + g2

i |) ≤ 3K2 ensure

Bn,k,k/2 =n−k/2 ∑
1≤j1<...<jk/2≤n

k!
2k/2

∑
K⊆{1,...,k/2}

∏
ℓ∈K

E
[
f 2

jℓ
|Xjℓ

] ∏
ℓ′∈Kc

E
î
2fjℓ′ gjℓ′ + g2

jℓ′ |Xjℓ′

ó ∏
ℓ′′∈Kc

πjℓ′′

+ n−k/2
Ç

n

k/2

å
k!

2k/2 2k/2(3K2)k/2o(1)

=n−k/2 ∑
1≤j1<...<jk/2≤n

k!
2k/2

∑
K⊆{1,...,k/2}

∏
ℓ∈K

E
[
f 2

jℓ
|Xjℓ

] ∏
ℓ′∈Kc

E
îÄ

2fjℓ′ gjℓ′ + g2
jℓ′

ä
πjℓ′ |Xjℓ′

ó
+ o(1)

Factorization formula ∑
K⊆{1,...,m}

∏
ℓ∈K xℓ

∏
ℓ′∈Kc yℓ′ = ∏m

ℓ=1(xℓ + yℓ) ensures

Bn,k,k/2 = k!
2k/2 n−k/2 ∑

1≤j1<...<jk/2≤n

k/2∏
ℓ=1

E
[
f 2

jℓ
+
(
2fjℓ

gjℓ
+ g2

jℓ

)
πjℓ

∣∣∣Xjℓ

]
+ o(1)

= k!
2k/2 n−k/2

Ç
n

k/2

åÇ
n

k/2

å−1 ∑
1≤j1<...<jk/2≤n

h(Xj1 , ..., Xjk/2) + o(1)

for h(u1, ..., uk/2) = ∏k/2
i=1 E(f 2 + (2fg + g2)π|X = ui). Strong law of large numbers for

U-statistics (Aaronson et al., 1996) ensures that
(

n
k/2

)−1 ∑
1≤j1<...<jk/2≤n h(Xj1 , ..., Xjk/2) con-

verges almost surely to E(h(X1, ..., Xk/2)) = (V0)k/2 and limn n−k/2( n
k/2

)
= 1

(k/2)! . Then,
limn Mn,k = 0 for k odd, and limn Mn,k = k!

2k/2(k/2)!V
k/2

0 for k even. By the adapted form of
the theorem in Takacs (1991), if fi and gi, are bounded, we have that, conditional on (Xi)i≥1

1√
n

∑n
i=1 fi + giDi converges almost surely to a Gaussian of variance V0.

Second step: E(Y (0)2 + Y (1)2 + ||X||2) < ∞ implies (B.1)
Assumption 1 ensures only that fi and gi admit moments of order 2. Then, for M > 0,
let f≤M,i, f>M,i, g≤M,i and g>M,i the truncated variables f≤M,i = fi1{|fi| ≤ M}, f>M,i =
fi1{|fi| > M}, g≤M,i = gi1{|gi| ≤ M} and g>M,i = gi1{|gi| > M}. We define f̃≤M,i =
f≤M,i − E[f≤M,i|Xi], f̃>M,i = f>M,i − E[f>M,i|Xi], g̃≤M,i = g≤M,i − E[g≤M,i|Xi] and g̃>M,i =
g>M,i − E[g>M,i|Xi]. We have:

E

∣∣∣∣∣ 1√
n

n∑
i=1

(f̃>M,i + g̃>M,iDi)
∣∣∣∣∣
2
∣∣∣∣∣∣ (Xℓ)ℓ≥1


= 1

n

n∑
i=1

E
[
(f̃>M,i + g̃>M,iDi)2|(Xℓ)ℓ≥1

]
+ 1

n

∑
1≤i,j≤n

i ̸=j

E
[(

f̃>M,i + g̃>M,iDi

) (
f̃>M,j + g̃>M,jDj

)
|(Xℓ)ℓ≥1

]

39



= 1
n

n∑
i=1

E
[
f̃ 2

>M,i

∣∣ (Xℓ)ℓ≥1
]

+ E
[(

2f̃>M,ig̃>M,i + g̃2
>M,i

)∣∣ (Xℓ)ℓ≥1
]
E [Di| (Xℓ)ℓ≥1]

+ 1
n

∑
1≤i,j≤n

i ̸=j

(
E
[
f̃>M,if̃>M,j|(Xℓ)ℓ≥1

]
+ E

[
f̃>M,ig̃>M,j|(Xℓ)ℓ≥1

]
E [Dj| (Xℓ)ℓ≥1]

+ E
[
f̃>M,j g̃>M,i|(Xℓ)ℓ≥1

]
E [Di| (Xℓ)ℓ≥1] + E [g̃>M,ig̃>M,j|(Xℓ)ℓ≥1]E [DiDj|(Xℓ)ℓ≥1]

)
= 1

n

n∑
i=1

E
[
f̃ 2

>M,i

∣∣Xi

]
+ E

[(
2f̃>M,ig̃>M,i + g̃2

>M,i

)∣∣Xi

]
πi

+ 1
n

∑
1≤i,j≤n

i ̸=j

(
E
[
f̃>M,i|Xi

]
E
[
f̃>M,j|Xj

]
+ E

[
f̃>M,i|Xi

]
E [g̃>M,j|Xj] πj

+ E
[
f̃>M,j|Xj

]
E [g̃>M,i|Xi] πi + E [g̃>M,i|Xi]E [g̃>M,j|Xj]E [DiDj|(Xℓ)ℓ≥1]

)
= 1

n

n∑
i=1

E
[
f̃ 2

>M,i +
(
2f̃>M,ig̃>M,i + g̃2

>M,i

)
πi|Xi

]
The second equality holds because (f1, . . . , fn, g1, . . . , gn) ⊥⊥ (D1, . . . , Dn)|X1, . . . , Xn. by
Assumption 2. The third equality holds because (fi, gi, Xi)i≥1 are independent across i by
Assumption 1 and E [Di|(Xℓ)ℓ>1] = πi by Assumption 2. The fourth equality holds because
E
[
f̃>M,ℓ|Xℓ

]
= E [g̃>M,ℓ|Xℓ] = 0.

The SLLN ensures that 1
n

∑n
i=1 E

[
f̃ 2

>M,i +
(
2f̃>M,ig̃>M,i + g̃2

>M,i

)
πi|Xi

]
converges almost-

surely to E
[
f̃ 2

>M,1 +
(
2f̃>M,1g̃>M,1 + g̃2

>M,1
)

π1
]
. It follows that by Cauchy-Schwarz inequal-

ity:

lim sup
n

E
ñ∣∣∣∣∣ 1√

n

n∑
i=1

(f̃>M,i + g̃>M,iDi)
∣∣∣∣∣ ∣∣∣(Xℓ)ℓ≥1

ô
≤ lim sup

n
E

∣∣∣∣∣ 1√
n

n∑
i=1

(f̃>M,i + g̃>M,iDi)
∣∣∣∣∣
2
∣∣∣∣∣∣ (Xℓ)ℓ≥1

1/2

= E
[
f̃ 2

>M,1 +
(
2f̃>M,1g̃>M,1 + g̃2

>M,1
)

π1
]1/2 (B.2)

which, by dominated convergence, is arbitrarily small for a sufficiently large M .
Let h a bounded Lipschitz function of constant ch, V (M) = E

[
f̃ 2

≤M,1 +
(
2f̃>M,1g̃≤M,1 + g̃2

≤M,1
)

π1
]
,

and N ∼ N (0, 1). We have by triangle, Lipschitz inequlities, and the fact that fi + giDi =
f̃≤M,i + g̃≤M,iDi + f̃>M,i + g̃>M,iDi:∣∣∣∣∣E

ñ
h

Ç
1√
n

n∑
i=1

fi + giDi

å ∣∣∣(Xℓ)ℓ≥1

ô
− E
î
h
Ä
V

1/2
0 N

äó∣∣∣∣∣
≤

∣∣∣∣∣E
ñ
h

Ç
1√
n

n∑
i=1

fi + giDi

å ∣∣∣(Xℓ)ℓ≥1

ô
− E
ñ
h

Ç
1√
n

n∑
i=1

f̃≤M,i + g̃≤M,iDi

å ∣∣∣(Xℓ)ℓ≥1

ô∣∣∣∣∣
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+
∣∣∣∣∣E
ñ
h

Ç
1√
n

n∑
i=1

f̃≤M,i + g̃≤M,iDi

å ∣∣∣(Xℓ)ℓ≥1

ô
− E
î
h
Ä
V (M)1/2N

äó∣∣∣∣∣
+
∣∣∣E îh ÄV (M)1/2N

äó
− E
î
h
Ä
V

1/2
0 N

äó∣∣∣
≤ chE

ñ∣∣∣∣∣ 1√
n

n∑
i=1

f̃>M,i + g̃>M,iDi

∣∣∣∣∣ ∣∣∣(Xℓ)ℓ≥1

ô
+
∣∣∣∣∣E
ñ
h

Ç
1√
n

n∑
i=1

f̃≤M,i + g̃≤M,iDi

å ∣∣∣(Xℓ)ℓ≥1

ô
− E
î
h
Ä
V (M)1/2N

äó∣∣∣∣∣
+ ch

∣∣∣V (M)1/2 − V
1/2

0

∣∣∣E(|N |).

The first step of the proof and (B.2) ensure that for any value of M > 0:

lim sup
n

∣∣∣∣∣E
ñ
h

Ç
1√
n

n∑
i=1

fi + giDi

å ∣∣∣(Xℓ)ℓ≥1

ô
− E
î
h
Ä
V

1/2
0 N

äó∣∣∣∣∣
≤ ch

(
E
[
f̃ 2

>M,1 +
(
2f̃>M,1g̃>M,1 + g̃2

>M,1
)

π1
]1/2 +

∣∣∣V (M)1/2 − V
1/2

0

∣∣∣) .

By dominated convergence, limM V (M) = V0 and limM E
[
f̃ 2

>M,1 +
(
2f̃>M,1g̃>M,1 + g̃2

>M,1
)

π1
]

=
0. Next, considering M tending to ∞, dominated convergence ensures

lim sup
n

∣∣∣∣∣E
ñ
h

Ç
1√
n

n∑
i=1

fi + giDi

å ∣∣∣(Xℓ)ℓ≥1

ô
− E
î
h
Ä
V

1/2
0 N

äó∣∣∣∣∣ = 0.

This achieves the proof.
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