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Abstract. Do employers in “non-STEM” occupations (e.g. Graphic Designers, Economists)

seek to hire STEM (Science, Technology, Engineering, and Mathematics) graduates with a

higher probability than non-STEM ones for knowledge and skills that they have acquired

through their STEM education (e.g. “Microsoft C#”, “Systems Engineering”) and not sim-

ply for their problem solving and analytical abilities? This is an important question in the

UK where less than half of STEM graduates work in STEM occupations and where this

apparent leakage from the “STEM pipeline” is often considered as a wastage of resources.

To address it, this paper goes beyond the discrete divide of occupations into STEM vs. non-

STEM and measures STEM requirements at the level of jobs by examining the universe of

UK online vacancy postings between 2012 and 2016. We design and evaluate machine learn-

ing algorithms that classify thousands of keywords collected from job adverts and millions of

vacancies into STEM and non-STEM. 35% of all STEM jobs belong to non-STEM occupa-

tions and 15% of all postings in non-STEM occupations are STEM. Moreover, STEM jobs

are associated with higher wages within both STEM and non-STEM occupations, even af-

ter controlling for detailed occupations, education, experience requirements, employers, etc.

Although our results indicate that the STEM pipeline breakdown may be less problematic

than typically thought, we also find that many of the STEM requirements of “non-STEM”

jobs could be acquired with STEM training that is less advanced than a full time STEM

education. Hence, a more efficient way of satisfying the STEM demand in non-STEM oc-

cupations could be to teach more STEM in non-STEM disciplines. We develop a simple

abstract framework to show how this education policy could help reduce STEM shortages in

both STEM and non-STEM occupations.
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1. Introduction

“A whole range of STEM skills - from statistics

to software development - have become essential

for jobs that never would have been considered

STEM positions. Yet, at least as our education

system is currently structured, students often

only acquire these skills within a STEM track.”

Matthew Sigelman [47]

To what extent do recruiters in non-STEM occupations (e.g. Graphic Designers, Artists,

Economists) require and value knowledge and skills that, within the UK education system,

are typically acquired in STEM (Science, Technology, Engineering, and Mathematics) disci-

plines?

Addressing this question is important because in the UK less than half of STEM graduates

work in STEM occupations.1 This apparent leakage from the “STEM pipeline” is often

considered as problematic since STEM education is more expensive and difficult to acquire

than non-STEM one.2 Hence, if recruiters in non-STEM occupations do not really require

and value STEM knowledge and skills and simply like hiring STEM graduates for their

“foundation competencies” (Bosworth et al. [9]), “logical approach to solving problems”

(BIS [42]) or just because they believe that STEM graduates are more capable than their

non-STEM fellows, the UK may be wasting a lot of money and efforts.

Another possibility, however, is that the discrete divide of occupations into STEM vs.

non-STEM is imperfect and does not capture the changing nature of the UK economy, hit by

trends like digitization, the arrival of Big Data, etc. which transform business operations and

infiltrate STEM requirements throughout the economy and, in particular, outside positions

that are typically considered as STEM.3

Indeed, “STEM occupations” are a relatively arbitrary construct. They are identified using

judgment (Mason [41], BIS [42], BIS [8], Greenwood et al. [30], DIUS [17], Chevalier [14]),

data-driven approaches (Bosworth et al. [9], Rothwell [45]), or a combination of both (UKCES

[23]). Most studies recognize that “the issue of precisely where to draw the line between

STEM and non-STEM never goes away” (Bosworth et al. [9]), that “neither Standard

1This finding is robust to different ways of defining STEM occupations and STEM disciplines, e.g. Chevalier
[14] examines the LDLHE and finds that 36% of scientific graduates work in scientific occupations six months
after graduation. The proportion is 46% three and a half years after graduation. Bosworth et al. [9] find
that core STEM occupations employ only 40% of core STEM degree holders.
2Most STEM subjects fall into price categories A to C and therefore receive more funding from the Higher
Education Funding Council For England (HEFCE) than the majority of non-STEM subjects which belong
to price group D (HEFCE [18]).
3For example, see Brynjolfsson & McAfee [12] for a review of how Big Data is transforming management
practices.
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Occupational Classification (SOC) system codes nor Standard Industrial Classification (SIC)

codes are particularly valuable to [classify STEM employment]” (BIS [42]), and that “STEM

degree holders working in a non-STEM occupation may still be using their STEM skills”

(Bosworth. et al. [9]).4

The only way to shed more light on this important issue is to go beyond occupations and

measure STEM requirements at the level of jobs. We shall attempt this by examining the

universe of UK online vacancy postings. Our data comes from Burning Glass Technologies

(BGT), a labour market analytics company that collects, deduplicates and processes informa-

tion on all UK online vacancies posted on employer websites, major job boards, government

databases, etc. Where available, BGT collects job titles, occupation, industry and employer

identifiers, education, experience and discipline requirements, wages, geographical locations

... and, most importantly, transforms the job description texts into sets of keywords, e.g:

“SAS - Writing - Data Collection - Econometrics - Project Design - Team Building - SQL - R”

“Financial Analysis – Photography – Rehabilitation”

Our goal is to identify STEM jobs as those “involving activities that can only be satisfac-

torily carried out by individuals with STEM skills” (Bosworth et al. [9]). A straightforward

approach would therefore consist in classifying as STEM those vacancy postings that explic-

itly require applicants to possess a STEM degree/qualification. However, unfortunately, only

around 12% of all vacancy postings in our data contain any explicit discipline requirements.

This happens because most UK recruiters prefer to simply describe the open position and

the candidate that they are looking for directly, employing thousands of different keywords.

Hence, instead of relying on whether or not the posting contains an explicit STEM qualifi-

cation requirement, we start by identifying “STEM keywords” - skills and knowledge that are

4Mason [41] applies judgment to the list of SOC occupations to identify those in which “the application of
scientific, engineering and/or technological skills and knowledge is central to the job-holder’s work”. The list
in Greenwood et al. [30] “was classified by a panel drawn from across the STE subjects and disciplines and
convened by The Royal Academy of Engineering”. BIS [42] rely on previous studies, their own judgment,
preliminary discussions with key organisations and employer interviews to classify occupations into STEM
Core, STEM related, STEM unrelated, and sectors into STEM Specialist, STEM Generalist and non-STEM.
Bosworth et al. [9] use the Labour Force Survey to classify an occupation as STEM “if at least 15 per
cent of its workforce is a STEM degree holder and the occupation as a whole employs at least 0.5 per cent
of the STEM workforce.” However, the problem with using the percentage of STEM degree holders as
an indicator for whether or not an occupation is STEM, is that STEM graduates may be attracted to an
occupation for reasons that are unrelated to employers’ demand for STEM knowledge & skills, e.g. high
wages. Recognizing this, UKCES [23] complement the proportion of STEM graduates in an occupation with
a combined index for numeracy and problem solving skills use based on indicators from the UK Skills and
Employment Survey. The “objective analysis” based on these two indicators outputs a list of 61 occupations.
UKCES then refine this list using judgment. For instance, they remove health/medical occupations, teaching
occupations and aircraft pilots as irrelevant, while including other occupations that were not identified as
STEM in the objective analysis but “seem to be core STEM”, e.g. technicians. Rothwell [45] uses O*NET
Knowledge scales.
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Figure 1.1 Intuition behind “Context Mapping”

Notes: Percentages of STEM vs. non-STEM discipline requirements with which a given keyword appears in
the subsample of vacancy postings with explicit discipline requirements.

exclusively or much more likely to be taught in STEM disciplines (e.g. “Systems Engineer-

ing”), or job tasks, tools and technologies for which a STEM education is typically required

(e.g. “C++”, “Design Software”) - using a method that we call “context mapping”. The

key idea in “context mapping”, illustrated in Figure 1.1, is to classify keywords based on

their “steminess” - the percentage of STEM discipline requirements with which a keyword

appears in the subsample with explicit discipline requirements.

We then propose and evaluate several different ways of employing the steminess of all

keywords in a given vacancy posting to classify it as STEM or non-STEM, as well as estimate

the probability that its recruiter looks for a STEM graduate.5 Our preferred classification

method uses the steminess of keywords from both the vacancy description and the job title,

and achieves an over 90% correct classification rate when tested on the subsample with explicit

discipline requirements, i.e. classifies a job as STEM when the qualification requirement is a

STEM discipline and as non-STEM when it is a non-STEM one.

Using this method, we classify all 33 million vacancy postings collected by BGT between

January 2012 and July 2016. We find that around 35% of all STEM jobs belong to non-

STEM occupations. Of course, nothing prevents STEM graduates working in non-STEM

occupations to choose non-STEM jobs. However, if most of them happen to take up STEM

employment opportunities, the fact that over half of STEM graduates work in non-STEM

occupations may not be as problematic as often thought.

The list of non-STEM occupations with relatively high percentages of STEM jobs is very

diverse and includes Chartered architectural technologists (85.42% in 2015), Production man-

agers and directors in construction (78.56%), Business, research and administrative profes-

sionals n.e.c. (46.84%), Product, clothing and related designers (45.62%), and even Artists

(23.46%).

5For simplicity, throughout this paper, we often use the expression “STEM graduate” to mean “STEM edu-
cated candidate” at any education level. Similarly, we use interchangeably the words “recruiter”, “vacancy”,
“job”, “posting”.
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Perhaps surprisingly for the literature, where financial occupations are typically considered

as the main non-STEM group poaching STEM graduates, none of them is actually top of

the list in terms of the percentage of jobs classified as STEM. For instance, among the

seven occupations defined as financial in Chevalier [14], Management consultants and business

analysts was the one with the highest percentage of STEM jobs in 2015: 25.33%, followed by

Financial and accounting technicians with only 11.67%. The reason may be that, within the

UK education system, the “numerical skills” for which financial occupations are thought to

be seeking STEM graduates are actually also often transmitted to non-STEM graduates in,

e.g., Finance or Economics degrees. Hence, although numerous jobs in financial occupations

may end up being filled with STEM graduates, when posting their vacancy, few financial

recruiters describe the job as one that could only be undertaken by someone with a STEM

education.

As expected, most of the jobs within STEM occupations are identified as STEM (81% of

all), while, in non-STEM occupations, STEM jobs remain a minority - around 15% of all.

However, even these small percentages add up to a significant number of STEM employment

opportunities outside STEM occupations and ignoring them leads to underestimating the

overall demand for STEM knowledge and skills. For instance, in 2015, 2.66 million STEM

vacancies were advertised online, while the number of jobs posted in STEM occupations

was only 2.15 million. Hence, equating STEM jobs with STEM occupations would make us

underestimate STEM demand by around half a million vacancies.

An important argument often put forward to defend the view that the breakdown of the

STEM pipeline is problematic, is that STEM graduates receive a wage premium only if

they stay in STEM occupations, i.e. “STEM skills are not particularly valued in non-STEM

occupations” (Levy and Hopkins [38]). The evidence often mentioned is the DIUS report [17]

which finds that “science graduates who work in science occupations earn a wage premium

even allowing for other factors. [...] The remainder work in other occupations where they

may well be using the analytical skills acquired during their education; however, they do not

earn a higher wage in these occupations than equivalent people who studied other subjects”.6

In reality, the DIUS report uses the LDLHE and the Labour Force surveys and therefore

cannot distinguish between STEM and non-STEM jobs within non-STEM occupations. By

contrast, our approach allows us to make this distinction. Although our results are not di-

rectly comparable because we examine the wage premium for STEM from the labour demand

side and we do not claim causality and caution that our results could be biased because of

6A similar conclusion is reached by Chevalier [14] who also uses the LDLHE. Accounting for selection into
both science degrees and science occupations, he finds that the returns to a science degree are small at 2%
(and significant at 10% only) and are dominated by the returns to a scientific occupation at 18% (and highly
significant). The findings in Greenwood et al. [30] are more nuanced. They analyse the Labour Force Survey
between March 2004 and December 2010, and find that “degrees in STEM are valued by the labour market
anyway but particularly so in STE occupations.”
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some omitted unobserved heterogeneity akin to the “ability bias” on the labour supply side,

we find that STEM jobs are associated with higher wages both within STEM and non-STEM

occupations. The premium remains significant and large even after controlling for a full set

of four-digit occupations, education and experience requirements, counties, one/two digit

industries, employers, etc. Moreover, conditional on a full set of four-digit occupation fixed

effects, there is no statistically significant difference between the wage premium offered for

STEM knowledge and skills in STEM occupations and the one offered in non-STEM ones.

Note that our results do not necessarily contradict but rather extend previous evidence

because, within non-STEM occupations, nothing prevents STEM graduates to take up non-

STEM jobs, for which non-STEM graduates are also perfectly qualified and no premium is

offered. The distinction with previous studies is the finding that around 15% of recruiters in

non-STEM occupations do require STEM knowledge and skills and offer to pay a premium

when doing so.

Overall, our empirical results therefore suggest that the leakage from the STEM pipeline

may be less problematic than previously thought, because a significant proportion of jobs in

non-STEM occupations can only be satisfactorily fulfilled with people possessing a certain

level of STEM knowledge and skills, which, within the UK education system, is typically

acquired through a STEM education. Moreover, our findings suggest that STEM shortages

may exist not only in STEM occupations but also in non-STEM ones.

Nonetheless, the STEM pipeline breakdown remains problematic for two main reasons.

Firstly, as already mentioned, many STEM graduates working in non-STEM occupations

could still be taking up non-STEM jobs. More importantly, there could be more efficient ways

of satisfying the STEM demand in non-STEM occupations than training full-time STEM

graduates.

In fact, an interesting feature distinguishes STEM jobs in STEM occupations from their

counterparts in non-STEM ones: while 60% of all keywords in the median posting of a STEM

job in a STEM occupation are STEM, this number is only 30% for a STEM job in a non-

STEM occupation. This suggests that STEM recruiters in non-STEM occupations are in

reality looking for a certain combination of STEM and non-STEM knowledge and skills that

lies in between the STEM-dominated combination required in STEM occupations and the

predominantly non-STEM one asked for in non-STEM jobs.

A recent report by General Assembly & BGT [3] calls this type of jobs “hybrid” since

they “blend skills from disciplines which are typically found in disparate silos of higher

education.” They identify six “hybrid” job categories, e.g.: Marketing Automation, which

“blends marketing with information technology”, Product Managers who “draw from both

business / marketing and computer programming”, UI/UX Designers who “call on skill sets

from design, programming and even psychology or anthropology.”
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They also note that “while the market increasingly demands these skill cocktails, higher

education programs have been slower to package learning in such cross-disciplinary ways.”

Indeed, the reason why we identify these jobs as STEM occurs precisely because their re-

cruiters are still looking to hire STEM graduates with a higher probability than non-STEM

ones. This may happen because, within the UK education system, non-STEM graduates are

typically unqualified for such “hybrid” positions: even if they possess the required non-STEM

skills, they do not master the STEM ones, which may be more difficult and/or expensive for

the employer to train and are therefore a prerequisite.

However, digging further into the STEM requirements of “non-STEM” jobs (STEM jobs in

non-STEM occupations), we find many skills and knowledge that could certainly be acquired

through appropriate training that is less advanced than a full-time STEM degree - e.g.

learning how to code in, say, “C++” or “Python” does not necessitate a Bachelor in Computer

Sciences. This agrees with the General Assembly & BGT report which also emphasizes that

these new hybrid roles “are accessible with technical training less than a computer science

degree.”

Although increasing the number of people studying STEM disciplines is one of the most

popular solutions proposed to reduce STEM shortages (e.g. Rothwell [44]), our findings

suggest that a more efficient way of satisfying STEM demand within non-STEM occupations

may be to teach more STEM in non-STEM disciplines in order to make non-STEM graduates

qualified for a set of jobs within non-STEM occupations for which they only lack the STEM

skills while already possessing the required non-STEM ones. In Section 5, we construct

a simple abstract framework to illustrate how STEM shortages in STEM and non-STEM

occupations are related and why this reform could help alleviate both.

This paper inscribes itself in the literature that employs online vacancies’ data to investi-

gate labour market dynamics and/or inform education provision policies. Although this type

of data comes with important caveats that we discuss in more details below in Section 2, it

is highly valuable to both academics and policymakers because of its many advantages over

the more constrained and costly surveys which rely on random sampling and are typically

less detailed. Reamer [43], for example, gives an interesting overview of how real-time labour

market information could be used by different federal agencies and trade associations in the

US to better align education programs with current labor market demand. He also discusses

the pros and cons of such usage.

The BGT data itself has already been employed for a variety of internal and external

research projects.



THE STEM REQUIREMENTS OF “NON-STEM” JOBS 8

In the UK, BGT have partnered with the Institute for Public Policy Research (IPPR)

to create an online skills calculator that “compares entry-level employer demand and the

number of learners completing related programmes of study”.7

In the US, the paper most related to our work is Rothwell [44]. He uses a subset of the

BGT data for which the duration of the vacancy is known to show that STEM job openings

take longer to fill than non-STEM positions at all education levels. However, STEM jobs in

Rothwell’s paper are still identified at the occupation level. In particular, he uses O*NET

Knowledge scales, as explained in his other paper [45] that we discuss in some details in

Section 4. He does not seek to use the keywords from the vacancy descriptions to classify

the job postings as STEM or non-STEM directly. Instead, he defines the value of each BGT

keyword, called “skill”, as the average salary cited in the postings containing it. He finds

that more valuable skills are advertised for longer and that STEM positions tend to demand

more valuable skills.

Several academic papers employ US BGT data to investigate the “upskilling” phenomenon

over the business cycle. Ballance et al. [6] find that an increased availability of workers during

downturns leads employers to raise their education and experience requirements. However,

as the authors show in their next paper [5], the upskilling that happened during the Great

Recession has been reversed as the labour market improved from 2010-2014. By contrast,

Hershbein and Kahn [32] argue that Ballance et al. [5] “overstate the degree of downskilling

during the later recovery” and provide evidence that the Great Recession was a time of

“cleansing” during which many firms restructured their production in a manner consistent

with routine-biased technological change, therefore increasing skill requirements permanently.

Hershbein and Kahn [32] use the keywords part of the BGT data to define “computer”

and “cognitive” skill requirements. They designate an ad as requesting computer skills if

it contains the keyword “computer” or one of the keywords categorized as “software” by

BGT themselves (822 keywords in the UK taxonomy). They consider as “cognitive” skills all

BGT keywords that contain “research”, “analysis”, “decision” and “thinking”, e.g.: “Online

Research”, “Logit Analysis”, “Clinical Decision Support”, etc. In the UK BGT taxonomy,

which contains 11,182 distinct keywords overall, this amounts to 280 keywords. Hence, de

facto, Hershbein and Kahn [32] classify less than 10% of all keywords as either “computer” or

“cognitive” skill requirements ((280+822)/11182). The problem is that the unclassified 90%

contain many keywords, like “Algebra”, “Machine Learning”, “Natural Language Process-

ing”, “Graph-Based Algorithms”, etc. which actually correspond to cognitive skill require-

ments without containing the four specific words that Hershbein and Kahn [32] focus on, and

may also require computer skills without being included in the BGT software category. Also,

note that the latter actually includes not only standard software like “Microsoft Excel” or

7http://wheretheworkis.org/
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“MATLAB”, but also many keywords that are not “computer” skills per se, e.g.: “Flickr”,

“LinkedIn”, “Microsoft Live Meeting”. Although the authors argue that they “ensure that

the presence of these keywords correlates with external measures of cognitive skill at the

occupation level”, “many of [their] analyses exploit firm-level information”, and at this more

disaggregated level, such an incomplete classification of the BGT taxonomy could have tan-

gible consequences. Moreover, on UK data, their approach gives some surprising results even

at the occupation level with, e.g. 65.06% of Economists postings requiring cognitive skills in

2015, but only 44.39% of Mathematicians doing so.

Deming and Kahn [16] take a similar approach but go a bit further. This time the goal is to

relate variation in skill demands to firm performance and wage variation within occupations.

Although the authors argue that “the primary contribution of [their] paper is to distill and

analyze the key words and phrases coded from the open text of ads in the BG data”, in reality,

they “distill” less than 20% of the BGT taxonomy by selecting the keywords that contain

around 30 commonly occurring words and phrases, regrouped into 8 categories corresponding

to different types of skills, e.g: cognitive, social, character, writing, etc. They also define

computer and software skills based on the pre-existing BGT software category and the words

“computer” and “spreadsheets” (cf. Table 1 in [16]).

Neither Hershbein and Kahn [32], nor Deming and Kahn [16] show why the fact that they

work with such incomplete classifications of the BGT taxonomy does not affect their results.

In this paper, we also do not manage to classify all BGT keywords into STEM and non-

STEM. However, we classify 85.55% of them and the remaining unclassified keywords appear

very rarely in the postings so that, on average, 99.99% of all keywords collected from a vacancy

with at least one keyword are actually classified. We further implement out-of-sample tests

which recreate the situation of having a certain proportion of unclassified keywords to show

that the number of misclassifications introduced by not being able to classify the remaining

less than 15% is very small. Finally, we process the job titles into sets of keywords and

add them to the BGT taxonomy, so that our eventual classification of jobs into STEM and

non-STEM is based on 29,831 distinct keywords with 99.82% of all vacancies in our data

possessing at least one classified keyword and the median number of classified keywords per

vacancy with at least one being seven.

This paper also contributes to the emerging literature that develops and applies Machine

Learning (ML) and Natural Language Processing (NLP) techniques to problems in Econom-

ics.8 ML consists of “flexible, automatic approaches [...] used to detect patterns within the

8For instance, in labour economics, a recent paper by Frey and Osborne [25] also employs ML to examine
the susceptibility of jobs to computerisation in the US. The authors hand-label 70 out of 702 US occupations
as either automatable or not, then employ this sample to train a Gaussian process classifier and estimate
the probability of computerisation for all 702 occupations as a function of nine O*NET variables that reflect
bottlenecks to computerisation (e.g. finger dexterity, originality...). Their findings indicate that about 47
percent of total US employment is at high risk of computerisation (probability above 0.7).
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data, with a primary focus on making predictions on future data” (Chiu [15]). It is becoming

an indispensable toolkit for economists working with Big Data where standard approaches,

like simply classifying a selected number of keywords, are not satisfactory and what is re-

quired from the researcher is to design, train and test algorithms that can automatically

perform classification tasks on huge quantities of data.

The rest of the paper is structured as follows. We start by introducing the UK BGT data

in Section 2 and explaining how STEM keywords and jobs are identified in Section 3. We

then study the characteristics of STEM jobs in the UK in Section 4 and analyse the education

policy implications of our empirical findings in Section 5.

2. Data

Nowadays, when wanting to hire someone, employers usually go online and post a job

advert containing information about the vacancy they want to fill and the candidate they

are looking for.

Burning Glass Technologies (BGT), a US labour market analytics company, has been col-

lecting and processing information on all online job postings in the UK since 2012. Currently,

they “spider” (visit) approximately 5,000 websites including major job boards (e.g. Career

Builder, Universal Job Match), government job databases, direct sites of employers of all

sizes and industries, as well as websites of agencies specialised in recruitment (e.g. Michael

Page, Reed England).

BGT robots go online on a daily basis. However, the same vacancy ad spidered several

times on the same or different platforms within a period of two months is removed as a

duplicate. BGT regularly upgrades its infrastructure to enhance coding rules and expand

posting sources, in which case it re-parses the entire database to ensure consistency and

comparability of postings over time. The sample used in this paper runs from January 2012

to and including July 2016.9

Where available, BGT collects the job title, detailed information on occupation and indus-

try identifiers, the employer, the geographic location, education, experience, and discipline

requirements, wages, pay frequencies, salary types, and keywords from the job description

texts. However, since few recruiters explicitly specify all this information in their vacancy

postings and BGT does not impute any missing fields, the data contains many missing values.

Table 1 presents some summary statistics about the numbers of vacancies and the per-

centages of non-missing values in each year. Overall, our sample contains over 33 million

of postings. Only 17.5% and 12.3% of them have minimum education and experience re-

quirements respectively (the percentages are even lower for maximum requirements). The

main reason is that employers often believe such information to be transparent from other

9The sample was received in September 2016, after the August 2016 update.



THE STEM REQUIREMENTS OF “NON-STEM” JOBS 11

Table 1: Descriptive statistics, Jan. 2012 - Jul. 2016 BGT sample

2012 2013 2014 2015 2016 Total

Panel A: Main Table

Number of postings 5939705 7041917 6240340 8173962 5667039 33062963
% with Job Title 100 100 99.99 100 100 100
% with Occupation 99.73 99.54 99.44 99.51 99.48 99.54
% with County 95.55 88.88 80.04 77.8 79.66 84.09
% with Industry 47.08 45.78 46.96 45.37 45.06 46.01
% with Employer 24.86 29.73 30.93 31.85 32.2 30.03
% with Education (min) 16.24 18.28 19.02 17.27 16.85 17.56
% with Experience (min) 11.22 12.22 12.86 12.74 12.34 12.31
% with Salary 63.01 60.05 59.62 60.29 63.04 61.07
Hourly Salary (conditional on posting):
Min 1.88 1.88 1.88 1.88 1.88 1.88
Max 72.12 72.12 72.12 72.12 72.12 72.12
Mean 15.58 16.10 16.50 17.17 17.21 16.54

Panel B: Keywords from Job Postings

% with >= 1 Keyword 92.01 89.71 89.94 89.93 89.11 90.12
No. of unique keywords 9064 9496 9795 9995 9477 11182
Number of Keywords per Vacancy (conditional on posting at least one):
Median 4 4 5 5 5 5
Mean 6.12 6.11 6.29 6.23 6.17 6.19
Max 226 211 115 111 167 226
Number of Vacancies per Keyword:
Median 59 67 56 71 55 173
as % of all postings 0.001 0.001 0.001 0.001 0.001 0.001
Mean 3689.97 4067.25 3605.1 4580.86 3285.9 16482.43
as % of all postings 0.06 0.06 0.06 0.06 0.06 0.05
Most popular Keyword “Communication Skills”
% of postings 20.59 21.97 24.04 23.25 22.38 22.5

Panel C: Discipline Requirements

% with >= 1 CIP major 11.43 12.04 13.14 11.75 11.74 12.01
of which ...

% with > 1 CIP major 30.72 29.54 30.22 31.04 31.53 30.58
% with >= 1 Keyword 98.87 98.68 98.83 98.76 98.53 98.74
No. unique CIP majors 394 402 403 403 398 425
No. of unique Keywords 8523 8831 8998 9026 8684 9566
as % of all Keywords 94.03 93.00 91.86 90.31 91.63 85.55
Number of Keywords per Vacancy in this subsample (cond. on >= 1):
Median 8 7 8 8 8 8
Mean 9.47 9.04 9.17 9.13 9.21 9.19
Number of Vacancies per Keyword in this subsample:
Median 27.50 29.00 26.00 28.00 25.00 67.00
Mean 871.38 963.66 920.79 1071.34 802.01 3767.79
% with non-mixed disciplines 90.72 91.00 90.60 90.46 90.34 90.63
Correlation with all postings:
Keywords (No. times posted) 0.93 0.94 0.95 0.94 0.94 0.94
Occupations (4-digit SOC, %s) 0.82 0.81 0.80 0.80 0.81 0.81
County (%s) 0.99 1.00 1.00 0.99 0.99 0.99

Notes: Occupation (4-digit UK SOC), Industry (SIC at division or section levels), Education and experience
requirements in years, Hourly salary (average of min and max if different). CIP stands for Classification of
Instructional Programmes. % with non-mixed disciplines gives the % of vacancies for which all disciplines
posted are either all STEM or all non-STEM.
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characteristics of their job advert. For instance, the recruiter posting an “Aerospace Engi-

neer” vacancy without an education requirement would not expect to receive applications

from people with GCSE as the highest qualification. It should also be clear to the job seeker

that the experience requirement of the vacancy whose title reads “Vice President” is different

from the one with a title containing “Analyst”.

There are several other important caveats to bear in mind when working with online

postings data. Firstly, some misclassifications are unavoidable when collecting data on such

a grand scale. Moreover, not all vacancies are posted online, not all vacancies transform into

real jobs, and sometimes a recruiter might post one vacancy but in reality seek to hire several

people.

Despite all these shortcomings, occupational and geographic distributions in the BGT

data exhibit high correlations with the occupational and geographic distributions of official

UK employment data (the Annual Survey of Hours and Earnings (ASHE) from the Office

for National Statistics (ONS)). Tables 17 and 18 in the Appendix present the results of a

comparison analysis conducted by BGT for the 2014 sample. The correlation of distributions

across major occupational groups is 0.94 (Table 17). However, as with US data, the UK

data also exhibits an over-representation of positions typically requiring higher education

(professional and associate professional occupations), and an under-representation of those

requiring lower levels of education.10

In terms of geographic distributions, the correlations are also very high: 0.94 for profes-

sional occupations and 0.84 for elementary occupations (cf. Table 18). However, London

postings are over-represented in the BGT sample.

Unfortunately, it is not possible to compare BGT data directly to the vacancies data

from the ONS Labour Market Statistical bulletins because ONS uses three-month rolling

averages (January-March, February-April, March-May, etc.), whereas BGT has a two-months

deduplication window. Hence, a given posting in the BGT sample could appear more than

once in ONS records. This may explain why, for instance, for 2014, ONS has 7.9 million

vacancies, whereas BGT data contains only 6.24 million postings.

Moreover, it is important to remember that while BGT data contains the universe of online

vacancies, both the ASHE and the Labour Market Statistical bulletins are based on surveys

of households or businesses. For instance, the ASHE is based on a 1% sample of employee

jobs, drawn from HM Revenue and Customs Pay As You Earn (PAYE) records. And as the

ONS cautions itself, “results from sample surveys are always estimates, not precise figures.”

2.1. Keywords from Job Postings. What makes BGT data stand out from more tradi-

tional sources of labour market information is the fact that it also contains keywords and

10For the US, Carnevale et al. [13] estimate that 80 to 90% of openings requiring at least a college degree
are posted online, whereas the numbers for those requiring some college (or an Associate’s degree) and those
only requiring high school are 30-40% and 40-60% respectively.
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phrases from the vacancy description texts. Concretely, in the data, the vacancy description

text appears as a set of keywords taken out of context, e.g.:11

“Adobe After effects - E-Learning - Multi-Tasking - Audio Editing”

These keywords are collected using “a continuously expanding taxonomy” (Carnevale et

al. [13]). We can think of this taxonomy as the “language” that recruiters employ to describe

the job and the candidate they are looking for. It includes:

- Skills: “Organisational Skills”, “Time Management”, “Communication Skills”...

- Job tasks: “Advertising Design”, “Invoice Preparation”, “Lesson Planning”...

- Work styles: “Detail-oriented”, “Creativity”, “Initiative”...

- Software: “Microsoft Office”, “AJAX”, “Adobe Acrobat”...

- Knowledge: “Civil Engineering”, “Accountancy”...

- Other: “Her Majesty’s Treasury”, “FOREX”, ...

Any keyword in the job posting that has a match in the BGT taxonomy gets picked up.

The order and number of times the keywords appear in the original job posting are ignored.12

The taxonomy expands as BGT robots discover new keywords in job ads. Once new keywords

are added to the taxonomy, all previous postings are re-examined to ensure consistency and

comparability over time.

Currently, the taxonomy contains 11,182 distinct keywords, and 90% of all postings have

at least one keyword (Panel B, Table 1). However, conditional on having at least one, the

median number of keywords per vacancy is only 4-5. More importantly, in a given year, the

median keyword appears in less than 0.001% of all postings. In fact, even the most popular

keyword - “Communication Skills”, appears in less than a quarter of all postings.

2.2. Explicit Discipline requirements. Only around 12% of all job adverts contain spe-

cific discipline requirements (Panel C, Table 1), e.g.: “Chemistry”, “Economics”.

The fact that most recruiters prefer to express their skills & knowledge requirements di-

rectly, by simply describing the open position and the candidate that they are looking for,

is an important reason for attempting to identify STEM jobs from the vacancy description

keywords, and not by relying on whether or not the posting contains an explicit STEM

qualification/degree requirement.

However, since our goal is precisely to identify STEM jobs as those whose recruiters would

most likely seek to hire STEM graduates, this sample with explicit discipline requirements

11BGT refers to them as “skills”. However, because they also contain many expressions which strictly
speaking are not “skills”, we prefer to refer to both single word (e.g. “Research”) and multiple word phrases
(“Academic Programme Management”) as simply “keywords”. In practice, we removed the white space
between the words in multiple word phrases to avoid treating, for instance, “Lotus Notes” and “LotusNotes”
as distinct “keywords”.
12Hence, the vacancy representation in our data is closer to what in the information retrieval literature is
called a “boolean retrieval” rather than a “bag of words” model, although what is collected are specific
keywords and phrases instead of all tokens (cf. Manning et al. [39]).
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constitutes an important first step in our analysis. Within it, STEM jobs are already identi-

fied because we can directly observe whether the discipline posted is STEM or non-STEM.

Merging together observations for Jan. 2012 - Jul. 2016, we obtain almost 4 million

vacancies with explicit discipline requirements. The 425 distinct disciplines posted in these

4 million vacancies correspond to majors from the Classification of Instructional Programs

(CIP) - a taxonomic coding scheme of over 2,000 instructional programs, developed by the

US Department of Education. The CIP has two-digit, four-digit, and six-digit series, and

most of the programs are offered at the post-secondary level.13

We define STEM disciplines as the majors included in the CIP two-digit series correspond-

ing to: Biological & Biomedical, Physical, and Computer Sciences, Technology, Engineering,

and Mathematics & Statistics. Table 16 in the Appendix provides the full list of disciplines

contained within each group and that appear in our sample. All remaining disciplines in our

data belong to different two-digit series and are therefore classified as non-STEM. Note that

there is disagreement in the literature about whether Medical programs, Agricultural sci-

ences, Environmental sciences and Architecture should be classified as STEM or not. In this

paper, we decided to take the STEM acronym literally and therefore exclude these disciplines.

However, future research could certainly explore alternative classifications.14

Around 30% of postings specify more than one CIP major. For such postings, we re-weight

each major by the number of majors specified so that the overall discipline requirement sums

to one.15

Figure 2.1 shows the resulting distribution of discipline requirements: 50.61% of CIP ma-

jors specified belong to non-STEM fields, while the rest are spread throughout the STEM

domains, with 25.83% belonging to Engineering.

Only 9.27% of postings have mixed discipline requirements, i.e. specify CIP majors be-

longing to both STEM and non-STEM domains. 44.55% of vacancies have purely STEM

discipline requirements and 46.17% have purely Non-STEM ones.

13A small proportion of the CIP corresponds to residency (dental, medical, podiatric, and veterinary spe-
cialties) and personal improvement and leisure programs; and instructional programs that lead to diplo-
mas and certificates at the secondary level only. The latest 2010 edition of the CIP is available at:
https://nces.ed.gov/ipeds/cipcode/Default.aspx?y=55. Note that the fact that the discipline is posted ex-
plicitly does not imply that the recruiter also specifies the minimum education level required. Indeed, in
the sample with explicit discipline requirements, 38% of education level requirements are missing. 57.89% of
those posted correspond to a minimum NQF level 6 or above (i.e. at least a Bachelor’s degree).
14Similarly, although the US Department of Homeland Security (DHS) provides a list of CIP programs that
it classifies as STEM, we decided not to use it because it has been created “for purposes of [a] STEM optional
practical training extension” and contains a wide range of STEM-related disciplines in addition to the core
ones, e.g. “Educational Evaluation and Research”. Moreover it is not directly comparable to the Joint
Academic Coding System used in UK studies to classify disciplines as STEM or non-STEM.
15This ensures that we do not count such vacancies as many times as the number of disciplines that they
specify instead of one, and also makes intuitive sense since a vacancy with two distinct discipline requirements
is probably looking for a combination of knowledge and skills from both of them.
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Figure 2.1 Distribution of discipline requirements

Notes: 3971988 vacancies with explicit discipline requirements collected between Jan. 2012 and July 2016.

Table 2: STEM jobs in the sample with explicit discipline requirements

STEM job = % STEM disciplines >50 % STEM disciplines = 100

% of jobs that
are STEM

% of STEM jobs
belonging to

% of jobs that
are STEM

% of STEM jobs
belonging to

STEM occupations 81.64 69.46 78.45 70.63

Non-STEM occupations 24.11 30.54 21.92 29.37

Notes: Based on the sample of 3957387 vacancies with explicit discipline requirements and an occupation
identifier. 1869128 STEM jobs, 1590254 jobs in STEM occupations.

Classifying a job as STEM if the percentage of STEM discipline requirements is above 50,

Table 2 shows that over 30% of STEM jobs belong to Non-STEM occupations.16 Restricting

the definition to 100% STEM discipline requirements slightly lowers this percentage (29.37%).

Although these results are based on only 12% of all UK vacancies, they constitute an

important robustness check and a preview of some of our findings because the sample with

explicit discipline requirements has a 0.81 occupational correlation with the complete set of

postings at the most refined 4-digit SOC level.

In what follows, our goal will be to classify all UK vacancies as STEM or Non-STEM based

on the keywords collected from their online postings.

16Given the lack of a consistent “official” classification of four-digit occupations into STEM and non-STEM,
we decided to merge together the lists from several widely cited UK studies: UKCES [23], Mason [41], BIS
[8] and Greenwood et al. [30], resulting in a list of 73 four-digit STEM occupations: 1121, 1123, 1136, 1137,
1255, 2111, 2112, 2113, 2119, 2121, 2122, 2123, 2124, 2125, 2126, 2127, 2128, 2129, 2131, 2132, 2133, 2134,
2135, 2136, 2137, 2139, 2141, 2142, 2150, 2212, 2216, 2321, 2431, 2432, 2461, 2462, 2463, 3111, 3112, 3113,
3114, 3115, 3116, 3119, 3121, 3122, 3123, 3131, 3132, 3217, 3218, 3567, 5211, 5212, 5213, 5214, 5215, 5216,
5221, 5222, 5223, 5224, 5231, 5232, 5233, 5241, 5242, 5243, 5244, 5245, 5249, 5314, 8143.
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3. Identifying STEM Keywords and Jobs

Irrespective of the occupations to which they belong, we want to identify STEM jobs as

those whose vacancy descriptions contain “STEM keywords” - knowledge and skills that are

typically acquired through a STEM education, or software/technological devices/job tasks

that require and apply STEM knowledge & skills. Intuitively, recruiters employing STEM

keywords when describing the job they want to fill and the candidate that they are looking

for will be much more likely to seek to hire people with a STEM education even if they do

not explicitly post a STEM discipline requirement.

Our approach consists of two steps: in Subsection 3.1, we identify STEM keywords using

a method that we call “context mapping”. The key idea in “context mapping”, illustrated

in Figure 1.1, is to classify keywords based on their “steminess” - the percentage of STEM

discipline requirements with which the keywords appear in the sample where we observe both

keywords and discipline requirements. Subsection 3.2 then proposes and evaluates several

different ways of employing the steminess of the keywords found in an online vacancy posting

to classify it as STEM or non-STEM, as well as estimate the probability that its recruiter

looks for a STEM graduate.

3.1. STEM keywords. The classification problem here is very simple: the BGT taxonomy

contains 11,182 distinct keywords and we want to label as “STEM” those which correspond

to knowledge and skills that are typically acquired through a STEM education, or soft-

ware/technological devices/job tasks for which a STEM background is typically required in

the labour market.

In theory, we could inspect all the keywords one by one and manually select those that

seem to be STEM. In practice, this exercise is infeasible because of the thousands of technical

terms, which may or may not be related to STEM, and that would require expert knowledge

in order to be correctly classified, e.g.:

“Leachate Management”, “Olas”, “Step 7 PLC”, “NASH”, “Antifungal”, “800-53”...

Even reading about these terms still leaves a lot of uncertainty and subjectivity in deciding

on how to classify them. By contrast, this classification decision would be obvious to the

recruiters employing these terms in their job descriptions since they should not only have

a precise understanding of what these technical terms mean but also know the education

background that successful job applicants for their advertised positions typically possess.

Luckily, 85.55% of all the BGT taxonomy (9566 keywords) ever appears in the subsample of

vacancies with explicit discipline requirements (cf. Panel C, Table 1). Moreover, as shown in

Fig. 2.1, for a vacancy selected at random from this sample, there is a roughly equal chance of

finding a STEM or a non-STEM discipline requirement. Hence, a simple strategy, illustrated
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in Figure 1.1, is to separate the 9566 “classifiable” keywords into STEM, Neutral and Non-

STEM depending on the discipline “contexts” in which they appear. Intuitively, a proper

STEM skill, knowledge, task should rarely appear together with a non-STEM degree because

it requires a proper STEM education and a STEM qualification. Similarly, non-STEM skills

(e.g. “Cooking”), knowledge (e.g. “French”), tasks (e.g. “Account Reconciliation”) would

rarely appear in STEM contexts since they require a non-STEM education. At the same

time, “Communication skills”, “Leadership”, “Research”, “Presentation skills” are neither

STEM, nor non-STEM specific skills, and therefore should not appear more often in vacancy

descriptions of jobs requiring a STEM education than those requiring a non-STEM one.

These are the “neutral” keywords.

Figure 1.1 shows some concrete examples: 95% of all disciplines with which the keyword

“C++” appears are STEM. By contrast, “English” appears with STEM discipline require-

ments less than 30% of the time.

Let us refer to the percentage of STEM discipline requirements with which a keyword

appears in the sample with both keywords and discipline requirements as its “steminess”.17

After computing the steminess of all keywords, clustering techniques can be used to sepa-

rate them into STEM, Neutral, and non-STEM, then further disentangle the STEM domain

to which a STEM keyword is most likely to be related.

An important implicit assumption behind our strategy is that the subsample used to

classify the keywords has the same underlying properties as the sample of all UK vacancies.

As shown at the bottom of Panel C in Table 1, this seems to be the case since there is a

0.94 correlation between the frequency of posting a given keyword in the subsample with

explicit discipline requirements and the sample of all postings. The correlations between the

occupational and geographic distributions in the two samples are also very high: 0.81 and

0.99.

The insert on the next page shows the detailed steps of our strategy. We call it “context

mapping” because the idea comes from Ethnography - the study of people and cultures.

Ethnographers often seek to understand human behaviour by investigating “the environment

in which the behaviour under study takes place”, i.e. creating a “context mapping”.18 In

our case, to understand whether a keyword should be classified as STEM, neutral or non-

STEM, we look at whether the keyword appears more often with explicit STEM education

requirements than with non-STEM ones, i.e. record the distribution of STEM vs. non-STEM

discipline “contexts” in which the keyword appears.

In Step 1, we simply record, for any vacancy j that belongs to the sample with both

keywords and explicit discipline requirements (VD ∩ VK), the distribution of j’s disciplines

17Credit to Rob Valletta for coining this term at the IZA Workshop. Also, we do not use “stemness” because
it already has a precise definition in cytology (the study of cells).
18cf. http://www.ethnographic-research.com/ethnography/some-particular-methods/context-mapping/
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Algorithm 1 Context Mapping and Clustering

Notation: Let V = {j} denote the set of vacancies (empty jobs), K = {k} the set of
keywords, D = {d} the set of disciplines.
Vacancy j’s online description contains keywords Kj and discipline requirements Dj.
Define VD ⊂ V as the subset of vacancies that post at least one discipline requirement:

VD := {j|Dj 6= Ø}
Similarly, VK ⊂ V the vacancies with at least one keyword:

VK := {j|Kj 6= Ø}
Let C = {C1, ..., C7}, with C1 = Biology, C2 = Physics, C3 = Computer Sciences, C4 =

Technology, C5 = Engineering, C6 = Mathematics, and C7 = Non-STEM.
Step 1: For all j ∈ VD ∩ VK , record the distribution of j’s discipline requirements over

C as cj = (cj,1, ..., cj,7) with:

cj,p =
1

|Dj|
∑
i∈Dj

I(dj,i ∈ Cp)

where p = 1, ..., 7, I(.) is the indicator function and |.| denotes the cardinality of a set.
Step 2: Consider the set of keywords K C ⊂ K such that:

K C := {k ∈ Kj|j ∈ VD ∩ VK}
For any k ∈ K C , let Vk ⊂ VD∩VK be the subset of vacancies with discipline requirements
that post k:

Vk := {j ∈ VD ∩ VK |k ∈ Kj}
Call Vk the “contexts” in which k appears and create a context mapping for k by taking
the average distribution of disciplines in Vk:

xk = (xk,1, ..., xk,7) with xk,p =
1

|Vk|
∑
j∈Vk

cj,p

The steminess of keyword k is defined as steminessk = 1− xk,7.
Step 3: Classify the “classifiable” keywords K C into three clusters G1 = {G1, G2, G3}

with G1 = STEM, G2 = Neutral and G3 = Non-STEM by minimizing:

arg min
Gl

3∑
l=1

∑
k∈Gl

(steminessk − steminessl)2

where steminessl = 1
|Gl|
∑

k∈Gl
steminessk. The optimal parition is found using the algo-

rithm described in Hartigan and Wong [31] with initial centroids selected as 0 (Non-STEM),
0.5 (Neutral) and 1 (STEM).
Step 4: Let K STEM be the keywords identified in Step 3 as belonging to the STEM

cluster. Classify K STEM into six clusters G2 = {G1, ..., G6} where G2 are the six STEM
domains, e.g. G1= Biology,..., G6= Mathematics, by minimizing:

arg min
Gl

6∑
l=1

∑
k∈Gl

7∑
p=1

(xk,p − x̄l,p)2

The solution is found as in Step 3 but with initial centroids selected as [I6; 0] with I6 being
the 6× 6 identity matrix.
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over the six STEM domains and the non-STEM one in the vector cj. This step is necessary

because 30% of vacancies post multiple disciplines. We then focus on the 9566 keywords K C

that ever appear in VD∩VK - the “classifiable” keywords. Whenever a keyword appears in a

vacancy with discipline requirements, it appears in a “context” in which the distribution of

disciplines over the STEM domains and the non-STEM one is given by cj. Step 2 records

the average distribution of disciplines among all the contexts in which k appears as xk. The

steminess of a keyword is simply the proportion of STEM domains in xk. Steps 3 and 4

implement a K−means clustering where we specify both the number of centers and their

initial locations. In Step 3, we use the steminess of the keywords to partition them into

STEM, neutral and non-STEM. The initial centroids are therefore 0, 0.5, and 1 corresponding

to 0% STEM (Non-STEM cluster), 50% STEM (Neutral cluster) and 100% STEM (STEM

cluster). Step 4 classifies the STEM keywords into different STEM domains. The six initial

centroids allocate 100% to each of the STEM domains.19

Figure 3.1 shows examples of randomly selected keywords from the resulting clusters. The

method does not claim to be perfect. Nevertheless, “context mapping” does have the ad-

vantage of systematically classifying over 85% of all the BGT taxonomy, including many

technical terms. More importantly, as Fig. 3.1 and further manual checks suggest, the re-

sulting classification does seem fairly plausible.

For instance, “Step 7 PLC” is classified into the Technology cluster because it is an “en-

gineering system in industrial automation”.20 “NASH” has nothing to do either with John

Nash, or with STEM, or with non-STEM; it is the acronym for either “Non Alcoholic Steato

Hepatitis”, or “News About Software Hardware”, or “Nashville”... Given this ambiguity,

“NASH” cannot help us understand whether or not a job requires STEM knowledge and

skills, hence the algorithm correctly classifies it as a neutral keyword. “800-53” is allocated

to the Computer Sciences cluster since the “NIST Special Publication 800-53” is a catalog

of security controls for federal information systems in the US. It is highly probable that

people who would be referring to this publication in their jobs would also be required to

understand how information systems work and are secured - knowledge that can be acquired

through a degree like “Computer and Information Systems Security/Information Assurance”

(cf. Table 16 in the Appendix).

19Usually, in K-means clustering, the number of clusters is unknown. Researchers “try several different
choices, and look for the one with the most useful or interpretable solution” (James et al. [34], chapter 10).
Moreover, given a number of clusters, their initial locations (the centroids) are picked randomly and the
resulting partition depends on this initial random selection. In our case both problems are avoided since the
choices of the number of clusters and their locations are dictated by the type of information that we wish
to extract. However, future research could explore more refined clustering or even other approaches: “with
these methods, there is no single right answer—any solution that exposes some interesting aspects of the
data should be considered.”[34] Similarly, while the objective function in K-means clustering is the residual
sum of squares, it would certainly be possible to try different criteria.
20http://w3.siemens.com/mcms/simatic-controller-software/en/pages/default.aspx
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Figure 3.1 Examples of STEM (by cluster), non-STEM and neutral keywords

Biological & Biomedical Sciences Physical Sciences

Computer Sciences Technology

Notes: Continued on next page.

Note that keywords like “Mathematics”, “Computer Skills”, “Problem Solving” all appear

in the neutral cluster. This is precisely because within the UK education system, such skills

are not exclusively taught in STEM tracks. For instance, “Mathematics” on its own is of-

ten mentioned as a general basic skill requirement by many different recruiters looking for

STEM and non-STEM graduates alike. It seems that a recruiter looking specifically for a
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Engineering Mathematics & Statistics

Non-STEM Neutral

Notes: Random samples of around 100 distinct keywords collected from UK online vacancies and classified
using context mapping and clustering. Size and color are by frequency of being posted. Figures created
using wordcloud R package by Fellows [22].

Mathematics/Statistics graduate, would use much more precise keywords like “Mathematical

Modelling”, “Statistics”, or technical terms, e.g. “Chi-squared Automatic Interaction Detec-

tion (CHAID)”, “Stochastic Optimisation”, etc. Indeed, the steminess of “Mathematics” is

only 0.395, while it rises to 0.738 for “Statistics” and 0.892 for “Mathematical Modelling”.
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Table 3: STEM, Neutral and Non-STEM clusters

Cluster Steminess No. Keywords
Mean Median Min

STEM 0.89 0.91 0.69 3685
Neutral 0.49 0.50 0.29 2491

Non-STEM 0.10 0.08 0.00 3390

Notes: Summary statistics from the classification of 9566 keywords into STEM, Neutral
and Non-STEM clusters.

Table 4: STEM domains clusters (STEM keywords only)

Cluster Average distribution of disciplines No. Keywords

Biology Computer Engineering Maths Physics Technology Non-STEM
Biology 0.73 0.02 0.05 0.03 0.05 0.01 0.11 754

Computer 0.01 0.53 0.23 0.05 0.02 0.03 0.13 639
Engineering 0.01 0.02 0.71 0.02 0.03 0.10 0.10 1266

Maths 0.07 0.12 0.12 0.49 0.05 0.02 0.13 152
Physics 0.12 0.02 0.22 0.03 0.45 0.05 0.11 372

Technology 0.01 0.02 0.30 0.01 0.02 0.55 0.09 502

Notes: Summary statistics from the classification of 3685 STEM keywords into six STEM domains.

BGT themselves classify 822 keywords as “Software and Programming”. However, some

of the software included in this category could be relatively easily learned/operated with

no STEM background, e.g. “Microsoft Excel”, enterprise software like “Oracle Human Re-

sources”, etc., or do not have much to do with a STEM education, e.g. “Flickr”, “LinkedIn”,

etc. Context mapping classifies these keywords as either neutral or even non-STEM and

clearly separates them from software and programming that do require advanced STEM

knowledge and skills, e.g. “Microsoft C#”, “UNIX Administration”. Interestingly, among

STEM software, statistical packages like “SAS” and “R” are assigned to the Mathematics

& Statistics cluster because they mainly require knowledge of statistical analysis rather than

very advanced computer programming skills. Other types of statistical software like “Stata”

and “E-Views” are assigned to the neutral cluster because they are not more often taught in

STEM disciplines than non-STEM ones. Hence, if such software were the only requirement

the recruiter had, he would not be seeking STEM graduates with a higher probability than

non-STEM ones.

Tables 3 and 4 provide further details on the distribution of discipline requirements within

each cluster identified. For instance, the mean, median and min steminess of STEM keywords

are 0.89, 0.91, and 0.69 respectively, while they are only 0.10, 0.08, and 0 for Non-STEM

keywords respectively. Table 4 suggests that the Biology cluster is the best identified and

most coherent with a 73% average loading on the Biological & Biomedical Sciences for the
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Table 5: Classified vs. Unclassified Keywords

2012 2013 2014 2015 2016 Total

% of Classified Keywords in a posting with >= 1 Keyword:
Mean 99.99 99.99 99.99 99.98 99.98 99.99
Median 100 100 100 100 100 100

Number of Vacancies per Unclassified Keyword:
Mean 4.20 4.34 3.75 9.26 6.05 13.57
Median 2 2 2 3 3 5

Number of Vacancies per Classified Keyword:
Mean 3923.93 4373.20 3924.09 5071.65 3585.40 19264.55
Median 77 90 80 102 78 322

Notes: The classified keywords correspond to the 85.55% of the BGT taxonomy that ever appear in the
sample with explicit disciplines and can therefore be classified using Algorithm 1.

754 keywords belonging to it. The Mathematics & Statistics cluster is the worst identified

with only a 49% average loading on Mathematics & Statistics.

Note that although overall 85.55% of the BGT taxonomy are classified through Algo-

rithm 1, the percentage of classified keywords in any given year actually ranges between

90.31% for 2015 and 94.03% for 2012 (cf. Table 1, Panel C). More importantly, Table 5

shows that, on average, 99.99% of all keywords posted in a vacancy with at least one are

classified. A median vacancy has all 100% of its keywords classified. This happens because

the unclassified keywords are precisely those that are posted least frequently: within the

total sample of 33 million postings, the mean and median unclassified keywords appear re-

spectively in 13.57 and 5 job ads, whereas for classified keywords the numbers are 19264.55

and 322 respectively.

3.2. STEM jobs.

3.2.1. Steminess-based approaches. Having classified individual keywords in the previous sub-

section, we now turn to the classification of jobs. And, since in our data jobs are nothing

more than sets of keywords, e.g.:

“Training Programmes - Decision Making - Rugby”

classifying them is equivalent to labelling sets of keywords as STEM or non-STEM.

Perhaps the simplest way of doing this is to label those sets that contain at least one

STEM keyword as STEM and the rest as non-STEM. Intuitively, since we identified STEM

keywords as the skills and knowledge that are typically taught within STEM disciplines, or

software/tools/technological devices/job tasks that apply STEM knowledge and skills, the

presence of a STEM keyword in the vacancy description could well serve as an indicator for

the fact that its recruiter is going to look preferably for someone with a STEM education.
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Table 6: Vacancies classification, In-sample performance

Model % Correctly
classified

% non-STEM
misclas. into

STEM

% STEM
misclas. into
non-STEM

Correlation with
% STEM

requirements

Panel A: Direct Methods

(1) STEM Keyword 84.04 23.27 8.44 0.665

(2) Average Steminess 89.21 9.70 11.92 0.762

(3) Weighted Av. Steminess 89.20 9.70 11.92 0.762

(4) Naive Bayes 89.38 9.26 12.02 0.787

Predictors Panel B: Logistic regressions

(5) Mean Steminess 89.17 9.41 12.29 0.799

(6) % STEM Keywords 87.02 7.87 18.25 0.754

(7) Median Steminess 86.57 8.92 18.07 0.760

(8) Max Steminess 85.83 17.31 10.93 0.740

(9) Mean + % STEM 89.18 9.40 12.28 0.799

(10) Mean + Median 89.32 9.70 11.70 0.802

(11) Mean + Max 89.48 9.63 11.43 0.803

(12) Mean + % STEM 89.47 10.02 11.06 0.804
+ Median + Max

Panel C: Including Job Titles

(13) Naive Bayes 90.80 8.20 10.23 0.809

(14) Mean + Max reg. 90.82 8.64 9.74 0.829

Notes: First three columns based on the sample of 3,554,318 vacancies with keywords and non-mixed discipline
requirements. The correlation column employs the whole training sample (3,921,917 vacancies). In % STEM keywords
we only consider classified ones. Weighted Average Steminess assigns a weight of 1 to any keyword that has been
defined using at least 50 vacancies, then a weight of 0.5 + (No. vacancies/100) to all those that have been classified
with less. All regression models (Panel B) include a constant and are estimated using a logit link function on the
sample with non-mixed discipline requirements. The dependant variable is a dummy variable equal to 1 if all the
discipline requirements are STEM and 0 if they are all non-STEM. Including job titles (Panel C) increases the training
sample by 49,891 vacancies.

How well would this simple strategy work if implemented to recognize STEM and non-

STEM jobs within the sample where discipline requirements are posted explicitly, i.e. the

truth is known?

To address this question, we can create a so-called “confusion matrix”:

True outcome

Prediction Non-STEM disciplines STEM disciplines

Non-STEM job Correct classification Misclassified into Non-STEM

STEM job Misclassified into STEM Correct classification
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We classify jobs correctly if we predict STEM when the disciplines posted are indeed STEM

and non-STEM when the explicit discipline requirements are also non-STEM. If our strategy

predicts non-STEM (STEM) whereas the actual disciplines required are STEM (non-STEM),

we have misclassified the job into non-STEM (STEM).

Hence, three indicators that tell us how well our strategy is at classifying jobs are: the

percentage of jobs classified correctly, the % of non-STEM jobs misclassified into STEM and

the % of STEM jobs misclassified as non-STEM.

To avoid ambiguity, we focus on the subsample with non-mixed discipline requirements

(i.e. either all STEM or all non-STEM) when computing the correct classification and mis-

classification rates in Table 6. To gauge the performance of our classifier on the sample with

both mixed and non-mixed requirements, the last column of Table 6 shows the correlation

of the predicted outcome with the % of STEM discipline requirements. Also note that the

tests conducted in Table 6 are in-sample because the sample with explicit discipline require-

ments and keywords (VD ∩VK) used to evaluate our jobs classification strategies is the same

sample that we used in the previous section to compute steminess and classify keywords. We

implement out-of-sample tests in the following subsection.

The first proposed strategy corresponds to model (1). It classifies over 84% of vacancies

correctly. Disagreggating the 16% error rate, the next two columns of the Table show that

the “STEM Keyword” strategy misclassifies over 23% of non-STEM jobs into STEM, but

has a much lower misclassification rate for STEM vacancies into non-STEM: only 8.44%.

The relatively high misclassification rate into STEM occurs both because our classification

of keywords is imperfect, but also because the meaning of a given keyword may be nuanced

by the other keywords that appear with it in the job’s description. In order to improve our

correct classification rate, we therefore need an approach that somehow incorporates together

all the keywords in the set that we want to label.

A direct approach here is to take the average steminess of all keywords in the job’s de-

scription, then classify it as STEM if this average is above a certain threshold. Figure 3.3

shows that the correct classification rate peaks at 89.21% for a threshold of ≥0.49. Model (2)

in Table 6 employs this optimal threshold. Misclassification into STEM drops substantially,

from 23% to 9.7%. However, the misclassification into non-STEM rises by 3.5% pts. Note

that average steminess (model 2) performs better than an indicator for the presence of at

least one STEM keyword (model 1) not only in terms of overall correct classification, but

also in terms of correlation with the % of STEM discipline requirements: 0.762 vs. 0.665.

An important concern is that the steminess of different keywords is computed using samples

of different sizes with a median of 67 postings (cf. Panel C of Table 1). Taking a plain

average gives equal weight to all keywords in the job description. On the one hand, down-

weighting keywords that are defined using smaller sets could improve accuracy because their
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Figure 3.3 Using average steminess above a certain threshold to classify jobs as STEM

Notes: The correct classification rate peaks at 89.21% for a threshold of an average steminess greater than
or equal to 0.49.

steminess is estimated less precisely. On the other hand, however, these keywords often

correspond to some technical STEM terms and down-weighting them could make us believe

that the average steminess of the job description is lower than it actually is. We tried several

different weighting schemes. Overall, results are not very sensitive to the precise weighting.

If anything, accuracy goes slightly down, suggesting that the technical terms argument may

be more important than the precision one. For instance, in model (3) we assign a weight of

1 if a keyword’s steminess is computed using at least 50 vacancies. Otherwise the weight is

0.5 + |Vk|/100. These weights are then normalized by the total weights’ sum before taking

the weighted average.

Although the simple unweighted average steminess performs surprisingly well with an

almost 90% correct classification rate, there are several disadvantages of employing it. The

first one can be seen from comparing the first two histograms in Fig. 3.4. The relatively high

0.762 correlation of average steminess with the true percentage of STEM degree requirements

conceals the fact that the distributions in reality look quite different.

The second disadvantage is interpretation. The intuition is that a job description with a

higher average steminess entails a more advanced requirement of STEM knowledge and skills.

Its recruiter would therefore be more likely to want to hire a worker with a STEM education.

Hence, ideally, we would like to use steminess to build an estimate of the probability of

looking for a STEM graduate.

There are two ways of doing this. Firstly, instead of using mean steminess directly, we can

employ it as the predictor in a regression that models the probability of requiring a STEM

degree. In practice, to ensure that predicted probabilities lie between 0 and 1, we use a
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Figure 3.4 Comparison of classification strategies with the actual % of STEM disciplines
required

Notes: Based on the sample with keywords and discipline requirements.

logistic link function and estimate the following regression on the sample with non-mixed

discipline requirements:21

(3.1) log

(
Pr(STEM | steminessj)

Pr(Non-STEM | steminessj)

)
= α + βsteminessj

where steminessj = 1
|K C

j |
∑

k∈K C
j
steminessk and K C

j := {Kj ∩K C} are the classified key-

words in j’s description. The dependent variable is an indicator for 100% STEM disciplines

posted. We then use the estimated relationship to predict class probabilities for the com-

plete sample (mixed and non-mixed disciplines) and classify jobs as STEM if Pr(STEM |
steminessj) > 0.5.22

Note that the logistic regression allows for a non-linear relation between average steminess

and the percentage of STEM degrees required which seems to fit the data better than a

linear one since, even though the overall correct classification rate remains almost the same,

the correlation between the predicted probabilities and the percentage of STEM disciplines

posted is higher: 0.799 vs. 0.762. More importantly, the third histogram in Fig. 3.4 shows

that the predicted probabilities match the distribution of the actual percentages of STEM

disciplines required much better than raw average steminess.

Nothing prevents us from modelling the right hand side in eq.3.1 differently. For instance,

instead of mean steminess, models (6), (7), and (8) use respectively the percentage of STEM

keywords, the median and the maximum steminess as predictors. Interestingly, all these

models achieve lower overall correct classification rates and correlations than mean steminess

21Using a probit link function instead of a logit one yields very similar results. All detailed regression results
are available on request.
22This is equivalent to imposing a symmetric loss function on both the misclassification of non-STEM jobs
into STEM and of STEM jobs into non-STEM (cf. Friedman et al. [35], chap. 2).
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Table 7: Correlations between predictors

% STEM
Disciplines

Mean
Steminess

% STEM
Keywords

Median
Steminess

Max
Steminess

% STEM Disciplines 1.000 0.762 0.702 0.727 0.703
Mean Steminess 0.762 1.000 0.914 0.975 0.858

% STEM Keywords 0.702 0.914 1.000 0.903 0.741
Median Steminess 0.727 0.975 0.903 1.000 0.798

Max Steminess 0.703 0.858 0.741 0.798 1.000

Notes: Correlations based on whole training sample (3,921,917 vacancies). In % STEM Keywords, only
classified ones considered.

on its own. Trying to combine them with the latter is also not very fruitful: overall precision

does not rise by much in models (9), (10), (11) and (12). The reason is that, as shown in

Table 7, all these predictors are highly correlated.

The regression that performs the best is the one with mean and max steminess as the

predictors (model 11). Including maximum steminess is intuitively appealing because it

helps ensure that we do not classify as STEM a vacancy description that just happens to

only contain keywords with slightly above average steminess, but no keyword with really high

steminess. Hence we keep model (11) as our preferred regression specification.

The second way of getting from steminess to the probability of requiring a STEM degree is

to treat the steminess of each keyword k as the maximum likelihood estimate of Pr(STEM | k)

- the probability of observing a STEM degree requirement conditional on observing k.

Let K C
j = {k1, k2, ..., knj

}, with nj being the number of keywords collected from j’s

vacancy description. By Bayes’ theorem:

Pr(STEM | K C
j ) =

Pr(STEM, k1, k2, ..., knj
)

Pr(k1, k2, ..., knj
)

=
Pr(STEM) · Pr(k1|STEM) · Pr(k2|STEM, k1)...Pr(knj

|STEM, k1, k2, ..., knj−1)

Pr(k1, k2, ..., knj
)

Assuming that keywords are posted independently of each other, this expression simplifies

to:

Pr(STEM | K C
j ) =

Pr(STEM) ·
∏

k∈K C
j

Pr(k|STEM)∏
k∈K C

j
Pr(k)

(3.2)

=

∏
k∈K C

j
Pr(STEM|k)

Pr(STEM)nj−1
(3.3)

where the last expression follows from observing that Pr(k|STEM) = Pr(k)·Pr(STEM|k)
Pr(STEM)

.
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Similarly, the probability of looking for a non-STEM graduate is

Pr(Non-STEM | K C
j ) =

∏
k∈K C

j
(1− Pr(STEM|k))

(1− Pr(STEM))nj−1
(3.4)

We can then classify a job as STEM if Pr(STEM | K C
j ) > Pr(Non-STEM | K C

j ).

In text classification, this approach is known as the “multinomial Naive Bayes classifier”,

also sometimes called the “unigram language model” in the Information Retrieval literature

(cf. Manning et al. [39], chapters 12 and 13). “Multinomial” because the ordering of

the keywords does not matter, “naive” because of the naive assumption of independence.23

Although this assumption is clearly wrong, in practice, there is simply no way of estimating

more complex relationships between keywords given how sparsely they appear in the data

and with each other.

Another practical issue is that because of multiplication, if any of the keywords in the

description has a steminess (non-steminess) of zero, the predicted probability of looking for

a STEM (non-STEM) graduate will be zero no matter the steminess (non-steminess) of the

rest of the keywords. To remedy this issue, we simply need to smooth the steminess and

non-steminess estimates so that they always lie in (0,1).

Remember from Algorithm 1 that steminess is computed as

(3.5) steminessk =
1

|Vk|
∑
j∈Vk

cj,STEM

where cj,STEM is the proportion of j′s posted disciplines that are STEM and Vk is just the

set of vacancies in which k appears in the sample with explicit discipline requirements.

Non-steminess is just 1− steminessk:

23Strictly speaking, the standard implementation of Naive Bayes (NB) uses eq.3.2 and a similar expression
for Pr(Non-STEM | K C

j ) instead of equations 3.3 and 3.4. The reason we prefer the latter expressions is
because they clearly show the link between steminess of keywords and the probability of looking for a STEM
graduate, thereby empowering NB with our usual intuition that recruiters posting keywords with higher
steminess look for STEM graduates with a higher probability. By contrast, the main input into the standard
way of implementing NB is Pr(k|STEM) interpreted as “a measure of how much evidence k contributes that
STEM is the correct class” (Manning et al. [39]), i.e. the keywords are not of interest on their own, they are
just a means of achieving the classification of jobs. The distinction is subtle but important since our logic is
that the probability of looking for a STEM graduate and therefore of being classified as a STEM job is the
direct consequence of the level of STEM skills and knowledge requirements implied by the keywords posted
in the description (keyword steminess), i.e. the keywords are of primary importance.
In any case, we implemented both approaches to confirm that they give the same results which led us to realize
that there is also a small “computational” advantage of implementing NB in the way we propose. Keywords
appear in very few vacancies. Hence Pr(k|STEM) are much smaller objects than Pr(STEM|k). For example,
Pr(C + +|STEM) = 0.00598, while Pr(STEM|C + +) = 0.95. This is why the standard way of implementing
NB often leads to a floating point underflow problem and is implemented by using a log transform. The
log function is monotonic, hence the transform is not a problem if the only goal is classification. In our
case, however, it is a problem because we also want the probability estimates. The floating point underflow
problem is much less severe when NB is implemented using Pr(STEM|k).
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(3.6) non− steminessk =
1

|Vk|
∑
j∈Vk

cj,Non−STEM

because cj,STEM + cj,Non−STEM = 1.

A simple way of smoothing is just to add a number to both steminess and non-steminess

(Manning et al. [39], chap. 11). In our case, we can always let the keyword appear in at

least one vacancy with perfectly mixed discipline requirements:

(3.7) steminessk =
1

|Vk + 1|

{∑
j∈Vk

cj,STEM + 0.5

}

(3.8) non− steminessk =
1

|Vk + 1|

{∑
j∈Vk

cj,Non−STEM + 0.5

}
Smoothing in this ways is like putting a uniform prior on whether the keyword appears

with STEM or non-STEM disciplines and then letting the data update it. In any case, the

correlation between smoothed and unsmoothed estimates for the 9566 classifiable keywords

is over 0.98.

Note that because of smoothing and violations of the independence assumption, the prob-

ability estimates from equations 3.3 and 3.4 may be above one and not sum to one. However,

we can simply normalize them as follows:

(3.9) P̃r(STEM | K C
j ) =

P̂r(STEM | K C
j )

P̂r(STEM | K C
j ) + P̂r(Non-STEM | K C

j )

where:

P̂r(STEM | K C
j ) =

∏
k∈K C

j
steminessk

Pr(STEM)nj−1
(3.10)

and

P̂r(Non-STEM | K C
j ) =

∏
k∈K C

j
(non− steminessk)

(1− Pr(STEM))nj−1
(3.11)

and similarly for P̃r(Non-STEM | K C
j ). The correlations reported in Table 6 are with these

normalized probability estimates.

As we can see the Naive Bayes approach (model 4) does quite well on our data: a correct

classification rate of 89.38% and a correlation of 0.787. The last histogram in Fig. 3.4 suggests
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that the pattern of predicted probabilities matches the distribution of the percentages of

STEM discipline requirements quite well.

Another remarkable finding is that the correlation between STEM jobs identified using

Naive Bayes and those identified using our preferred logistic regression with mean and max

steminess as the predictors is 0.963. The correlation between their predicted probabilities is

even higher: 0.968. This indicates that the two methods identify almost the same jobs as

STEM and gives us confidence that a classification established with either of them will be

accurate.24

3.2.2. Out-of-sample performance & benchmarking against other ML algorithms. At this

point, the reader may have the following concerns about our strategy of classifying jobs

into STEM and non-STEM:

(1) Endogeneity: the tests conducted in Table 6 are in-sample because the sample with

explicit discipline requirements and keywords (VD ∩ VK) used to evaluate our jobs

classification strategies is the same sample that we use to compute steminess. How

well do our preferred algorithms perform out-of-sample, i.e. on data that has not

been used to estimate steminess? This is an important question since our ultimate

goal is to classify all 33 million UK vacancies in our data, most of which do not have

explicit discipline requirements, i.e. won’t be used to estimate steminess for the final

classification.

(2) Unclassified keywords: 15% of all keywords in the BGT taxonomy never appear with

explicit discipline requirements and are therefore unclassified. How does this affect

the performance of our algorithms?

(3) Steminess vs. keywords: our classification methods employ the steminess of all key-

words in a vacancy description to either compute the mean and max steminess and

use them as predictors in a logistic regression model, or to construct the probability

estimate using Bayes formula and the naive assumption. A valid question is why not

simply use the keywords directly instead of steminess to estimate the probability of

looking for a STEM graduate?

We address these concerns by implementing and replicating 50 times the following experi-

ment: we select 250,000 unique vacancies at random from the sample with non-mixed disci-

pline requirements and keywords and split them into training (200,000 vacancies) and test

(50,000) samples. To achieve a fair comparison, all methods discussed in this subsection are

implemented on the same set of 50 randomly selected samples of 250,000 vacancies each.

24We tried an ensemble classifier which labelled a job as STEM only if both methods agreed on its classifi-
cation. However, the performance of this ensemble classifier was not better in terms if overall classification:
89.41%. Hence, there seems to be no point in pursuing in this direction.
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Table 8: Out-of-sample performance and Benchmarking

Model % Correctly
classified

% Misclas.
into STEM

% Misclas.
into

non-STEM

Computing
Time

(hh:mm:ss)

Computer
Memory

(Gigabytes)

% Failed

(1) Mean + Max reg. 89.53 9.71 11.26 00:05:35 4.70 0
[0.134] [0.198] [0.191] [00:00:43] [0.001]

(2) Naive Bayes 89.60 9.22 11.62 00:05:44 4.54 0
[0.138] [0.221] [0.201] [00:00:48] [0.001]

(3) Logistic Regression 87.16 6.39 19.50 04:57:26 14.91 0
with Keywords [0.176] [0.332] [0.562] [00:44:20] [0.046]

(4) Linear Discriminant 89.945 7.770 12.407 08:31:57 95.79 36
Analysis [0.140] [0.212] [0.277] [00:59:47] [6.645]

(5) Support Vector 90.24 6.59 13.04 09:25:42 14.81 2
Machines [0.128] [0.211] [0.237] [00:51:54] [0.705]

(6) Tree 72.918 2.652 52.260 04:05:38 52.46 8
[0.410] [6.578] [6.725] [00:36:51] [0.490]

(7) Boosting Tree 77.044 3.034 43.496 05:43:40 56.10 16
[1.763] [1.047] [4.425] [01:00:04] [3.308]

(8) Bagging Tree 100

(9) Random Forests 100

(10) Neural Networks 100

(11) k-Nearest Neighbours 100

Notes: Bootstrapped standard errors in brackets. Averages over 50 runs of the experiment shown. The same set of 50
randomly selected samples of 250,000 vacancies each (split into 200,000 vacancies for the training sample and 50,000 for
the test one) was used to evaluate all methods. All R scripts were submitted to the same High Performance Computing
cluster and the statistics presented here are those that were output by the system once the jobs had been completed.
The RTextTools package (Boydstun et al. [10]) was used for the implementation of the standard classification methods.
As discussed in [10], this package employs a set of optimized algorithms, in particular the SparseM package by Koenker
and Ng [37]. The R code for the implementation of all the algorithms is available on request. Computing time
corresponds to the user time which is the time spent on executing the script’s code lines. “User time” is typically
reported for algorithmic benchmarking and performance analytics because it does not count the “System time” - time
spent by the system on opening the files (which in our case was 8 sec or less for the first two methods that employ
steminess and between 33 sec and 3 min 45 sec for the standard algorithms).

The results are summarized in Table 8 which reports the average correct classification

and misclassfication rates over all the replications and the bootstrapped standard errors in

brackets. We now discuss in turn why this out-of-sample experiment addresses each point

just identified:

Issue (1) is addressed directly since we are implementing out-of-sample tests. Each time,

the 200,000 vacancies in the training sample are used to train the algorithm, e.g. for the

first method, to estimate steminess for all keywords, then run the logistic regression with

mean and max steminess as the predictors. The trained model is then used to predict the

outcomes for the test sample of 50,000 vacancies. The statistics reported in Table 8 are based

on the performance of our algorithms on these latter test vacancies only. It is reassuring to



THE STEM REQUIREMENTS OF “NON-STEM” JOBS 33

see that both of our preferred methods perform as well out-of-sample as they did in-sample,

with almost 90% correct classification rates.

For the second issue, note that out-of-sample tests recreate the situation of having a certain

proportion of unclassified keywords and therefore allow us to gauge the extra degree of

misclassification generated by not being able to classify all keywords. Concretely, in our

experiment, the training samples contained an average of 6810 distinct keywords. The test

samples had on average 5210 distinct keywords, of which an average 244 were undefined.

On average, 49999 vacancies were classified each time (i.e. one of the vacancies could not

be classified because none of its keywords could be defined). The extra misclassification

introduced by not being able to define all keywords happens to be very small since the

average percentages of vacancies classified correctly in-sample are only slightly higher than

the out-of-sample ones shown in Table 8: 89.73% for the logistic regression with mean and

max steminess as the predictors, and 89.78% for Naive Bayes.

To address issue (3), we implemented several standard machine learning algorithms, often

employed for supervised text classification.25 The one thing they have in common is that

they use the keywords directly, i.e. their implementation starts with the creation of a so-

called “document-term” matrix (more precisely a “vacancy-keyword” matrix in our case)

whose elements are 0-1 vectors that record for each vacancy the keywords collected from its

description. The idea is then to divide the keywords (“the input space”) into a collection of

regions labelled as STEM and non-STEM (cf. Friedman et al. [35], chapt. 4). The methods

differ in how exactly this division is made. For instance, logistic regression with keywords as

predictors (and regularized versions thereof) or linear discriminant analysis (LDA) have linear

decision boundaries. In support vector machines (SVM), a non-linear hyperplane separates

STEM and non-STEM regions, allowing for some misclassifications that we can control with

a cost parameter. Tree-based methods are called so because they try to segment the input

space into a number of non-overlapping regions through a set of splitting rules that can be

summarized in a tree. Bagging, Boosting and Random Forests are just more complex variants

of the plain tree, which involve producing multiple trees, then combining them in order to

yield consensus predictions.

A remarkable finding in Table 8 is that a logistic regression with almost 7,000 distinct

keywords as the predictors (model (3)) achieves a 2.4% pts. lower correct classification rate

than a logistic regression with just two predictors: the mean and the max steminess (model

(1)). Moreover, it is much more computationally intensive: when the keywords are used

25Gareth et al. [34] is an excellent introduction into statistical learning. Friedman et al. [35] provide a more
advanced treatment of a similar set of topics. In terms of books specifically focused on text analysis, we refer
the reader to Feldman and Sanger [21] and the fascinating book on information retrieval by Manning et al.
[39].



THE STEM REQUIREMENTS OF “NON-STEM” JOBS 34

directly in the logistic regression, the average run of the experiment takes almost 5 hours

instead of a bit more than 5 minutes, and consumes over 10 more gigabytes.

Tree methods perform worse than our preferred algorithms. Although they misclassify very

few non-STEM vacancies into STEM, this comes at a high price of mislabelling around half

of STEM vacancies as non-STEM. The very large misclassification into non-STEM occurs

because of the way in which trees work: they use the presence of a keyword in a vacancy

description as a split condition. Hence, many STEM vacancies are mistakenly assigned to

the non-STEM group simply because they contain certain keywords that also happen to be

often found in non-STEM vacancies.

The only two methods that seem to perform slightly better than the steminess-based

classification algorithms are LDA and SVM . However, this performance comes at a much

higher computational cost: 8h32 and 95.8 gigabytes on average for LDA, 9h26 and 14.8

gigabytes for SVM. By contrast, our preferred methods take on average less than 6 minutes

and less than 5 gigabytes in each replication of the experiment. We relied on the RTextTools

package by Boydstun et al. [10] for the implementation of models (3) to (10). Although, this

package employs a set of optimized algorithms, in particular those developed by Koenker and

Ng [37] and contained in the SparseM package, there could certainly be more efficient ways of

implementing the standard machine learning algorithms considered here both in R or other

programming environments. Nonetheless, the computational complexity of these methods

is well studied and documented (cf. Manning et al. [39] and Friedman et al. [35], as well

as references therein). The problems become especially acute when the input space is high

dimensional and sparse, which is precisely our case: as both the number of distinct keywords

and vacancies grow, the “vacancy-keyword” matrix becomes increasingly sparse because even

the median keyword appears in very few postings (less than 0.002% in the sample of vacancies

with explicit discipline requirements and keywords, which is the sample on which the final

classification method is trained). Note that regularization (e.g. Lasso, Ridge) here does not

help for two reasons: the optimally selected penalty (though cross-validation) is close to zero.

More importantly, even if we remove 50% of all keywords, we are still left with a very sparse

matrix.

This “sparse sampling in high dimensions” is often referred to as the “curse of dimension-

ality” (Friedman et al. [35]) and is also the reason why many methods (models (8)-(11) in

Table 8) simply fail. For instance, we tried kNN with different numbers of neighbours; how-

ever the method failed because in our data few vacancies have many overlapping keywords

so that the nearest neighbours are numerous but not “close to the target point” (Friedman

et al. [35]).

Indeed, a conceptually more important problem with using the keywords directly is that

this approach treats all the thousands of distinct keywords as completely separate dimensions,
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i.e. it does not allow a keyword like “Budgeting” to be closer to “Budget Management” than

to “Java”.

Employing keyword steminess instead of using the keywords directly is like introducing

one extra step in-between the keywords and the prediction about whether the job is STEM

or not. However, this extra step solves all the problems. The vacancy-keyword matrix is

not needed which saves a lot of computing power. The logistic regression problem is much

simpler in model (1) than model (3) because the predictive relationship is built from just

two continuous predictors (mean and max steminess) instead of several thousands of dummy

variables. In terms of steminess, “Budgeting” (65.59%) is indeed much more similar to

“Budget Management” (63.80%) than to “Java” (95.13%).

Finally, throughout this section, we spent a lot of effort building the intuition behind the

concept of steminess, the context mapping method for classifying keywords and eventually

the steminess-based classification methods for the jobs. By contrast, the intuition underly-

ing most standard machine learning methods presented here seems less straightforward since

many of them were developed with the only goal of yielding accurate predictions, not nec-

essarily being used for inference (Gareth et al. [34]). They treat the keywords as simple

features, with no interest in classifying them or understanding how and why they should or

should not be associated with the probability of looking for a STEM graduate, while the

precise mechanisms used to split these keywords so as to form predictions for the jobs remain

a bit of “black boxes”.

3.2.3. Job Titles. While 90% of vacancies have at least one keyword collected from their

online description, the job title is available in 100% of the cases (cf. Table 1). Employing

keywords from the job titles could therefore not only improve our classification accuracy, but,

more importantly, should allow us to classify more vacancies.

Unlike the vacancy descriptions which are already in the form of sets of keywords in our

data, the job titles appear as sentences, e.g.: “Principal Civil Engineer”, “Uk And Row

Process Diagnostic Business Manager”, “Nurse Advisor”...

We therefore start by tokenizing them, i.e. “chopping character streams into tokens”

(Manning et al. [39]). For instance, tokenizing:

“Uk And Row Process Diagnostic Business Manager”

gives the following set of keywords:

“Uk - And - Row - Process - Diagnostic - Business - Manager”

This produces a list of over 143,000 distinct keywords which contains a lot of noisy terms,

e.g. “aaa”. To reduce and clean it, we implement several natural language processing steps.

Firstly, we match whatever we can with the keywords from the BGT taxonomy. Another

advantage of doing this is to increase the number of vacancies in which a given keyword

from the BGT taxonomy appears. For the remaining keywords, we only focus on those
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Table 9: Including keywords from job titles

2012 2013 2014 2015 2016

% with >= 1 Classified Keyword 99.92 99.79 99.83 99.85 99.82
No. of unique keywords 27025 28218 28485 29567 27599
Number of Keywords per Vacancy (conditional on at least one classified):
Median 7 7 7 7 7
Mean 8.72 8.65 8.91 8.89 8.72

Notes: 2016 includes data up to (and excluding) August only. Classified Keywords include 9566
keywords from the BGT taxonomy and 20,265 tokens from the job titles.

appearing in at least 10 postings. These simple steps already remove a lot of idyosincratic

noise and reduce the list down to 20,615 unique keywords. We then remove punctuation

marks, numbers, special characters, transform the tokens to lower space, and delete English

stop words (e.g. “and”, “I”, “very”, “after”, etc.).26

For instance, the above title becomes:

“uk - row - process - diagnostic - business - manager”

We add the resulting tokens to the BGT taxonomy as extra features, so that the final

classification of vacancies is based on 29,831 unique keywords - 9566 from the original BGT

taxonomy and 20,265 from the job titles.

As shown in Panel C of Table 6, in-sample performance of our preferred classification

methods jumps above 90%. However the real advantage of including keywords from job titles

can be seen by comparing Tables 1 (Panel B) and 9. Now almost 100% of all vacancies have

at least one classified keyword. The mean and median numbers of classified keywords per

vacancy increase from to 5 and 6 to 7 and almost 9 respectively.

In what follows we use the Naive Bayes method with keywords from both the BGT tax-

onomy and the job titles to classify vacancies. The results employing the mean and max

steminess regression for the classification of jobs are almost identical, since, as already dis-

cussed, both methods have an above 0.96 correlation for both the STEM jobs identified and

the probability estimates.

4. STEM Jobs In the UK

Having designed and tested algorithms that classify both keywords and jobs into STEM

and non-STEM with a 90% correct classification rate for the jobs, we can now finally start

exploring our main questions of interest: what percentage of STEM jobs are in non-STEM

26Sanchez [46], Baayen [4] and Feinerer et al. [20] are excellent references on text processing and analysis
in R. Natural language processing R packages used in this project include stringi (Gagolewski and Tartanus
[28]), stringr (Wickham [49]), tm (Feinerer et al. [19]), NLP (Hornik [33]), and quanteda (Benoit [7]).
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Table 10: STEM jobs vs. STEM occupations

2012 2013 2014 2015 2016 Total

No. STEM jobs 1949791 2235445 1815294 2655532 1865435 10521497

No. STEM jobs in Non-STEM occ. 633578 798933 643232 914609 645961 3636313

No. STEM jobs in STEM occ. 1316213 1436512 1172062 1740923 1219474 6885184

No. jobs in STEM occ. 1580088 1764163 1495158 2146155 1500800 8486364

% of STEM jobs in
STEM occupations 67.51 64.26 64.57 65.56 65.37 65.44
Non-STEM occupations 32.49 35.74 35.43 34.44 34.63 34.56

STEM density of
STEM occ. 83.30 81.43 78.39 81.12 81.25 81.13
Non-STEM occ. 14.59 15.23 13.66 15.27 15.61 14.89

Notes: Based on the sample of vacancies with a UK SOC identifier (99.5% of all vacancies posted). For the list
of STEM occupations cf. Footnote 16. 2016 includes data up to August only.

occupations? Are STEM jobs associated with higher wages? What, if anything, distinguishes

STEM jobs in STEM vs. non-STEM occupations?

When documenting occupational and geographic distributions, we consider the following

two indicators of STEM importance.

Let A be an occupation or a county:

(1)

STEM density of A = 100× #(STEM jobs in A)

#(jobs in A)

(2)

% STEM jobs in A = 100× #(STEM jobs in A)

#(STEM jobs)

While the percentage of STEM jobs simply describes how STEM jobs are distributed across

occupations/counties, the STEM density measures the relative importance of STEM within

an occupation/county. The higher the STEM density, the bigger the proportion of recruiters

within this occupation/county that require STEM skills and knowledge.

4.1. Occupational distribution. The first goal of this paper is to go beyond STEM occu-

pations and quantify the demand for STEM at the level of jobs. Table 10 therefore presents

our main results which indicate that it is wrong to equate STEM demand with STEM occu-

pations.

Firstly, the overall number of STEM jobs is larger than the number of jobs in STEM oc-

cupations. For instance, in 2015, focusing exclusively on STEM occupations leads to under-

stimating the true demand for people with a STEM education by half a million employment

opportunities.
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Secondly, around 35% of all STEM jobs are in non-STEM occupations. Hence, the fact

that over half of STEM graduates work in non-STEM occupations may be less problematic

than often thought if most STEM graduates working in non-STEM occupations are actually

in STEM jobs.

As expected, a much larger proportion of jobs within STEM occupations are STEM than

within non-STEM ones: 81% vs. 15%. However, these aggregate numbers conceal an impor-

tant amount of heterogeneity illustrated in Figure 4.1 which shows the distribution of STEM

densities at the four-digit UK SOC level.

Table 15 in the Appendix contains the precise numbers for 2015. The third column in

this table is a dummy indicator for whether or not the occupation is typically classified as

STEM. Given the absence of a consistent “official” classification of four-digit occupations

into STEM and non-STEM, we decided to merge together the lists from several widely cited

UK studies: UKCES [23], Mason [41], BIS [8] and Greenwood et al.[30] (for the resulting full

list of STEM occupations, cf. Footnote 16).

When interpreting the STEM densities of various occupations, it is important to remember

that while we take the STEM acronym literally, some of these studies have a broader definition

of STEM, which goes beyond Sciences, Technology, Engineering and Mathematics and also

includes subjects like Medicine, Architecture, Environmental Studies, Psychology etc. Hence,

in some cases, for instance Pharmaceutical technicians (3217), we find a low STEM density

in a STEM occupation precisely because of this broader STEM definition effect. In other

cases, however, e.g. Information technology and telecommunications directors (1136), Quality

assurance and regulatory professionals (2462), the relatively low STEM density suggests that

the occupation is less STEM intensive than typically thought.27

The list of non-STEM occupations with relatively high STEM densities is very diverse.

For instance, in 2015, 46.84% of Business, research and administrative professionals n.e.c.

jobs were identified as STEM. 45.62% of Product, clothing and related designers, and even

23.46% of Artists looked for STEM graduates. This finding recalls another passage from

Matthew Sigelman’s inspiring essay on “Why the STEM Gap is Bigger Than You Think”

[47] where the opening quote also comes from: “the list [of job categories where employers

demand coding skills] includes Artists and Designers, which once would have been considered

the antithesis of STEM roles.”

Perhaps surprisingly for the literature, where financial occupations are typically considered

as the main non-STEM group poaching STEM graduates, none of them is actually top of the

list in terms of STEM density. For instance, among the seven occupations defined as financial

27Another caveat to bear in mind is that there may be some misclassifications in our data because of imper-
fections in the collection process and/or errors in the online postings themselves. Moreover, as established in
the previous section, our classification algorithm has a 90% correct classification rate, hence it misclassifies
around 10% of jobs.
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Figure 4.1 STEM density of STEM and Non-STEM Occupations

Notes: STEM density is the percentage of jobs within an occupation that are STEM. All years combined:
an observation is a four-digit occupation-year STEM density.

in Chevalier [14], Management consultants and business analysts is the one with the highest

percentage of STEM jobs in 2015: 25.33%, followed by Financial and accounting technicians

with 11.67%. Only 7.59% of Finance and investment analysts and advisers specifically look

for STEM graduates. The reason may be that, within the UK education system, the “nu-

merical skills” for which financial occupations are thought to be seeking STEM graduates

are actually also often transmitted to non-STEM graduates in, e.g., Finance or Economics

degrees. Hence, although numerous jobs in financial occupations may end up being filled

with STEM graduates, when posting their vacancy, not many financial recruiters actually

describe the job as one that could only be undertaken by someone with a STEM education.

The main focus of this paper is on “high-level” STEM jobs - STEM jobs belonging to Man-

agerial, Professional and Associate professional positions which typically require a university

degree - because they constitute 74% of all STEM jobs (cf. fourth column of Table 11, occu-

pation codes 11 - 35), but also because this is where the biggest expenses on STEM education

are and where the STEM pipeline leakage is therefore most problematic.

However, Table 11, which compares the occupational distributions of STEM jobs vs. jobs

in STEM occupations at the two-digit level of the UK SOC, suggests that many lower skill

occupations with relatively high STEM densities are completely missed in the existing classi-

fications of STEM occupations. Indeed, almost all four-digit occupations identified as STEM

in the studies by BIS [8] and Mason [41] that investigate vocational STEM skills and appren-

ticeship training, belong to Skilled Metal, Electrical and Electronic Trades (cf. Table 11, fifth
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Table 11: Occupational distribution of STEM jobs in 2015

Code Name STEM
density

% of STEM
jobs in

% jobs in
STEM occ.

11 Corporate Managers and Directors 24.31 4.33 15.82

12 Other Managers and Proprietors 29.59 2.79 0.16

21 Science, Research, Engineering and Technology
Professionals

85.26 39.73 99.77

22 Health Professionals 1.63 0.24 3.23

23 Teaching and Educational Professionals 2.99 0.3 0

24 Business, Media and Public Service Professionals 25.45 6.82 14.8

31 Science, Engineering and Technology Associate
Professionals

76.12 11.46 100

32 Health and Social Care Associate Professionals 5.92 0.23 15.22

33 Protective Service Occupations 24.47 0.13 0

34 Culture, Media and Sports Occupations 15.73 0.98 0

35 Business and Public Service Associate Professionals 16.04 6.97 1.93

41 Administrative Occupations 5.93 1.27 0

42 Secretarial and related Occupations 4.05 0.28 0

51 Skilled Agricultural and related Trades 20.58 0.09 0

52 Skilled Metal, Electrical and Electronic Trades 89.79 9.23 94

53 Skilled Construction and Building Trades 61.92 2.29 24.33

54 Textiles, Printing and other Skilled Trades 8.45 0.57 0

61 Caring Personal Service Occupations 1.61 0.18 0

62 Leisure, Travel and related Personal Service
Occupations

7.44 0.26 0

71 Sales Occupations 12.53 1.88 0

72 Customer Service Occupations 6.93 0.43 0

81 Process, Plant and Machine Operatives 60.38 4.74 0.21

82 Transport and Mobile Machine Drivers and
Operatives

35.88 2.25 0

91 Elementary Trades and related Occupations 57.81 1.4 0

92 Elementary Administration and Service
Occupations

12.21 1.16 0

Notes: Based on the sample of vacancies with a UK SOC identifier (99.5% of all vacancies posted). 2-digit UK
SOC Classification.

column). However, our analysis suggests that STEM skills required in Skilled Construction

and Building Trades and Process, Plant and Machine Operatives occupations should also

receive more attention in future work since they represent together around 7% of STEM jobs

and have STEM densities above 60%.
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These findings echo a recent US study by Rothwell [45] who argues that: “previous re-

ports on the STEM economy indicate that only highly educated professionals are capable of

mastering and employing sophisticated knowledge in STEM fields. Classifying STEM jobs

based on knowledge requirements, however, shows that 30 percent of today’s high-STEM jobs

are actually blue-collar positions. As defined here, blue-collar occupations include installa-

tion, maintenance, and repair, construction, production, protective services, transportation,

farming, forestry, and fishing, building and grounds cleaning and maintenance, healthcare

support, personal care, and food preparation.”

The reason why Rothwell identifies this category of STEM employment is because he

uses a very different way of identifying STEM occupations, based on data from the O*NET

(Occupational Information Network Data Collection Program) - a comprehensive database

developed by the US Department of Labor, “which uses detailed surveys of workers in every

occupation to thoroughly document their job characteristics and knowledge requirements.”

Rothwell focuses on O*NET Knowledge scales for Biology, Chemistry, Physics, Computers

and Electronics, Engineering and Technology, and Mathematics. These scales are constructed

by asking around 24 workers from each occupation to rate the level of knowledge required

to do their job. For instance, the survey asks the worker: “What level of knowledge of

Engineering and Technology is needed to perform your current job?” It then presents a 1-

7 scale and provides examples of the kinds of knowledge that would score a 2, 4, and 6.

Installing a door lock would rate a 2; designing a more stable grocery cart would rate a 4;

and planning for the impact of weather in designing a bridge would rate a 6 (O*NET [24]).

In some sense, our keywords-based approach of identifying STEM jobs is akin to surveying

not workers as in O*NET, but employers, and this explains why our results also reflect all

the “diversity and depth of the STEM economy”.

4.2. Spatial distribution. Existing studies indicate that London is a “magnet of STEM

workers at the expense of other parts of the country”. For instance, Bosworth et al. [9]

analyse commuting data and find that London has a net gain of 87,000 Core STEM workers,

while the South East, East of England and East Midlands record substantial net losses.

Although London is over-represented in the BGT sample relative to official employment

data (cf. Table 18 in the Appendix), the first map in Figure 4.2 shows that it still has by

far the greatest concentration of all STEM vacancies, explaining why it may be so attractive

to STEM educated job seekers. In 2015, London concentrated 22% of all STEM vacancies

with the next biggest demand for STEM knowledge and skills coming from West Midlands

(which includes Birmingham and Coventry) with only 5.5% of STEM vacancies, followed by

Greater Manchester (3.6%) and West Yorkshire (3.5%). Less than 3% of STEM vacancies

were located in any other county.
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Figure 4.2 The geographical locations of STEM vacancies in 2015

% of STEM jobs in each county STEM density of each county

Notes: Based on the sample of 77.8% of all vacancies with County identifiers in 2015. London includes the 32
London boroughs and the City of London. STEM density is the % of jobs within a county that are classified
as STEM.

In terms of STEM density (second map), the picture is less clear-cut. In 2015, London

had a STEM density of 29.97%, while Cambridgeshire came top with 45.51%. Note that

none of the counties had a STEM density below 10%, suggesting that at least some STEM

knowledge and skills are required in every UK county.

Interviews with STEM employers, analysed in Bosworth et al. [9], reveal that some of them

experience hiring difficulties “because their location is outside of London”. Hence, the overall
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message from previous studies and the spatial distribution of STEM vacancies analysed here

could be that many STEM workers may move to London thinking that it would be easier for

them to find a STEM job there since London concentrates over 20% of all STEM vacancies.

This, however, induces shortages in some areas since most UK counties need at least a certain

proportion of their workforce to possess STEM knowledge and skills.

4.3. The wage premium for STEM. To examine whether or not STEM jobs are associ-

ated with higher wages in the labour market, we run simple linear regressions like:

(4.1) logwj = α + βSTEMj + γXj + εj

(4.2) logwj = α + βP̃r(STEM | K C
j ) + γXj + εj

where wj is the hourly wage, STEMj is an indicator for whether the job is classified as

STEM, P̃r(STEM | K C
j ) is the probability that the recruiter for vacancy j seeks a STEM

graduate conditional on the classifiable keywords K C
j collected from j’s online job advert,

and Xj includes controls, e.g. the pay frequency (daily, weekly, monthly...), the salary type

(base pay, commission, bonus...), the month and year of the posting, whether the job is

located in London, etc.

As shown in Table 1, the wage is posted explicitly in 61% of all job ads. However, intro-

ducing controls dramatically reduces the sample size, since, for instance, only 17% and 12%

of the postings have minimum education and experience requirements, 46% have industry

identifiers, etc. Hence, we present three sets of results: one obtained on a sample of almost

20 million vacancies, where we only require the vacancies to possess wage and four-digit UK

SOC occupation identifiers in addition to some basic controls (Table 12). The second set of

results, presented in Table 13, uses a much smaller sample of 222,451 postings in which we

also observe the one/two-digit industry identifier, the precise county, and minimum educa-

tion and experience requirements, and such that each occupation/industry combination has

at least 2 observations. In the final set (Table 14), we do not require the industry identifier

but require all the other controls already mentioned as well as the employer’s name. This

time, we ensure that each occupation/employer cell has at least 2 observations, which results

in a sample of 62,511 observations.28For each year, we also drop the postings with the 1%

lowest wages to remove outliers.

The first column of Table 12 is a plain regression of log hourly wages on the STEM job

dummy with no controls. It suggests that, unconditionally, STEM jobs are associated with

28Requesting both the employer’s name and the industry identifier, and ensuring that each unique occupa-
tion/industry/employer combination has at least two observations leads to a very small and unrepresentative
sample dominated by a few large employers, like the NHS.
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28% higher wages. Remember that we define STEM jobs as those whose recruiters look for

STEM educated candidates with a higher probability than for non-STEM educated ones:

STEMj = I(P̃r(STEM | K C
j ) > P̃r(Non-STEM | K C

j ))

Hence, not all STEM jobs are such that the recruiters seek STEM graduates with a 100%

probability. A more flexible approach is therefore to use the probability of looking for a

STEM graduate instead of the discrete STEM job indicator, i.e. the specification in eq.4.2

instead of eq.4.1. As shown in column (2), the premium offered for seeking a STEM graduate

relative to a non-STEM one sharpens: a 10% pts. rise in the probability of looking for a

STEM graduate is associated with a 3% pts. rise in the wage, so that as we go from looking

for a non-STEM educated worker to seeking a STEM educated one, the wage offered rises

by 32%. Note that this latter specification with the continuous probability instead of the

discrete indicator also seems to provide a better description of the labour market dynamics

since the R2 rises from 5.5% to 5.9%.

The next column contrasts these results to the unconditional wage premium associated

with working in a STEM occupation: 29%.

Columns (4) to (6) replicate these three specifications but now introducing some basic

controls: a dummy for whether the job is located in London, the number of keywords in the

description and the job title, the month and year of the posting, the pay frequency and the

salary type. All estimates drop in size but remain highly significant. One of the reasons is

probably that, as indicated in the previous subsection, a substantial part of STEM jobs are

located in London, where wages are higher anyway because of higher living costs. Hence part

of what appears as the STEM premium in columns (1) to (3) is the London premium, which

disappears once we introduce the London dummy.



T
H

E
S
T

E
M

R
E

Q
U

IR
E

M
E

N
T

S
O

F
“
N

O
N

-S
T

E
M

”
J
O

B
S

4
5

Table 12: The wage premium for STEM: regressions with basic controls

Dependent variable: log(wage)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

STEM job 0.279∗∗∗ 0.237∗∗∗ 0.206∗∗∗ 0.156∗∗∗

(0.000) (0.000) (0.000) (0.018)

P̃r(STEM | K C
j ) 0.319∗∗∗ 0.274∗∗∗ 0.259∗∗∗ 0.219∗∗∗ 0.233∗∗∗

(0.000) (0.000) (0.000) (0.025) (0.026)
STEM occupation 0.293∗∗∗ 0.222∗∗∗ 0.169∗∗∗ 0.162∗∗∗

(0.000) (0.000) (0.001) (0.001)
STEM job -0.104∗∗∗ -0.021

*STEM occ. (0.001) (0.031)

P̃r(STEM | K C
j ) -0.132∗∗∗ -0.047 −0.059

*STEM occ. (0.001) (0.039) (0.038)
Biology/Biomedicine 0.024∗ −0.035∗∗∗

(0.013) (0.013)
Computer Sciences 0.095∗∗∗ 0.027∗∗∗

(0.013) (0.009)
Engineering 0.060∗∗∗ 0.002

(0.010) (0.006)
Maths/Statistics 0.032∗∗∗ 0.021∗∗∗

(0.006) (0.007)
Technology −0.051∗∗∗ −0.091∗∗∗

(0.009) (0.010)
Physics/Chemistry −0.054∗∗∗ −0.096∗∗∗

(0.015) (0.014)
London 0.278∗∗∗ 0.279∗∗∗ 0.271∗∗∗ 0.276∗∗∗ 0.277∗∗∗ 0.219∗∗∗ 0.220∗∗∗ 0.215∗∗∗ 0.218∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.007) (0.007) (0.007) (0.007)
No. Keywords 0.010∗∗∗ 0.010∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.002∗∗∗ 0.004∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)
Occupation dum. No No No No No No No No Yes Yes Yes Yes

Year dum. No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month dum. No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes

Pay Frequency No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes
Salary Type No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes

Clustered s.e. No No No No No No No No Yes Yes Yes Yes

Observations 19,856,575
R2 0.055 0.059 0.053 0.239 0.243 0.230 0.244 0.246 0.441 0.443 0.438 0.445

Adjusted R2 0.055 0.059 0.053 0.239 0.243 0.230 0.244 0.246 0.441 0.443 0.438 0.445

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Notes: Standard errors in parentheses, clustered at the four-digit occupation level in columns (9) to (12). The wage is the average of the minimum
and maximum hourly salaries posted. STEM job is a dummy for whether the job is classified as STEM. STEM occ. is a dummy for whether the
job belongs to a STEM occupation. Regressions (1)-(3) include constants. Four-digit UK SOC occupations used. No. Keywords is the number of
classified keywords collected from the job description and the job title.
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Columns (7) and (8) consider specifications where we include together the STEM job

indicator or P̃r(STEM | K C
j ), the STEM occupation dummy and an interaction between

them. Note that we are still not controlling for a full set of four-digit UK SOC occupations.

The results seem to indicate that there is a difference between the STEM premium offered

in STEM and non-STEM occupations. For instance, column (8) suggests that the recruiter

looking for a STEM graduate in a non-STEM occupation offers a 25.9% wage premium,

whereas in a STEM occupation, he would offer a 16.2% wage premium for the fact that this

is a STEM occupation and an additional 12.7% premium if looking for a STEM graduate,

i.e. a 28.9% wage premium overall for a STEM job in a STEM occupation. However, as we

introduce a full set of 368 four-digit UK SOC occupation dummies in columns (9) and (10),

the interaction term becomes insignificant suggesting that the premium for STEM in STEM

occupations is not statistically significantly different from the one in non-STEM occupations

once we account for occupation fixed effects (note that standard errors in columns (9) and

(10) are also clustered at the occupation level).

We continue by investigating whether different STEM domains command distinct premia

in columns (11) and (12). This is an interesting question in itself which has already been

investigated from the labour supply side in numerous papers. For instance, Greenwood et

al. [30], who analyse the Labour Force Survey between March 2004 and December 2010, find

that many qualifications have a higher labour market value if they are in a STEM subject.

However, this general finding conceals an important amount of heterogeneity in returns to

different STEM domains at different NQF levels. The authors conclude that “it is not enough

to urge young people to study STEM subjects: they also need to understand that some STEM

qualifications are more valuable than others.” Other interesting contributions include, for

instance, Webber [48] who looks at how average earnings vary by discipline in the US. Bratti

et al. [11] use a British cohort study from 1970 to estimate wage returns by major studied.

Gabe [27] takes a different approach. Instead of the discipline studied, he combines worker

knowledge requirements from the O*NET with wage and demographic information from the

U.S. Census American Community Survey. Although the results from all these papers are

not directly comparable because of different data and methods, a general finding seems to be

that sciences, especially Biology, Physics and Chemistry, are typically associated with lower

earnings than Computer Sciences and Engineering.

In our case, we investigate the heterogeneity in STEM wage premia by defining Biol-

ogy/Biomedicine, Computer Sciences, Engineering etc. indicators which are just equal to 1

if the vacancy description contains keywords belonging to the respective clusters (cf. Algo-

rithm 1 for how keywords are classified into different STEM clusters). Column (11) includes

occupation fixed effects and basic controls, but excludes the probability of looking for a

STEM graduate. Technology and Physics/Chemistry seem to be associated with negative
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wage premia, while the rest of STEM disciplines command positive ones. However, introduc-

ing the STEM probability and its interaction with the STEM occupation dummy in column

(12) attenuates all coefficients and turns the one on Biology/Biomedicine negative. Further

research could perhaps investigate heterogeneity in STEM wage premia in more details, how-

ever it is also important to remember that the separation of keywords into different clusters

is imperfect and the results presented here are therefore only indicative.

In Tables 13 and 14, we decided to concentrate on the continuous measure of STEM re-

quirements; the results with the discrete STEM job indicator are similar and available on

request. We start by reproducing the analogues of columns (2), (3) and (10) from Table 12

to show what these specifications give on these much smaller and less representative samples.

Columns (4) correspond to a regression that only includes full controls: education and expe-

rience requirements (in minimum years), a full set of counties instead of the London dummy,

four-digit UK SOC occupations, and either one/two-digit industry identifiers in Table 13 or

6054 unique employers in Table 14. Columns (5) add the STEM probability and its inter-

action with the STEM occupation indicator terms. Finally, the specification in columns (6)

also contains the different STEM domain dummies.

The main purpose of these sets of results is to show that the wage premium for STEM

does not disappear even after introducing detailed controls for many other observable char-

acteristics that affect wages. It certainly drops in magnitude as the influence of all these

other factors is taken into account, but remains highly significant. The interaction term

also remains insignificant. Most of the coefficients on the STEM domains in columns (6) go

in the same direction as before, even though statistical significance drops, especially in the

regression with employer fixed effects.

It is important to remember that all the results presented in this section are not causal

as there could be an unobserved omitted variable - an analogue of the “ability” bias on the

demand side, that is correlated with both wages and the probability of looking for a STEM

graduate and is confounding our estimates even conditional all the controls introduced in

Tables 13 and 14.29

Nevertheless, this section does provide evidence that controlling for detailed occupations,

industries, employers, geographical locations, education and experience requirements, STEM

jobs are still associated with higher wages in both STEM and non-STEM occupations, and

that, conditional on occupation fixed effects, the premium for STEM does not differ depend-

ing on whether the occupation is STEM or non-STEM.

29It does not seem very plausible though that a recruiter would simply post, say, “C++” in his job advert,
just because he thinks that a candidate who knows how to code in C++ is more able than one who does
not, and not because the job genuinely requires knowledge of C++ or some other equivalent software that
someone with knowledge of C++ could certainly easily learn.
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Table 13: The wage premium for STEM: regressions with industry controls

Dependent variable: log(wage)

(1) (2) (3) (4) (5) (6)

P̃r(STEM | K C
j ) 0.236∗∗∗ 0.187∗∗∗ 0.125∗∗∗ 0.129∗∗∗

(0.003) (0.020) (0.017) (0.019)

STEM occ. 0.167∗∗∗

(0.002)

P̃r(STEM | K C
j ) −0.050 −0.037 −0.036

*STEM occ. (0.033) (0.027) (0.026)

Biology/Biomedicine −0.018
(0.018)

Computer Sciences 0.0002
(0.008)

Engineering 0.016∗∗

(0.006)

Maths/Statistics 0.018∗∗

(0.008)

Technology −0.029∗∗∗

(0.010)

Physics/Chemistry −0.045∗∗∗

(0.013)

London 0.203∗∗∗

(0.011)

No. Keywords 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003)

Education 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗

(0.003) (0.003) (0.003)

Experience 0.031∗∗∗ 0.030∗∗∗ 0.030∗∗∗

(0.003) (0.003) (0.003)

Occupation dum. No No Yes Yes Yes Yes

Industry dum. No No No Yes Yes Yes

County dum. No No No Yes Yes Yes

Year dum. No No Yes Yes Yes Yes

Month dum. No No Yes Yes Yes Yes

Pay Frequency No No Yes Yes Yes Yes

Salary Type No No Yes Yes Yes Ye

Clustered s.e. No No Yes Yes Yes Yes

Observations 222,451
R2 0.038 0.020 0.427 0.496 0.498 0.499

Adjusted R2 0.038 0.020 0.426 0.494 0.497 0.497

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Notes: Standard errors in parentheses, clustered at the occupation. The wage is the
average of the minimum and maximum hourly salaries posted. Education &
experience requirements are in years (minimum required). Four-digit UK SOC
occupations and one/two-digit SIC industries used.
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Table 14: The wage premium for STEM: regressions with employer controls

Dependent variable: log(wage)

(1) (2) (3) (4) (5) (6)

P̃r(STEM | K C
j ) 0.306∗∗∗ 0.172∗∗∗ 0.037∗∗∗ 0.039∗∗∗

(0.005) (0.033) (0.014) (0.015)

STEM occ. 0.222∗∗∗

(0.005)

P̃r(STEM | K C
j ) 0.0003 −0.039 −0.037

*STEM occ. (0.052) (0.026) (0.026)

Biology/Biomedicine −0.015
(0.013)

Computer Sciences −0.012
(0.012)

Engineering 0.014
(0.009)

Maths/Statistics 0.013
(0.014)

Technology −0.013
(0.010)

Physics/Chemistry −0.008
(0.021)

London 0.202∗∗∗

(0.015)

No. Keywords 0.005∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)

Education 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗

(0.003) (0.003) (0.003)

Experience 0.036∗∗∗ 0.036∗∗∗ 0.036∗∗∗

(0.002) (0.002) (0.002)

Occupation dum. No No Yes Yes Yes Yes

Employer dum. No No No Yes Yes Yes

County dum. No No No Yes Yes Yes

Year dum. No No Yes Yes Yes Yes

Month dum. No No Yes Yes Yes Yes

Pay Frequency No No Yes Yes Yes Yes

Salary Type No No Yes Yes Yes Ye

Clustered s.e. No No Yes Yes Yes Yes

Observations 62,511
R2 0.062 0.035 0.476 0.749 0.749 0.749

Adjusted R2 0.062 0.035 0.473 0.719 0.719 0.719

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Notes: Standard errors in parentheses, clustered at the employer level (6054 unique
employers). The wage is the average of the minimum and maximum hourly salaries
posted. Education & experience requirements are in years (minimum required).
Four-digit UK SOC occupations.
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As discussed in the introduction, previous studies often find that “STEM graduates [...]

earn more than non-STEM graduates - but only if they work in science or finance occupations”

(DIUS [17]). This finding is based on looking at the wages earned by STEM graduates without

distinguishing between those among them who take up STEM jobs and those who end up in

non-STEM ones. When looking from the labour supply side without making this important

distinction, the wage premium for STEM that exists within non-STEM occupations could

therefore be obscured since nothing prevents STEM graduates to take up non-STEM jobs, for

which non-STEM graduates are also perfectly qualified and for which they therefore receive

no premium. And, actually, 85% of all jobs within non-STEM occupations are non-STEM

and therefore do not offer any wage premium for STEM skills even if they end up being filled

with STEM graduates.

Hence, our results do not directly contradict, but rather extend previous findings. They

are important because they suggest that STEM skills are valued and continue to contribute

positively to productivity even within non-STEM occupations. Moreover, on the basis of

conventional supply and demand, our results seem to be consistent with a shortage of STEM

knowledge and skills across the economy and not only in STEM occupations.

4.4. The STEM requirements of “Non-STEM” jobs. We close this section by paint-

ing in more details the profile of STEM jobs belonging to non-STEM occupations which

constitute the main object of interest in this paper.

In particular, we start by examining the top STEM requirements of STEM jobs belonging

to:

• Chartered architectural technologists: “Mechanical Engineering”, “Engineering Manage-

ment”, “Civil Engineering”, “Auto CAD”, “Computer Aided Draughting/Design (CAD)”,

“Machinery”, “HVAC”, “Electrical! Engineering”, “Engineering Design”, “Revit”, “Con-

cept Development”, “Technical Support”, “Engineering consultation”, “Systems Engineer-

ing”, “Preventive Maintenance”, “Mechanical Design”, “Product Development”, “Engineer-

ing Projects”, “Engineering Support”, “Lean Methods”, “Process Design”, “Manufacturing

Industry Experience”. . .

• Product, clothing and related designers: “Computer Aided Draughting/Design(CAD)”,

“Concept Development”, “Auto CAD”, “Package Design”, “Process Design”, “Digital De-

sign”, “Product Development”, “Product Design”, “Concept Design and Development”,

“JavaScript”, “User Interface (UI) Design”, “Materials Design”, “Java”, “Prototyping”,

“Design Software”, “Information Technology Industry Experience”, “Revit”, “Technical

Drawings”, “SQL”, “Instrument Design”, “CAD Design”, “Set Design” . . .

• Management consultants and business analysts: “SQL”, “SAS”, “Information Tech-

nology Industry Experience”, “Data Warehousing”, “Unified Modelling Language (UML)”,
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“Scrum”, “SQL Server”, “Systems Analysis”, “Data Modelling”, “Extraction Transforma-

tion and Loading (ETL)”, “Visual Basic”, “SQL Server Reporting Services (SSRS)”, “Val-

idation”, “Optimisation”, “Systems Development Life Cycle (SDLC)”, “Java”, “Data Min-

ing”, “Process Design”, “Agile Development”, “Transact-SQL”, “Extensible Markup Lan-

guage (XML)”, “Product Development”, “Statistics”, “Microsoft C#”, “Relational Databases”,

“Big Data”. . .

• Graphic designers: “Digital Design”, “Concept Development”, “Computer Aided Draught-

ing/Design (CAD)”, “Materials Design”, “JavaScript”, “AutoCAD”, “HTML5”, “Process

Design”, “User Interface (UI) Design” “Concept Design and Development”, “Web Site De-

velopment”, “jQuery”, “Package Design”, “Design Software”, “Product Design”, “Product

Development”, “Computer Software Industry Experience”, “Technical Support”, “Interface

Design”, “Prototyping”, “Set Design”, “Hypertext Preprocessor (php)”, “3D Design”, “3D

Modelling”, “Web Application Development”. . .

• Actuaries, economists and statisticians: “Statistics”, “SAS”, “Biostatistics”, “SQL”,

“VisualBasic”, “Bioinformatics”, “Validation”, “R”, “Epidemiology”, “Python”, “C++”,

“Product Development”, “Biology”, “Optimisation”, “PERL”, “MATLAB”, “Physics”,

“Mathematical Modelling”, “Technical Support”, “Pharmaceutical Industry Background”,

“Java”, “Genomics”, “Genetics”, “UNIX”, “Calibration”, “LINUX”, “Data Mining”, “Model

Building”, “Experimental Design”, “SIMULATION”, “Predictive Models”, “Relational Databases”,

“Experiments”, “MySQL”. . .

• Artists: “Concept Development”, “JavaScript”, “Game Development”, “Computer Aided

Draughting/Design (CAD)”, “Python”, “Auto CAD”, “3D Modelling”, “Digital Design”,

“User Interface (UI) Design”, “3D Design”, “Autodesk”, “Optimisation”, “C++”, “Mi-

crosoft C#”, “3D Animation”, “Technical Support”, “Computer Software Industry Experi-

ence”, “Troubleshooting”, “Process Design”, “Concept Design and Development”, “Game

Design”, “ActionScript”, “Materials Design”, “Prototyping”. . .

It seems that despite the fact that these recruiters are looking for STEM graduates with a

higher probability than for non-STEM ones, many of the STEM skills and knowledge they

require could actually be acquired with less training than a full-time STEM degree, and could

therefore be taught to non-STEM graduates in order to make them suitable candidates for

such positions.

Moreover, another interesting feature that distinguishes STEM jobs in STEM vs. non-

STEM occupations is the percentage of keywords in the job description that are STEM. In

STEM occupations, 60% of all keywords posted in a median STEM job advert are STEM,

while in non-STEM occupations, this number is only 30% (means are 59.38% and 35.29%

respectively).

Hence it seems that STEM recruiters within non-STEM occupations actually seek to com-

bine STEM and non-STEM knowledge and skills in a certain combination that lies in between

the STEM-dominated combination required in STEM occupations and the predominantly
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non-STEM one asked for in non-STEM jobs (cf. our discussion of “hybrid” jobs in the

Introduction).

5. Implications for STEM Skills & Knowledge Shortages

The previous section documents that a significant proportion of “non-STEM” employers

may specifically look for STEM graduates not because they simply value their “foundation

competencies”, “logical approach to solving problems” or believe that STEM graduates are

intrinsically more capable, but because a STEM education has equipped them with the skills

and knowledge needed to write programs in C++ and JavaScript, create digital designs,

develop user interfaces, work with Big Data, perform statistical analysis in SAS ... The

jobs these employers advertise require and value STEM knowledge and skills despite being

classified into “non-STEM” occupations. In reality, however, many of these STEM skills and

knowledge could be learned with training that is less advanced than a full-time STEM degree

and these “non-STEM” STEM recruiters actually want to combine them with non-STEM

knowledge & skills.

In this section, we develop an abstract framework to think about the implications of these

findings for higher education policies aimed at reducing STEM shortages. In particular,

we illustrate how the STEM shortages experienced by “non-STEM” employers with STEM

requirements and those that persist in traditional STEM occupations are related, and how

teaching more STEM in non-STEM disciplines could help alleviate both.

5.1. The Geometry of Skills & Knowledge Shortages. The first step in analyzing skills

and knowledge shortages is to define them.

Unfortunately, no clear and objective definition exists in the academic literature where

shortages are often understood as a phenomenon that “causes vacancies to remain open

longer” (Haskel & Martin [36]). Unfilled vacancies constitute “dynamic shortages” which

only persist until wages have risen such as to make enough people acquire the scarce skills

and bring the labour market into equilibrium once again (Arrow and Capron [2]).

However, hiring difficulties, unfilled vacancies, wage rises, etc. are all potential conse-

quences of shortages, not their proper definition. Hiring difficulties and unfilled vacancies

may occur for reasons unrelated to shortages, like inefficient human resource recruiters, im-

proper advertising of the job, etc., while raising wages is only one of many responses to

shortages. For instance, the 2016/2017 Talent shortage survey conducted by Manpower-

Group [40] indicates that only 26% of employers respond to shortages by “paying higher

salary packages to recruits”. At the same time, 53% decide to “offer training and devel-

opment to existing staff”, 36% “recruit outside the talent pool”, 28% “explore alternative

sourcing strategies”, 19% completely “change existing work models”, etc.
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Indeed, in practice, there is a great deal of confusion about both the meaning of shortages

and the reactions to them on both sides of the labour market.

Green et al. (1998) [29] analyse the Employer Manpower and Skills Practices Survey (EM-

SPS) where employers were asked separate questions about experiencing (a) skills shortages,

(b) difficulties in filling vacancies, and (c) deficiencies in the ‘qualities’ of their existing work-

force. They find only a partial overlap in the responses to these questions, concluding that

“to equate ‘skill shortage’ with ‘hard-to-fill vacancy’ may be a very risky assumption which,

if falsely made, could lead to unsafe conclusions”.

On the labour supply side, interviews and surveys of STEM students and graduates, anal-

ysed in BIS [42], reveal that most of them “start university with few career ideas”. They

typically choose to study a STEM discipline because of personal interest, enjoyment and/or

aptitude. In their sample, less than a quarter of STEM graduates chose their degrees for

“improved job prospects” and most of those who originally had career purposes in mind when

enrolling in a STEM discipline, did so to keep their career options open. When it comes to

applying for jobs, expected pay is certainly an important factor, but not the main motivating

force. STEM graduates look primarily for “interesting work”.30

Overall, it therefore remains unclear whether or not the potentially equilibrating wage

adjustment mechanism is being used by employers and/or actually translating into more

people acquiring the scarce skills and knowledge. In what follows, we therefore completely

set these mechanisms apart and start from a basic definition of what a shortage is.

According to the British Government’s Training Agency [1], a shortage occurs “when there

are not enough people available with the skills needed to do the jobs which need to be done”.

We shall now try to translate this definition into an abstract framework, then employ it

to conceptualize our empirical findings and think about education policies that could help

reduce STEM shortages experienced in STEM and non-STEM occupations.

5.1.1. Vacancies & Job seekers. Let V denote the set of vacancies (empty jobs). The skills

& knowledge requirements of any vacancy j ∈ V have two components:

• an absolute amount φv
j

• a composition θvj : if skills & knowledge are m-dimensional, the composition required

by job j is the m× 1 vector:

θvj = (θvj1, θ
v
j2, ..., θ

v
jm)

such that
∑m

l=1 θ
v
jl = 1 and θvjl ∈ [0, 1] ∀l is the proportion of j’s overall requirements in the

l−dimension.

30The academic literature also contains many contributions showing that financial incentives have little or
no impact of student learning choices at all education levels, cf. Fryer [26] and references therein.
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Figure 5.1 Skills & Knowledge space

Notes: V2 and V3 require the same

amount of skills & knowledge but differ-

ent compositions. V1 and V2 ask for the

same composition but different amounts.

Let Ω be the m-dimensional skills & knowledge space.

The location of vacancy j in Ω is determined by the

vector vj = φv
jθ

v
j with components vjl = φv

jθ
v
jl.

Figure 5.1 illustrates the idea on a two dimensional

lattice.

Along each blue line (and we have only shown two for

clarity), the same amount of skills & knowledge but a

different composition are required. As we move from the

left to the right, the composition is tilted towards the

X dimension because its loading on the latter increases,

while the share allocated to the Y dimension decreases.

Along each green line, the same composition but a

different amount are required. As we move towards the

North-East, the amount of skills & knowledge required

increases.

For example, vacancies V2 and V3 require the same

amount of skills & knowledge φv
2 = φv

3 = 6 but differ-

ent compositions. Vacancies V1 and V2 have the same

compositions θv1 = θv2 = (0.5, 0.5) but require different amounts.

Let S denote the set of job seekers. As with vacancies, the location of candidate i in the

space Ω is characterized by si = φs
iθ

s
i where φs

i is the amount of skills & knowledge possessed

and θsi the m-dimensional composition vector.

An employer requiring amount φv
j and composition θvj to fill vacancy j might be indifferent

between a certain subset of candidates located in Zj ⊂ Ω, where Zj could be influenced by

many things but, for clarity, is assumed to only depend on the vacancy’s location here, i.e.

Zj := Z(vj).

Formally, let ω = φθ be a generic element of Ω (which we denote as v and s when referring

to vacancies and graduates respectively).

Definition 1. The qualified subset for vacancy j, Zj is such that for any two elements ω 6= ω′

with ω ∈ Zj and ω′ ∈ Zj:

ω ∼j ω
′

i.e. the recruiter for vacancy j is indifferent between the two in terms of knowledge and skills.

In practice, we could think of Zj as the subset of candidates for vacancy j such that it is no

longer differences in the knowledge & skills that these candidates possess which will be the

main determinant of the hiring decision. Other worker characteristics such as work styles,

personality will allow the recruiter to select the best fit for his vacancy. However, here we
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abstract from all this and concentrate on skills & knowledge in terms of which the candidates

all seem equally qualified to the employer.

The existence of such subsets implies that a candidate may be simultaneously qualified for

several vacancies belonging to the same or different occupations. In this case, the question

of establishing whether or not there are “enough” qualified people available to “do the jobs

which need to be done”, i.e. to fill all open vacancies, becomes non-trivial as we cannot

simply count the numbers of vacancies and job seekers at every ω and declare a shortage if

vacancies outnumber candidates.

To determine whether vacancies located at a specific point in the skills & knowledge space

experience a shortage, we start by characterizing the measure space in which vacancies and

job seekers coexist.

For simplicity, suppose that Ω is discrete.

The distribution of the job seekers defines a measure P on Ω. For instance, if the pool

of job seekers is such that none of them is located at ω, i.e. si 6= ω for all i ∈ S, we have

P (ω) = 0. More generally:

(5.1) P (ω) = |{i ∈ S|si = ω}| and P (Ω) =
∑
ω∈Ω

P (ω) = |S|

where |.| denotes the cardinality of a set.

In a similar way, we can define a measure Q for the distribution of the vacancies:

(5.2) Q(ω) = |{j ∈ V|vj = ω}| and Q(Ω) =
∑
ω∈Ω

Q(ω) = |V|

Definition 2. Vacancies located at ∆ ∈ Ω experience a shortage if:

(5.3) Q(∆) +
∑
{ω∈H∆}

Q(ω) > P (Z∆) +
∑
{ω∈L∆}

P (ω)

where H∆ := {ω ∈ Ω|P (Zω ∩ Z∆) 6= 0, ω 6= ∆} and L∆ := {ω ∈ Ω|ω ∈ Zu for u ∈ H∆, ω /∈
Z∆}. Note that since Zj := Z(vj), Zj = Zh = Z∆ for any j 6= h such that vj = vh = ∆.

The left hand side of eq.5.3 gives the total demand for candidates qualified for vacancies

located at ∆. The first term is simply the number of vacancies at ∆. The second one counts

all the other vacancies that also want to hire job seekers qualified for vacancies at ∆. This

subset of vacancies is denoted by H∆. On the right hand side, the first term gives the number

of candidates qualified for vacancies at ∆, while the second one adjusts this number for the

fact that vacancies in H∆, i.e. which compete with vacancies at ∆ for the job seekers in

Z∆, also have access to a pool of candidates that are qualified for them but unqualified for

vacancies at ∆, and for which they do not compete with ∆-vacancies.
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Example 3. To fully understand the condition for a shortage contained in eq.5.3, we can

look at a simple example with a two-dimensional space in which the problem can be inspected

visually.

For clarity, let’s also assume the following specific form for the qualified subsets, illustrated

in Figure 5.2:

(5.4) Zj = {ω ∈ Ω|ωl > vjl,∀l = 1, ..., n}

Intuitively, eq.5.4 corresponds to the subset of candidates who have at least as much skills &

knowledge in each dimension as what the vacancy requires.

Figure 5.2 Qualified subset

Notes: The shaded area marks the subset

of candidates who would be qualified for va-

cancy V1 according to eq. 5.4

In Figure 5.2, vacancy 1 is located at (5, 6), while the

job seekers are at s1 = (3, 8) and s2 = (7, 7). The shaded

area to the North-East of vacancy 1 corresponds to Z1 as

defined in eq.5.4. Only candidate 2 belongs to Z1. Candi-

date 1 is unqualified because s11 < v11. In particular, s1

has the right amount of skills & knowledge (φs
1 = φv

1 = 11)

but the wrong composition: θs1 = (3/11, 8/11) versus

θv1 = (5/11, 6/11). The skills & knowledge composition

of s2 assigns equal weights to both dimensions. Although

the composition required by the vacancy is slightly tilted

towards the vertical dimension compared to the one pos-

sessed by s2, he is still qualified for the job according to

eq.5.4 because he has more overall skills & knowledge and

is located such that s21 > v11 and s22 > v11.

Example 4. Figure 5.3 illustrates how the condition for

determining the presence of a shortage in eq. 5.3 works in this simple abstract setting by

presenting three possible scenarios with two vacancies and two job seekers. Let the L, M,

and R - subscripts stand for its left, middle, and right panels.

In the left wing panel we have PL(ω) = 1 for ω = {s1, s2} with s1 = (1, 6) and s2 = (4, 5)

and PL(ω) = 0 for any other ω ∈ Ω. For the vacancies, QL(ω) = 1 for ω = {v1, v2}
with v1 = (2, 4) and v2 = (5, 1) and QL(ω) = 0 for ω 6= {v1, v2}. Note that vacancies require

exactly the same amount of skills & knowledge (φv
1 = φv

2 = 6) but different compositions: θv1 =

(1/3, 2/3) and θv2 = (5/6, 1/6). Furthermore, the qualified subsets are such that PL(Z1) = 1

and PL(Z2) = 0. Vacancy 2 experiences a shortage since both potential candidates have

inadequate compositions despite having more skills & knowledge that what v2 requires: φs
1 =

7 and φs
2 = 9. Since PL(Z1 ∩ Z2) = 0, eq.5.3 reads: 1 + 0 > 0 + 0 at ∆ = v2 signaling a

shortage for vacancy 2. By contrast, vacancy 1 does not experience a shortage; the qualified

candidate is s2, and there is enough of him because he is not also qualified for vacancy 2.
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Figure 5.3 Illustrating the condition for shortages in eq. 5.3

Shortage for V2, not for V1 Shortages for both V1 and V2
No shortages

Notes: Three possible scenarios with two workers and two vacancies in a two-dimensional skills & knowledge
space are illustrated. As S2 becomes qualified for both vacancies (going from the left to the middle panel),
there is no longer “enough” of him, so that both V1 and V2 experience shortages. Moving from the middle
to the right panel, both shortages are eliminated by simply making S1 qualified for V1, so that there are
enough qualified workers at the level of the economy to simultaneously fill both vacancies.

Eq.5.3 in this case gives 1 + 0 ≤ 1 + 0 since QL(v1) = PL(Z1) = PL(s2) = 1 and the second

terms on both sides are still equal to 0 because PL(Z1 ∩ Z2) = 0.

In the middle panel, we simply change the location of s2 from (4, 5) to (5, 4), i.e. keeping

φs
2 = 9 but slightly changing his skills & knowledge composition. Candidate 2 is now the only

qualified candidate for both vacancies and so there is no longer enough of him. Indeed, now

PM(Z1 ∩ Z2) = 1 and eq.5.3 becomes 1 + 1 > 1 + 0 for both vacancies, indicating shortages.

Finally, in the right wing of fig 5.3 we move job seeker 1 from (1, 6) to (2, 5), keeping

everything else as in the middle panel. s1 is now in Z1, i.e. qualified for vacancy 1, while still

remaining outside Z2. Graphically, it is obvious that there are no shortages because there are

enough qualified candidates to fill both vacancies simultaneously. Simply assign s1 to v1 and

s2 to v2. The condition for a shortage in eq.5.3 is violated for both vacancies. For vacancy

2, the equation reads 1 + 1 ≤ 1 + 1 since QR(v2) = 1, PR(Z2) = 1, and PR(Z1 ∩ Z2) = 1. It

is important not to forget the right hand side adjustment PR(s1) = 1. Indeed, although s2

seems to be over-demanded since he is qualified for both vacancies so that total demand for

him is QR(v1) + QR(v2) = 2, it would be wrong to conclude that v2 experiences a shortage

because s2 is the only qualified applicant for it. The reason is that, contrary to the situation

depicted in the middle panel, vacancy 1 now has an alternative qualified candidate: s1.

5.2. Implications for Higher Education provision policies. We can think about s2 as

the STEM graduate and s1 as the non-STEM graduate, X as the STEM dimension and Y

as the non-STEM dimension, v2 as the traditional STEM occupation STEM job, and of v1

as a “non-STEM” STEM job.

The above example illustrates two points:
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• the existence of a shortage cannot be established by looking at some vacancies and job

seekers in isolation, it has to take into account their interdependence at the level of

the economy. Hence, in order to understand why STEM shortages arise and propose

adequate policies to eliminate them, we need to go beyond STEM graduates and

STEM occupations, and include non-STEM graduates and non-STEM occupations.

• shortages can be solved by changing the location of “not-in-shortage” graduates: in

the middle panel of fig. 5.3, the skills & knowledge composition of s1 allocates too little

to the STEM dimension for him to be qualified even for v1- the “non-STEM” job that

nevertheless requires a certain amount of STEM knowledge and skills. Hence both v1

and v2 have to compete for s2. In the right panel, we simply change the composition

of s1 from (1/7, 6/7) to (2/7, 5/7) without adding any skills & knowledge. This solves

shortages for both v1 and v2 because they no longer have to compete for the STEM

graduate s2, and also gives a job to the non-STEM graduate.

These points imply that STEM shortages are not only about “not enough” STEM graduates,

but also about “not enough” STEM skills & knowledge taught in non-STEM disciplines.

A key implication is that the solution to STEM shortages is not only and necessarily to

encourage more students to enroll into STEM degrees, which many of them will avoid, how-

ever high the rewards may be, because following advanced STEM classes for several years

of their lives might be too difficult and/or uninteresting. Instead, introducing more manda-

tory, or at least optional, STEM modules into non-STEM disciplines could help alleviate

shortages by allowing students to enroll in non-STEM degrees while still graduating with the

employer-desired amount of STEM knowledge and skills. Furthermore, this policy could help

alleviate shortages in traditional STEM occupations, since if there are more non-STEM grad-

uates with appropriate STEM training, “non-STEM” STEM employers will be less likely to

look specifically for STEM graduates, who may therefore have to seek jobs in the traditional

STEM occupations more often.

6. Conclusion & Future Research

This paper aims to contribute to the debate on whether the fact that, in the UK, less than

half of STEM graduates work in non-STEM occupations should be considered as a problem

or not necessarily so, and, if yes, what type of education provision policy initiatives could

help resolve it.

We develop a new approach to identifying STEM jobs through the keywords collected

from online vacancy descriptions, and not, as is typically done, by classifying occupations

discretely into STEM vs. non-STEM, then considering all the jobs belonging to the first

group as “STEM” and the rest as “non-STEM”. This approach is made possible by having
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access to a large dataset, collected by the firm Burning Glass Technologies, which contains

information on all vacancies posted online in the UK between 2012 and 2016.

Our job level analysis shows that it is wrong to equate STEM jobs with STEM occupations:

35% of all STEM jobs belong to non-STEM occupations. Moreover, this leads to underes-

timating the overall demand for STEM knowledge and skills since STEM jobs outnumber

jobs in STEM occupations, e.g. by half a million STEM employment opportunities in 2015.

We also find that when seeking STEM graduates, recruiters in non-STEM occupations offer

to pay higher wages and, conditional on occupation fixed effects, this premium is not sta-

tistically significantly different from the one offered for STEM knowledge and skills within

STEM occupations.

Although, these findings suggest that the leakage from the STEM pipeline may be less

problematic than typically thought because around 15% of all recruiters in non-STEM occu-

pations do require and value STEM knowledge and skills, the issue remains problematic for

two main reasons.

Firstly, nothing prevents STEM educated job seekers to take up non-STEM jobs within

non-STEM occupations, for which non-STEM graduates are also qualified and no STEM

premium is offered.

Secondly, we find that the STEM skills and knowledge posted in STEM vacancies within

non-STEM occupations go beyond “Problem Solving”, “Analytical Skills”... but, in many

cases, could be acquired with less training than a full time STEM degree. Moreover, STEM

recruiters within non-STEM occupations actually wish to combine STEM knowledge and

skills with non-STEM ones to a larger extent that their counterparts in STEM occupations.

Hence, a more efficient way of satisfying STEM demand within non-STEM occupations could

be to teach more STEM in non-STEM disciplines so as to make non-STEM graduates quali-

fied for a set of jobs within non-STEM occupations for which they only lack the STEM skills

while already possessing the required non-STEM ones. We construct an abstract framework

to illustrate how this reform could reduce STEM shortages in both STEM and non-STEM

occupations.

Although the main focus of this paper is on “high level” STEM jobs – jobs that belong to

managerial, professional and associate professional occupations for which a university degree

is typically required, our analysis indicates that 25% of all STEM employment opportunities

in the UK are not “high level”. Examining the O*NET Knowledge scales, Rothwell [45]

gets a similar result for the US, finding that 30% of STEM positions there are “blue-collar”.

He argues that “the excessively professional definition of STEM jobs has led to missed op-

portunities to identify and support valuable training and career development.” This could

also be the case in the UK. Hence, future research should spend more time investigating

non-graduate STEM job openings in the UK as well.
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Moreover, future research could also try to merge the analysis of STEM demand presented

here with a similar analysis on the labour supply side, perhaps using a dataset like LinkedIn.

Nowadays, many people acquire STEM human capital not through formal education but

other channels like self-study, online courses, internships. . . This makes the assessment of

the actual supply of STEM knowledge & skills more complex than simply counting the

number of STEM graduates. Although, the existing STEM literature recognizes this as a

problem, so far, no attempts seem to have been made to deal with it and “STEM skills and

knowledge” continue to be used interchangeably with “STEM qualifications”. Clearly, this

has the same flaws as equating “STEM jobs” with “STEM occupations”.
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7. Appendix

Table 15: Occupational distribution of STEM jobs in 2015

Code Name (4-digit UK SOC) STEM occ. STEM density % STEM jobs

1115 Chief executives and senior officials 0 15.1 0.07

1116 Elected officers and representatives 0 63.06 0.04

1121 Production managers and directors in manufacturing 1 60.06 1.41

1122 Production managers and directors in construction 0 78.56 1.09

1123 Production managers and directors in mining and energy 1 64.5 0.05

1131 Financial managers and directors 0 3.88 0.09

1132 Marketing and sales directors 0 16.61 0.54

1133 Purchasing managers and directors 0 15.83 0.13

1134 Advertising and public relations directors 0 2.06 0.01

1135 Human resource managers and directors 0 2.94 0.03

1136 Information technology and telecommunications directors 1 33.39 0.13

1139 Functional managers and directors n.e.c. 0 16.32 0.08

1150 Financial institution managers and directors 0 9.12 0.02

1161 Managers and directors in transport and distribution 0 25.19 0.08

1162 Managers and directors in storage and warehousing 0 29.86 0.14

1171 Officers in armed forces 0 13.81 0.02

1172 Senior police officers 0 19.4 0

1173 Senior officers in fire, ambulance, prison and related services 0 51.46 0.06

1181 Health services and public health managers and directors 0 9.24 0.08

1184 Social services managers and directors 0 1.24 0

1190 Managers and directors in retail and wholesale 0 10.57 0.27

1211 Managers and proprietors in agriculture and horticulture 0 5.82 0

1213 Managers and proprietors in forestry, fishing and related

services

0 30.49 0

1221 Hotel and accommodation managers and proprietors 0 10.38 0.02

1223 Restaurant and catering establishment managers and pro-

prietors

0 1.7 0.01
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1224 Publicans and managers of licensed premises 0 3.21 0

1225 Leisure and sports managers 0 5.53 0.01

1226 Travel agency managers and proprietors 0 3.6 0

1241 Health care practice managers 0 0.04 0

1242 Residential, day and domiciliary care managers and propri-

etors

0 0.27 0

1251 Property, housing and estate managers 0 23.43 0.25

1252 Garage managers and proprietors 0 13.74 0

1253 Hairdressing and beauty salon managers and proprietors 0 0.75 0

1254 Shopkeepers and proprietors ¡U+0096¿ wholesale and retail 0 12.87 0.02

1255 Waste disposal and environmental services managers 1 47.04 0.01

1259 Managers and proprietors in other services n.e.c. 0 42.66 2.44

2111 Chemical scientists 1 93.39 0.2

2112 Biological scientists and biochemists 1 64.12 0.54

2113 Physical scientists 1 75.65 0.1

2114 Social and humanities scientists 0 7.62 0.01

2119 Natural and social science professionals n.e.c. 1 88.69 0.27

2121 Civil engineers 1 98.66 1.72

2122 Mechanical engineers 1 99.39 1.15

2123 Electrical engineers 1 99.66 1.15

2124 Electronics engineers 1 98.19 0.3

2126 Design and development engineers 1 99.11 2.5

2127 Production and process engineers 1 94.62 0.5

2129 Engineering professionals n.e.c. 1 80.37 0.97

2133 IT specialist managers 1 54.71 0.69

2134 IT project and programme managers 1 50.92 1.06

2135 IT business analysts, architects and systems designers 1 79.28 5.36

2136 Programmers and software development professionals 1 91.41 14.61

2137 Web design and development professionals 1 90.87 5.18

2139 Information technology and telecommunications profession-

als n.e.c.

1 77.7 3

2141 Conservation professionals 1 49.7 0.05

2142 Environment professionals 1 57.44 0.1

2150 Research and development managers 1 58.88 0.25

2211 Medical practitioners 0 5.42 0.15

2212 Psychologists 1 0.14 0

2213 Pharmacists 0 4.98 0.02

2214 Ophthalmic opticians 0 0.6 0

2215 Dental practitioners 0 0.31 0

2216 Veterinarians 1 0.3 0

2217 Medical radiographers 0 4.28 0.01

2218 Podiatrists 0 0.07 0

2219 Health professionals n.e.c. 0 6.75 0.03

2221 Physiotherapists 0 0.07 0
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2222 Occupational therapists 0 0 0

2223 Speech and language therapists 0 0 0

2229 Therapy professionals n.e.c. 0 8.18 0.01

2231 Nurses 0 0.18 0.02

2232 Midwives 0 0.56 0

2311 Higher education teaching professionals 0 10.63 0.04

2312 Further education teaching professionals 0 6.21 0.04

2314 Secondary education teaching professionals 0 4.54 0.13

2315 Primary and nursery education teaching professionals 0 0.15 0

2316 Special needs education teaching professionals 0 0.54 0

2317 Senior professionals of educational establishments 0 2.99 0.02

2318 Education advisers and school inspectors 0 6.05 0.01

2319 Teaching and other educational professionals n.e.c. 0 3.01 0.05

2412 Barristers and judges 0 19.02 0.01

2413 Solicitors 0 2.8 0.07

2419 Legal professionals n.e.c. 0 2.85 0.04

2421 Chartered and certified accountants 0 0.35 0.01

2423 Management consultants and business analysts 0 25.33 1.23

2424 Business and financial project management professionals 0 13.84 0.22

2425 Actuaries, economists and statisticians 0 34.69 0.13

2426 Business and related research professionals 0 33.76 0.24

2429 Business, research and administrative professionals n.e.c. 0 46.84 0.43

2431 Architects 1 65.89 0.42

2432 Town planning officers 1 65.14 0.24

2433 Quantity surveyors 0 29.96 0.58

2434 Chartered surveyors 0 64.7 0.66

2435 Chartered architectural technologists 0 85.42 0.24

2436 Construction project managers and related professionals 0 56.19 0.14

2442 Social workers 0 0.15 0

2443 Probation officers 0 0.16 0

2444 Clergy 0 4.58 0

2449 Welfare professionals n.e.c. 0 2.51 0

2451 Librarians 0 8.89 0.01

2452 Archivists and curators 0 11.76 0.01

2461 Quality control and planning engineers 1 90.78 1.11

2462 Quality assurance and regulatory professionals 1 49.94 0.87

2463 Environmental health professionals 1 15 0

2471 Journalists, newspaper and periodical editors 0 20.48 0.14

2472 Public relations professionals 0 2.61 0.01

2473 Advertising accounts managers and creative directors 0 0.91 0

3111 Laboratory technicians 1 54.29 0.38

3112 Electrical and electronics technicians 1 97.63 0.11

3113 Engineering technicians 1 93.59 2.09

3114 Building and civil engineering technicians 1 93.89 0.2
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3115 Quality assurance technicians 1 85.95 0.5

3116 Planning, process and production technicians 1 81.93 0.18

3119 Science, engineering and production technicians n.e.c. 1 75.11 1.24

3121 Architectural and town planning technicians 1 53.66 0.15

3122 Draughtspersons 1 84.23 0.58

3131 IT operations technicians 1 72.12 2.74

3132 IT user support technicians 1 71.93 3.3

3213 Paramedics 0 1 0

3216 Dispensing opticians 0 0.35 0

3217 Pharmaceutical technicians 1 2.88 0

3218 Medical and dental technicians 1 34.27 0.16

3219 Health associate professionals n.e.c. 0 2.42 0.03

3231 Youth and community workers 0 0.69 0

3233 Child and early years officers 0 0.6 0

3234 Housing officers 0 2.4 0.01

3235 Counsellors 0 1.14 0

3239 Welfare and housing associate professionals n.e.c. 0 2.83 0.03

3311 NCOs and other ranks 0 9.7 0.02

3312 Police officers (sergeant and below) 0 28.89 0.02

3313 Fire service officers (watch manager and below) 0 61.55 0.01

3314 Prison service officers (below principal officer) 0 5.25 0

3315 Police community support officers 0 8.06 0

3319 Protective service associate professionals n.e.c. 0 41.16 0.07

3411 Artists 0 23.46 0.04

3412 Authors, writers and translators 0 12.13 0.15

3413 Actors, entertainers and presenters 0 11.36 0.08

3414 Dancers and choreographers 0 1.01 0

3415 Musicians 0 12.41 0.02

3416 Arts officers, producers and directors 0 10.58 0.05

3417 Photographers, audio-visual and broadcasting equipment

operators

0 18.05 0.05

3421 Graphic designers 0 18.53 0.25

3422 Product, clothing and related designers 0 45.62 0.31

3441 Sports players 0 11.39 0.01

3442 Sports coaches, instructors and officials 0 5.63 0.02

3443 Fitness instructors 0 0.2 0

3511 Air traffic controllers 0 42.98 0

3512 Aircraft pilots and flight engineers 0 35.17 0.01

3513 Ship and hovercraft officers 0 26.74 0.02

3520 Legal associate professionals 0 1.52 0.02

3531 Estimators, valuers and assessors 0 45.21 0.97

3532 Brokers 0 14.29 0.05

3533 Insurance underwriters 0 14.56 0.06

3534 Finance and investment analysts and advisers 0 7.59 0.19
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3535 Taxation experts 0 6.03 0.03

3536 Importers and exporters 0 11.58 0.01

3537 Financial and accounting technicians 0 11.67 0.03

3538 Financial accounts managers 0 9.05 0.22

3539 Business and related associate professionals n.e.c. 0 31.93 0.99

3541 Buyers and procurement officers 0 17.66 0.28

3542 Business sales executives 0 20.56 1.6

3543 Marketing associate professionals 0 2.76 0.13

3544 Estate agents and auctioneers 0 4.27 0.04

3545 Sales accounts and business development managers 0 17.84 1.05

3546 Conference and exhibition managers and organisers 0 3.8 0.03

3550 Conservation and environmental associate professionals 0 20.29 0.01

3561 Public services associate professionals 0 12.54 0.05

3562 Human resources and industrial relations officers 0 4.69 0.24

3563 Vocational and industrial trainers and instructors 0 16.2 0.26

3564 Careers advisers and vocational guidance specialists 0 18.78 0.04

3565 Inspectors of standards and regulations 0 60.79 0.15

3567 Health and safety officers 1 60.95 0.51

4112 National government administrative occupations 0 4.36 0.01

4113 Local government administrative occupations 0 2.87 0

4114 Officers of non-governmental organisations 0 1.27 0

4121 Credit controllers 0 2.33 0.02

4122 Book-keepers, payroll managers and wages clerks 0 0.73 0.02

4123 Bank and post office clerks 0 7.69 0.04

4124 Finance officers 0 0.1 0

4129 Financial administrative occupations n.e.c. 0 2.86 0.03

4131 Records clerks and assistants 0 18.07 0.2

4132 Pensions and insurance clerks and assistants 0 2.89 0.02

4133 Stock control clerks and assistants 0 29.61 0.23

4134 Transport and distribution clerks and assistants 0 15.72 0.14

4135 Library clerks and assistants 0 3.23 0

4138 Human resources administrative occupations 0 0.33 0

4151 Sales administrators 0 1.63 0.02

4159 Other administrative occupations n.e.c. 0 3.88 0.28

4161 Office managers 0 6.66 0.09

4162 Office supervisors 0 11.34 0.15

4211 Medical secretaries 0 1.39 0

4212 Legal secretaries 0 0.05 0

4213 School secretaries 0 1.79 0

4214 Company secretaries 0 1.75 0.02

4215 Personal assistants and other secretaries 0 8.32 0.21

4216 Receptionists 0 0.72 0.01

4217 Typists and related keyboard occupations 0 10.93 0.03

5111 Farmers 0 40.64 0.05
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5112 Horticultural trades 0 19.6 0

5113 Gardeners and landscape gardeners 0 10.69 0.03

5114 Groundsmen and greenkeepers 0 13.22 0

5119 Agricultural and fishing trades n.e.c. 0 12.87 0

5211 Smiths and forge workers 1 23.12 0

5212 Moulders, core makers and die casters 1 91.81 0.03

5213 Sheet metal workers 1 79.34 0.07

5214 Metal plate workers, and riveters 1 72.4 0.01

5215 Welding trades 1 98.87 0.5

5216 Pipe fitters 1 98.31 0.01

5221 Metal machining setters and setter-operators 1 96.16 0.7

5222 Tool makers, tool fitters and markers-out 1 91.97 0.14

5223 Metal working production and maintenance fitters 1 90.27 1.17

5224 Precision instrument makers and repairers 1 70.7 0.09

5225 Air-conditioning and refrigeration engineers 0 99.8 0.15

5231 Vehicle technicians, mechanics and electricians 1 78.85 1.61

5232 Vehicle body builders and repairers 1 70.06 0.16

5234 Vehicle paint technicians 0 18.37 0.01

5235 Aircraft maintenance and related trades 0 93.74 0.02

5236 Boat and ship builders and repairers 0 78.05 0.01

5237 Rail and rolling stock builders and repairers 0 61.65 0.01

5241 Electricians and electrical fitters 1 98.79 1.28

5242 Telecommunications engineers 1 95.4 0.99

5244 TV, video and audio engineers 1 82.26 0.02

5245 IT engineers 1 96.31 0.32

5249 Electrical and electronic trades n.e.c. 1 98.47 1.71

5250 Skilled metal, electrical and electronic trades supervisors 0 62.15 0.23

5311 Steel erectors 0 94.43 0.04

5312 Bricklayers and masons 0 30.94 0.05

5313 Roofers, roof tilers and slaters 0 79.03 0.09

5314 Plumbers and heating and ventilating engineers 1 73.49 0.66

5315 Carpenters and joiners 0 56.21 0.51

5316 Glaziers, window fabricators and fitters 0 71.84 0.11

5319 Construction and building trades n.e.c. 0 81.45 0.54

5321 Plasterers 0 33.25 0.03

5322 Floorers and wall tilers 0 46.23 0.04

5323 Painters and decorators 0 4.93 0.02

5330 Construction and building trades supervisors 0 87.19 0.2

5411 Weavers and knitters 0 22.3 0

5412 Upholsterers 0 40.9 0.02

5413 Footwear and leather working trades 0 22.68 0.01

5414 Tailors and dressmakers 0 37.88 0.02

5419 Textiles, garments and related trades n.e.c. 0 43.37 0.02

5421 Pre-press technicians 0 33.54 0.02
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5422 Printers 0 24.19 0.04

5423 Print finishing and binding workers 0 32.04 0.02

5431 Butchers 0 9.33 0.01

5432 Bakers and flour confectioners 0 8.46 0.01

5433 Fishmongers and poultry dressers 0 13.91 0

5434 Chefs 0 0.04 0

5435 Cooks 0 1.81 0.02

5436 Catering and bar managers 0 0.94 0

5441 Glass and ceramics makers, decorators and finishers 0 49.16 0.02

5442 Furniture makers and other craft woodworkers 0 41.36 0.03

5443 Florists 0 2.27 0

5449 Other skilled trades n.e.c. 0 52.89 0.33

6121 Nursery nurses and assistants 0 0.05 0

6122 Childminders and related occupations 0 0.08 0

6123 Playworkers 0 4.32 0.01

6125 Teaching assistants 0 0.14 0

6126 Educational support assistants 0 1.85 0.01

6131 Veterinary nurses 0 0.64 0

6132 Pest control officers 0 38.58 0.01

6139 Animal care services occupations n.e.c. 0 5.74 0.01

6141 Nursing auxiliaries and assistants 0 2.1 0.02

6142 Ambulance staff (excluding paramedics) 0 29.74 0.03

6143 Dental nurses 0 0.01 0

6144 Houseparents and residential wardens 0 14.09 0.04

6145 Care workers and home carers 0 1.11 0.05

6146 Senior care workers 0 2.07 0.01

6147 Care escorts 0 2.5 0

6148 Undertakers, mortuary and crematorium assistants 0 3.94 0

6211 Sports and leisure assistants 0 2.94 0.01

6212 Travel agents 0 1.1 0.01

6214 Air travel assistants 0 10.6 0

6215 Rail travel assistants 0 31.68 0.01

6219 Leisure and travel service occupations n.e.c. 0 18.17 0.02

6221 Hairdressers and barbers 0 0.49 0

6222 Beauticians and related occupations 0 3.55 0.01

6231 Housekeepers and related occupations 0 2.43 0.01

6232 Caretakers 0 11.2 0.13

6240 Cleaning and housekeeping managers and supervisors 0 20.03 0.07

7111 Sales and retail assistants 0 9.35 0.38

7112 Retail cashiers and check-out operators 0 9.07 0.01

7113 Telephone salespersons 0 1.66 0.02

7114 Pharmacy and other dispensing assistants 0 0.44 0

7115 Vehicle and parts salespersons and advisers 0 10.6 0.03

7121 Collector salespersons and credit agents 0 33.89 0.08
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7122 Debt, rent and other cash collectors 0 22.21 0.08

7123 Roundspersons and van salespersons 0 20.96 0.01

7124 Market and street traders and assistants 0 22.15 0.02

7125 Merchandisers and window dressers 0 4.94 0.02

7129 Sales related occupations n.e.c. 0 14.86 0.71

7130 Sales supervisors 0 16.96 0.52

7211 Call and contact centre occupations 0 4.85 0.12

7213 Telephonists 0 48.85 0.13

7214 Communication operators 0 20.53 0.03

7215 Market research interviewers 0 3.28 0.01

7219 Customer service occupations n.e.c. 0 2.96 0.07

7220 Customer service managers and supervisors 0 10.76 0.08

8111 Food, drink and tobacco process operatives 0 46.16 0.16

8112 Glass and ceramics process operatives 0 30.33 0.01

8113 Textile process operatives 0 42.4 0.35

8114 Chemical and related process operatives 0 49.65 0.32

8115 Rubber process operatives 0 57.63 0.01

8116 Plastics process operatives 0 88.58 0.07

8117 Metal making and treating process operatives 0 42.9 0.13

8118 Electroplaters 0 65.45 0.02

8119 Process operatives n.e.c. 0 65.86 0.02

8121 Paper and wood machine operatives 0 38.83 0.1

8122 Coal mine operatives 0 44.76 0.01

8123 Quarry workers and related operatives 0 56.61 0.05

8124 Energy plant operatives 0 40.94 0.05

8125 Metal working machine operatives 0 88.98 0.66

8126 Water and sewerage plant operatives 0 94.39 0.05

8127 Printing machine assistants 0 28.82 0.03

8129 Plant and machine operatives n.e.c. 0 38.25 0.51

8131 Assemblers (electrical and electronic products) 0 91.38 0.16

8132 Assemblers (vehicles and metal goods) 0 89.81 0.14

8133 Routine inspectors and testers 0 90.51 0.98

8134 Weighers, graders and sorters 0 18.72 0.04

8135 Tyre, exhaust and windscreen fitters 0 76.12 0.08

8137 Sewing machinists 0 64.53 0.07

8139 Assemblers and routine operatives n.e.c. 0 59.85 0.21

8141 Scaffolders, stagers and riggers 0 63.8 0.07

8142 Road construction operatives 0 61.65 0.04

8143 Rail construction and maintenance operatives 1 78.75 0.01

8149 Construction operatives n.e.c. 0 83.65 0.39

8211 Large goods vehicle drivers 0 28.74 0.84

8212 Van drivers 0 23.7 0.38

8213 Bus and coach drivers 0 44.83 0.1

8214 Taxi and cab drivers and chauffeurs 0 16.73 0.01
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8215 Driving instructors 0 14.03 0.02

8221 Crane drivers 0 92.75 0.08

8222 Fork-lift truck drivers 0 72.36 0.34

8223 Agricultural machinery drivers 0 31.94 0.01

8229 Mobile machine drivers and operatives n.e.c. 0 88.91 0.34

8231 Train and tram drivers 0 46.71 0.01

8232 Marine and waterways transport operatives 0 31.14 0.02

8233 Air transport operatives 0 43.01 0.01

8234 Rail transport operatives 0 61.18 0.03

8239 Other drivers and transport operatives n.e.c. 0 26.62 0.05

9111 Farm workers 0 11.95 0.01

9112 Forestry workers 0 34.34 0.01

9119 Fishing and other elementary agriculture occupations n.e.c. 0 16.08 0.02

9120 Elementary construction occupations 0 68.9 0.8

9132 Industrial cleaning process occupations 0 45.3 0.1

9134 Packers, bottlers, canners and fillers 0 37.43 0.09

9139 Elementary process plant occupations n.e.c. 0 61.39 0.38

9211 Postal workers, mail sorters, messengers and couriers 0 7.17 0.02

9219 Elementary administration occupations n.e.c. 0 13.27 0.03

9231 Window cleaners 0 6.97 0

9232 Street cleaners 0 14.88 0

9233 Cleaners and domestics 0 8.65 0.09

9234 Launderers, dry cleaners and pressers 0 6.61 0.01

9235 Refuse and salvage occupations 0 67.51 0.13

9236 Vehicle valeters and cleaners 0 34.91 0.01

9239 Elementary cleaning occupations n.e.c. 0 8.31 0

9241 Security guards and related occupations 0 31.86 0.27

9242 Parking and civil enforcement occupations 0 22.46 0.02

9244 School midday and crossing patrol occupations 0 8.56 0.01

9249 Elementary security occupations n.e.c. 0 24.23 0.06

9251 Shelf fillers 0 5.27 0

9259 Elementary sales occupations n.e.c. 0 3.56 0

9260 Elementary storage occupations 0 28.56 0.31

9271 Hospital porters 0 2.07 0

9272 Kitchen and catering assistants 0 1.98 0.04

9273 Waiters and waitresses 0 5.91 0.08

9274 Bar staff 0 0.8 0.01

9275 Leisure and theme park attendants 0 8.72 0.01

9279 Other elementary services occupations n.e.c. 0 6.65 0.04

Notes: STEM density corresponds to the percentage of jobs in an occupation that are STEM. STEM disciplines

include Biological/Biomedical, Physical, and Computer Sciences, Technology, Engineering, and Mathematics/Statistics.
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Table 16: STEM Disciplines from the CIP classification

CIP code CIP Standard Major Title

Biological & Biomedical Sciences

26.0101 Biology/Biological Sciences, General

26.0202 Biochemistry

26.0203 Biophysics

26.0204 Molecular Biology

26.0209 Radiation Biology/Radiobiology

26.0401 Cell/Cellular Biology and Histology

26.0403 Anatomy

26.0406 Cell/Cellular and Molecular Biology

26.0502 Microbiology, General

26.0504 Virology

26.0507 Immunology

26.0702 Entomology

26.08 Genetics

26.0901 Physiology, General

26.0908 Exercise Physiology

26.0911 Oncology and Cancer Biology

26.1001 Pharmacology

26.1004 Toxicology

26.1102 Biostatistics

26.1301 Ecology

26.1303 Evolutionary Biology

26.1305 Environmental Biology

26.1307 Conservation Biology

26.1309 Epidemiology

26.9999 Biological and Biomedical Sciences, Other

Computer Sciences

11.0103 Information Technology

11.0104 Informatics

11.0202 Computer Programming, Specific Applications

11.03 Data Processing

11.04 Information Science/Studies

11.06 Data Entry/Microcomputer Applications

11.07 Computer Science

11.08 Computer Software and Media Applications

11.0801 Web Page, Digital/Multimedia and Information Resources Design

11.0802 Data Modelling/Warehousing and Database Administration

11.0803 Computer Graphics

11.0899 Computer Software and Media Applications, Other

11.0901 Computer Systems Networking and Telecommunications
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11.1001 Network and System Administration/Administrator

11.1003 Computer and Information Systems Security/Information Assurance

11.1005 Information Technology Project Management

11.1099 Computer/Information Technology Services Administration and Management, Other

Physical Sciences

40.0201 Astronomy

40.0202 Astrophysics

40.0203 Planetary Astronomy and Science

40.0404 Meteorology

40.05 Chemistry

40.0502 Analytical Chemistry

40.0503 Inorganic Chemistry

40.0504 Organic Chemistry

40.0507 Polymer Chemistry

40.0509 Environmental Chemistry

40.06 Geological and Earth Sciences/Geosciences

40.0601 Geology/Earth Science, General

40.0602 Geochemistry

40.0603 Geophysics and Seismology

40.0605 Hydrology and Water Resources Science

40.08 Physics

40.0806 Nuclear Physics

40.0807 Optics/Optical Sciences

40.1001 Materials Science

40.1002 Materials Chemistry

40.9999 Physical Sciences, Other

Technology

15 Engineering Technology, General

15.03 Electrical Engineering Technologies/Technicians

15.0305 Telecommunications Technology/Technician

15.0399 Electrical and Electronic Engineering Technologies/Technicians, Other

15.04 Electromechanical Instrumentation and Maintenance Technologies/Technicians

15.0401 Biomedical Technology/Technician

15.0499 Electromechanical and Instrumentation and Maintenance Technologies/Technicians, Other

15.0507 Environmental Engineering Technology/Environmental Technology

15.0613 Manufacturing Engineering Technology/Technician

15.0614 Welding Engineering Technology/Technician

15.07 Quality Control and Safety Technologies/Technicians

15.0701 Occupational Safety and Health Technology/Technician

15.0702 Quality Control Technology/Technician

15.08 Mechanical Engineering Related Technologies/Technicians

15.0803 Automotive Engineering Technology/Technician

15.1102 Surveying Technology/Surveying
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15.1202 Computer Technology/Computer Systems Technology

15.1204 Computer Software Technology/Technician

15.1302 CAD/CADD Draughting and/or Design Technology/Technician

15.1306 Mechanical Draughting and Mechanical Draughting CAD/CADD

15.1399 Draughting and Design Technology/Technician, General

15.1503 Packaging Science

Engineering

14 ENGINEERING

14.02 Aerospace, Aeronautical and Astronautical Engineering

14.03 Agricultural Engineering

14.04 Architectural Engineering

14.0501 Bioengineering and Biomedical Engineering

14.0701 Chemical Engineering

14.0801 Civil Engineering, General

14.0803 Structural Engineering

14.0804 Transportation and Highway Engineering

14.09 Computer Engineering

14.0902 Computer Hardware Engineering

14.0903 Computer Software Engineering

14.1001 Electrical and Electronics Engineering

14.1004 Telecommunications Engineering

14.12 Engineering Physics

14.1801 Materials Engineering

14.1901 Mechanical Engineering

14.2001 Metallurgical Engineering

14.2101 Mining and Mineral Engineering

14.2201 Naval Architecture and Marine Engineering

14.2701 Systems Engineering

14.3301 Construction Engineering

14.3501 Industrial Engineering

14.3601 Manufacturing Engineering

14.3701 Operations Research

14.3801 Surveying Engineering

14.3901 Geological/Geophysical Engineering

14.4201 Mechatronics, Robotics, and Automation Engineering

Mathematics & Statistics

27.01 Mathematics

27.03 Applied Mathematics

27.0303 Computational Mathematics

27.0305 Financial Mathematics

27.05 Statistics
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Table 17: Comparison of occupational distributions, UK 2014

Major SOC Code Major SOC Name ASHE BGT Data

1 Managers, directors and senior officials 9.6 9.9
2 Professional occupations 21.5 28.1
3 Associate professional and technical occupations 14.5 22.5
4 Administrative and secretarial occupations 12.1 9.9
5 Skilled trades occupations 8.0 6.5
6 Caring leisure and other service occupations 9.5 6.6
7 Sales and customer service occupations 8.1 6.2
8 Process, plant and machine operatives 6.0 4.2
9 Elementary occupations 10.7 6.1

Correlation 0.94

Notes: Produced by BGT. ASHE is the Annual Survey of Hours and Earnings (ASHE) from the
Office for National Statistics (ONS).

Table 18: Comparison of geographic distributions, UK 2014

Professional Occupations Elementary occupations
ASHE BGT Data ASHE BGT Data

EAST MIDLANDS 5.9 5.8 8.9 6.9
EAST OF ENGLAND 8.6 9.2 9.4 11.3
LONDON 18.3 28.0 11.0 16.6
NORTH EAST 3.7 2.2 4.3 2.7
NORTH WEST 10.6 8.8 11.4 9.1
SCOTLAND 9.9 6.0 8.7 8.4
SOUTH EAST 15.1 16.2 12.6 17.9
SOUTH WEST 8.3 7.2 9.0 9.2
WALES 4.6 1.9 5.0 2.4
WEST MIDLANDS 7.8 8.3 10.6 8.9
YORKSHIRE AND THE HUMBER 7.2 6.3 9.1 6.4
Correlation 0.94 0.84

Notes: Produced by BGT. ASHE is the Annual Survey of Hours and Earnings (ASHE) from the
ONS. BGT data normalized for the fact that ASHE does not have data on Northern Ireland
Employment, while BGT does.
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