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Abstract 

 In recent years technological innovations in drilling and shale stimulation have 
produced a boom in the natural gas extraction industry across the portion of Pennsylvania 
that is situated on the Marcellus Shale.  The development of this resource provides a 
relevant setting in which to study the effects of a natural resource boom on local labor 
markets.  By employing a distributed lag model to estimate the impact of shale 
development on the labor market, we are able to identify and compare the short-run and 
long-run effects on employment and earnings.   We also use quantile methods to allow 
for heterogeneous effects.  To control for confounding factors, we employ synthetic 
controls in a way similar to a difference-in-difference.  Our findings indicate that fracking 
has a positive and substantial effect on total employment but little impact on earnings, 
suggesting a slack labor market.  In addition, we find evidence consistent with “Dutch 
disease”—a situation where a natural resource boom contributes to a contraction in the 
traded-goods sector.  We also demonstrate how replacing the distributed lag model with a 
standard assumption that all shale development has an equal impact on employment 
regardless of timing can produce misleading results.  Finally, we document that while on 
average fracking contributed only about 2% of job growth, in a few counties it was 
responsible for as much as 10% of total job creation.   
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1. Introduction 

Unconventional methods of extracting natural gas from shale formations have 

revolutionized the energy landscape in the United States.  If fugitive emissions from the 

extraction process are properly controlled, natural gas provides an attractive alternative to 

fuels like coal as it emits less carbon and other pollutants per unit of heat produced.  

Given these advantages, new techniques for drilling and stimulating natural gas wells 

(e.g., the technique of hydraulic fracturing or “fracking”) that dramatically lower 

production costs have become very popular.  There are, however, potential risks to health 

and the environment that accompany this intensive extraction process.  Fracking requires 

the injection of large quantities of water, accompanied by a mix of potentially harmful 

chemicals, into the ground at high pressure.  This creates a risk of contamination of local 

water supplies due, for example, to faulty well casing or cement.1  Homeowners 

dependent upon private wells are particularly vulnerable to this contamination risk, and 

research has shown that this risk is capitalized into housing prices.2 

Despite these risks, fracking has proceeded forward at a rapid pace in many states 

(e.g., North Dakota, Texas, Louisiana, Colorado and Pennsylvania) and likely will do so 

in the not-too-distant future in several others (e.g., New York and North Carolina).  This 

is largely a result of (i) lucrative leases signed by property owners in exchange for 

granting mineral access to drillers, and (ii) the prospects for job creation and increased 

economic activity.  The latter is particularly important as shale resources are often located 

in economically depressed areas.  It is this aspect of shale gas development that we 

explore in this research.   

There are varied reports and claims predicting huge employment from fracking3.  

A projection published by IHS Global Insights, claimed that during 2012 the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 SEAB. 2011.  Secretary of Energy Advisory Board, Shale Gas Production Subcommittee Second Ninety 
Day Report, November, 18. U.S. Department of Energy.  
2 In particular, Muehlenbachs, Spiller and Timmins 2014 identified costs from the risk of groundwater 
contamination as large as 22% of housing value for homes located in close proximity to drilling activity.  
See also Steck and Timmins (2014), “The Impact of the Fracking Boom on Rents in Pennsylvania.” 
3 See “Fracking Nonsense: The Job Myth of Gas Drilling” and the studies cited therein.  
(http://www.cepr.net/index.php/blogs/cepr-blog/fracking-nonsense-the-job-myth-of-gas-drilling)!
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unconventional oil and natural gas industries in the US would support 1.7 million jobs.4  

This report predicted that number would increase to 2 million jobs by 2020.  Tom 

Corbett, the current governor of Pennsylvania claimed in a recent opinion piece and in an 

advertisement for his re-election campaign that fracking has brought over 200,000 new 

jobs to Pennsylvania alone.5  A report prepared by the Marcellus Shale Education & 

Training Center, a collaboration between the Pennsylvania College of Technology and 

Penn State, claims that fracking supported between 23,385 and 23,884 new jobs in 2009, 

an early year in development of the shale (Kelsey et al. 2011).  Another industry group, 

the Marcellus Shale Coalition, reported in 2011 that shale development was responsible 

for 139,889 jobs at the end of 2010.  It predicted that this number would grow to 181,335 

at the end of 2012 and 256,420 by the end of 2020 (Considine et al. 2011).  These 

numbers are all based on forecasts, extrapolations of industry surveys and analyses 

relying on arbitrary comparison groups.   

In this paper we use detailed data from the Pennsylvania Longitudinal Employer-

Household Dynamics (LEHD) program to estimate the effect of drilling activity on net 

job creation over time at the industry and county level.  In addition to the magnitude and 

sign of the effect of drilling on employment, we are interested in the duration and 

composition of any realized job creation.  Which industries experience job growth?  Do 

the new jobs last?  These are crucial questions to any analysis of the employment effects 

of fracking as they address concerns that a booming resource sector may have 

undesirable long-term consequences.  In addition to estimating the marginal effect on the 

mean, we consider the marginal effects at other points of the distribution by using a 

quantile regression approach adapted to panel data.  This allows us to consider the 

possibility of heterogeneous effects.  To what extent are the effects of drilling uniform 

and to what extent do they vary across area?  By answering these questions we provide a 

more complete picture of the labor market impacts of the fracking boom on counties in 

Pennsylvania. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 “America’s New Energy Future:  The Unconventional Oil and Gas Revolution and the US Economy.”  
IHS Global Insights.  2012. 
5 See Op-Ed, “Protecting our environment growing our economy” (http://timesleader.com/news/energy-
news/1028114/Protecting-our-environment-Growing-our-economy). 
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2.  Background 

 Much of western Pennsylvania sits on top of the Marcellus Shale formation.  This 

underground rock formation contains a rich reservoir of natural gas that, until recently, 

was largely untapped because the low permeability of the shale made natural gas 

extraction economically unviable.  A series of technological innovations changed this.  

One such innovation is hydraulic fracturing or “fracking.”  After the well is drilled, 

water, chemicals and sand are injected into the shale rock with extreme pressure.  The 

pressure fractures the shale surrounding the wellbore and increases permeability.  Other 

major innovations include reductions in the cost of directional drilling.  Often, gas 

deposits are located deep beneath the earth’s surface (usually 5,000-20,000 feet down).  

After a vertical wellbore is drilled down to depth, horizontal drilling is used to tap greater 

portions of the broad shale formation.  This helps reduce both cost and surface 

disruptions per unit of natural gas extracted from the shale. 

 Beginning in the mid-2000s these unconventional methods increased the 

profitability of natural gas wells.  Figure 2.1 shows that after these technologies became 

available, the number of wells spudded (“spudding” refers to the initialization of the 

process of drilling a new well) grew quickly.  Today, the number of new wells being 

spudded remains high, though is lower than at its peak at the end of 2011.  In 2011, 1,964 

new wells were spudded in Pennsylvania alone.  Through 2012, 39 (of 67) Pennsylvanian 

counties had natural gas wells, though the majority of wells were located in 6 counties.   

 

Figure 2.1A 
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Figure 2.1B 

 

 

 Broadly speaking, there are three channels through which fracking could affect 

local employment.  We call these the “direct”, “indirect”, and “induced” effects.  While 

we do not attempt to estimate these channels separately, it is instructive to briefly 

consider each.  The direct effect follows from the employment demand generated by the 

need for workers directly involved in the process of bringing a new well online and 

maintaining its operation.  Drilling and stimulating a new well is a labor intensive task 

that requires workers across a broad array of skill sets.  One report stated that a single 

Marcellus well requires about 420 individuals from 150 different occupations (Brundage 

et al. 2011).  That report concludes that 80% of this labor is used during the drilling and 

stimulation stages of the well’s life.  It also notes that unconventional drilling and 

stimulation methods require a very specific skill set.  During the early stages of 
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development of the Marcellus Shale, no companies based in Pennsylvania had this 

expertise.  Consequently, a large portion (the authors claim as much as 70-80%) of 

workers directly involved in bringing new wells online were transient out-of-state 

workers.  It is believed that this portion has been declining over time as resident firms 

acquire these skills, but data on this are scarce.  The left panel of Figure 2.2 shows 

growth in Pennsylvania employment counts in the oil and natural gas extraction industry.   

 

Figure 2.2 

 
Source:  Pennsylvania LEHD 

 

Development of the Marcellus Shale is thought to affect local labor markets 

through other, less direct channels.  These indirect effects flow from goods and services 

that support but are not directly involved in the fracking process.  For example, the 

construction industry may expand in response to the need to build new and maintain 

existing roads and infrastructure.  Wholesalers may experience increased demand if they 

supply materials to the natural gas extraction industry.   
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Finally, the induced effect is realized from labor demand shifts associated with 

new wealth in the community.  Transient workers fill hotel rooms and patronize 

restaurants and retail stores.  Property owners receive lease and royalty payments from 

natural gas companies.  This increased wealth may lead them to demand more goods and 

services.  Increased tax revenues may also lead to new public projects and employment 

opportunities in the public sector.  In our analysis, these three channels will be evident in 

our consideration of the impacts of shale gas development on different industries (e.g., 

construction versus retail), but we will not attempt to parse them out further. 

 

3.  Previous Literature 

Earlier in the paper, we cited a number of studies predicting large employment 

gains as a result of the rapid growth of shale gas in the United States.  There have been 

fewer direct analyses, however, of realized employment impacts in places where 

hydraulic fracturing has been going on for years.  This deficit exists despite there being 

well-established techniques that have been applied in other settings to evaluate the 

employment spillover effects from exogenous shocks to local employment, such as those 

caused by energy booms and the entry of a large production plant.  Marchand (2012), for 

example, examines the differential growth in employment and earnings between local 

labor markets with and without energy resources in Western Canada.  Focusing on 

periods of booms (1971-1981, 1996-2006) and bust (1981-1991) in energy markets, he 

finds significant evidence of impacts on employment and earnings in energy sectors and 

modest impacts in non-energy sectors (particularly construction, retail trade, and 

services) during boom periods. 

Moretti (2010) estimates a long-term employment multiplier—i.e., the long-term 

change in the number of jobs in tradable and non-tradable sectors generated by an 

exogenous increase in the number of jobs in the tradable sector.  He develops a 

conceptual framework that predicts an increase in employment in local non-traded sectors 

(e.g., restaurants, real estate, cleaning services, construction, medical services, and retail) 

in response to an exogenous shock to employment in a traded goods sector.  This 

response is a simple result of the shock leading to more workers using their additional 
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wages to demand more goods and services in the locality.  The size of this effect depends 

upon consumer preferences for non-tradables, the type of jobs added with the exogenous 

shock (i.e., skilled v. unskilled), and offsetting equilibrium impacts on wages and prices, 

which depend upon the elasticities of local labor and housing supply. 

While the effect on the local non-tradable sector is theoretically clear in Moretti’s 

framework, the effect on other tradable good sectors is a priori unclear.  In particular, the 

city-wide increase in labor costs caused by the exogenous shock hurts employment in 

other tradable goods sectors.  Because tradable goods sectors’ prices are determined 

outside the local area, they do not adjust to reflect local economic conditions.  Some of 

the employment in these sectors will ultimately be shifted to other locations where labor 

demand is not as high.  Moretti tests this conceptual framework using a model similar to 

ours, which we describe in sub-section 4.1. 

Closely related to the concept of resource booms and local labor market shocks is 

the “Dutch disease” model from Corden and Neary (1982).  This model suggests there 

should be two effects from expansion of resource sector: (1) a resource movement 

effect—increased labor demand in the resource sector pushes wages up and raises 

production costs for non-tradable and tradable sectors (causing employment share in each 

of these sectors to contract) and (2) a spending effect—higher wages drive up local 

incomes, inducing an increase in demand for tradables and non-tradables for given 

prices.  These effects can be (partially) offsetting for the non-traded sector.  The price of 

inputs may go up, but increased demand for non-traded goods may partially or fully 

offset this effect.  Thus the net effect on the non-traded sector cannot be signed a priori.   

When demand for traded goods increases, the local firms in this sector do not benefit.  

These firms face a contraction in employment without an offsetting increase in demand.  

This contraction may be further exacerbated by a booming non-traded sector, leading to 

an expectation that this sector will contract. 

Black, McKinnish and Sanders (2005) look at local shocks associated with a 

resource boom or bust.  In the 1970's, there were a series of oil shocks driven by political 

turmoil in the Middle East.  These shocks drove up the price of coal in the US, and 

created a positive economic shock in areas that had coal resources to exploit.  By 1983, 
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prices had dropped and the boom turned into a bust.  Since oil shocks came from outside 

the local community, it is reasonable to think that they would be uncorrelated with other 

local unobservable shocks, and therefore provide an exogenous source of variation with 

which to identify effects that ripple throughout the local labor market.  How were non-

mining sectors affected by shocks to the mining sector?  How did these effects differ 

between sectors producing local goods and those producing traded goods?  The answers 

to these questions have broader implications for plant closures, government incentives for 

locating a business, and other local economic shocks on other sectors.  Measuring these 

effects is difficult, because we typically don't have a valid counterfactual (i.e., what 

would have happened had the plant not been built).  Black, McKinnish and Sanders 

(2005) look within the Appalachian region and compare counties with and without coal 

resources—using the latter as a control group in a difference-in-differences 

analysis.    Producers of local goods will experience an increase in labor costs, but they 

will also experience an increase in demand.  On the whole, this could lead to an increase 

in employment.  Local firms that sell their output nationally or internationally, however, 

may be expected to contract as they experience an increase in labor costs but no 

offsetting increase in demand.  The authors find evidence of modest employment 

spillovers into sectors with locally traded goods but not into sectors with nationally 

traded goods.  In particular, one mining job created during the boom period creates 0.174 

local sector jobs, while one mining job lost during the bust period destroys 0.349 local 

sector jobs.  No evidence of any ripple effects (positive or negative) is found for traded 

goods sectors, suggesting no evidence of the "Dutch disease".  Significant effects on 

earnings, poverty, and the age and gender composition of the population are found, 

however, using the same difference-in-differences strategy.6 

Fetzer (2014) uses variation in the location of exploitable shale deposits to 

identify impacts of shale gas development on employment in different sectors.  By 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 This analysis raises an interesting question about the use of national resource shocks to identify local 
impacts—particularly those associated with industries that sell nationally (or internationally).  If the whole 
country is undergoing an oil price shock, might we think manufacturers who sell nationally would contract 
their employment anyway?  When oil prices drop, the resulting boost to the national economy might lead 
them to increase their sales for reasons that have nothing to do with drops in local wages. 
!
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relying on cross-sectional variation in drilling activity (observed in 2012), this paper 

looks for long-run changes in employment that may be attributed to technological 

innovations that made previously unviable deposits viable.  Despite rising labor costs, he 

does not find evidence of Dutch disease (i.e., contraction) in the tradable goods sector, 

while the non-tradable goods sector does contract.  He claims that this arises because 

cheaper energy is providing a source of local comparative advantage.  This should be 

particularly true in places with pipeline constraints—binding outflow capacity forces the 

extracted gas to be consumed locally, forcing down local gas prices.  He also shows that a 

drop in energy prices is enough to offset increased labor costs, which can explain why the 

local non-traded goods sector contracts while the tradable goods sector does not.   

Allcott and Keniston (2014) also look for evidence of the Dutch disease as a result 

of resource booms.  Using panel data on US counties going back to the 1960's, they 

develop a county level measure of resource abundance.  Using an empirical strategy 

similar to that of Bartik (1991), they then exploit national resource booms and busts 

(measured by national level employment in oil and gas).  In particular, they estimate the 

effect of those shocks, multiplied by county-level resource abundance, on county-level 

economic measures, including employment in oil and gas, other sectors, wages, and 

factor productivity.  They use a reduced form, and without the accompanying first-stage 

regression, one cannot draw structural interpretations.  The results do indicate, however, 

that a resource boom that doubles national employment in oil and gas will increase total 

employment in a county with one standard deviation larger oil and gas endowment by 3.5 

percent.  Wages also rise, suggesting the possibility for Dutch disease.  There is, 

however, no such evidence—manufacturing employment, revenues, number of 

establishments and capital investments turn out to be pro-cyclical with oil and 

gas.  Exploring this result further, the authors find evidence that manufacturers who 

benefit most are those that are upstream of the oil and gas sector, and benefit by 

supplying it with inputs, and those that sell directly to the local population.  Those that 

show no benefits are those with low transportation costs, which can sell more easily in 

other markets.  However, even these firms do not suffer costs, as their labor appears to be 

less substitutable with that used in the resource sector.  
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Finally, Maniloff and Mastromonaco (2014) use a panel dataset containing 

economic outcome data such as employment and wages as well as oil and natural gas 

data to quantify the local economic impacts of fracking activity across the United States.  

Their empirical strategy uses a first-differenced model to estimate the effect of changes in 

shale development between 2000 and 2010 on changes in an economic outcome over the 

same period.  Relying on this low-frequency variation they find significant, though 

somewhat small impacts of shale development on economic outcomes.  Breaking down 

their results by industry, they focus on the traded-goods sector in order to look for 

evidence of Dutch disease.  They find no statistically significant effect of shale 

development on wages or employment in this sector.   

 

3.  Data 

3.1  Pennsylvania LEHD 

 Our data on employment and earnings outcomes come from the Longitudinal 

Employer-Household Dynamics (LEHD) program.  LEHD is a product of a collaborative 

effort between the Census Bureau and state unemployment insurance agencies.  It uses 

unemployment insurance administrative records, other administrative data and data from 

censuses and surveys to link employers to employees and create extremely detailed data 

on local labor markets.  Although the source data of LEHD is at the individual/firm level, 

we use a publicly available product called the Quarterly Workforce Indicators (QWI).  

QWI is a panel data set containing 30 quarterly employment aggregates at the county 

level within very specific industries.  These indicators include data on worker flows 

(hires, separations, turnover,…), employment levels, and earnings data.  The data have 

been aggregated from the individual /firm level up to the county/industry level at a 

quarterly frequency, allowing the researcher to identify labor market trends within or 

across industries and over time.  One outcome of particular interest is net job flows, that 

is, to investigate how many jobs are added to local economies because of the growth in 

the fracking industry  Net job flows for a firm are consistent with the following identity: 
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it it it it itFirm JobChange FirmJobGains FirmJobLoss Hires Separations= − = − 7 

Other relevant outcomes include earnings and employment levels.   

 There is an important caveat related to measurement error in these data that 

applies specifically to the fracking industry in Pennsylvania.  While the history of 

shallow oil and gas extraction in Pennsylvania goes back a long time, the Marcellus Shale 

was not developed intensely until hydraulic fracturing methods were developed and made 

available in the mid-2000s.  The “unconventional” techniques required to develop shale 

resources, such as directional drilling and stimulation of oil/gas production, require very 

specialized skills.  Very few Pennsylvanian companies have this expertise and it is very 

common for energy companies and contractors to be brought in from out of state to 

develop the shale.  As mentioned above, one estimate places the portion of shale 

exploration and development employees from out of state at 70-80% (Brundage et al. 

2011).  Many of these workers are transient.  It is also presumed that over time, as 

resident PA employees and firms acquire experience with these unconventional 

techniques, this portion will decrease.  Because the LEHD sampling is based on state UI 

records, it is unclear what portion of these out-of-state workers are included in the PA 

data.  Therefore, we must be aware of the possibility that, in the drilling and gas 

extraction industries, the Pennsylvania data may systematically undercount the number of 

workers. 

Industries are classified according to the North American Industry Classification 

System (NAICS).  Employees at an establishment are classified into industries based on 

the primary form of business at that establishment.  We focus on the most general NAICS 

codes: those denoted by two-digit codes.  These include: construction, manufacturing, 

and mining, quarrying, and oil & gas extraction.  The Pennsylvania QWI includes 

employment figures for all NAICS codes that are present in the state.  Table 3.1A 

contains a summary of quarterly net job flows by industry for the 39 counties on the 

shale. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 See “LED:  Quarterly Workforce Indicators 101”, available at: 
http://lehd.ces.census.gov/applications/qwi_online/ 
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Table 3.1A:  Summary Statistics: Net Job Flows by Industry, 1997-2011 

 Count Mean Std Dev 

Total Employment 2301 267.3068 2734.203 

Agriculture, Forestry, Fishing and Hunting 2236 .6690519 34.23508 

Mining, Quarrying, and Oil and Gas Extraction 2077 8.70053 79.20391 

Utilities 2155 -.0709977 82.59438 

Construction 2301 24.54846 488.0518 

Manufacturing 2301 -20.48805 355.0948 

Wholesale Trade 2300 8.675652 112.7131 

Retail Trade 2301 30.98827 636.5299 

Transportation and Warehousing 2287 11.10582 203.2477 

Information 2271 .7058565 199.0753 

Finance and Insurance 2287 5.836467 450.1261 

Real Estate and Rental and Leasing 2214 3.316621 73.75559 

Professional, Scientific, and Technical Services 2263 20.83031 205.2115 

Management of Companies and Enterprises 1932 1.766563 177.5202 

Administration and Support and Waste Management and 

Remediation Services 

2237 25.10237 378.6373 

Educational Services 2297 24.22203 753.6621 

Health Care and Social Assistance 2301 60.31595 1045.031 

Arts, Entertainment and Recreation 2210 22.06516 515.0533 

Accommodation and Food Services 2301 26.35072 366.2785 

Other Services 2301 10.76271 133.971 

Public Administration 2301 5.480661 263.5775 

Observations 2310   
Note:  Sample includes only counties on the Marcellus Shale. 
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Table 3.1B:  Summary Statistics: Average Monthly Earnings by Industry, 1997-2011 

 count Mean sd 

Total Employment 2340 2652.245 355.5052 

Agriculture, Forestry, Fishing and Hunting 2340 1753.468 526.2942 

Mining, Quarrying, and Oil and Gas Extraction 2326 3606.32 1454.65 

Utilities 2339 4512.11 1374.507 

Construction 2340 2826.31 509.5366 

Manufacturing 2340 3310.409 636.4161 

Wholesale Trade 2340 2993.995 820.2565 

Retail Trade 2340 1568.049 258.1799 

Transportation and Warehousing 2340 2230.468 563.882 

Information 2340 2371.067 876.848 

Finance and Insurance 2340 2886.411 678.6422 

Real Estate and Rental and Leasing 2336 1824.88 820.5267 

Professional, Scientific, and Technical Services 2340 2869.698 997.7314 

Management of Companies and Enterprises 2339 2882.882 1948.379 

Administration and Support and Waste Management and 

Remediation Services 

2332 1665.078 556.5345 

Educational Services 2340 2755.038 518.981 

Health Care and Social Assistance 2340 2315.187 454.1971 

Arts, Entertainment and Recreation 2332 1025.335 355.0262 

Accommodation and Food Services 2340 802.4885 180.4559 

Other Services 2340 1350.069 387.7079 

Public Administration 2340 2449.15 562.2804 

Observations 2340   
Note:  Sample includes only counties on the Marcellus Shale. 

 

Standard deviations are very large across all industries.  This is being driven 

mainly by cross-sectional variation.  The sample includes Allegheny County, home of 

Pittsburgh and the largest population center in the region (over 1.2 million), as well as 

Cameron County, which according to the Census is home to 5,085 individuals.  The 
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discrepancies in sample size reflect missing data.  In these cases, most of the missing data 

was suppressed by the US Census Bureau because it did not meet their confidentiality 

requirements. 

The period covered by these data is economically complex, containing years of 

sustained economic growth,  the financial collapse, and subsequent recession.  However, 

the positive means for most industries suggest that, on average, this was a period of 

expansion.  The notable exception is in manufacturing; on average, counties lost 20.5 

manufacturing jobs per quarter over this period.  

Table 3.1B presents similar summary statistics for average monthly earnings.  The 

Mining, Quarrying, and Oil and Gas Extraction industry is among the highest in average 

monthly earnings.  Earnings in Accommodation and Food Services is the lowest.  Some 

of this difference comes from the fact that the data do not differentiate between full-time 

and part-time workers. 

 

3.2  Drilling Activity 

We obtain a detailed panel data set on wells in Pennsylvania from DrillingInfo, an 

oil and gas industry analytics and data provider.  The data include detailed information on 

the location and spud date of each well.  The dataset includes and differentiates between 

both vertical and horizontal wells—the vast majority are horizontal wells.  These wells 

have a significantly more labor intensive drilling process and are likely to have larger 

employment spillover effects.  For the purposes of this analysis, we aggregate all well 

spuds up to the level of the county and quarter. 

 

3.3 County Level Covariates 

 We also incorporate county characteristics into the estimation procedure.  These 

include population density, median household income, percent of population with a 

college degree, median age, unemployment rate, and county sectoral mix.  These data all 

come from the County and City Data Book, 2000, a publication of the US Census Bureau.   
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4.  Empirical Methods 

 In order to explore the local labor market implications of shale gas development, 

we estimate a series of econometric models.  We build off of the simple and intuitive 

model proposed by Moretti (2010): 

 

 , , , , , ,j c t i c t t j c tdY dYα β τ ε= + + +   (1) 

 

, ,j c tdY  is the number of net jobs flows for industry j, county c, over quarter t.   This model 

is used to describe an employment spillover into industry j from an exogenous shock to 

net job flows in industry i (e.g., employment shocks in the mining, quarrying, and oil and 

natural gas extraction industry).  α  is a constant describing the mean net job flows for 

industry j and tτ  is a period fixed effect.  Both are common to all counties. 

When applied to study the effects of shale gas development on local labor market 

outcomes, equation (1) is limited in a number of ways.  First, the net job flow data from 

the natural gas extraction industry may suffer from systematic measurement error, which 

would cause our estimates of β  to overstate their true values.  Second, our aim is to 

study the short-, medium-, and long-run effects of shale gas development on labor market 

outcomes.  Equation (1), however, only allows for uniform contemporaneous 

employment spillovers between industries.  Third, since net job flows for industries j and 

i are determined simultaneously, the model will suffer from endogeneity.   

 We first replace equation (1) with a distributed lag model: 

 

 , , 0 ,t 1 , 1 2 , 2 , ,...  j c t c c t c t t c t c j c tdY dW dW dW Zβ β β θ υ λ ε− −= + + + + + +   (2) 

 

where ,c tdW  is the number of new wells drilled in county c during period t.  While similar 

in spirit to equation (1), this specification addresses many of the shortcomings of our 

empirical setting.  Using data on new wells rather than net job flows in the natural gas 

extraction industry circumvents the issue of systematic measurement error in that 
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industry except when that is the outcome industry.  In addition, using new wells as a 

regressor broadens the number of channels through which development of shale 

resources may impact employment.  Equation (1) takes changes in the boom industry as 

given.  It fundamentally cannot include in the estimation a significant portion of the 

direct effect on employment.  Equation (2), on the other hand, will estimate a net effect of 

the three channels through which an additional well stimulates employment in an 

industry.   

Endogeneity is still a concern because the location and timing of new wells is 

nonrandom.  However, by controlling for observable covariates cZ  and a fairly general 

set of unobservable covariates, we can be confident that ,c tdW is conditionally 

uncorrelated with the residual (
  
ε j ,c,t ).   This set of unobservables includes time-varying 

effects that are common across counties and also county-specific unobservables ( cλ  ) that 

have time-varying factor loadings ( tυ ).  Note that controls for time-invariant and county 

specific effects as well as effects that are constant across counties but vary over time are 

special cases of this factor loading specification.  We use synthetic control methods to 

control for these potentially confounding variables as discussed below. 

A distinguishing feature of our empirical strategy is the inclusion of a series of 

new well lags on the right-hand side.  These lags allow us to track the impact of a single 

new well on industry employment over time.  Identification of the parameters 0, 1,...{ }β β  

will enable a clean differentiation between short-run and long-run effects.    

A standard empirical approach for estimating the impact of a natural resource 

boom on local economic activity is to use a model based on first-differences over a time-

horizon lasting a set number of years.  (For examples specific to oil and natural gas see 

Allcott and Keniston (2014), Maniloff and Mastromonaco (2014), Marchand (2012) and 

Weber (2013)).  In the context of shale development, these strategies typically estimate 

the total effect of shale development (e.g., by using an indicator of treatment, total oil and 

gas production, total wells, etc.) on the total change in the outcome of interest from the 

before the boom through the end of the boom.  In this context, those strategies could be 

represented by the following model: 
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 , ,2000 2010 ,2000 2010 , , j c c t c t c j c tdY dW Zγ θ υ λ ε− −= + + +    (3) 

 

Equation (4.3) can be interpreted as quantifying the mean effect of each new well 

installed during the interval from 2000 to 2010 on the change in employment from 2000 

to 2010.  By pooling new wells across time this coarse approach ignores when the well 

was installed and how long it has been operating.  It identifies only an average of the 

impacts of each new well on the total change in employment over the entire horizon.  The 

resulting estimate cannot be classified as a short-run or long-run effect because it is 

actually an average of them both—if new wells affect employment in a time-varying 

manner then the estimate for γ  will depend on the timing of the new well installations.  

For example, if (as is the case) most of the new wells are spudded toward the end of the 

interval considered, then the estimate will pick up more of the short-run effects.  If the 

bulk of the new wells were spudded towards the beginning of the interval then the 

estimate will include more of the long-run effect.   

Inclusion of the distributed lag terms in equation (2) improves upon the standard 

approach described in (3) by allowing for the estimation of a rich set of policy-relevant 

parameters.  These parameters let the researcher differentiate between employment 

effects that are contemporaneous with spudding and those that are lagged.  The main 

drawback to inclusion of a large (and theoretically infinite) number of lagged terms is the 

identification challenge associated with the large number of covariates.  We address this 

in the following section. 

  

4.1.1 Identification of Distributed Lag Terms 

 Equation (2) is an example of a distributed lag model.  Distributed lag models are 

appealing because they do not impose an arbitrary cutoff for the impulse response, but 

rather allow the data to dictate how quickly it goes to zero.  However, allowing for an 

infinite number of RHS parameters complicates identification.  We use a polynomial 
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inverse lag (PIL) model to impose structure on the parameters estimates for these lagged 

effects in order to achieve identification. 

 The PIL model imposes structure on the  βi ’s by assuming they have the 

following form: 

 

 
2 (1 * )

n
j

i j
j

a
k i

β
=

=
+∑   (4) 

 

{ }
2

n

j j
a

=
 are structural parameters that describe the impulse response to the introduction of 

a new well (i.e. how does employment increase over time).  Note that the j subscript runs 

from 2 to n.  Unlike other distributed lag models, this model allows for a very flexible 

response.  Using n=3 allows for diminishing effects.  Using 4n ≥  allows for effects that 

are non-monotonic over time.  In any case, the PIL model is designed so that the lagged 

effects eventually go to zero.  When we estimate this model, we focus on the case where 

n = 4 because it balances the constraint of a limited sample size with the desirability of a 

flexible impulse response function.  The k in the denominator is a parameter that 

determines how quickly the imposed polynomial term plays out and the lagged effects go 

to zero.  Rather than explicitly estimate this parameter simultaneously with the rest of the 

parameters, we estimate the model conditioning on a fixed value of k.  We repeat this for 

a range of integer values for k and pick the one that best fit the data (highest R-squared), 

which was k = 10.   

In order to see how the model works, we write it out explicitly for the case of 

4n =  and 1k = . 

 

 32 4
2 3 4(1 ) (1 ) (1 )i

aa a
i i i

β = + +
+ + +

  (5) 

 

Incorporating this expression into the original estimation equation:  
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[ ] 32 4

, , 2 3 4 , , 12 3 4

3 32 4 2 4
, 2 , 3 , ,2 3 4 2 3 4

2 2 2

...
3 3 3 4 4 4

j c t c t c t

c t c t j c t

aa adY a a a dW dW

a aa a a adW dW ε

−

− −

⎡ ⎤= + + + + + +⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤+ + + + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (6) 

 

Rearranging terms yields: 

 

 

  

dYj ,c,t = a2(dWc,t +
dWc,t−1

22 +
dWc,t−2

32 +
dWc,t−3

42 + ...)+

a3(dWc,t +
dWc,t−1

23 +
dWc,t−2

33 +
dWc,t−3

43 + ...)+

a4(dWc,t +
dWc,t−1

24 +
dWc,t−2

34 +
dWc,t−3

44 + ...)+ ...+ ε j ,c,t

= a2Ω2,t + a3Ω3,t + a4Ω4,t + ...+ ε j ,c,t

  (7) 

 

Typically, finite representations of the ,j tΩ ’s are used to approximate the actual values.  

However, since the total number of lags with positive numbers of fracked wells in PA is 

finite, we can use our data to calculate the true values of ,j tΩ ’s: 

!
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dWdW dW
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dWdW dW
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dWdW dW
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− −
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Ω = + + + +⎢ ⎥− +⎣ ⎦

⎡ ⎤
Ω = + + + +⎢ ⎥− +⎣ ⎦

⎡ ⎤
Ω = + + + +⎢ ⎥− +⎣ ⎦

  (8) 

 

where 0,cT  denotes the first period in which a well was drilled in county c.  In other 

words, for any county c and for all 0r > , 
0,,

0
cc T rdW − = .  From here it is a simple matter 

of estimating equation (7) and backing out the parameters in (2). 
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4.1.3 Controlling for Unobservables Using Synthetic Controls 

 To protect against correlation between new wells and the error term in factor model 

(4.2) want to control for unobservables that are county-specific and have time-varying 

effects.  Suppose the counterfactual outcomes (i.e., the labor market outcomes that would 

have been realized in the absence of shale development), can be described by the factor 

model: 

 

 0 0
, , , ,  j c t t c t c j c tdY Zθ υ λ ε= + +   (9) 

 

With data for 0
, ,j c tdY in hand, controlling for unobservables would be a simple matter of 

differencing.  However, this is a case of the classic missing data problem: we do not 

observe both , ,j c tdY  and 0
, ,j c tdY  simultaneously.  As a feasible alternative, we estimate 

0
, ,j c tdY  following an approach outline by Abadie, Diamond and Hainmueller (2010) 

(ADH).   

 We introduce some notation before outlining their approach.  Let 01,2,...,Tt =  be 

the set of time periods before fracking began.  Let J denote the set of counties with shale 

resources that can potentially be developed and let S denote the “donor” group, that is, 

the set of counties without shale resources.  For each county in J, we will recover a 

synthetic county that will be a weighted average of the counties from the donor pool.  Fix 

a county, i J∈ .  Suppose there is a set of weights { }* *
s s S

W w
∈

=  such that: 

 

 

*
, , , , 0

*

1,2,...,s j s t j i t
s S

s s i
s S

w dY dY t T and

w Z Z
∈

∈

= ∀ =

=

∑
∑

  (10) 
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The key result of ADH is that if (10) holds and (2) and (9) describe the true model, then 

under standard conditions8: 

 

 0 *
, , , , 0j i t s j s t

s S
dY w dY

∈

− =∑   (11) 

 

in expectation for 0t T>  .  Denote 
   
d Yj ,s,t

0 ≡ ws
*

s∈S
∑ dYj ,s,t .  Thus 

   
d Yj ,s,t

0  is a natural estimator 

for 0
, ,j i tdY .  Estimation of 0

, ,j i tdY  then becomes a matter of finding *W .   Since a set of 

weights satisfying (10) might not exist, we use the weights that minimize the differences 

between the weighted averages and the outcome/covariates of county i so that (10) come 

as close to holding as possible. 

 This approach relies on models (2) and (9), which make two key assumptions.  

The first assumption is that shale gas development has no effect on the outcome before 

development of the shale starts.  By choosing a conservative 0T  this assumption is 

plausible.  The second assumption is that there are no spillovers from counties on the 

shale into donor counties.  As a robustness check we restrict the donor pool to include 

counties within PA that are not on the shale and also that do not border any counties on 

the shale.  It is reasonable to think that any spillovers would be concentrated in counties 

that are geographically proximal to the shale development.  For a second robustness 

check, we use a donor pool comprised of New York counties that also sit on the 

Marcellus Shale.  These counties are similar to the PA counties geologically and 

economically.  The main difference between these New York counties and those in 

Pennsylvania experiencing the fracking boom is that New York has a state-wide 

moratorium on fracking.  Thus, New York seems to offer a promising set of possible 

donor counties for generating the synthetic controls.   

 Our baseline approach is to use the estimated synthetic controls in a framework 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 These “standard conditions” include: 1) 

  
υt 'υt

t=1

T0

∑  is non-singular, 2) terms 
  
ε j ,c,t  are independent across 

time, 3) 
  
ε j ,c,t  are also mean-independent of 

  
Zc ,λc{ }c∈S

 and 4) for some even p, the p-th moments of 
  
ε j ,c,t  

exist for  c ∈S  and   t ∈{1,...,T0} . 
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similar in spirit to difference-in-difference in order to control for both observed and 

unobserved confounding variables (including unobservables with time-varying factor 

loadings).  Explicitly, we use OLS to estimate: 

 

 
   
dYj ,c,t − d Yj ,c,t

0 = Ω2,ta2 +Ω3,ta3 +Ω4,ta4 + (ε j ,c,t − ε j ,c,t
0 )   (12) 

 

It is then a simple exercise to back out the original β  parameters.  The resulting estimate 

for lβ  can be interpreted as the marginal effect on mean net job flows in industry j, 

county c, during period t+l from a new well spudded during period t.  For ease of 

interpretation we will report the cumulative net job flows effect: 0 ...l lc β β= + + .  Since 

net job flows are additive, lc  represents the total net job change, or the total employment 

effect from the time the new well was drilled through l quarters later.    

 

4.1.4 Inference 

 Abadie and Imbens (2008) show that using the traditional bootstrap to perform 

inference for nearest-neighbor matching estimators with a fixed number of neighbors will 

produce biased standard errors.  The traditional bootstrap requires that the limiting 

distribution of the statistic being estimated be smooth.  Matching estimators have highly 

non-smooth distributions since they are functions of the distribution of the underlying 

data.  While our use of synthetic controls differs from the nearest-neighbor matching 

estimator, our estimators do share this property of non-smooth limiting distributions that 

are functions of the entire distribution of the data.  As a precaution, we use the 

subsampling without replacement variant on the bootstrap from Politis and Romano 

(1994).  This is the approach suggested in Abadie and Imbens (2008) for use with 

matching estimators.  This approach relies on very weak assumptions.  Subsampling only 

requires that the statistic being estimated has a limiting distribution—not that it is 

smooth.   
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 Subsampling is a very simple and intuitive variant on the bootstrap.  The two 

differences are that the number of observations drawn be less than the size of the original 

data and that the subsampling is done without replacement.  Politis, Romano and Wolf 

(1999) provide a data-driven approach to choosing the subsample size.  In addition to 

providing valid confidence intervals, the subsampling method allows us to compute a 

bias-reduced estimator.  Following the notation of Politis, Romano and Wolf, the 

empirical bias of a parameter is: 

 

 
  
Bias(θ̂ ) = b

n
(θ̂ * − θ̂ )   (13) 

 

*θ̂  is the mean of the subsampled estimates,  b is the subsample size and n is the original 

sample size.9   In the results, we report only these bias-corrected estimates: 

  θ̂BC = θ̂ − Bias(θ̂ ) . 

 

4.2  Means, Medians and other Quantiles 

 So far equation (12) is used to estimate the mean marginal effect of fracking on 

employment.  While useful, estimating the mean effect is a coarse approach that may hide 

important heterogeneous effects of natural gas development across localities.  Quantile 

regression, pioneered by Koenker and Basset (1978), allows us to look beyond mean 

effects and examine changes in other aspects of the distribution.  Allowing marginal 

effects to vary by quantile may provide evidence about the presence of winners and losers 

within the distribution: some communities may see growth while others experience 

contraction.  To get at this potential heterogeneity, we use our panel data together with a 

quantile regression framework similar to an approach developed by Chen and Kahn 

(2008).  The main difference between their approach and our own is that they take first-

differences over time, while our first-differences are between actual data and the 

synthetic control. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 See Politis, Romano, and Wolf (1999), section 5.4 (and example 3.4.3). 
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 For reasons pointed out in Koenker and Hallock (2001) and demonstrated by 

Gamper-Rabindran et al. (2010), applying a quantile regression approach directly to 

equation (12) is not a valid approach.  To see this, consider the case where the model 

described in equations (2) and (9) is linearly heteroskedastic: 

 

 
, , , , , , , ,

0 0 0 0
, , , , , , , ,

  

  
j c t j c t t c j c t j c t

j c t j c t t c j c t j c t

dY X

dY

υ λ ψε

υ λ ψε

= Χ Β+ +

= Χ Β+ +Χ   (14) 

 

Where the notation for covariates and parameters has been consolidated using: 

- , , , , 1 ...j c t c t c t cX dW dW Z−⎡ ⎤= ⎣ ⎦  

- [ ]0
, , 0 0 ...j c t cX Z=  

- [ ]0 1 ... T
tB β β θ=  

This is a generalization of the original model because it allows the variance of the 

residual to vary with the observable RHS covariates.  Let (.)qθ  be the conditional 

quantile function corresponding to the θ -th percentile.  Taking differences using 

equation (14), applying the conditional quantile function, and simplifying, yields: 

 

 
   

qθ (dYj ,c,t − d Yj ,c,t
0 | X j ,c,t , X j ,c,t

0 ) = β0dWc,t + β1dWc,t−1 + ...

+ q0( X j ,c,tψε j ,c,t − X j ,c,t
0 ψε j ,c,t

0 | X j ,c,t , X j ,c,t
0 )

  (15) 

 

As pointed out by Koenker and Hallock (2001), quantiles of convolutions of random 

variables are typically difficult to work with.  In general, we cannot interchange 

difference and quantile operators (Gramper-Rabindran et al. 2010) and estimation 

becomes intractable.   

To overcome this, we apply the approach outlined by Chen and Khan (2008).  

Rather than applying the conditional quantile function to the differenced equation, apply 

it to (14): 
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0 0
, , , , , , , , , , , , , ,

0 0 0 0 0
, , , , , , , , , , , , , ,

( | , ) ( , )

( | , ) ( , )

 j c t j c t j c t j c t t j c t j c t j c t

j c t j c t j c t j c t t j c t j c t j c t

q dY X

q dY
θ θ

θ θ

υ φ ψρ

υφ ψρ

Χ Χ = Χ Β+ Χ Χ +

Χ Χ = Χ Β+ Χ Χ +Χ   (16) 

We have imposed the substitution 0
, , , ,( , )c j c t j c tX Xλ φ= , where (.)φ  is an unknown 

function of the regressors from both the treated and the control models.10  Allowing the 

county effect to be a function of covariates is a generalization of the traditional random 

effects approach.  Differencing these equations now produces: 

 

  

qθ (dYj ,c,t | X j ,c,t , X j ,c,t
0 )− qθ (dYj ,c,t

0 | X j ,c,t , X j ,c,t
0 )

= β0dWc,t + β1dWc,t−1 + ...+ (dWc,t + dWc,t−1 + ...)ψρθ

= (β0 +ψρθ )dWc,t + (β1 +ψρθ )dWc,t−1 + ...

  (17) 

 

Thus quantile regression allows the econometrician to exploit heteroskedasticity and 

allow for marginal effects to vary by quintile.   

 Since we do not actually have the quantile values required to make estimation of 

equation (17) feasible, we will adopt the two-stage estimation procedure provided by 

Chen and Kahn (2008).  The first-stage involves estimating (16) to fit predicted quantile 

values 0
, , , , , ,ˆ ( | , ) j c t j c t j c tq dYθ Χ Χ  and 0 0

, , , , , ,ˆ ( | , )j c t j c t j c tq dYθ Χ Χ .  The second stage then uses 

the first-difference of these predicted values to estimate (17).  This approach is very 

simple to perform and can be done in STATA and other readily available statistical 

software packages (Gramper-Rabindran et al. 2010). 

 

4.3 The Standard Approach 

 To highlight the implications and advantages of employing the PIL model, we 

also estimate a version of the standard model, as described by equation (3).  Specifically, 

we estimate: 

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 Ideally, we would estimate  φ(.)  nonparametrically.  However, due to data limitations we have to impose 
some functional form assumptions.  In the current version, this is specified as a linear function. 
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dYj ,c,2010−2000 − d Yj ,c,2010−2010

0 = γ dWc,2010−2000 + (ε j ,c − ε j ,c
0 ) .  (18) 

 

While we refer to this specification as the “standard approach”, in reality it is the standard 

approach augmented by the use of synthetic controls in the spirit of difference-in-

difference. 

 

5.  Results 

5.1 Comparison Groups 

The goal of the synthetic controls is to find the convex combination of donor 

counties that best approximates the counterfactual for each county that has fracking 

activity.  Before using these synthetic controls in pooled-regression procedures, we need 

to evaluate the goodness-of-fit for these counterfactual approximations.  Of course, since 

we lack the true data for the counterfactual, we cannot directly test how well the synthetic 

procedure reproduces the truth.  The best we can do is to examine some of the 

assumptions that the procedure relies on.  One necessary condition that the procedure 

relies on is that the weights, *W , should come reasonably close to satisfying (10).  While 

this condition is not sufficient for the synthetic controls being unbiased, it is testable.  

The other condition that must hold is that the data-generating processes described in (2) 

and (9) must be the true processes—which is not testable.   

To assess the fit achieved by the weights in equation (10), we consider two 

counties: Fulton and Greene.  Fulton County is not on the Marcellus Shale and, 

consequently, is not “treated” by having shale resources.  For this reason estimating the 

synthetic control for Fulton is what ADH refers to as a “placebo”.  Even after fracking 

activity begins we expect the synthetic net job flows for Fulton to mimic the true net job 

flows for Fulton.  Greene County is on the shale and experienced significant fracking 

activity.  Equation (10), requires that weights be found that fit the synthetic control to the 

actual outcome in the pre-fracking period.  We follow ADH to produce the synthetic 

controls for net job flows in the construction industry for Fulton and Greene counties.   

Figure 5.1 compares the resulting synthetic control to the true net job flows data 

for the construction industry in Fulton and Greene counties.  While it is difficult to pin-
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point exactly when unconventional-drilling techniques made drilling on the Marcellus 

Shale economically viable, a weak assumption is that it was sometime after 2002.  For 

both counties, the synthetic control and the real data are close throughout the pre-fracking 

period.  This suggests that the condition outlined in (10) comes close to holding and gives 

credence to the synthetic control as an unbiased estimate of the counterfactual.  The 

synthetic control for Fulton County, the placebo, continues to closely track the real data 

even throughout the period of time when fracking was becoming popular on the 

Marcellus Shale.  Greene County, on the other hand, experienced a great deal of natural 

gas development.  While the synthetic control closely tracks the true data in the pre-

fracking period, it diverges from the true data during the fracking period.  These 

deviations can be interpreted as the effect of fracking on construction net job flows in 

Greene County. 

 

Figure 5.1 

 

 

5.2 Mining, Quarrying and Oil and Gas Extraction 

In this section, we report results for the mining, quarrying and oil and gas 

extraction industry.  Employment effects in this industry can largely be attributed to the 
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direct effect channel.  It does not, however, provide an estimate for the complete direct 

effect.  Many tasks directly involved in drilling and fracking a well can be contracted out 

to firms that are classified in other industries.  For example, millions of gallons of water 

are required to frack a well.  This water is typically brought in by contracted trucking 

companies that are probably classified to be in the transportation industry.  In addition, 

the effect in this industry should not be considered a pure (if partial) direct effect.  There 

may be jobs counted in this industry that are not directly involved in natural gas but 

rather were induced by increased local economic activity.   

Figure 5.2 shows the estimated employment effect that one new well has on 

employment in the mining, quarrying and oil and natural gas industry.  The y-axis is the 

estimated cumulative net job flow effect ( 0 1 ... tβ β β+ + + ) from a new well after the 

number of lags corresponding to the x-axis.  The solid black lines represent the point 

estimates for these cumulative effects from our headline specification using the PIL 

model.  The solid gray area is a 95% confidence interval.  The dashed line indicates the 

estimate using the standard approach described in equation (18).   First consider the mean 

effect panel in the top left of Figure 5.2.  The PIL model suggests that fracking activity 

brings 3 new jobs contemporaneous with drilling a well.  The contour shows that most of 

these jobs disappear immediately after the drilling is complete.  Two years out, however, 

1.4 new jobs persist.  These jobs are likely involved in maintenance, production or 

administration of the industry.  The point estimate from the standard approach is 0.5.  

While somewhat smaller than the PIL model suggests, the two results are statistically 

indistinguishable.  Both estimates are economically small. 

Breaking out the quantile effects shows interesting heterogeneity in the 

employment effect of fracking activities on jobs in the mining industry.  At the tenth 

percentile, there is still a positive net job flows effect in the period contemporaneous with 

drilling.  However, it is small and after two or three quarters of statistically significant 

decreases in mining employment the long run effect is close to zero.  At the 25th 

percentile, there is virtually no effect over the first two years. The effects on the median, 

75th percentile and 90th percentile show positive effects at quarter 0 (though insignificant 

in the case of the median).  The cumulative net jobs flowing from fracking activity 
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increases in the case of the median and the 75th percentile and remains level in the case of 

the 90th percentile as we go through the first two years after the new well was drilled.  

The upper quantiles of 75 and 90 percent also experience much more employment 

growth.  Two years out from spudding, each well at the 75th percentile results in 4.7 new 

jobs while each well at the 90th percentile results in 5.8 new jobs.  The quantile results 

also illustrate two distinct profiles for the effect of a new well on jobs.  First is one where 

there is an increase in employment simultaneous with drilling but this increase is short 

lived.  Recall from background discussion that the unconventional drilling and fracking 

processes require specialized skill sets that were initially only help by a small number of 

out-of-state firms.  Consequently, this estimate for jobs contemporaneous to drilling may 

be biased-downward as they are being filled with transient out-of-state workers who may 

not appear in our data (although, from the point of view of impacts on local employment, 

these jobs are not relevant).  The second profile is one that has an increase simultaneous 

with drilling and this increase persists and even increases in the long run.  These long-run 

jobs should be properly counted while the short run jobs may be undercounted.  It is 

possible that these production jobs accrue in the upper part of the distribution.   

 
Figure 5.2 
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Figure 5.3 

 
Note: For both figures 5.2 and 5.3 the solid black line indicates the cumulative net job flow estimates 
found using the PIL model (12) and the gray area represents the corresponding 95% bootstrapped 
confidence interval.  The dashed line represents the estimate from the simple first-difference model 
and the dotted lines are the corresponding 95% confidence interval. 
 

Looking at Figure 5.3, there is no evidence of a positive earnings effect on the 

mean or the lower half of the distribution.  However, there are positive earnings effects 

on the 75th and 90th percentiles.  At the peak, these effects are .42% and 1.12% per well.  

While we cannot identify the factor driving this heterogeneity, it is instructive to consider 

that most of these counties have multiple new wells installed each quarter indicating 

potentially large earnings effects, at least in the short run.  Over the long run as jobs 

transition from temporary drilling jobs to more permanent positions these earnings effects 

return to zero.  The increase in earnings suggests tightness in this portion of the labor 

market.  Over time, workers will adjust and alleviate this tightness.  Thus the earnings 

effect disappears.   

For both net job flows and earnings the estimates from the standard approach are 

similar to those of the PIL model at most quantiles.  The effect on the 75th percentile and 

the 90th percentile for net job flows are two noteworthy exceptions.  For both of these, the 

sets of results are similar in the first few periods but diverge as the number of lagged 
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quarters increases.  While the PIL allows the researcher to see how net job flows vary 

after a new well is drilled, the standard approach allows only a weighted average of these 

lagged effects, the weights of which are determined by the timing of each new well 

spudding in relation to the end of the time-horizon considered by the researcher. 

 

5.3  Manufacturing—The Traded-Goods Sector 

The manufacturing industry is the best representation of a traded-goods sector.  

Demand for these traded-goods will be relatively unaffected by local demand shocks 

associated with fracking activity.  If local economies are developing Dutch disease, this is 

the industry where we expect to see it.  We test for two necessary conditions for Dutch 

disease.  The first condition is that employment in the non-traded industry contracts.  The 

second condition is that production costs rise.  In this case we will use labor costs or 

earnings to proxy for production costs. 

 Simply looking at the mean effect suggests no evidence of Dutch disease.  The 

top left panel of Figure 5.4 shows that throughout the entire time horizon the effect of a 

new well on manufacturing employment is very close to zero and insignificant.  The top 

left panel of Figure 5.5 also shows that there is no significant effect on earnings.  

However, the quantile results tell a rather interesting story that is consistent with Dutch 

disease, at least in a part of the distribution.  Looking at the middle of the distribution—

the 25th percentile, the median and the 75th percentile—suggests no effect on 

manufacturing employment.  However, in the tails we find large and significant effects.  

The top distribution (the 90th percentile) shows a temporary decrease in manufacturing 

employment immediately after fracking.  This decrease is followed by a large and 

persistent increase in employment.  In this quantile we estimate an increase in 

manufacturing employment of 3.9 jobs per well two years after drilling.  Looking at the 

lower tail of the distribution we find potential evidence of Dutch disease.  At the 10th 

percentile the effect of a well on manufacturing employment concurrent with spudding is 

zero.  It is intuitive that the types of tasks needed to drill and spud a new well are 

different from the tasks performed by manufacturing firms.  Since manufacturing 

probably doesn’t compete for workers directly with drilling we are not surprised by a 

negligible contemporaneous effect.  However, moving further out in the time horizon 
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(allowing for more complete adjustment of labor supply and demand curves) a large and 

negative effect appears.  Two years after a new spudding we estimate a loss of 5.7 

manufacturing jobs—satisfying the first necessary condition for Dutch disease.   

 The second necessary condition for Dutch disease was that average earnings in 

manufacturing should have an increase associated with fracking activity.  This is indeed 

what we find at the 75th and 90th percentile, as pictured in Figure 5.5—small but 

significant positive earnings effects for manufacturing workers.  It is important to note 

that the distribution designated by the quantile approach is based on the model residual.  

Since the employment and earnings effects are estimated separately we cannot make any 

claims that they occur in the same or different counties.  The only claim we make these 

findings are consistent with the Dutch-disease story. 

 

  

Figure 5.4 
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Figure 5.5 

 
Note: For both figures 5.2 and 5.3 the solid black line indicates the cumulative net job flow 
estimates found using the PIL model (12) and the gray area represents the corresponding 95% 
bootstrapped confidence interval.  The dashed line represents the estimate from the simple first-
difference model and the dotted lines are the corresponding 95% confidence interval.   

 

5.4  Total Employment and Other Industries 

 Due to the large number of results, we leave the remaining industry figures in the 

Appendix and highlight some remarkable findings from them here.  The mean effect for 

total employment suggests that each additional well is associated with 4.2 additional and 

persisting jobs.  We gain little from the quantile results for total employment as they are 

statistically insignificant across the board.  In addition, we estimate only a very small 

average earnings effect at the mean that becomes significant only after a one-year lag.  

Similar to the net job flows results, the quantile results suggest mostly small and 

insignificant estimates for total average earnings.  Once again, gains to employment with 

tiny earnings effects are suggestive of labor market slack.  

 The effect of an additional well on employment in the Transportation industry is 

positive along much of the distribution, but small.  Each new well accounts for 0.5 new 

jobs.  This is some upward pressure on earnings in this industry.  The Accommodation 
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and Food Service industry shows little response to a new well, for the most part.  At the 

90th percentile, however, there is a large and delayed negative effect on net job flows.  

Two years after spudding, the Accommodation and Food Service industry in this quantile 

will have shed 5.5 jobs per well.  One possible story for this large contraction is it is 

being driven by the loss in total employment seen at the 10th percentile (this loss is 

sizable but insignificant).  Estimates suggest only minimal earnings effects to any part of 

this distribution.  

 

6.  Discussion 

6.1 Comparing the PIL Estimates with the Standard Estimates 

Looking across the sets of results for each industry and quantile, a common 

relationship between the PIL estimates and the standard estimates is apparent.  Consider, 

for example the results for the Mining Industry in Figures 5.2 and 5.3.  In some quantiles 

we find divergence between the estimated employment effects of the PIL model and the 

standard model.  The most striking examples are the marginal effects at the 75th and 90th 

percentile in Figure 5.2.  In both of these cases the marginal effects from the PIL and 

standard approaches are indistinguishable in the first two quarters.  After that, however, 

in the case of the 75th percentile the PIL model shows employment increasing over the 

next six quarters while the standard estimate remains constant (by construction).  In the 

case of the 90th percentile, the PIL point estimate is consistently higher than the standard 

estimate.  However, over first few lags the PIL estimates have wide confidence intervals 

that preclude the conclusion that the PIL and standard estimates are statistically 

differentiated in the first two quarters.   

Looking across the sets of results for each industry and quantile, in many 

instances we see a similar relationship.  The PIL and standard estimates are similar or 

statistically indistinguishable in the early part of the time-horizon but drift apart over 

time.  This suggests that the standard estimate weighs the short-run effects of each new 

well more than the long-run effects.  This is the case when the wells are concentrated 

toward the end of the time horizon defining the first-difference.  In this case that means 
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the wells are concentrated toward the 2010 portion of the horizon 2000 to 2010 (see 

Figure 2.1A). 

From the policy perspective this is a very important detail.  Policymakers 

considering allowing or encouraging fracking activity as a way to grow the local 

economy and add new jobs should be concerned with the long-run job gains.  Providing 

temporary work for transient workers is probably not as desirable as creating long-term 

stable employment.  This is an important nuance missed by the standard approach. 

 

6.2  Advantages of Quantile Regressions 

 Using the quantile approach allows the estimation of the heterogeneous effects of 

a new well on various parts of the distribution.  This is instrumental to our analysis in two 

ways.  First, it is instructive to see that the employment effects of shale development are 

non-uniform in both the timing and magnitude of net job flows.  Manufacturing is salient 

example of this non-uniformity.  In the lower tail we see contraction with fracking 

activity while in the upper tail we see expansion.  Both results are interesting, relevant to 

policymakers and missed completely in mean regression.  It appears that, while Dutch 

disease occurs, it is not wide-spread.  For this reason, without the use of quantiles it 

would be ruled-out completely.  One limitation is that the quantiles are based on the 

model residual and consequently we cannot say anything about factors driving the 

heterogeneity or where Dutch disease is likely to strike.  Doing so would require 

modeling decisions about which particular variables to use in interactive terms.   

 The second contribution of the quantile regression is that it facilitates 

comparisons between what we estimate using the PIL model and what we estimate using 

the standard model.  For the industries considered, if we were confined to mean effect 

estimates, we could not conclude that the estimates of the PIL model differed from the 

standard model for any lag even though the PIL point estimate changes over time and the 

standard estimates do not.  However, allowing for heterogeneous effects uncovers 

instances where the two differ in ways that confirmed our intuition concerning the 

difference between the PIL model and the standard model. 
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6.3 Labor Market Slack 

 For the most part, the earnings response to fracking activity is small relative to the 

employment response.  This suggests the existence of slack in the labor market.  Figure 

6.1 plots the mean county, median county, 25th percentile county and the 75th percentile 

county for a number of indicators of labor market slackness.  The top left panel shows 

that there was an increase in the unemployment rate before most of the fracking activity 

and this increase persisted through 2013q1.  There are two likely sources of this increase 

in unemployment.  First, is the recession.  Second, out-of-staters could be moving into 

Pennsylvania in hopes of finding employment in the fracking boom.  The lower left panel 

of Figure 6.1 plots the size of the labor force.  It suggests that increases in the size of the 

labor force have been small and gradual throughout this period with no obvious 

acceleration after fracking began. 

Figure 6.2 compares the growth in the labor force in Pennsylvania counties 

situated on the Marcellus Shale with counties off of the shale.  The right panel compares 

the trends and levels of labor force size.  It shows small changes in labor for size after 

2008 both on and off the shale.  This suggests that much of the labor market slackness 

can be attributed to the recession and slow recovery. 

Figure 6.1 
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Figure 6.2 

 

Source:  Figures 6.1 and 6.2 from Local Area Unemployment Statistics, BLS. 

 

 

6.4 Economic Dependence on Shale Resources 

 Finally, we consider how the portion of jobs in local economies that depend on 

fracking activity is changing over time.  Using the estimated total employment effects per 

well to calculate the number of jobs in local economies supported by the fracking boom, 

the figure below describes how the distribution of natural gas-dependent jobs as a 

fraction of total jobs changes over time.  The figure shows a sizeable divergence in the 

percent of total jobs dependent on shale development.  Throughout the period examined, 

many of the counties show very little dependence.  However, for a few counties the shale 

jobs are quickly becoming very important.  Among these are the counties of Bradford, 

Greene, Sullivan, Susquehanna and Tioga, where by 2012 more than 10 percent of total 

jobs created were the result of fracking.  There is a downside to this growth.  While these 
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counties may enjoy the benefits of employment growth, they may be becoming 

increasingly vulnerable to fluctuations in global natural gas prices. 

 

Figure 6.3 

 
 

 

7.  Robustness Check 

 In this section we perform some robustness checks to test the sensitivity to the 

choice of a donor pool.  As discussed above, the synthetic control approach relies on the 

assumptions that there are no geographic spillovers from fracking counties to donor 

counties.  To see if the results are being driven by potential spillovers of this type we 

repeat the mean procedure using two alternative donor pools: one omitting counties 

directly bordering fracking counties and one using New York counties to comprise the 

donor pool. 

 First we restrict the donor pool to include counties within Pennsylvania that do 

not have any fracking activity and do not share a border with a county that has fracking 
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activity.  Any spillover effects from fracking counties into non-fracking counties will 

likely be from those that are geographically proximal to the fracking activity.  Thus by 

eliminating these donor counties, we can be more confident that the no-spillover 

assumption is not violated.  Figure 7.1 contains the estimated marginal effects on the 

mean cumulative net job flows.  Using the restricted donor pool the mean effect on each 

of the individual industries is very similar to the results using the unrestricted donor pool.  

The one possible exception is in total employment.  Here the restricted donor pool yields 

a larger short-run estimate (13 jobs at the time of drilling).  However, the wide 

confidence intervals make this result indistinguishable from our main results.  Also, in 

the long run the restricted and unrestricted results produce similar results. 

 
 
 

Figure 7.1 

 
 

 Second, we restrict the donor pool to include counties in the state of New York 

that are on the Marcellus Shale.  These counties likely make good comparisons with the 

Pennsylvania shale counties as they have are similar in economic, demographic and 
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geographic dimensions.  The main difference is a state-wide moratorium on fracking in 

New York.  For individual industries, the results reported in Figure 7.2 confirm the 

baseline results.  Point estimates for total employment are, once again, different in the 

short-run but statistically indistinguishable. 

 

Figure 7.2 

 
 

 

8.  Conclusion 

 Recent technological innovations have produced a boom of unconventional, 

hydraulically fracked natural gas wells across much of Pennsylvania.  We find that this 

boom has increased local employment by a small, but statistically meaningful, amount.  

We also find that earnings in most industries are unresponsive to fracking activity.  One 

exception to this is the mining, quarrying and oil and natural gas industry, which exhibits 

a small but statistically significant increase in earnings in the upper quantiles.  By 

employing a PIL model we identify time-varying employment effects that are missed by 

the more coarse standard approach.  Using this model together with quantile regression to 
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allow for heterogeneous effects, we find evidence of Dutch disease as parts of the 

distribution experience contraction in manufacturing employment and increases in 

average earnings.   
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Appendix A 

Mean and Quantile Results for Total Employment and Other Industries 
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