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Abstract

How does the structure of an individual’s social network affect his or her decision
to migrate? Economic theory suggests two prominent mechanisms — as conduits of
information about jobs, and as a safety net of social support — that have historically
been difficult to differentiate. We bring a rich new dataset to bear on this question,
which allows us to adjudicate between these two mechanisms and add considerable
nuance to the discussion. Using the universe of mobile phone records of an entire
country over a period of four years, we first characterize the migration decisions of
millions of individuals with extremely granular quantitative detail. We then use the
data to reconstruct the complete social network of each person in the months before
and after migration, and show how migration decisions relate to the size and structure
of the migrant’s social network. We use these stylized results to develop and estimate
a structural model of network utility, and find that the average migrant benefits more
from networks that provide social support than networks that efficiently transmit in-
formation. Finally, we show that this average effect masks considerable heterogeneity
in how different types of migrants derive value from their social networks.
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1 Introduction

Migrants play a central role in bringing an economy towards a more efficient use of its re-

sources. In many contexts, however, a range of market failures limit the extent to which

people can capitalize on opportunities for arbitrage through migration. Recent literature

documents, for instance, cases where information does not reach the migrant (Jensen, 2012),

households lack insurance against the risk of migration (Bryan, Chowdhury and Mobarak,

2014), and source communities discourage exit (Beegle, De Weerdt and Dercon, 2010, Munshi

and Rosenzweig, 2016). The resulting underinvestment in migration leads to the misalloca-

tion of capital, and can have severe consequences for the overall economy.1

The decision to migrate depends on the extent to which the migrant is connected to

communities at home and in the destination. Much of the existing literature has focused on

how strong ties to the destination community can facilitate migration by providing access

to information about jobs (Borjas, 1992, Topa, 2001, Munshi, 2003) and material support

for reecent arrivals (Munshi, 2014). The role of the home network is more ambiguous. On

the one hand, robust risk sharing networks can partially insure against the risk of tempo-

rary migration (Morten, 2015), making it easier for people to leave. On the other hand,

strong source networks can also discourage permanent migration if migrant households are

subsequently excluded from risk sharing networks (Munshi and Rosenzweig, 2016).

While there is thus general consensus that social networks play an important role in

migration decisions, the exact nature of this role is unclear. This ambiguity stems, at

least in part, from a lack of reliable data on both migration and the structure of social

networks. Migration is difficult to measure, particularly in developing countries where short-

term migration is common and reliable household survey data is limited (Deshingkar, Grimm

and Migration, 2005, McKenzie and Sasin, 2007, Carletto, de Brauw and Banerjee, 2012,

Lucas, 2015). Social network structure is even harder to observe.2 Recent empirical work

1Bryan, Chowdhury and Mobarak (2014), for instance, link underinvestment in migration to seasonal
famine.

2For instance, the rich survey data used in Banerjee et al. (2013, 2014) cost $250,000 to collect - cite ARD
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on networks relies on survey modules that ask respondents to list their social connections,

but this approach is necessarily limited in scope and scale. Thus, much of the literature

on networks and migration relies on indirect information on social networks, such as the

(plausible) assumption that individuals from the same hometown, or with similar observable

characteristics, are more likely to be connected that two dissimilar individuals.3

We leverage a novel source of data to provide detailed insight into the role of social

networks in the decision to migrate. Using several years of data capturing the entire universe

of mobile phone activity in Rwanda, we track the internal migration decisions of roughly

one million unique individuals, as inferred from the locations of the cellular towers they use

to make and receive phone calls. We link these migration decisions to the structure of each

migrant’s social network, as inferred from the set of people with whom he or she interacts

over the phone network. Merging the geospatial and network data, we observe the migrant’s

connections to his home community, his connections to all possible destination communities,

as well as the complete higher-order structure of the network (i.e., the connections of the

migrant’s connections).

We first use these data to validate a common hypothesis in prior theoretical and empirical

work: that individuals are more likely to migrate to destinations to which they have stronger

social ties. We measure both the extensive margin of number of unique contacts as well

as the intensive margin of the frequency of communication with those contacts, and find

that the probability of migration is increasing in both. The relationship is monotic with

constant elasticity, such that the probability of migration roughly doubles as the number

of contacts in the destination doubles.4 Similarly, we observe that stronger networks in

the home community will make a migrant less likely to leave, which is consistent with a

story where individuals fear being ostracized from inter-family insurance networks (Munshi

3Identification strategies are varied: for example, Beaman (2012) uses data on resettled political refugees;
Munshi (2003) use rainfall shocks at origin; ...;

4Superficially, this result diverges from a series of studies that predict a eventual negative externalities
from network size, as when members compete for information and opportunities (Calv-Armengol, 2004,
Calv-Armengol and Jackson, 2004, Beaman, 2012). Note that our data only permit a short-run analysis, so
we cannot test, for instance, the heterogeneity by vintage of network members as predicted in these models.
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and Rosenzweig, 2016). Our data indicate a decreasing and monotonic relationship between

migration rates and the extent of the home network.

To provide structure to these and subsequent results, we develop a model that relates

internal migration decisions to social network structure. The model characterizes the mi-

gration decision as, ceteris paribus, a tradeoff between the utility an agent receives from the

home network and the utility received from a potential destination network, net an idiosyn-

cratic cost of migrating. How agents derive utility from their social networks is not known

a priori, and we show that certain simple models of network utility – such as a model of

information diffusion as in Banerjee et al. (2013) – cannot explain important characteristics

of our data. For instance, we document – to our knowledge for the first time – the role that

more distant network connections play in migration. Namely, we find that an individual

is more likely to migrate to a destination where her friends have more friends. However,

contrary to what would be expected in most models of information diffusion, this effect does

not persist after controlling for the number of friends in the destination. For example, if

both Joe and Jane have the same number of contacts living in a destination community, but

Joe’s contacts have more contacts in the destination than Jane’s contacts do, we find that

Joe is no more likely to migrate to the destination than Jane.

These observations lead us to develop a structural model of the utility migrants obtain

from their social networks. This model, while highly stylized, allows us to differentiate be-

tween two of the primary mechanisms articulated in prior work on networks and migration:

the potential for the network to transmit information to the migrant (for instance about jobs

and opportunities), and the potential for the network to support dynamic cooperation (as

with risk sharing and favor exchange). In this model, information is treated as a diffusion

process with possible loss of information; cooperation as a strategic interaction where agents

randomly meet their connected neighbors over time, and when two agents meet, they each

contribute effort to a joint project. Effort is determined endogenously by the network struc-

ture, so the model allows us to describe in equilibrium how network structure affects the
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social value that agents get from the network, which in turn affects the decision to migrate.5

Together, our model and data make it possible to generate and test several hypotheses

about the role of social networks in migration that the existing literature has been unable to

explore. Notably, we show that social connections generate positive externalities. That is,

if two agents form a link or increase their interaction over the existing link, their common

neighbors (in addition to themselves) receive strictly higher utilities from the network. This

generates the testable predictions that an agent should be more likely to migrate if her

connections in the destination form more links among themselves, and if the frequency of

interaction between common neighbors increases. As we show, each of these predictions is

supported by the data, although the shape of the migration response function is not always

linear or monotonic.

[Structural estimation results here.]

Our final set of results explores heterogeneity in the migration response to social network

structure. We separately study the role of the network in migration between and across

rural and urban areas, in short- and long-distance moves, and in temporary vs. permanent

migrations. While the main effects described above are generally consistent in each of these

sub-populations, the shape and magnitude of the migration response differs significantly by

migration type.

Since our approach to studying migration with mobile phone data is new, we perform a

large number of specification tests to calibrate for likely sources of measurement error and

to test the robustness of our results. In particular, one limitation of our approach is that

we lack exogenous variation in the structure of an individual’s network, so that network

structure may be endogenous to decisions regarding migration. We address this concern in

two principal ways. First, we derive structural properties of the migrant’s social network

in the period prior to migration. Our results change little even when we reconstruct each

5See Ali and Miller (2016) for a related approach, which builds on past observations that social sanctions
can improve commitment in risk sharing (Chandrasekhar, Kinnan and Larreguy, 2014, Karlan et al., 2009)
and may strengthen job referral networks (Heath, 2016).
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migrant’s social network using communications data from several months prior to the date

of migration. Second, we leverage the vast quantity of data at our disposal to control for a

robust set of network characteristics and better isolate the structural parameter of interest.

For instance, we condition on the number of common neighbors when analyzing the effect

of the frequency of communication between common neighbors. Thus, while having a large

number of contacts in a destination may be endogenous to migration, and likely migrants

may even select contacts who are connected to each other, we assume migrants will be less

able to control the extent to which those contacts communicate amongst themselves.

This paper makes two primary contributions. First, we contribute to a growing literature

on the economic value of social networks (cf. Jackson, Rodriguez-Barraquer and Tan, 2012,

Banerjee et al., 2013, ?). Our model connects this literature to research on migration in

developing countries, and indicates that a model combining information and cooperation is

more consistent with the data than a model of information diffusion. Second, we contribute

to empirical research on the determinants of internal migration in developing countries (cf.

Bryan, Chowdhury and Mobarak, 2014, Morten, 2015, Lucas, 2015). In this literature,

it has historically been difficult to empirically characterize the relationship between social

networks and migration; our data make it possible to directly test several conjectures in

the prior literature, and to develop new insight into the relationship between social network

structure and the decision to migrate.

2 A strategic model of migration

People can derive utility from their social networks in myriad ways (Jackson, 2010). We fo-

cus our model on two stylized features of social networks that the literature has consistently

shown to play an important role in the decision to migrate. The first is the potential for the

social network to provide the migrant with access to information about jobs, new opportu-

nities, and the like (Topa, 2001, Calv-Armengol and Jackson, 2004, Banerjee et al., 2013),
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which we denote as uI . The second is the utility agents derive from interactions involving

repeated cooperation, such as risk sharing and social insurance (Munshi and Rosenzweig,

2016, Jackson, Rodriguez-Barraquer and Tan, 2012), which we denote by uC . We describe

these in turn below, and then develop a strategic model of migration that allows for both

factors to influence the migration decision.

2.1 Utility from information

A robust theoretical and empirical literature studies processes of information diffusion on

networks.6 We build on recent efforts by Banerjee et al. (2013) to model the value of

information as a diffusion process with possible loss of information.

In this model, agents meet with their neighbors repeatedly for T periods. When they

meet, they share information with each other with probability q. Thus the amount of

information agent i gets by the end of period T is the ith entry of the vector

DC(G; q, T ) ≡
T∑
t=1

(qG)t · 1 (1)

in which G is the adjacency matrix of the network.

Several intuitive predictions can be derived from such a model: an agent receives ad-

ditional utility from each friend in the network, additional (q-discounted) utility from each

friend of those friends, q2-discounted utility from the friends of the friends’ friends, and so

forth. As we later show, not all of these predictions are supported by our data, and other

strong correlates of migration are not easily reconciled with this model.

2.2 Utility from repeated cooperation

Consider a population of N players, N = {1, . . . , n}, who are connected in an undirected

network G, with ij ∈ G if agent i and j are connected (we abuse the notation of G slightly).

6See Jackson and Yariv (2010) for a summary of both mechanical and strategic models of communication
and diffusion.
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Denote agent i’s neighbors as Ni = {j : ij ∈ G}, and her degree as di = |Ni|.

Each pair of connected agents, ij ∈ G, is engaged in a partnership ij that meets at

random times generated by a Poisson process of rate λij > 0. When they meet, agent i

and j choose their effort levels aij, aji in [0,∞) as their contributions to a joint project.7

Player i’s stage game payoff function when partnership ij meets is b(aji) − c(aij), where

b(aji) is the benefit from her partner j’s effort and c(aij) is the cost she incurs from her

own effort. The benefit function b and the cost function c are smooth functions satisfying

b(0) = c(0) = 0. All players share a common discount rate r > 0, and the game proceeds

over continuous time t ∈ [0,∞).

We write the net value of effort a as v(a) ≡ b(a)− c(a), and we assume that it grows in

the following manner.

Assumption 1. The net value of effort v(a) is strictly increasing and weakly concave, with

v(0) = 0. Moreover, v′(a) is uniformly bounded away from zero.

Assumption 1 implies that higher effort is always socially beneficial; concavity means

it is better for partners to exert similar effort, holding their average effort constant. The

following assumption articulates that higher effort levels increase the temptation to shirk.

Assumption 2. The cost of effort c is strictly increasing and strictly convex, with c(0) =

c′(0) = 0 and lima→∞ c
′(a) =∞. The “relative cost” c(a)/v(a) is strictly increasing.

Strict convexity with the limit condition guarantees that in equilibrium effort is bounded

(as long as continuation payoffs are bounded, which we assume below). Increasing relative

cost means a player requires proportionally stronger incentives to exert higher effort.

As has been documented in several different real-world contexts, we assume agents have

only local knowledge of the network.8 Each agent only observes her local network, including

her neighbors and the links among them (in additional to her own links). To be precise,

7The variable-stakes formulation is adopted from Ghosh and Ray (1996) and Ali and Miller (2016).
8Examples in the literature include Krackhardt (1990), Casciaro (1998) and Chandrasekhar, Breza and

Tahbaz-Salehi (2016).
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agent i observes her neighbors in Ni and all links in Gi = {jk : j, k ∈ {i} ∪Ni}. Moreover,

we consider locally public monitoring, such that each agent learns about her neighbors’

deviation, and we assume this information travels instantly.

Homogenous meeting frequency

As a benchmark, we start with the case that λ is the same across agents. Following the

definition from Jackson, Rodriguez-Barraquer and Tan (2012), a link ij is supported if they

have at least one common neighbor k ∈ Ni ∩ Nj, and ij is m-supported if they have m

common neighbors. There are critical effort levels, for supported and unsupported links.

Unsupported cooperation. Consider a strategy profile in which each of i and j exerts effort

level a0, if each has done so in the past; otherwise, each exerts zero effort.

b(a0) ≤ v(a0) +

∫ ∞
0

e−rtλv(a0)dt. (2)

The incentive constraint is binding at effort level a∗0.

Supported cooperation. Consider a triangle i, j, k and a strategy profile in which each of

them exerts effort level a1, if each has done so in the past; otherwise, each exerts zero effort.

b(a1) ≤ v(a1) + 2

∫ ∞
0

e−rtλv(a1)dt. (3)

The incentive constraint is binding at effort level a∗1. Notice that the future value of coopera-

tion is higher in a triangle, 2
∫∞
0
e−rtλv(a1)dt, so it can sustain higher level of efforts a∗1 > a∗0

and everyone gets a strictly higher utility.

Higher-order supported cooperation. Let m(ij) = |Ni ∩Nj| be the number of agents who

are common neighbors of i and j. Consider i and j sharing m common neighbors and a

strategy profile in which each of them exerts effort level am if each has done so in the past;
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otherwise, each exerts zero effort.

b(am) ≤ v(am) +

∫ ∞
0

e−rtλ [v(am) +mv(a∗1)] dt, (4)

in which i and j assume other pairs cooperate on at least a∗1 when they are supported.

The incentive constraint is binding at effort level a∗m. Following the same argument, more

common neighbors can sustain a higher level of cooperation between i and j, that is a∗m

strictly increases in m.

Definition 1. A strategy profile is measurable to local networks if the effort level between

any pair of agents only depends on the local network they share.

This makes sure that agents do not need knowledge of the outside network structure.

Definition 2. A strategy profile is strongly robust if any pair of agents who have not deviated

always cooperate at the same level, on and off the path of play.

This property is stronger than the robustness criterion used by Jackson, Rodriguez-

Barraquer and Tan (2012), which allowed for cooperation to break down among a bounded

set of innocent players following a deviation by one of their neighbors.

Proposition 1. Consider the game with homogenous meeting frequency. There exists an

equilibrium, measurable to local networks and strongly robust, in which any pair of connected

agents, say i and j, cooperate on a∗m(ij), where m(ij) = |Ni ∩Nj|.

All proofs are in Appendix A1. It is easy to see that there is an even simpler equilibrium

in which there are two cooperation levels, high level for supported links and low level for

unsupported links.

Corollary 1. Consider the game with homogenous meeting frequency. There exists an

equilibrium, measurable to local networks and strongly robust, in which any pair of connected

agents, cooperate on a∗1 if the link is supported, and on a∗0 otherwise.
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Intuitively, the more common neighbors a pair of agents have, the higher utility they can

get from their cooperation. That is, a∗m increases in the number of common neighbors m.

Thus, in the equilibrium above each agent gets a strictly higher utility if she forms more

links, or if her neighbors form more links among themselves.To generalize this intuition, we

now show that if an agent’s degree, support or clustering increases,9 then she can get a higher

utility from the network. In particular, while there are many possible equilibria, we restrict

our attention to those in which each agent gets a positive expected payoff from each link.

Proposition 2. Consider two networks, G and G′ = G ∪ {ij} such that ij /∈ G. For any

equilibrium ΣG in network G, there is an equilibrium ΣG′ in network G′, such that everyone

gets a weakly higher utility in ΣG′ and for any agent k ∈ {i, j} ∪ (Ni ∩Nj) in network G, k

must get a strictly higher utility in ΣG′.

The proposition shows that each link not only benefits its two agents, but also exhibits

positive externalities. First of all, the link ij gives agent i and j each a higher utility due to

this new cooperation opportunity. As a result, they get a higher utility from cooperation and

thus they face a higher punishment if they deviate. This additional punishment then sustains

i and j’s incentives to cooperate at a higher level with their common neighbors k ∈ Ni ∩Nj,

who can observe the link. So k can get a higher utility once i and j are connected.

Heterogeneous meeting frequency

In the data, we can measure the communication frequency between any pair of agents.

To examine its effect on the utility one gets from the network, we now allow heterogeneous

meeting frequency, and λij is locally observed by i, j and their common neighbors in Ni∩Nj.

First, in a bilateral partnership, agents get a higher utility when they meet more of-

ten. Let a∗0(λij) be the unsupported effort level when only i and j are connected and

they meet with the frequency λij. The counterpart to equation (2) becomes b(a0) ≤
9“Support” is defined as the fraction of one’s links that are supported; “clustering” is defined as the

fraction of pairs of one’s neighbors that are connected.
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v(a0) +
∫∞
0
e−rtλijv(a0)dt. The incentive constraint is binding at effort level a∗0(λij). It is

easy to verify that a∗0(λij) increases in λij, which implies as the meeting frequency increases,

the utility agent i and j can obtain from their cooperation increases.

This is also true in an arbitrary network, such that an agent can get a higher utility if her

interaction frequency with her neighbors increases and/or the interaction frequency between

two of her neighbors increases.

Proposition 3. Consider the game with heterogeneous meeting frequencies, and increase

the frequency on one and only one link λ′ij > λij. For any equilibrium Σλ, there is an

equilibrium Σλ′, such that everyone gets a weakly higher utility in Σλ′ and for any agent

k ∈ {i, j} ∪ (Ni ∩Nj), k must get a strictly higher utility in Σλ′.

The proposition shows that the interaction frequency also exhibits positive externalities.

As i and j meet more often, they each gets a higher utility from cooperation, which provides

the incentive to not only contribute greater effort to their partnership ij, but also to part-

nerships with their common neighbors k ∈ Ni ∩Nj. Thus, k receives a higher utility from i

and j as they meet more frequently.

However, the positive externalities found in Proposition 2 and Proposition 3 are local

effects to agents in {i, j}∪ (Ni ∩Nj). Other agents who only know either i or j do not know

whether ij are connected or their frequency of interaction. Thus, they cannot choose their

efforts based on the link ij, nor benefit from its existence or its increased frequency. This

type of local knowledge seems particularly relevant when a person is considering migrating

to a potential destination. Because an agent has not yet moved to the destination, it is

unlikely that she knows much beyond her immediate neighbors.

To summarize from Proposition 2 and 3, the cooperation model has the following testable

implications:

Remark 1. In general, an agent is more likely to migrate if her network in the destination

has (or she is less likely to migrate if her network in the hometown has):
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• Higher degree;

• Higher support/clustering, when fixing degree;

• Higher own interaction frequency, when fixing the network;

• Higher interaction frequency between neighbors, when fixing the network.

The number of indirect neighbors in the destination network has no effect on one’s migration.

However, if agents know their indirect neighbors within a certain distance at home, then the

number of these indirect neighbors has a negative effect on one’s migration.

2.3 The full model

We are now ready to discuss the migration decision. We say that an individual i receives

utility ui(G) from a social network G. In deciding whether or not to migrate, the individual

weighs the utility of i’s home network GH against the utility of the potential destination

network GD, and migrates if the difference is greater than some threshold τ plus an idiosyn-

cratic error εi that can reflect, among other things, the extent to which i is unusually averse

to migrating.

ui(G
D)− ui(GH) > τ + εi (5)

For an arbitrary network G, we assume that the total utility an agent i receives from G can

be expressed as

ui = uCi + uIi (6)

in other words, a linear combination of value from information and value from cooperation.10

10We do not imply that uI and uC are orthogonal or that other aspects of network do not weigh in the
decision to migrate. However, this formulation allows us to contrast two archetypical properties of network
structure that can be estimated with our data.
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As a starting point, we use Corollary 1 as the equilibrium for value from cooperation.

(Later on, we will extend the estimation to more complex equilibrium in Proposition 1.)

That is, agent i gets a utility of

uCi = u0d
NS
i + u1d

S
i (7)

from cooperating with her neighbors, in which u0 = λ
r
v(a∗0) is the utility of cooperating on

an unsupported link, and u1 = λ
r
v(a∗1) is the utility of cooperation on a supported link. dNSi

is the number of i’s unsupported links, and dSi is the number of i’s supported links. The

amount of information agent i gets is simply her diffusion centrality, uIi (G) = DCi, and an

agent gets ũ for each unit of information. So the overall utility is

ui = ũDCi + u0d
NS
i + u1d

S
i (8)

We want to contrast the value of information versus the value of cooperation, and contrast the

value of unsupported links versus supported links. So we replace the parameters (u0, u1, ũ)

by (π, α, ρ) and rewrite the overall utility:

ui = ρ
(
πDCi + (1− π)

(
αdNSi + (1− α)dSi

))
(9)

Then (5) becomes

ρD
(
πDDCi(G

D) + (1− πD)
(
αDdNSi GD) + (1− αD)dSi G

D)
))

− ρH
(
πHDCi(G

H) + (1− πH)
(
αHdNSi (GH) + (1− αH)dSi (GH)

))
> τ + εi (10)
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We can divide ρD from both sides of the inequality, and let ρ = ρH/ρD, then

πDDCi + (1− πD)
(
αDdNSi + (1− αD)dSi

)
− ρ

(
πHDCi + (1− πH)

(
αHdNSi + (1− αH)dSi

))
> τ̂ + ε̂i (11)

Notice that we allow agents to have different weights π for home and destination network,

because it is possible that the relative value of information and cooperation is different in

a home network than in a destination network.11 Similarly, we also allow (α, ρ) to differ

for home and destination network. When we do not differentiate home and destination,

ρD = ρH , then ρ = 1. The basic formulation thus leaves three sets of structural parameters

of interest: πH (or πD), the importance of information in a home (or destination) network

relative to cooperation; αH (or αD), the value of cooperation from an unsupported link

relative to a supported link; and τ̂ (and ρ), which we loosely interpret as the average cost of

migrating.

3 Data

We exploit a novel source of data to test the predictions of our model. These data make

it possible to observe rich information about the social network structure and migration

histories of over a million individuals in Rwanda. The data were obtained from Rwanda’s

primary mobile phone operator, which held a near monopoly on mobile telephony until late

2009. We focus on an analysis of the operator’s mobile phone Call Detail Records (CDR)

covering a 4.5-year period from January 2005 until June 2009. The CDR contain detailed

metadata on every event mediated by the mobile phone network. In total, we observe over 50

billion mobile phone calls and text messages. For each of these events, we observe a unique

identifier for the caller (or sender, in the case of a text message), a unique identifier for the

recipient, the date and time of the event, as well as the location of the cellular phone towers

11In ongoing work, we allow for different weights for rural and urban networks.
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through which the call was routed. All personally identifying information is removed from

the CDR prior to analysis.

We use these data to infer migration events, and to observe the social network structure,

of each of the roughly 1.5 million unique subscribers who appear in the dataset. Summary

statistics are presented in Table 2. Our methods for inferring migration and measuring social

networks are described below. In Section 6.1, we address the fact that the mobile subscribers

we observe are a non-random sample of the overall Rwandan population, and discuss the

extent to which these issues might bias our empirical results.

3.1 Measuring migration with mobile phone data

We construct individual migration trajectories for each individual in three steps.

First, we extract from the CDR the approximate location of each individual at each

time in which he or she is involved in a mobile phone event, such as a phone call or text

message. This creates a set of tuples {ID, T imestamp, Location} for each subscriber. We

cannot directly observe the location of any individual in the time between events appearing

in the CDR. The location is approximate because we can only resolve the location to the

geocoordinates of the closest mobile phone tower (in standard GSM networks, the operator

does not record the GPS location of the subscribers). The locations of all towers in Rwanda,

circa 2008, are shown in Figure 1.

Second, we assign each subscriber to a “home” district in each month of the data in

which she makes one or more transactions. Our intent is to identify the location at which

the individual spends the majority of her time, and specifically, the majority of her evening

hours.12 We treat the three districts that comprise the capital of Kigali as a single urban

district; the 27 other districts in Rwanda are treated as separate rural districts. Algorithm 1

describes the algorithm exactly. To summarize, we first assign all towers to a geographic

12A simpler approach simply uses the model tower observed for each individual in a given month as the
“home” location for that person. While our later results do not change if home locations are chosen in this
manner, we prefer the algorithm described in the text, as it is less susceptible to biases induced from bursty
and irregular communication activities.
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district, of which there are 30 in Rwanda (see Figure 1). Then, for a given month and a given

individual, we separately compute the most frequently visited district in every hour of that

month (e.g., a separate modal district-hour is calculated for each of the 24×30 different hours

in a 30-day month). Focusing only on the hours between 6pm and 7am, we then determine

the for each day in the month, that individual’s monthly modal district-day – defined as the

district that is observed with the largest number of modal district-hours for the following

night. Finally, we determine the modal monthly district for that individual as the district in

which the individual is observed for the largest number of modal district-days.13 After this

step, we have an unbalanced panel indicating the home loaction of each individual in each

month.

Finally, we use the sequence of monthly home locations to determine whether or not each

individual i migrated in each month t. As in Blumenstock (2012), we say that a migration

occurs in month t if three conditions are met: (i) the individual’s home location is observed

in district d for at least k months prior to (and including) t; (ii) the home location d′ in t

is different from the home location in t + 1; and (iii) the individual’s new home location is

observed in district d′ for at least k months after (and including) t + 1. Individuals whose

home location is observed to be in d for at least k months both before and after t are

considered residents, or stayers. Individuals who do not meet these conditions are treated as

“other” (and are excluded from later analysis).14 Complete details are given in Algorithm 2.

Our preferred specifications use k = 2, i.e., we say a migration occurs if an individual stays

in one location for at least 2 months, moves to a new location, and remains in that new

13At each level of aggregation (first across transactions within an hour, then across hours within a night,
then across nights within a month), there may not be a single most frequent district. To resolve such ties,
we use the most frequent district at the next highest level of aggregation. For instance, if individual i is
observed four times in a particular hour h, twice in district p and twice in q, we assign to ih whichever of p
or q was observed more frequently across all hours in the same night as h. If the tie persists across all hours
on that night, we look at all nights in that month. If a tie persists across all nights, we treat this individual
as missing in that particular month.

14Individuals are treated as missing in month t if they are not assigned a home location in month any of
the months {t − k, ..., t, t + k}, for instance if they do not use their phone in that month or if there is no
single modal district for that month. Similarly, individuals are treated as missing in t if the home location
changes between t− k and t, or if the home location changes between t+ 1 and t+ k.
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location for at least 2 months. While the number of observed migrations is dependent on

the value of k chosen, we show in Section 6 that our results are not sensitive to reasonable

values of k.

Figure 3 shows the distribution of individuals by migration status, for a single month

(January 2008). To construct this figure, and in the analysis that follows, we classify migra-

tions into three types: rural-to-urban if the individual moved from outside the capital city

of Kigali to inside Kigali; urban-to-rural if the move was from inside to outside kigali; and

rural-to-rural if the migration was between districts outside of Kigali. As can be seen in the

figure, of the 15,849 migrations observed in that month, the majority (10,059) the majority

occured between rural areas; 2,795 people moved from rural to urban areas and 2,995 moved

from urban to rural areas.

3.2 Inferring social network structure from mobile phone data

The mobile phone data allow us to observe all mobile phone calls placed, and all text messages

sent, over a 4.5-year period in Rwanda. From these pairwise interactions, we can construct

a very detailed picture of the social network of each individual in the dataset. To provide

some intution, the network of a single migrant is shown in Figure 2. Nodes in this diagram

represent individuals and edges between nodes indicate that those individuals were observed

to communicate in the month prior to migration. The individual i of interest is shown as

a green circle; red and blue circles denote i’s direct contacts (blue for people who live the

migrant’s home district and red for people in the migrant’s destination district); grey circles

indicate i’s “friends of friends”, i.e., people who are not direct contacts of i, but who are

direct contacts of i’s contacts.15

To test the empirical predictions of the model described in Section 2, we collapse this

network structure into a handful of descriptive characteristics, separately for each of the

roughly 1 million individuals in our dataset, for each of the 24 months that we study. The

15Nodes are spaced using the force-directed algorithm described in Hu (2005).
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characteristics of primary interest are:

• Degree Centrality: The number of unique individuals with whom i is observed to

communicate.

• “Information”: The number of friends of friends of i. Specifically, we count the

unique 2nd-order connections of i, excluding i’s direct connections.

• “Support”: The number of i’s neighbors who share a common neighbor with i.

• “Weighted” degree, information, and support: Accounts for the frequency of

interaction between neighbors, following the discussion in Section 2.2. Specifically,

weighted degree is the number of interactions between i and her immediate neighbors.

weighted information is the count of all interactions between i’s neighbors and their

neighbors. Weighted support is the count of all interactions between i’s neighbors and

their common neighbors of i.

In genreal, we compare network characteristics derived from data in month t − 1 to

migration behavior observed in month t. Concerns of serial correlation are discussed in

Section 6.

4 Characterizing migration and social networks

To study the relationship between social network structure and the decision to migrate, we

compare characteristics of individual i’s network in month t− 1 with the migration decision

made by i in month t. Our canonical specification requires that the individual remain in one

district for k = 2 months, then move to another place for k = 2 months, to be considered a

migrant. As a concrete example, when t is set to January 2008, the individual is considered

a migrant if her home location is determined to be one district d in December 2007 and

January 2008, and a different district d′ 6= d in both February 2008 and March 2008. The
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first column of Table 2 shows how the sample of 455,704 unique individuals is distributed

across residents and migrants, for just the month of January 2008. To increase the power of

our analysis, we then aggregate migration behavior over the 24 months between July 2006

and June 2008. Summary statistics for this aggregated person-month dataset are given in

Table 2, column 2.16

We calculate properties of i’s network in t − 1 following the procedures described in

Section 3.2 for both the individual’s home and destination networks. This is a straightforward

process for the home network: we determine i’s home location d in t−1, consider all contacts

of i whose home location in t − 1 was also d, and then calculate the properties of that

induced subnetwork. Calculating properties of the destination network is more subtle, since

non-migrants do not have a destination. To address this, for every individual we consider all

27 districts other than the home district as a “potential” destination, and separately study

each of i’s 27 potential migrations. 17

Our core empirical results compare the migration outcomes of people with differently

structured social networks. Our analysis focuses focus on the key predictions of the model

in Section 2: that individuals are more likely to migrate if their destination network has

(i) higher degree; (ii) higher interaction frequency, which we calculate as weighted degree;

(iii) higher support, fixing degree; and (iv) greater interaction between neighbors, fixing

the network, which we calculate as weighted support; and (v) the extent of the neighbor’s

neighbors, which we label “information.” We discuss each of these results in turn in the

sections that follow, and summarize them in Tables 3-4

While it is tempting to interpret these relationships as indicative of the causal effect of

network structure on migration decisions, the evidence we present simply shows the cor-

16Note that this process of aggregation means that a single individual will appear multiple times in our
analysis. In later robustness tests we show that very little changes if we restrict our analysis to a single
month.

17When estimating standard errors and confidence intervals, we cluster by individual-month. In robustness
tests described in Section 6, we run a separate specification that allows each individual to have only one
potential destination, defined as the district other than d to which the individual made the most phone calls
in t− 1.

20



relation between migration and network structure. We attempt to limit the endogenity of

network structure in two principal ways. First, we measure network structure in the months

before the migration event actually occurs, and in separate robustness checks, show that

our results do not change even when the network is measured 6 or 12 months prior to mi-

gration. This mitigates the possibility that migrants shape their networks in immediate

anticipation of migrating. Second, in the majority of the results that follow, we will con-

trol for lower-order network structure when analyzing higher-order network structure. For

instance, we condition on the number of common neighbors when analyzing the effect of the

frequency of communication between common neighbors. Thus, while having a large number

of contacts in a destination may be endogenous to migration, and likely migrants may even

select contacts who are connected to each other, we assume migrants will be less able to

control the extent to which those contacts communicate amongst themselves. In spite of

these attempts, we acknowledge that we are unable to eliminate concerns of the endogeneity

of network structure.

4.1 Degree centrality and weighted degree

Figure 4a shows the relationship between the migration rates and degree centrality in the

destination. A point on this figure can be interpreted as the average migration rate (y-axis)

across individuals with a fixed number of contacts in the destination (x-axis). For instance,

roughly 11% of individuals who have 30 contacts in a potential district d′ in month t− 1 are

observed to migrate to d′ in month t. The bottom panel of the figure shows the distribution

of destination degree centrality, aggregated over individuals, months (24 total), and potential

districts (27 per individual). We observe that in the vast majority of these (individual ×

month × potential destinations) observations, the destination degree centrality is less than 3;

in roughly 500,000 cases the individual has 10 contacts in the potential destination. Figure 4b

shows the corresponding relationship between migration rates and the degree centrality of
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the individual’s home network.18

Figure 4a thus validates a central thesis of prior research on networks and migration.

Individuals with more contacts in a destination community are more likely to migrate to

that community. We also see that this relationship is positive, monotic, and approximately

linear. In other words, individuals with k times as many contacts in a destination district are

k times more likely to migrate to that district. Figure 4b conversely indicates that individuals

with more contacts in their home community are less likely to leave that community, but

that there marginal effect of additional contacts at home is lower for individuals with a large

number of contacts.

We observe a similar relationship for weighted degree, which reflects the intensive margin

of communication, i.e., the total number of calls between the individual and his or her first-

degree contacts. As shown in Figure 5a, individuals with a higher weighted degree in the

destination are more likely to migrate, whereas individuals with a higher weighted degree at

home are less likely to migrate (Figure 5c).

Figures 5a and 5c show the unconditional relationship between migration rate and weighted

degree. For this analysis and much of what follows, we also find it instructive to analyze the

relationship dbetween our independent variable of interest x (in this case, weighted degree)

and the migration rate, after controlling for degree. Thus, the right column of subfigures in

Figure 5 (as well as the right column of subfigures in Figures 7 - 6) indicates the conditional

effect of x for individuals of a fixed degree k. More precisely, we construct Figure 5b by

plotting the 20 βk coefficients estimated by running 20 regressions of the form

migrationi = α + βkxi + εi (12)

where a separate regression is estimated for each value of degree between 0 and 20. Positive

values in Figure 5b indicate that, holding degree fixed, individuals with a higher weighted

18Note that the degree centrality distribution in the bottom panel of Figure 4b does not match that in
the bottom panel of Figure 4a, since each individual has only one home district, but 27 potential destination
districts.
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degree are more likely to migrate. To faciliate comparison of the different βk within a figure,

we use the z-score of x at each fixed k when estimating equation (12), so that the coefficient βk

can be interpreted as the increase in migration rate assocated with a one standard deviation

increase in x.19

We obseve in Figure 5b that, conditional on degree, the effect of weighted degree at the

destination is somewhat ambiguous. For the vast majority of individuals who only have a

few contacts in the potential destination (degree between 1 and 5), there is a small positive

correlation between the intensity of communication with those contacts and the likelihood

of migration. However, for individuals with a larger number of contacts, there is a much

weaker, and sometimes weakly negative, association between the intensity of commication

and the migration rate. A simliar pattern is observed in Figure 5d with respect to weighted

degree at home: individuals with a small number of contacts are less likely to migrate if they

interact with those contacts frequently, but individuals with a large number of contacts are

not significantly more likely to migrate if they interact with those contacts frequently than

similarly situated individuals who interact with the same number of contacts less frequently.

4.2 Information

In later analysis, we will take a more principled approach to estimating the relative impor-

tance of what we have loosely termed “information” and “cooperation” in model (6). First,

we show the nonparametric relationships observed in the data, which in part motivated the

structure in the model.

As defined in Section 3.2, we quantify information as the size of i’s second-order network,

i.e., the number of friends of i’s friends. Figure 6a shows the general positive relationship be-

tween migration rate and information in the destination, while Figure 6c shows the opposite

relationship for information at home. The shape of these curves resemble the relationship

19This standardization does not affect the sign or significance of the coefficients we estimate, only the
magnitude. It is not strictly necessary, but helps net out the mechanical correlation between degree and x
(for instance, that individuals the number of friends of friends increases super-linearly with the number of
friends.
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between migration rate and degree shown earlier in Figure 4: the average migration rate

increases roughly linearly with information in the destination, and decreases monotonically

but with diminishing returns relative to information at home.

Of course, our definition of information is mechanically correlated with degree, in that

individuals with more friends are also likely to have more friends of friends. Thus, Figures 6b

and 6d show the relationship between migration rate and information, holding degree fixed

and re-estimating regression (12) separately for each degree. This result is more interesting,

as we see that the likelihood of migrating does not generally increase with information in

the destination, after holding destination degree fixed. This result is difficult to reconcile

with most standard models of information diffusion, such as those proposed in Banerjee et al.

(2013) and ?. Indeed, much of the literature on migration and social networks seems to imply

that, all else equal, individuals would be more likely to migrate if they have friends with

many friends, as such networks would provide more natural conduits for information about

job opportunities and the like. Our data provide little empirical support for this prediction,

particularly for the vast majority of individuals who have only a small number of contacts

in destination communities.

4.3 Cooperation

Finally, Corollary 1 of the strategic cooperation model presented in Section 2.2 predicts that

all else equal, individuals will receive more utility from friends who share common friends.

As described in Section 3.2, we measure this in our data as “support”, i.e., the fraction of i’s

contacts who are also contacts with another of i’s contacts, as originally proposed in Jackson,

Rodriguez-Barraquer and Tan (2012).

Both at home and in the destination, the unconditional relationship between support and

migration is ambiguous (Figures 7a and Figure 7c). However, this apparent null relationship

obscures the fact that support is generally decreasing in degree; in other words, the larger an

individual’s network, the harder it is to maintain a constant level of support. Indeed, holding

24



degree fixed, the role of support is more evident. Figure 7b indicates that for individuals with

a fixed number of contacts in the destination, those whose contacts are mutually supported

are significantly more likely to migrate. The converse effect is found in Figure 7d for support

at home: holding degree fixed, people are less likely to leave home if their home contacts

are more supported. As was the case with weighted degree, this effect is mostly observed

for individuals with a modest number of contacts in their home community; for individuals

with large home networks, support is not significantly associated with migration.20

5 Estimation and Results

[This section is a work in progress. A sketch of the reuslts are described below.]

The results shown thus far illustrate the correlations we observe between social network

structure and migration rates. Most interesting, we observe that after conditioning on the

number of immediate contacts in the destination, individuals whose contacts have more

contacts in the destination are no more likely to migrate. By contrast, individuals with more

tightly clustered destination networks are more likely to migrate. This pair of results are

not so easily reconciled with a model in which migration decisions are determined entirely

by access to information in the destination network, and motivate the model described in

Section 2.3, where migrants balance both access to information and the potential for repeated

cooperation. We turn now to estimating that full model.

5.1 Discrete choice model of migration

Mixed logit ?, Conditional logit ??, multinomial logit ?. 21

20Appendix Figure A1 shows that the closely related concept of network clustering looks identical to
what we measure as support. Appendix Figure A2 shows the relationship between migration and “weighted
support”, i.e., the frequency of interactoin between supported contacts.

21Another possibility is to model the decision to migrate with a nested logit model, where the individual
makes two independent decision: the first is whether or not to migrate and the second is, given the decision
to move, the choice of destination ??. We believe this approach is less appropriate to our context, as the
decision to migrate is closely related to the possible destination choices – (?) provides a more complete
discussion of this point.
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5.2 Calibration

We begin by estimating Model (11). The structural parameters of primary interest are πH ,

πD, αH , and αD. To summarize, π indicates the importance of “information” relative to

“cooperation.” To calculate the information value of a network we use equation (1), and

follow Banerjee et al. (2013) by setting q equal to the inverse of the first eigenvalue of the

adjacency matrix, λ1(G), with T = 7.22 The cooperation value of a network is defined by

equation (7) as the weighted sum of supported and unsupported links in the network, where

α indicates the weight at home (αH) and in the destination (αD).

We use maximum likelihood estimation over all possible combinations of possible pa-

rameters, and report the results in Table 8.23 Our estimates of π < 0.5 indicate that both

at home and in the destination, the potential for an individual to receive information from

distant friends of friends is less important to migration decisions than network structures

that are conducive to repeated cooperation. Within the cooperation model, the estimate of

α < 0.5 further emphasizes the point that contacts who are friends with each other are more

important in migration decisions than contacts who are not connected to other friends of

the migrant.

We stress that these results are preliminary, and we are currently running repeated sim-

ulations on a larger number of individuals to calibrate these parameters, and to construct

confidence bands around the estimates. In ongoing work, we are also interested in under-

standing how these parameters differ for different types of migrants, such as rural versus ur-

ban migrants, temporary versus permanent migrants, and short-distance versus long-distance

22Banerjee et al. (2013) show that this approach to measuring diffusion centrality closely approximates a
structural property of “communication centrality.” This latter property could not be practically estimated
on a network as large as the one we study.

23The current version fixes a rural home district H (Rwamagana) and a rural potential destination district
D (Kayonza), then randomly draws 500 individuals who migrate from H to D and 500 individuals who remain
in H in a single month of the data. For each possible set of parameters < π,α, τ, ρ >, we calculate the utility
of the home and destination network for each migrant, and the total utility of migration. If the total utility
of migration is positive, we predict that individual would migrate. We choose the set of parameters that
minimizes the number of incorrect predictions. We define “all possible parameters” through a grid search
over an empirically determined range: 0 ≤ π ≤ 1; 0 ≤ α ≤ 1; −100 ≤ τ ≤ 100; −1000 ≤ ρ ≤ 1000.
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migrants. Thus far, we have produced versions of the “reduced form” results separately for

urban and rural migrants. These are shown in Appendex Figures A3 - A5.

6 Robustness

The empirical results described above are robust to a large number of alternative specifica-

tions. In results available upon request, we have verified that our results are not affected by

any of the following:

• How we define “migration” (choice of k): Our main specifications set k = 2, i.e.,

we say an individual has migrated if she spends 2 or more months in d and then 2 or

more months in d′ 6= d. We observe qualitatively similar results for k = 1 and k = 3.

• How we define “migration” (home location sensitivity): Our assignment of

individuals to home locations is based on the set of mobile phone towers through

wihch their communication is routed. Since there is a degree of noise in this process,

we take a more restrictive definition of migration that only considers migrants that

move between non-adjacent districts.

• Definition of social network (reciprocated edges): In constructing the social

network from the mobile phone data, we normally consider an edge to exist between i

and j if we observe one or more phone call or text message between these individuals.

As a robustness check, we take a more restrictive definition of social network and only

include edges if i initiates a call or sends a text message to j and j initiaties a call or

sends a text message to i.

• Definition of social network (strong ties): We separately consider a definition of

the social network that only includes edges where more than 3 interactions are observed

between i and j. This is intended to address the concern that our estimates might be
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influenced by infrequent events such as misdialed numbers, text message spam and the

like.

• Definition of social network (ignore business hours): To address the concern

that our estimates may be picking up primarily on business-related contacts, and not

the kinship networks commonly discussed in the literature, we only consider edges that

are observed between the hours of 5pm and 9am.

• Treatment of outliers (removing low- and high-degree individuals): We re-

move from our sample all individuals (and calls made by individuals) with fewer than

3 contacts, or more than 500 contacts. The former is intended to address concerns that

the large number of individuals with just one or two friends could bias linear regression

estimates; the latter is intended to remove potential calling centers and businesses.

• Sample Definition (single month): We perform the analysis separately for each of

the 24 months in the dataset, and do not aggregate over months. This ensures that an

individual is not double-counted across time.

• Sample Definition (single potential destination): Instead of allowing each in-

dividual to consider 27 potential migration destinations, we choose that individual’s

most likely destination, and consider that to be the only potential destination for the

migrant. This ensures that an individual is not double-counted within a given month.

6.1 Population representativeness and external validity

Our data allow us to observe the movement patterns and social network structures of a large

population of mobile phone owners in Rwanda. These mobile subscribers represent a non-

random subset of the overall Rwandan population. Likewise, the social network connections

we observe for any given subscriber are assumed to be a partial and non-random subset of

that subscriber’s true social network.24

24This section is under revision, contact authors for details.
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7 Conclusion

This paper presents new theory and evidence on the role that social network play in the

decision to migrate. Our approach highlights how new sources of large-scale digital data

can be used to simultaneously observe migration histories and the dynamic structure of

social networks at a level of detail and scale that has not been achieved in prior work.

These data make it possible to directly validate several long-standing assumptions in the

literature on migration, which have been hard to test with traditional sources of data. For

instance, we show that individuals are more likely to migrate to destinations where they

have a large number of contacts, and that the elasticity of this response is approximately

one (e.g., someone with 20 contacts in the destination is roughly twice as likely to migrate

as someone with 10 contacts).

We also document several novel properties of the relationship between social networks

and migration, not all which can be explained by simple models of information diffusion. For

instance, we find that migration rates are not positively correlated with the number of friends

of friends that one has in the destination, but that the migration rate is negatively correlated

with the number of friends of friends at home. Similarly, we find significant and positive

effects of having denser destination networks where friends are friends with each other. To

reconcile these results, we propose a model of strategic cooperation that characterizes how

individuals obtain value from their social network, and which captures many of the stylized

features of our data.

We can imagine several directions to extend this analysis. First, while we focus on how

social networks affect the decision to migrate, it is also likely that migration in turn affects

network structure. For instance, individuals may strategically form links in anticipation

of migration, and post-migration, may form different types of friendships, and let prior

friendships go. We do our best to work around this endogeneity using several techniques

discussed above, but we believe this process is of independent interest, though beyond the

scope of this paper. Separately, subsequent analysis could more directly explore peer effects
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in migration, and how migrations cascade within local communities. Our analysis uncovered

suggestive evidence that individuals are likely to follow the paths of prior migrants from their

home community; again, a full treatment of this effect is beyond the scope of our current

analysis, but could shed new light on the role of social networks in migration.
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Figures

Figure 1: Location of all mobile phone towers in Rwanda, circa 2008
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Figure 2: The social network of a single migrant

36



Figure 3: Population studied, by migration type
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Figure 4: Migration rate and degree centrality (number of unique contacts in network)

(a) Degree Centrality at Destination

(b) Degree Centrality at Home

Notes: In both (a) and (b), the lower histogram shows the unconditional degree distribution, i.e., for each
individual in each month, the total number of contacts in the (a) destination network and (b) home network.
The upper figure shows, at each level of degree centrality, the average migration rate. Error bars indicate
95% confidence intervals, clustered by individual.
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Figure 5: Relationship between migration rate and weighted degree

(a) Weighted Degree at Destination (b) Weighted Degree at Destination, by Degree

(c) Weighted Degree at Home (d) Weighted Degree at Home, by Degree

Notes: “Weighted degree” denotes the number of calls between i and i’s first-degree network. In all figures,
the lower histogram shows the unconditional distribution of the x-variable. Top row (a and b) characterizes
the destination network; bottom row (c and d) characterizes the home network. For the left column (a
and c), the main figure indicates, at each level of weighted degree, the average migration rate. For the left
column (b and d), the main figure indicates the correlation between the migration rate and weighted degree,
holding degree fixed. In other words, each point represents the βk coefficient estimated from a regression of
Migrationi = αk + βkDegreeWeighti, estimated on the population of i who have degree equal to k. Error
bars indicate 95% confidence intervals, clustered by individual.
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Figure 6: Relationship between migration rate and information

(a) Information at Destination (b) Information at Destination, by Degree

(c) Information at Home (d) Information at Home, by Degree

Notes: “Information” denotes the number of contacts if i’s contacts. In all figures, the lower histogram shows
the unconditional distribution of the x-variable. Top row (a and b) characterizes the destination network;
bottom row (c and d) characterizes the home network. For the left column (a and c), the main figure indicates,
at each level of weighted degree, the average migration rate. For the left column (b and d), the main figure
indicates the correlation between the migration rate and information, holding degree fixed. In other words,
each point represents the βk coefficient estimated from a regression of Migrationi = αk + βkInformationi,
estimated on the population of i who have degree equal to k. Error bars indicate 95% confidence intervals,
clustered by individual.
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Figure 7: Relationship between migration rate and support

(a) Support at Destination (b) Support at Destination, by Degree

(c) Support at Home (d) Support at Home, by Degree

Notes: “Support” denotes the fraction of contacts supported by a common contact. In all figures, the
lower histogram shows the unconditional distribution of the x-variable. Top row (a and b) characterizes
the destination network; bottom row (c and d) characterizes the home network. For the left column (a
and c), the main figure indicates, at each level of weighted degree, the average migration rate. For the
left column (b and d), the main figure indicates the correlation between the migration rate and support,
holding degree fixed. In other words, each point represents the βk coefficient estimated from a regression of
Migrationi = αk + βkSupporti, estimated on the population of i who have degree equal to k. Error bars
indicate 95% confidence intervals, clustered by individual.
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Tables

Table 1: Summary statistics of mobile phone metadata

In a single month Over two years

(Jan 2008) (Jul 2006 - Jun 2008)

Number of unique individuals 432,642 793,791

Number of person-months 432,642 8,121,369

Number of CDR transactions 50,738,365 868,709,410

Number of migrations 21,182 263,208

Number of rural-to-rural migrations 11,316 130,009

Number of rural-to-urban migrations 4,908 66,935

Number of urban-to-rural migrations 4,958 66,264
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Table 2: Summary statistics: Migration

Migration Definition k Total individuals % Migrants % Repeat migrants % Repeat migrants % Long-distance migrants

(to same district) (to any district) (non-adjacent districts)

1 1,087,229 29.751 9.615 18.870 19.952

2 1,087,229 13.536 1.321 5.158 8.652

3 1,087,229 6.653 0.196 1.379 4.392

6 1,087,229 1.282 0.000 0.046 0.859

12 1,087,229 0.014 0.000 0.000 0.012

Notes: Table counts number of unique individuals meeting different definitions of a “migration event.” Each row of the table defines a migration by a
different k, such that an individual is considered a migrant if she spends k consecutive months in a district d and then k consecutive months in a different
district d′ 6= d – see text for details.

Table 3: Single-variable OLS of migration rates on properties of destination network

(1) (2) (3) (4) (5)

Destination degree 0.0035***

(0.0000)

Destination weighted degree 0.0000334***

(0.0000052)

Destination Support 0.0032073***

(0.0001008)

Destination clustering 0.0011945***

(0.0000959)

Destination information -0.0000123

(0.0000018)

N 184,717,611 10,087,878 10,087,878 10,087,878 10,087,878

Notes: Each column corresponds to a separate regression, where the dependent variable is a binary indicator of whether the individual migrated in
month t. Column (1) treats every potential destination district (27 total) for each individual in each month as a separate observation. In columns
(2)-(5), we restrict the analysis to individual-month-destination observations where the individual has one or more contacts, otherwise several network
measures are undefined. In columns (2)-(5) we additionally standardize the independent variable separately for each level of degree as described in
the text – this effectively controls for degree in the regression, and makes it possible to interpret the coefficient in standard deviation units that
can be compared across degree. Independent variables are calculated using mobile phone data from month t − 1, focusing on the structure of the
individual’s (potential) destination network. Standard errors, clustered by individual, in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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Table 4: Single-variable OLS of migration rate on properties of home network

(1) (2) (3) (4) (5)

Home degree -0.0014***

(0.0000)

Home weighted degree -0.0000217***

(0.0000013)

Home support -0.0102658***

(0.0004360)

Home clustering -0.0145461***

(0.0010921)

Home information -0.0000062***

(0.0000004)

N 6,841,393 6,192,588 6,192,588 6,192,588 6,192,588

Notes: Each column corresponds to a separate regression, where the dependent variable is a binary indicator of whether the individual migrated in
month t. In columns (2)-(5) we normalize the independent variable separately for each level of degree – this effectively controls for degree in the
regression, and makes it possible to interpret the coefficient in standard deviation units that can be compared across degree. Independent variables
are calculated using mobile phone data from month t− 1, focusing on the structure of the individual’s home network. Standard errors, clustered by
individual, in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

Table 5: OLS of migration rates on properties of destination network, controlling for degree
and degree square

(1) (2) (3) (4)

Destination degree 4.489e-03*** 4.502e-03*** 4.582e-03*** 4.726e-03***

(2.162e-05) (1.987e-05) (1.953e-05) (2.584e-05)

Destination degree square -2.788e-05*** -2.611e-05*** -2.758e-05*** -2.692e-05***

(6.928e-07) (6.963e-07) (6.932e-07) (6.963e-07)

Destination weighted degree 2.904e-05***

(2.984e-06)

Destination support 2.144e-03***

(1.124e-04)

Destination clustering 3.458e-05

(1.385e-04)

Destination information -6.155e-06***

(7.291e-07)

N 10,087,878 10,087,878 10,087,878 10,087,878

Notes:
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Table 6: OLS of migration rates on properties of home network, controlling for degree and
degree square

(1) (2) (3) (4)

Home degree -2.411e-03*** -2.248e-03*** -2.513e-03*** -2.441e-03***

(1.583e-05) (1.553e-05) (1.514e-05) (1.736e-05)

Home degree square 2.532e-05*** 2.281e-05*** 2.549e-05*** 2.541e-05***

(2.218e-07) (2.271e-07) (2.245e-07) (2.308e-07)

Home weighted degree -1.883e-05***

(1.631e-06)

Home support -1.520e-02***

(3.333e-04)

Home clustering -6.564e-03***

(7.207e-04)

Home information -1.920e-06***

(4.634e-07)

N 6,192,588 6,192,588 6,192,588 6,192,588

Notes:

Table 7: Parameter estimates of the structural model

Parameter (interpretation) Estimate (S.E.)

π (information, relative to cooperation) 0.1 (0.03)

α (unsupported links, relative to supported links) 0.4 (0.03)

τ (average fixed cost of migrating) 2.0 (0.23)

Notes: Maximum likelihood estimation of model (11) minimizes prediction error over a grid search of possible parameters. Bootstrap estimates of
the model parameters from k random draws of N migrants and N non-migrants are used to compute the standard errors of the parameter estimates
(in parentheses).
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Table 8: Parameter estimates of the structural model

Parameter (interpretation) Estimate S.E.

πH (home information, relative to support) 0.63 (0.07)

πD (destination information, relative to support) 0.21 (0.06)

αH (home unsupported links, relative to home supported links) 0.503 (0.05)

αD (destination unsupported links, relative to destination supported links) 0.49 (0.03)

q (probability of passing information) 0.0085 (0.019)

τ (average fixed cost of migrating) -0.132 (0.08)

ρ (importance of home network, relative to destination network) 1.03 (0.15)

Notes: Maximum likelihood estimation of model (11) minimizes prediction error over a grid search of possible
parameters. Bootstrap estimates of the model parameters from k random draws of N migrants and N non-
migrants are used to compute the standard errors of the parameter estimates (in parentheses).
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A1 Proofs

Proof of Proposition 1: We will show that an agent, say i, has no profitable deviations

under each of the following two cases when facing j ∈ Ni.

(Case 1) k is innocent for all k ∈ Ni

Consider the most profitable deviation for i: choose aij = 0 and aik ∈ {0, aGik} in any penalty

stage game facing with any k ∈ Ni. However, from (3) we have

b(a∗m(ij)) + 0 = v(a∗m(ij)) +

∫ ∞
0

e−rtλ[v(a∗m(ij)) +m(ij)v(a∗1)]dt

= v(a∗m(ij)) +
λ

r
[v(a∗m(ij)) +m(ij)v(a∗1)]

≤ v(a∗m(ij)) +
λ

r

∑
k∈Ni

v(a∗m(ik)),

where the last inequality holds since m(ik) ≥ 1 for all k ∈ Ni ∩Nj, and |Ni| ≥ m(ij) + 1.

(Case 2) k is guilty for some k ∈ Ni

If i has profitable deviations in this case, then i will perform any of them after all of her

neighbors become back to innocent, contradicting to what we have proved in previous case.

Proof of Proposition 2: Let ahl ∈ ΣG be the effort level chosen by h when meet-

ing l. We construct ΣG′ as follows. Let a′ij = a′ji = a∗ < a∗0 where a∗ > 0 satisfies

c(a∗) <

∫ ∞
0

e−rtλv(a∗)dt (such a∗ exists from assumption 1. and 2.), so the effort level is

sustainable with positive net utility by the link itself. Also let a′hl = ahl for all h and l such

that G(hl) = 1 and (h, l) /∈ {(i, k), (j, k) : k ∈ Ni ∩Nj}. For a′ik and a′jk, first note that

c(aik) ≤
∑

h∈Ni(G)

∫ ∞
0

e−rtλ(b(ahi)− c(aih))dt,

c(ajk) ≤
∑

h∈Nj(G)

∫ ∞
0

e−rtλ(b(ahj)− c(ajh))dt,
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c(akl) ≤
∑

h∈Nk(G)

∫ ∞
0

e−rtλ(b(ahk)− c(akh))dt for l ∈ {i, j}.

Consider ε > 0 such that Cl <

∫ ∞
0

e−rtλ

(
v(a∗) +

∑
h∈Ni∩Nj

(
c(alh)− c(alh + ε)

))
dt where

Cl ∈ {c(a∗), c(alk + ε) − c(alk)} and l ∈ {i, j}. Choosing a′ik = aik + ε, a′jk = ajk + ε,

a′ki = aki, and a′kj = aki satisfies the incentive constraints among i, j, and those k’s with

clk(G
′) > clk(G):

c(a′ik) < c(aik) +

∫ ∞
0

e−rtλ

(
v(a∗) +

∑
h∈Ni∩Nj

(
c(aih)− c(a′ih)

))
dt

≤
∫ ∞
0

e−rtλ
( ∑
h∈Ni(G)

(
b(ahi)− c(aih)

)
+ v(a∗) +

∑
h∈Ni∩Nj

(
c(aih)− c(a′ih)

))
dt

=
∑

h∈Ni(G′)

∫ ∞
0

e−rtλ(b(a′hi)− c(a′ih))dt,

c(a′jk) ≤
∑

h∈Nj(G′)

∫ ∞
0

e−rtλ(b(a′hj)− c(a′jh))dt,

c(a′ij) = c(a′ji) = c(a∗) <

∫ ∞
0

e−rtλ

(
v(a∗) +

∑
k∈Ni∩Nj

(
c(aik)− c(a′ik)

))
dt

≤
∫ ∞
0

e−rtλ

(
v(a∗) +

∑
k∈Ni∩Nj

(
c(aik)− c(a′ik)

)
+

∑
h∈Ni(G)

(b(ahi)− c(aih))
)
dt

=

∫ ∞
0

e−rtλv(a∗)dt+
∑

h∈Ni(G)

∫ ∞
0

e−rtλ(b(a′hi)− c(a′ih))dt,

c(a′kl) = c(akl) ≤
∑

h∈Nk(G)

∫ ∞
0

e−rtλ(b(ahk)− c(akh))dt

<
∑

h∈Nk(G′)

∫ ∞
0

e−rtλ(b(a′hk)− c(a′kh))dt,

where l ∈ {i, j} and a′ik > aik and a′jk > ajk yields the last (strict) inequality. For all other

remaining incentive constraints, they are satisfied since their counterparts in ΣG hold by

definition. To complete the construction of ΣG′ , if someone deviated, then all her neighbors

use the social norm with sequential move described before Proposition 1 to punish the
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deviator.

By the construction of this new equilibrium ΣG′ , we have

uk(ΣG′) =
∑

h∈Nk(G′)

∫ ∞
0

e−rtλ(b(a′hk)− c(a′kh)))dt

>
∑

h∈Nk(G)

∫ ∞
0

e−rtλ(b(ahk)− c(akh)))dt = uk(ΣG).

for all k ∈ Ni ∩Nj.

Proof of Proposition 3: For notational convenience, we define ∆ = λ′ij−λij, Nij = Ni∩Nj,

vi = b(aji) − c(aij), and vj = b(aij) − c(aji). Let k ∈ Nij and ahl ∈ Σλ be the effort level

chosen by h when meeting l. We construct Σλ′ as follows. Without loss of generality, assume

vi > 0. (If vi = 0, we can sustain an equilibrium by increasing both aij and aji to make the

assumption hold without decreasing any agent’s utility). Also let a′hl = ahl for all h and l

such that G(hl) = 1 and (h, l) /∈ {(i, k), (j, k) : k ∈ Ni ∩Nj}. For a′ik and a′jk, first note that

c(aik) ≤
∑

h∈Ni(G)

∫ ∞
0

e−rtλih(b(ahi)− c(aih))dt,

c(ajk) ≤
∑

h∈Nj(G)

∫ ∞
0

e−rtλjh(b(ahj)− c(ajh))dt,

c(akl) ≤
∑

h∈Nk(G)

∫ ∞
0

e−rtλkh(b(ahk)− c(akh))dt for l ∈ {i, j}.

If vj ≤ 0, then choose η ≥ 0 such that a′ij , aij + η = aji with v′i = b(aji)− c(a′ij) > 0 (Such

η exists since vi + vj > 0); if not, then let η = 0. Given η, there exists ε > 0 such that

∫ ∞
0

e−rt
(

∆v′i +
∑
h∈Nij

λih
(
c(aih)− c(aih + ε)

)
+ λij(c(aij)− c(a′ij))

)
dt ≥ c(aij + η)− c(aij),

∫ ∞
0

e−rt
(

∆v′i +
∑
h∈Nij

λih
(
c(aih)− c(aih + ε)

)
+ λij(c(aij)− c(a′ij))

)
dt ≥ c(aik + ε)− c(aik),
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for all k ∈ Nij. Define a′ik = aik + ε, a′jk = ajk, a
′
ki = aki, a

′
kj = akj, and a′ji = aji, then the

incentive constraints among i, j, and those k’s in Nij are satisfied:

c(a′ik) ≤ c(aik) +

∫ ∞
0

e−rt
(

∆v′i +
∑
h∈Nij

λih
(
c(aih)− c(a′ih)

)
+ λij(c(aij)− c(a′ij))

)
dt

≤
∫ ∞
0

e−rt
(∑
h∈Ni

λih
(
b(ahi)− c(aih)

)
+ ∆v′i +

∑
h∈Nij∪{j}

λih
(
c(aih)− c(a′ih)

))
dt

=
∑
h∈Ni

∫ ∞
0

e−rtλ′ih(b(a
′
hi)− c(a′ih))dt,

c(a′ij) ≤
∑
h∈Ni

∫ ∞
0

e−rtλ′ih(b(a
′
hi)− c(a′ih))dt,

c(a′jk) = c(ajk) ≤
∑
h∈Nj

∫ ∞
0

e−rtλjh(b(ahj)− c(ajh))dt ≤
∑
h∈Nj

∫ ∞
0

e−rtλ′jh(b(a
′
hj)− c(a′jh))dt,

c(a′ji) = c(aji) ≤
∑
h∈Nj

∫ ∞
0

e−rtλ′jh(b(a
′
hj)− c(a′jh))dt,

c(a′kl) = c(akl) ≤
∑
h∈Nk

∫ ∞
0

e−rtλkh(b(ahk)− c(akh))dt

≤
∑
h∈Nk

∫ ∞
0

e−rtλkh(b(a
′
hk)− c(a′kh))dt

=
∑
h∈Nk

∫ ∞
0

e−rtλ′kh(b(a
′
hk)− c(a′kh))dt,

where l ∈ {i, j}. For all other remaining incentive constraints, they are satisfied since their

counterparts in Σλ hold by definition. From this new equilibrium Σλ′ , we have

uk(Σλ′) =
∑
h∈Nk

∫ ∞
0

e−rtλ′kh(b(a
′
hk)− c(a′kh))dt

>
∑
h∈Nk

∫ ∞
0

e−rtλkh(b(ahk)− c(akh))dt = uk(Σλ).
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for all k ∈ Nij ∪ {j}; particularly for i, we have

ui(Σλ′) =
∑
h∈Ni

∫ ∞
0

e−rtλ′ih(b(a
′
hi)− c(a′ih))dt

=

∫ ∞
0

e−rt∆v′idt+
∑
h∈Ni

∫ ∞
0

e−rtλih(b(a
′
hi)− c(a′ih))dt

=

∫ ∞
0

e−rt∆v′idt+
∑

h∈Nij∪{j}

∫ ∞
0

e−rtλih(c(aih)− c(a′ih))dt+ ui(Σλ)

> ui(Σλ).
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A2 Algorithms

Data: < ID, datetime, location > tuples for each mobile phone interaction
Result: < ID,month, district > tuples indicating monthly modal district
Step 1 Find each subscriber’s most frequently visited tower;
→ Calculate overall daily modal districts ;
→ Calculate overall monthly modal districts ;
Step 2 calculate the hourly modal districts ;
if tie districts exit then

if overall daily modal districts can resolve then
return the district with larger occurance number;
else

if overall monthly modal districts can resolve then
return the district with larger occurance number

end

end

end

end
Step 3 calculate the daily modal districts ;
if tie districts exit then

if overall daily modal districts can resolve then
return the district with larger occurance number;
else

if overall monthly modal districts can resolve then
return the district with larger occurance number

end

end

end

end
Step 4 calculate the monthly modal districts ;
if tie districts exit then

if overall monthly modal districts can resolve then
return the district with larger occurance number;

end

end
Algorithm 1: Home location assignment
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Data: Monthly modal district for four consecutive months: D1, D2, D3, D4

Result: Migration type

if D1 == D2 AND D3 == D4 then
if D2 == D3 then

if D4 == Kigali then
migration type is urban resident

end
else

migration type is rural resident
end

end
else

if D4 == Kigali then
migration type is rural to urban

end
else

if D1 == Kigali then
migration type is urban to rural

end
else

migration type is rural to rural
end

end

end

end
else

migration type is other
end

Algorithm 2: Classifying individuals by migrant type for k=2
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A3 Appendix Figures and Tables
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Figure A1: Relationship between migration rate and clustering

(a) Clustering at Destination (b) Clustering at Destination, by Degree

(c) Clustering at Home (d) Clustering at Home, by Degree

Notes: “Clustering” denotes the proportion of potential links between i’s friends that exist. In all figures,
the lower histogram shows the unconditional distribution of the x-variable. Top row (a and b) characterizes
the destination network; bottom row (c and d) characterizes the home network. For the left column (a
and c), the main figure indicates, at each level of weighted degree, the average migration rate. For the
left column (b and d), the main figure indicates the correlation between the migration rate and clustering,
holding degree fixed. In other words, each point represents the βk coefficient estimated from a regression of
Migrationi = αk + βkClusteringi, estimated on the population of i who have degree equal to k. Error bars
indicate 95% confidence intervals, clustered by individual.
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Figure A2: Relationship between migration rate and weighted support

(a) Weighted Support at Destination (b) Weighted Support at Destination, by Degree

(c) Weighted Support at Home (d) Weighted Support at Home, by Degree

Notes: “Support Weight” denotes the frequency of interaction between supported contacts. In all figures,
the lower histogram shows the unconditional distribution of the x-variable. Top row (a and b) characterizes
the destination network; bottom row (c and d) characterizes the home network. For the left column (a
and c), the main figure indicates, at each level of weighted degree, the average migration rate. For the left
column (b and d), the main figure indicates the correlation between the migration rate and support weight,
holding degree fixed. In other words, each point represents the βk coefficient estimated from a regression of
Migrationi = αk + βkSupportWeighti, estimated on the population of i who have degree equal to k. Error
bars indicate 95% confidence intervals, clustered by individual.

56



Figure A3: Urban vs. rural relationship between migration rate and degree centrality

(a) Destination Degree (Rural Destinations) (b) Destination Degree (Urban Destinations)

(c) Home Degree (Rural Home) (d) Home Degree (Urban Home)
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Figure A4: Urban vs. rural relationship between migration rate and information, holding
degree fixed

(a) Destination Information (Rural Destinations)(b) Destination Information (Urban Destinations)

(c) Home Information (Rural Home) (d) Home Information (Urban Home)

58



Figure A5: Urban vs. rural relationship between migration rate and support, holding degree
fixed

(a) Destination Support (Rural Destinations) (b) Destination Support(Urban Destinations)

(c) Home Support (Rural Home) (d) Home Support (Urban Home)
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