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I Introduction

The intergenerational transmission of economic status, a proxy for equality of opportunity,

has implications for inequality, allocative efficiency and subjective welfare (Solon, 1999; Black

and Devereux, 2011). Studies of intergenerational mobility typically rely upon some measure

of rank in the social hierarchy which can be observed for both parents and children (Chetty

et al., 2014a; Chetty et al., 2017b).

When the measure of social status is observed only in coarse bins, as is often the case with

education and occupation, estimating rank-based mobility measures is challenging for two

reasons.1 First, when bins are large, the relationship between parent and child outcomes

within bins may be important for mobility but is not observed by the researcher. In India,

for example, 60% of fathers of the 1950s birth cohort had zero years of education. Any latent

differences in opportunity within the bottom half of the distribution are thus not observed.

Conventional mobility estimates in this context implicitly make the strong assumption that

a child growing up in the 10th percentile family has the same set of opportunities as a child

growing up in the 50th percentile family. Second, it is difficult to compare mobility estimates

across contexts with different bin boundaries. For example, if education is rising over time,

then uneducated parents represent lower ranks with each successive cohort. Constructing

comparable quantile bins requires either strong assumptions or a set identification approach

where parameters of interest may at best be bounded.2

In this paper, we develop a method that generates unbiased bounds on measures of rank

mobility when ranks are coarsely observed. We show that when we weaken implicit assump-

tions about within-bin parent-child outcome correlations, we can at best identify a set of

parameters containing the true mobility estimate. In some cases the bounds are tight, but

in others they are too wide to be informative. This leads us to propose a new measure of

1Recent studies of intergenerational mobility focusing on education and occupation include Black et al.
(2005), Long and Ferrie (2013), Güell et al. (2013), and Wantchekon et al. (2015).

2Set identification, which uses structural assumptions to refine worst-case bounds on problems where
point identification is impossible, is summarized in Manski (2003), Tamer (2010), and Ho and Rosen (2015).

2



intergenerational mobility that can be tightly bounded even when data are extremely coarse.

We begin with the assumption that the rank bin data represent a latent, continuous rank

distribution that is observed only in coarse intervals.3 We can then develop a method to

analytically bound the conditional expectation function of child rank given latent parent

rank (the CEF henceforth).4,5 The bounds can be further tightened with assumptions about

the curvature of the CEF, though solving this problem requires numerical optimization. In

the limit, restricting the curvature to zero is equivalent to assuming that the canonical rank-

rank gradient fully describes the parent-child distribution. The method allows us to bound

the expected child outcome given parent rank at any point in the rank distribution, even if

that rank is observed only in a coarse bin.6 To validate the method, we simulate interval

censoring in Danish income data where the full rank distribution is known and we show that

we can recover sensible bounds given just the censored data.

From the bounds on the child CEF, we can bound any mobility statistic derived from the

CEF, including the rank-rank gradient and newer measures like absolute upward mobility

(Chetty et al., 2014a). When the rank bins are large, we show that both of these measures

may have bounds that are too wide to be informative.

We propose a new measure of mobility that can often be bounded tightly even with severely

interval censored data. We define interval mobility, or µba, as the expected outcome of chil-

dren born to parents who occupy positions between a and b in the parent rank distribution.

A useful instance of this measure is µ50
0 , which describes the expected outcome of a child born

3Parent education data in mobility studies most often reports not even years of education, but the
highest major level of schooling completed, such as primary or middle. The latent educational rank could
represent the continuous time spent in school (i.e. the number of days with a teacher present), as well as
parent inputs into human capital accumulation.

4Specifically, we prove sharp analytical bounds on such a CEF E(Y |x) when x is interval censored and
has a known distribution. These bounds substantially improve upon those established by Manski and Tamer
(2002) for x variables with unknown distributions. When x is uniformly distributed, as when it represents
parent ranks, the bounds are particularly parsimonious. Chetty et al. (2017a) numerically calculate bounds
on the probability of children having higher income than their parents, in a context where they observe
only unmatched incomes from two generations.

5To account for sampling variation, we generate bootstrap confidence sets for all estimates (Imbens and
Manski, 2004; Tamer, 2010).

6We focus on addressing interval censoring in parent rank data, which is typically a greater source of
bias than censoring in child rank data, but we address the latter in Section IV.F and Appendix C.
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in the bottom half of the distribution; we call this upward interval mobility. This measure is

similar in spirit to absolute upward mobility, but we show that upward interval mobility can

be tightly bounded under severe interval censoring, while absolute upward mobility cannot.

We prove sharp analytical bounds on µba, and show how to obtain numerical bounds on µba

given additional curvature restrictions.

We apply these methods to the calculation of educational mobility in India, using new ad-

ministrative data on the education of all fathers and sons in the country.7 Education ranks

are very coarsely observed: 60% of parents of the oldest generation (and 38% of parents of

the youngest) report a level of education in the lowest category. Comparable numbers are

common in studies of educational and occupational mobility (see Table 1).

Using our new measure of upward interval mobility, we show that the expected ranks

of children in the bottom half of the education distribution have barely changed since the

1950s. In contrast, the bounds on both the traditional rank-rank gradient and on absolute

upward mobility are only moderately informative and are consistent with both large gains

and small losses in mobility since the 1950s. If the coarse data problem were ignored, the

naive approach to estimating the rank-rank gradient would suggest small but unambiguous

mobility gains over the same period.8

We then separately examine upward mobility for Scheduled Castes and Scheduled Tribes

(SC/STs) and for Muslims. These groups each represent about 15% of the population

and have been historically marginalized, though SC/ST disadvantage has been targeted by

many programs and policies since independence (Munshi and Rosenzweig, 2006; Ito, 2009;

Hnatkovska et al., 2012). We focus on upward interval mobility, as it is the only measure

that we can bound narrowly. There are three main findings. First, once we separate SC/STs

and Muslims, upward mobility for the remainder of the population is comparable to the

7While mobility with respect to daughters and mothers is equally relevant, as is often the case, we are
constrained because the only matched parent-child pairs that we observe in our data are fathers and sons.

8Because the fully supported rank distribution is uniform, the rank correlation coefficient is equivalent
to the coefficient from a regression of child rank on latent parent rank. This equivalence does not necessarily
hold with interval rank data.
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United States, and has not changed over the last thirty years. Second, upward mobility

has improved significantly for SC/STs since the 1960s; the expected educational rank of an

SC/ST child born into the bottom half of the distribution has risen from 33 in the 1960s to 36

in the 1980s. Third, this change is almost exactly mirrored by a decline in upward mobility

among Muslims, which has fallen from 31.5 to 29 over the same period. Results are robust to

different data construction methods, and are not significantly affected by survivorship bias.

These findings imply that virtually all of the mobility gains in India over recent decades

have accrued to SC/STs, and none have come at the expense of the upper caste population,

in spite of significant political mobilization against affirmative action by higher caste groups

in recent years. For non-SC/STs, there is no evidence that economic liberalization has

substantially increased opportunities for those in the lower half of the rank distribution to

attain higher relative social position, and for Muslims these opportunities have substantially

deteriorated.9

These patterns have to our knowledge not been identified because earlier studies have either

(i) focused on absolute outcomes (such as consumption), which are rising for all groups due

to India’s substantial economic growth (Maitra and Sharma, 2009; Hnatkovska et al., 2013);

or (ii) compared subgroups using the parent-child outcome correlation or regression coeffi-

cient, which describe the outcomes of subgroup members relative to their own group, rather

than to the national population (Hnatkovska et al., 2013; Emran and Shilpi, 2015; Azam and

Bhatt, 2015). Studies on affirmative action in India have identified improvements in SC/ST

access to higher education but have not examined impacts on Muslims (Frisancho Robles

and Krishna, 2012; Bagde et al., 2016); our findings point to the importance of studying the

effects of such policies on other marginalized groups.10

In summary, this paper makes four main contributions. First, we prove new analytical

9Absolute outcomes for all social groups have been improving systematically due to India’s substantial
economic growth over the study period. We focus on the ability of individuals to rise to a higher relative
position in society than their parents exactly because it holds constant the level shift in outcomes due to
growth. However, absolute measures of mobility are also of interest and can be bounded using our method.

10In a similar finding, Bertrand et al. (2010) find that when Indian colleges intentionally select lower
caste students, they admit fewer women.
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bounds on a conditional expectation function E(y|x) when x is interval censored with a

known distribution, and we show how to compute numerical bounds with additional cur-

vature restrictions. Second, we develop a method to compare expected child outcomes at

constant parent rank intervals even when parent ranks are not observed at exactly those

intervals. This makes it possible to compare the educational mobility of subgroups with

respect to the entire population, which was previously difficult. Third, we propose a new

measure of upward mobility that can be tightly bounded even when parent ranks are mea-

sured very coarsely. Fourth, we present new national and subgroup estimates of upward

mobility in India that are robust to coarse parent data; to our knowledge, the declining

intergenerational mobility of Muslims has not been previously established.11,12

The problem of coarse data is common, especially in developing countries where mobility

studies frequently use education as an indicator of status and a large share of older genera-

tions has not completed primary school. Our method is also applicable in wealthier countries

where a large share of the population may be in a topcoded education bin.13 Larger or more

representative samples do not mitigate the challenge of coarse measurement of rank, and

additional covariate data on parents of older generations are often unavailable.

Our approach to interval rank data can also be helpful in other contexts where researchers

need to construct comparable rank bins across time or space. This problem arises, for in-

stance, in the study of disparities in health outcomes across the education distribution. Case

and Deaton (2015, 2017) estimate changes in mortality over time among groups with a high

school degree or less; they do not look specifically at less educated groups because their

population share, and thus their relative social rank, changes over time. Bound et al. (2015)

11The persistent low absolute levels of economic outcomes for Muslims have been noted by researchers
and in occasional government reports but have not been a focus of government policy (Sachar Committee
Report, 2006; The Economist, Oct 29, 2016).

12Our mobility estimates are not intended to be interpreted as causal effects of parent schooling on child
schooling. They are descriptive measures of the degree of equality of opportunity in a society.

13In one mobility study from Sweden, for example, 40% of adoptive parents were topcoded with 15 or
more years of education (Björklund et al., 2006). Studies on the persistence of occupation across generations
also frequently use a small number of categories and face a similar challenge when the occupational structure
changes significantly over time, as it has with farm work in the United States. See, for example, Long and
Ferrie (2013), Xie and Killewald (2013) and Guest et al. (1989).
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show that failure to control for changing sizes of rank bins leads to biased mortality esti-

mates. Our method can bound mortality measures on arbitrary education rank intervals

that are not directly observed.

Our paper proceeds as follows. Section II describes current approaches to estimating in-

tergenerational mobility, with a focus on estimates using coarse data. Section III describes

the Indian data. Section IV describes our method for calculating nonparametric bounds on

the child CEF and presents the new measure of upward interval mobility. We validate the

methods using data from Denmark, and work through an example with data from a single

decadal cohort of Indian children. Section V applies our method to the estimation of changes

in mobility over time and estimating differences in mobility between social groups in India.

Section VI concludes. Stata and Matlab code to calculate all measures used in this paper

are available on the corresponding author’s web site.

II Background: Theory and Empirics of Mobility Measurement

When intergenerational mobility is low, the social status of individuals is highly dependent on

the social status of their parents (Solon, 1999). In more mobile societies, individuals are less

constrained by their circumstances at birth. There is a growing literature on the variation in

intergenerational mobility across countries, across groups within countries, and across time.14

The first generation of intergenerational mobility studies described matched parent-child

outcome distributions with a single linear parameter, typically using either: (i) the corre-

lation coefficient between children’s earnings and parents’ earnings; or (ii) the parent-child

earnings elasticity, i.e. the coefficient from a regression of children’s log earnings on parents’

log earnings (Solon, 1999; Black and Devereux, 2011).15 These measures are easy to calcu-

late and interpret, and they form the basis of studies in dozens of countries. However, the

gradient estimator is not well-suited for between-group comparisons, because the subgroup

14See Hertz (2008) for cross-country comparisons, and Solon (1999), Corak (2013), Black and Devereux
(2011), and Roemer (2016) for review papers.

15These measures are related through the variance of parents’ and children’s outcomes: in the absence
of additional regressors, β = ρσchildren

σparents
, where σ denotes the standard deviation of lifetime earnings, ρ is the

correlation coefficient and β is the parent-child regression coefficient.
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gradient measures children’s outcomes against better off members of their own group; a

subgroup can therefore have a lower gradient (suggesting more mobility) in spite of having

worse outcomes at every point in the parent distribution.

Recent studies have instead analyzed the parent-child income and education rank dis-

tributions (Boserup et al., 2014; Chetty et al., 2014a; Hilger, 2016; Bratberg et al., 2015),

with both parent and child ranks calculated within the children’s cohorts. Since the parent

and child rank distributions are uniform, the parent-child rank correlation coefficient and

rank regression coefficient (the gradient) are identical, and the mobility statistic is invariant

to changes in the variance of the parent-child outcome distribution.16 Parent-child rank

distributions are also more easily compared across countries than level distributions.

Studies drawing on rich administrative data such as tax records have examined the entire

nonparametric conditional expectation function of child rank given parent rank (the CEF).

Studies have highlighted that the CEF is often non-linear (the United States being an im-

portant exception): both mobility and changes in mobility may vary across the parent rank

distribution.17 Many useful statistics of mobility can be generated from the parent-child

rank CEF. First, the rank-rank gradient is the slope of the best linear approximation of the

CEF. Second, Chetty et al. (2014a) propose a measure that describes the value of the CEF at

any given rank, which they call absolute mobility. Absolute mobility at the i-th percentile,

which we denote by pi, is the expectation of a child’s rank if the child’s parent is at the

i-th percentile.18 Chetty et al. (2014a) pay particular attention to p25, which describes the

16Importantly, this invariance does not hold if the rank data are binned differently for parents and
children, or across different estimations.

17The CEF of child income rank given parent income rank is largely linear in the United States (Chetty
et al., 2014b), but has important nonlinearities in Denmark (Boserup et al., 2014), Norway and Sweden
(Bratberg et al., 2015), especially in the tails. The CEF of child college quality given parent income rank in
the United States is significantly convex (Chetty et al., 2014a), as are the CEFs of log income in Denmark,
Finland and Norway (Bratsberg et al., 2007). We are not aware of any studies from developing countries
with sufficient data to report a fully supported rank CEF, though we show below that the education rank
CEF is India is nonlinear.

18Chetty et al. (2014a) use the term “absolute mobility” because this measure does not depend on the
value of the CEF at any other point in the parent rank distribution, distinguishing it from the rank-rank
correlation which they describe as a relative mobility measure. Other authors use the term “absolute
mobility” to describe the set of mobility measures which use child levels as outcomes rather than child
ranks. Because this study is focused on child rank outcomes, we avoid the term “absolute mobility” except
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expected rank of the median child born in the bottom half of the distribution.

II.A Educational Mobility and Income Mobility

Education data have been widely used for mobility studies for three reasons: (i) matched

parent-child education data are more widely available than matched parent-child income

data; (ii) education may be measured more precisely than income among the very poor; and

(iii) they are less likely to be influenced by life-cycle bias.19

Representative matched parent-child income data are frequently unavailable to the re-

searcher. In developing countries, there are few administrative income records, and if they

do exist, they rarely if ever date back long enough to measure parent and child incomes at

similar ages.

Even when matched parent and child income data are available (for example, for the set of

parents and children who are coresident), measurement error problems are significant. Tran-

sitory incomes are noisy estimates of lifetime income, subsistence consumption is difficult to

measure, and many individuals report zero income; these problems are exacerbated among

the rural poor.20 As a result, studies of intergenerational mobility in developing countries

often proxy lifetime income and opportunity with the level of education. This approach

has been validated in countries where both approaches are possible; intergenerational educa-

tional mobility is highly correlated with intergenerational income mobility (Solon, 1999). In

developing countries in particular, educational attainment may be a better proxy for lifetime

income than a single observation of transitory income.

Focusing on education also avoids the problem of life-cycle bias in income measurement.

The income or income rank of a young person may not be a good proxy for her lifetime

when making reference to the specific measure used by Chetty et al. (2014a).
19A sample of studies examining educational mobility includes Solon (1999), Black et al. (2005) and

(Restuccia and Urrutia, 2004). More are summarized in Black and Devereux (2011)
20Intergenerational income mobility studies either focus on individual wages or total household earnings,

both of which are problematic. Given that transitioning out of agricultural work and into wage work is a
central predictor of consumption, restricting the sample to wage earners has obvious deficiencies. But for
the significant set of households where parents and children are coresident, total household earnings include
earnings of the parent, which biases downward the measurement of mobility.
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income, because high permanent income individuals may spend more time in school and

thus have lower income than their peers when young. In contrast, the level of education

rarely changes later in life.

Estimates of educational mobility do have one important drawback, which is the focus

of this paper: outcomes are typically reported in a small number of categories. Even when

years of education are specifically measured, they are bunched at school completion levels.

A large share of individuals report zero completed years of education — in fact, this number

exceeds half of the population in many poor countries. The small number of categories makes

it difficult to compare the outcomes of similarly ranked individuals across time periods with

changing rank boundaries. For example, consider the top rows of the father-son transition

matrices presented in Appendix Table A1. Among Indian sons born in the 1950s, 60% have

fathers with zero education. In the 1980s, the data provide no comparably ranked parent

group; 38% of fathers have zero education, 49% have zero or less than primary, and 67% have

primary or less. Researchers often compare transition matrices across countries by focusing

on quartile or quintile transition matrices; but we are aware of no established methodology

for generating such matrices rank data with arbitrary rank bins. Researchers in this circum-

stance often implicitly assume parent and child outcomes are independent within bins of the

transition matrix. In the 1950s Indian son cohort, this amounts to assuming that an Indian

son born at the 10th percentile of the opportunity distribution has equivalent opportunity

to a son born at the 50th percentile, which is unlikely to be the case.

To make it possible to compare similarly sized rank bins in the parent-child education dis-

tribution, we assume that every parent and child can be characterized by a latent continuous

education rank, which is observed in censored intervals by the researcher. The unobserved

component of the education rank could include partially completed years of schooling or the

number of days spent in school with a teacher present. In this framework, we show that it is

possible to place bounds on the latent parent-child rank CEF given the observed data, and

that we can generate informative mobility statistics describing mobility even in the parts of
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the distribution where bins are the most coarse. This framework allows us to consider, for

example, the possibility that a child born at the 10th percentile of the education distribution

has a different expected outcome from a child born at the 50th percentile, even if we do not

observe these ranks directly.21

Table 1 describes a set of recent studies of intergenerational mobility from several rich and

poor countries.22 For each study, we report the range of birth cohorts of sample children, the

number of education bins used (where reported), and the share of the parents reporting zero

education. Several of the studies observe education in fewer than ten bins, the population

share in the bottom bin is often above 20%, and sometimes it is above 50%.23 Even in the

youngest cohorts, a large share of parents have not attained primary school. By contrast, in

developed countries, the size of the top bin may be too large to develop tight bounds on the

CEF. For example, Björklund et al. (2006) study the education of adopted children and report

that the size of the top education category (15 years or more) for adoptive parents is 40%.

Long run studies of mobility in developed countries often rely upon occupation as a mea-

sure of social status (Guest et al., 1989; Long and Ferrie, 2013). When a large share of the

population is classified in a given occupation (for instance, unskilled labor), any intergener-

ational persistence of occupation at an unobserved and more finely detailed level will bias

upward mobility estimates based on broad categories. Significant differences in the popula-

tion share in each occupation across settings also complicates mobility comparisons (Xie and

21The interval censoring assumption is not totally innocuous, because observed years of education
describe latent continuous education rank with some error. For example, some middle-school educated
people could in fact have less education than some primary-school educated people, because of variation
in school quality. Measurement error like this will bias mobility estimates upward. While we do not
address the measurement error problem in this paper, we note that studies using years of education will
equally overestimate mobility if years of education do not accurately reflect opportunity. We also focus
on comparison of mobility across time and across subgroups in India, rather than across countries where
differences in measurement error may be more serious.

22We specifically selected a set of studies where coarse data is likely to be an important factor. This
list notably excludes several recent studies using tax data from developed countries, where the parent rank
distribution is observed without substantial interval censoring.

23The studies that we found from Africa did not report the size of the bottom bin, but estimates of
primary completion suggest that it is large. In 1980, the interquartile range of the primary enrollment rate
was (0.48, 0.98) and the interquartile range of the youth literacy rate was (0.27, 0.64) (World Development
Indicators). These are indicators of children’s education, so the number of parents without primary
education is considerably higher.
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Killewald, 2013). The method in this paper can be applied to intergenerational occupational

mobility only to the extent that occupational categories can be monotonically ranked, which

may be possible in some categorizations but not in others. Finally, studies of intergener-

ational income mobility often rely on interval censored data; the literature on the British

Cohort Study (BCS) is a well-known example. Our method can be directly applied to gener-

ate estimates that take the interval censoring into account.24 Other studies using coarse data

to estimate long-run mobility include Lindahl et al. (2012), Clark (2012), and Clark (2014).

II.B Context: Educational Mobility in India

While intergenerational mobility is of interest around the world, India’s caste system and

high levels of inequality make it a particularly important setting for such work. India’s caste

system is characterized by a set of rules that expressly inhibit intergenerational mobility by

preventing individuals from taking up work outside of their caste’s traditional occupation

and from marrying outside of their caste. While some have argued that economic growth is

making old social and economic divisions less important to the economic opportunities of the

young, caste remains an important predictor of economic opportunity.25 India’s Muslims,

who are approximately equal in population to the Scheduled Castes and Scheduled Tribes

(SC/STs), have also been historically marginalized, albeit through different mechanisms.

Since independence, several major political parties have successfully rallied around Hindu

nationalist policies which explicitly discriminate against Muslims and Muslim religious prac-

tices. The ruling federal coalition at the time of writing (the BJP) arose out of the Hindu

nationalist movement. Muslims have also frequently been targeted by mob violence. The

last 30 years have seen tremendous growth in market opportunities in India as well as in the

availability and level of education, but many have argued that this growth has been unequal

24We generated intergenerational income mobility estimates using the BCS, and found that bounds on
elasticities tightly contain the conventionally estimated parameters, because the income bins are sufficiently
narrow in most of the distribution. Bounds on absolute mobility at the 25th percentile are coarser. Results
are available from the authors.

25For examples, see Munshi and Rosenzweig (2006), Ito (2009), Hnatkovska et al. (2013), and Mohammed
(2016).

12



and is leaving many behind (Dreze and Sen, 2013; Field et al., 2016). Whether economic

progress can overcome traditional hierarchies of social class and religion is a central question

for both India and the broader world.

Increasing intergenerational mobility in India has also been a major objective of the Indian

government since independence, leading to reservations of educational and political positions

for members of India’s disadvantaged groups, among other policies. Group-targeted policies

have nearly all focused on SC/STs, and to our knowledge no major policies have had the goal

of specifically ameliorating Muslim disadvantage. Understanding how mobility has changed

for these population groups is thus an essential component of understanding secular trends

in intergenerational mobility in India.

III Data

To estimate intergenerational educational mobility in India, we draw on two databases that

report matched parent-child educational attainment. The first is an administrative census

dataset describing the education level of all parents and their coresident children. Because

coresidence-based intergenerational mobility estimates may be biased, we supplement this

with a second dataset with a representative sample of non-coresident father-son pairs.26 We

focus on fathers and sons because we do not have data on non-coresident mothers and/or

daughters. This section describes the two datasets.

The Socioeconomic and Caste Census (SECC) was conducted in 2012, to collect demo-

graphic and socioeconomic information determining eligibility for various government pro-

grams.27 The data was posted on the internet by the government, with each village and urban

neighborhood represented by hundreds of pages in PDF format. Over a period of two years,

26Emran et al. (2017) argue that the coresidence bias for intergenerational mobility depends on how
mobility is measured, and that the father-son correlation coefficient has only a small bias. In our own
estimates using a similarly powered test, we found a similarly small point estimate to Emran et al.
(2017), but the 95% confidence interval for the estimate leaves open the possibility of substantial bias in
coresidence-based estimates. Further, the correlation measure is less useful for evaluating differences across
groups. It is thus important to work with estimates that include non-coresident parent-child pairs.

27It is often referred to as the 2011 SECC, as the initial plan was for the survey to be conducted between
June and December 2011. However, various delays meant that the majority of surveying was conducted in
2012. We therefore use 2012 as the relevant year for the SECC.
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we scraped over two million files, parsed the embedded data into text, and translated the

text from twelve different Indian languages into English. The individual-level data that we

use describe age, gender, an indicator for Scheduled Tribe or Scheduled Caste status, and re-

lationship with the household head. Assets and income are reported at the household rather

than the individual level, and thus cannot be used to estimate mobility.28 The SECC pro-

vides the education level of every parent and child residing in the same household. Sons who

can be matched to fathers through coresidence represent about 85% of 20-year-olds and 7% of

50-year-olds. Education is reported in seven categories.29 To ease the computational burden

of the analysis, we work with a 1% sample of the SECC, stratified across India’s 640 districts.

We supplement the SECC with data from the 2011-2012 round of the India Human Devel-

opment Survey (IHDS). The IHDS is a nationally representative survey of 41,554 households

in 1,503 villages and 971 urban neighborhoods across India. Crucially, the IHDS solicits in-

formation on the education of fathers of household heads, even if the fathers are not resident,

allowing us to fill the gaps in the SECC data. Since the SECC contains data on all coresi-

dent fathers and sons, our main mobility estimates use the IHDS strictly for non-coresident

fathers and sons. IHDS contains household weights to make the data nationally representa-

tive; we assign constant weights to SECC, given our use of a 1% sample. By appending the

two datasets, we can obtain an unbiased and nationally representative estimate of the joint

parent-child education distribution.30 IHDS reports neither the education of non-coresident

mothers nor of women’s fathers, which is why our estimates are restricted to fathers and sons.

IHDS records completed years of education. To make the two data sources consistent,

we recode the SECC into years of education, based on prevailing schooling boundaries, and

we downcode the IHDS so that it reflects the highest level of schooling completed, i.e., if

someone reports thirteen years of schooling in the IHDS, we recode this as twelve years,

28Additional details of the SECC and the scraping process are described in Asher and Novosad (2017).
29The categories are (i) illiterate; (ii) literate without primary (iii) primary; (iv) middle; (v) secondary

(vi) higher secondary; and (vii) post-secondary.
30We verified that IHDS and SECC produce similar point estimates for the coresident father-son pairs

that are observed in both datasets. Point estimates from the IHDS alone (including coresident and
non-coresident pairs) match our point estimates, albeit with larger standard errors.
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which is the level of senior secondary completion.31 The loss in precision by downcoding the

IHDS is minimal, because most students exit school at the end of a completed schooling level.

The public version of the SECC does not report religion, so our subgroup estimates are

generated entirely from the 2011 IHDS, with both coresident and non-coresident parent-child

pairs included. Because religion is a separate classification from caste, some Muslims are

also members of Scheduled Castes and Tribes; some of the latter have converted to Islam.

IHDS reports caste and religion together, and SC/ST Muslims are reported only as SC/STs.

However, fewer than 2% of Muslims are SC/STs (Sachar Committee Report, 2006), so this

distinction is unlikely to affect our estimates.

We estimate changes in mobility over time by examining the joint distribution of fathers’

and sons’ educational attainment for sons in different birth cohorts. All outcomes are mea-

sured in 2012, but because education levels only rarely change in adulthood, these measures

capture educational investments made decades earlier. We use decadal cohorts reflecting in-

dividuals’ ages at the time of surveying. To allay concerns that differential mortality across

more or less educated fathers and sons might bias our estimates, we replicate our analysis

on the same birth cohorts using the IHDS 2005. By estimating mobility on the same cohort

at two separate time periods, we identify a small survivorship bias for the 1950-59 birth

cohort (reflecting attrition of high mobility dynasties), but zero bias for the cohorts from the

1960s forward. Our results of interest largely describe trends from the 1960s forward (in part

because standard errors are largest for the 1950s cohort, making inference more difficult), so

survivorship bias among the oldest cohorts does not influence any of our conclusions.

The oldest cohort of sons that we follow was born in the 1950s and would have finished

high school well before the beginning of the liberalization era. The cohorts born in the 1980s

would have completed much of their schooling during the liberalization era. The youngest

cohort in this study was born in 1989; cohorts born in the 1990s may not have completed

31We code the SECC category “literate without primary” as two years of education, as this is the number
of years that corresponds most closely to this category in the IHDS data, where we observe both literacy
and years of education. Results are not substantively affected by this choice.
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their education at the time that they were surveyed and were excluded. Appendix Figure A1

shows the educational attainment of fathers and sons by cohort; all social groups show dra-

matic gains in educational attainment over the last forty years. SC/STs have closed about

a third of the gap with the non-Muslim, non-SC/ST population, while the gap between

Muslims and this population has closed only marginally.

IV Estimating Bounds on Intergenerational Mobility

This section describes the main contribution of the paper. Here, we describe a method to

calculate bounds on a range of intergenerational mobility statistics that take into account

interval censoring in the parent rank distribution. We first show that interval rank data can

be used to bound the conditional expectation of child rank given parent rank. The bounds

are sharp and depend only on the assumption of a weakly monotonic CEF; imposing an

additional restriction on the CEF curvature can yield tighter bounds but requires numerical

optimization to solve. Given CEF bounds, we can then bound many measures of mobility.

We focus first on the rank-rank gradient and absolute upward mobility (Chetty et al., 2014a),

and then show that a new measure, upward interval mobility, generates particularly tight

bounds under interval data. We focus on the CEF of child rank given parent rank, but the

method can be equally applied to any CEF of interest. For example, we can directly calcu-

late bounds on the probability that a child from a given part of the parent rank distribution

attains the top quintile by substituting E(Y |x) with E(P (Y > 80)|x).

We walk through the method with sample data from India. We then validate it by sim-

ulating interval censoring in uncensored data from Denmark and recovering bounds on the

original CEF. Finally, we discuss the extension of the method to take into account interval

data on children as well as parents.

IV.A Nonparametric Inference on Mobility with Interval Data

Define the child rank as y and the parent rank as i; the conditional expectation function of

child rank given parent rank is Y (i) = E(y|i). Let the function Y (i) be defined on i ∈ [0, 100],
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and assume Y (i) is integrable.32

With interval data, we do not observe i directly, but only that it lies in one of K bins.33

Define the expected child outcome in the kth bin as

rk = E (y|i ∈ [ik, ik+1]) =
1

ik+1 − ik

∫ ik+1

ik

Y (i)di,

where ik and ik+1 define the bin boundaries. For the outer rank bins, i0 = 0 and iK+1 = 100.

Further define the expected child outcomes in the intervals directly above and below the in-

tervals of interest as rk+1 = E (y|i ∈ [ik+1, ik+2]) and rk−1 = E (y|i ∈ [ik−1, ik]), if they exist.

Define r0 = 0 and rK+1 = 100. We observe the sample analogs to these expressions in the

data, and denote the mean outcome in bin k with rk.
34

Panel A of Figure 1 depicts the setup, using data from Indian men born in the 1960s.

Parent education is observed in seven bins, representing the highest level of schooling at-

tained by each father, with the vertical lines showing the bin boundaries. The bottom bin

comprises 57% of fathers, all of whom report zero education. The points in the graph show

the mean child rank conditional on having a parent in a given bin, which is rk.
35 The two

functions in Panel A show two (of many) possible nonparametric CEFs, each of which fit

the sample data equally well. Note that both of these functions have the same mean in the

first bin, even though neither function passes through that mean at the bin midpoint. In

contrast, the conventional linear approach to mobility estimation implicitly assumes that the

true CEF passes through this mean.36 Figure 1B shows the rank-rank gradients that would

be fitted to each of these CEFs (dashed lines), as well as the conventional rank-rank gradient

that would be estimated from the bin midpoints. If the rank-rank gradient is understood as

32The results in this subsection apply to any monotonic function Y (i) but we use the language of parent
and child rank for concreteness.

33For notational simplicity, we assume that all parent ranks are censored using the same set of boundaries.
34In this paper we focus only on child ranks as outcomes but in principle any outcome of interest can be

used.
35We calculate the mean child rank using the midpoint of each interval in which child rank is observed.

We loosen this assumption in Section IV.F.
36A naive polynomial fit to the points in the graph would not even fit the underlying data because of

Jensen’s Inequality.
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a linear approximation to a potentially nonlinear CEF, then all of these gradients (among

others) can fit the underlying data equally well.37 If the true CEF is nonlinear within bins,

then conventional gradient estimates may be biased due to Jensen’s inequality. We aim to

identify the set of all CEFs that satisfy the data under some set of assumptions.

Manski and Tamer (2002) derive bounds on E(y|i) given interval measurement of i. The

essential structural assumption that constrains the child outcome is Monotonicity (M):

E(y|i) must be weakly increasing in i. (Assumption M)

In our context, this assumption states that a child born to a higher ranked parent will on

average attain an equal or higher rank in the outcome distribution.38 Manski and Tamer

(2002) also introduce the following Interval (I) and Mean Independence (MI) assumptions.

For i which appears in the data as lying in bin k,

P (i ∈ [ik, ik+1]) = 1. (Assumption I)

E(y|i is interval censored) = E(y|i). (Assumption MI)

Assumption I says that the rank of all people who report education ranks in category k

are actually in bin k. Assumption MI states that censored observations are not different

from non-censored observations; this always holds in our context because all of the data are

interval censored.

Suppose these IMMI assumptions hold. Manski and Tamer’s Proposition 1 provides the

following sharp bounds on E (y|i), given our setup with fully interval censored data:

rk−1 ≤ E(y|i) ≤ rk+1 (Manski-Tamer bounds)

37The rank-rank gradient remains useful as a single summary statistic for the entire distribution even if
the underlying data are nonlinear, as is clear in this case.

38Even a system that obtains perfect equality of opportunity will have this property, and it is observed
in every empirical observation of the parent-child income and education distributions that we are aware of.
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We can improve upon these bounds because we have information about the distribution of

i. In our setting, parent ranks are uniformly distributed. Suppose further that the following

Uniformity assumption (U) holds:

i ∼ U(0, 100) (Assumption U)

where U is the uniform distribution.

Because i is uniformly distributed, we know that:

E (i|i ∈ [ik, ik+1]) =
1

2
(ik+1 − ik) . (IV.1)

We derive the following proposition.

Proposition 1. Let i be in bin k. Under assumptions IMMI (Manski and Tamer, 2002)

and U, the following bounds on E(y|i) are sharp:


rk−1 ≤ E(y|i) ≤ 1

ik+1−i
((ik+1 − ik) rk − (i− ik) rk−1) , i < k∗

1
i−ik

((ik+1 − ik) rk − (ik+1 − i) rk+1) ≤ E(y|i) ≤ rk+1, i ≥ k∗

where

k∗ =
ik+1rk+1 − (ik+1 − ik) rk − ikrk−1

rk+1 − rk−1

.

At the interval endpoints (i = ik or i = ik+1), these bounds reduce to the bounds from

Manski and Tamer (2002).

The proposition is obtained from the insight that the expected rank at a point I in bin k

will only be minimized if all points in bin k to the left of I have the same value. Since all

points to the right of I are constrained by the outcome value in the subsequent bin k + 1,

E(y|i = I) will need to rise above the Manski and Tamer (2002) lower bound as I increases

in order to match the bin mean. Appendix B provides additional intuition, and a proof of

this proposition not only for the uniform case, but for any case where the distribution of i is

known but not necessarily uniform. In the mobility literature, the more general result could
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be of interest when dealing with censored income data, given an assumption that the top

tail distribution is Pareto, for instance.

Using the Indian data, Figure 2 compares Manski and Tamer (2002) bounds to those

obtained under the additional assumption of uniformity. The new bounds are a significant

improvement, especially in places where the data are particularly coarse.

Under the same set of assumptions, we can additionally obtain bounds on several mobility

statistics that are simple functions of the CEF. We clearly bound absolute mobility at the

ith percentile, defined by Chetty et al. (2014a) as the expected outcome of a child born to

parents at percentile i, denoted pi. This is exactly E(y|i = I) and is bounded by Propo-

sition 1. Chetty et al. (2014a) focus on p25, which is the expected outcome of the median

child born to parents in the bottom half of the distribution.

We propose a new measure of mobility, which is the expected outcome of a child born to

a parent with rank between a and b, or E(y|i ∈ [a, b]); we call this measure interval mobility

and denote it µba. An analogous measure to p25 is µ50
0 , which describes the expected outcome

of the mean child in the bottom half of the distribution; we call this measure upward interval

mobility. Put otherwise, define µba as

µba =
1

b− a

∫ b

a

E(y|i)di. (IV.2)

Let Y max
i be the analytical upper bound on E(y|i), given by Proposition 1. Let Y min

i be

the analytical lower bound on E(y|i). We obtain the following bounds on µba.

Proposition 2. Let b ∈ [ik, ik+1] and a ∈ [ih, ih+1]. Let assumptions IMMI (Manski and

Tamer, 2002) and U hold. Then the following bounds are sharp:


Y min
b ≤ µba ≤ Y max

a h = k

rh(ik−a)+Yminb (b−ik)

b−a ≤ µba ≤
Ymaxa (ik−a)+rk(b−ik)

b−a h+ 1 = k

rh(ih+1−a)+
Pk−1
λ=h+1 rλ(iλ+1−iλ)+Yminb (b−ik)

b−a ≤ µba ≤
Ymaxa (ih+1−a)+

Pk−1
λ=h+1 rλ(iλ+1−iλ)+rk(b−ik)

b−a h+ 1 < k.
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The proof is in Appendix B.

Interval mobility measures are often more tightly bounded than absolute mobility for a

given region of the parent rank distribution, especially when the bottom rank bin is large.

Appendix Figure A2 makes this point, showing absolute mobility and interval mobility for

progressively lower ranges in the parent rank distribution, with each set of estimates centered

on the same parent bin. The bounds on interval mobility are consistently tighter than those

on absolute mobility, though as we move to the bottom of the distribution, the advantage is

minimal.

Similarly, upward interval mobility (µ50
0 ) generates much tighter bounds than absolute

upward mobility (p25) when the bottom rank bin is large. Using the Indian data above, we

find µ50
0 ∈ [34.8, 38.7], and p25 ∈ [22.2, 54.5]. For intuition, observe that if δ ∈ [a, b], µba can

be decomposed into δ−a
b−aµ

δ
a + b−δ

b−aµ
b
δ. For intervals exactly corresponding to bin boundaries,

µk+1
k is determined and must satisfy µk+1

k = rk. Thus if µ50
0 extends over several intervals

where the mean is known, µ50
0 has less room to vary.

Bounds on other mobility statistics may be difficult to calculate analytically, but can be

defined as the set of solutions to a pair of minimization and maximization problems that

take the following structure. Let us write the conditional expectation function in the form

Y (i) = s(i, γ), where γ is a finite-dimensional vector that lies in parameter space G and

serves to parameterize the CEF through the function s. This parameterization is not restric-

tive: in our numerical optimization below, we will define γ as a vector of 100 discrete values

of the CEF in each single rank interval. However, it could also take a more parsimonious

parametric form. Define Γ as the set of feasible parameterizations of the CEF that obey

monotonicity and minimize mean squared error with respect to the observed interval data:
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Γ = argmin
g∈G

[
K∑
k=1

ik+1 − ik
100

((
1

ik+1 − ik

∫ ik+1

ik

s(i, g)di

)
− rk

)2
]

(IV.3)

such that

E(y|i) is weakly increasing in i. (Monotonicity)

The ik+1−ik
100

term weights the mean squared error by the width of each bin.39

Any mobility statistic m that is a single-valued function of the CEF, such as interval mo-

bility or the rank-rank gradient, can be defined as m(γ).40 The bounds on m(γ) are therefore:

mmin = inf{m(γ) | γ ∈ Γ}

mmax = sup{m(γ) | γ ∈ Γ}
(IV.4)

We can further tighten bounds on the CEF by restricting its curvature. We motivate

this restriction by the observation that empirical examples of fully supported parent-child

rank distributions are relatively smooth (see Figure 5 below), while the analytical bounds

on the curvature-unconstrained CEF imply implausible discontinuities, which we highlight

in Appendix B. We consider a curvature restriction with the following structure:

s(i, γ) is twice-differentiable and |s′′(i, γ)| ≤ C. (Curvature Constraint)

This analogous to imposing that the first derivative is Lipshitz.41 Depending on the value

39While we choose to use a weighted mean squared error penalty, in principle Γ could use other penalties.
40We obtain the rank-rank gradient as the slope parameter which numerically minimizes the following:

argmin
β̂,β̂0

{∫
I

E(y|i)−
(
β̂i+ β̂0

)
di
}
.

41Let X,Y be metric spaces with metrics dX , dY respectively. The function f : X → Y is Lipschitz
continuous if there exists K ≥ 0 such that for all x1, x2 ∈ X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2).
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of C, this constraint may or may not bind.

Note that the most restrictive curvature constraint, C = 0, is analogous to the assumption

of a linear CEF — which will be equivalent to the predicted values from the conventional

rank-rank gradient estimation. An intermediate curvature restriction is therefore less restric-

tive than the default practice in many current studies of mobility.42

The results in this section are valid for any conditional expectation function E(y|x), and

are not limited to the child rank CEF. One such function that has been of interest to re-

searchers is the conditional expectation of attaining the top quintile (Chetty et al., 2017b).

The statistic µ20
0 with this CEF would generate the probability that a child of a bottom

quintile parent attains the top quintile. This statistic would otherwise be very difficult to

calculate given interval rank data without a boundary at the 20th percentile.

IV.B Numerical Calculation of Bounds on Mobility

This section describes a method to numerically solve the constrained optimization problem

in Equations IV.3 and IV.4. We take a nonparametric approach because observation of CEFs

from countries with fully supported parent-child rank distributions do not suggest an obvi-

ous parametric form that will fit many distributions (see Figure 5). To make the problem

numerically tractable, we solve the discrete problem of identifying the feasible values taken

by E(y|i) at each of N discrete values of i. In practice, we assume E(y|i) = s(i, γ), where γ

is an N -dimensional column vector that defines the value of the CEF between each of the N

ranks. We use N = 100 in our analysis, corresponding to 100 integer parent ranks, but other

values may be useful depending on the application. Given continuity in the latent function,

the discretized CEF is a very close approximation of the continuous CEF; increasing the

value of N does not change any of our results, but increases computation time significantly.

We solve the problem through a two-step process. Define a N -valued vector γ̂ as a candi-

date CEF. First, we calculate the minimum MSE from the constrained optimization problem

given by Equation IV.3. We then run a second pair of constrained optimization problems

42We discuss the selection of C in Section IV.D.
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that respectively minimize and maximize the value of m(γ̂), with the additional constraint

that the MSE is equal to the value obtained in the first step, denoted MSE. Equation IV.5

shows the second stage setup to calculate the lower bound on m(γ̂):

mmin = min
γ̂∈[0,100]N

m(γ̂) (IV.5)

such that

s(i, γ̂) is weakly increasing in i (Monotonicity)

|s′′(i, γ̂)| ≤ C, (Curvature) K∑
k=1

‖Ik‖
100

((
1

‖Ik‖
∑
i∈Ik

s(i, γ̂)

)
− rk

)2
 = MSE (MSE Minimization)

where Ik is the set of discrete values of i between ik and ik+1 and ‖Ik‖ is the width of bin k.

The complementary maximization problem obtains the upper bound on m(γ̂).

Note that setting m(γ) = γp permits us to obtain bounds on the value of the CEF at

parent rank p. Calculating this for all ranks p from 1 to 100 generates analogous bounds to

those derived in proposition 1, but satisfying the additional curvature constraint.

IV.C Example with Sample Data

In this section, we demonstrate the bounding method using data from India, continuing with

the cohort of sons born in the 1960s. Appendix Figure A3 graphs the analytical and nu-

merical upper and lower bounds on E(y|i) at each value of i, confirming that the numerical

optimization delivers the correct result when C =∞. A continuum of functions within these

bounds obtain MSE of zero and can be considered equally plausible fits to the data. The

bounds on the CEF are considerably tighter at the top of the distribution where the rank

bins are relatively narrow. These bounds do not reflect statistical uncertainty; we discuss

and present bootstrap confidence sets below.

The four panels of Figure 3 show the effect on the CEF bounds of progressively tighten-

ing the curvature constraint, with all bounds calculated numerically. As above, the bounds
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remain tightest when the parent bin size is small and the function is bounded on both sides.

The tighter bounds in Panels C and come at the cost of bias; MSE rises as the curvature

constraint makes it impossible to meet all the bin means. Panel D shows the limit case with

C = 0; the CEF in this figure is identical to the predicted values from a regression of son

rank on father rank, and is plainly a poor fit to the data.

Since the bin means are measured with sampling error, a confidence set that includes

the true bounds with 95% certainty can be calculated via bootstrapping (Imbens and Man-

ski, 2004; Tamer, 2010). We calculate bootstrap confidence sets using 1,000 bootstrap sam-

ples from the underlying datasets; these are shown in Figure 4, using the same curvature

constraint as Figure 3B.43 The confidence sets are tight because the census data from which

these father and son education values are drawn is very large. In settings with smaller samples

or higher variance outcomes, sampling error may be a more important factor. For presen-

tational clarity, we omit bootstrap bounds from further CEF graphs, but they are available

from the authors and do not substantively change any of the results described below.

The bounds shown in these graphs represent the envelope of a continuum of CEFs that

fit the data equally well. The bounds graphed do not display CEFs themselves. Rather, the

bounds on a given scalar mobility statistic reflect the highest and lowest mobility estimate

obtained from the set of feasible CEFs.

We present estimates of the rank-rank gradient, p25 and µ50
0 in Table 2, for all decadal

birth cohorts and under a range of curvature constraints, with 95% bootstrap confidence

sets in parentheses. Several patterns emerge. First, in all cases, µ50
0 can be bounded more

meaningfully than either p25 or the rank-rank gradient. µ50
0 can be calculated with relative

precision, as long as there is a parent bin boundary close to the 50th percentile, a condition

that is least well satisfied by the 1950s birth cohort, among whom 60% of fathers report zero

43Because the IHDS is weighted, we take weighted random draws that take into account the higher
representation of some observations in the population. The bootstrap sample can then be treated as an
unweighted sample from the underlying dataset. Because the total value of weights is 10 million, we do not
have sufficient computational power to calculate bootstrap samples with the same size as the underlying
sample. We chose a bootstrap sample size of 10,000, which allowed us to generate 1,000 bootstrap samples.
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years of education. Second, the bounds on all statistics are tighter for more recent birth

cohorts. The width of the bounds is largely driven by the size of the bottom parent bin,

which gets progressively smaller with rising educational attainment over time.44

IV.D Choosing the Curvature Parameter

The width of the bounds often depends on the curvature threshold C. Without additional

data on the latent rank distribution, it is difficult to estimate an appropriate curvature

restriction from the sample being studied. To provide an empirical basis for a reasonable

curvature threshold, we therefore examined as many studies as we could find that report

uncensored parent-child outcome rank distributions. Where possible, we obtained the un-

derlying data, and where we could not obtain the underlying data we estimated the rank-rank

matrix by digitizing the underlying data from the paper’s graphics. In each of these studies,

we obtained nonparametric fits to the data using 5-piece cubic splines with equally spaced

knots.45 We calculated the maximum absolute value of the 2nd derivative across integer bins

in each of these studies.

Figure 5 shows the splines that we fit to each dataset and the corresponding range of the

2nd derivative in each of these functions. Given that many of these studies exhibited signifi-

cantly more curvature in the tails of the distribution, we also report a second set of maxima

from the 10th to the 90th percentile of these distributions. The magnitude of the 2nd deriva-

tive is highest in Swedish data, at 0.067 in the full sample and 0.046 in the [10,90] interval.

These estimates admittedly may not be representative of the shape of global educational mo-

bility curves, both because they are drawn from income distributions rather than education

distributions, and because they are limited to the set of countries which collect and report

uncensored matched parent-child income. This said, they are the best available reference for

estimation of an appropriate curvature restriction for our context. We propose a conservative

44Appendix Table A1 shows the transition matrices that underlie these estimates for each cohort.
45Splines with more knots tended to overfit the data (for example, by predicting nonmonotonic segments)

and splines with fewer knots often failed to account for curvature in the data, especially in the tails. These
estimates are minimally affected by changes in the number of knots.
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rule of thumb that limits curvature to approximately twice the upper bound, or C = .1. This

corresponds to the constraint used in Panel B of Figure 3. We use this value going forward,

recognizing that it may underestimate the width of the bounds at the tails of the distribution.

IV.E Simulation: Bounds on Mobility in Denmark

In this section, we simulate our method by taking data from the fully supported parent-child

CEF from the Danish income distribution (Boserup et al., 2014), interval-censoring that

data, and then recovering bounds on the true CEF from that interval censored data. We

begin with data on the average child income rank for every integer parent rank from 1 to 100

(shown in Figure 5B). We interval censor the data according to the same seven bins used in

the Indian example above. We then calculate bounds on the CEF using only the binned data.

Panels A–D of Figure 6 show the result of this exercise, with curvature limits correspond-

ing to Panels A–D of Figure 3. The dashed lines show the underlying uncensored spline

approximation to the parent-child distribution. The solid circles show the constructed bin

means of the censored data; these are the only data that we use for the optimization. The

solid lines show the upper and lower envelopes that we calculate for the nonparametric CEF.

As above, the bounds are tighter at the top of the distribution where we have artificially

imposed smaller bins, and wider at the bottom. Compared with the Indian exercise, the

bounds are tighter across the entire distribution because of the higher level of mobility in

Denmark: since the expected ranks of children are more similar across parents’ ranks, the

monotonicity assumption significantly constrains the shape of the CEF. In Panels A through

C, the true data are almost entirely contained by the bounds. It is important to note that

the true CEF is not always centered by the bounds; from p30 to p40 the true CEF is near

the upper bound, and from p1 to p10 it is nearer the lower bound. The linear Panel D

significantly overestimates mobility at the bottom of the distribution.

Almost any parametric best fit to the censored data would miss the concavity at the lower

tail of the distribution. The bias of parametric methods is increasing in the non-linearity of

the underlying CEF and the bin sizes. The strength of our method is that in the domains
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where interval censoring is most severe, it makes clear that we can at best obtain bounds on

the partially identified CEF.

IV.F Interval Censoring in the Child Distribution

Thus far, we have focused on interval censoring in the parent rank distribution and defined

rk by assuming that each child has the midpoint rank in his or her education bin. This is

equivalent to assuming, for example, that the expected latent rank of a primary-educated

child born to a parent with no education is equal to the expected latent rank of a primary-

educated child born to a parent with a middle school education. But if the latent rank of

children within the outcome bins where they are observed is positively correlated with the

ranks of their parents, then estimates of intergenerational mobility will be biased downward.

This concern is not unique to our study; rather it is the complementary problem to the

interval censoring of parent rank that we study above.

In principle, we could use the same constrained optimization approach to bound the en-

tire distribution of child ranks conditional on parent ranks, rather than just the conditional

expectation of child rank. A numerical approach to this problem might bound each cell of

the 100x100 integer rank transition matrix, taking as sample analogs the 49 means observed

in the 7x7 transition matrix. Parameterized as above, this would be a problem with 49

moment conditions, 10,000 parameters, and at least 10,000 constraints. While there may be

simplifications that can make this problem computationally tractable, it is beyond the scope

of this study, though we explore the problem in more detail in Appendix C.

In addition to being more difficult computationally, this problem is also a less important

source of bias for three reasons. First, coarse rank data poses the greatest problem for mobil-

ity estimation when the top or bottom bin is large. Since almost all countries are becoming

better off over time, the lowest rank bin in the child distribution is nearly always smaller

than the lowest rank bin for parents.46 This argument may hold less relevance in richer

46In India, for sons born in the 1980s, 11% report zero education, compared with 37% of their fathers.
For the 1950s birth cohort, 31% of sons report zero education, compared to 60% of fathers. The worst case
in the son distribution is thus comparable to the best case in the father distribution.
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countries where education may be increasingly topcoded over time, but researchers in these

contexts are less often required by data availability to focus on education.

Second, data on children are more widely available than data on parents. Matched parent-

child data often contain many characteristics of children, but only a few coarsely measured

characteristics of parents. Rank-rank distributions can be estimated and compared with dif-

ferent underlying outcomes on the X and Y axes, so there are many contexts where interval

censoring will be a concern for the parent generation but not for the child generation. For

example, to measure children’s educational outcomes when a large number of children have

completed college, Chetty et al. (2014a) resolve the coarse data problem by ranking children

according to their college quality rank. They show that this variable is highly monotonic in

parent income rank, which in passing further supports our assumption of monotonic latent

education ranks.

Third, the availability of additional child data also makes it possible to use other variables

to estimate the relationship between parent rank and latent child rank within each parent-

child education rank bin. For example, we can use child wages within education bins to

measure the extent to which child wages are sorted on parent ranks within interval censored

child education bins. In contrast, this approach does not help us describe the latent parent

rank distribution without additional data on parents.

In Appendix C, we explore several of these arguments in more detail. We derive a numerical

solution to the intermediate problem of bounding the child CEF when child data are interval

censored but parent data are observed precisely. We show that in India, the mobility bounds

when son data are censored are considerably tighter than when parent data are censored,

confirming that censoring of parent rank data is the more substantive concern. Second, we

predict latent parent and child ranks within parent bins of the education transition matrix

by using sons’ wages. The result suggests that our assumption that son rank is equal to

the rank bin midpoint is a close approximation to the empirical distribution. These results

strongly suggest that taking censoring of son rank data into account will only minimally
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affect our estimates below. The more computationally difficult problem of simultaneously

addressing coarseness in both parent and child rank distributions is left for future work.

V Application: Changes in Intergenerational Mobility in India

In this section, we calculate bounds on intergenerational educational mobility in India. There

are three main findings. First, we show that conventional estimates of rank-based mobility

measures provide limited information about changes over time and across groups once the

coarseness of rank groups is taken into account. However, our new measure, upward interval

mobility can be estimated with much tighter bounds. Second, using this measure of upward

mobility, we show that population intergenerational mobility in India is static over time

and is considerably lower than in the United States. Third, India’s historically marginalized

Scheduled Castes and Schedules Tribes have made substantial mobility gains since the 1960s,

closing the upward mobility gap by about a third. These gains are almost exactly reversed for

the Muslim population, who have experienced a significant loss in mobility since the 1960s.

All mobility estimates and curves are calculated using the curvature restriction proposed

in Section IV.D. Alternate curvature parameters lead to largely similar conclusions.

V.A Indian Intergenerational Mobility Over Time

To examine intergenerational mobility over time in India, we compare the joint distribution

of father and son ranks for an older cohort, born in the 1950s and a younger cohort born in

the 1980s. Panel A of Figure 7 displays the raw data that are available to the researcher: for

each father education rank bin, we observe the mean son rank in the outcome distribution.

Since we do not observe father education ranks within education bins, we plot father ranks

at the median rank in each interval where education is reported. The solid vertical line shows

the bin boundary for the least educated fathers in the older cohort; 60% of fathers are in this

bin. The dashed line shows the equivalent bin boundary for fathers in the younger cohort;

38% report fewer than two years of education.47

47Appendix Table A1 presents the full transition matrices for all four decadal cohorts in our sample,
from which these nonparametric plots are derived.
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Panel B of Figure 7 shows bounds on the latent father-son rank distribution.48 The large

share of fathers with zero education highlights the challenge of describing changes in inter-

generational mobility at the bottom of the distribution. The CEF for the younger generation

has tighter bounds because the lowest parent bin is smaller. These bounds are contained

almost entirely within the bounds for the older generation. The bounds on the CEF at

any point in the bottom half of the distribution are consistent with both zero change over

time and with substantial mobility gains. However, we can identify a small decrease in the

intergenerational persistence of the highest positions in the education distribution.49

Figure 8 shows bounds on the three mobility statistics discussed above for each decadal

cohort: the rank-rank gradient, absolute upward mobility (p25), and upward interval mobil-

ity (µ50
0 ). For reference, we plot recent estimates of similar mobility measures from USA and

Denmark.50 The graph highlights the advantage of upward interval mobility in a context

with significant interval censoring. The rank-rank gradient and absolute upward mobility

provide little information on how Indian mobility has changed over time; the estimates are

consistent with both large mobility gains and with no change in mobility over time. In con-

trast, upward interval mobility is estimated with tight bounds in all periods. According to

this measure, upward mobility has changed very little over the four decades studied; there is

a small gain from the 1950s to the 1960s, followed by a small decline from the 1960s to the

1980s. On average, Indian mobility is the same distance below the United States as mobility

in the United States is below Denmark. Table 2 reports the bounds for each measure and

cohort with bootstrap confidence sets under a range of curvature restrictions. The choice

of curvature does not substantively change these conclusions, though estimates with less

48Given multiple bounds on a single graph, we have omitted bootstrap standard errors for legibility. As
demonstrated in Figure 4, these imply a slight widening of the bounds across the distribution and do not
change our conclusions.

49Appendix Figures A4 and A5 show similar estimates with the old cohort defined respectively as born
in the 1960s and in the 1970s. Our results do not change substantially when considering the intermediate
cohorts; we present only the 1950s and 1980s birth cohorts here for graph legibility.

50Rank-rank correlations of education are from Hertz (2008). For absolute mobility, we calculate p25 for
the U.S. and Denmark from the distributions shown in Figure 5, with data from Chetty et al. (2014a).
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restrictive curvature are necessarily less precise.51

V.B Intergenerational Mobility of Marginalized Groups

In this section, we decompose the secular stagnation in intergenerational mobility into sub-

group estimates for Scheduled Castes and Scheduled Tribes (SC/STs), Muslims, and the

remainder of the population. Because the SECC does not report religion, all these estimates

are derived from the IHDS alone (with both coresident and resident fathers and sons), and

thus have slightly wider confidence sets than the estimates above.52

Panels A and B of Figure 9 show bounds on the child rank CEF given parent rank for

SC/STs, Muslims and all others, respectively for sons born in the 1950s and in the 1980s

respectively.53 We rank fathers and sons according to their position in the national educa-

tion distribution, because we are interested in the ability of marginalized groups to move

up in the national distribution, rather than relative to other members of their group. In

the 1950s birth cohorts, SC/STs and Muslims are virtually identical in status, but by the

1980s, SC/STs have moved ahead. This change would be somewhat obscured by looking

only at mean education, as expected child ranks for SC/STs and Muslims in the top half of

the parent rank distribution have remained similar, with the possible exception of greater

SC/ST persistence of the very highest ranks.

In Panel C of Figure 9 we present statistics for absolute upward mobility (p25) and for

upward interval mobility (µ50
0 ), by cohort and subgroups.54 As above, the bounds on p25 are

51Appendix Figure A6 shows comparable estimates using only the IHDS 2011, which are substantively
unchanged. Appendix A7 shows estimates for the same cohorts using the IHDS 2005 to gauge whether
survivorship bias influences results. The results suggest moderate survivorship bias in mobility estimates
for the 1950-59 cohort, but no bias for the more recent cohorts. The patterns of interest described in this
paper largely begin with the 1960s birth cohort, and thus the conclusions are unchanged by this bias in
the 1950-59 cohort. If anything, the survivor bias adjusted results suggest the trend from the 1960s to the
1980s in fact began in the 1950s.

52Conducting this analysis requires the assumption that the latent rank distributions of each subgroup
are comparable within each education bin, an assumption implicitly made in other studies comparing
educational outcomes across groups.

53Appendix Figure A8 shows just the rank bin means for each group.
54We do not examine the rank-rank gradient separately for population subgroups, because this measure

describes how privileged members of a subgroup do relative to other members of the same subgroup. Our
interest in this paper is in documenting how members of these historically marginalized groups perform as
compared with the entire population.
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too wide to be informative, while estimates of µ50
0 are much tighter.

We note two features in this figure. First, once SC/STs and Muslims are treated sepa-

rately, upward mobility for the remainder of the population is now comparable to that of

the United States, and has been since the 1950s. Low intergenerational mobility in India

can thus be significantly explained by low mobility in these two minority groups. Second,

the intergenerational mobility of SC/STs and Muslims has diverged dramatically since the

1960s. In the 1960s, the expected outcomes of SC/ST and Muslim children in the bottom

half of the distribution were comparable to each other: SC/STs could expect to attain the

33rd percentile, while Muslims could expect to attain the 31st. By the 1980s, SC/STs in the

bottom half of the distribution were attaining the 36th percentile on average, closing more

than half the gap between themselves and the non-Muslim, non-SC/ST population over this

period. In contrast, a child born in the 1980s to a Muslim family attain on average only

the 29th percentile in the outcome distribution. We have focused on changes from the 1960s

to the present as the numbers from the 1950s are subject to survivorship bias. However,

beginning the analysis in the 1950s does not change the conclusion of significant divergence

between SC/STs and Muslims.

We are aware of no previous study on India that has examined the ability of subgroups

to improve their relative ranks in the entire population, exactly because it is difficult to

generate comparable rank estimates across cohorts.

VI Conclusion

Our work highlights a key challenge in measuring educational and occupational mobility:

when rank data are reported in coarse bins, the parent-child relationship within bins is im-

portant for mobility but is unobservable to the researcher. Using a small set of structural

assumptions, we show how estimates of intergenerational mobility can be bounded to take

into account the parts of the distribution that the researcher does not observe.

The key insight in our analysis is that we can meaningfully bound the CEF with just the

monotonicity and constrained curvature assumptions. Once we obtain bounds on the values
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taken by the CEF, we can bound any mobility statistic that is a function of the CEF. The

most limiting curvature restraint generates the rank-rank gradient, making our method a

generalization of one of the most widely used mobility statistics.

We also show that a new group of interval mobility measures can be bounded tightly even

under conditions of severe interval censoring. Bounds on interval mobility can be generated

analytically from interval rank data, providing a simple tool for mobility researchers to com-

pare expected outcomes in the bottom half of the distribution even when no rank boundary

explicitly defines the bottom half. This measure is most useful in contexts where the bottom

rank bins are very large, as is often the case in developing countries and in older generations.

Using data from India, we show that education-based estimates of the father-son rank-rank

gradient have considerably less precision than previously thought, once interval censoring of

rank data is taken into account. Using our new measure, we show that upward mobility in

India has barely changed from the 1950s to the 1980s. This lack of change can be decom-

posed into substantial gains for SC/STs and substantial losses for Muslims. The latter result

has not previously been noted in part because there has previously been no methodology for

creating comparable rank bins across cohorts.

Although we have focused on an application to mobility, we have also proved new nonpara-

metric bounds on conditional expectation functions when the distribution of the variables

are known. This result has immediate applications in the health literature, where consistent

estimation across changing rank bins is frequently desired, and may be useful in any context

with interval data that follows a known distribution.
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Table 1
Bin Sizes in Studies of Intergenerational Mobility

Study Country Birth Cohort Number of Parent Population Share in
of Son Outcome Bins Largest Bin

Aydemir and Yazici (2016) Turkey 199055 15 39%
Turkey 196056 15 78%

Dunn (2007) Brazil 1972–1981 > 18 20%57

Emran and Shilpi (2011) Nepal, Vietnam 1992-1995 2 83%
Güell et al. (2013) Spain ∼ 2001 9 27%58

Guest et al. (1989) USA ∼ 1880 7 53.2%
Hnatkovska et al. (2013) India 1918-1988 5 Not reported
Knight et al. (2011) China 1930–1984 5 29%59

Lindahl et al. (2012) Sweden 1865-2005 8 34.5%
Long and Ferrie (2013) Britain ∼ 1850 4 57.6%

Britain ∼ 1949-55 4 54.2%
USA ∼ 1850-51 4 50.9%
USA ∼ 1949-55 4 48.3%

Piraino (2015) South Africa 1964–1994 6 36%

Table 1 presents a review of other papers analyzing educational and occupational mobility.
The sample is not representative: we focus on other papers where interval censoring may be
a concern. The column indicating number of parent outcome bins refers to the number of
categories for the parent outcome used in the main specification. The outcome is education
in all studies with the exception of Long and Ferrie (2013) and Guest et al. (1989), where
the outcome is occupation.

56Includes all people born after about 1990.
57Includes all people born after about 1960.
58This is the proportion of sons in 1976 who had not completed one year of education — an estimate of

the proportion of fathers in 2002 with no education, which is not reported.
59Estimate is from the full population rather than just fathers.
60This reported estimate does not incorporate sampling weights; estimates with weights are not reported.
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Table 2
Bounds on Intergenerational Educational Mobility in India

C =∞ C = 0.20
Cohort Gradient p25 µ50

0 Gradient p25 µ50
0

1950-59 [0.457, 0.742] [13.0, 58.3] [34.8, 38.7] [0.474, 0.722] [25.5, 48.1] [34.8, 37.9]
(0.447, 0.763) (10.2, 59.8) (34.0, 39.0) (0.464, 0.745) (24.2, 48.3) (34.0, 38.4)

1960-69 [0.436, 0.655] [22.2, 54.5] [37.0, 39.1] [0.444, 0.639] [29.3, 49.3] [37.0, 38.8]
(0.421, 0.677) (19.7, 54.8) (36.3, 39.5) (0.429, 0.661) (28.0, 49.5) (36.3, 39.3)

1970-79 [0.463, 0.595] [29.0, 48.6] [37.8, 37.8] [0.468, 0.584] [32.2, 48.3] [37.8, 37.8]
(0.455, 0.616) (26.8, 49.7) (37.3, 38.0) (0.461, 0.603) (31.9, 49.1) (37.3, 38.0)

1980-89 [0.500, 0.565] [32.3, 42.3] [36.8, 36.8] [0.505, 0.556] [33.3, 42.8] [36.8, 36.8]
(0.488, 0.591) (30.2, 43.6) (36.4, 37.3) (0.492, 0.582) (32.8, 43.6) (36.4, 37.3)

C = 0.10 C = 0
Cohort Gradient p25 µ50

0 Gradient p25 µ50
0

1950-59 [0.492, 0.702] [28.4, 44.9] [34.9, 37.1] 0.587 35.6 35.6
(0.480, 0.727) (27.2, 45.3) (34.0, 37.8) (0.577, 0.595) (35.4, 35.9) (35.4, 35.9)

1960-69 [0.452, 0.629] [31.2, 46.3] [37.0, 38.5] 0.538 36.8 36.8
(0.436, 0.629) (31.1, 46.5) (36.9, 38.9) (0.530, 0.553) (36.5, 37.0) (36.5, 37.0)

1970-79 [0.472, 0.577] [33.4, 46.2] [37.8, 37.8] 0.534 36.9 36.9
(0.465, 0.597) (32.7, 46.5) (37.3, 38.0) (0.524, 0.549) (36.6, 37.2) (36.6, 37.2)

1980-89 [0.506, 0.548] [33.8, 42.4] [36.8, 36.8] 0.537 36.8 36.8
(0.494, 0.575) (33.3, 43.1) (36.3, 37.3) (0.523, 0.551) (36.5, 37.2) (36.5, 37.2)

The table shows estimates of bounds on three scalar mobility statistics, for different decadal
cohorts and under different restrictions C on the curvature of the child rank conditional ex-
pectation function given parent rank. The rank-rank gradient is the slope coefficient from a
regression of son education rank on father education rank. p25 is absolute upward mobility,
which is the expected rank of a son born to a family at the 25th percentile. µ50

0 is upward
interval mobility, which is the expected rank of a son born below to a family below the 50th
percentile. When C = 0, the bounds shrink to point estimates. Bootstrap 95% confidence
sets are displayed in parentheses below each estimate based on 1000 bootstrap samples.
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Figure 1
Joint Distribution of Father-Son Education Ranks

and Sample Conditional Expectation Functions

Panel A

Panel B

Figure 1 presents example conditional expectation functions of child education ranks given parent education
ranks. The sample is Indian sons born between 1960 and 1969 and their fathers. The circles represent
the mean ranks of fathers and sons in each father bin in the education distribution. The vertical lines
show the boundaries between parent education rank bins. In Panel A, the solid lines show two different
conditional expectation functions that minimize the MSE with respect to the bin means. Panel B shows
linear approximations to the two functions in Panel A (dashed lines) as well the predicted values from a
regression of son bin means on father bin means, weighted by father bin size (solid line).
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Figure 2
Analytical Bounds on the Child Rank CEF
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Figure 2 shows bounds on the conditional expectation of child rank given parent rank. The
vertical lines show the bin boundaries and the points show the mean value of child rank
in each bin. The points are centered at the rank bin medians on the X axis. The dashed
lines show analytical bounds when the distribution of the X variable is unknown (Manski
and Tamer, 2002). The solid line shows analytical bounds when the distribution of the X
variable is uniform.
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Figure 3
Father-Son Rank Conditional Expectation Function Bounds

Under Curvature Constraints

Panel A: C = .20 Panel B: C = .10

Panel C: C = .05 Panel D: C = 0

Figure 3 presents bounds on conditional expectation functions of child education ranks given parent
education ranks for Indian men born in the 1960s and their fathers. The functions in each panel represent
the upper and lower bounds on the CEF at each parent rank, obtained under different curvature restrictions.
All four panels impose monotonicity, as well as the constraint on the second derivative given in the
panel title. The circles represent the mean ranks of fathers and sons in each father bin in the education
distribution. The vertical lines show the boundaries between parent education rank bins.
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Figure 4
Bounds on Conditional Expectation of Child Rank:

Bootstrap Standard Errors

Figure 4 presents upper and lower bounds on the conditional expectation function of child education rank
given parent education rank, as well as the bootstrapped 95% confidence set of these bounds, for Indian
men born in the 1960s and their fathers. The bounds obtained require monotonicity and that the numerical
second derivative of the CEF be less than or equal to .10. We take 1000 bootstraps of the moments and fit
bounds to each of these moments. The solid lines present the mean bound obtained across bootstraps. The
dashed lines represent the 95% confidence set. We do not display bin boundaries and points because they
vary across each bootstrap draw.
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Figure 5
Spline Approximations to Empirical Rank Distributions in the Literature

Panel A: U.S.A. Panel B: Denmark
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Figure 5 presents estimates of the conditional expectation functions obtained from fully supported parent-
child rank-rank income distribution in several developed countries. The data for U.S.A. and Denmark
come from Chetty et al. (2014a), who obtained the Denmark data from Boserup et al. (2014). The data
for Sweden and Norway come from Bratberg et al. (2015). The CEFs were fitted using cubic splines, with
knots at 20, 40, 60, and 80 (as indicated by the vertical lines). The functions plot the best cubic spline fit
to each series, and the circles plot the underlying data. Underneath each graph, we present the range of the
second derivative across the support and in the domain 10–90.
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Figure 6
Nonparametric Bounds using Danish Mobility Data

Panel A: C = 0.2 Panel B: C = 0.1

Panel C: C = 0.05 Panel D: C = 0

Figure 6 shows results from a simulation using parent-child matched income rank data from Denmark. We
simulated interval censoring, so that the only observable data were the points in the graphs, indicating the
mean of parent and child rank in each parent bin. We then calculated bounds under four different curvature
constraints, indicated in the graph titles. The solid lines show the upper and lower bound of the CEF
at each point in the parent distribution, and the dashed line shows the spline fit to the underlying data
(described in Figure 5). The data are from Boserup et al. (2014).
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Figure 7
Changes in Intergenerational Educational Mobility in India

from 1950s to 1980s Birth Cohorts

Panel A: Rank Bin Midpoints

Panel B: CEF Bounds

Figure 7 presents the change over time in the rank-rank relationship between Indian fathers
and sons born in the 1950s and the 1980s. Panel A presents the raw rank bin means
in the data. The vertical lines indicate the size of the lowest parent education rank bin,
representing fathers with zero years of education; the solid line shows this value for the
1950s cohort, and the dashed line for the 1980s cohort. Panels B presents the bounds on
the child rank conditional expectation function at each parent rank, under our preferred
curvature constraint C = 0.10.
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Figure 8
Mobility Bounds for 1950s to 1980s Birth Cohorts

Panel A: Rank-Rank Gradient

Panel B: Absolute and Interval Mobility: p25 and µ50
0

Figure 8 shows bounds on three mobility statistics, estimated on four decades of matched
Indian father-son pairs. The solid lines show the estimated bounds on each statistic and the
gray dashed lines show the 95% bootstrap confidence sets, based on 1000 bootstrap samples.
Each of these statistics was calculated using our preferred curvature constraint of C = 0.10.
For reference, we display the rank-rank education gradient for USA and Denmark (from
Hertz (2008)), and p25 for USA and Denmark (from Chetty et al. (2014a)). The rank-rank
gradient is the slope coefficient from a regression of son education rank on father education
rank. p25 is absolute upward mobility, which is the expected rank of a son born to a family
at the 25th percentile. µ50

0 is upward interval mobility, which is the expected rank of a son
born below to a family below the 50th percentile.
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Figure 9
Bounds on Intergenerational Educational Mobility:

Muslims vs. SC/STs vs. All Others

Panel A: Sons Born in 1950s Panel B: Sons Born in 1980s

Panel C: Absolute and Interval Mobility

Figure 9 describes the parent-child education rank distribution separately for scheduled caste and scheduled tribes (SC/STs),

Muslims and for non-SC/ST non-Muslims, labeled as all others. Panels A and B show bounds on the child rank CEF at every

value of the parent rank distribution, under the curvature constraint C = 0.10. Panel A shows bounds for cohorts born 1950-59

and Panel B shows cohorts born 1980-89. Panel C reports bounds (solid lines) and 95% bootstrap confidence sets (dashed

light-colored lines, 1000 bootstrap samples) for two statistics of mobility, calculated using C = 0.10. Red lines indicate mobility

for SC/STs, blue lines for Muslims and black lines for all others. p25 is absolute upward mobility, which is the expected rank of

a son born to a family at the 25th percentile. µ50
0 is upward interval mobility, which is the expected rank of a son born below

to a family below the 50th percentile. We omit the gradient because it measures mobility with respect to the subgroup rather

than the national population.
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A Appendix A: Additional Tables and Figures

Table A1
Transition Matrices

A: Sons Born 1950-59

Son highest education attained
None Some prim. Primary Middle Sec. Sr. sec. Any higher

Father ed attained (31%) (11%) (17%) (13%) (13%) (6%) (8%)
None (60%) 0.47 0.12 0.17 0.11 0.09 0.03 0.03

Some primary (12%) 0.10 0.18 0.22 0.19 0.16 0.09 0.06
Primary (13%) 0.07 0.08 0.31 0.16 0.19 0.08 0.10
Middle (6%) 0.06 0.05 0.09 0.30 0.17 0.14 0.18

Secondary (5%) 0.03 0.02 0.04 0.12 0.37 0.11 0.30
Sr. secondary (2%) 0.02 0.00 0.03 0.11 0.11 0.35 0.38
Any higher ed (2%) 0.01 0.01 0.01 0.03 0.08 0.13 0.72

B: Sons Born 1960-69

Son highest education attained
None Some prim. Primary Middle Sec. Sr. sec. Any higher

Father ed attained (27%) (10%) (16%) (16%) (14%) (7%) (10%)
None (57%) 0.41 0.12 0.16 0.14 0.09 0.04 0.04

Some primary (13%) 0.12 0.17 0.18 0.22 0.15 0.08 0.08
Primary (14%) 0.09 0.05 0.26 0.18 0.20 0.09 0.13
Middle (6%) 0.06 0.04 0.09 0.29 0.21 0.13 0.19

Secondary (6%) 0.03 0.02 0.08 0.12 0.35 0.16 0.25
Sr. secondary (2%) 0.02 0.02 0.03 0.07 0.19 0.25 0.41
Any higher ed (2%) 0.01 0.01 0.02 0.03 0.09 0.11 0.73

C: Sons Born 1970-79

Son highest education attained
None Some prim. Primary Middle Sec. Sr. sec. Any higher

Father ed attained (20%) (8%) (17%) (18%) (16%) (10%) (12%)
None (50%) 0.33 0.10 0.19 0.17 0.12 0.05 0.04

Some primary (11%) 0.11 0.16 0.20 0.22 0.15 0.08 0.08
Primary (15%) 0.08 0.06 0.24 0.23 0.18 0.11 0.11
Middle (8%) 0.05 0.03 0.09 0.29 0.21 0.17 0.16

Secondary (9%) 0.03 0.02 0.06 0.12 0.31 0.19 0.27
Sr. secondary (3%) 0.01 0.01 0.02 0.08 0.17 0.29 0.42
Any higher ed (4%) 0.00 0.00 0.02 0.05 0.10 0.17 0.66

D: Sons Born 1980-89

Son highest education attained
None Some prim. Primary Middle Sec. Sr. sec. Any higher

Father ed attained (12%) (7%) (16%) (20%) (16%) (12%) (17%)
None (38%) 0.26 0.10 0.21 0.20 0.12 0.06 0.05

Some primary (11%) 0.08 0.17 0.19 0.24 0.15 0.09 0.08
Primary (17%) 0.05 0.04 0.22 0.23 0.20 0.13 0.13
Middle (12%) 0.03 0.02 0.10 0.28 0.20 0.17 0.20

Secondary (11%) 0.02 0.01 0.05 0.13 0.23 0.24 0.32
Sr. secondary (5%) 0.02 0.01 0.04 0.09 0.15 0.24 0.46
Any higher ed (5%) 0.01 0.01 0.02 0.05 0.10 0.16 0.65

Table A1 shows transition matrices by decadal birth cohort for Indian fathers and sons in
the study.
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Figure A1
Educational attainment by birth cohort and caste
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Figure A1 presents average years of education by birth cohort, stratified by members of
scheduled castes and tribes, Muslims, and the non-SC/ST non-Muslim population, for all
men in India. Data are from the 2011-12 India Human Development Survey. We display
birth cohorts from the 1950s, 1960s, 1970s and 1980s. Average outcomes are displayed on the
Y axis at the middle of each birth cohort on the X axis. Lines plot 95% confidence intervals.
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Figure A2
Absolute Mobility and Interval Mobility

at Different Parent Ranks

The graph shows estimates of absolute mobility and interval mobility for Indian sons born
1960-69. Absolute mobility at percentile p is the expected rank of a child born to a family
at the pth percentile. Interval mobility below percentile m is the expected rank of a child
born to a family below the mth percentile. The graph shows estimated bounds on these
parameters using the preferred curvature constraint C = 0.10.
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Figure A3
Analytical and Numerical Bounds on the Child Rank CEF
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Figure A3 shows bounds on the conditional expectation of child rank given parent rank.
The vertical lines show the bin boundaries and the points show the mean value of child rank
in each bin. The points are centered at the bin medians. The solid lines show analytical
bounds when the distribution of the X variable is uniform. The dashed lines show the
numerical bounds calculated with unconstrained curvature, i.e. C =∞.
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Figure A4
Changes in Intergenerational Educational Mobility in India

from 1960s to 1980s Birth Cohorts

Panel A: Rank Bin Medians

Panel B: CEF Bounds

Figure A4 presents the change over time in the rank-rank relationship between Indian fathers
and sons born in the 1960s and the 1980s. Panel A presents the rank bin medians in the data.
The vertical lines indicate the size of the lowest parent education rank bin, representing fa-
thers with zero years of education; the solid line shows this value for the 1960s cohort, and the
dashed line for the 1980s cohort. Panel B presents the bounds on the child rank conditional
expectation function at each parent rank, under our preferred curvature constraint C = 0.10.
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Figure A5
Changes in Intergenerational Educational Mobility in India

from 1970s to 1980s Birth Cohorts

Panel A: Rank Bin Medians

Panel B: CEF Bounds

Figure A5 presents the change over time in the rank-rank relationship between Indian fathers
and sons born in the 1970s and the 1980s. Panel A presents the rank bin medians in the data.
The vertical lines indicate the size of the lowest parent education rank bin, representing fa-
thers with zero years of education; the solid line shows this value for the 1970s cohort, and the
dashed line for the 1980s cohort. Panel B presents the bounds on the child rank conditional
expectation function at each parent rank, under our preferred curvature constraint C = 0.10.
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Figure A6
Bounds on Mobility for 1950s to 1980s Birth Cohorts

Estimates from IHDS 2011 Only

Panel A: Rank-Rank Gradient

Panel B: Absolute and Interval Mobility: p25 and µ50
0

Figure A6 shows bounds on three mobility statistics for matched Indian father-son pairs. Unlike the main
estimates in Figure 8, these are based strictly on the IHDS 2011, rather than the joint IHDS-SECC data.
Solid lines show the estimated bounds on each statistic and dashed gray lines show the 95% bootstrap
confidence intervals, based on 1000 bootstrap samples. Each of these statistics was calculated using the
preferred curvature constraint of C = 0.10. For reference, we display the rank-rank education gradient for
USA and Denmark (from Hertz (2008)), and p25 for USA and Denmark (from Chetty et al. (2014a)). The
rank-rank gradient is the slope coefficient from a regression of son education rank on father education rank.
p25 is absolute upward mobility, which is the expected rank of a son born to a family at the 25th percentile.
µ50

0 is upward interval mobility, which is the expected rank of a son born below to a family below the 50th
percentile.
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Figure A7
Intergenerational Mobility from 1950s to 1980s Birth Cohorts

IHDS 2011 vs. IHDS 2005

Panel A: Rank-Rank Gradient

Panel B: Absolute and Interval Mobility: p25 and µ50
0

Figure A6 shows bounds on three mobility statistics for matched Indian father-son pairs. For each decadal
birth cohort, the two lines show estimates calculated from the IHDS 2005 and the IHDS 2011. Since the
birth cohorts are held constant, these reflect education levels of the same cohorts, measured at different
points in time. Solid lines show the estimated bounds on each statistic and dashed gray lines show the 95%
bootstrap confidence intervals, based on 100 bootstrap samples. Each of these statistics was calculated using
our preferred curvature constraint of C = 0.10. For reference, we display the rank-rank education gradient
for USA and Denmark (from Hertz (2008)), and p25 for USA and Denmark (from Chetty et al. (2014a)).
The rank-rank gradient is the slope coefficient from a regression of son education rank on father education
rank. p25 is absolute upward mobility, which is the expected rank of a son born to a family at the 25th
percentile. µ50

0 is upward interval mobility, which is the expected rank of a son born below to a family below
the 50th percentile. 56



Figure A8
Intergenerational Educational Mobility in India:

Parent-Child Rank Bin Medians for SC/STs, Muslims and All Others

Panel A: Sons Born in 1950s

Panel B: Sons Born in 1980s

Panel A shows the mean rank bin for sons born in the 1950s, conditioning on the parent rank bin. Parent rank bins are plotted

at the midpoint of the bin. Panel B shows the same result for sons born in the 1980s. Results are shown separately for scheduled

caste and scheduled tribes (SC/STs), Muslims and for non-SC/ST non-Muslims.
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B Appendix B: Proofs

Proof of Proposition 1. Define the conditional expectation function of child rank given
parent rank as Y (i) = E(y|i). Let the function Y (i) be defined on i ∈ [0, 100], and assume
Y (i) is integrable. We want to bound E(y|i) when i is known to lie in the interval [ik, ik+1];
there are K such intervals. Define the expected child outcome in bin k as

rk =
1

ik+1 − ik

∫ ik+1

ik

Y (i)di.

Define r0 = 0 and rK+1 = 100.
Restate the following assumptions from Manski and Tamer (2002):

P (i ∈ [ik, ik+1]) = 1. (Assumption I)

E(y|i) must be weakly increasing in i. (Assumption M)

E(y|i is interval censored ) = E(y|i). (Assumption MI)

From Manski and Tamer (2002), we have:

rk−1 ≤ E(y|i) ≤ rk+1 (Manski-Tamer bounds)

Note also that
i ∼ U(0, 100) (Assumption U)

Proposition 1. Let i be in bin k. Under assumptions IMMI (Manski and Tamer, 2002)
and U, the following bounds on E(y|i) are sharp:{

rk−1 ≤ E(y|i) ≤ 1
ik+1−i

((ik+1 − ik) rk − (i− ik) rk−1) , i < k∗

1
i−ik

((ik+1 − ik) rk − (ik+1 − i) rk+1) ≤ E(y|i) ≤ rk+1, i ≥ k∗

where

k∗ =
ik+1rk+1 − (ik+1 − ik) rk − ikrk−1

rk+1 − rk−1

.

The intuition behind the proof is as follows. First, find the function z which meets the
bin mean and is defined as rk−1 up to some point j. Because z is a valid CEF, the lower
bound on E(y|i) is no larger than z up to j; we then show that j is precisely k∗ from the
statement. For points i > k∗, we show that the CEF which minimizes the value at point i
must be a horizontal line up to i and a horizontal line at rk+1 for points larger than i. But
there is only one such CEF, given that the CEF must also meet the bin mean, and we can
solve analytically for the minimum value the CEF can attain at point i. We focus on lower
bounds for brevity, but the proof for upper bounds follows a symmetric structure.

Part 1: Find k∗. First define Fk as the set of weakly increasing CEFs which meet the bin
mean. Put otherwise, let Fk be the set of f : [ik, ik+1]→ R satisfying

rk =
1

ik+1 − ik

∫ ik+1

ik

f(i)di.
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Now choose z ∈ Fk such that

z(i) =

{
rk−1, ik ≤ i < j

rk+1, j ≤ i ≤ ik+1.

Note that z and j both exist and are unique (it suffices to show that just j exists and is
unique, as then z must be also). We can solve for j by noting that z lies in Fk, so it must
meet the bin mean. Hence, by evaluating the integrals, j must satisfy:

rk =
1

ik+1 − ik

∫ ik+1

ik

z(i)di

=
1

ik+1 − ik

(∫ j

ik

rk−1di+

∫ ik+1

j

rk+1di

)
=

1

ik+1 − ik
((j − ik) rk−1 + (ik+1 − j) rk+1) .

Note that these expressions invoke assumption U, as the integration of z(i) does not require
any adjustment for the density on the i axis. For a more general proof with an arbitrary
distribution of i, see section B.A.

With some algebraic manipulations, we obtain that j = k∗.
Part 2: Prove the bounds. In the next step, we show that k∗ is the smallest point at which

no f ∈ Fk can be rk−1, which means that there must be some larger lower bound on E(y|i)
for i ≥ k∗. In other words, we prove that

k∗ = sup
{
i| there exists f ∈ Fk such that f(i) = rk−1.

}
.

We must show that k∗ is an upper bound and that it is the least upper bound.
First, k∗ is an upper bound. Suppose that there exists j′ > k∗ such that for some g ∈ Fk,

g(j′) = rk−1. Observe that by monotonicity and the bounds from Manski and Tamer (2002),
g(i) = rk+1 for i ≤ j′; in other words, if g(j′) is the mean of the mean of the prior bin, it
can be no lower or higher than the mean of the prior bin up to point j′. But since j′ > j,
this means that ∫ j′

ik

g(i)di <

∫ j′

ik

z(i)di,

since z(i) > g(i) for all h ∈ (j, j′). But recall that both z and g lie in Fk and must therefore
meet the bin mean; i.e., ∫ ik+1

ik

g(i)di =

∫ ik+1

ik

z(i)di.

But then ∫ ik+1

j′
g(i)di >

∫ ik+1

j′
z(i)di.

That is impossible by the bounds from Manski and Tamer (2002), since g(i) cannot exceed
rk+1, which is precisely the value of z(i) for i ≥ j.
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Second, j is the least upper bound. Fix j′ < j. From the definition of z, we have shown
that for some h ∈ (j′, j), z(h) = rk−1 (and z ∈ Fk). So any point j′ less than j would not
be a lower bound on the set — there is a point h larger than j′ such that z(h) = rk−1.

Hence, for all i < k∗, there exists a function f ∈ Fk such that f(i) = rk−1; the lower bound
on E(y|i) for i < k∗ is no greater than rk−1. By choosing z′ with

z′(i) =

{
rk−1, ik ≤ i ≤ j

rk+1, j < i ≤ ik+1,

it is also clear that at k∗, the lower bound is no larger than rk−1 (and this holds in the
proposition itself, substituting in k∗ into the lower bound in the second equation).

Now, fix i′ ∈ (k∗, ik+1]. Since k∗ is the supremum, there is no function f ∈ Fk such that
f(i′) = rk−1. Thus for i′ > k∗, we seek a sharp lower bound larger than rk−1. Write this
lower bound as

Y min
i′ = min

{
f(i′) for all f ∈ Fk

}
,

where Y min
i′ is the smallest value attained by any function f ∈ Fk at the point i′.

We find this Y min
i′ by choosing the function which maximizes every point after i′, by attain-

ing the value of the subsequent bin. The function which minimizes f(i′) must be a horizontal
line up to this point.

Pick z̃ ∈ Fk such that

z̃(i) =

{
Y , ik ≤ i′

rk+1, i′ < ik+1 ≤ ik+1

.

By integrating z̃(i), we claim that Y satisfies the following:

1

ik+1 − ik
((i′ − ik)Y + (ik+1 − i′) rk+1) = rk.

As a result, Y from this expression exists and is unique, because we can solve the equation.
Note that this integration step also requires that the distribution of i be uniform, and we
generalize this argument in B.A.

By similar reasoning as above, there is no Y ′ < Y such that there exists g ∈ Fk with
g(i′) = Y ′. Otherwise there must be some point i > i′ such that g(i′) > rk+1 in order that
g matches the bin means and lies in Fk; the expression for Y above maximizes every point
after i′, leaving no additional room to further depress Y .

Formally, suppose there exists g ∈ Fk such that g(i′) = Y ′ < Y . Then g(i′) < z̃(i′) for all
i < i′, since g is monotonic. As a result,∫ i′

ik

z̃(i)di >

∫ i′

ik

g(i)di.

But recall that ∫ ik+1

ik

g(i)di =

∫ ik+1

ik

z̃(i)di,
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so ∫ ik+1

i′
g(i)di >

∫ ik+1

i′
z̃(i)di.

This is impossible, since z̃(i) = rk+1 for all i > i′, and by Manski and Tamer (2002),
g(i) ≤ rk+1 for all g ∈ Fk. Hence there is no such g ∈ Fk, and therefore Y is smallest
possible value at i′, i.e. Y = Y min

i′ .
By algebraic manipulations, the expression for Y = Y min

i reduces to

Y min
i =

(ik+1 − ik) rk − (ik+1 − i)rk+1

i− ik
, i ≥ k∗.

The proof for the upper bounds uses the same structure as the proof of the lower bounds.
Finally, the body of this proof gives sharpness of the bounds. For we have introduced a

CEF f ∈ Fk that obtains the value of the upper and lower bound for any point i ∈ [ik, ik+1].
For any value y within the bounds, one can generate a CEF f ∈ Fk such that f(i) = y.

Appendix Figure B1 gives a visual depiction of the analytical CEFs that generate the
bounds on p20 and p25 respectively for the cohort born in the 1960s in our India example.
Both i = 20 and i = 25 lie in bin 1. For each of these, the upper and lower bounds are gener-
ated by the same CEFs. The CEF that maximizes at p20 is a horizontal line at rk+1 = 54.48
for all values after i = 20, because i = 20 lies after k∗ = 16.18. The CEF that minimizes
p20 must be the smallest horizontal line up to i = 20 such that the average value in the first
bin is 39.13. The same logic holds for the CEF that minimizes/maximizes i = 25, but the
lower bound is higher because if any of the points below 25 were made any lower, it would
be impossible for the average value in the first bin to match the data.

Proof of Proposition 2. Define

µba =
1

b− a

∫ b

a

E(y|i)di.

Let Y min
i and Y max

i be the lower and upper bounds respectively on E(y|i) given by propo-
sition 1. We seek to bound µba when i is observed only in discrete intervals.

Proposition 2. Let b ∈ [ik, ik+1] and a ∈ [ih, ih+1]. Let assumptions IMMI (Manski and
Tamer, 2002) and U hold. Then the following bounds are sharp:
Y min
b ≤ µba ≤ Y max

a , h = k
rh(ik−a)+Yminb (b−ik)

b−a ≤ µba ≤
Ymaxa (ik−a)+rk(b−ik)

b−a , h+ 1 = k
rh(ih+1−a)+

Pk−1
λ=h+1 rλ(iλ+1−iλ)+Yminb (b−ik)

b−a ≤ µba ≤
Ymaxa (ih+1−a)+

Pk−1
λ=h+1 rλ(iλ+1−iλ)+rk(b−ik)

b−a , h+ 1 < k.

The order of the proof is as follows. If a and b lie in the same bin, then µba is maximized
only if the CEF is minimized prior to a. As in the proof of proposition 1, that occurs when
the CEF is a horizontal line at Y min

i up to a, and a horizontal line Y max
i at and after a. If
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a and b lie in separate bins, the value of the integral in bins that are contained between a
and b is determined by the observed bin means. The portions of the integral that are not
determined are maximized by a similar logic, since they both lie within bins. We prove the
bounds for maximizing µba, but the proof is symmetric for minimizing µba.

Part 1: Prove the bounds if a and b lie in the same bin. We seek to maximize µba when

a, b ∈ [ik, ik+1]. This requires finding a candidate CEF f ∈ Fk which maximizes
∫ b
a
f(i)di.

Observe that the function f(i) defined as

f(i) =

{
Y min
a , ik ≤ i < a

Y max
a , a ≤ i ≤ ik+1

has the property that f ∈ Fk. For if a ≥ k∗, f = z̃ from the second part of the proof
of proposition 1. If a < k∗, the CEF in Fk which yields Y max

a is precisely f (by a similar
argument which delivers the upper bounds in proposition 1).

This CEF maximizes µba, because there is no g ∈ Fk such that

1

b− a

∫ b

a

g(i)di >
1

b− a

∫ b

a

f(i)di.

Note that for any g ∈ Fk, 1
ik+1−ik

∫ ik+1

ik
g(i)di = 1

ik+1−ik

∫ ik+1

ik
f(i)di = rk. Hence in order that∫ b

a
g(i)di >

∫ b
a
f(i)di, there are two options. The first option is that∫ a

ik

g(i)di <

∫ a

ik

f(i)di.

That is impossible, since there is no room to depress g given the value of f after a. If a < k∗,
then it is clear that there is no g giving a larger µba, since rk−1 ≤ g(i) for ik−1 ≤ i ≤ a, so g
is bounded below by f . If a ≥ k∗, then f(i) = rk+1 for all a ≤ i ≤ ik+1. That would leave

no room to depress g further; if
∫ a
ik
g(i)di <

∫ a
ik
f(i)di, then

∫ ik+1

a
g(i)di >

∫ ik+1

a
f(i)di, which

cannot be the case if f = rk+1, by the bounds given in Manski and Tamer (2002).
The second option is that ∫ ik

b

g(i)di <

∫ ik

b

f(i)di.

This is impossible due to monotonicity. For if
∫ b
a
g(i)di >

∫ b
a
f(i)di, then there must be some

point i′ ∈ [a, b) such that g(i′) > f(i′). By monotonicity, g(i) > f(i) for all i ∈ [i′, ik+1] since
f(i) = Y max

a in that interval. As a result,∫ ik

b

g(i)di >

∫ ik

b

f(i)di,

since b ∈ (i′, ik+1). (If b = ik+1, then only the first option would allow g to maximize the
desired µba.)

Therefore, there is no such g, and f indeed maximizes the desired integral. Integrating
f from a to b, we obtain that the upper bound on µba is 1

b−a

∫ b
a
Y max
a di = Y max

a . Note that
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there may be many functions which maximize the integral; we only needed to show that f
is one of them.

To prove the lower bound, use an analogous argument.
Part 2: Prove the bounds if a and b do not lie in the same bin. We now generalize the

set up and permit a, b ∈ [0, 100]. Let F be the set of weakly increasing functions such that
1

ik+1−ik

∫ ik+1

ik
f(i)di = rk for all k ≤ K. In other words, F is the set of functions which meet

the means of every bin. Now observe that for all f ∈ F ,

µba =
1

b− a

∫ b

a

f(i)di

=
1

b− a

(∫ ih+1

a

f(i)di+

∫ ik

ih+1

f(i)di+

∫ b

ik

f(i)di

)
,

by a simple expansion of the integral.
But for all f ∈ F , ∫ ik

ih+1

f(i)di =
k−1∑

λ=h+1

rλ(iλ+1 − iλ)

if h+ 1 < k and ∫ ik

ih+1

f(i)di = 0

if h+ 1 = k. For in bins completely contained inside [a, b], there is no room for any function
in F to vary; they all must meet the bin means.

We proceed to prove the upper bound. We split this into two portions: we wish to max-
imize

∫ ih+1

a
f(i)di and we also wish to maximize

∫ b
ik
f(i)di. The values of these objects are

not codependent. But observe that the CEFs f ∈ Fk which yield upper bounds on these
integrals are the very same functions which yield upper bounds on µ

ih+1
a and µbik , since

µts = 1
t−s

∫ t
s
f(i)di for any s and t. Also notice that a and ih+1 both lie in bin h, while b and

ik both lie in bin k, so we can make us of the first portion of this proof.
In part 1, we showed that the function f ∈ F , f : [ih, ih+1]→ R, which maximizes µ

ih+1
a is

f(i) =

{
Y min
a , ih ≤ i < a

Y max
a , a ≤ i ≤ ih+1.

As a result

max
f∈F

{∫ ih+1

a

f(i)di

}
=

∫ ih+1

a

Y max
a di = Y max

a (ih+1 − a).

Similarly, observe that ik and b lie in the same bin, so the function f : [ik, ik+1]→ R, with

f ∈ F which maximizes
∫ b
ik
f(i)di must be of the form

f(i) =

{
Y min
ik

, ik ≤ i < a

Y max
ik

, b ≤ i ≤ ik+1.
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With identical logic,

max
f∈F

{∫ b

ik

f(i)di

}
=

∫ b

ik

Y max
ik

di = Y max
ik

(b− ik).

And by proposition 1, ik ≤ k∗ so Y max
ik

= rk. (Note that if ik = k∗, substituting k∗ into the
second expression of proposition 1 still yields that Y max

ik
= rk.)

Now we put all these portions together. First let h + 1 = k. Then
∫ ik
ih+1

f(i)di = 0, so we

have that we maximize µba by

1

b− a
(Y max

a (ih+1 − a) + rk(b− ik)) .

Similarly, if h + 1 < k and there are entire bins completely contained in [a, b], then we
maximize µba by

1

b− a

(
Y max
a (ih+1 − a) +

k−1∑
λ=h+1

rλ(iλ+1 − iλ) + rk(b− ik)

)
.

The lower bound is proved analogously. Sharpness is immediate, since we have shown that
the CEF which delivers the endpoints of the bounds lies in F . As a result, there is a function
delivering any intermediate value for the bounds.

B.A Analytical Bounds with an Arbitrary Probability Distribution

Proposition 3. Let i be in bin k. Let pk(i) be the probability density function of i in bin k.
Under assumptions IMMI (Manski and Tamer, 2002), the following bounds on E(y|i) are
sharp: 

rk−1 ≤ E(y|i) ≤
rk−rk−1

R i
ik
pk(s)dsR ik+1

i pk(s)ds
, i < k∗

rk−rk+1

R ik+1
i pk(s)dsR i

ik
pk(s)ds

≤ E(y|i) ≤ rk+1, i ≥ k∗

where k∗ satisfies:

rk = rk−1

∫ k∗

ik

pk(s)ds+ rk+1

∫ ik+1

k∗
pk(s)ds.

Proof of Proposition 3. The proof follows the same argument as in proposition 1. With
an arbitrary distribution, Fk now constitutes the functions f : [ik, ik+1]→ R which satisfy:∫ ik+1

ik

f(s)pk(s)ds = rk.

As before, choose z ∈ Fk such that

z(i) =

{
rk−1, ik ≤ i < j

rk+1, j ≤ i ≤ ik+1.
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Because the distribution of i is no longer uniform, in that case, j must satisfy

rk =

∫ ik+1

ik

z(s)pk(s)ds

= rk−1

∫ j

ik

pk(s)ds+ rk+1

∫ ik+1

j

pk(s)ds.

This implies that j = k∗, precisely.
The rest of the arguments follow identically, except we now claim that for i > k∗, Y = Y min

i

satisfies the following:

rk =

∫ i

ik

Y min
i pk(s)ds+

∫ ik+1

i

rk+1pk(s)ds.

By algebraic manipulations, we obtain:

Y min
i =

rk − rk+1

∫ ik+1

i
pk(s)ds∫ i

ik
pk(s)ds

and the proof of the lower bounds is complete. As before, the proof for upper bounds follows
from identical logic.

Figure B1
Illustration of Proof of Proposition 1
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Figure B1 illustrates the CEFs that generate worst-case bounds on p20 and p25.
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C Appendix C: Mobility Bounds when Child Rank is Interval Censored and
Parent Rank is Known

In the main part of the paper, we focus on bounding a function Y (i) = E(y|i) when Y is
observed without error, but i is observed with interval censoring. In this section, we modify
the setup to allow interval censoring in the observed outcomes Y . For simplicity, we focus
on a setting where Y is observed with interval censoring but i is observed precisely, and we
discuss in the text how the setup could be modified to consider interval censoring in both
variables simultaneously.

We begin by setting up a minimization problem that generates bounds on an integrable,
weakly monotonically increasing function Y (i) = E(y|i), when i is observed without error,
but Y is known only to lie within an interval [Yk, Yk+1]. Notation used is fully described
in this section, and does not correspond directly to concepts used in Section IV. Without
loss of generality, we take Y to represent child rank and i to represent parent rank in some
latent social rank distribution. Given bounds on E(y|i), we can calculate any measure of
intergenerational mobility that is a function of the conditional expectation of child rank given
parent rank; we therefore continue to focus on bounding the conditional expectation function.

We assume that parents’ ranks are precisely observed in I bins, indexed by i; we treat the
midpoint parent rank in each bin as the true parent rank. Define hi as the share of parents in
each bin; if we observed parent ranks in integer rank bins, hi would be equal for all values of i.
Children’s ranks are observed in K bins, where bin k is defined by its boundaries Yk and Yk+1.

The joint parent-child rank distribution can be fully described by a set of conditional child
CDFs for each parent rank i:

Fi(r) = P (child rank ≤ r|I = i) (C.1)

The function describes the probability that a child born to a parent with rank i attains less
than or equal to rank r in the latent outcome distribution. The CEF of child rank given a
parent with rank i is given by:

E(y|i) =

∫ 100

0

rfi(r)dr, (C.2)

where fi(r) is the PDF corresponding to the CDF in Equation C.1.
Because we do not observe children’s ranks exactly, calculating the value of a candidate

CEF at some parent rank thus requires an assumption about how the distribution of children
within each child education bin depends on parent education. Relative to the case with only
parent censoring developed in Section IV, this problem is I-dimensional – before bounding
the CEF, we need to bound I individual child CDFs corresponding to each parent rank.

The sample analog of Fi(r) is the share of children who attain rank r or lower, conditional
on being born to a parent with rank i. We call this value F̂i(r). Because the child data
are interval censored, we do not observe F̂i(r) at every value of r — we observe F̂i(r) only
at the boundaries of the child bins 1 through K. However, we observe it precisely at these
boundaries.

Consider the following example. In the 1960s birth cohort in India, 26.8% of sons report
having completed zero years of education, and an additional 10.1% have started but not
completed primary. Therefore, the 26th percentile son has zero years of education, while the
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27th percentile son has started but not completed primary education. Among sons of zero-
education fathers (who make up 57% of the population), 41% of sons have zero education.
Since the 41st percentile son in this group is right at the margin of starting (but not complet-
ing) primary school, then under the assumption of a continuous CDF, we know that this son
is exactly at the 26.8th percentile of the national latent education rank distribution, which
is to say that F̂i0(r) = 0.268, where i0 represents the rank of fathers with zero education.
The fact that the data pins down the value of the CDF precisely at these points highlights
one dimension under which our bounds under censored child data will be tighter than our
bounds under censored parent data. It allows us to estimate with parameters under a mean
squared error criterion rather than a integral mean squared error as in Section IV.

The parent-child rank distribution is characterized by a child CDF for each parent rank
i. We parameterize each of these child CDFs as Fi(r) = Si(r, γi), where r is the child
rank, i is the parent rank, and γi is a parameter vector in parameter space G. Similarly let
fi(r) = si(r, γi). In our numerical calculation, we define G as [0, 100]100, a vector which gives
the value of the child CDF at each of 100 child ranks, but other parameterizations could be
used. Note that there are as many vectors γi as there are parent ranks.

We can obtain the set of feasible values of γi from the following minimization problem:

Γ = argming∈G

[
I∑
i=1

K∑
k=1

Si(k, gi)− F̂i(k)

]2

(C.3)

such that

si(r, gi)

1− Si(r, gi)
is weakly decreasing in i (Monotonicity)

I∑
i=1

hiSi(r, gi) = r (Budget Constraint)

Si(0, gi) = 0 (End Points)

Si(100, gi) = 1.

This minimization problem defines feasible sets of I CDFs that represent the distribution of
child outcomes for each parent rank i. The monotonicity assumption requires that the hazard
function is decreasing in parent rank. This is equivalent to stating that conditional upon a
child being above some point x in the rank distribution, the probability density must be weakly
decreasing in parent rank.61 The budget constraint requires that the CDF values of each par-
ent group (weighted by parent density) must add up to the population CDF. In other words,
J% of children must on average attain less than or equal to the J th percentile. The constraints
on the end points of the CDF are redundant given the other constraints, but are included to
highlight how the end points constrain the set of possible outcomes. For simplicity, we have

61This assumption implies that the child rank distribution of a higher ranked parent stochastically
dominates the child rank distribution of a lower ranked parent. An example of this assumption in discrete
space is to require that among all children with zero education, the children of zero education parents
cannot on average be ranked above children of higher education parents. Dardanoni et al. (2012) find that
a similar conditional monotonicity holds in almost all mobility tables in 35 countries.
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not included a curvature constraint, but as will be evident from the solutions to this problem,
such a constraint would be a sensible further restriction on the feasible parameter space.

Once a set of candidate CDFs have been identified, they have a one-to-one correspondence
with the child rank CEF given parent rank (described by Equation C.2), and thus with any
mobility statistic that is a function of the CEF. These statistics can be numerically bounded
as in Section IV.

C.A Numerical Optimization and Results

This problem is computationally more challenging than the problem of parent rank censoring
dealt with in Section IV, because it requires simultaneously optimizing over I distinct 100-
valued CDFs. There are I ∗100 parameters, (I−1)∗100 monotonicity inequality constraints,
100 equality budget constraints, and an additional I ∗ 98 curvature constraint inequalities if
desired.

In principle, a similar problem setup could be used to simultaneously solve for interval
censoring in both the parent and child distributions, for example, by identifying a set of
feasible CDF values for each of 100 integer parent ranks. This problem has 10,000 parame-
ters and 10,000 constraints, and proved computationally too difficult to resolve. Instead, we
limit ourselves in this section to identifying feasible CDFs for children born into the seven
parent rank bins that we observe in the data, and assume that the true parent rank is at the
midpoint of the parent rank interval that we observe. The numerical optimization therefore
generates seven 100-valued functions representing γi for seven values of i.62

As an example, we calculate bounds on the parent-child distribution using father and son
education from the 1960s Indian birth cohort. The raw data are displayed in the 2nd tran-
sition matrix in Table A1, and graphed in Appendix Figure C1. Because the raw data are
monotonic, many feasible sets of son CDFs will fit the data with zero MSE. We therefore
require that MSE is equal to zero, and set up an optimizer to respectively minimize and
maximize the value of some mobility statistic (such as the rank-rank gradient) across all
feasible son CDFs.

Appendix Figure C2 shows two CDFs that respectively minimize and maximize the rank-
rank gradient.63 In the parent-child distribution that minimizes mobility (Panel A), chil-
dren’s ranks within each parent-child bin are perfectly ordered by parent rank. For example,
among sons who report completing middle school, these CDFs would be generated by the
assumption that those who came from low education parents have all just barely completed
middle school and thus have the lowest ranks in this subgroup, while those who come from
high education parents are very close to attaining the next level of education, and thus have
the highest ranks in this subgroup. The step function shape of these CDFs highlights that
perfect ordering within child education bins would imply a set of child rank probability den-
sity functions that do not appear very natural. If child ranks have a continuous distribution,
we would expect the density of child ranks at the bottom ranks of one schooling level to be

62We implement the monotonicity assumption by requiring it to hold within each observed bin. This
is a conservative implementation; requiring this assumption at every point in the discrete space would be
computationally more intensive but would obtain even tighter bounds than what we show here.

63The set of CDFs that bound p25 and µ50 are highly similar. Minimizing the gradient implies maximizing
the CEF of children born to the worst off parents, which effectively maximizes p25 and µ50 given the parent
ranks we use here.
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similar to the density at the top ranks of the lower schooling level. Panel B shows the set
of CDFs that maximize mobility given the data. This solution would be generated from the
assumption that parent rank does not influence child rank once the child’s education rank
bin is known.

Each of these sets of CDFs defines a parent-child conditional expectation function, from
which we can calculate scalar statistics of mobility. The bounds on p25, the expected child
rank at the 25th percentile of the parent distribution, are [36.6, 39.1]. The comparable un-
constrained bounds from Table 1 are [22.2, 54.5], highlighting the fact that censoring in the
child distribution poses considerably less concern than censoring in the parent distribution,
at least for this cohort. The bounds on the rank-rank gradient with censored child data are
[0.54, 0.64], compared to [0.44, 0.66], again considerably more narrow. The bounds on µ50

0

are more similar, because as discussed above, µ50
0 is only minimally affected by censoring in

the bottom bin of the parent distribution. We obtained [37.0, 39.1] when we accounted for
censoring in the parent distribution, and [37.5, 39.0] when we account for censoring in the
child distribution. These results show that for India, censoring in the child rank distribution
is a second-order concern to censoring in the parent rank distribution, because the censoring
problem is largest for the bottom bin in the parent education distribution.

Finally, because we have additional data on children, we can estimate the shape of the
child CDF within parent-child education bins using rank data from other outcome variables.
If children’s opportunities are indeed perfectly ordered in parent ranks within parent-child
education bins (as would be implied by the CDFs that minimize mobility in Figure C2), we
would expect to see this pattern across other outcomes. Figure C3 tests this hypothesis using
children’s wage data. To generate this figure, we calculate children’s ranks first according
to education, and then according to wages within each education bin.64 If parent education
strongly predicted child wages within each education bin, we should see a graph like Panel A
of Figure C2. Instead, the graph is much closer to Panel B of Figure C2; there is some addi-
tional curvature in some bins, but the distribution of child CDFs is strikingly close to that in
Panel A of Figure C2. This result suggests that our assumption in the body of the paper that
sons’ ranks are approximated by the bin midpoint is unlikely to bias our results significantly.

Note that there is no comparable exercise that we can conduct to improve upon the sit-
uation when parent ranks are interval censored, because we have no information on parents
other than their education. The closest we can come to this is by observing the parent-child
rank distribution in countries with more granular parent ranks, as we did in Section IV.D.
The results in that section suggest that interval censoring of parent ranks can indeed mask
important features of the mobility distribution.

In this section, we have shown that (i) interval censoring in children’s rank data is less
consequential for mobility estimates than interval censoring in parent rank data; and (ii)
our best estimates suggest that assigning children the midpoint rank in their rank bin is a
good approximation of their true ranks. We expect the first of these results to hold for the
parent-child education distributions in other developing countries and in any other context
where the largest censoring problems are in the bottom parent bin. Because the second result
can be estimated directly, it may be worth estimating in each new context. Developing a

64We limit the sample to the 50% of children who report wages. Results are similar if we use household
income for all children. As discussed in Section II.A, both measures are imperfect.
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method to solve for censored rank data in the parent and child distributions simultaneously
would be valuable, but is left for future research.

Figure C1
Observed Son CDF by Father Education(1960-69 Birth Cohort)

Figure C1 plots the observed points on the child CDF for each parent education group, using data
from the Indian 1960-69 birth cohort and their fathers. Each marker type represents a different
type of father, classified by education. For each father type, the graph shows a child’s probability
of attaining a given rank percentile in the child education rank distribution.
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Figure C2
Bounds on Feasible Son CDFs by Father Education (1960-69 Birth Cohort)

Panel A: Lowest Feasible Mobility

Panel B: Highest Feasible Mobility

Figure C2 shows bounds on the child education rank cumulative distribution function, separately for each
father education group. The lines index father types. Each point on a line shows the probability that a
child of a given father type obtains an education rank less than or equal to the value on the X axis in the
national education distribution. The large markers show the points observed in the data (corresponding to
Figure C1).
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Figure C3
Son Outcome Rank CDF by Father Education (1960-69 Birth Cohort)

Joint Education/Wage Estimates
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Figure C3 plots separate son rank cumulative distribution functions separately for each father
education group, for sons born in the 1960s in India. Sons are ranked first in terms of education,
and then in terms of wages. Data are from the IHDS 2011-12. Sons not reporting wages are
dropped. For each father type, the graph shows a child’s probability of attaining a given rank
percentile in the child education rank distribution.
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