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Abstract

Randomized, controlled trials (RCTs) are often thought to generate the single most
credible form of “causal” evidence. We consider a setting in which the population is
divided into sites, and an experimenter must find a willing site to implement and
test a potentially risky treatment. We compare the potential biases in estimating the
population average treatment effect (ATE) using an experimental approach and an
analogous observational approach. A canonical site selection bias – based on a site’s
forecast of treatment effect – may plague both approaches. If so, it is a problem of
internal validity in the observational case but external validity in the experimental
case. We model selection in both the observational and the experimental contexts,
and provide conditions under which the ATE is estimated with greater bias using the
experimental rather than the observational approach. We conclude that in the context
of a site-based, risky treatment, the evidence from even a much-replicated RCT need
not be more broadly informative than that of an observational study. Skeptical sites are
on standard econometric ground treating such experimental evidence as “non-causal”.
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1 Introduction

Consider bringing empirical evidence to bear on an open policy question in the field of micro-

finance, such as whether group lending generally raises repayment rates, whether regular or

backloaded repayment schedules lead to more efficient and sustainable outcomes, or whether

equity contracts tend to outperform debt ones. One option may be simply to compare out-

comes of microfinance institutions (MFIs) that use different approaches, for example group-

and non-group based lenders. Many would consider this option significantly inferior to an

experimental approach involving partnering with an MFI to randomly assign the two prac-

tices to two subsets of the MFIs’ clientele, and comparing outcomes. Rated even better

would be accumulated evidence from this experiment replicated on a number of MFIs.

More generally, experimental studies (“RCTs”) are often thought to generate the sin-

gle most credible form of empirical evidence on causal impact,1 likely due to their ability

to produce an unbiased estimate of the average treatment effect (“ATE”) under minimal

assumptions.2

This paper argues that in certain natural settings, there is no obvious reason to expect the

experimental approach to produce a less biased estimate of the population ATE than a simple

observational approach. The settings we focus on involve subsets of the population called

“sites” – states, NGOs, firms, banks, etc. – that are responsible for determining treatment.

The average treatment effect may vary across sites, and each site has a benevolent decision-

maker that decides whether to undertake treatment. The decision-maker’s objective coincides

with the outcome of interest to the researcher. Crucially, the treatment is risky: it has a

real chance of appreciably worsening outcomes at the site, as in each of the microfinance

examples above.

A simple observational approach in such a setting would compare outcomes at sites that

adopted the treatment and sites that did not. As is well-known, selection bias may plague
1See Imbens (2010), for example.
2See Athey and Imbens (2017) and Deaton and Cartwright (2018), for example.
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the resulting estimate. The potential bias can be decomposed into “Bias–1”, the difference

in treatment effect at sites selecting treatment versus the average site, and “Bias–2”, the

difference in untreated outcomes between sites selecting into and out of treatment. The

potential for either bias is often considered sufficient to relegate evidence from this approach

to “descriptive” (or “non-causal”) status.

The RCT approach involves a research team partnering with a site to experimentally test

the treatment. Randomization would eliminate (in expectation) the differences in untreated

outcomes between treated and untreated in the treatment site, eliminating an analog of

“Bias–2”. But a potential bias remains, an analog of “Bias–1”: the difference in treatment

effect at sites willing to select into experimental treatment and the average site. This bias

does not threaten internal validity of the study, but would be classified as an external validity

issue. Still, it would bias the experimental estimate of the population ATE; and this bias

would remain after many replications.

“Bias–1” in both the observational and the experimental cases is the selection bias stem-

ming from the willingness of sites to select into the treatment. In one case selection is into

autonomous treatment while in the other it is into experimental treatment; but a natural

assumption would be that optimizing site-level decision-makers take their own forecasts of

the treatment effect into account in both cases, and especially when the treatment carries

significant risk. Thus, presumptively both the observational approach and the experimental

approach suffer from a similar, canonical selection bias with respect to the population ATE.

If so, the superiority of the experimental approach for estimating the ATE is partly a mi-

rage: it does not eliminate a potentially critical bias, but instead shifts it from the realm of

internal validity to external validity where it receives less scrutiny.

The experimental approach does not merely shift the analog of Bias–2, but eliminates

it with randomization. This may be considered reason to prefer the experimental approach

– it gets rid of one potential bias, if not two. But this logic does not hold up. We explore

implications for bias in a Roy model of selection into treatment in both autonomous and
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experimental settings. Many considerations could enter such a model, but we aim for a simple

framework that highlights key issues. Under some conditions – e.g. limited patience of the

site manager, limited trust in the experimenting team or the experimental process, knowledge

free-riding problems – the selection problem is indeed the same in both the autonomous and

the experimental settings. In this case, the observational approach can produce a less biased

estimate of the ATE than the experimental approach, depending on the distribution of

heterogeneity across sites. This is because Bias–1 and Bias–2 may counteract, so that the

sum of both biases may be closer to zero than Bias–1 by itself.

In sum, a “risky” experiment – even a much-replicated one – may produce no better

evidence on the population ATE than an observational approach. It may be argued that the

parameter of interest is the site-specific ATE, not the population ATE as assumed above.

This is undoubtedly the case in some contexts (Deaton and Cartwright, 2018). But as a

broad statement, it belies the use and popularity of the experimental approach, whose main

general interest arguably stems from the ability to create general insights into what works or

how things work more broadly, across contexts (e.g., see Imbens, 2010, p. 417). Yet in the

aspiration to produce scientific evidence of policy relevance beyond its context, a risky RCT

may be unable to shake one of the potential biases considered canonical in observational

work.

The experimental approach can in principle produce an unbiased estimate of the ATE

among the willing population, i.e. among sites that are willing to opt into the experiment.

We believe experimental studies should make clear that the “causal” interpretation of their

results applies only to such sites. In some cases, this may reasonably be assumed to include

virtually all sites. But in other cases, particularly with a “risky” experiment, skeptical,

unwilling sites may well abound, and a presumption that by virtue of randomization RCTs

deliver more credible evidence for them than an analogous OLS study appears unfounded.

Related, this perspective provides a caveat to the finding that the randomized approach

is especially suited for convincing an adversarial audience (Banerjee et al., 2020). Their
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logic applies to the site-specific ATE, but given the logic of site selection, skeptical site

decision-makers – ones that would not have agreed to the experiment – are on standard

econometric ground in downplaying the implications of RCT evidence for themselves.3 It

also casts doubt on the idea that RCTs are most useful in testing out innovative modes of

operation or techniques (e.g. Morduch, 2020). Unless the innovations are likely to be trivial

or positive in impact – i.e. unless the experiment is non-“risky” – current empirical standards

entail the worry that, from the perspective of general advice beyond the implementing site,

RCTs generate biased results in a similar class as correlational observational studies.

The paper is organized as follows. Section 2 discusses related literature. Section 3

sets out the statistical model and provides a preliminary comparison of the biases in the

observational and experimental cases. Section 4 models selection into treatment in both

cases, and combines results with the statistical model to provide conditions under which

each approach is more biased. Section 6 discusses implications and concludes.

2 Relation to the Literature

This paper focuses on the interaction of external and internal validity across observational

and experimental studies in certain settings where site selection is a concern.

External validity is a common topic in the methodological literature discussing experi-

ments. Multiple authors have made the criticism that far more attention is paid to internal

validity than external validity, that is, to whether an estimate is valid within the study

context than to whether and how it informs the world outside the realm of the study (e.g.

Deaton and Cartwright, 2018), even though both questions are critical for policy (e.g. Man-

ski, 2013). Advocates of experiments respond that external validity challenges are not unique

to experiments (e.g. Banerjee and Duflo, 2009) and are likely to be practically solveable by

replication across diverse sites.
3Banerjee et al. (2017) provide a general argument against the possibility for generalized conclusions,

based on the necessity to defend against a large set of priors regarding the relationship between sites. Our
argument differs in focusing on canonical selection issues.
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One of the threats to external validity is selection into the experiment, as Heckman (1992,

2020) seminally discussed. While Heckman and others have focused primarily on individual-

level selection issues, he and Hotz (1992) also discussed site selection. In a more recent

paper, Allcott (2015) argues that bias with respect to the population parameter can arise

due to systematic selection of sites into experimental participation, and make the point that

the selection-on-observables assumption required to eliminate this bias is formally similar to

the assumption required for unbiasedness of observational impact estimates; see also Muller

(2015). Similar arguments around site selection bias can be found in Heckman and Vytlacil

(2007), Banerjee and Duflo (2009), Pritchett and Sandefur (2013), Fischer and Karlan (2015),

Banerjee et al. (2017), Deaton and Cartwright (2018), and Czibor et al. (2019), who say

that “researchers must explicitly consider selection into the experiment, in order to derive

general conclusions”.

These papers make similar broad points but do not delve more deeply into the nature

of the site selection bias and its relationship to well-known biases in observational settings.

Our paper aims to explore and expand the reasoning of these contributions regarding issues

researchers must consider when generalizing from experiments, in a richer theoretical frame-

work. Our focus is narrower: not experiments in general, but a certain class of experiments,

namely “risky”, site-based experiments that involve adopting a new treatment. It is with

these types of experiments that canonical selection – directly connected to effectiveness of

the treatment – at the site level is hardest to assume away. Thus, while the literature tends

to focus on incidental reasons for site selection into experimentation,4 we differ in focusing

on a canonical selection bias. To our knowledge, this work is the first to highlight a funda-

mental similarity between potential site-level biases of both observational and experimental

approaches: that with rational actors, site selection into autonomous risky treatment and

site selection into experimental risky treatment generally involve similar effect-forecasting
4Examples are selection based on willingness to experiment in general (implicitly, Banerjee and Duflo,

2009), efficiency of operation to evaluate and run an experiment (Heckman and Vytlacil, 2007), or alignment
with experimenter goals (Allcott, 2015).
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calculations, so that the same canonical selection problem can lurk behind both observational

and experimental studies.

We also add to the debate on the relative importance of internal and external validity and

the relative vulnerability of different methods to problems in these areas. We embed both

aspects of validity into a common model with a clearly specified parameter of interest; this

allows for the juxtaposition and aggregation of biases – due to external and internal validity

separately – across different types of studies with respect to the population ATE. This leads

to the novel point that the experimental approach may not eliminate a fundamental bias

plaguing observational studies, but rather shift it from the realm of internal validity to

external validity. The implication is that it can be a costly oversimplification to lump all

methods together as having similar external validity issues.5

We also extend the literature by adapting the Roy model to study the site selection

process and understand how and when it may bias results from different methodologies.

Combining the described elements leads to a novel theoretical exploration of plausible con-

ditions under which an RCT, even a much-replicated RCT, may do no better in terms of

bias than a simple observational approach to estimating a population ATE.

The adoption of Roy model logic for selection into experiments is not new, but can be

found in Heckman et al. (1999), Heckman and Vytlacil (2007), and Athey and Imbens (2017)

along with discussions of econometric implications and strategies. On the theoretical side,

Malani (2008) develops a model of individual selection into medical trials and shows that

an RCT estimate is biased upward relative to the treatment effect for the population that

would select into the new treatment based on the current state of knowledge; Belot and

James (2014) extend these results. This strand of the Roy model literature focuses on in-

dividual selection into experiments, while we focus on site-based selection. While key logic

is similar, our approach differs in highlighting site-level decision-making and enabling quan-

tification of internal and external validity biases, allowing for comparisons of observational
5Our argument does not rely on the idea that observational studies have larger scope (e.g. Dehejia, 2015);

it applies even to a much-replicated RCT.
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and experimental estimates on each dimension and in total. Further, the econometric strate-

gies developed in the literature for addressing individual-level selection, e.g. estimating ITT

or LATE parameters, may be much less practical to implement as solutions to site-based

selection.

Hotz et al. (2005) do not focus on site selection per se, but derive conditions under

which experimental results can be extrapolated to other populations; one condition is that

selection into the experimental sample is independent of potential outcomes, conditional on

observables (see also Allcott, 2015, for a weaker condition). Andrews and Oster (2019) and

Gechter (2022) extend this line of work with assumptions on the behavior of unobservables

relative to observables. Our paper ignores mediating observables, partly for simplicity but

mainly because the popularity of RCTs may be credited largely to their ability to avoid

selection-on-observables assumptions and their cousins for identification. A retreat to the

necessity of these kinds of assumptions would undermine the case for RCTs being categori-

cally different from observational approaches with respect to causal identification, as others

have argued.

Several studies find ways to empirically assess site selection bias or other external validity

issues. Allcott’s (2015) seminal study provides empirical evidence of significant site selection

in several settings, and its bias of ATE estimates in one setting due apparently to substantial

site selection on unobservables. He does not find improvement from an observational estimate

(different from the one we study). Belot and James (2016) study selection into experiments

in a school nutrition program setting, and find that while few sites opt into the experiment,

there is little evidence for selection on observables or bias of estimated treatment effects.

Other work includes Pritchett and Sandefur (2014, 2015), who show that a more biased in-

context observational estimate may dominate several unbiased out-of-context experimental

estimates in terms of RMSE (see also Ravallion, 2020); and the Bayesian meta-analyses

of Meager (2019) and Vivalt (2020). While the current paper does not have empirical
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evidence to add to this growing literature,6 we view it as helping to interpret empirical

results from different methods and, in particular, highlighting the kinds of experiments that

may well offer little improvement over basic observational methods in generating credible

general knowledge.

A general argument in the literature is that experiments are especially valuable because

they allow the researcher control over the mechanism for assignment to treatment (e.g.

Imbens, 2010). This paper presents a caveat: if it is necessary to find a willing site to

partner with, the researcher’s control over the assignment mechanism may be hampered in

a similar way and for some similar reasons as with a decentralized assignment mechanism.

Overall, the paper builds on a number of well-known ideas and further develops their

implications for the relative merits of experimental methodology when site selection due to

high stakes is a possible concern.

3 Statistical Model

Population set P contains N individuals, indexed by i. Let Ti ∈ {0, 1} give individual i’s

treatment status under the policy to be evaluated. Individual i’s potential outcome as a

function of treatment is Yi(Ti), also written as Yi0 ≡ Yi(0) and Yi1 ≡ Yi(1). Individual i’s

treatment effect is τi ≡ Yi1 − Yi0. The parameter of interest is assumed to be the population

average treatment effect “ATE”, τ ≡ E(τi).

The population is spread over a set S of S “sites”, indexed by s, interpreted as states,

locales, NGOs, firms, banks, or contexts. The set of individuals at site s is Ps, where

{P1, ...,PS} partitions P. Let Si be the site in which individual i is located: Si = {s ∈ S :

i ∈ Ps}. For simplicity, the sites are equal in population.

Sites have two key features. First, potential outcomes may be correlated within sites.

For example, NGOs or firms may operate differently and in different contexts, leading to

different treatment effects of the policy across sites. Define τ s as the average treatment
6Arguably, none of the studies cited involves a clear-cut example of a “risky” experiment.
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effect in site s, the “sATE”: τ s ≡ E(τi|Si = s). The assumptions guarantee that ES(τ s) = τ .

Second, treatment status of individuals within a site is determined by a site-level decision-

maker, or “DM”. For example, states determine many educational policies such as rules for

hiring teachers; microfinance NGOs determine whether to offer group-based or individual-

based lending; firm managers decide on compensation policy; and so on.7

3.1 Observational Approach

Assume that treatment status Ti and the associated outcome Yi(Ti) are observed for a ran-

dom sample of individuals i in P. Further, assume that some sites have fully implemented

the policy while others have not implemented it at all. Thus, the set of sites can be parti-

tioned into two subsets, {S0, S1}, such that the sites in S1 (S0) have (have not) implemented

the policy: Ti = 1 if Si ∈ S1 and Ti = 0 if Si ∈ S0.

A simple observational approach compares outcomes of a random sample of treated and

untreated to obtain τ̂obs, where

E(τ̂obs) = E (Yi1|Ti = 1)− E (Yi0|Ti = 0)

= E (Yi1|Si ∈ S1)− E (Yi0|Si ∈ S0)

= E (Yi1|Si ∈ S1)− E (Yi0|Si ∈ S1) + E (Yi0|Si ∈ S1)− E (Yi0|Si ∈ S0)

= E(τi|Si ∈ S1) + E (Yi0|Si ∈ S1)− E (Yi0|Si ∈ S0)

= τ + E(τi|Si ∈ S1)− τ︸ ︷︷ ︸
Bias−1

+E (Yi0|Si ∈ S1)− E (Yi0|Si ∈ S0)︸ ︷︷ ︸
Bias−2

.

(1)

The potential bias of this observational approach can be decomposed into two parts. Bias–1

arises if the treatment effect in sites that opt in tends to differ from the treatment effect in

sites that opt out of the policy. This bias disappears if all sites have the same treatment
7We abstract from the issue of individual-level selection into treatment, and assume all individuals in a

treated site are treated. This is a reasonable assumption in the microfinance case, e.g., where an MFI offers
take-it-or-leave-it policies to its clients and may change certain features of its product without altering its
clientele significantly. If there were individual-level selection as well, by necessity the focal parameter would
likely become the ITT or a LATE; similar issues to those raised in this paper would be relevant.
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effect, τ s = τ , ∀s, or if sites’ treatment effects are uncorrelated with their adoption of the

policy, E(τi|Si ∈ S1) = E(τi|Si ∈ S0).8 Bias–2 arises if sites that opt in and sites that opt

out would tend to have different outcomes without the policy, e.g. due to differences in

efficiency. The possibility for either bias is widely seen as preventing simple correlational

estimates from being interpreted as “causal”.9

3.2 Experimental Approach

Assume the researcher partners with the site-s DM to assign treatment to one random subset

of the site population and deny treatment to a different random subset. The experimental,

RCT approach then compares the treated and untreated subsets in site s to obtain τ̂rct,s

where

E(τ̂rct,s) = E[Yi1|Ti = 1, Si = s]− E[Yi0|Ti = 0, Si = s]

= E[Yi1|Ti = 1, Si = s]− E[Yi0|Ti = 1, Si = s]

+ E[Yi0|Ti = 1, Si = s]− E[Yi0|Ti = 0, Si = s]

= τ s + E[Yi0|Ti = 1, Si = s]− E[Yi0|Ti = 0, Si = s]

= τ + τ s − τ︸ ︷︷ ︸
Bias−1

+E[Yi0|Ti = 1, Si = s]− E[Yi0|Ti = 0, Si = s]︸ ︷︷ ︸
Bias−2

= τ + τ s − τ︸ ︷︷ ︸
Bias−1

+ 0︸︷︷︸
Bias−2

.

(2)

The third and fifth equalities follow from random assignment of individuals to treatment

in site s. This ability to obtain an unbiased estimate of the sATE can be considered the

effectiveness of RCTs in solving internal validity issues. However, a potential bias remains,

Bias–1, that if non-zero would be classified as an external validity issue because it involves
8See Allcott (2015) and Heckman and Vytlacil (2007).
9“A major concern ... is that simple comparisons between economic agents in the various regimes are often

not credible as estimates of the average effects of interest because of the potential selection bias that may
result from the assignment to a particular regime being partly the result of choices by optimizing agents”,
Imbens (2010); “A central problem is selection, the fact that participants may be systematically different
from nonparticipants”, Banerjee and Duflo (2009).
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how to relate a parameter that is cleanly identified within the scope of the study to the

population parameter of interest.

Bias–1 is zero if there is no site-specific heterogeneity in treatment effects. It is also

zero in expectation if site s is randomly chosen among sites, since ES(τ s) = τ , so that

ES(τ̂rct,s) = τ .10 In this case, the experimental estimate is unbiased for the ATE, and

replication across sites is useful for increasing precision of estimates of the ATE.

However, sites may have a say in whether they are experimented upon and how, and thus

randomness of site selection may not hold.11 Let {SE
1 , S

E
0 } be the partition of S into sites

that are willing to engage in this experiment (SE
1 ) and those that are not (SE

0 ), and assume

that site s was randomly chosen among SE
1 . Then by reasoning analogous to the above, the

RCT approach produces an estimate τ̂rct where

E(τ̂rct) = τ + E(τi|Si ∈ SE
1 )− τ︸ ︷︷ ︸

Bias−1

. (3)

Thus, given voluntary site selection into the experiment, the RCT may give a biased es-

timate of the parameter of interest, τ . It is unbiased for the the sATE, τ s, and perhaps

for the average treatment effect of sites willing to experiment, E(τi|Si ∈ SE
1 ). But moving

beyond these to the population ATE, τ , is often necessary if one wants to generate broader

policy implications.12 If we are unwilling to assume that selection into the experiment is

independent of the site treatment effect, then an RCT estimate is no more guaranteed to be

an unbiased estimate of the population ATE than an observational estimate.
10See Allcott (2015) and Muller (2015) who present a very similar condition for unbiasedness of the

experimental estimate.
11It fails in systematic ways in Allcott’s (2015) setting, for example.
12Imbens makes a similar point (2010, p.417). Deaton and Cartwright (2018) point out cases where the

sATE is all researchers need to care about. But it seems clear that experimental studies are typically framed,
published, and cited for insights that generalize beyond the context studied; conversely, it seems rare for an
RCT study to foreground inability to speak beyond the sATE or the ATE for willing sites with “causal”
force.
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3.3 Comparing the Approaches

“Bias–1” of the observational case – E(τi|Si ∈ S1) − τ (equation 1) – is not identical to

“Bias–1” of the experimental case – E(τi|Si ∈ SE
1 ) − τ (equation 3) – but conceptually

related. Bias–1 in the observational case is related to sites’ decision to opt into the policy

autonomously; Bias–1 in the experimental case is related to sites’ decision to opt into the

policy via an experiment. While these are not the same decisions, it would be surprising

in many settings if similar calculations did not enter into both. In both cases the decision

is whether to opt into treatment, and optimizing agents presumably base that decision on

the expected treatment effect. That is, the framework above suggests that a standard, Roy-

model selection potentially surfaces in both cases. We formally model these decisions in the

next Section; for now, we discuss circumstances under which we would expect the two biases

to be similar, and implications in that case.

Is Bias–1 similar in the two cases? Bias–1 is presumptively a concern in observational

studies. Arguably, Bias–1 is not a concern in some kinds of experiments. For example,

in some settings participation in an experiment is not subject to consent. Examples are

online retail firms experimentally varying prices or web layout, and researchers submitting

fabricated resumes. Site selection into the experiment is controlled by the experimenter, who

can often select the site(s) at random, eliminating Bias–1.

However, many RCTs require site-level consent to participate. For some experiments,

consent may reasonably be considered a foregone conclusion. One example is when the

treatment is a universally valued good, e.g. unconditional cash transfers to households or

budgetary support to a government agency. Another possible example is when the exper-

imentee is not required to do anything substantively new or different, but just to allow a

research team to track and measure its standard product or policy.13

Our focus is instead on RCTs in which the site DM consents to adopt a new product
13Many RCTs fit into this category, e.g. the six microcredit impact evaluations discussed in Banerjee et

al. (2015). Willingness to have one’s product evaluated can differ across potential experimentees, however,
though in a way that may differ substantially from selection into a new treatment.
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or policy variation that involves risk. Assent to such a “risky” experiment brings with it a

treatment that jeopardizes – i.e. may materially worsen – outcomes that the experimentee

cares about. This kind of experiment is common in development economics, for example,

where researchers often attempt to convince an NGO or firm or government agency to test a

new product or policy variation or management approach. For example, consider a researcher

that approaches a microfinance institution (“MFI”) with a proposed modification to its

business model – a change in contract term or structure, in the role or operation of the

microfinance group, in the monitoring and incentive mechanisms employed by the lender, in

credit application evaluation, etc. Or, consider a firm that is proposed a treatment involving

a change in human resource policy, advertising, or the use of outside consultants. In such

cases, the experimental treatment itself may significantly raise or lower the outcomes that

the site cares about, whether enterprise formation or repayment rates in the case of an MFI,

or costs, revenues, reputation, and overall financial success in the case of the MFI or firm.

Given this risk, assent to a risky experiment may be far from automatic. Anecdotes

abound of NGOs being unwilling to test some or all proposed variations of a product,14

and of how difficult it can be for the researcher to get to “yes”. In fact, in the case of a

risky experiment, it would be surprising if this were not the case, under the assumption that

bureaucrats or NGOs or firm managers are maximizing agents looking out for the well-being

of their clients, bearing some responsibility for their outcomes, and possessing some working

knowledge – not fully eclipsed by the outside researcher’s – of what effective operation

looks like in context.15 A site-specific assessment of the risks and rewards of the proposed

treatment will likely factor into the willingness of the site DM to undergo treatment via

experimentation.

Arguably, some experiments should be considered risky even if the possible measured

treatment effects are confined within a positive range; the overhead cost of engaging in the
14Glennerster (2017) describes this back-and-forth process between researcher and partner about what to

test.
15See also Glennerster (2017, p.189).
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experiment may lower the net impacts into a range spanning zero. While experimenters often

cover many direct costs of implementing the experiment, there is typically a training and

management cost component borne by the site. Management costs of negotiating parameters

of the experiment, estimating whether it is a propitious undertaking for the organization,

and planning how to integrate it into operation, and any disruptions to normal operation

with attendant time costs for lower-level management and labor can be substantial and are

often not fully covered by the experimenter.16

In sum, in the case of risky experiments, some of the same calculations are likely to be

relevant for a site selecting into treatment autonomously and a site selecting into treatment

via an experiment. We explore this argument in the next Section with a simplified Roy

model examining selection into a risky treatment in both settings.

Implications of similar Bias–1. Building on the previous arguments, assume for the

remainder of this Section that the Bias–1 of each setting exists and operates fairly similarly.

In this case, both approaches yield biased estimates of the population average treatment

effect, and suffer from a kind of selection bias that is often considered sufficient to relegate

the observational approach to “non-causal” status.

The potential for Bias–1 in an observational study is an issue of internal validity and

thus forefront in economists’ minds. But the same kind of bias in experimental work is

in the realm of external validity, and hence receives less scrutiny. Further, it seems fair

to say that the experimental approach achieves internal validity in part by shifting a key

selection problem from the realm of internal to external validity; Bias–1 is not eliminated

by the experiment, simply made external to the study. If so, is the overall superiority of

the experimental approach partly a mirage? More broadly, the presumption that judgment

ought to be based on internal validity properties alone appears unsupportable if key potential

biases are shifted between the realms of internal and external validity in the methods under

comparison.
16See Heckman (1992, 2020) and Hotz (1992) for documentation of this concern in the context of a job

training program in the US, and Section ??.
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Given the nature of the selection problem, the standard strategy to bolster external

validity – replication of the same experiment in new sites – need not help. Every experiment

that gets implemented would involve a site selecting into the experimental treatment and

thus suffer from a similar bias.17

With respect to the broader question of “what works” in general, experimental evidence

would not be obviously superior to observational. This is true despite the experimental

approach’s ability to eliminate Bias–2; two biases may not be worse than one, as we illustrate

next.

4 Selection model

Assume that

Yij = µj + Uij, j ∈ {0, 1} ,

with E(Uij) = 0, j ∈ {0, 1}. The ATE parameter of interest is τ = E(Yi1 − Yi0) = µ1 − µ0.

Departing from the standard Roy model, assume a site-specific component of the individual-

i disturbance:

Uij = νSij + uij, j ∈ {0, 1} .

That is, νsj is a common component of Uij for all individuals i in site s.

The individual component uij is not observed by the site-s DM, while the site-specific

component is decomposed as follows:

νsj = νO
sj + νU

sj, j ∈ {0, 1} ,

where νO
sj (νU

sj) is observable (unobservable) to the site-s DM. No component of Uij is

observable to the researcher. Let {νO
sj} ≡ (νO

s0, ν
O
s1) and {νU

sj} ≡ (νU
s0, ν

U
s1). Assume that for

all s ∈ S and j ∈ {0, 1}, uij is mean-zero and independent of {νO
sj} and {νU

sj}, and νU
sj is

17See also Banerjee and Duflo (2009).
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mean-zero and independent of {νO
sj}. Given that E(Uij) = 0, these imply that E(νO

sj) = 0,

j ∈ {0, 1}, ∀s ∈ S.

Define τOs ≡ νO
s1− νO

s0 and τUs ≡ νU
s1− νU

s0. Then the (true) site-specific average treatment

effect for site s is

τ s ≡ E(τi|Si = s, {νO
sj}, {νU

sj}) = µ1 − µ0 + νO
s1 − νO

s0 + νU
s1 − νU

s0 = τ + τOs + τUs .

That is, each site’s treatment effect is the population average treatment effect τ plus observed

and unobserved site-specific common effects.

The site-s DM makes decisions to maximize the expected outcomes of site-s individuals,

knowing the model,18 given what is observable, and thus with an expected site-s average

treatment effect of

τDM
s ≡ E(τi|Si = s, {νO

sj}) = µ1 − µ0 + νO
s1 − νO

s0 = τ + τOs .

We examine two distinct scenarios. In one, all sites decide autonomously whether to take up

the new treatment. In the other, sites take up the new treatment only when approached by

a researcher offering to implement the treatment in an RCT framework. One can think of

these two scenarios as one in which knowledge of the treatment product or policy diffused to

everyone and the other in which it is only revealed by an experimenter. While mixed scenarios

may more realistically describe some settings, these provide two simple benchmarks.

4.1 Autonomous Selection

In the first scenario, all sites know about and decide whether to undertake the treatment.

As a baseline case, we assume that sites do not learn anything about the treatment’s effi-

cacy after undertaking it. This simplifies the analysis, and can be justified if sites do not
18This includes includes the distribution of {νUsj} and the ATE τ ; Section 5.1 extends the model for

pessimistic or optimistic assessments of the ATE.
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know how to causally identify the treatment effect without an experimenter. An alternative

interpretation is that the policy gets entrenched once adopted at the site.19 Regardless, in

this case treatment is a once-for-all decision with no learning, so site s adopts the policy iff

E(Yi1|Si = s, {νO
sj}) > E(Yi0|Si = s, {νO

sj}), which is equivalent to

E
(
τi|Si = s, {νO

sj}
)
> 0 ⇐⇒ τDM

s > 0 ⇐⇒ τ + τOs > 0 . (4)

Thus, Ti = 1 if Si ∈ S1 ≡ {s ∈ S : τOs > −τ} while Ti = 0 if Si ∈ S0 ≡ S \ S1.

Now consider collecting observational data on treatment status and outcomes of a random

sample of individuals from the population and estimating the treatment effect using simple

treated-untreated outcome comparisons. The bias in this approach is detailed in Section 3.1,

equation 1. Given the simple selection pattern resulting from this model, we can solve for

the two biases:

Bias-1 ≡ E(τi|Si ∈ S1)− τ

= E
(
µ1 − µ0 + νO

s1 − νO
s0 + νU

s1 − νU
s0 + ui1 − ui0 | Si = s, τOs > −τ

)
− τ

= E
(
νO
s1 − νO

s0 | τOs > −τ
)
, and

(5)

Bias-2 ≡ E[Yi0|Si ∈ S1]− E[Yi0|Si ∈ S0]

= E
(
µ0 + νO

s0 + νU
s0 + ui0 | Si = s, τOs > −τ

)
− E

(
µ0 + νO

s0 + νU
s0 + ui0 | Si = s, τOs ≤ −τ

)
= E

(
νO
s0 | τOs > −τ

)
− E

(
νO
s0 | τOs ≤ −τ

)
,

(6)

where the final equalities in both cases use the fact that the {νU
sj} and the {uij} are mean-

zero conditional on the {νO
sj}. The total bias of the estimated treatment is

Bias-1 +Bias-2 = E
(
νO
s1 | τOs > −τ

)
− E

(
νO
s0 | τOs ≤ −τ

)
.

19Section 5.2 relaxes this assumption.
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4.2 Experimental Selection

In the second case, researchers must find a partner willing to engage in the experiment,

i.e. to accept the treatment for a subset of individuals at its site. Site DMs can undertake

the treatment only if partnering with an experimenter, and they take into account both

the short-run cost or benefit of the experiment in directly altering clients’ payoffs and the

long-run benefit of learning and thus potentially improving clients’ payoffs in the future.

To allow for these dynamics, the period corresponding to the experimental treatment is

distinguished from the post-experimental period. Discounting parameter δ ∈ (0, 1) captures

the relative weight on each period. The experiment is successful in producing useful infor-

mation with probability ϕ ∈ (0, 1), independently of all other variables; when successful, it

reveals {νU
sj} and thus τ s. After the experiment is run, the treatment is adopted perma-

nently iff it is then expected to give higher average payoffs. Parameter λ ∈ (0, 1), captures

exogenously the fraction of site s that is treated in the experiment. A final parameter, k ≥ 0,

captures the site’s per capita fixed cost of coordinating with the experimenter during the

experimental period. This reflects the idea that the partnering organization bears some of

the operational costs of experimentation – management costs, disruption costs, and others as

discussed in Section 3.3 – even if the researcher covers costs of, e.g., training and treatment.20

Site-s DM accepts the experiment with its temporary treatment iff it is expected to give

higher average payoffs, which is equivalent to the following inequality:21

E[Yi0 | {νO
sj} ] < −(1− δ)k + (1− δ)E[λYi1 + (1− λ)Yi0 | {νO

sj} ] +

δϕE
(
max

{
E
[
Yi1 | {νO

sj}, {νU
sj}

]
, E

[
Yi0 | {νO

sj}, {νU
sj}

] } ∣∣ {νO
sj}

)
+

δ(1− ϕ)max
{
E
[
Yi1 | {νO

sj}
]
, E

[
Yi0 | {νO

sj}
] }

.

(7)

The left-hand side is the per-client present discounted value of refusing the experiment. The
20A generalization would allow for costs of adopting the treatment autonomously; insights from this model

extend to that case, with k interpreted as the cost difference.
21For brevity we suppress the dependence of all expectations on Si = s.
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right-hand side is the analogous payoff for accepting the experiment, with the first term re-

flecting the cost of participating in the experiment, the second term giving expected payoffs

during the experiment, the third term featuring the forecast of expected post-experiment

payoffs if the experiment is successful (revealing {νU
sj}), and the fourth term featuring the

forecast of post-experiment payoffs if the experiment fails to reveal anything. After sub-

tracting the left-hand side term and simplifying the expectations, this inequality can be

rewritten

(1−δ)λ (τ+τOs )+δ(1−ϕ)max
{
τ + τOs , 0

}
+δϕE

(
max

{
τ + τOs + τUs , 0

})
> (1−δ)k , (8)

where the expectation is over the unknown τUs . The first term is the site-s DM’s expected

benefit or cost to individual outcomes, relative to the status quo, of running the experiment.

The second term captures the expected future gains relative to the status quo of making the

optimal site-wide treatment choice when nothing has been learned from the experiment. The

core of both of these terms, τ + τOs , is identical to the one in Condition 4 for the autonomous

case. The third term is similar to the second, except that the optimal site-wide treatment

choice incorporates learning {νU
sj} from the experiment. This term captures the potential

for a dynamic benefit from running the experiment; its core is weakly positive and greater

than the second term’s, and strictly so if learning {νU
sj} could alter the DM’s decision.

We next show that under some conditions, selection into treatment is exactly the same

as in the autonomous case. The conditions are of two types: first, even with no cost of

participation (k = 0), parameters can be such that future gains from experimental learning

are negligible; second, non-negligible expected gains from learning may be counterbalanced

by the cost of participation. For the first approach, we assume (A1) that all sites’ {νO
sj}

are drawn from a discrete joint distribution which does not allow the observable site-specific

treatment effect to mirror the ATE exactly. That is,

∃ ϵ > 0 s.t. τ + τOs /∈ (−ϵ, ϵ) , ∀s ∈ S . (A1)
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We also assume boundedness of site unobservable effects {νU
sj}:

∃BU > 0 s.t. |νU
s0|, |νU

s1| ≤ BU , ∀s ∈ S . (A2)

These assumptions lead to the following result:

Lemma 1. A) Assume k = 0. Under assumptions A1 and A2, if

a) Given treatment intensity λ, perceived informativeness of the experiment ϕ, and bound on

site-level uncertainty BU , impatience is sufficiently high (δ low enough), or

b) Given treatment intensity λ, level of patience δ, and bound on site-level uncertainty BU ,

perceived informativeness of the experiment is sufficiently low (ϕ low enough), or

c) Given treatment intensity λ, level of patience δ, and perceived informativeness of the

experiment ϕ, site-level uncertainty is sufficiently low (BU low enough),

then assent to the experiment occurs iff s ∈ S1 ≡ {s ∈ S : τOs > −τ}.22

B) Define X ≡ E
(
max

{
τUs , 0

})
δϕ/(1 − δ). If k = X, then assent to the experiment

occurs iff s ∈ S1 ≡ {s ∈ S : τOs > −τ}. If k > X (resp., k < X), there exists a γ > 0

such that assent to the experiment occurs iff s ∈ S′
1 ≡ {s ∈ S : τOs > −τ + γ} (resp., iff

s ∈ S′
1 ≡ {s ∈ S : τOs > −τ − γ}).23

That is, under assumptions A1 and A2 and conditions a), b), or c), selection into exper-

imental treatment is identical to the autonomous selection into treatment of the previous
22Proof of A. Assent to the experiment occurs iff Inequality 8 holds. Given that its second and third terms

are weakly positive and that k = 0, assent clearly occurs if τ + τOs > 0, i.e. for all s ∈ S1. It remains to show
that under conditions a), b), or c), assent is withheld at all other sites, i.e. those for which τ + τOs < −ϵ, for
some ϵ > 0 (using A1). Fix such an ϵ. For such sites, the negation of Inequality 8 with k = 0 simplifies to

τ + τOs ≤ −
δϕE

(
max

{
τ + τOs + τUs , 0

})
λ(1− δ)

≡ −Q ,

say. The expectation term is bounded by 0 and BU (using A2). Clearly if δ or ϕ is small enough (e.g.
ϕ ≤ ϵλ(1 − δ)/(δBU )), then Q ≤ ϵ; while if BU < ϵ, then Q = 0. It follows that under any of the three
conditions, τ + τOs < −ϵ guarantees that τ + τOs < −Q. �

23Proof of B. Assent to the experiment occurs iff Inequality 8 holds. Note that its left-hand side is strictly
increasing in τ + τOs . Further, if τ + τOs = 0 and k = X, then its left-hand side and right-hand side are equal.
Thus, for k = X, inequality 8 is satisfied at site s iff τ + τOs > 0. It also follows that if k > X, a stricter
condition on τ + τOs is needed, while if k < X, a weaker condition suffices. �
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section.

Consider site manager patience (condition a). If managers care little about the future,

then all that matters is how the treatment affects site-s individuals today, i.e. the expected

treatment effect, just as in the autonomous case. If concern for the future is stronger,

selection into the experiment revolves around a possible tradeoff between short-run effects

of running the experiment and long-run learning benefits.

Patience reflects a number of factors here. One is the degree of short-termism of the firm

or NGO DM; depending on the nature of accountability to shareholders or donors, the ability

to take short-term risk for long-term benefit may be small. Another factor is the duration

of the experiment. If short-run results are informative and the experimental period is thus

short, δ is larger; but if long-run results are preferred, the experimental period becomes

longer and δ smaller.24

Consider next the perceived informativeness of the experiment (condition b). If it is

thought to be relatively uninformative, then the decision to participate in the experiment

reduces to a forecast of whether the treatment is worthwhile – as in the autonomous case.

With some expected informativeness of the experiment, selection into the experiment revolves

again around a possible tradeoff between short-run effects of running the experiment and

the potential for long-run learning benefits.

Perceived experimental informativeness depends in part on trust in the experimenter.

The site DM may justifiably wonder to what degree the experimental team is organized,

skilled, and unbiased. Also related is the durability of knowledge gained. The model as-

sumes a fixed environment; in reality, environments and effects of policies may change over

time. If the value of the knowledge gained through the experiment depreciates more rapidly,

experimental informativeness drops.25 Another issue from beyond the model is free-riding in
24Rosenzweig and Udry (2020) demonstrate that key parameters of interest can vary significantly over

time, demonstrating the possibility that a short-run estimate may provide suboptimal information.
25This could be modeled via a probability of a new draw of {νUsj} materializing in the post-experimental

period; a higher such probability would directly map into lower experimental informativeness ϕ in the model
as written.
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learning. If the site DM believes that the experiment will be carried out by other sites if this

site opts out, and that results readily extrapolate across sites, then the marginal information

gain of this site’s experiment will be believed to be low and current payoffs of the treatment

will loom larger in the decision.26

Finally, the degree of uncertainty about site-specific potential outcomes also matters

(condition c). If there is little site-specific treatment effect variation that is unobserved to

the site-DM, i.e. νU
s0 and νU

s1 are negligible in magnitude, then there is little to learn from

even a very successful experiment, and participation depends only on an initial forecast of

whether the treatment is worthwhile. On the other hand, if there is a lot of uncertainty

and the potential for high upside outcomes, the dynamic benefit from experimenting and

learning the truth is high.27

The above conditions (a-c) ensure that the expected value from learning is sufficiently

small compared to other concerns. But negligible expected learning value is not necessary

for identical selection to occur, as part B of Lemma 1 makes clear. The quantity X defined

there can be interpreted as the value of learning at a site that is indifferent to the treatment

without learning. The Lemma thus says that if perceived organizational costs of participating

in the experiment balance these perceived learning benefits (k = X), then selection into

experimental treatment is identical to autonomous selection into treatment.

If participation costs are higher than learning benefits (k > X), selection into the ex-

periment is more acute than autonomous selection into treatment: sites must strictly prefer

the treatment without learning, since learning benefits fall short of participation costs at

the no-learning point of indifference. The reverse holds if organizational costs are lower

(k < X). This points to another factor making selection a more acute issue in experiments:

high organizational costs related to logistics and operation.
26As modeled, there is no benefit to extrapolation across sites since each site knows the (population-level)

ATE. Extrapolation would become useful if this assumption were changed to incorporate possibly incorrect
subjective beliefs of site DMs about the ATE.

27In a model with risk aversion instead of risk neutrality, higher uncertainty could also raise expected
short-run costs, leaving ambiguous overall implications.
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Outside the Lemma, consider the size of the experimental treatment, λ. If only a small

fraction of the site needs to be treated to gain significant knowledge, λ near 0, then the first

term in inequality 8, capturing the short-run effect, gets negligible weight. If the amount

of patience, perceived experimental informativeness, and residual site-level uncertainty are

all non-negligible, and if participation is costless (k = 0), the experiment will be assented

to by every site, as the third term capturing learning benefits will dominate. Conversely, if

a significant fraction of the site needs to be treated, due to the site itself being moderate

in size or a preference against intra-site extrapolation, the current payoff term becomes a

factor and selection may mirror the autonomous case even when k = 0.28 If there are costs of

participation (k > 0), then k = X guarantees that selection is identical to the autonomous

case, regardless of λ.

In summary, under Lemma 1 conditions, selection into treatment occurs identically via

an experiment as through autonomous choice: Ti = 1 iff Si ∈ S1. The bias can then be

written, using equation 3 of Section 3.1 and equation 5:

Bias-1 ≡ E(τi|Si ∈ S1)− τ = E
(
νO
s1 − νO

s0 | τOs > −τ
)
.

Here the total bias of the experimentally estimated treatment is upward, because sites opting

into the experiment are positively selected based on their somewhat accurate forecast of

treatment effect.

4.3 Comparing the Two Methodologies

The previous sections provide conditions under which selection into an experimental treat-

ment is similar to autonomous selection into the treatment. The similarity in selection

occurs, when it does, because the same forecasts of cost and benefit of the new policy or
28The model assumes DMs care only about the average experience of the site’s individuals. But if a site

had strong equity preferences, a decrease in λ could matter little; the DM could be unwilling to subject even
a small minority of individuals to a risky experiment, despite the potential benefit to a large majority.
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program feature prominently in decision-making in both contexts.

Even when selection into treatment is identical, the biases may differ significantly across

the two approaches in this model. Recall that the total bias in the autonomous case is

E
(
νO
s1 | τOs > −τ

)
− E

(
νO
s0 | τOs ≤ −τ

)
(9)

and in the experimental case under Lemma 1 conditions is

E
(
νO
s1 | τOs > −τ

)
− E

(
νO
s0 | τOs > −τ

)
. (10)

The first term in each bias is identical, and results from treated outcomes being estimated

from sites preferring to opt into the treatment, whether experimentally or autonomously. The

second terms differ, because in the autonomous case the untreated outcomes are estimated

from sites preferring to opt out of the treatment, while in the experimental case they are

estimated from sites preferring to opt into treatment.

To illustrate further, we consider two simple cases. In each, parameters are set to ensure

that the treatment is risky, i.e. that it has the real possibility of worsening outcomes at

treatment sites.

Case 1: νO
s1 = 0, ∀ s, while νO

s0 ∈ {νl, νh}, with νl < 0 < νh and |τ | < |νl|, |νh|.

This case corresponds to heterogeneity in site-DM observed untreated outcomes, but none

in treated outcomes. For example, the treatment could be an accounting and information

system that is expected to achieve a certain level of efficiency for any firm (i.e. site); firms

differ in the expected efficiency of their status quo accounting practices. Or, the treatment is

expected to lead to a certain rate of loan default for any microfinance institution (i.e. site);

MFIs differ in their status quo expected default rates. The heterogeneity is large enough to

ensure that the treatment is risky, i.e. may worsen outcomes.

Comparing the magnitudes of the bias in each case leads to the following Proposition:

Proposition 1. Assume Lemma 1 conditions guaranteeing identical selection hold. In Case
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1, the observationally estimated ATE is less biased if |νh| < |νl|, while the experimentally

estimated ATE is less biased if |νl| < |νh|.

Proof. Setting νO
s1 = 0 in equation 9 for the bias in the observational case gives that bias

as −E
(
νO
s0 | −νO

s0 ≤ −τ
)
, which equals −νh. Setting νO

s1 = 0 in equation 10 for the bias in

the experimental case – which applies under conditions a), b), or c) of Lemma 1 – gives that

bias as −E
(
νO
s0 | νO

s0 < τ
)
, which equals −νl. �

This result holds because if νl is closer to zero (the mean of νO
s0), the experimental

approach employs the more representative untreated counterfactual, sites preferring to opt

into treatment (s ∈ S : νO
s0 = νl); while if νh is closer to zero, the observational approach

employs the more representative untreated counterfactual, sites preferring to opt out of

treatment (s ∈ S : νO
s0 = νh).

Thus, an observational approach can produce better evidence on the ATE than an exper-

imental one. There is no necessary advantage to the experimental approach. This would call

into question, in a context like this, a benchmarking of observational results to experimental

results (with respect to the population ATE); here both are biased, in different directions,

and either can be more biased.

Why might the experimental approach, which at least eliminates one bias, Bias–2, still

be inferior to the cross-sectional approach that eliminates neither bias? Adding more bias

to a biased estimate can help or hurt. In this context, Bias–1 and Bias–2 counteract, so the

addition of Bias–2 can reduce total bias.29

Note that this result does not rely on the observational study having greater scope than

the experimental one.30 The same result would clearly hold if the observational study in-

cluded random samples of individuals from only a random sample of sites, and the RCT

were replicated in as many (willing) sites as were represented in the observational study.

Proposition 1 holds under certain conditions. Under other conditions, e.g. if the experi-
29Further, the decomposition into Bias–1 and Bias–2 is somewhat arbitrary.
30Greater scope and representativeness of data is one reason observational studies have been argued to

often have greater external validity (e.g. Dehejia, 2015).
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ment is somewhat informative, k = 0, and λ → 0, selection into the experiment is universal

and the experimental approach is unbiased for the ATE while the observational approach

is biased. Thus, the point is not that observational methods are usually better than ex-

perimental, even in the case of risky experiments. It is instead that there is no obvious

ranking; the nature of selection and treatment heterogeneity matter, and substantiating a

claim to superiority of experimental methods in this context requires a statement about the

parameters governing selection and heterogeneity.

In this setting, there is a summary statistic that sheds light on the relative strength

of each approach: the probability a random site would select into the experiment, call it

α (see also Czibor et al., 2019). If α = 1, the experimental approach is unbiased. But if

only sites with νO
s0 = νl select into the experiment, as in the focal analysis above, it follows

(from E(νO
s0) = 0) that α = νh/(νh − νl) ∈ (0, 1). The experimental bias magnitude can

be written |νl| = (1 − α)(νh − νl) while the observational bias magnitude can be written

|νh| = α(νh − νl).31 Thus, the experimental bias is higher the fewer sites are willing to

experiment (i.e. the lower α). If few enough sites are willing to experiment, i.e. α less

than 1/2, then the experimental bias exceeds the observational bias. Applying this logic

more broadly suggests that risky experiments where reluctance to participate is widespread

and finding a willing partner is hard may be no more informative about the ATE than an

analogous observational study, due to the significant possibility of selection bias.

Case 2: νO
s0 = 0, ∀ s.

Here site-DM observed heterogeneity in untreated outcomes is ruled out, allowing only such

heterogeneity in treated outcomes. For example, all firms (sites) are perceived to have similar

accounting and information systems ex ante, but firm DMs differ in how well they anticipate

the new treatment to fit with their firm’s organization and skills. Or, MFIs have similar

baseline loan default rates, but the treatment is expected to affect default rates differently

at different MFIs.
31These follow from the facts that α = νh/(νh − νl), 1 − α = −νl/(νh − νl), and (from the Proof of

Proposition 1) the experimental bias is −νl while the observational bias is −νh.
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Comparing the magnitudes of the bias in each case leads to the following Proposition:

Proposition 2. Assume Lemma 1 conditions guaranteeing identical selection hold. In Case

2, the observationally estimated ATE and the experimentally estimated ATE have equal bias.

Proof. Setting νO
s0 = 0 in equation 1 for the bias in the observational case and in equation 3

for the bias in the experimental case – which applies under Lemma 1 conditions – gives both

biases as E
(
νO
s1 | νO

s1 > −τ
)
. �

Any bias in the observational case comes from treated sites having larger expected treat-

ment effects – this is why they opted in. But the same bias exists in the experimental case

– the same sites with larger expected treatment effects are the ones willing to participate in

the experiment.

We have also considered mixtures of Cases 1 and 2, where νO
s0 and νO

s1 each have two

possible values and can be correlated across sites. Unsurprisingly, the comparison becomes

more complicated, but either approach can be less biased depending on the specifics of the

parameters.

5 Extensions

5.1 Biased expectations

In the baseline model, site DMs have unbiased beliefs about the site-specific and population

ATE. Here we assume instead that site DMs may have biased beliefs.

We modify the baseline model by assuming that site DMs make decisions based on prior

beliefs about {νU
sj} that induce a prior distribution F over τUs . Letting EF denote the

subjective expectations based on prior F, we assume EF(τUs |{νO
sj}) = −π for all s ∈ S. The

remainder of the model is unchanged, including that subjective expectations of all other

random variables correspond to reality and that E(τUs |{νO
sj}) = 0. Note that π measures
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pessimism; the site-s DM expected site-specific average treatment effect is

τDM,F
s ≡ EF(τi|Si = s, {νO

sj}) = τ + τOs − π

(the unbiased value is τ + τOs ) and DMs believe the population average treatment effect to

be τ − π (the unbiased value is τ). (DMs are optimistic if π < 0.)

Now autonomous selection into treatment occurs iff τDM,F
s > 0, i.e. Ti = 1 iff Si ∈ S′

1 ≡

{s ∈ S : τOs > −τ + π}. Selection into experimental treatment occurs iff

(1−δ)λ (τ+τOs −π)+δ(1−ϕ)max
{
τ + τOs − π, 0

}
+δϕEF

(
max

{
τ + τOs + τUs , 0

})
> (1−δ)k ,

modifying Inequality 8. A nearly identical version of Lemma 1 continues to hold and provide

conditions under which selection into treatment occurs at exactly the same sites (S′
1) in the

experimental case as in the autonomous case. Under those conditions, we can write the total

bias in the observational case as

E
(
νO
s1 | τOs > −τ + π

)
− E

(
νO
s0 | τOs ≤ −τ + π

)
and in the experimental case as

E
(
νO
s1 | τOs > −τ + π

)
− E

(
νO
s0 | τOs > −τ + π

)
,

modifying Equations 9 and 10. The first term in each bias is the same; both reflect that

sites opting into treatment – the sites on which the treated counterfactual is based – are a

more selected sample the more (inaccurately) pessimistic site DMs are.32 The second terms,

representing the untreated counterfactual, differ. In the observational case, the relevant sites

are the sites that opt out, and these are less selected (more typical) the more pessimism there

is; while in the experimental case, the relevant sites for the untreated counterfactual are the
32That is, higher π makes the condition governing the conditional expectation more stringent.
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sites opting into treatment, and these are more selected under greater pessimism.

Thus, greater pessimism among site DMs about treatment will tend to tilt the bias

comparison in favor of the observational case, since its untreated counterfactual comes from

opt-outs, which are more representative under more pervasive pessimism. Conversely, greater

optimism about treatment will likely tilt the bias comparison in favor of the experimental

case, since opt-ins are then increasingly representative. This suggests a different limitation

on the ability of RCT methodology to persuade skeptical decision makers – even it they have

something to learn about the ATE from experiments at other sites (given their assessment

of the ATE may be biased), they also may legitimately fear that there is a bias exacerbated

by the degree of pessimism.

In sum, the paper’s argument does not depend on site DMs correctly knowing the ATE.

Further, the degree of pessimism about the treatment is another factor that can tilt the

comparison of biases from the experimental and observational approaches.

5.2 Autonomous learning

In the autonomous case of the baseline model, site DMs do not learn about the treatment’s

effects over time, but make a once-and-for-all adoption decision. Here we assume instead

that site DMs do learn about the treatment if they adopt it for some period of time, and

that they may discard it after learning about it.

If sites can learn autonomously, then the decision has the same structure as in the ex-

perimental case of the baseline model: expected current payoffs of adopting the treatment

for some subset of the site, and expected long-run payoffs after learning and then choosing

optimally. In fact, we assume the same learning structure as in the experimental case, cap-

tured by Inequality 7, except with potentially different parameters capturing the fraction

treated in the learning phase, λA, the probability of successfully learning, ϕA, and the cost

of learning, kA. Simplification leads to a condition nearly identical to Inequality 8 governing
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whether a site selects treatment:

(1−δ)λA (τ+τOs )+δ(1−ϕA)max
{
τ + τOs , 0

}
+δϕA E

(
max

{
τ + τOs + τUs , 0

})
> (1−δ)kA .

There are now two straightforward ways for site selection to be the same in experimental

and autonomous cases: it is identical if λ = λA, ϕ = ϕA, and k = kA; or if k = kA = 0 and

Lemma 1A conditions hold for both experimental and autonomous parameters.

There is a further stage of selection that may be relevant in the autonomous case with

learning, however, as some sites that opt into treatment for the trial period may opt out

of treatment after learning. Whether this selection affects observational estimation depends

on whether population outcomes are measured during the early phase, while learning is

happening, or during the mature phase when any learning is complete.33 We thus discuss

four cases, based on the two ways for initial selection to be similar and whether the population

is studied during the early phase or the mature phase.

I) Consider first early-phase study and identical selection due to Lemma 1A conditions.

In this case, the selection is the same as that analyzed in Sections 4.1 and 4.2, and all the

analysis and comparisons of Section 4.3 apply unchanged. Thus, allowing for autonomous

learning does not necessarily affect the results, as selection may still be based predominantly

on initial estimates of site-specific treatment effects in both cases.

II) Next, consider mature-phase study and identical selection due to Lemma 1A con-

ditions. In this case, the researcher is observing Ti = 1 only for sites that initially opted

in and that did not later opt out after learning. Learning is probabilistic, happening with

probability ϕA at sites adopting the treatment. Let LA
s = 1 iff the site-s DM would learn

{νU
sj} after adopting. Then Ti = 1 iff Si ∈ S′

1, where

S′
1 ≡

{
s ∈ S : τOs > −τ &

(
LA
s = 0 | τOs + τUs > −τ

) }
.

33Of course, the experimental approach also allows sites to opt in or out after the trial period, but the
data are typically collected while treatment is in place.
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This is because to be observed in treatment, sites must have opted in initially (τOs > −τ) and

then not have learned or have a positive true sATE (τOs + τUs > −τ). Modifying equations 5

and 6, the total bias in the observational estimation can be written

BiasObs = Bias-1 +Bias-2 = E
(
νO
s1 + νU

s1 | s ∈ S′
1

)
− E

(
νO
s0 + νU

s0 | s ∈ S′
0

)
,

where S′
0 ≡ S \ S′

1. For comparison, a modified equation 8 gives the bias in the experimental

estimation as34

BiasExp = E
(
νO
s1 + νU

s1 | τOs > −τ
)
− E

(
νO
s0 + νU

s0 | τOs > −τ
)
.

The first terms in each bias are identical in the baseline case, while here the first-term bias is

more acute in the observational case since the νO
s1 and νU

s1 term are more positively selected

if any learning takes place. It is harder to know what happens to the second-term bias in

the observational case – the νO
s0 term is less positively selected, while the νU

s0 term is more

positively selected. The following examples illustrate the tradeoffs.

Case 1′: νO
s1 = νU

s1 = 0, ∀ s; νO
s0 ∈ {νl, νh}, with νl < 0 < νh and |τ | < |νl|, |νh|; and

νU
s0 ∈ {νL, 0, νH}, with νL < −|τ | − νh and νH > |τ | − νl.

Under these assumptions, which expand on Case 1 of Section 4.3,

S′
1 =

{
s ∈ S : νO

s0 = νl &
(
LA
s = 0 | νU

s0 ̸= νH
) }

and

S′
0 =

{
s ∈ S : νO

s0 = νh |
(
LA
s = 1 & νU

s0 = νH
) }

,

34Here νUs1 and νUs0 are explicitly included to make the comparison clearer; they are omitted from equation 8
because they are mean-zero conditional on the {νOsj}.
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and the observational bias is

BiasObs = −[aνh + (1− a)(νH + νl)] ,

where a ∈ (0, 1). Specifically, letting ph ≡ Prob(νO
s0 = νh) and pH ≡ Prob(νU

s0 = νH),

a = ph/[ph + ϕA(1− ph)pH ]. The experimental bias remains BiasExp = −νl.

Two results follow. First, the observational bias in this case with learning may be smaller

or larger than in the baseline case with no autonomous learning. This is clear since the bias

in that case is νh, while here it is a convex combination of νh and νH + νl, either of which

may be larger (assumptions guarantee that both terms exceed |τ |, but nothing more). Thus,

autonomous learning can push the bias comparison in either direction. Second, even if the

observational bias is larger here than in the baseline case, it may still exceed the experimental

bias, though under stronger conditions than those of Proposition 1.

Case 2′: νO
s0 = νU

s0 = 0, ∀ s; νO
s1 ∈ {νl, νh}, with νl < 0 < νh and |τ | < |νl|, |νh|; and

νU
s1 ∈ {νL, 0, νH}, with νL < −|τ | − νh and νH > |τ | − νl.

Under these assumptions, which expand on Case 2 of Section 4.3,

S′
1 =

{
s ∈ S : νO

s1 = νh &
(
LA
s = 0 | νU

s1 ̸= νL
) }

and

S′
0 = {s ∈ S : νO

s1 = νl |
(
LA
s = 1 & νU

s1 = νL
)
} .

The observational bias is

BiasObs =
ph

[
(1− ϕA)pL(νh + νL) + (1− pL − pH)νh + pH(νh + νH)

]
ph(1− ϕApL)

= νh−νL ϕApL

1− ϕApL
,

where ph ≡ Prob(νO
s1 = νh), pH ≡ Prob(νU

s1 = νH), and pL ≡ Prob(νU
s1 = νL), and using

pLνL+pHνH = 0. This is greater than the experimental bias, which remains at BiasExp = νh

(recall that νL < 0). However, the difference can be small if the outlier values of residual
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uncertainty νH and νL are relatively rare (low pL) or learning is ineffective (low ϕA). Further,

it is clear that in combinations of Cases 1′ and 2′, either approach may result in less bias.

III) Consider next early-phase study and identical selection due to similar parameters

(ϕ = ϕA, λ = λA, k = kA) rather than Lemma 1A conditions. In this case, selection

is identical in autonomous and experimental settings, but different for both than in the

baseline case where the set of sites opting in was S1 = {s ∈ S : τOs > −τ}. Here one can

write the set of sites opting in as

S′
1 = {s ∈ S : τOs > −τ | Condition 8 holds } ,

which is a superset of S1. Now one can compare the two biases as follows:

BiasObs = E
(
νO
s1 + νU

s1 | s ∈ S′
1

)
− E

(
νO
s0 + νU

s0 | s ∈ S \ S′
1

)
,

and

BiasExp = E
(
νO
s1 + νU

s1 | s ∈ S′
1

)
− E

(
νO
s0 + νU

s0 | s ∈ S′
1

)
.

As usual, the first terms in each bias are identical, while the second terms are different

due to measuring the untreated counterfactual with the opt-outs (observational) or opt-ins

(experimental). The difference with the baseline case is that the opt-in set here is bigger

(S′
1), so selection becomes relatively less severe in the experimental case and more severe

in the observational case. In the extreme case where nearly all sites opt in because of the

learning benefits, the second-term vanishes in the experimental case and gets relatively large

in the observational case. Away from extreme cases, autonomous learning should tilt the

bias comparison against the observational case, though it can still be the less biased.

IV) The case of mature-phase study and identical selection due to similar parameters is

the most complicated. It combines the forces at play in cases II) and III). Without delving

into greater detail, we conjecture that the overall outcome is likely to tilt the comparison
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against the observational approach while leaving open the possibility that it remains less

biased than the experimental approach.

On the whole, then, autonomous learning seems to favor the experimental case, but may

not be decisive in the comparison. We have ignored autonomous learning as an option in

the experimental case. If instead sites approached by an experimenter could learn what the

treatment is and then test it themselves, selection into the experiment would involve similar

complications to the ones introduced here.

6 Discussion and Conclusion

“Risky” experiments – experiments that involve partnering with a site to adopt a risky

treatment – may suffer from a canonical selection bias with respect to the population ATE.

Perhaps because the experimental approach shifts it from the realm of internal to external

validity, this potential selection bias appears to be largely ignored in the experimental liter-

ature. Arguably, it should not be; the sensitivity to selection bias that is regularly applied

to observational studies seems potentially just as applicable to risky RCT studies.

We argue that experimental estimates in this context should be explicitly framed as (ide-

ally) unbiased for the ATE of the site where the experiment was carried out, or as unbiased

for the ATE of willing sites. Ideally, the site selection process should be documented, in-

cluding identity of sites approached and negotations with partner sites that determined the

specific policy tested.

Given that identification is of the ATE of willing sites, it should be recognized that

skeptical sites (NGOs, firms, states, etc.), in particular those that would not have opted into

the experimental treatment, are on standard econometric ground in treating evidence from

even much-replicated RCTs as “non-causal” – at least as a guide for their own decisions.

Related, the potential for RCTs to substantially add to general knowledge about high-stakes

treatments may be relatively limited.
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While the paper focuses on a stark participation margin, selection bias may also enter

more subtly through negotated participation. For example, if an NGO consents to an ex-

periment but has refused certain treatments and altered others during negotiation, concern

about selection into treatment seems no less relevant. As a minimum, ideally researchers

report on all negotiations with all NGOs so the reader can gauge the nature of selection

into the experiment;35 the challenge is to standardize this reporting to keep it from being

subjective or incomplete.

This paper does not provide evidence on where and to what degree selection biases are

operative in RCTs. Conversely, there appears to be no evidence elsewhere that these biases

are not operative in risky experiments. This is an avenue for further research, especially

since the bias may differ significantly across contexts (e.g. with the level of the treatment’s

risk). While evidence is lacking, as with observational studies the conservative approach is

to presume that this kind of selection may be operative, or to be clear about assumptions

ruling it out. To this end, the modeling in this paper of factors that can accentuate the

selection bias – lack of patience, prevalence of knowledge free-riding, and so on – can provide

a basis for identification assumptions in the RCT context.

Are there solutions to this potential selection issue in risky experiments? One possibility

is to compensate the partner site for participation, to the extent that virtually any site

would have selected into the experiment. To bring this out of the realm of guesswork, a

process could be documented in which a standardized experimental offer is given to a large

number of potential partner sites, and assent to participation is nearly universal among all

offered the experiment. In some contexts, such a liquidity infusion could affect results. An

alternative to lump-sum compensation is to insure the partner site against downside risk of

participation; however, this raises a concern about distortion of site incentives, i.e. moral

hazard.

Another solution is to adapt the techniques used to deal with individual-level selection
35See Belot and James (2016) for further commentary on selection-relevant reporting.
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into treatment – estimating ITT or LATE parameters – to address site-level selection. Es-

timating these parameters at the site level would be possible after extending experimental

treatment offers to a number of potential partner sites, possibly randomized, and tracking

outcomes at participating and non-participating sites – a potentially costly approach. Fur-

ther, a LATE parameter would represent sites selecting into treatment due to being offered

the experiment, and thus would potentially involve selection issues similar to those modeled

in this paper.36

A third approach would be to interpret estimates as bounds by signing the bias of the

ATE. Roy model biases are typically positive, as they are in this paper’s model. If so, an

estimate of zero may be informative that there truly is no positive effect, given the upward

bias in the estimate.

A final approach is simply to frame RCT results as unbiased for the ATE for willing

sites, and discuss what willingness may imply about selection in the given setting. The

observational approach seems helpful as an analogy in this discussion: to what degree would

selection bias be of concern in an analogous observational study, and might the same kind

of selection bias be operative in the experimental setting?37

Ultimately, the standard experimental approach does not give obviously more unbiased

estimates for a broader population than an observational study, in a site-based, risky-

treatment context. This is true even with diverse replication. Of course, the experimental

approach may do better, but the assumptions required to be confident in its smaller bias

seem substantive and worth making explicit.

36Specifically, never-taking sites would be on standard ground treating the evidence as “non-causal”.
Gechter and Meager (2022) demonstrate the significant possibilities of this kind of approach, though with
a somewhat different definition of site selection, based on researcher’s choice of technique rather than site
manager’s decision to adopt or pilot a novel treatment.

37Specifically, for a given experiment, imagine that treatment was instead autonomously selected across a
number of sites, and an cross-site observational study was carried out. Would such a study be vulnerable to
the (internal validity) critique of site selection bias? If so, on what grounds are we confident a similar site
selection bias is not rendering results from an RCT similarly biased (via external validity) for the ATE?
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