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Abstract

This study uses a two-stage experiment to examine whether lower prices allocate new

agricultural technologies to farmers with lower returns. In stage one, I randomize a price

subsidy, ranging from full to zero subsidies, for a new wheat seed variety. In stage two, I

randomize free distribution across the self-selected sample of non-buyers from stage one.

This design allows me to compare treatment effects across the entire population with treat-

ment effects among the sample choosing not to buy the seed. If higher prices screen out

farmers with low willingness to adopt, then the effect of stage-two free distribution on

adoption by non-buyers should be trivial. Instead, I find that the stage-two free distribu-

tion increases adoption and wheat cultivation by an amount almost equal to the effect from

stage one. In addition, farmers choosing not to buy in stage one do not realize lower returns

to adoption – despite there being substantial heterogeneity in returns across the sample.

A potential mechanism for explaining the results is that binding credit constraints prevent

some farmers from buying in stage one. Free distribution in stage two selects in farm-

ers who are credit constrained but do not have systematically lower returns to adoption.

Taken together, these findings imply that policy makers who aim to increase dissemination

of agricultural technologies cannot rely on market prices as a mechanism for targeting high

return farmers.
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1 Introduction

Prices play an important role in the allocation of goods. A subsidy is a key policy tool for lowering

prices and increasing take-up of goods with high expected benefits. The prevalence of subsidies in

settings such as agricultural production and public health can be justified by market frictions (e.g.,

information imperfections as in Carter, Laajaj, and Yang 2021; or large positive externalities as in

Cohen and Dupas, 2010; and in Kremer and Miguel, 2007). However, there is little evidence on how

prices allocate agricultural technologies across farmers with potentially heterogeneous returns. This

paper provides the first experimental evidence to address the question: do higher agricultural input

prices screen out farmers with low returns to adoption?

Subsidies can have an ambiguous effect on the allocation of agricultural technologies. On the one

hand, if willingness-to-pay (WTP) for a new technology is influenced solely by farmers’ returns, then

lower prices will induce take-up by farmers who value the technology less and realize lower returns

to adoption. On the other hand, demand may lie below the social optimum due to factors such as

positive externalities or constraints to adoption.1 The correlation between adoption constraints and

farmers’ returns is unknown. If adoption constraints are positively correlated with returns, then lower

prices will induce take-up by farmers who are most constrained and have high returns to adoption.

In this paper, I examine the consequences of lowering the price of a new seed variety on take-up

and allocative efficiency. I experiment with an improved wheat seed that is introduced in a setting

in which farmers make simultaneous decisions on what crops to grow and which seed varieties to use.

Agronomic studies show that the improved seed is resistant to a contagious crop disease called wheat

blast. In addition, the new seed can result in higher yields compared to existing wheat varieties.

However, wheat is only one crop in the farmers’ choice set. Factors contributing to heterogeneity in

farmers’ returns include soil quality, weather shocks, and market access, among others.2 Some sources

of heterogeneity may be known to the farmer ex-ante when they make seed purchase decisions, while

others may not.

I use a two-stage randomized controlled trial (RCT) to test whether switching from a partial subsidy

to a full subsidy differentially allocates the new seed variety to farmers with higher or lower realized

returns. In the first stage, I randomly allocate 220 villages to different subsidy levels for the improved

seed, ranging from zero subsidy (i.e., official price) to full subsidy (free distribution). I also preserve a

group of villages to serve as a pure control group that does not receive any intervention. I divide the

subsidy levels into three categories of high (50-100%), medium (25-40%), and low (0-20%) subsidy. In

the second stage, I randomly allocate villages in the medium- and low-subsidy categories into stage-two

treatment and stage-two control. In stage-two treatment villages, farmers who did not buy the seeds

in stage one are offered the same seed package for free before they start planting. Stage-two control

villages, on the other hand, do not receive any further intervention after receiving stage one treatment.

That is, stage-two treatment randomizes free distribution across non-buyers from stage one. The two

stages of the experiment are implemented in one agricultural season before planting.

The two-stage experimental design allows me to compare the outcomes of non-buyers with the

outcomes of the farmers who receive the seeds for free at random. First, I exploit the randomization

of free distribution to a subset of villages in stage one to estimate treatment effects over the entire

1Learning externalities from agricultural technology adoption have been documented in the literature (e.g., Conley

and Udry, 2010; Foster and Rosenzweig, 1995; Munshi, 2004). Credit constraints can be particularly problematic for

farmers who are short of liquidity right before planting, when most agricultural investment decisions are made (Field

et al., 2013; Fink, Jack, and Masiye, 2020; Karlan and Mullainathan, 2010). In addition, the lack of complete insurance

markets could hinder farmers from making optimal investments (Cole, Stein, and Tobacman, 2014; Emerick et al., 2016;

Karlan et al., 2014). Imperfect information could also result in low adoption due to underestimation of the expected

returns from a new agricultural technology (Carter, Laajaj, and Yang, 2021).
2See Suri and Udry (2022) for a detailed discussion on the sources of heterogeneity in farmers returns.
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population. Second, I make use of stage-two randomization to estimate treatment effects among the

farmers who choose not to buy the seed at stage one. Using these estimates, I examine whether the

realized returns of the farmers who decline to buy the seeds are different from the realized returns of

the average farmer.

The first stage of the experiment shows that farmers are highly responsive to the subsidy. As the

subsidy rate decreases from a high subsidy level to a low subsidy level, demand decreases from 94% to

6%. The immediate question is whether farmers who do not buy the seed do so because they expect

low returns to adoption or because some constraints prevent them from buying the seed.3 The results

on actual adoption among seed buyers suggest that the subsidy does not sort farmers based on their

likelihood of planting the seeds. Unexpectedly, the likelihood of planting the seeds is similar across

farmers who took up the seeds at different subsidy levels.

The second stage of the experiment shows that farmers who decline to buy the seeds in stage one are

willing to plant the seed and increase their wheat cultivation when offered the seed for free.4 Stage-two

free distribution to non-buyers causes a net increase in adoption of 32 percentage points, compared

to a 41-percentage point increase in adoption in stage-one free-distribution villages. The similarity in

treatment effects on adoption between non-buyers and the average farmer persists one year after the

intervention. Not only do farmers use the distributed seeds to replace existing wheat seeds, they also

change their cropping pattern and increase wheat cultivation at the extensive and intensive margins.

The treatment effect of stage-two free distribution on wheat cultivation by non-buyers (21 percentage

point increase) is on par with the treatment effect of stage-one free-distribution on wheat cultivation

by the average farmer (28 percentage-point increase). These findings suggest that modest subsidy

levels in stage one prevent farmers who are willing to adopt the new seed – or almost as willing to

adopt as the average farmer in the population – from buying.

A comparison between the returns of the average farmer and the returns of self-selected non-buyers

should reveal whether prices have a selection effect. A positive selection effect occurs when farmers

with lower returns to adoption select out of buying the seed as the price increases (i.e., the subsidy

level decreases). I measure farmers’ returns using data on profits (after subtracting the subsidy) at

the plot level. Results on plot profits show that returns to adoption are low for the entire population.

Low average returns can be explained by the finding that farmers substitute away from relatively more

lucrative crops to increase wheat cultivation. Yet, importantly, I find that the profits of the average

farmer in stage-one free-distribution villages are similar to the average profit of all non-buyers. This

comparison shows that, for the entire sample of non-buyers, higher prices do not screen out farmers

with lower returns.

The selection effect of prices may depend on the subsidy level, especially with an elastic demand

curve. I separately examine the selection effect among non-buyers in the sub-sample of villages that

receive a medium versus a low subsidy level in stage one. I find that the effect of stage-two free

distribution on adoption is similar for non-buyers in the medium-subsidy and low-subsidy villages.

At the same time, the realized revenues and profits of non-buyers in the medium-subsidy villages are

lower than that of non-buyers in the low-subsidy villages. The two-stage experimental design allows

me to identify the average returns of the farmers who would be induced to take up the seed if the

subsidy level increased (i.e., would-be buyers). I show that would-be buyers at the medium subsidy

level have relatively high returns. Therefore, an increase in the subsidy level in the study setting does

not distort allocation to lower return farmers. If anything, the medium subsidy level increases take-up

by relatively high return farmers for whom a low subsidy level would prevent them from buying.

3The size of the seed package offered to treated farmers should be enough for an average plot size of around 0.3 acres.

The package size was determined based on results of a pilot study and seeding rate recommendations from agronomists.
4The reported uses of the distributed seeds by treated farmers are: planting the seeds on one of the farmer’s plots,

passing the seeds to another farmer to be planted on the other farmer’s plot, using wheat seeds for food, or other uses.
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Several mechanisms may explain the finding that non-buyers do not realize lower returns to adoption

compared to the average farmer. First, factors other than returns may influence farmers’ purchase

decisions. For instance, the presence of a binding credit or liquidity constraint could mean that farmers’

purchase decisions are driven by their ability to pay rather than their willingness-to-pay. Second, the

(post-harvest) realized returns of the average farmer can be similar to those of non-buyers, even if

their (pre-planting) expected returns are different. While I do not attempt to isolate one mechanism

as an exclusive explanation for the main results, I do test for the hypothesis that factors other than

expected returns influence farmers’ purchase decisions.

I apply a data-driven approach to analyze the heterogeneity in treatment effects across farmers

based on a large set of baseline covariates. I use machine learning (ML) methods to examine the

heterogeneity in predicted treatment effects for the sub-sample of farmers who received stage-one free-

distribution treatment on the one hand, and the sub-sample of non-buyers who received stage-two

free-distribution treatment on the other hand. I find strong evidence of heterogeneity in treatment

effects for both sub-samples. This finding reinforces the presumption that farmers have heterogeneous

returns to adoption.

I examine whether covariates that can serve as indicators for market frictions (e.g., credit market

failures) distinguish farmers with the highest from those with the lowest predicted treatment effects. As

for the predicted treatment effects on growing wheat, non-buyers with the highest treatment effects are

more likely to face constraints to obtaining credit compared to non-buyers with the lowest treatment

effects. For the predicted treatment effects on profits, non-buyers with the highest and lowest predicted

treatment effects differ minimally with respect to the likelihood of reporting constraints to borrowing.

Therefore, the heterogeneity analysis results suggest that free distribution in stage two selects in

farmers who are credit constrained but do not have systematically lower returns to adoption. This

finding is consistent with a model in which a binding credit constraint creates a wedge between farmers’

WTP for agricultural inputs and their expected marginal returns. In this case, a full subsidy to non-

buyers can alleviate a binding credit constraint without distorting allocation to low return farmers.

My paper builds on a strand of the literature that analyzes self-selection into agricultural invest-

ments. On the demand side, farmers are found to self-select into loan take-up based on their returns

to capital (Beaman et al., 2023). In addition, farmers with higher WTP realize higher benefits from a

sophisticated agricultural technique such as laser land leveling (Lybbert et al., 2017). On the supply

side, willingness-to-accept as measured by reverse auctions has proven to be an effective mechanism

for targeting conservation investments (e.g., Jack, 2013; Jack, Leimona, and Ferraro, 2009). My study

rather focuses on self-selection into purchasing an agricultural input that has multiple (productive

as well as unproductive) uses and heterogeneous returns. I contribute to this literature by using an

experimental design to examine the actual returns of non-buyers in comparison with the returns of the

average farmer.

The literature on how pricing and subsidy decisions affect the allocation of goods has shown mixed

results. In the case of preventative health products, a full subsidy is found to increase both take-up

and usage in contexts where private benefits are lower than social benefits (e.g., deworming: Kremer

and Miguel, 2007) or where price elasticity of demand is very high even at low prices (e.g., antimalarial

bednets: Cohen and Dupas, 2010). In contrast, other studies have shown that prices for some goods

have a selection effect such that buyers with higher WTP are more likely to use the product (see Ashraf,

Berry, and Shapiro, 2010, for the case of water chlorination) and that marginal benefits increase with

buyers’ WTP (e.g., Berry, Fischer, and Guiteras, 2020, for the case of water filters). I contribute to

this literature by looking at the selection effect of prices in a context where the new technology is an

agricultural input – an area where subsidies are widespread, yet little is known about the allocative

efficiency impact of increasing price subsidies.
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Furthermore, I contribute to the literature on the adoption of agricultural technologies in devel-

oping countries. Several explanations for low adoption have been offered in the literature, including

informational constraints (Ashraf, Gine, and Karlan (2009); Carter, Laajaj, and Yang (2021); Hanna,

Mullainathan, and Schwartzstein (2014)), behavioral constraints (Duflo, Kremer, and Robinson, 2011),

and heterogeneity in comparative advantage (Suri, 2011). The paper that is closest to mine is that of

Suri (2011), which uses panel data to show that heterogeneity in net benefits (i.e., marginal benefits

after accounting for transportation costs) can explain low adoption of hybrid maize in Kenya. My

paper provides experimental evidence that higher prices can act as a barrier preventing take up by

farmers who are otherwise willing to experiment with a new seed variety.

Evidence for the impact of agricultural input subsidies from RCTs is quite rare. Carter, Laajaj, and

Yang (2021) used an RCT for evaluating a one-off input subsidy program in Mozambique targeting

“progressive” maize farmers (i.e., farmers subjectively selected by extension agents as having high

potential). A similar RCT evaluated a targeted intervention package known as the Wheat Initiative in

Ethiopia (Abate et al., 2018). Giné et al. (2022), on the other hand, focus on equity-efficiency tradeoff

in the targeting of agricultural input subsidies in Tanzania. They find that local committees are

effective in targeting productive farmers. I add to this literature by evaluating the allocative efficiency

of an input subsidy on a general population of farmers. I examine the selection effect of prices in the

absence of an explicit targeting mechanism.

The policy implications of my findings are multifaceted. An important policy question is whether

prices can serve as a mechanism for screening farmers with high returns to adoption of new technologies.

Using causal evidence from a randomized field experiment, I show that higher prices do not screen out

low-return farmers. On the contrary, I show that lowering the price, by increasing the subsidy level

from low to medium, is expected to induce take-up by farmers with higher than average returns. In

practice, agricultural input markets are heavily regulated. In my study setting, the government sets

an official price for new seed varieties and attempts to increase dissemination by distributing seeds

for free to a (subjectively) selected sample of farmers. Alternative policy options include reducing

the official price to all farmers (since this study shows that lower prices do not distort allocation to

low-return farmers), or finding a new mechanism for targeting high-return farmers using objective

measures. Further research is needed for evaluating new mechanisms for targeting the dissemination

of new agricultural technologies to high-return farmers.

The rest of the paper is organized as follows: Section 2 introduces the study setting and presents

the two-stage experimental design. Section 3 outlines the timeline for data collection and describes

the data. Section 4 presents results on demand, adoption, and returns to adoption. Section 5 explores

some potential mechanisms that can explain the key findings. Section 6 concludes.

2 Research Design

2.1 Study Setting

The subsidized agricultural technology in my experiment is an improved wheat seed variety called

“BARI Gom 33”. The new seed was developed by the International Maize and Wheat Improvement

Center (CIMMYT) in collaboration with the Bangladesh Agricultural Research Institute (BARI) as

a rapid response to a newly emerged crop disease called wheat blast. The wheat blast is a fungal

seed disease that first emerged in Brazil, and has spread to other countries including Bangladesh and

Zambia through international grain trade. In Bangladesh, the wheat blast first appeared in the 2015-

2016 winter season and has spread rapidly across districts (see Figure A.1). Reported blast-related

losses reached 51% of the affected farms’ harvest (CIMMYT, 2019). Farmers in my sample are aware
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of the risk of a blast outbreak. At baseline, one third of farmers listed wheat blast as one of the most

important diseases affecting dry season crops in their village. When asked about the likelihood of a blast

outbreak over the next season, 54% of the respondents perceived the likelihood of a balst outbreak to

be more than fifty percent. The fact that wheat blast can spread through wind-blown spores renders

it highly contagious. Early attempts to fight wheat blast with fungicides were not successful since

fungicides provide only partial defense and are not cost-effective for smallholder farmers. Before the

introduction of BARI Gom 33, a short-term policy response to limit the spread of wheat blast was to

discourage farmers from cultivating wheat in blast-prone districts.5

BARI Gom 33 was locally tested by CIMMYT in Bangladesh and is expected to have a number of

benefits. First, BARI Gom 33 is resistant to wheat blast, which means that the seed has an implicit

insurance feature. In the event of a blast outbreak, farmers growing BARI Gom 33 seeds are insured

against blast-related losses. Second, BARI Gom 33 has a yield advantage of 5-8% relative to existing

wheat varieties. Third, BARI Gom 33 is biofortified with zinc, an important micronutrient given the

high levels of zinc deficiency in Bangladesh (Mottaleb et al., 2019). The new seed is still in early stages

of dissemination as it was first released in the fall of 2017. A short market survey carried out as part of

the baseline data collection shows that 8% of the retailers in the sampled districts were selling BARI

Gom 33 seeds.

The Bangladesh government is keen on increasing dissemination of BARI Gom 33 seeds because of

the potential for environmental as well as pecuniary externalities. First, the environmental externality

of blast resistance implies that the social benefits of the improved seed may exceed the private benefits

to the farmer. Farmers may undervalue losses averted due to the blast-resistant seed. Second, the

potential for increasing domestic wheat production and decreasing reliance on wheat imports can

have a pecuniary externality. Indeed, Bangladesh is the fifth largest wheat importer in the world.

The country’s annual wheat imports are in the range of six million tons (USDA, 2021).6 The risk of

dependence on wheat imports has become more patent in the aftermath of the war in Ukraine (Mamun,

Glauber, and Laborde, 2022). To increase dissemination of a new seed variety, a common policy by

the Ministry of Agriculture is to distribute improved seeds for free to a selective sample of farmers. In

this study, I use a randomized controlled trial to examine the implications for allocative efficiency of

moving along a spectrum of prices going from the official price to a full subsidy.

Improved wheat seeds suit my research question on the allocation efficiency of price subsidies for

two reasons. First, although Bari Gom 33 is expected to have positive impacts on wheat productivity,

not all farmers have the same returns to growing wheat. Factors such as farm management skills,

and agroclimatic conditions (e.g., flash floods or a short winter season) can affect farmers’ returns.

Second, farmers choose not only their seed variety, but also the type of crop to grow in a given season.

A potential source of heterogeneity is the substitute crops in a farmer’s choice set. For instance,

infrastructure constraints such as limited access to irrigation could prevent some farmers from growing

water-intensive crops such as rice or sugar cane. This is particularly relevant for wheat cultivation in

Bangladesh since wheat is grown during the dry season. Moreover, credit or liquidity constraints can

limit farmers’ ability to grow cash crops due to high input costs.

5A similar policy was adopted by West Bengal government in India to avoid the spread of the wheat blast across

borders. In 2017, wheat cultivation in West Bengal was banned within 5 kilometers of Bangladesh border (CIMMYT,

2021).
6Wheat exports are prohibited in Bangladesh per the government’s export policy.
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2.2 Two-Stage Experimental Design

I use a two-stage experimental design as summarized in Figure 1.7 In this section, I present the

randomization procedures for the two stages of the experiment. I show how the experimental designs

allows me to estimate treatment effects among farmers who choose not to buy the seeds. Also, I

explain how the experimental design allows me to infer potential profits among farmers who would

have bought the seeds had they been offered a positive price.

Treatment randomization followed two steps. First, I randomly allocated a sample of 220 villages

from 12 sub-districts to three treatment arms: pure control, high subsidy, and medium-low subsidy

villages.8 Second, I randomly selected 25 farmers from each village using a village census collected

primarily for this research. The targeted sample size is 5,500 farmers.9 Treatment randomization is

stratified by: (a) sub-district and (b) village-level intensity of wheat cultivation pre-intervention.10

In the first stage of the experiment, treated farmers are offered a standard seed package at a

randomly assigned subsidy rate.11 Subsidy rates are randomized at the village level, and are carefully

chosen to reflect a full range of prices for estimating the demand curve. In the high subsidy villages,

treated farmers are offered the seed package at either a full subsidy or a 50% subsidy rate.12 In

the medium-subsidy villages, subsidy rates range from 25% to 40%, while in the low-subsidy villages

subsidy rates range from 0% to 20%. Demand by each farmer is elicited individually in a take-it-or-

leave-it design. Farmers in the pure control villages are surveyed without receiving any intervention.

In the second stage of the experiment, medium- and low- subsidy villages are randomized into stage-

two treatment and stage-two control. High-subsidy villages are excluded from stage-two randomization

due to high take up at stage one.13 In stage-two treatment villages, farmers who initially choose not

to buy the seed package at stage one receive the seeds for free. Stage-two control villages, on the other

hand, do not receive any further intervention at the second stage. The implementation of stage two

took place within a few weeks after the completion of stage one. Both stages of the experiment were

completed before the beginning of the planting season. The top panel of Table 1 shows the number of

villages at each subsidy level for stage-two treatment and stage-two control groups.

The implementation of the two-stage experiment was carefully managed to avoid any contamination

that may occur if farmers had prior knowledge of their stage-two treatment status. Each enumerator

7A number of studies have applied two-stage experimental designs to analyze treatment effects conditional on

willingness-to-pay (e.g., Berry, Fischer, and Guiteras, 2020; Cohen and Dupas, 2010; Karlan and Zinman, 2009). The

study that is closest to mine is that of Beaman et al. (2023) that examines farmers’ returns to capital conditional on

their selection into obtaining credit.
8The Districts covered in my sample are: Faridpur (Dhaka Division); Choudanga, Jashore, and Jhenaidah (Khulna

Division); Naogaon, Pabna, and Rajshahi (Rajshahi Division).
9The sample size was determined based on power calculations targeting a minimum detectable effect of 15 percentage

points increase in plot profits for a simple comparison between treatment and control farmers. The target sample was

expanded at follow-up to test for spillover effects. In each of the 180 treatment villages, I randomly selected 8 control

farmers to construct a sample of 1,440 within-treatment controls. With this additional sample, the total sample size

became 6,940 farmers. The size of the within-treatment control sample was constrained by the survey budget.
10Intensity of wheat cultivation was calculated using the village census data on the last year the farmer cultivated

wheat. I classified villages into high and low wheat intensity based on whether more than 50% of the farmers in the

village reported cultivating wheat at least once over the past four years. Appendix Figure A.2 shows the intensity of

wheat cultivation across all villages in my sample.
11Standard seed packages weighted 15 kg each. The size of the seed package was determined based on findings from

a pilot study that the average wheat plot size is 0.30 acres, which requires around 15 kg of wheat seeds. Each sampled

farmer was offered only one seed package at the offer price.
12 Market survey data shows that the official price of BARI Gom 33 seeds is similar to the price of other wheat seeds

in the retail market. The price of the standard seed package is 600 BDT (40 BDT for 15 kgs). For reference, the average

daily wage of farmers in the sampled villages is about 500 BDT. I deliberately choose not to offer a subsidy of more than

50% because the pilot study results showed very inelastic demand at higher subsidy rates. Average take-up at subsidies

of more than 50% during the pilot was 93%.
13Figure A.3 shows that seeds take up at a 50% subsidy rate (offer price = 20 BDT/kg) was around 90%.
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team had no knowledge about stage-two treatment until they completed stage-one implementation in

the sub-district assigned to them. Stage two took place after all villages within the same sub-district

had completed stage one. The message communicated with farmers at stage two was that a surplus

in the seeds used for this research study would be freely distributed to a sub-sample of farmers based

on a lottery. In the stage-two treatment villages only, farmers who paid a positive price for the seed

package in stage one got their money back in stage two. The rationale for this repayment is that

fairness required all treated farmers in the same villages to receive an equal treatment. I did not

introduce any repayments in stage-two control villages.

The two-stage experimental design allows me to compare the outcomes of farmers who declined

to buy the seeds with the outcomes of a random sample of farmers who received the seeds for free.

The randomization of free distribution in stage one provides an estimate of the treatment effect of the

seeds over the entire population. The randomization of free distribution among non-buyers in stage

two provides an estimate of the treatment effect among the self-selected non-buyers. Upon comparing

these two estimates, I examine whether the returns of the farmers who declined to buy the seeds are

higher or lower than the returns of the average farmer. It is noteworthy that non-buyers in stage-two

treatment villages as well as treated farmers in stage-one free-distribution villages both received the

seeds for free. This should alleviate any concerns that the difference in outcomes could be driven by

the behavioral implications of free distribution, since these implications would apply to both groups.14

As illustrated in Beaman et al. (2023), the two-stage randomization also allows for an inference

of treatment effects among the farmers in stage-one free-distribution villages who would have bought

the seeds had they been offered the seed at a positive price (i.e., the would-be buyers). The marginal

distribution of potential profits among farmers in stage-one free-distribution villages can be broken

down as follows:

F (Qseeds) = P (buy = 1)F (Qseeds | buy = 1) + (1− P (buy = 1))F (Qseeds | buy = 0) (1)

where Qseeds refers to the potential profits from growing BARI Gom 33 seeds, and P (buy = 1) is

the probability of buying the seeds. Demand elicitation at stage one of the experiment provides an

estimate of P (buy = 1).15 F (Qseeds) can be estimated using the randomization of free distribution at

stage one (as shown by the solid rectangle in the top-right of Figure 1). F (Qseeds | buy = 0) can be

estimated using the randomization of free distribution among non-buyers in stage two (as shown by

the dashed rectangle in the bottom-left of Figure 1). Together, these estimates allow me to infer:

F (Qseeds | buy = 1) =
F (Qseeds)− (1− P (buy = 1))F (Qseeds | buy = 0)

P (buy = 1)
(2)

Section 4.2 presents the empirical strategy for estimating treatment effects among non-buyers as well

as the would-be buyers.

Furthermore, the randomization of stage-two treatment among villages receiving different subsidy

levels in stage one allows me to infer the potential profits of farmers who would have bought the seeds

had the subsidy level been increased from the low to medium level (i.e., the would-be buyers at the

medium subsidy). This is a novel feature of the two-stage design in my experiment, which addresses

14Two potential biases might result from free distribution. The first is the perception of freely distributed goods to be

of low quality. This false signal hardly applies to my context since farmers in Bangladesh are acquainted with ad-hoc free

distribution of certified seeds by the Department of Agricultural Extension. I use follow-up data on farmers’ perceptions

of the distributed seeds’ quality to test for potential biases in perceptions across treatment arms. A second source of bias

is wastage of freely distributed seeds. For example, farmers might exert less effort in planting free seeds. This concern

should not affect the interpretation of my results. My empirical test essentially compares the outcomes for farmers who

received the seeds for free at stage-one to that of farmers who received the seeds for free in stage two conditional on

refusing to buy the seeds at stage-one.
15Note that the randomization of the subsidy at stage one implies that P (buy = 1 | subsidy ̸= 100%) = P (buy = 1

| subsidy = 100%) = P (buy = 1).
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an important policy question: what is the counterfactual of increasing the subsidy level from low to

medium?

The marginal distribution of potential profits among non-buyers at the low subsidy level can be

presented as a weighted average of the marginal distribution of potential profits of the farmers who

do not buy at the medium (as well as the low) subsidy level and farmers who would only buy at the

medium (but not at the low) subsidy level:

F (Qseeds | buylow = 0) = P (buymed = 0)F (Qseeds | buylow = 0 & buymed = 0)

+(1− P (buymed = 0))F (Qseeds | buylow = 0 & buymed = 1)
(3)

where P (buymed = 0) is the probability of not buying the seed at the medium subsidy level. Stage-two

randomization at the low subsidy level provides an estimate of F (Qseeds | buylow = 0). Stage-two ran-

domization at the medium subsidy level provides an estimate of F (Qseeds | buylow = 0 & buymed = 0),

since not buying at the medium subsidy also implies not buying at the low subsidy level. Then, I can

estimate potential profits among the would-be buyers at the medium subsidy as follows:

F (Qseeds |buylow = 0 & buymed = 1) =

F (Qseeds | buylow = 0)− P (buymed = 0)F (Qseeds | buylow = 0 & buymed = 0)

(1− P (buymed = 0))

(4)

Section 4.4 presents the empirical strategy for estimating the treatment effects among non-buyers at

different subsidy levels.

3 Data and Descriptive Statistics

3.1 Data Collection

Figure 2 summarizes the timeline of project implementation and primary data collection. Village

census data provides sampling frame for a random selection of farmers. In addition, the village census

includes data on the last year each farmer cultivated wheat. I use this data to stratify treatment by

intensity of wheat cultivation (i.e., number of farmers growing wheat pre-intervention) at the village

level. A short market survey was collected in parallel with the village census. The market survey

includes data on wheat seed varieties sold in the market, the average price of wheat seeds, and the

time of the year during which wheat seeds are available in retail markets.

A baseline survey was completed before the two-stage intervention. The baseline data includes a

list of demographic characteristics, asset ownership, access to insurance and credit, time preferences,

access to agricultural extension services, attitudes towards agricultural risks, stated willingness to pay

for an improved wheat seed, and agricultural production in the previous cropping cycle.

Seed distribution survey data was collected during stage one and stage two of seed distribution. In

stage one, the seed distribution survey includes each farmer’s take-up decision, and the main reasons

for buying or refusing to buy the seed. In stage two, the seed distribution survey includes the farmer’s

take-up decision as well as intended use of the free seed package.

Data on treatment outcomes is drawn from two rounds of follow-up surveys. The first follow-up

survey was collected at the end of the harvesting season after the two-stage intervention. The second

follow-up survey was collected at the end of the following wheat harvesting seasons. The follow-up

surveys cover the sample of 5,500 farmers who form the baseline survey, in addition to a random sample

of 1,440 control farmers in treatment villages. The data on control farmers within treatment villages

is used for estimating spillover effects. Both follow-up surveys include agricultural input and output
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data as well as data on crop and seed varieties grown on three main plots for each farmer. If a farmer

was cultivating the same farm plots they used to cultivate at baseline, the data for the same plots was

collected at follow-up.

The survey data allows me to estimate treatment outcomes at the farm level as well as the plot

level. Revenue and profit outcomes, in particular, are estimated at the plot level. This is because the

treatment intervention is not expected to have strong effects on farm level revenues or profits. The

treatment intervention offers farmers a 15-kg package of wheat seeds at the randomized offer price. The

seed package is expected to be sufficient for one average sized plot, as per agronomic recommendations

of seeding rates. At baseline, I identify a reference plot for plot-level analysis as follows. First, I

collected baseline data on each farmer’s three “main plots”. The definition of a main plot for the

purpose of the baseline survey is a farm plot that is most likely to be used for wheat cultivation.

Second, I asked each farmer to rank their three main plots in terms of the plot’s suitability for growing

wheat. I used the plot that the farmer ranks as the most suitable for wheat cultivation as the reference

plot in the plot-level analysis. I follow the same strategy for farmers in treatment and control villages.

Indeed, follow-up data shows that plots ranked as most suitable for wheat cultivation at baseline are

10 percentage points more likely to be used for wheat cultivation at follow-up compared to the rest of

the plots in the sample.

3.2 Descriptive Statistics and Characteristics of Seed Buyers

Appendix Table A.1 presents summary statistics and verifies randomization balance for most of the

baseline variables. I check for balance across treatment arms for both stage-one and stage-two ran-

domization. The sample is balanced across treatment arms with very few exceptions. For example,

farmers in the high subsidy villages are more likely to grow Boro rice (a direct substitute for growing

wheat or other dry season crops) at baseline relative to farmers in the pure control villages. I deal with

unintended imbalances in two ways. First, I control for the unbalanced baseline characteristics in all of

the regressions. Second, I follow the post-double LASSO approach (which is the approach I specified in

the pre-analysis plan) for selecting baseline controls, while making sure that the unbalanced variables

are included in the list of controls. The main results stay the same whether I control for unbalanced

characteristics, or I control for LASSO selected controls, or both. In the results section, I show the

results with and without controlling for LASSO selected controls.

Table 2 presents a comparison between the characteristics of seed buyers and non-buyers in the

medium-subsidy and low-subsidy villages separately. A common observation in both groups of villages

is that seed buyers are more likely to have access to non-farm sources of income and are cultivating

relatively bigger farms, as measured by farm area and the number of plots cultivated pre-intervention.

These descriptive results suggest that buyers may be more open to experimenting with a new seed

variety for two reasons. First, access to non-farm income may provide opportunities for hedging risks

from farm income. Second, cultivating large farms or more farm plots could mean that experimenting

with a new seed variety on one plot represents a smaller share of the farmer’s total farm income and,

hence, a relatively smaller risk compared to the case of farmers cultivating a smaller number of plots.

At the same time, farmers’ degree of risk aversion (measured by baseline survey module on attitudes

toward risk) does not differ significantly between buyers and non-buyers.

It is notable that some characteristics that should reveal farmers’ preferences for growing wheat do

not distinguish buyers from non-buyers. For example, buyers are not significantly more likely to grow

wheat at baseline compared to non-buyers. Also, unexpectedly, non-buyers stated a relatively higher

willingness to pay (WTP) for an improved wheat seed at baseline than seed buyers. However, for all

farmers, the stated WTP is substantially lower than the official price of 40 BDT/kg.
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4 Results: Demand and Actual Returns to Adoption

This section presents my four main results. First, the randomization of the subsidy rate shows that

farmers are highly responsive to a price subsidy. Second, the randomization of free distribution among

non-buyers shows that non-buyers are willing to adopt the new seed upon receiving it for free. I find that

the non-buyers’ response to a full subsidy in stage two is on par with the average farmer’s response to a

full subsidy in stage one. Third, the realized returns of non-buyers are not significantly different from

the realized returns of farmers in stage-one free-distribution villages. Fourth, a distinction between

self-selection at the medium versus low subsidy levels reveals that non-buyers who select out of buying

at the low subsidy have higher returns than the average farmer. I show that the counterfactual of

increasing subsidies from a low to a medium subsidy level is expected to induce take up by farmers

with higher than average returns. Taken together, these results imply that agricultural input subsidies

do not induce take-up by lower return farmers.

4.1 Demand is Highly Sensitive to Prices

I find two descriptive facts about the demand for BARI Gom 33 seed. First, demand is highly sensitive

to prices. Second, conditional on buying the improved seed, the likelihood of planting the seed does

not depend on the price paid. This lack of correlation between price and usage provides first suggestive

evidence that the seed price does not sort farmers based on the likelihood of planting the seeds.

Demand for the new seed is highly sensitive to the subsidy rate. The inverse demand curve in

Panel A of Figure 3 shows the share of treated farmers who took up BARI Gom-33 (i.e., paid the

randomized offer price) at the high (50 or 100%), medium (25, 30, or 40%), and low (0, 10, or 20%)

subsidy levels. In the high-subsidy villages, 94% of treated farmers took up the seeds. Demand drops

sharply as the subsidy rate decreases, such that the share of treated farmers buying the seeds at the

low-subsidy level is merely 6%. Appendix Figure A.3 shows a detailed version of the inverse demand

curve with the full set of prices.

The likelihood of a purchasing farmer planting the seeds on their farm does not vary significantly

by the subsidy rate (in addition to planting the seeds, farmers may eat the wheat seeds or pass it to

other farmers as explained below).16 If prices sort farmers based on the likelihood of planting the seeds,

then farmers paying a higher price would be more likely to plant the seeds. However, Figure 3 Panel

B shows that the planting rate curve is relatively flat across all subsidy levels. If anything, farmers

who bought at higher prices are slightly less likely to plant the purchased seeds. The average planting

rate among buyers in low-subsidy villages is 41% compared to an average planting rate of 49% for the

buyers in the medium- and low-subsidy villages. This result provides suggestive evidence that prices

do not sort farmers based the likelihood of planting the improved seed.

It should be noted that the treatment intervention did not prevent farmers from using the subsidized

seeds as they choose. The common uses of the improved wheat seeds are: planting the seeds, passing

the seeds to another farmer, or using the wheat seeds for food. Appendix Table A.2 shows that

the share of farmers passing the subsidized seeds to fellow farmers is around 13%.17 The majority of

farmers either planted the seeds or used wheat seeds as food. One explanation for the low seed-planting

rate is that many farmers in the study area have switched away from growing wheat due to several

factors including crop diseases. Among the treated farmers who did not plant the distributed seeds,

16By purchasing farmer (or seed buyer) I refer to treated farmers who took up the seeds at stage one of the experiment.

This term is inclusive of treated farmers in free-distribution villages who took up the seeds for free in stage one, but

exclusive of non-buyers in stage-two treatment villages that received the seeds for free in stage two.
17The low likelihood of a treated farmer passing the seed to fellow farmers is consistent with the weak spillover effects

found in Appendix D. Trading frictions in secondary markets may explain this finding Emerick (2018).
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only 3% grew any wheat on their farms during the same season.

Appendix Table A.2 shows that the likelihood of a treated farmer planting the distributed seeds

does not vary across farmers who took up the seeds at different prices and across different treatment

arms. This result holds for the other uses of the seeds. The only exception is that farmers who bought

the seeds in the stage-two treatment villages are more likely to pass the seeds to other farmers and

less likely to use the seeds for food. This finding suggests that stage-two treatment might have created

slightly higher demand for the distributed seeds in a secondary market.18

To sum up, an elastic demand curve shows that farmers do respond to lower prices by increasing

take-up. At the same time, a flat usage rate suggests that increasing the price does not increase the

likelihood that seed buyers plant the seed on their farms. Also, redistribution of the subsidized seeds by

treated farmers is quite limited. In the following sections, I first analyze treatment effects on adopting

the improved seed and increasing wheat cultivation. I then move to examining whether the returns

of the farmers who select out of buying the improved seeds are any different from the returns of the

average farmer.

4.2 Non-Buyers Increase Adoption Upon Receiving a Full Subsidy

How does free distribution to self-selected non-buyers affect actual adoption of the improved seed? To

answer this question, I use as a benchmark the free-distribution treatment arm in stage one randomiza-

tion. Relative to this benchmark, it is not obvious whether free distribution to self-selected non-buyers

would result in higher, lower, or similar increase in adoption. If farmers choose not to buy due to

low expected returns, then free distribution to non-buyers might not increase adoption. However, if

farmers choose not to buy due to market frictions or adoption constraints, then the net effect of free

distribution among non-buyers would depend on whether a full subsidy alleviates adoption constraints.

For example, some adoption constraints, such as information constraints, may persist even with a full

subsidy. I examine the treatment effects on adoption as well as the extensive and intensive margins of

wheat cultivation.

I start by presenting results on the intent-to-treat effects using the following specification:

Yijs = β1Freejs + β2Subsidy
50
js + β3StageTwo

Treat
ks + β4StageTwo

Control
js + δXijs + αs + ϵijs (5)

where Yijs represents the outcome of interest (e.g., adoption, wheat cultivation) for farmer i in village

j and strata s. Freejs represents the villages that received the seeds for free in stage one. Subsidy50js
are villages that received 50% subsidy in stage one and are excluded from stage-two randomization.

StageTwoTreat
js pools all the stage-two treatment villages that received either a medium or low subsidy

in stage-one (recall that stage-two randomization was among both the medium- and the low-subsidy

villages). Similarly, StageTwoControl
js represents the pool of stage-two control villages that received

either a medium or a low subsidy in stage one. The pure control villages represent the omitted category.

I test for β1 = β3 to examine whether the free distribution of seeds in stage two, which followed an

incentivized demand elicitation in stage one, has a substantially different treatment effects relative to

the free distribution in stage one.19 Xijs is an optional vector of baseline characteristics, including

18Table A.3 shows that stage-one buyers in stage-two treatment villages are more likely to perceive the yield of

distributed seeds as relatively higher than the yield of existing varieties, compared to the seed buyers in the high-subsidy

villages. This result may explain why stage-one buyers in stage-two treatment villages are more likely to pass the

distributed seeds to other farmers than use the seeds for food.
19Two factors might explain a potential difference in treatment effects between a free-distribution treatment at stage

one versus stage two. First, stage-one buyers in stage-two treatment villages are re-paid funds initially budgeted for

seeds and, hence, might spend that money on buying more inputs (i.e., a re-budgeting effect). Second, the potential for

a secondary market for the distributed seeds is relatively higher in stage-two treatment villages due to the repayment of
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baseline value of the outcome variable.20 The term αs represents strata fixed effects and ϵijs is a

random error term.21 Standard errors are clustered at the village level in all regressions.

Next, I exploit the two-stage experimental design to compare the outcomes of self-selected non-

buyers with the outcomes of the farmers who received the seeds for free in stage one. With reference

to stage-two randomization, I distinguish between non-buyers in stage-two treatment villages (i.e.,

farmers who received the seed for free in stage two after choosing not to buy the seeds in stage one)

and non-buyers in stage-two control villages (i.e., farmers who declined to buy the seeds in stage one

and did not receive any further intervention in stage two). The regression specification is:

Yijs = γ1Freejs + γ2StageOne
NonBuyer
ijs ∗ StageTwoTreat

js

+γ3StageOne
NonBuyer
ijs ∗ StageTwoControl

js + δXijs + αs + ϵijs
(6)

For this specification, I use data from the pure control villages (omitted category), stage-one free-

distribution villages (Freejs), non-buyers in stage-two treatment villages (StageOneNonBuyer
ijs

∗StageTwoTreat
js ), and non-buyers in stage-two control villages (StageOneNonBuyer

ijs ∗ StageTwoControl
js ).

I use inverse probability weights to account for the non-random selection of farmers into the sub-sample

of non-buyers.22 The main results stay the same when weights are not included.

I use the specification in Equation 6 to test for a selection effect of prices as follows. The coefficient

γ1 gives the treatment effects of free distribution relative to the pure control group (the two sub-samples

highlighted by the solid rectangle in Figure 1). The difference between γ2 and γ3 shows the treatment

effect amongst the self-selected sample of non-buyers (the two sub-samples highlighted by the dashed

rectangle in Figure 1). Thus, a test for γ1 = γ2 − γ3 indicates whether self-selected non-buyers realized

higher, lower, or similar outcomes relative to the average farmer.

In addition, I use the two-stage experimental design to infer treatment effects among farmers in

stage-one free-distribution villages who would have bought the seeds had they been asked to pay a

positive price corresponding to a medium-low subsidy level. As explained in Section 2.2 (Equation 2),

I can infer treatment effects among the would-be buyers by calculating (γ1−(0.82)∗(γ2−γ3)
0.18 ), where

0.18 is the probability of purchasing the seeds at stage one in the medium-low subsidy villages. For

completeness, I also extend the specification in Equation 6 to include self-selected buyers in stage-two

treatment and stage-two control villages.23 However, I note that the realized outcomes of self-selected

buyers do not isolate the treatment effects of BARI Gom 33 seeds from selection effects.

the seed price to farmers who bought the seeds at stage-one and free distribution to farmers who choose not to buy the

seeds at stage one.
20The choice of the control variables follows the “post-double-selection” method proposed by Belloni, Chernozhukov,

and Hansen (2014), while forcing the strata fixed effects to be included as controls in each regression. As a robustness

check, I tried including the following as unpenalized controls in post-double-lasso: (1) baseline values of the outcome

variable; and/or (2) baseline covariates that did not balance across treatment arms. In all cases, the main results are

qualitatively similar with and without including the selected control variables.
21As explained in Section 2.2, I stratify treatment by sub-districts as well as village-level wheat cultivation intensity,

where wheat intensity is measured by an indicator of whether more than 50% of the farmers cultivated wheat at least

once over the past four years prior to the intervention. I end up with 18 strata for the 12 sub-districts in my sample.

This is because three of the 12 sub-districts did not have enough variation in the indicator for wheat intensity and had to

be merged with other sub-districts. Appendix Figure A.2 shows the density of my measure of wheat cultivation intensity

for the entire sample.
22The weight for a stage-one non-buyer is equal to (# of sampled farmers in the village)/(# of non-buyers in that

specific village at stage one). For farmers in the free-distribution and control villages, the probability weight is equal to

one. These probability weights ensure that stage-two treatment and control villages with different proportions of non-

purchasing farmers are equally represented. As shown in the second panel of Table 1, without correcting for non-random

sampling my sample would over represent non-buyers from low-subsidy villages and under represent non-buyers from

medium-subsidy villages.
23This extension was not included in the pre-analysis plan. However, it does not diverge dramatically from the main

specification in Equation 6. The probability weights for a stage-one buyer is equal to (# of sampled farmers in the

village)/(# of buyers in that specific village at stage one).
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Table 3 shows how the intervention increases adoption across all treatment arms relative to the

pure control group.24 On average, 2% of the farmers in control villages adopted the improved seed

variety.25 Column (1) shows that this share significantly increased by 41, 36, and 7 percentage points

in the free-distribution, stage-two treatment, and stage-two control villages, respectively. Column (2)

breaks down stage-two treatment and stage-two control villages into self-selected samples of stage-one

buyers and non-buyers. I find that stage-two treatment is effective in increasing adoption among non-

buyers by 32 percentage points (which corresponds to γ2 − γ3 in Equation 6). The difference between

the treatment effects of stage-one free distribution (41-percentage point increase in adoption) versus

stage-two free distribution (32-percentage point increase in adoption) is marginally significant. The

p-value for the test γ1 = γ2 − γ3 is 0.07.

The significant treatment effect on adoption by non-buyers is notable. If farmers decide not to

buy the seeds in stage one due to low expected returns, then we should not see an effect of stage-two

treatment on adoption by non-buyers; particularly, since the time gap between stage one and stage two

interventions in each village is less than two weeks. This result suggest that switching from a modest

subsidy in stage one to a full subsidy in stage two allocates the seed to farmers who are interested in

planting the seed upon receiving it for free.

The results on adoption by self-selected buyers suggest that seed buyers are not necessarily the

farmers who are most likely to adopt the seeds. For the self-selected buyers, buying the seeds is

associated with an increase in adoption of 39 and 32 percentage points in stage-two treatment and

stage-two control villages, respectively. In contrast, the implied effect on adoption among farmers who

would have bought the seeds upon receiving a modest subsidy (i.e., the estimated treatment effect

among would-be buyers using Equation 2) is an increase in adoption of 85 percentage points. These

findings suggest that self-selection into buying the seeds biases downwards the results on adoption by

self-selected buyers. This is not surprising given the results on seed usage. As shown in Section 4.1,

among seed buyers, the average rate of seed adoption is less than 50 percent.

The intervention caused an increase in wheat cultivation at both the extensive and intensive mar-

gins.26 Columns (3) and (5) of Table 3 show significant positive effects on the likelihood of growing

wheat and the farm-level share of area devoted to wheat, particularly in the free-distribution, 50%

subsidy, and stage-two treatment villages. Columns (4) and (6) show how stage-two treatment effects

on wheat cultivation among non-buyers is not significantly different from the treatment effects among

treated farmers in stage-one free-distribution villages.

The point estimates on the share of wheat area, columns (5) and (6) of Table 3, highlight the

extent to which farmers in the sample allocate a relatively small share of their farms to wheat. On

average, farmers in control villages devote 6% of their farm to wheat. The treatment intervention

increased this share by at most 9 percentage points in the free-distribution villages. In fact, I did

not expect the intervention, which offered treated farmers one seed package of 15 kg, to have strong

farm-level effects. Instead, before introducing the intervention, I collected baseline data that allows

me to compare plot-level outcomes across treatment and control farmers, as explained in Section 3.

I use baseline data on the farmers’ ranking of their plots suitability for growing wheat to estimate

plot-level data for the plot that the farmers rank as the most suitable for growing wheat. I follow the

same strategy for farmers in treatment and control villages.

Plot-level results on growing wheat, columns (7) and (8) of Table 3, lead to similar conclusions

24Appendix Table A.4 replicates the regressions in Table 3 with the inclusion of LASSO selected controls. The results

are similar after the inclusion of these controls.
25This can be explained by the low supply of a new seed variety that is still in early stages of dissemination.
26Appendix Table A.5 shows that the treatment has partially crowded out other wheat seeds. However, the positive

effect on the extensive margin of wheat cultivation is stronger than the negative effect on planting other wheat seeds by

treated farmers.
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as the farm-level results in columns (3) and (4).27 Treatment effects on growing wheat are positive

and significant. The effect of stage-two free distribution on wheat cultivation by non-buyers is not

statistically different from the effect for farmers in stage-one free-distribution villages. Appendix

Table A.6 and Table A.7 confirm that the plot ranked by farmers pre-intervention as the most suitable

for wheat has experienced the strongest effect on adoption and wheat cultivation across all treatment

arms.28

In summary, the results show that farmers who select out of buying the seed when offered a modest

subsidy in stage one are responsive to a subsequent offer of a full subsidy in stage two. Indeed, the

non-buyers’ response to a full subsidy in stage two is on par with the average farmer’s response to a

full subsidy in stage one. This is true whether we are looking at farmers’ response in terms of adopting

the improved seed or in terms of increasing wheat cultivation. I investigate potential mechanisms for

explaining this finding in Section 5. In the next section, I focus on examining treatment effects on

revenues and profits.

4.3 The Realized Returns of Non-Buyers Are Similar to the Returns of

the Average Farmer

After showing that the two-stage intervention significantly increases adoption and wheat cultivation

even by non-buyers, the next step is to investigate whether non-buyers have different returns from

those of the average farmer. The intuition is that relatively lower returns by non-buyers would suggest

positive selection out of buying the improved seed (i.e., non-buyers select out of buying due to their low

returns). On the contrary, relatively higher returns by non-buyers would suggest negative selection

(i.e., non-buyers select out of buying the seeds in spite of their high returns). I measure farmers’

returns using follow-up data on plot-level revenues and profits.29 I find that the improved wheat seed

caused farmers to substitute away from more profitable crops, which results in low treatment effects on

revenues and profits across all treatment arms. Yet, importantly, the returns of self-selected non-buyers

are similar to those of farmers in stage-one free-distribution villages.

The increased adoption of the improved wheat seed does not increase revenues or profits. Table 4

shows that stage-one free distribution results in lower revenues relative to the pure control group. The

27The data allows me to measure farm-level outcomes in two ways. First, I collected detailed data on crop cultivation

for up to three main plots for each farmer. I define farm-level outcomes as the aggregate of the outcomes of these three

main plots. Second, I included at the end of the follow-up surveys explicit questions on adoption, wheat cultivation, and

total wheat area across all plots grown by the farmer during the last season. Each of these measures has its pros and cons.

The measure using aggregated plot-level data is less prone to over-reporting, particularly by treatment farmers, and is my

preferred measure. On the other hand, the measure using explicit farm-level questions is less prone to underestimation

of farm-level effects given that the average farmer in the sample cultivated 5 or more plots. In the paper, I present

farm-level results using the first measure. Results using the second measure of farm-level outcomes show similar results

and are available upon request.
28One drawback of restricting the sample to the top-ranked wheat plot is the loss of observations since attrition at the

plot-level was slightly higher than attrition at the farmer-level (i.e., some farmers are no longer cultivating the same plot

they used to cultivate at baseline). Overall, the attrition at the first follow-up was trivial: 3% attrition at the farmer

level and around 8% at the plot level.
29As explained in Section 4.2, plot-level data is restricted to the plot ranked by farmers at baseline as the “most

suitable” plot for wheat cultivation. Revenues are measured as the output per unit area (i.e., yield) multiplied by the

farm-gate price of output as reported by farmers. Profits are measured as total revenues net of all input costs. Both

revenues and costs are measured per unit area. I include the full cost of seeds for treated farmers who received subsidized

seeds. Also, I include the opportunity cost of family labor in the profit calculation. I follow the rule of thumb given by

Agness et al. (2022) in valuing family labor at 60% of the average market wage. The unit of measurement for revenues

and profits in levels is Bangaldeshi Takas (BDT) per acre. The results are qualitatively similar whether revenues and

profits are measured in levels or logs. However, the results in logs should be interpreted with caution as they exclude

plots that had non-positive profits at follow-up. Table A.11 presents results on plot profits in levels as well as the

likelihood of negative profits.
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impact on profits is not statistically different from zero. The confidence interval on the coefficient of

stage-one free distribution villages rules out large positive effects on profits. A potential explanation

for the negative treatment effects on revenues is that the intervention did replaced not only inferior

wheat seeds, but also other crops that are more lucrative than wheat. Indeed, Table A.8 shows that

the treatment causes farmers to substitute common dry-season crops with wheat.30 The summary

statistics in Table A.10 shows that, although wheat revenues and profits increased at follow-up relative

to baseline, wheat is less profitable than common dry-season crops in the sample.31

Results from the wheat plots in the sample alone suggest that BARI Gom 33 seeds have a yield

advantage over existing wheat varieties. Table A.12 shows that, among the wheat plots grown by the

same farmer, the yield of plots growing BARI Gom 33 seeds is 10 percent higher than that of plots

growing other wheat varieties. This result is in line with the findings of agronomic trials. Another

important feature of BARI Gom 33 seeds is that they represent an insurance device against wheat

blast, as explained in Section 2.1. Since there was not a blast outbreak in the sampled villages post

intervention, the insurance feature of the improved seed did not pay out.32

Despite the noisy effects on profits, self-selection results in columns (3) and (7) of Table 4 provide

no evidence that prices have a selection effect for the entire sample of non-buyers. Stage-one free

distribution resulted in a decrease in revenues and profits of 12 and 11 percent, respectively. Similarly,

stage-two free distribution to self-selected non-buyers resulted in a net decrease in revenues and profits

of 10 percent. Adding a list of LASSO selected controls to the main specification – columns (4) and

(8) – slightly improves precision, but does not change the main finding.33 That is, the treatment effect

on revenues and profits in the free-distribution villages is not statistically distinguishable from the net

effect of free distribution among non-buyers. Appendix Table A.11 shows that this conclusion also

holds when measuring plot profits in levels, rather than logs.34 Figure 4 summarizes the self-selection

results on plot revenues and plot profits. Overall, for the entire sample of non-buyers, the shift from

moderate price subsidies in stage one to a full subsidy in stage two does not distort allocation to lower

return farmers.

Given the significant effects on adoption and wheat cultivation, the negative treatment effects on

revenues and profits raises the question of what motivates farmers to grow wheat in the first place. One

way to answer this question is to mention a few limitations of the cross-sectional results on realized

returns. First, plot-level outcomes do not fully capture potential farm-level considerations such as

choosing to grow a relatively low-profit crop on one plot for the sake of risk diversification.35 The

results on plot-level returns do no account for risk-return tradeoffs. Second, farmers in my sample

report growing staple crops for their own consumption as one of the primary motives affecting their

crop choice. For instance, growing wheat on a farm plot is associated with a 15 percent increase

30Table A.8 shows results on the plot-level substitution between wheat and other crops. I choose to show plot-level

results here to be consistent with the plot-level results on profits and revenues. Farm-level outcomes show similar

treatment effects on the substitution between wheat and other crops.
31The data on profits and revenues at baseline should be interpreted with caution due to the long recall period between

the (pre-planting) baseline survey and the reported outcomes for the previous year’s dry season’s harvest.
32Indeed, at the research design stage, blast outbreak was a likely event for the sampled sub-districts. In the pre-

analysis plan (Mahmoud, 2022), power calculations accounted for the possibility of a blast outbreak. The estimated

minimum detectable effects (MDEs) for the test on selection effects were in the range of 0.2 - 0.3 standard deviations.

These MDEs are reasonable in the event of a blast outbreak such that the difference between the profits of farmers in

the treatment and control groups would also account for difference in blast-related losses.
33Given that adding controls does not significantly reduce the standard errors, this suggests that there are wide

variations even within farmers of the same group (i.e., within-group uncertainty matters).
34The results on plot profits in logs should be interpreted with caution. When taking logs, the results show the

treatment effects conditional on making positive profits. If anything, column (6) of Table A.11 show that the likelihood

of making non-positive profits is higher among non-buyers in stage-two treatment villages.
35As shown in Table A.1, the average farmer in the sample grew 5 plots at baseline. The survey data allows me to

calculate revenues for three main plots only. Results on total revenues for the three main plots show that treatment

effects on total revenues are not statistically different from zero. These results are available upon request.
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in the share of the harvest used for the farmer’s own consumption. This finding may reflect some

market imperfections that prevent specialization and trade, which can also prevent separation between

production and consumption decisions. Third, the one-year results on farmers returns are noisy, which

suggests that actual returns provide noisy signals for estimating expected returns. Farmers may take

time to learn about their expected returns from a new technology. That is why I collected a second-

round of follow-up data, as presented in Section 4.5.

The key takeaway, so far, is that the returns of self-selected non-buyers are similar to the returns

of the average farmer. A caveat, though, is the relatively wide confidence intervals on the test for

selection effects (i.e., the test for γ1 = γ2 − γ3 in Table 4). A plausible interpretation of the wide

confidence intervals is that actual returns are uncertain, which makes it hard for farmers to estimate

their returns ex-ante. If farmers can hardly estimate their expected returns at the time of sale, then

price subsidies are unlikely to crowd in lower-return farmers.

4.4 A Medium Subsidy Level Induces Take-Up by Farmers with Higher

Returns

The difference in demand across different subsidy levels, as shown in panel A of Figure 3, suggests that

selection effects of price subsidies may different by the subsidy level. I find that stage-two treatment

effects on adoption are similar across both the medium and low subsidy levels. However, the results on

revenues and profits suggest that non-buyers at the medium subsidy level have lower returns compared

to non-buyers at the low-subsidy level. I use these results to infer the potential profits among farmers

who would have bought the seeds upon increasing the subsidy rate from a low to a medium subsidy

level. I find that would-be buyers at the medium subsidy level have large and positive treatment effects

on profits.

To test for selection effects at different subsidy levels, I extend the specification in Equation 6 as

follows:

Yijs = λ1Freejs + λ2Subsidy
Medium
js ∗ StageOneNonBuyer

ijs ∗ StageTwoTreat
js

+λ3Subsidy
Medium
js ∗ StageOneNonBuyer

ijs ∗ StageTwoControl
js

+λ4Subsidy
Low
js ∗ StageOneNonBuyer

ijs ∗ StageTwoTreat
js

+λ5Subsidy
Low
js ∗ StageOneNonBuyer

ijs ∗ StageTwoControl
js

+δXijs + αs + ϵijs

(7)

where, SubsidyMedium
js , and SubsidyLow

js are indicators for whether the village received a medium or

a low subsidy rate at stage one. Recall that medium subsidy rates are in the range of 25-40% and

low subsidy rates are in the range of 0-20%. The rest of the variables are as defined above. A test

for λ1 = λ2 − λ3 evaluates the difference between the treatment effects in stage-one free-distribution

villages and the net treatment effects among the self-selected non-buyers who received a medium

subsidy level in stage-one. A test for λ1 = λ4 − λ5 represents a similar comparison but for the self-

selected non-buyers who received a low subsidy level in stage-one. I also test for λ2 − λ3 = λ4 − λ5 to

compare the outcomes of non-buyers who selected out of buying at the medium-subsidy level versus

at the low-subsidy level.

As explained in Section 2.2, I also infer the treatment effects among farmers in the low-subsidy

villages who would have bought the seeds upon increasing the subsidy rate to a medium subsidy level.

By noting that non-buyers in the medium-subsidy villages would also not buy the seeds at any lower

subsidy level, the treatment effects among non-buyers in the low-subsidy villages can be considered

a weighted average of the treatment effects among non-buyers at the medium subsidy level and the
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treatment effects among the would-be buyers at the medium subsidy level. Thus, using regression

results from Equation 7, treatment effects among the would-be buyers at the medium subsidy level is

calculated as : (λ4−λ5)−(0.67)∗(λ2−λ3)
0.33 , where 0.33 is the probability of buying the seeds at stage one in

the medium-subsidy villages.

To compare treatment effects on adoption, I examine the farm-level outcome of planting BARI Gom

33 seeds. Columns (1) and (2) of Table 5 show that treatment effects on adoption by non-buyers are

very similar for non-buyers in the medium-subsidy and low-subsidy villages. For both groups of non-

buyers, the net effect of stage-two treatment is an increase in the likelihood of adopting the improved

seed by 31 percentage points, as shown in column (2). The difference between the treatment effects

of stage-one free-distribution and the effect of stage-two free-distribution to non-buyers is at most

11 percentage points for both sub-groups of non-buyers. Hence, results on adoption do not provide

evidence of differential selection effects at different subsidy levels.

I turn to plot-level outcomes to analyze treatment effects on plot revenues and profits. Given that

the summary statistics in Table A.10 show noticeable differences in the profitability of different crops,

I start by showing plot-level results on the treatment effects on growing wheat on the reference plot.

Columns (3) and (4) of Table 5 show that stage-two treatment effect on the likelihood of growing

wheat is higher among non-buyers in the low-subsidy villages relative to non-buyers in the medium-

subsidy villages. However, the test for the difference between stage-two treatment effects on non-buyers

in the medium-subsidy versus the low-subsidy villages is not statistically significant (p-value of 0.27

in column (4)). Appendix Table A.9 shows results on the substitution between growing wheat and

growing common dry-season crops on the reference plot. These results reveal that, relative to the

average farmer, non-buyers in the low-subsidy villages are more likely to substitute Boro rice with

wheat, and are less likely to substitute onion with wheat as a result of stage-two treatment. The

differential treatment effects on crop substitution may contribute to the difference in treatment effects

on revenues and profits.

The results on revenues and profits show that the realized returns of non-buyers in the medium-

subsidy villages are lower than the realized returns of non-buyers in the low-subsidy villages. The

results are presented in columns (5) to (8) of Table 5 and summarized in Figure 5. As a benchmark,

columns (6) and (8) show that stage-one free distribution resulted in a decrease in revenues and profits

by 13 and 12 percent, respectively. For the non-buyers in the medium subsidy villages, the net effect

of stage-two free distribution (i.e., λ2 − λ3 in Equation 7) is a decrease in revenues and profits by

18 and 25 percent, respectively. In contrast, for the non-buyers in the low-subsidy villages, the net

effect on revenues and profits is not statistically different from zero; point estimates are negative 5 and

positive 7 percent for revenues and profits, respectively. The difference between the net effects on the

revenues and profits of non-buyers in the medium-subsidy versus the low-subsidy villages (i.e., the test

for λ2 − λ3 = λ4 − λ5) is marginally significant.

Table 6 complements the analysis on the differential treatment effects on plot profits by showing

the results on profits in levels as well as the likelihood of making non-positive profits. Although

measuring outcome variables in logs (as in Table 5) facilitates the interpretation of the point estimates,

log measurements by construction exclude from the analysis plots with non-positive profits, which

represent around 8% of the sampled plots at follow-up. Column (3) of Table 6 suggests that non-

buyers in the medium-subsidy villages are more likely to have non-positive plot profits. The results

using plot profits in levels reinforce the conclusion that non-buyers in the medium-subsidy villages have

significantly lower treatment effects on profits than non-buyers in the low-subsidy villages. Moreover,

column (2) of Table 6 shows that the realized profits of non-buyers in the low-subsidy villages are higher

than the realized profits of the average farmer. The test for λ1 = λ4 − λ5 in Equation 7 is marginally

significant at the 10 percent level. The results on plot profits suggest that there is a negative selection

out of buying the improved seed at the low subsidy level.
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The implied treatment effects among would-be buyers at the medium subsidy level suggest that the

low subsidy level crowds out farmers with both a high likelihood of adoption and higher than average

returns to adoption. Column (2) of Table 5 shows that, for the farmers who would have bought the

seeds upon increasing the subsidy to a medium level, the inferred treatment effect on adoption is a

significant increase of 30 percentage points. The results on plot profits in Table 5 and Table 6 show

that the inferred treatment effects on the profits of would-be buyers at the medium subsidy level are

large and positive. Therefore, moving from a low subsidy to a medium subsidy induces farmers with

relatively high returns to buy the seeds. The medium subsidy level is good enough to screen out

farmers with lower returns and induce take-up by farmers with higher returns. This is another piece

of evidence that an increase in the agricultural input subsidy does not distort allocation to low-return

farmers.

To summarize, the results on demand at stage one of the experiment show that demand decreases

dramatically at the low subsidy level. The results on adoption show that non-buyers in the low-subsidy

villages are as responsive to stage-two free distribution as non-buyers in the medium-subsidy villages.

At the same time, plot-level outcomes show that the realized returns of non-buyers in the low-subsidy

villages are relatively high. I interpret the results on realized returns by showing that the counterfactual

of switching from a low subsidy level to a medium subsidy level would induce take up by farmers with

higher than average returns. Therefore, increasing subsidies does not distort allocation to low-return

farmers.

4.5 One Year Later... Partially Persistent Treatment Effects on Adoption

The purpose of following the same farmers for a subsequent wheat season is to observe farmers’

outcomes after removal of the subsidy. Farmers may take time to learn about their expected returns.

This makes it critical to examine whether farmers continue to adopt or dis-adopt the improved wheat

seed in the absence of follow-up interventions. I find that similar treatment effects on adoption between

stage-one free-distribution treatment and stage-two free-distribution treatment persist for a consecutive

year. However, dis-adoption rates in year 2 are substantial.

Table 7 shows adoption effects one year after the intervention. I present treatment effects on

adoption in year 2 in general. Then, I distinguish between persistent adopters (i.e., farmers who adopt

the seeds in year 1 and year 2), new adopters in year 2, and dis-adopters in year 2. Column (1) shows

that the treatment effect of stage-one free distribution on adoption in year 2 is similar to the treatment

effect of stage-two free distribution among non-buyers. In year 2, the adoption rate by farmers in the

pure control villages is 9%. Stage-one free distribution increases adoption rate by 7 percentage points,

while stage-two free distribution to non-buyers increases adoption rate by 9 percentage points. The

difference between the two point estimates (i.e., the test for γ1 = γ2 − γ3) is not statistically significant.

Stage-two treatment continues to have a positive and significant effect on adoption in the subsequent

wheat season.

One channel through which treatment effects on adoption may last for a succeeding season is

through seed multiplication by treated farmers. That is, treated farmers who adopted the seed in the

first year can store part of their harvest and use it as seeds in the following year. Indeed, column

(2) shows significant effects on persistent adoption for a second year that is similar among stage-one

free-distribution treatment and stage-two free-distribution treatment. Nevertheless, the likelihood of

persistent adoption in year 2 is low compared to the treatment effects on adoption in year 1. This is

due to the high disadoption rates, as shown in column (4). At the same time, treatment effects on

new adoption in year 2 are low and even negative in stage-one free-distribution villages, as shown in

column (3).
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Year 2 results show that the share of non-buyers who are persistent in adopting the improved

seed for two years is similar to the share of persistent adopters in the entire population. The high

disadoption rates in year 2 are expected given the results on realized profits shown in Section 4.3. One

of the main benefits of adopting the improved seed is to prevent losses from contagious crop disease

such as wheat blast. The fact that there was not a blast outbreak during the study period means that

farmers did not get a chance to learn about the blast-resistant feature of the seed.

5 Mechanisms

Several mechanisms could explain the finding that non-buyers do not realize lower returns to adoption

compared to the average farmer. First, factors associated with market frictions, such as credit limita-

tions and uninsured risks, might explain why self-selected non-buyers can realize returns comparable

to or even higher than those of the average farmer. Second, agricultural returns are uncertain. There

is a chance that non-buyers underestimated their expected returns when they made their purchase de-

cisions. The free-distribution treatment in stage two may cause non-buyers to upgrade their expected

returns (i.e., a flypaper effect of stage-two free distribution).

In this section, I focus on the first potential mechanism: the possibility that market frictions, partic-

ularly credit or risk market failures, may explain the low WTP revealed by non-buyers. To empirically

test for this hypothesis, I use machine learning methods to analyze heterogeneity in farmers’ response

to the free-distribution treatment conditional on a high-dimensional set of baseline observations. I

find that credit constrained non-buyers are more responsive to stage-two free-distribution. I show that

this finding is consistent with a model on agricultural investments in the presence of credit market

failures. In Appendix B, I show that the empirical results do not support the hypothesis that stage-two

treatment cause farmers to upgrade their expected returns.

5.1 Evidence on Heterogeneity in Treatment Effects

I test for heterogeneity in treatment effects based on observable characteristics, using machine learning

(ML) techniques. I find strong evidence of heterogeneity in treatment effects. For all primary outcomes,

the difference between the predicted treatment effects for the most affected versus the least affected

groups is economically and statistically significant. This result raises questions as to which farmer

characteristics are important predictors of this heterogeneity. The next section answers this question

by comparing the most affected versus the least affected groups based on a set of baseline .

I follow the approach of Chernozhukov et al. (2020) in testing for heterogeneity in treatment effects.

First, I estimate the conditional average treatment effects (CATE) (i.e., predicted treatment effects

conditional on baseline characteristics) for the primary outcomes using ML algorithms.36 Second, I

estimate the best linear predictor (BLP) of the CATE, which is defined as:

BLP := β1 + β2(S(Z)− ES(Z)) (8)

where S(Z) is an estimator for the CATE. β2 represents the heterogeneity loading parameter. Z is

a set of baseline covariates. Rejecting the hypothesis β2 = 0 implies that there is heterogeneity and

S(Z) is its relevant predictor.

36ML algorithms applied in this analysis are: random forest, elastic net, support vector machine, and boosted trees.

These algorithms use a training sample to separately train predictors for E[Y |D = 1, Z] in the treatment group and

E[Y |D = 0, Z] in the control group. Then, using the main sample, they predict potential outcomes for each individual.

The predicted CATE is the difference between the two predictions for each individual. In Table 8 and Table 9, I am

presenting the results from the ”best” ML algorithm (i.e., the algorithm that minimizes prediction errors). Results from

the other three ML algorithms are available upon request.
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Table 8 shows strong evidence of heterogeneity in treatment effects. I am separately analyzing

treatment effect heterogeneity for the sub-sample of farmers who received full subsidy in stage one

(panel A) and the sub-sample of self-selected non-buyers who received full subsidy in stage two after

declining to buy the seed at modest subsidy levels in stage one (panel B). The comparison group for the

former is farmers in the pure control villages, while the comparison group for the latter is non-buyers

in stage-two control villages. For the three main outcomes –namely, the likelihood of growing wheat,

plot-level revenues, and plot-level profits– there is significant heterogeneity in the predicted treatment

effects. This is the case for both sub-samples.

Next, I examine the magnitude of the heterogeneity in treatment effects by following Chernozhukov

et al. (2020) in estimating sorted group average treatment effects (GATES). I sort observations in each

sub-sample into five groups in ascending order based on the predicted CATE. That is, the first group

represents 20% of the observations in the respective sub-sample with the lowest predicted CATE.

Likewise, the fifth group represents 20% of the observations in the respective sub-sample with the

highest predicted CATE.

The magnitudes of the heterogeneity in treatment effects shown in Table 9 are considerable. I

estimate the GATES parameters for each outcome once for the sub-sample that received a full subsidy

in stage one, and once for the sub-sample of non-buyers who were randomized into a full subsidy

in stage two. For each outcome in both sub-samples, the difference between the predicted treatment

effects for the most affected versus the least affected groups is economically and statistically significant.

For example, the magnitude of the heterogeneity in treatment effects for plot revenues is more than

39,000 BDT per acre for both sub-samples. Similarly, both sub-samples show heterogeneity in the

treatment effects on profits of a magnitude greater than 20,000 BDT per acre.

5.2 Credit Constraints Can Explain Differential Response to the Seed Sub-

sidy

Given that baseline characteristics can explain heterogeneity in treatment effects, the next step is to

compare the characteristics of farmers with the highest treatment effects to the characteristics of those

with the lowest treatment effects. In particular, I am interested in baseline covariates that can serve as

indicators for market frictions such as risk aversion and constraints to credit. I focus on heterogeneity

in farmers’ responses to the seed subsidy by increasing the likelihood of growing wheat.37 The results

show that, among the sub-sample of non-buyers, farmers who are most responsive to stage-two free

distribution are significantly more likely to report constraints to additional borrowing at baseline.

Figure 6 compares heterogeneity in treatment effects for two sub-samples. The first sub-sample

consists of farmers in stage-one free-distribution villages, for which the relevant control group is farmers

in the pure control villages. The second sub-sample consists of self-selected non-buyers in stage-two

treatment villages, for which the relevant control group is non-buyers in the stage-two control villages.

The three predictors presented in the Figure 6 are: 1) whether the farmer obtained formal credit at

baseline; 2) whether the farmer stated facing constraints to additional borrowing; 3) farmers’ score on

a risk aversion index score measured using a baseline survey module on attitudes towards agricultural

risks.

Panel A of Figure 6 shows that, for the random sample of treated farmers in stage-one free-

distribution villages, farmers with the highest treatment effect on growing wheat are less likely to have

obtained formal credit at baseline. However, the survey data alone does not allow me to conclude

37Ideally, I should analyze heterogeneity in treatment effects on seed adoption. However, due to the low adoption

levels in the control group, I am not able to use machine learning algorithms to estimate heterogeneity in treatment

effects on adoption.
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whether these farmers are less likely to obtain credit because they face credit constraints at the exten-

sive margin or because they are better off without credit. It is not surprising that the most affected

farmers who are less likely to have obtained credit are also less likely to report constraints to obtaining

more credit. Farmers need to have access to credit at the extensive margin to report constraints to

credit at the intensive margin. In addition, the most affected farmers in stage-one free-distribution

villages score significantly lower on a risk-aversion index compared to the least affected farmers. The

risk associated with experimenting with a new seed as well as the risk of incurring losses in case the

seed did not fully protect farmers from crop diseases, may explain this heterogeneity in risk aversion

between the most and least affected farmers in the stage-one free-distribution sub-sample.

Panel B of Figure 6 shows a different story for the self-selected sample of non-buyers. The most

affected and the least affected non-buyers are equally likely to have obtained formal credit at baseline.

However, non-buyers with the highest treatment effect on wheat cultivation are more likely to face

constraints in obtaining additional credit. Risk aversion does not distinguish non-buyers with the

highest from those with the lowest treatment effects on growing wheat. Therefore, the likelihood of

facing constraints to additional borrowing is one of the key characteristics that distinguish non-buyers

with the highest treatment effects on wheat cultivation. At the same time, Appendix Figure A.5 shows

that constraints to additional borrowing does not distinguish farmers with the highest from those with

the lowest treatment effects on plot profits. These results suggest that stage-two free distribution

selects in farmers who are credit constrained but do not have systematically lower profits.

The finding that the most affected non-buyers are more likely to face constraints to additional

borrowing is consistent with a model on agricultural investments in the presence of credit market

frictions. The model is presented in Section 5.3. A key takeaway from the model is that a binding

credit constraint can shift farmers’ WTP for agricultural inputs downward, which results in a wedge

between farmers’ WTP and their expected marginal returns.

Finally, to test for status quo bias, Figure 7 compares the most affected and least affected farmers in

terms of the likelihood of growing wheat at baseline. Panel A of Figure 7 shows that farmers in stage-

one free-distribution villages with the highest treatment effects on wheat cultivation are significantly

more likely to have grown wheat at baseline. In contrast, Panel B shows that non-buyers with the

highest and lowest treatment effects have similar likelihood of growing wheat at baseline. This result

suggests that status quo bias is more relevant for stage-one free-distribution treatment. However,

status quo bias cannot explain non-buyers’ response to free distribution in stage two.38

All in all, a data-driven heterogeneity analysis shows that the characteristics of the farmers with

the highest response to a full subsidy in stage one differ from those of self-selected non-buyers who are

most responsive to a full subsidy in stage two. For the farmers who received a full subsidy in stage

one, status quo bias and risk aversion partly explain the heterogeneity in their response to the full

subsidy. For the self-selected sample of non-buyers, constraints to additional borrowing partly explain

the heterogeneity in their response to a full subsidy in stage two. These findings are consistent with a

model in which farmers with relatively high expected marginal returns may reveal relatively low WTP

for agricultural inputs due to a binding credit constraint as shown in the next section.

38Appendix Figure A.6 compares the most and least affected farmers in terms of the likelihood of growing common

dry season crops other than wheat at baseline. The figure shows that the pattern of results is similar for the sub-sample

of stage-one free-distribution treatment and stage-two free-distribution treatment for all common crops, except for lentil.

This result suggests that stage-two free distribution may have induced farmers who were on the margin of growing wheat

to switch from lentil to wheat cultivation.
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5.3 A Model of Agricultural Investments in the Presence of Credit or Risk

Market Failures

In an environment with complete markets and full separation between production and consumption,

farmers’ WTP for an agricultural technology should reflect their expected marginal returns from that

technology. This study shows experimental evidence that farmers who reveal a relatively low WTP for

the improved wheat seed realize returns to adoption that are not lower than the returns of the average

farmer. In this section, I present a model on farmers’ investment decisions in the presence of credit

and/ or risk market failures following Karlan et al. (2014). I show that a binding credit constraint

can shift farmers’ WTP for agricultural inputs downward, and results in a gap between WTP and

expected marginal productivity.

5.3.1 Base Model

I start with a simple two-period model in which farmers make investment decisions in the first period

and realize a state-contingent output in the second period. The expected output from agricultural

investments is given by:

E[Y (sκ)] =
∑
sκ

P (sκ)Y (sκ) (9)

where sκ represents a crop-specific state of the world, κ is the crop produced, and P (sκ) is the

probability that sκ is realized. For simplicity of notation, I am dropping the i subscript for farmer-

specific output. However, I note that the production function varies across farmers. A farmer’s

production function is given by:

Y (sκ) = Aκfs(xκ) (10)

where Aκ is a productivity term that reflects the farmer’s comparative advantage in growing crop

κ. xκ is a bundle of agricultural inputs used to produce crop κ. fs(.) is concave, and fs(0) = 0

∀s.39 For simplicity, assume that there are only two states of the world for each crop: sκ ∈ {Hκ, Lκ}.
Production is such that state Hκ results in strictly higher output: fH(xκ) > fL(xκ) ∀κ. Also, the

marginal productivity of inputs in state Hκ is higher, such that: f ′H(xκ) > f ′L(xκ) ∀κ.

Farmers choose between investing in agricultural production and buying (or selling) a risk-free

asset a that earns (or pays) a flat interest rate R. There is perfect risk pooling such that a farmer’s

consumption in the second period is the expected value of total income in any realized second-period

state. The farmer’s problem is to maximize an intertemporal utility of consumption subject to a set

of constraints. That is:

max
xκ,a

u(c0) + δ
∑
sκ

P (sκ)u(c
1) (11)

s.t.

c0 = I −
∑
κ

ψ(xκ)− a

c1H = c1L = c1 =
∑
sκ

P (sκ)(Ysκ +Ra)

xκ ≥ 0

(12)

where u(.) is a concave utility function. The concavity of u(.) depends on the farmer’s degree of risk

aversion. δ is a discount factor that is inversely related to the flat interest rate R. For simplicity, let

δ = 1
R . I is an initial endowment of income. ψ(xκ) is a cost function that is increasing in xκ. The

39This setup implicitly assumes a perfect agricultural land market. There are no restrictions on the farm land that

the farmer can use.
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shape of the cost function depends on the economies of scale, which varies across farmers. Agricultural

output prices are normalized to 1. The farmer chooses to invest in a such that:

u′(c0)

u′(c1)
= Rδ = 1 (13)

and chooses xκ such that:{
ψ′(x∗

κ) = δ
∑

s P (sκ)Aκf
′
s(x

∗
κ), if x∗

κ > 0

ψ′(x∗
κ) > δ

∑
s P (sκ)Aκf

′
s(x

∗
κ), if x∗

κ = 0
(14)

Thus, with perfect credit markets and complete risk pooling, farmers invest in agricultural production

up to the point where the marginal cost of inputs is equal to their expected marginal productivity.

A farmer’s WTP for agricultural inputs depends on the likelihood of each state of the world, the

characteristics of the production function, the farmer’s comparative advantage in producing crop κ,

and a given discount factor (that is determined by the supply and demand of risk-free assets).

A farmer is expected to select out of growing one crop, x∗
κ = 0, if the farmer has low comparative

advantage in growing that crop. That is, if Aκ is sufficiently low. A subsidy on a crop-specific input,

lowers the threshold for growing the subsidized crop on both the extensive and intensive margins.

Thus, the subsidy is expected to induce farmers with low expected returns to grow the subsidized

crop.

5.3.2 Credit Constraints

In the presence of credit market frictions, there is an additional constraint to the utility maximization

problem, which is a ≥ 0. That is, borrowing is not possible. Suppose that the constraint is binding,

but there is complete risk pooling. That is, c1H = c1L = c1 still holds. Then, the first order conditions

become:
u′(c0)

u′(c1)
> 1 (15)

and {
ψ′(x∗

κ) = δ u
′(c1)

u′(c0)

∑
s P (sκ)Aκf

′
s(x

∗
κ) < δ

∑
s P (sκ)Aκf

′
s(x

∗
κ), if x∗

κ > 0

ψ′(x∗
κ) > δ u

′(c1)
u′(c0)

∑
s P (sκ)Aκf

′
s(x

∗
κ), if x∗

κ = 0
(16)

Therefore, a binding credit constraint creates a wedge between farmers’ WTP for agricultural inputs

and expected marginal productivity. Credit-constrained farmers are expected to have lower WTP for

agricultural inputs compared to unconstrained farmers with similar marginal productivity. In addition,

a concave production function implies that credit-constrained farmers who start at relatively low levels

of x∗ may have relatively high marginal returns to investment in additional inputs.

When the credit constraint is binding, a subsidy on a crop-specific input releases part of the farmer’s

budget allocated to that input. As a result, the farmer may increase investment in other inputs and

end up with relatively high returns. Therefore, credit market frictions imply that farmers who are

induced to grow a certain crop as a result of a crop-specific subsidy are not necessarily those who have

low expected returns.

5.3.3 Uninsured Risks

In the absence of insurance against risks, whether formal insurance or informal risk pooling, consump-

tion in the second period depends on the realized state of the world. In this case, the constraints in
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Equation 12 become:

c0 = I −
∑
κ

ψ(xκ)− a

c1H =
∑
κ

P (Hκ)(Y (Hκ) +Ra)

c1L =
∑
κ

P (Lκ)(Y (Lκ) +Ra)

xκ ≥ 0

a ≥ 0

(17)

the farmer chooses a such that{
u′(c0) =

∑
sκ
P (sκ)u

′(c1s), if a∗ > 0

u′(c0) >
∑

sκ
P (sκ)u

′(c1s), if a∗ = 0
(18)

and chooses xκ such that:{
ψ′(x∗

κ) = δ
∑

sκ
P (sκ)

u′(c1s)
u′(c0)

Aκf
′
s(x

∗
κ), if x∗

κ > 0

ψ′(x∗
κ) > δ

∑
sκ
P (sκ)

u′(c1s)
u′(c0)

Aκf
′
s(x

∗
κ), if x∗

κ = 0
(19)

Compared to the case with perfect markets in Equation 14, a farmer’s WTP for agricultural inputs

becomes a weighted sum of their expected returns in each state of the world. The weights depend

on the marginal utility of future consumption relative to the marginal utility of current consumption.

With a concave utility function, it follows that the marginal utility is higher at lower levels of consump-

tion: u′(c1L) > u′(c1H) if c1L < c1H . In addition, it is given that marginal productivity is higher at the

high state: f ′H(xκ) > f ′L(xκ). Without loss of generality, let c1L < c0 < c1H , then
u′(c1L)
u′(c0) > 1 >

u′(c1H)
u′(c0) .

Thus, risk-averse farmers overweight their expected marginal returns in the low state and underweight

their expected marginal returns in the high state. The higher the degree of risk aversion, the lower

the farmer’s WTP for agricultural inputs, regardless of whether the credit constraint binds or not.

Therefore, in the presence of uninsured risks, a subsidy on a crop-specific input does not necessarily

induce adoption by farmers with low expected returns. At the same time, more risk-averse farmers

can be less responsive to input subsidies compared to less risk-averse farmers.

5.4 Discussion

The model suggests that, in the presence of credit and/ or risk market frictions, farmers with similar

expected returns may show different levels of WTP for agricultural inputs. One reason for that is

some farmers face binding credit constraints and some do not. In addition, some farmers may be more

risk-averse than others. The results presented in Section 4.3 and Section 4.4 show that self-selected

non-buyers do not realize lower returns compared to the average farmer. In addition, the results

from a data-driven heterogeneity analysis presented in Section 5.2 show that non-buyers who are most

responsive to the full subsidy in stage two are significantly more likely to face constraints on additional

borrowing. Put together, these findings suggest that credit or liquidity constraints may explain the low

WTP revealed by non-buyers. However, there is also a possibility that other mechanisms may explain

the main results. Providing suggestive evidence that credit constraints is a plausible mechanism for

explaining the main results does not eliminate the possibility that other mechanisms may be plausible

too.
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6 Conclusion

This paper examines whether lower prices distort allocative efficiency for goods with heterogeneous

marginal benefits. I take this research question to the context of agricultural production where price

subsidies are common, and the factors contributing to heterogeneity in farmers’ returns are numerous.

The subsidized agricultural input in this study is an improved wheat seed that has an environmental

externality due to its resistance to contagious crop disease. Subsidizing the improved seed may improve

allocative efficiency by reaching farmers who have high returns but are facing constraints to adoption.

Alternatively, subsidization may distort allocative efficiency by allocating the seed to farmers who

either waste the subsidized seed or have low returns to adoption.

Using a two-stage experimental design, I compare the outcomes of farmers who receive the seed for

free in the first stage with the outcomes of farmers who receive the seed for free in the second stage

after selecting out of buying the seed in stage one. I find that free distribution increases not only take

up but also the likelihood of adoption (i.e., planting the seed rather than consuming wheat seeds for

food). The effect of stage-one free distribution treatment on adoption by the average farmer is on par

with the effect of stage-two free distribution treatment on adoption by self-selected non-buyers. Thus,

non-buyers in stage one show relatively high willingness to adopt conditional on receiving the seed for

free in stage two.

A comparison between the returns of the average farmer and the returns of non-buyers does not

suggest that non-buyers select out of buying the seed due to lower returns. On the contrary, farmers

who select out of buying the improved seed at a low subsidy level realize slightly higher returns

compared to the average farmer. The two-stage randomization allows me to infer the average returns

of the farmers who are induced to buy the seed as the subsidy level increases from low to medium (i.e.,

would-be buyers at the medium subsidy). I show that the would-be buyers at the medium subsidy

level have higher than average returns. Thus, lowering agricultural input prices in the study setting

does not distort allocation to lower return farmers.

Several mechanisms may explain why non-buyers select out of buying the improved seed if their

actual returns are not lower than the returns of the average farmer. While I do not attempt to isolate

one mechanism as an exclusive explanation for the main results, I do provide suggestive evidence that

binding credit constraints may provide a plausible explanation for non-buyers’ outcomes. Empirically, I

find that non-buyers who are most responsive to stage-two free distribution treatment are more likely to

report binding credit constraints at baseline compared to the least affected non-buyers. Theoretically,

the credit constraints mechanism is consistent with a model in which farmers’ WTP for agricultural

inputs is shifted downward when the credit constraint binds. That is, a binding credit constraint can

result in a gap between revealed WTP and expected marginal returns.

In conclusion, this paper provides the first experimental evidence that agricultural input prices

do not screen farmers based on their actual returns. This implies that policy makers who aim to

increase the dissemination of agricultural technologies cannot rely on market prices as a mechanism

for targeting high return farmers. Nevertheless, this finding does not imply that a universal subsidy

is an optimal policy solution either. An alternative policy might be to use a targeting mechanism

independent of prices. For example, the second wave of agricultural input subsidies in Sub-Saharan

Africa relies on agricultural extension agents to target farmers with high expected returns. This policy

might be justified when prices fail to sort farmers based on their returns. However, relying on the

subjective judgement of extension agents entails its own problems. Further research is needed to

evaluate new mechanisms for targeting farmers with high marginal returns to adoption of modern

agricultural technologies.

25



References

Abate, Gashaw Tadesse, Tanguy Bernard, Alan De Brauw, and Nicholas Minot. 2018. “The impact of

the use of new technologies on farmers’ wheat yield in Ethiopia: evidence from a randomized control

trial.” Agricultural Economics 49:409–421.

Agness, Daniel J, Travis Baseler, Sylvain Chassang, Pascaline Dupas, and Erik Snowberg. 2022. “Valu-

ing the time of the self-employed.” Tech. rep., National Bureau of Economic Research.

Ashraf, Nava, James Berry, and Jesse M Shapiro. 2010. “Can Higher Prices Stimulate Product Use ?

Evidence from a Field Experiment in Zambia.” American Economic Review 100:2383–2413.

Ashraf, Nava, Xavier Gine, and Dean Karlan. 2009. “Finding Missing Markets (and a Disturbing Epi-

logue): Evidence From an Export Crop Adoption and Marketing Intervention.” American Journal

of Agricultural Economics 91 (4):973–990.

Beaman, Lori, Dean Karlan, Bram Thuysbaert, and Christopher Udry. 2023. “Selection into credit

markets: Evidence from agriculture in Mali.” Econometrica 91 (5):1595–1627.

Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen. 2014. “Inference on Treatment Ef-

fects after Selection among High-Dimensional Controls.” Review of Economic Studies (November

2013):608–650.

Berry, James, Greg Fischer, and Raymond Guiteras. 2020. “Eliciting and Utilizing Willingness to Pay:

Evidence from Field Trials in Northern Ghana.” Journal of Political Economy 128 (4):1436–1473.

Carter, Michael, Rachid Laajaj, and Dean Yang. 2021. “Subsidies and the african green revolution:

Direct effects and social network spillovers of randomized input subsidies in Mozambique.” American

Economic Journal: Applied Economics 13 (2):206–29.

Chernozhukov, Victor, Mert Demirer, Esther Duflo, and Ivan Fernandez-Val. 2020. “Generic Machine

Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, with Applica-

tion to Immunization in India.” .

Chernozhukov, Victor, Ivan Fernandez-Val, and Blaise Melly. 2013. “Inference on counterfactual dis-

tributions.” Econometrica 81 (6):2205–2268.

CIMMYT. 2019. “What is wheat blast?” URL https://www.cimmyt.org/news/

what-is-wheat-blast/.

———. 2021. “Taming wheat blast: Researchers point out the future of the disease, the ways to manage

it and prevent it from spreading – within and across continents.” URL \ref{https://www.cimmyt.

org/news/taming-wheat-blast/}{https://www.cimmyt.org/news/taming-wheat-blast/}.

Cohen, Jessica and Pascaline Dupas. 2010. “Free Distribution or Cost-Sharing? Evidence from a

Randomized Malaria Prevention Experiment.” Quarterly Journal of Economics 125 (1):1–45.

Cole, Shawn, Daniel Stein, and Jeremy Tobacman. 2014. “Dynamics of Demand for Index Insurance:

Evidence from a Long-Run Field Experiment.” American Economic Review 104 (5):284–290.

Conley, Timothy G. and Christopher R. Udry. 2010. “Learning about a New Technology: Pineapple

in Ghana.” American Economic Review 100 (1):35–69.

Duflo, Esther, Michael Kremer, and Jonathan Robinson. 2011. “Nudging farmers to use fertilizer:

Theory and experimental evidence from Kenya.” American Economic Review 101 (6):2350–2390.

26

https://www.cimmyt.org/news/what-is-wheat-blast/
https://www.cimmyt.org/news/what-is-wheat-blast/
\ref {https://www.cimmyt.org/news/taming-wheat-blast/}{https://www.cimmyt.org/news/taming-wheat-blast/}
\ref {https://www.cimmyt.org/news/taming-wheat-blast/}{https://www.cimmyt.org/news/taming-wheat-blast/}


Emerick, Kyle. 2018. “Trading frictions in Indian village economies.” Journal of Development Eco-

nomics 132:32–56.

Emerick, Kyle, Alain De Janvry, Elisabeth Sadoulet, and Manzoor H. Dar. 2016. “Technological

innovations, downside risk, and the modernization of agriculture.” American Economic Review

106 (6):1537–1561.

Field, Erica, Rohini Pande, John Papp, and Natalia Rigol. 2013. “Does the Classic Microfinance Model

Discourage Entrepreneurship Among the Poor? Experimental Evidence from India.” 103 (6):2196–

2226.

Fink, Günther, B Kelsey Jack, and Felix Masiye. 2020. “Seasonal Liquidity, Rural Labor Markets, and

Agricultural Production.” American Economic Review 110 (11):3351–3392.

Foster, Andrew D and Mark R Rosenzweig. 1995. “Learning by doing and learning from others: Human

capital and technical change in agriculture.” Journal of Political Economy 103 (6):1176–1209.
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Figures and Tables

Figure 1: Experimental design

Stage 2

Stage 1

Total sample size = 
220 villages 

Control villages
(40 villages)

No intervention

High subsidy villages
(60 villages)

100% subsidy 
(25 villages)

50% subsidy 
(35 villages)

Medium-low subsidy 
villages

(120 villages)

Village-level subsidies: 
medium [25-40% 

subsidy]
low [0-20% subsidy]

Stage-two control 
villages

(60 villages)

No further 
intervention

Stage-two 
treatment villages

(60 villages)

Free distribution 
to non-buyers

ITT for the entire population

ITT for self-selected non-buyers

Notes: This figure illustrates the two-stage experimental design. In the first stage, villages are randomized into a pure

control arm and two treatment arms. One treatment arm receives a high (100% - 50%) subsidy level, and the other

treatment arm receives a medium-low subsidy levels (40% - 0%) for an improved wheat seed. Farmers in treatment

villages are offered to buy the improved seed at the village-level subsidy rate in a take-it-or-leave-it design. In the second

stage of the experiment, villages in medium-low subsidy arm are randomized into stage-two treatment and stage-two

control. Non-buyers in stage-two treatment villages are offered the same improved seed for free within two weeks after

the implementation of stage-one. The solid rectangle in the top-right corner highlights the comparison between stage-

one free-distribution villages and the pure control villages, which is used to estimate treatment effects for the entire

population. The dashed rectangle in the bottom-left corner highlights the comparison between non-buyers in stage-two

treatment and stage-two control villages, which is used to estimate treatment effects among non-buyers.
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Figure 2: Timeline of implementation and data collection

Baseline survey

October 2021

Village census, sample 
selection, and market survey

September 2021

Two-stage intervention and 
seed distribution survey

October - November 2021

Second follow-up survey

May – July 2023

First follow-up survey

May - June 2022

Notes: This figure summarizes the timeline for implementation and data collection. The baseline survey was completed

before starting the intervention. The two-stages of the intervention were completed at least one week before the start

of the planting season. The first follow-up survey was collected at the end of wheat harvesting season. The second

follow-up survey was collected at the end of wheat harvesting season the following year.
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Figure 3: Demand vs. usage of distributed seeds

Notes: The subsidy rates on the horizontal axis refer to high (50-100%), medium (25-40%), and low (0-20%) subsidy.

Panel A shows the share of treated farmers who took up the improved seed at the village-level subsidy rate in stage one

of the experiment. Panel B shows the share of farmers who planted the seeds among the self-selected sample of farmers

who purchased the seeds in stage one. The data used to plot this figure is the entire sample of treatment villages. The

results are similar when stage-two treatment villages are excluded from the sample. Confidence intervals are at the 95%

level.
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Figure 4: Selection effects on plot revenues and plot profits

Notes: This figure summarizes regression results using the specification in equation (6). The outcome variable in panel

A is plot revenues (in logs), and the outcome variable in panel B is plot profits (in logs). Confidence intervals are at the

95% level.

32



Figure 5: Selection effects: Distinction between self-selection in medium-subsidy vs low-subsidy villages

Notes: This figure summarizes regression results using the specification in equation (7) that interacts the coefficients on

stage-one non-buyers with the randomized subsidy level that was received at stage one. The outcome variable in panel

A is plot revenues (in logs), and the outcome variable in panel B is plot profits (in logs). Confidence intervals are at the

95% level.
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Figure 6: Distinction between farmers with the highest and lowest treatment effects on growing wheat: Risk

aversion and credit constraints

Notes: This figure compares farmers with the highest versus the lowest treatment effects on growing wheat in terms of

the likelihood of obtaining formal credit at baseline, the likelihood of reporting constraints to borrowing more money

at the given rates, and their degree of risk aversion (measured using baseline survey module on attitudes towards risk).

The sample in panel A is the treated farmers in the free-distribution villages and surveyed farmers in the pure control

villages. The sample in panel B is the self-selected non-buyers in the stage-two treatment and stage-two control villages.

Confidence intervals are at the 90% level.
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Figure 7: Distinction between farmers with the highest and lowest treatment effects on growing wheat: The

likelihood of growing wheat at baseline

Notes: This figure compares farmers with the highest versus the lowest treatment effects on growing wheat in terms of

the likelihood of growing wheat on a surveyed plot at baseline. The sample in panel A is the treated farmers in the

free-distribution villages and surveyed farmers in the pure control villages. The sample in panel B is the self-selected

non-buyers in the stage-two treatment and stage-two control villages. Confidence intervals are at the 90% level.
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Table 1: Sample size by subsidy rate and self-selection into buying at stage one

Subsidy Rate

A. Village-level Randomization

S2 Control Villages S2 Treatment Villages

High subsidy (50-100%)

Free distribution 25 - -

50% subsidy 35 - -

Medium subsidy (25-40%) 25 30

Low subsidy (0-20%) 35 30

Pure control 40 - -

Villages Total 160 60

B. Farmers’ Self-Selection into Buying

S2 Control Villages S2 Treatment Villages

S1 Buyer S1 Non-Buyer S1 Buyer S1 Non-Buyer

N % N % N % N %

Medium subsidy (25-40%) 163 82 459 35 290 82 459 41

Low subsidy (0-20%) 36 18 839 65 63 18 662 59

Self-Selection Total 199 100% 1,298 100% 353 100% 1,121 100%

Notes: This table summarizes the sample size based on village-level randomization (panel A) and farmers’ self-selection into buying the

seeds at stage one (panel B). The village-level randomization is relevant for an analysis of the intent-to-treat effects. The self-selected

sample is relevant for analyses that examine whether farmers select out of buying the improved seed based on realized returns. A

random sample of 25 farmers is treated in each of the treatment villages. One village was excluded from stage-two treatment during

implementation because farmers refused to cooperate during seed sales intervention at stage one.
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Table 2: Characteristics of Buyers versus Non-Buyers

Medium-Subsidy Villages Low-Subsidy Villages

(1) (2) (3) (4) (5) (6)

Buyers
Non-

Buyers
Difference Buyers

Non-

Buyers
Difference

A. Demographics

Farmer’s age 44.81 44.05 0.81 44.83 44.15 0.22

(12.41) (12.45) (1.05) (12.44) (12.84) (1.40)

Farmer’s years of schooling 4.88 4.44 0.54* 5.03 4.93 0.14

(3.90) (3.92) (0.28) (4.48) (4.10) (0.54)

HH members available for farm work 1.72 1.70 0.02 1.94 1.56 0.23**

(0.90) (0.90) (0.07) (0.89) (0.75) (0.10)

B. Non-farm income, risk, and credit

Access to non-farm income (0/1) 0.34 0.25 0.09*** 0.31 0.28 0.04

(0.48) (0.43) (0.03) (0.47) (0.45) (0.05)

Risk aversion index [-5, 5] 0.17 -0.12 0.18 0.19 0.16 -0.08

(1.02) (1.12) (0.12) (1.04) (1.17) (0.12)

Access to credit from banks or NGOs (0/1) 0.44 0.40 0.02 0.43 0.43 0.01

(0.50) (0.49) (0.03) (0.50) (0.50) (0.06)

HH’s outstanding loans (’000 BDT’) 28.26 19.99 9.33** 28.98 23.45 5.72

(58.20) (42.74) (4.19) (53.89) (44.05) (5.75)

HH faces credit limitations 0.11 0.10 -0.01 0.12 0.13 -0.00

(0.31) (0.30) (0.02) (0.33) (0.33) (0.03)

C. Agriculture

Area of land cultivated at baseline (acres) 1.60 1.35 0.25*** 1.74 1.51 0.23

(1.24) (1.20) (0.09) (1.56) (1.50) (0.17)

Number of plots cultivated at baseline 5.44 4.87 0.43 5.66 4.98 0.80**

(2.91) (2.98) (0.26) (3.21) (2.91) (0.31)

Value of livestock owned (’000 BDT) 123.54 123.07 3.82 110.21 108.10 -9.99

(131.00) (138.28) (8.90) (135.91) (130.08) (14.57)

Farmer grew wheat at baseline 0.41 0.38 -0.01 0.36 0.34 0.02

(0.49) (0.49) (0.04) (0.48) (0.48) (0.05)

Stated WTP for improved wheat seed (BDT/kg) 16.09 18.82 -3.44* 14.60 16.21 -1.51

(12.90) (15.66) (1.81) (10.99) (13.70) (0.90)

Plot revenues (’000 BDT/acre) 75.23 71.16 7.79 71.01 65.83 1.63

(93.93) (60.01) (6.69) (64.47) (49.65) (6.39)

Plot profits (’000 BDT/acre) 22.74 21.21 2.83 29.66 18.02 6.45

(84.10) (56.38) (5.91) (47.56) (132.09) (5.49)

Notes: This table compares baseline characteristics of seed buyers versus non-buyers in the medium-subsidy and low-subsidy villages separately.

Columns (3) and (6) are estimated by regressing each of the listed covariates on a dummy variable for the corresponding comparison. All

regressions use strata fixed effects and cluster standard errors at the village level.
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Table 3: Impact on adoption and wheat cultivation

Adoption (farm-level) Growing Wheat (farm-level) Farm-level Share of Wheat Area Growing Wheat (plot-level)

(1) (2) (3) (4) (5) (6) (7) (8)

Free distribution village (γ1) 0.41*** 0.41*** 0.29*** 0.28*** 0.09*** 0.09*** 0.18*** 0.18***

(0.04) (0.04) (0.04) (0.04) (0.02) (0.02) (0.04) (0.04)

50% Subsidy village 0.29*** 0.19*** 0.06*** 0.12***

(0.04) (0.04) (0.02) (0.03)

Stage 2 treatment village 0.36*** 0.24*** 0.08*** 0.15***

(0.03) (0.03) (0.01) (0.03)

Stage 2 control village 0.06*** 0.04 0.02 0.03

(0.02) (0.03) (0.02) (0.03)

S1 Non-buyer x S2 Treat (γ2) 0.35*** 0.23*** 0.07*** 0.13***

(0.04) (0.04) (0.02) (0.03)

S1 Non-buyer x S2 Control (γ3) 0.03 0.02 0.01 0.01

(0.03) (0.04) (0.02) (0.03)

S1 Buyer x S2 Treat 0.39*** 0.27*** 0.09*** 0.20***

(0.05) (0.05) (0.02) (0.05)

S1 Buyer x S2 Control 0.32*** 0.23*** 0.08*** 0.14**

(0.06) (0.06) (0.02) (0.05)

Impact among would-be buyers 0.85*** 0.60** 0.21 0.45

(0.28) (0.30) (0.14) (0.28)

p-value Free = S2T 0.22 0.29 0.52 0.43

p-value γ1 = γ2 − γ3 0.07 0.23 0.30 0.26

CI: γ1 − γ2 + γ3 (-0.01, 0.20) (-0.05, 0.18) (-0.03, 0.08) (-0.04, 0.17)

p-val S2Tnon buyer = S2Cnon buyer 0.00 0.00 0.00 0.00

p-value S2Tbuyer = S2Cbuyer 0.29 0.55 0.69 0.32

Strata FE Yes Yes Yes Yes Yes Yes Yes Yes

R-squared 0.209 0.265 0.147 0.192 0.097 0.118 0.103 0.127

Control villages’ mean 0.02 0.02 0.15 0.15 0.06 0.06 0.10 0.10

Number of observations 5,489 4,611 5,489 4,611 5,489 4,611 5,054 4,234

Notes: Farm-level outcomes refer to variables measured using survey data on the farmer’s three main plots. Plot-level outcomes are measured using the top-ranked plot for each farmer. A top-ranked

plot is defined as the farm plot ranked by the farmer at baseline as the most suitable plot for growing wheat. The outcome variable in columns (1) and (2) is whether the farmer adopted the

improved seed on a surveyed plot. The outcome variable in columns (3) and (4) is whether the farmer cultivated wheat on a surveyed plot (extensive margin). The outcome variable in columns

(5) and (6) is the share of the farm area allocated to wheat (intensive margin). Finally, the outcome variable in columns (7) and (8) is whether the farmer cultivated wheat on the top-ranked plot.

Impact among would-be buyers is calculated as:
γ1−(0.82)∗(γ2−γ3)

0.18
, where 0.18 is the probability of buying the seeds at stage one in the medium-low subsidy villages. Standard errors in parentheses

are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4: Impact on plot revenues and profits

Plot Revenues (log) Plot Profits (log)

(1) (2) (3) (4) (5) (6) (7) (8)

Free distribution village (γ1) -0.12 -0.11* -0.12 -0.12* -0.11 -0.10 -0.11 -0.11

(0.08) (0.07) (0.08) (0.07) (0.12) (0.12) (0.12) (0.12)

50% Subsidy village -0.02 -0.02 -0.01 0.03

(0.07) (0.06) (0.11) (0.10)

Stage-two treatment village -0.09 -0.09* -0.06 -0.04

(0.06) (0.05) (0.09) (0.09)

Stage 2 control village -0.00 -0.01 0.03 0.02

(0.06) (0.05) (0.10) (0.09)

S1 Non-buyer x S2 Treat (γ2) -0.08 -0.08 -0.04 -0.02

(0.06) (0.05) (0.10) (0.10)

S1 Non-buyer x S2 Control (γ3) 0.02 0.01 0.06 0.05

(0.07) (0.06) (0.10) (0.10)

S1 Buyer x S2 Treat -0.20*** -0.19*** -0.38** -0.36**

(0.07) (0.07) (0.16) (0.16)

S1 Buyer x S2 Control -0.16** -0.16** -0.13 -0.15

(0.08) (0.08) (0.12) (0.12)

Impact among would-be buyers -0.22 -0.24 -0.14 -0.25

(0.53) (0.46) (0.80) (0.77)

p-value Free = S2T 0.61 0.66 0.65 0.54

p-value γ1 = γ2 − γ3 0.83 0.78 0.96 0.83

CI: γ1 − γ2 + γ3 (-0.22, 0.18) (-0.20, 0.15) (-0.31, 0.30) (-0.32, 0.26)

p-value S2Tnon buyer = S2Cnon buyer 0.11 0.08 0.33 0.43

p-value S2Tbuyer = S2Cbuyer 0.63 0.64 0.13 0.19

Strata FE Yes Yes Yes Yes Yes Yes Yes Yes

LASSO selected controls No Yes No Yes No Yes No Yes

R-squared 0.149 0.210 0.143 0.192 0.056 0.084 0.080 0.099

Control villages’ mean (’000 BDT/acre) 94.84 94.84 94.84 94.84 44.42 44.42 44.42 44.42

Number of observations 4,815 4,815 4,022 4,022 4,396 4,396 3,659 3,659

Notes: The outcome variable in columns (1) and (4) is the log of plot revenues. Revenues are measured as the output per unit area (i.e., yield) multiplied by

the farm-gate price. The outcome variable in columns (5) and (8) is the log of plot profits. Profits are measured as total revenues net of all input costs, where

both revenues and costs are measured per unit area. I follow Agness et al. (2022) rule of thumb of valuing the opportunity cost of family labor at 60% of the

average market wage. Impact among would-be buyers is calculated as:
γ1−(0.82)∗(γ2−γ3)

0.18
, where 0.18 is the probability of buying the seeds at stage one in the

medium-low subsidy villages. Standard errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5: Distinction between self-selection in medium-subsidy vs low-subsidy villages

Adoption Growing Wheat Plot Revenues Plot Profits

(farm-level) (plot-level) (log) (log)

(1) (2) (3) (4) (5) (6) (7) (8)

Free distribution village (λ1) 0.41*** 0.42*** 0.18*** 0.18*** -0.13* -0.13* -0.11 -0.12

(0.04) (0.04) (0.04) (0.04) (0.08) (0.07) (0.12) (0.12)

Subsidy Med x S1 Buyer 0.36*** 0.37*** 0.14*** 0.14*** -0.11 -0.08 -0.19 -0.17

(0.04) (0.04) (0.04) (0.04) (0.07) (0.06) (0.13) (0.13)

Subsidy Med x S1 Non-Buyer x S2 Treat (λ2) 0.36*** 0.36*** 0.08* 0.08* -0.07 -0.06 -0.10 -0.08

(0.05) (0.05) (0.05) (0.04) (0.07) (0.07) (0.13) (0.13)

Subsidy Med x S1 Non-Buyer x S2 Control (λ3) 0.04 0.05 -0.01 0.01 0.15 0.12 0.18 0.17

(0.03) (0.03) (0.04) (0.04) (0.09) (0.08) (0.15) (0.14)

Subsidy Low x S1 Buyer 0.34*** 0.35*** 0.22*** 0.24*** -0.30*** -0.31*** -0.39** -0.41**

(0.06) (0.06) (0.07) (0.06) (0.08) (0.08) (0.17) (0.16)

Subsidy Low x S1 Non-Buyer x S2 Treat (λ4) 0.34*** 0.34*** 0.17*** 0.18*** -0.09 -0.11* 0.03 0.03

(0.04) (0.04) (0.04) (0.04) (0.07) (0.06) (0.11) (0.11)

Subsidy Low x S1 Non-Buyer x S2 Control (λ5) 0.03 0.03 0.03 0.03 -0.06 -0.06 -0.03 -0.04

(0.03) (0.03) (0.04) (0.03) (0.07) (0.06) (0.11) (0.10)

Impact among would-be buyers at subsidy med 0.29* 0.30* 0.22 0.29* 0.38 0.23 0.76 0.70

(0.16) (0.16) (0.17) (0.16) (0.29) (0.26) (0.47) (0.44)

p-value S2Tmed = S2Cmed 0.00 0.00 0.08 0.13 0.02 0.03 0.08 0.12

p-value Free = S2Tmed − S2Cmed 0.18 0.15 0.19 0.09 0.47 0.63 0.40 0.51

p-value S2Tlow = S2Clow 0.00 0.00 0.00 0.00 0.77 0.50 0.62 0.55

p-value Free = S2Tlow − S2Clow 0.06 0.05 0.43 0.50 0.31 0.37 0.29 0.23

p-value S2Tmed − S2Cmed = S2Tlow − S2Clow 0.86 0.93 0.53 0.27 0.09 0.19 0.08 0.09

Strata FE Yes Yes Yes Yes Yes Yes Yes Yes

LASSO selected controls No Yes No Yes No Yes No Yes

R-squared 0.264 0.272 0.131 0.162 0.156 0.206 0.081 0.102

Control villages’ mean 0.02 0.02 0.10 0.10 94.84 94.84 44.42 44.42

Number of observations 4,611 4,611 4,234 4,234 4,022 4,022 3,659 3,659

Notes: The outcome variable in columns (1)-(2) is whether the farmer adopted the improved seed. The outcome variable in columns (3)-(4) is whether the farmer

cultivated wheat on the reference plot (extensive margin). The outcome variable in column (5)-(6) is the log of plot revenues. The outcome variable in column (7)-(8)

is the log of plot profits. Impact among would-be buyers at medium subsidy is calculated as:
(λ4−λ5)−(0.67)∗(λ2−λ3)

0.33
, where 0.33 is the probability of buying the seeds

at stage one in the medium-subsidy villages. Standard errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 6: Impact on plot profits: Distinction between self-selection in medium- vs low-subsidy villages

Plot Profits (’000 BDT/acre) Non-positive Plot Profits

(1) (2) (3)

Free distribution village (λ1) -6.60 -6.53 0.00

(5.55) (5.22) (0.02)

Subsidy Med x S1 Buyer -6.86 -6.09 0.03

(5.45) (5.28) (0.03)

Subsidy Med x S1 Non-buyer x S2 Treat (λ2) -9.76 -8.53 0.07∗

(6.00) (5.88) (0.04)

Subsidy Med x S1 Non-buyer x S2 control (λ3) 9.52 8.73 -0.01

(9.25) (8.97) (0.03)

Subsidy Low x S1 Buyer -17.59∗∗ -18.55∗∗ 0.08

(7.31) (7.30) (0.05)

Subsidy Low x S1 Non-buyer x S2 Treat (λ4) -0.42 -0.34 0.04

(5.81) (5.56) (0.03)

Subsidy Low x S1 Non-buyer x S2 control (λ5) -5.33 -5.57 0.03

(5.35) (4.99) (0.03)

Impact among would-be buyers at subsidy med 54.03∗∗ 50.90∗∗ -0.13

(24.14) (22.83) (0.12)

p-value S2Tmed = S2Cmed 0.03 0.05 0.07

p-value Free = S2Tmed − S2Cmed 0.24 0.31 0.14

p-value S2Tlow = S2Clow 0.37 0.30 0.75

p-value Free = S2Tlow − S2Clow 0.13 0.10 0.88

p-value S2Tmed − S2Cmed = S2Tlow − S2Clow 0.02 0.02 0.20

Strata FE Yes Yes Yes

LASSO selected controls No Yes No

R-squared 0.095 0.116 0.057

Control villages’ mean 44.42 44.42 0.07

Number of observations 4,024 4,024 4,024

Notes: The outcome variable in columns (1)-(2) is plot profits measured in thousands of Bangladeshi Takas per acre. The outcome

variable in column (3) is the likelihood of making non-positive plot profits. The results in column (3) do not include LASSO selected

controls since post-double-lasso did not select any controls for this outcome variable beyond the (non-penalized) strata fixed effects.

Impact among would-be buyers at medium subsidy is calculated as:
(λ4−λ5)−(0.67)∗(λ2−λ3)

0.33
, where 0.33 is the probability of buying

the seeds at stage one in the medium-subsidy villages. Standard errors in parentheses are clustered at the village level. ∗ p < 0.10,

∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: Impacts on adoption and disadoption in Year 2

(1) (2) (3) (4)

Year 2 Any Adoption Year 2 Persistent Adoption Year 2 New Adoption Year 2 Disadoption

(farm-level) (farm-level) (farm-level) (farm-level)

Free distribution village (γ1) 0.07* 0.12*** -0.05** 0.30***

(0.04) (0.03) (0.02) (0.03)

S1 Non-buyer x S2 Treat (γ2) 0.09*** 0.10*** -0.01 0.25***

(0.03) (0.02) (0.02) (0.03)

S1 Non-buyer x S2 Control (γ3) 0.00 0.01 -0.01 0.02

(0.02) (0.02) (0.02) (0.02)

S1 Buyer x S2 Treat 0.17*** 0.13*** 0.03 0.26***

(0.04) (0.03) (0.03) (0.04)

S1 Buyer x S2 Control 0.08 0.11*** -0.03 0.21***

(0.05) (0.04) (0.03) (0.05)

Impact among would-be buyers -0.04 0.23 -0.26* 0.61***

(0.25) (0.21) (0.15) (0.20)

p-value γ1 = γ2 − γ3 0.64 0.54 0.11 0.07

CI: γ1 − γ2 + γ3 (-0.12, 0.07) (-0.06, 0.11) (-0.11, 0.01) (-0.01, 0.15)

p-value S2Tnon buyer = S2Cnon buyer 0.00 0.00 0.91 0.00

p-value S2Tbuyer = S2Cbuyer 0.13 0.62 0.04 0.44

Strata FE Yes Yes Yes Yes

R-squared 0.186 0.109 0.125 0.181

Control villages’ mean 0.09 0.00 0.09 0.01

Number of observations 4,601 4,594 4,594 4,594

Notes: The outcome variable in column (1) is whether the farmer adopted the improved seed in year 2. The outcome variable in column (2) is whether the farmer

adopted the improved seed in both years 1 and 2. The outcome variable in column (3) is whether the farmer adopted the improved seed in year 2 but not in year 1.

The outcome variable in column (4) is whether the farmer adopted the improved seed in year 1 but dis-adopted in year 2. Impact among would-be buyers is calculated

as:
γ1−(0.82)∗(γ2−γ3)

0.18
, where 0.18 is the probability of buying the seeds at stage one in the medium-low subsidy villages. Standard errors in parentheses are clustered

at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 8: Heterogeneity in predicted average treatment effects

(1) (2) (3) (4) (5)

Growing Wheat Log Revenues Revenues (’000 BDT/acre) Log Profits Profits (’000 BDT/acre)

Panel A: Unconditional free distribution at stage one

ATE (β1) 0.19 -0.15 -12.71 -0.17 -7.65

(0.11, 0.25) (-0.26, -0.04) (-23.64, -1.82) (-0.36, 0.02) (-17.06, 1.81)

[0.000] [0.005] [0.024] [0.083] [0.117]

HET (β2) 0.92 0.79 0.57 0.69 0.43

(0.52, 1.29) (0.36, 1.12) (0.14, 1.03) (0.17, 1.17) (-0.04, 0.91)

[0.000] [0.000] [0.009] [0.010] [0.070]

Best ML method Elastic Net Elastic Net Elastic Net Elastic Net Elastic Net

Panel B: Free distribution among non-buyers at stage two

ATE (β1) 0.13 -0.09 -8.02 -0.07 -2.86

(0.07, 0.19) (-0.18, -0.01) (-18.07, 1.76) (-0.24, 0.09) (-10.84, 4.89)

[0.000] [0.065] [0.107] [0.400] [0.481]

HET (β2) 0.81 0.74 0.87 0.56 0.86

(0.30, 1.33) (0.25, 1.13) (0.38, 1.35) (-0.01, 1.11) (0.29, 1.38)

[0.002] [0.003] [0.000] [0.040] [0.002]

Best ML method Random Forest Random Forest Random Forest Random Forest Random Forest

Notes: This table presents results on estimating the best linear predictor (BLP) of the conditional average treatment effects (CATE) following the

approach of Chernozhukov et al. (2020). The sample in panel A is the treated farmers in the free-distribution villages and surveyed farmers in the

pure control villages. The sample in panel B is the self-selected non-buyers in the stage-two treatment and stage-two control villages. Results from

the best machine learning method (i.e., the algorithm with the highest prediction power) for each outcome are reported. Reported values are the

median of predicted treatment effects over 100 splits. 90% confidence interval in parenthesis. P-values for the hypothesis that the parameter is equal

to zero in brackets.
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Table 9: Group average treatment effects of the least and most affected groups

(1) (2) (3) (4) (5)

Growing Wheat Log Revenues Revenues (’000 BDT/acre) Log Profits Profits (’000 BDT/acre)

Panel A: Unconditional free distribution at stage one

Group 5 (20% most affected) 0.49 0.02 3.23 0.01 2.51

(0.32, 0.68) (-0.14, 0.21) (-12.55, 19.52) (-0.30, 0.32) (-10.52, 15.53)

[0.000] [0.766] [0.708] [0.937] [0.700]

Group 1 (20% least affected) 0.14 -0.51 -36.31 -0.66 -19.71

(0.01, 0.28) (-0.80, -0.22) (-66.88, -6.69) (-1.21, -0.07) (-40.96, 1.26)

[0.029] [0.001] [0.016] [0.029] [0.069]

Group 5 - Group 1 0.35 0.54 39.13 0.66 21.78

(0.15, 0.57) (0.21, 0.86) (4.81, 73.65) (0.01, 1.31) (-3.19, 47.05)

[0.001] [0.002] [0.025] [0.047] [0.086]

Best ML method Elastic Net Elastic Net Elastic Net Elastic Net Elastic Net

Panel B: Free distribution among non-buyers at stage two

Group 5 (20% most affected) 0.27 0.10 14.15 0.13 9.06

(0.14, 0.40) (-0.11, 0.30) (-5.22, 33.47) (-0.18, 0.46) (-5.21, 22.90)

[0.000] [0.343] [0.142] [0.383] [0.205]

Group 1 (20% least affected) 0.05 -0.21 -25.81 -0.28 -18.89

(-0.06, 0.16) (-0.36, -0.06) (-44.06, -8.13) (-0.61, 0.03) (-35.59, -2.25)

[0.401] [0.007] [0.005] [0.091] [0.028]

Group 5 - Group 1 0.23 0.32 39.70 0.45 27.64

(0.07, 0.39) (0.07, 0.55) (16.43, 63.21) (0.00, 0.89) (8.03, 46.56)

[0.004] [0.009] [0.001] [0.060] [0.004]

Best ML method Random Forest Random Forest Random Forest Random Forest Random Forest

Notes: This table presents results on estimating ordered group average treatment effects (GATES) following the approach of Chernozhukov et al. (2020). The

sample in panel A is the treated farmers in the free-distribution villages and surveyed farmers in the pure control villages. The sample in panel B is the self-selected

non-buyers in the stage-two treatment and stage-two control villages. Results from the best machine learning method (i.e., the algorithm with the highest prediction

power) for each outcome are reported. Reported values are the median of predicted treatment effects over 100 splits. 90% confidence interval in parenthesis. P-values

for the hypothesis that the parameter is equal to zero in brackets.
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A Additional Figures and Tables

Figure A.1: Wheat blast vulnerability by district during 2016-2019
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Figure A.2: Village-level wheat intensity in the sample

Notes: This figure shows kernel density estimate for the share of farmers in the sampled villages who grew wheat at

least once over the past four years. Data on the history of wheat cultivation by all farmers in the village was collected

as part of the village census. By construction, villages in which less than 10% of the farmers have ever cultivated wheat

in the past few years were excluded from the sample.
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Figure A.3: Seeds demand at stage-one

Notes: The seed price is the village-level offer price that was randomly allocated at the first stage of the experiment.

Offer prices were chosen to correspond to subsidy rates ranging from 50% to 0% relative to the official price of 40

BDT/kg. Confidence intervals are at the 95% level.
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Figure A.4: Sorted Group Average Treatment Effects (GATES) for the main outcomes

Notes: This figure summarizes results on estimating ordered group average treatment effects (GATES) for the main

outcomes, as presented in Table 9. The sample in panel A is the treated farmers in stage-one free-distribution villages

and surveyed farmers in the pure control villages. The sample in panel B is the self-selected non-buyers in the stage-two

treatment and stage-two control villages. Confidence intervals are at the 90% level.
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Figure A.5: Distinction between farmers with the highest and lowest treatment effects on profits: Risk aversion

and credit constraints

Notes: This figure compares farmers with the highest versus the lowest treatment effects on plot profits in terms of

the likelihood of obtaining formal credit at baseline, the likelihood of reporting constraints to borrowing more money

at the given rates, and their degree of risk aversion (measured using baseline survey module on attitudes towards risk).

The sample in panel A is the treated farmers in the free-distribution villages and surveyed farmers in the pure control

villages. The sample in panel B is the self-selected non-buyers in the stage-two treatment and stage-two control villages.

Confidence intervals are at the 90% level.
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Figure A.6: Distinction between farmers with the highest and lowest treatment effects on growing wheat: The likelihood of growing common dry-season crops at baseline

Notes: This figure compares farmers with the highest versus lowest treatment effects on growing wheat in terms of the likelihood of growing a common dry-season crop on a surveyed

plot at baseline. The sample in panel A is the treated farmers in the free-distribution villages and the surveyed farmers in the pure control villages. The sample in panel B is the

self-selected non-buyers in the stage-two treatment and stage-two control villages. Confidence intervals are at the 90% level.
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Table A.1: Balance table

Variable

Stage-one Randomization Stage-two Randomization

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Pure

control

High

subsidy

Med-

low

subsidy

p-val

(1)-(2)

p-val

(2)-(3)

p-val

(1)-(3)

Stage-

two

control

Stage-

two

treat-

ment

p-val

(7) - (8)

Farmer’s age 46.51 45.27 44.22 0.03 0.21 0.00 43.81 44.64 0.30

Farmer’s years of schooling 4.81 4.77 4.78 0.81 0.98 0.95 4.75 4.81 0.46

HH members available for farm

work
1.71 1.62 1.64 0.66 0.67 0.20 1.60 1.67 0.81

Access to non-farm income (0/1) 0.32 0.29 0.28 0.56 0.41 0.25 0.28 0.28 0.90

Area of land cultivated last sea-

son (acres)
1.59 1.57 1.48 0.55 0.33 0.16 1.46 1.50 0.20

Number of plots cultivated by

farmer last season
5.14 5.17 5.04 0.96 0.95 0.74 4.82 5.25 0.05

Wheat area to total farm area 0.18 0.17 0.19 0.86 0.60 0.92 0.20 0.19 0.72

Farmer grew wheat on a main

plot
0.36 0.33 0.37 0.86 0.38 0.60 0.36 0.37 0.30

Farmer grew Boro rice on a main

plot
0.36 0.47 0.39 0.04 0.27 0.16 0.38 0.40 0.68

Primary plot is owned by the

farmer (0/1)
0.67 0.64 0.64 0.55 0.25 0.21 0.62 0.66 0.59

Primary plot’s area (acres) 0.34 0.32 0.32 0.33 0.99 0.26 0.32 0.32 0.14

Plot revenues (’000 BDT/acre) 63.33 68.38 68.99 0.12 0.47 0.23 69.34 68.65 0.46

Plot profits (’000 BDT/acre) 21.23 23.37 19.97 0.49 0.22 0.72 22.58 17.38 0.09

Sample size 1,000 1,500 3,000 1,500 1,500

Notes: This table presents summary statistics and tests for randomization balance. All variables are from baseline survey data. Plot-level characteristics refer to the

plot ranked by farmer at baseline as most-suitable for wheat. Plot-level as well as farm-level outcomes refer to the most recent dry season outcomes pre-intervention.

Columns (1)-(3) and (7)-(8) show sample means of the listed covariates for each arm in stages one and two of the experiment, respectively. Columns (4)-(6) and

column (9) are estimated by regressing each of the listed covariates on a dummy variable for the corresponding comparison. For example, column (4) shows the

p-values from regressing each covariate on an indicator for a high-subsidy treatment versus a control village. All regressions use strata fixed effects and cluster

standard errors at the village level.
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Table A.2: Uses of the distributed seeds

Planted the seeds Passed it on Used it as food

(1) (2) (3) (4) (5) (6)

Excluding S2T All T villages Excluding S2T All T villages Excluding S2T All T villages

Medium Subsidy [25-40%] -0.05 0.06 0.03

(0.07) (0.06) (0.07)

Low Subsidy [0-20%] 0.04 -0.03 -0.02

(0.09) (0.05) (0.09)

S1 Buyer x S2 Control -0.02 -0.01 0.04

(0.06) (0.04) (0.06)

S1 Buyer x S2 Treat 0.01 0.07* -0.08

(0.06) (0.04) (0.06)

S1 Non-buyer x S2 Treat 0.00 -0.00 0.00

(0.04) (0.03) (0.04)

Strata FE Yes Yes Yes Yes Yes Yes

R-squared 0.209 0.179 0.052 0.080 0.270 0.202

p-value S2Tbuyer = S2Cbuyer 0.71 0.14 0.12

High-Subsidy Villages’ Mean 0.49 0.49 0.13 0.13 0.36 0.36

Number of observations 1,599 3,046 1,599 3,046 1,599 3,046

Notes: This table presents results on the uses of the distributed seeds by treated farmers. The outcome in columns (1) and (2) is whether the treated farmer

themselves planted the distributed seeds on any farm plot. The outcome in columns (3) and (4) is whether the treated farmer passed the seeds to another farmer.

The outcome in columns (5) and (6) is whether the treated farmer used the distributed wheat seeds for food. Standard errors in parentheses are clustered at the

village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.3: Farmers perceive the distributed seed’s yield as higher than that of other seed varieties

(1) (2)

Excluding S2T All T villages

Medium Subsidy [25-40%] -0.02

(0.06)

Low Subsidy [0-20%] -0.04

(0.07)

S1 Buyer x S2 Control 0.02

(0.06)

S1 Buyer x S2 Treat 0.07*

(0.04)

S1 Non-buyer x S2 Treat -0.01

(0.04)

Strata FE Yes Yes

R-squared 0.167 0.102

p-value S2Tbuyer = S2Cbuyer 0.41

p-value S2Tbuyer = S2Tnon buyer 0.02

High-Subsidy Villages’ Mean 0.80 0.80

Number of observations 1,601 3,074

Notes: The outcome variable is whether the farmer perceives the distributed

seeds’ yield as higher than the yield of other wheat seed varieties. The alternative

to this outcome is that the farmer perceives the yield of the distributed seeds to

be similar or lower than that of other varieties or that the farmer does not know.

Standard errors in parentheses are clustered at the village level. * p < 0.10, **

p < 0.05, *** p < 0.01

53



Table A.4: Impact on adoption and wheat cultivation

Adoption (farm-level) Growing wheat (farm-level) Farm-level share of wheat area Growing wheat (plot-level)

(1) (2) (3) (4) (5) (6) (7) (8)

Free distribution village (γ1) 0.41*** 0.41*** 0.29*** 0.29*** 0.09*** 0.09*** 0.18*** 0.18***

(0.04) (0.04) (0.04) (0.04) (0.02) (0.02) (0.04) (0.04)

50% Subsidy village 0.29*** 0.18*** 0.06*** 0.12***

(0.04) (0.04) (0.02) (0.03)

Stage 2 treatment village 0.36*** 0.24*** 0.08*** 0.16***

(0.03) (0.03) (0.01) (0.03)

Stage 2 control village 0.07*** 0.06* 0.02 0.05*

(0.02) (0.03) (0.01) (0.03)

S1 Non-buyer x S2 Treat (γ2) 0.35*** 0.23*** 0.07*** 0.13***

(0.04) (0.04) (0.01) (0.03)

S1 Non-buyer x S2 Control (γ2) 0.04 0.02 0.01 0.02

(0.03) (0.03) (0.01) (0.03)

S1 Buyer x S2 Treat 0.40*** 0.28*** 0.09*** 0.21***

(0.05) (0.05) (0.02) (0.05)

S1 Buyer x S2 Control 0.31*** 0.24*** 0.07*** 0.15***

(0.05) (0.05) (0.02) (0.05)

Impact among would-be buyers 0.87*** 0.64** 0.22* 0.47*

(0.28) (0.30) (0.13) (0.27)

p-value Free = S2T 0.30 0.35 0.56 0.50

p-value γ1 = γ2 − γ3 0.06 0.19 0.30 0.19

CI: γ1 − γ2 + γ3 (-0.00, 0.20) (-0.04, 0.19) (-0.02, 0.07) (-0.03, 0.17)

p-val S2Tnon buyer = S2Cnon buyer 0.00 0.00 0.00 0.00

p-value S2Tbuyer = S2Cbuyer 0.18 0.47 0.56 0.29

Strata FE Yes Yes Yes Yes Yes Yes Yes Yes

LASSO controls Yes Yes Yes Yes Yes Yes Yes Yes

R-squared 0.214 0.274 0.168 0.219 0.128 0.163 0.127 0.157

Control Villages’ Mean 0.02 0.02 0.15 0.15 0.06 0.06 0.10 0.10

Number of observations 5,489 4,611 5,489 4,611 5,489 4,611 5,054 4,234

Notes: Farm-level outcomes refer to variables measured using all surveyed plots for each farmer. Plot-level outcomes, in contrast, are measured using the top-ranked plot for each farmer. A

top-ranked plot is defined as the farm plot ranked by the farmer at baseline as the most suitable plot for growing wheat. The outcome variable in columns (1) and (2) is whether the farmer

adopted the improved seed on a surveyed plot. The outcome variable in columns (3) and (4) is whether the farmer cultivated wheat on a surveyed plot (extensive margin). The outcome variable

in columns (5) and (6) is the share of the farm area allocated to wheat (intensive margin). Finally, the outcome variable in columns (7) and (8) is whether the farmer cultivated wheat on the

top-ranked plot. Impact among would-be buyers is calculated as:
γ1−(0.82)∗(γ2−γ3)

0.18
, where 0.18 is the probability of buying the seeds at stage one in the medium-low subsidy villages. Standard

errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.5: Crowding out other wheat seeds

Planted other wheat Adopted BARI Gom 33 Growing wheat

seeds (non BARI Gom 33 ) seeds (farm-level)

(1) (2) (3) (4) (5) (6)

Free distribution village (γ1) -0.09*** -0.10*** 0.41*** 0.41*** 0.29*** 0.28***

(0.02) (0.03) (0.04) (0.04) (0.04) (0.04)

50% Subsidy village -0.09*** 0.29*** 0.18***

(0.02) (0.04) (0.04)

Stage 2 treatment village -0.10*** 0.36*** 0.24***

(0.02) (0.03) (0.03)

Stage 2 control village -0.01 0.06*** 0.04

(0.03) (0.02) (0.03)

S1 Non-buyer x S2 Treat (γ2) -0.11*** 0.35*** 0.23***

(0.02) (0.04) (0.04)

S1 Non-buyer x S2 Control (γ3) -0.02 0.03 0.02

(0.03) (0.03) (0.04)

S1 Buyer x S2 Treat -0.09*** 0.39*** 0.27***

(0.02) (0.05) (0.05)

S1 Buyer x S2 Control -0.07** 0.32*** 0.23***

(0.03) (0.06) (0.06)

Impact among would-be buyers -0.15 0.85*** 0.60**

(0.19) (0.28) (0.30)

p-value Free = S2T 0.71 0.22 0.29

p-value γ1 = γ2 − γ3 0.76 0.07 0.23

CI: γ1 − γ2 + γ3 (-0.08, 0.06) (-0.01, 0.20) (-0.05, 0.19)

p-value S2Tnon buyer = S2Cnon buyer 0.00 0.00 0.00

p-value S2Tbuyer = S2Cbuyer 0.44 0.29 0.55

Strata FE Yes Yes Yes Yes Yes Yes

R-squared 0.102 0.110 0.209 0.265 0.147 0.192

Control Villages’ Mean 0.14 0.14 0.02 0.02 0.15 0.15

Number of observations 5,489 4,611 5,489 4,611 5,489 4,611

Notes: The outcome variable in columns (1) and (2) is whether the farmer grew other wheat seeds (i.e., other than BARI Gom 33 seeds) on a surveyed

plot. The outcome variable in columns (3) and (4) is whether the farmer planted BARI Gom 33 seeds on a surveyed plot. The outcome variable in

columns (5) and (6) is whether the farmer cultivated wheat on a surveyed plot. Impact among would-be buyers is calculated as:
γ1−(0.82)∗(γ2−γ3)

0.18
,

where 0.18 is the probability of buying the seeds at stage one in the medium-low subsidy villages. Standard errors in parentheses are clustered at the

village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.6: Plot-level impacts on adoption

Top-Wheat Plot Non-Top-Wheat Plot All Sampled Plots

(1) (2) (3) (4) (5) (6)

Free distribution village (γ1) 0.25*** 0.25*** 0.09*** 0.09*** 0.15*** 0.15***

(0.04) (0.04) (0.01) (0.01) (0.02) (0.02)

50% Subsidy village 0.18*** 0.07*** 0.11***

(0.03) (0.01) (0.02)

Stage 2 treatment village 0.21*** 0.08*** 0.13***

(0.03) (0.01) (0.01)

Stage 2 control village 0.04** 0.01* 0.02**

(0.02) (0.01) (0.01)

S1 Non-buyer x S2 Treat (γ2) 0.20*** 0.09*** 0.13***

(0.03) (0.01) (0.01)

S1 Non-buyer x S2 Control (γ3) 0.02 0.00 0.01

(0.02) (0.01) (0.01)

S1 Buyer x S2 Treat 0.26*** 0.07*** 0.14***

(0.04) (0.01) (0.02)

S1 Buyer x S2 Control 0.16*** 0.10*** 0.13***

(0.04) (0.03) (0.03)

Impact among would-be buyers 0.58*** 0.13 0.29**

(0.25) (0.09) (0.11)

p-value Free = S2T 0.36 0.59 0.35

p-value γ1 = γ2 − γ3 0.14 0.66 0.16

CI: γ1 − γ2 + γ3 (-0.02, 0.16) (-0.03, 0.04) (-0.01, 0.07)

p-value S2Tnon buyer = S2Cnon buyer 0.00 0.00 0.00

p-value S2Tbuyer = S2Cbuyer 0.10 0.29 0.63

Baseline plot ranking dummies No No No No Yes Yes

Strata FE Yes Yes Yes Yes Yes Yes

R-squared 0.131 0.170 0.042 0.057 0.088 0.108

Control Villages’ Mean 0.01 0.01 0.01 0.01 0.01 0.01

Number of observations 5,054 4,234 8,384 6,993 13,436 11,225

Notes:

1. The outcome variable is an indicator for adoption of BARI Gom 33 seeds at the plot level. Columns (1) and (2) present the results for the

top-ranked plot. A top-ranked plot is defined as the farm plot ranked by the farmer at baseline as the most suitable plot for growing wheat.

Columns (3) and (4) present results for all plots in the sample other than the top-ranked plot. Finally, columns (5) and (6) pool all the plots

in the sample while controlling for the baseline ranking of the plot’s suitability for growing wheat. The sample includes a maximum of three

main plots per surveyed farmer.

2. Impact among would-be buyers is calculated as:
γ1−(0.82)∗(γ2−γ3)

0.18
, where 0.18 is the probability of buying the seeds at stage one in the

medium-low subsidy villages.

3. Standard errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.7: Plot-level impacts on growing wheat

Top-Wheat Plot Non-Top-Wheat Plot All Sampled Plots

(1) (2) (3) (4) (5) (6)

Free distribution village (γ1) 0.18*** 0.18*** 0.07*** 0.07*** 0.11*** 0.11***

(0.04) (0.04) (0.02) (0.02) (0.02) (0.02)

50% Subsidy village 0.11*** 0.05** 0.07***

(0.03) (0.02) (0.02)

Stage 2 treatment village 0.15*** 0.05*** 0.09***

(0.03) (0.01) (0.02)

Stage 2 control village 0.03 0.01 0.02

(0.03) (0.02) (0.02)

S1 Non-buyer x S2 Treat (γ2) 0.13*** 0.05*** 0.08***

(0.03) (0.02) (0.02)

S1 Non-buyer x S2 Control (γ3) 0.01 -0.01 0.00

(0.03) (0.01) (0.02)

S1 Buyer x S2 Treat 0.20*** 0.04** 0.10***

(0.05) (0.02) (0.02)

S1 Buyer x S2 Control 0.14*** 0.08** 0.10***

(0.05) (0.03) (0.03)

Impact among would-be buyers 0.45 0.09 0.22

(0.28) (0.13) (0.14)

p-value Free = S2T 0.43 0.38 0.32

p-value γ1 = γ2 − γ3 0.26 0.79 0.36

CI: γ1 − γ2 + γ3 (-0.04, 0.17) (-0.04, 0.05) (-0.03, 0.08)

p-value S2Tnon buyer = S2Cnon buyer 0.00 0.00 0.00

p-value S2Tbuyer = S2Cbuyer 0.32 0.30 0.90

Baseline plot ranking dummies No No No No Yes Yes

Strata FE Yes Yes Yes Yes Yes Yes

R-squared 0.103 0.127 0.033 0.048 0.076 0.094

Control Villages’ Mean 0.10 0.10 0.06 0.06 0.07 0.07

Number of observations 5,054 4,234 8,384 6,993 13,436 11,225

Notes:

1. Columns (1) and (2) replicate columns (7) and (8) in Table 3, which present the results for the top-ranked plot. A top-ranked plot is

defined as the farm plot ranked by the farmer at baseline as the most suitable plot for growing wheat. Columns (3) and (4) present results

for all plots in the sample other than the top-ranked plot. Finally, columns (5) and (6) pool all the plots in the sample while controlling for

the baseline ranking of the plot’s suitability for growing wheat. The sample includes a maximum of three main plots per surveyed farmer.

2. Impact among would-be buyers is calculated as:
γ1−(0.82)∗(γ2−γ3)

0.18
, where 0.18 is the probability of buying the seeds at stage one in the

medium-low subsidy villages.

3. Standard errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.8: Plot-level Impact on Growing Common Dry-Season Crops

(1) (2) (3) (4) (5) (6)

Wheat plot Boro Rice plot Onion plot Maize plot Mustard plot Lentil plot

Free distribution village (γ1) 0.18*** -0.01 -0.09* -0.01 -0.04 -0.03

(0.04) (0.04) (0.05) (0.02) (0.03) (0.03)

S1 Non-buyer x S2 Treat (γ2) 0.13*** -0.04 -0.04 -0.03* 0.01 -0.05**

(0.03) (0.04) (0.04) (0.02) (0.02) (0.02)

S1 Non-buyer x S2 Control (γ3) 0.01 0.00 0.00 -0.01 -0.00 -0.00

(0.03) (0.03) (0.04) (0.02) (0.02) (0.02)

S1 Buyer x S2 Treat 0.20*** -0.05 -0.12*** -0.04*** 0.06* -0.06**

(0.05) (0.04) (0.04) (0.02) (0.03) (0.03)

S1 Buyer x S2 Control 0.14** -0.07 -0.03 -0.03 0.04 -0.04

(0.05) (0.05) (0.06) (0.03) (0.04) (0.03)

Impact among would-be buyers 0.45 0.17 -0.31 0.07 -0.23 0.07

(0.28) (0.30) (0.34) (0.16) (0.19) (0.18)

p-value γ1 = γ2 − γ3 0.26 0.52 0.46 0.60 0.26 0.50

CI: γ1 − γ2 + γ3 (-0.04, 0.17) (-0.08, 0.15) (-0.18, 0.08) (-0.04, 0.08) (-0.12, 0.03) (-0.04, 0.09)

p-value S2Tnon buyer = S2Cnon buyer 0.00 0.27 0.32 0.28 0.80 0.00

p-val S2Tbuyer = S2Cbuyer 0.32 0.70 0.10 0.44 0.77 0.46

Strata FE Yes Yes Yes Yes Yes Yes

R-squared 0.127 0.300 0.295 0.274 0.209 0.069

Control Villages’ Mean 0.10 0.34 0.21 0.09 0.07 0.08

Number of observations 4,234 4,234 4,234 4,234 4,234 4,234

Notes:

1. The outcome variable is whether the farmer grew the crop in question on a top-ranked plot. A top-ranked plot is defined as the farm plot ranked by the

farmer at baseline as the most suitable plot for growing wheat.

2. Impact among would-be buyers is calculated as:
γ1−(0.82)∗(γ2−γ3)

0.18
, where 0.18 is the probability of buying the seeds at stage one in the medium-low

subsidy villages.

3. Standard errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.9: Plot-level Impact on Growing Common Dry-Season Crops: Distinction between selection in medium- vs low-subsidy villages

(1) (2) (3) (4) (5) (6)

Wheat plot Boro Rice plot Onion plot Maize plot Mustard plot Lentil plot

Free distribution village (λ1) 0.18*** -0.01 -0.09** -0.01 -0.04 -0.03

(0.04) (0.04) (0.05) (0.02) (0.03) (0.03)

Subsidy Med x S1 Buyer 0.14*** -0.04 -0.07* -0.02 0.03 -0.05**

(0.04) (0.04) (0.04) (0.02) (0.02) (0.02)

Subsidy Med x S1 Non-Buyer x S2 Treat (λ2) 0.08* 0.03 -0.05 -0.04*** -0.00 -0.06**

(0.05) (0.05) (0.06) (0.01) (0.02) (0.03)

Subsidy Med x S1 Non-Buyer x S2 Control (λ3) -0.01 -0.02 0.07 -0.01 0.03 -0.04

(0.04) (0.04) (0.06) (0.01) (0.03) (0.02)

Subsidy Low x S1 Buyer 0.22*** -0.08 -0.09* -0.06** 0.08 -0.06*

(0.07) (0.05) (0.05) (0.02) (0.05) (0.03)

Subsidy Low x S1 Non-Buyer x S2 Treat (λ4) 0.17*** -0.10** -0.04 -0.02 0.01 -0.04*

(0.04) (0.05) (0.05) (0.02) (0.03) (0.02)

Subsidy Low x S1 Non-Buyer x S2 Control (λ5) 0.03 0.02 -0.05 -0.01 -0.02 0.02

(0.04) (0.04) (0.05) (0.03) (0.03) (0.03)

Impact among would-be buyers at subsidy med 0.22 -0.44** 0.26 0.01 0.14 -0.13

(0.17) (0.20) (0.20) (0.10) (0.13) (0.08)

p-value S2Tmed = S2Cmed 0.08 0.45 0.12 0.00 0.36 0.06

p-value Free = S2Tmed − S2Cmed 0.19 0.48 0.84 0.40 0.84 0.99

p-value S2Tlow = S2Clow 0.00 0.03 0.85 0.67 0.42 0.01

p-value Free = S2Tlow − S2Clow 0.43 0.11 0.13 0.84 0.17 0.37

p-val S2Tmed − S2Cmed = S2Tlow − S2Clow 0.53 0.05 0.16 0.70 0.25 0.25

Strata FE Yes Yes Yes Yes Yes Yes

R-squared 0.131 0.304 0.296 0.276 0.213 0.073

Control Villages’ Mean 0.10 0.34 0.21 0.07 0.09 0.08

Number of observations 4,234 4,234 4,234 4,234 4,234 4,234

Notes: The outcome variable is whether the farmer grew the crop in question on a top-ranked plot. A top-ranked plot is defined as the farm plot ranked by the

farmer at baseline as the most suitable plot for growing wheat. Impact among would-be buyers at medium subsidy is calculated as:
(λ4−λ5)−(0.67)∗(λ2−λ3)

0.33
, where

0.33 is the probability of buying the seeds at stage one in the medium-subsidy villages. Standard errors in parentheses are clustered at the village level. * p < 0.10,

** p < 0.05, *** p < 0.01
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Table A.10: Summary statistics for revenues and profits of common dry season crops

Follow-up Baseline

Mean/SD N Mean/SD N

Wheat

Revenues (’000 BDT/acre) 45.52 893 32.84 1,670

(14.26) (10.00)

Profits (’000 BDT/acre) 14.29 893 -4.20 1,670

(15.39) (16.93)

Boro

Rice

Revenues (’000 BDT/acre) 76.27 1,642 68.68 1,335

(16.19) (12.32)

Profits (’000 BDT/acre) 29.19 1,642 27.45 1,335

(19.26) (16.90)

Onion

Revenues (’000 BDT/acre) 158.52 930 187.14 493

(53.07) (56.57)

Profits (’000 BDT/acre) 75.28 930 92.12 493

(54.38) (61.40)

Maize

Revenues (’000 BDT/acre) 158.92 391 82.71 434

(31.90) (17.64)

Profits (’000 BDT/acre) 102.34 391 34.82 434

(30.07) (22.55)

Mustard

Revenues (’000 BDT/acre) 44.36 366 39.82 264

(17.10) (16.05)

Profits (’000 BDT/acre) 23.33 366 10.47 264

(14.22) (21.91)

Lentil

Revenues (’000 BDT/acre) 51.75 236 48.33 328

(20.10) (14.01)

Profits (’000 BDT/acre) 27.92 236 20.08 328

(19.24) (16.72)
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Table A.11: Impact on plot profits

Plot Profits (’000 BDT/acre) Non-positive Plot Profits

(1) (2) (3) (4) (5) (6)

Free distribution village (γ1) -6.24 -5.96 -6.43 -6.49 0.00 0.00

(5.83) (5.44) (5.50) (5.17) (0.02) (0.02)

50% Subsidy village -2.47 -0.88 0.02

(5.86) (5.51) (0.02)

Stage-two treatment village -4.29 -3.39 0.05∗∗

(5.06) (4.81) (0.02)

Stage 2 control village -0.72 -0.97 0.01

(5.66) (5.33) (0.02)

S1 Non-buyer x S2 Treat (γ2) -4.73 -4.13 0.05∗

(5.19) (5.00) (0.03)

S1 Non-buyer x S2 Control (γ3) 0.41 -0.08 0.02

(5.91) (5.63) (0.02)

S1 Buyer x S2 Treat -10.16∗∗ -9.38∗ 0.04

(5.09) (4.92) (0.03)

S1 Buyer x S2 Control -12.47∗ -13.31∗∗ 0.07

(7.15) (7.05) (0.05)

Impact among would-be buyers -12.34 -17.61 -0.15

(39.12) (37.25) (0.19)

p-value Free = S2T 0.69 0.56 0.04

p-value γ1 = γ2 − γ3 0.87 0.74 0.37

CI: γ1 − γ2 + γ3 (-16.41, 13.81) (-16.84, 11.96) (-0.11, 0.04)

p-val S2Tnon buyer = S2Cnon buyer 0.32 0.41 0.17

p-value S2Tbuyer = S2Cbuyer 0.72 0.54 0.50

Strata FE Yes Yes Yes Yes Yes Yes

LASSO selected controls No Yes No Yes No No

R-squared 0.095 0.130 0.084 0.106 0.029 0.055

Control Villages’ Mean 44.42 44.42 44.42 44.42 0.07 0.07

Number of observations 4,817 4,817 4,024 4,024 4,817 4,024

Notes: The outcome variable in columns (1) - (4) is plot profits. Profits are measured as total revenues net of all input costs, where both

revenues and costs are measured per unit area. I follow Agness et al. (2022) rule of thumb of valuing the opportunity cost of family labor at

60% of the average market wage. The outcome variable in columns (5) - (6) is an indicator of whether plot profits were non-positive (i.e.,

zero or negative profits). Impact among would-be buyers is calculated as:
γ1−(0.82)∗(γ2−γ3)

0.18
, where 0.18 is the probability of buying the seeds

at stage one in the medium-low subsidy villages. Standard errors in parentheses are clustered at the village level. ∗ p < 0.10, ∗∗ p < 0.05,

∗∗∗ p < 0.01
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Table A.12: Impact of BARI Gom 33 seeds on wheat yield

Log Yield

(1) (2) (3) (4)

BARI Gom 33 plot 0.04 0.04 0.11* 0.10**

(0.03) (0.03) (0.05) (0.04)

Baseline yield (kg/acre) 0.00* -0.00

(0.00) (0.00)

Farmer FE No No Yes Yes

Strata FE Yes Yes No No

Baseline plot ranking dummies Yes Yes Yes Yes

R-squared 0.128 0.130 0.592 0.637

Average wheat yield (kg/acre) 1,559 1,559 1,559 1,559

Number of observations 1,577 1,528 385 363

Notes: This table presents results on the impact of BARI Gom 33 seeds on the

yield of wheat plots in the sample. Columns (1) and (2) present results across

all wheat plots. Columns (3) and (4) control for farmer fixed effects to compare

the yield of wheat plots grown by the same farmer using different wheat seed

varieties. Standard errors in parentheses are clustered at the village level. *

p < 0.10, ** p < 0.05, *** p < 0.01
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B Alternative Mechanism: Did Stage-Two Treatment Cause

an Update in Farmers’ Expectations?

Under the updated expectations mechanism, farmers base their purchase decision in stage one on

expected returns, but the free distribution in stage two causes farmers to update their expected returns.

The net effect of stage-two treatment on farmers’ expectations is ambiguous. On the one hand, farmers

might perceive the free distribution at stage two as a kind of endorsement or a nudge to use a high

quality seed. On the other hand, distributing seeds for free at stage two, after offering the same seeds

for a positive price at stage one, might cause farmers to downgrade their expectations of the seed

quality.

I investigate the updated expectations hypothesis in three ways. First, I compare the outcomes

of stage-one buyers in stage-two treatment and stage-two control villages, particularly outcomes re-

lated to adoption and crop choice. These two groups self-selected into buying the seeds at similar

offer prices. The main difference is that stage-two treatment increases take-up by non-buyers. Such

intervention may increase spillover effects through higher treatment intensity or update farmers expec-

tations through repeated treatment. However, Table 3 shows that the outcomes of stage-one buyers

in both treatment arms is statistically similar.

Second, I show results on farmers’ perceptions of whether the distributed seeds’ yield is higher than

that of other wheat seeds. Table A.3 shows results on perceptions for the sub-sample of farmers who

took up the improved seed during intervention. In particular, I note that the difference between the

coefficients on stage-one buyers in stage-two treatment and stage-two control villages is not statistically

different from zero. That is, buyers in stage-two treatment villages are as likely to perceive the

distributed seeds’ yield to be relatively high as buyers in stage-two control villages. Moreover, a

comparison between the coefficients on non-buyers and buyers in stage-two treatment villages shows

that buyers in stage-two treatment villages are significantly more likely to perceive the distributed

seeds’ yield to be relatively high. Thus, if stage-two treatment has an impact on changing farmers’

perceptions of the seed productivity, this impact is noticeable among stage-one buyers only and cannot

explain the increase in adoption by non-buyers in stage-two treatment villages.

Finally, Table B.1 shows that stage-two treatment does not cause treated farmers (neither buyers

nor non-buyers) to increase their input use. If farmers in stage-two treatment villages had updated their

expected returns from the distributed seeds, I would expect those farmers to increase their investments

in complementary agricultural inputs such as hired labor, fertilizers, and irrigation. However, Table B.1

suggests that this was not the case. On the contrary, I find that farmers in stage-two treatment villages

tend to use less fertilizers and hired labor than their peers in stage-two control villages.

A caveat on the input use results is that crop-specific input requirements can differ across different

crops in the sample (e.g., wheat, Boro rice, and onion). Table B.2 presents a set of regression results

showing that, even after controlling for farmer fixed effects, spending on hired labor and fertilizers is

significantly lower for wheat plots relative to other plots. At the same time, the realized revenues on

wheat plots are significantly lower than the revenues on other plots. Hence, it is not clear whether

farmers who grow wheat spend less on agricultural inputs due to low expected returns, or whether

liquidity constrained farmers are more likely to grow wheat due to the low cost of growing wheat. In

all cases, the hypothesis that stage-one non-buyers updated their expected returns upon receiving the

new seed for free in stage two is not supported by the data.
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Table B.1: Plot-level impact on input use and input spending

(1) (2) (3) (4) (5) (6)

Hired labor Hired labor Fertilizers amount Fertilizer Irrigation Irrigation

(person days/acre) spending (log) (kg/acre) spending (log) times spending (log)

Free distribution village (γ1) -6.91 -0.22* 20.56 0.04 0.07 -0.03

(4.19) (0.12) (21.70) (0.07) (1.36) (0.06)

S1 Non-buyer x S2 Treat (γ2) -4.34 -0.16* -7.80 -0.05 -0.07 -0.02

(3.58) (0.09) (17.05) (0.06) (1.07) (0.06)

S1 Non-buyer x S2 Control (γ3) -0.20 -0.02 15.88 0.06 1.64 0.01

(3.34) (0.08) (17.77) (0.06) (1.03) (0.05)

S1 Buyer x S2 Treat -13.26*** -0.31*** -12.45 -0.04 -0.61 -0.09

(3.48) (0.11) (18.75) (0.06) (1.19) (0.08)

S1 Buyer x S2 Control -4.50 -0.16 20.74 0.06 -0.30 -0.11

(4.49) (0.13) (30.26) (0.09) (1.31) (0.08)

Baseline value of the outcome 0.09*** 0.00* 0.13*** 0.00*** 0.18*** 0.00***

(0.03) (0.00) (0.02) (0.00) (0.06) (0.00)

p-value γ1 = γ2 − γ3 0.61 0.57 0.10 0.09 0.32 0.98

CI: γ1 − γ2 + γ3 (-13.60, 8.06) (-0.38, 0.21) (-8.48, 96.96) (-0.03, 0.33) (-1.73, 5.28) (-0.17, 0.18)

p-value S2Tnon buyer = S2Cnon buyer 0.24 0.13 0.13 0.05 0.14 0.56

p-value S2Tbuyer = S2Cbuyer 0.05 0.25 0.25 0.28 0.83 0.83

Strata FE Yes Yes Yes Yes Yes Yes

R-squared 0.215 0.263 0.255 0.265 0.342 0.230

Control Villages’ Mean 44.20 21,478.01 337.60 9,003.63 11.39 5,970.82

Number of observations 4,117 3,968 4,117 4,103 4,117 3,817

Notes: The outcome variables in odd columns measure input use. The outcome variables in even columns is the log of input spending, where input spending is measured in

Bangladeshi Takas per acre. In columns (1) the outcome variable measures hired labor use in terms of person days per acre. In column (2) the outcome variable is the log

of spending on hired labor. In column (3) the outcome variable measures fertilizer use in Kgs per acre. In column (4) the outcome variable is the log of fertilizer spending.

In column (5) the outcome variable is the number of times the plot was irrigated during dry season. In column (6) the outcome variable is the log of irrigation spending.

Standard errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B.2: Crop-specific effects on input spending, revenues, and profits

Hired labor Fertilizer Irrigation Revenues (log) Profits (log)

spending (log) spending (log) spending (log)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Wheat plot regressions -0.85*** -0.72*** -0.18*** -0.16*** -0.35*** -0.33*** -0.74*** -0.65*** -0.93*** -0.82***

(0.05) (0.04) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.08) (0.08)

Boro Rice plot regressions 0.33*** 0.25*** 0.07 0.01 0.77*** 0.83*** 0.04 -0.07 -0.32*** -0.48***

(0.05) (0.03) (0.04) (0.04) (0.05) (0.04) (0.04) (0.05) (0.07) (0.09)

Onion plot regressions 1.19*** 0.97*** 0.40*** 0.42*** 0.22*** 0.14*** 1.02*** 0.89*** 1.20*** 1.03***

(0.05) (0.04) (0.04) (0.03) (0.04) (0.03) (0.05) (0.04) (0.09) (0.10)

Maize plot regressions 0.07 0.06*** 0.66*** 0.53*** -0.44*** -0.53*** 0.85*** 0.80*** 1.57*** 1.58***

(0.05) (0.02) (0.05) (0.05) (0.06) (0.05) (0.03) (0.03) (0.06) (0.08)

Baseline value of the outcome Yes No Yes No Yes No Yes No Yes No

Baseline plot ranking dummies No Yes No Yes No Yes No Yes No Yes

Farmer FE No Yes No Yes No Yes No Yes No Yes

Strata FE Yes No Yes No Yes No Yes No Yes No

Mean of the outcome (’000 BDT/acre) 20.83 20.83 9.16 9.16 6.37 6.37 93.45 93.45 40.87 40.87

Number of observations 4,722 11,449 4,916 12,057 4,586 10,976 4,769 11,742 4,358 10,421

Notes: Each row of this table reports the coefficients from separate regressions of the outcome variable shown in the column heading on a dummy variable indicating whether

the plot was planted with wheat, Boro rice, onion, or maize, respectively. These four crops are the most common dry season crops in the sample. Given that all the plots in the

sample are mono-cropped (i.e., growing one crop at a time), the indicator variables in the row headings can be treated as mutually exclusive groups. The specifications in the odd

columns limit the sample to one plot per farmer (namely, the top ranked plot for growing wheat) and control for the baseline value of the outcome as well as strata fixed effects.

The specifications in the even columns include all sampled plots and control for baseline ranking of the plot’s suitability for growing wheat as well as farmer fixed effects. Each of

the outcome variables in the column headings was first measured in BDT per acre terms before taking logs. Standard errors in parentheses are clustered at the village level. *

p < 0.10, ** p < 0.05, *** p < 0.01

65



C Distributional Effects

In this Appendix, I examine whether the free-distribution treatment shifts particular portions of the

distribution of revenues and profits. In addition, I test for the difference in distributional effects

between non-buyers and average farmers. I do so by running the specification in equation (6) using

quantile regressions and distribution regressions. I do not find evidence that the treatment resulted in

a shift in the distribution of revenues nor profits.

Technically, a quantile regression estimates coefficients that minimize the median absolute deviation

at each quantile, q. Distribution regression, on the other hand, provides an alternative approach for

analyzing distributional effects even when the distribution of the outcome variable does not have a

smooth density (Chernozhukov, Fernandez-Val, and Melly, 2013). This involves estimating the same

regression specification of interest, while replacing the dependent variable with the probability that

the outcome variable is greater than a threshold (i.e., P (Yijs > y)). The threshold, y, moves to cover

all points in the support of the outcome variable, Y .

The quantile treatment effects on revenues do not show dramatic shifts in the distribution of

revenues, neither for treated farmers in the free-distribution villages nor for non-buyers who received

free seeds at stage two of the experiment.40 Results for quantile treatment effects on plot revenues are

presented in Table C.1 and summarized in panel A of Figure C.1. Treatment effects are consistently

negative throughout the revenue’s distribution for both groups. For non-buyers, the treatment effects

on revenues are slightly lower (more negative) for farmers at lower quantiles of the revenues distribution.

The distribution regression results presented in panel A of Figure C.2 show a similar trend.

Similarly, the results on plot profits do not show significant changes in the distribution of profits

for both treated farmers in the free-distribution villages and non-buyers who received free seeds at

stage two. This is true whether we look at the results of quantile regressions in Table C.2 and panel

B of Figure C.1 or the results of distribution regressions in Figure C.2.

A distinction between treatment effects for non-buyers in the medium-subsidy versus low-subsidy

villages shows two key findings. First, the distribution effects on revenues follow opposite trends for

non-buyers in the medium-subsidy villages compared to non-buyers in the low-subsidy villages. Second,

the distributional effects on profits for non-buyers in the medium-subsidy villages are consistently

lower than that of non-buyers in the low-subsidy villages across all quantiles. For revenues, panel A

of Figure C.3 shows that treatment effects among non-buyers in the medium subsidy villages reach a

maximum right before the median, while for non-buyers in the low-subsidy villages treatment effects

reach a minimum right at the median of the distribution. These opposite treatment effects tend to

cancel each other out when looking at the treatment effects on revenues among all non-buyers. For

profits, panel B of Figure C.3 shows that the treatment effects of non-buyers in the medium-subsidy

villages are everywhere lower than those of non-buyers in the low-subsidy villages. At the median of

the profit distribution, the difference between the treatment effects for the medium-subsidy versus the

low-subsidy groups is significant at the 10-percent level (see Table C.3). This is consistent with the

findings in section 4.4.

Therefore, the analysis on the distributional effects of the free-distribution treatment confirms the

finding that non-buyers who received a medium-subsidy in stage one make substantially lower profits

compared to non-buyers who received a low-subsidy in stage one.

40As explained in section 4.2, for treated farmers in the free-distribution villages the reference group is farmers in

the control villages. For the non-buyers in stage-two treatment villages, the reference group is non-buyers in stage-two

control villages.
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Figure C.1: Quantile regressions

:
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Figure C.2: Distribution regressions

:
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Figure C.3: Quantile regressions: distinction between self-selection in medium- vs low-subsidy villages

:

69



Figure C.4: Distribution regressions: distinction between self-selection in medium- vs low-subsidy villages

:
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Table C.1: Quantile regressions: Impact on plot revenues

(1) (2) (3) (4) (5)

Q10 Q25 Q50 Q75 Q90

Free distribution village -0.09 -0.10 -0.07 -0.05 -0.04

(0.11) (0.07) (0.07) (0.07) (0.06)

S1 Non-buyer x S2 Treat -0.15 -0.09 -0.06 -0.02 -0.01

(0.10) (0.06) (0.06) (0.07) (0.06)

S1 Non-buyer x S2 Control 0.05 0.03 0.03 0.04 0.06

(0.10) (0.07) (0.06) (0.07) (0.06)

S1 Buyer x S2 Treat -0.19* -0.22** -0.15** -0.13 -0.07

(0.10) (0.09) (0.07) (0.09) (0.08)

S1 Buyer x S2 Control -0.15 -0.17** -0.13 -0.05 0.07

(0.12) (0.08) (0.10) (0.09) (0.08)

Strata FE Yes Yes Yes Yes Yes

p-value Free = S2Tnon buyer − S2Cnon buyer 0.45 0.90 0.83 0.90 0.76

CI: Free - S2Tnon buyer + S2Cnon buyer (-0.18, 0.40) (-0.20, 0.22) (-0.17, 0.21) (-0.20, 0.23) (-0.15, 0.21)

p-value S2Tnon buyer = S2Cnon buyer 0.02 0.07 0.10 0.39 0.19

p-value S2Tbuyer = S2Cbuyer 0.69 0.64 0.88 0.41 0.10

Observations 4,022 4,022 4,022 4,022 4,022

Notes: These regressions are estimated using STATA command qrprocess.

Bootstrapped standard errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table C.2: Quantile regressions: Impact on plot profits

(1) (2) (3) (4) (5)

Q10 Q25 Q50 Q75 Q90

Free distribution village -0.06 -0.02 -0.06 -0.09 -0.15

(0.19) (0.14) (0.11) (0.10) (0.10)

S1 Non-buyer x S2 Treat -0.04 -0.06 -0.06 -0.01 -0.06

(0.16) (0.11) (0.10) (0.11) (0.08)

S1 Non-buyer x S2 Control 0.10 0.06 0.05 0.08 0.03

(0.16) (0.11) (0.10) (0.12) (0.08)

S1 Buyer x S2 Treat -0.83** -0.32 -0.17 -0.11 -0.19

(0.40) (0.29) (0.17) (0.16) (0.12)

S1 Buyer x S2 Control 0.28 -0.14 -0.22 -0.12 -0.01

(0.18) (0.12) (0.15) (0.23) (0.12)

Strata FE Yes Yes Yes Yes Yes

p-value Free = S2Tnon buyer − S2Cnon buyer 0.75 0.53 0.75 1.00 0.63

CI: Free - S2Tnon buyer + S2Cnon buyer (-0.42, 0.59) (-0.19, 0.38) (-0.25, 0.34) (-0.32, 0.32) (-0.30, 0.18)

p-value S2Tnon buyer = S2Cnon buyer 0.37 0,31 0.34 0.46 0.23

p-value S2Tbuyer = S2Cbuyer 0.00 0.54 0.78 0.97 0.18

Observations 3,659 3,659 3,659 3,659 3,659

Notes: These regressions are estimated using STATA command qrprocess.

Bootstrapped standard errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table C.3: Quantile regressions: Impact on plot revenues with distinction between self-selection in medium- vs low-subsidy villages

(1) (2) (3) (4) (5)

Q10 Q25 Q50 Q75 Q90

Free distribution village -0.09 -0.11 -0.08 -0.07 -0.06

(0.12) (0.07) (0.07) (0.08) (0.07)

Subsidy Med x S1 Buyer -0.18* -0.20** -0.07 0.04 0.02

(0.09) (0.08) (0.07) (0.09) (0.08)

Subsidy Med x S1 Non-buyer x S2 Treat -0.14 -0.07 -0.01 -0.03 -0.03

(0.11) (0.07) (0.07) (0.09) (0.08)

Subsidy Med x S1 Non-buyer x S2 control 0.11 0.11 0.16 0.18 0.10

(0.12) (0.09) (0.11) (0.12) (0.09)

Subsidy Low x S1 Buyer -0.20** -0.20** -0.23*** -0.27** -0.21*

(0.13) (0.10) (0.08) (0.12) (0.11)

Subsidy Low x S1 Non-buyer x S2 Treat -0.16 -0.10 -0.14* -0.02 0.00

(0.10) (0.07) (0.07) (0.09) (0.07)

Subsidy Low x S1 Non-buyer x S2 control -0.02 -0.00 -0.01 -0.07 -0.01

(0.11) (0.07) (0.06) (0.09) (0.07)

Strata FE Yes Yes Yes Yes Yes

p-value Free = S2Tmed − S2Cmed 0.32 0.56 0.50 0.35 0.54

CI: Free - S2Tmed + S2Cmed (-0.17, 0.50) (-0.18, 0.33) (-0.18, 0.37) (-0.16, 0.45) (-0.15, 0.29)

p-value Free = S2Tlow − S2Clow 0.80 0.91 0.66 0.35 0.49

CI: Free - S2Tlow + S2Clow (-0.31, 0.41) (-0.22, 0.20) (-0.15, 0.23) (-0.36, 0.13) (-0.25, 0.12)

p-value S2Tmed − S2Cmed = S2Tlow − S2Clow 0.46 0.48 0.71 0.08 0.24

Observations 4,022 4,022 4,022 4,022 4,022

Notes: These regressions are estimated using STATA command qrprocess.

Bootstrapped standard errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table C.4: Quantile regressions: Impact on plot profits with distinction between self-selection in medium- vs low-subsidy villages

(1) (2) (3) (4) (5)

Q10 Q25 Q50 Q75 Q90

Free distribution village -0.09 -0.02 -0.07 -0.11 -0.14

(0.22) (0.13) (0.11) (0.11) (0.09)

Subsidy Med x S1 Buyer -0.18 -0.22 -0.17 0.01 0.01

(0.21) (0.15) (0.13) (0.15) (0.11)

Subsidy Med x S1 Non-buyer x S2 Treat -0.16 -0.10 -0.11 -0.00 -0.08

(0.20) (0.16) (0.14) (0.15) (0.10)

Subsidy Med x S1 Non-buyer x S2 control 0.32 0.15 0.20 0.24 0.08

(0.22) (0.14) (0.15) (0.17) (0.11)

Subsidy Low x S1 Buyer -0.35 -0.25 -0.22 -0.41*** -0.18

(0.49) (0.20) (0.16) (0.15) (0.16)

Subsidy Low x S1 Non-buyer x S2 Treat 0.05 0.01 -0.03 -0.00 0.00

(0.17) (0.12) (0.13) (0.12) (0.09)

Subsidy Low x S1 Non-buyer: S2 control -0.01 0.01 -0.05 -0.06 -0.01

(0.20) (0.14) (0.10) (0.13) (0.11)

Strata FE Yes Yes Yes Yes Yes

p-value Free = S2Tmed − S2Cmed 0.20 0.29 0.20 0.53 0.93

CI: Free - S2Tmed + S2Cmed (-0.20, 0.99) (-0.19, 0.65) (-0.14, 0.63) (-0.29, 0.56) (-0.27, 0.29)

p-value Free = S2Tlow − S2Clow 0.62 0.92 0.52 0.30 0.18

CI: Free - S2Tlow + S2Clow (-0.71, 0.42) (-0.38, 0.35) (-0.36, 0.18) (-0.47, 0.14) (-0.39, 0.07)

p-value S2Tmed − S2Cmed = S2Tlow − S2Clow 0.10 0.25 0.10 0.17 0.26

Observations 3,659 3,659 3,659 3,659 3,659

Notes: These regressions are estimated using STATA command qrprocess.

Bootstrapped standard errors in parentheses are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01
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D Spillover Effects

An analysis of the efficiency gains or losses from a subsidy would be incomplete if we ignored spillover

effects on untreated farmers...

In this study context, there is a potential for three spillover channels. First, the subsidized tech-

nology is an improved seed variety that is expected to have a positive environmental externality by

limiting the spread of a contagious crop disease. Second, the subsidized seeds can easily be reallocated

or multiplied by treated farmers and shared with other farmers. Third, there is a potential for social

learning through information diffusion or direct observations by neighbors of treated farmers. I do not

aim to disentangle the effect of each spillover channel separately. Instead, I provide an empirical test

for any spillover effects using a random sample of untreated farmers in treatment villages.41 I start

with a basic regression specification as follows:

Yivs = ϕ1Treatmentvs ∗ Tivs + ϕ2Treatmentvs + αs + ϵivs (20)

where Yivs represents the outcome of interest for farmer i in village v and strata s. The primary

outcomes for the analysis of spillover effects are whether the farmer grew any variety of wheat; whether

the farmer adopted the improved wheat variety; whether the farmer shared wheat seeds with other

farmers.42 Treatmentvs is a dummy variable for treatment villages, while pure control villages are the

omitted category. Tiv is an indicator for a randomly selected treatment farmer in a treatment village.

The term αs represents strata fixed effects and ϵijs is a random error term.43 Standard errors are

clustered at the village level. Testing for ϕ2 = 0 should indicate if there are spillover effects across all

treatment villages.

Next, I test for differential spillover effects across villages that received different treatment inter-

ventions by extending the ITT specification in equation (5) as follows:

Yijs = β1Subsidy
High
js ∗ Tijs + β2Subsidy

50
js ∗ Tijs + β3StageTwo

Treat
js ∗ Tijs + β4StageTwo

Control
js ∗ Tijs

+ β5Subsidy
High
js + β6Subsidy

50
js + β7StageTwo

Treat
js + β8StageTwo

Control
js + αs + ϵijs

(21)

Given the difference in the intervention received by stage-two treatment and stage-two control villages,

I expect the spillover effects in these villages to differ as well. For example, the reallocation channel

might be stronger in stage-two treatment villages, since a portion of the treated farmers received free

seeds after deliberately choosing not to buy the seeds at stage one. Re-allocation could take place

among treated farmers as well as between treatment and control farmers in treatment villages. As

before, Tivs is an indicator for a randomly selected treatment farmer, regardless of the farmer’s seed

purchasing decision at stage one. A test for β5 = β7 should indicate if there is a difference in spillover

effects across villages with similar take-up rates but different interventions. On the other hand, a test

for β7 = β8 should indicate if there is a difference in spillover effects across villages that received similar

offer prices at stage one.

Table D.1 presents results on spillover effects on adoption and the extensive margin of growing wheat

in years 1 and 2. In year 1, column (1) shows that the spillover effects on adoption are weak. The

41As explianed in Section 2.2, a random sample of 8 un-treated farmers was selected in each of the 180 treatment

villages. This makes a within-treatment controls sample of 1,440 farmers. In addition to the initial sample size of 5,500

farmers, the total sample size including the within treatment controls is 6,940 farmers. The size of the within-treatment

control sample was constrained by the survey budget.
42I do not aim to use plot-level outcomes in the analysis of spillover effects since it was not possible to collect baseline

data for the sub-sample of within-treatment control farmers. The baseline data included farmers’ ranking of their plots’

suitability for growing wheat, which was used to select the reference plot for plot-level outcomes as explained in Section

4.2.
43See Section 2.2 for an explanation of treatment stratification.
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only treatment arm that has significant spillover effects on adoption is the 50-percent subsidy villages,

as shown in column (3). Interestingly, column (5) shows strong spillover effects on the likelihood of

growing wheat in year 1. This spillover effect is driven by significant spillover effects in stage-two

treatment villages, as shown in column (7). One potential explanation for the significant spillover

effects on wheat cultivation but not on adoption is through farmers’ coordination of the type of crop

to grow on neighboring plots –a common phenomenon in settings characterized by fragmented farm

plots as in the study setting.

Table D.1 and Table D.2 show a significantly negative spillover effect on adoption in year 2. Columns

(3) and (4) of Table D.2 show that the negative spillover effect on adoption in year 2 is driven by a

negative effect on new adoption in year 2 by the within-treatment control farmers that is consistent

across all treatment arms. At the same time, year 2 shows significant spillover effects on disadoption

that is driven by the spillover effect in the 50-percent subsidy villages. Therefore, the positive spillover

effects on adoption in the 50-percent subsidy villages in year 1 is reversed through significant spillover

effects on disadoption in year 2.

The negative spillover effects on adoption in year 2 can be explained by social learning. The results

in Section 4.3 show that the average returns to adopting the improved wheat seed in the sample are

low, which could explain the negative spillover effects on adoption in year 2 as well as the significant

disadoption in year 2.
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Table D.1: Spillover Effects on Adoption and Wheat Cultivation

Adoption (farm-level) Growing wheat (farm-level)

(1) (2) (3) (4) (5) (6) (7) (8)

Year 1 Year 2 Year 1 Year2 Year 1 Year 2 Year 1 Year 2

Treatment village x Treated farmer 0.23*** 0.13*** 0.11*** 0.02

(0.02) (0.02) (0.02) (0.01)

Treatment village 0.03 -0.07*** 0.06** 0.03

(0.02) (0.02) (0.03) (0.03)

Free distribution x Treated farmer 0.37*** 0.13*** 0.21*** 0.02

(0.05) (0.04) (0.05) (0.03)

Free distribution village 0.03 -0.07*** 0.08 0.02

(0.03) (0.02) (0.05) (0.05)

50% Subsidy x Treated farmer 0.23*** 0.11*** 0.14*** 0.00

(0.04) (0.04) (0.04) (0.03)

50% Subsidy village 0.06** -0.04 0.05 0.05

(0.03) (0.03) (0.05) (0.04)

S2 Treat x Treated Farmer 0.35*** 0.16*** 0.14*** 0.03

(0.03) (0.03) (0.03) (0.02)

Stage 2 treatment village 0.01 -0.07*** 0.11*** 0.05

(0.02) (0.02) (0.04) (0.04)

S2 Control x Treated farmer 0.05*** 0.10*** 0.03 0.01

(0.02) (0.02) (0.02) (0.01)

Stage 2 control village 0.02 -0.09*** 0.03 0.00

(0.02) (0.02) (0.04) (0.04)

Strata FE Yes Yes Yes Yes Yes Yes Yes Yes

R-squared 0.136 0.160 0.218 0.167 0.111 0.182 0.140 0.185

p-value Free = S2T 0.49 0.89 0.54 0.63

p-value S2T = S2C 0.92 0.49 0.05 0.27

Control Villages’ Mean 0.02 0.09 0.02 0.09 0.15 0.21 0.15 0.21

Number of observations 6,929 6,916 6,929 6,916 6,929 6,916 6,929 6,916

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table D.2: Spillover Effects on Adoption and Wheat Cultivation

Year 2 Persistent Adoption Year 2 New Adoption Year 2 Disadoption

(1) (2) (3) (4) (5) (6)

Treatment village x Treated farmer 0.07∗∗∗ 0.05∗∗∗ 0.15∗∗∗

(0.01) (0.01) (0.01)

Treatment village 0.00 -0.07∗∗∗ 0.03∗

(0.01) (0.02) (0.01)

Free distribution x Treated Farmer 0.11∗∗∗ 0.02∗∗ 0.26∗∗∗

(0.04) (0.01) (0.04)

Free distribution village 0.00 -0.07∗∗∗ 0.03

(0.01) (0.02) (0.02)

50% Subsidy x Treated Farmer 0.08∗∗∗ 0.03∗ 0.15∗∗∗

(0.03) (0.02) (0.02)

50% Subsidy village 0.01 -0.05∗∗ 0.05∗∗

(0.02) (0.02) (0.02)

S2 Treat x Treated Farmer 0.10∗∗∗ 0.06∗∗∗ 0.25∗∗∗

(0.02) (0.02) (0.03)

Stage 2 treatment village -0.00 -0.07∗∗∗ 0.02

(0.01) (0.02) (0.02)

S2 Control x Treated Farmer 0.03∗∗∗ 0.07∗∗∗ 0.02∗

(0.01) (0.02) (0.01)

Stage 2 control village -0.00 -0.08∗∗∗ 0.02

(0.01) (0.02) (0.02)

Strata FE Yes Yes Yes Yes Yes Yes

R-squared 0.081 0.097 0.103 0.105 0.086 0.146

p-value Free = S2T 0.69 0.95 0.52

p-value S2T = S2C 0.96 0.40 0.88

Control Villages’ Mean 0.00 0.00 0.09 0.09 0.01 0.01

Number of observations 6,908 6,908 6,908 6,908 6,908 6,908

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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