
1 

 
DO HUSBANDS WANT TO BE SHORTER THAN THEIR WIVES? 

THE HAZARDS OF INFERRING PREFERENCES FROM MARRIAGE MARKET OUTCOMES 
Martha Bailey12, Ariel Binder1, and David Lam12 

University of Michigan 
Date of draft: March 24, 2017 

 

CONTACT INFORMATION  
1 University of Michigan, Department of Economics and Institute of Social Research. 2 National 
Bureau of Economic Research and IZA. Bailey: baileymj@umich.edu and http://www-
personal.umich.edu/~baileymj; Binder: ajbinder@umich.edu; and Lam: davidl@umich.edu.  

 
 

ABSTRACT 
Spousal characteristics such as age, height, and income are often used in social science research 
to infer social preferences. For example, a “male taller” norm has been inferred from the fact that 
fewer wives are taller than their husbands than would occur with random matching. The fact that 
more husbands out-earn their wives than vice versa has been used as evidence that husbands 
prefer that their wives earn less or wives prefer that their husbands earn more. This paper argues 
that it is difficult and potentially misleading to infer social preferences from marriage market 
outcomes. We first show how standard economic theory predicts that positive assortative 
matching on a characteristic in equilibrium is consistent with a wide variety of preferences. This 
theoretical result is applied to an empirical investigation of income differences between spouses, 
where a persistent gender gap also exists. Simulations which sort couples positively on 
permanent income can largely replicate the observed distribution of spousal income differences 
in US Census data—including the sharp drop-off in mass as the wife begins to out-earn her 
husband—without assuming a norm against the wife out-earning her husband.  
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I. INTRODUCTION 

Do men prefer to be taller than their wives?  Do women prefer to earn less than their 

husbands? Patterns in the characteristics of spouses are often used by social scientists to infer 

preferences and social norms. For example, a number of researchers have investigated the extent 

to which there is a “male-taller” norm in marriage in various populations (Gillis and Avis 1980, 

Stulp et al. 2013) and the extent to which preferences about height may affect other choices such 

as inter-ethnic marriage patterns (Belota and Fidrmuc 2010). A large literature looks at income 

differences between spouses (Winkler 1998, Brennan, Barnett, and Gareis 2001, Raley, 

Mattingly, and Bianchi 2002), inferring preferences about spousal income differences and the 

impact of those differences on time allocation decisions, consumption decisions, and marital 

stability (Schwartz and Gonalons-Pons 2016).  Bertrand, Kamenica, and Pan (2015) (hereafter 

BKP) argue that the drop-off in the density of the wife’s share of total spousal income at 50 

percent provides evidence of a social norm that husbands strictly out-earn their wives. 

This paper argues that it is very difficult and potentially misleading to infer preferences 

from observed pairings in the marriage market.  The challenge comes from the fact that the 

underlying distributions of spousal characteristics will impose constraints on the possible set of 

matches. In the context of a Beckerian marriage model, we demonstrate that a wide variety of 

social preferences over a characteristic are consistent with the same marriage market equilibrium 

of strict positive sorting on that characteristic. Given this, gaps between the male and female 

distributions of given characteristics readily give rise to skewed distributions of spousal 

characteristics. These skewed distributions would lead to many conclusions reached in the 

literature even if such social norms do not exist. For example, a low share of husbands shorter 

than their wives is consistent with a male-taller norm as well as with men preferring to be shorter 

than their wives. 

Our theoretical exploration considers simple models of marital sorting on height. We then 

generalize the model to apply to a broad range of distributions and preferences and consider its 

implications for analyses of spousal income differences.  Next, we use data on incomes of U.S. 

husbands and wives in the 2000 Census to discipline several simulation and calibration exercises. 

These exercises investigate how closely we can replicate observed spousal income differences 

using simple models of marital sorting and labor supply which do not impose an explicit 

preference for husbands to out-earn their wives. 
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Our simulations produce density functions of the share of total family income earned by 

the wife which closely match the observed density, and which drop sharply across the 50 percent 

threshold—the point at which the wife begins to out-earn her husband.  This pattern is similar to 

(though less dramatic than) the pattern documented in BKP, who interpret it as evidence of a 

social norm that the wife should not out-earn her husband.  

This discrepancy between the model’s predictions and the data could suggest that spouses 

with near-equal earning potential are manipulating their work efforts so as not to violate such a 

social norm. Indeed, one key difference between the simulations and the actual data is the 

presence of a point mass of couples earning exactly identical incomes. BKP report a 

discontinuous drop in the density function just to the right of this mass point at 50 percent, which 

is consistent with testing for the presence of a social norm that the wife should not strictly out-

earn her husband. We obtain a very similar sample and replicate this result almost exactly. 

However, when we test for a discontinuity just to the left of 50 percent, we find a discontinuous 

upward jump, which is consistent with a social norm that a wife should earn at least as much as 

her husband.  

Thus the mass point at 50 percent exerts a strong influence on the discontinuity test, even 

though the mass amounts to only about one quarter of one percent of all couples. Further 

investigation reveals that couples earning identical incomes are disproportionately joint owners 

of a business who chose to split revenues equally on their Schedule C tax forms, which means 

their presence in the data might confound statistical tests aiming to detect social norms relating 

to spousal income differences. We, therefore, remove the mass point and test for a discontinuity 

exactly at 50 percent.  Omitting these couples, the results show no evidence of a discontinuity at 

50 percent. In fact, the resulting estimates are similar in magnitude to those generated from our 

simulations. 

Together, the results indicate that observed spousal income differences appear to be 

largely explained by the gender gap in earnings in the labor market, combined with a tendency 

for positive sorting on income in marriage. Although it is possible that social norms stigmatize 

wives who earn more than their husbands, definitive evidence for or against this claim cannot be 

found by analyzing the distribution of the wife’s share in total spousal income. These results 

suggest that drawing inferences about preferences from observed marriage market outcomes may 

prove misleading.  
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II. BECKER’S THEORY OF MARRIAGE AND A SIMPLE MODEL OF SORTING ON HEIGHT 

Our theoretical discussion requires that we make predictions about how men and women 

are sorted in a marriage market.  We build on Becker’s (1973) economic theory of marriage, 

which provides well-known predictions about assortative matching on traits.  Consider a man M 

and a woman F who are considering marriage.  We assume they marry if and if only if it makes 

both better off compared to alternatives.  Denote the “output” of the marriage by Zmf. For now 

assume output can be divided Zmf = mmf + fmf, where mij indicates what man i consumes when 

married to woman j.  Although this may not be a minor assumption, since “household public 

goods” like children – or the income difference between spouses – cannot literally be divided in 

this way, Lam (1988) shows that the model can be applied to the case of household public goods 

under the assumption of transferable utility.  Because output (or utility) can be divided up 

between husbands and wives, it is possible for men to make offers to potential wives (and 

women to make offers to potential husbands) of some division of output.  This means that a man 

can in principle use “side payments” to attract a particular wife, and a woman can use side 

payments to attract a particular husband, making that person better off than he or she would have 

been with some other partner.    

Suppose we have a set of N women and N men, with marital output between woman i and 

man j denoted by Zij, and we consider all possible sortings of men and women.  Drawing on 

results from other matching models in mathematics and economics, Becker showed that a 

competitive equilibrium in the marriage market will be the set of assignments that maximizes the 

sum of output across all marriages.  The argument is a standard argument about the Pareto 

optimality of competitive markets.  If an existing set of pairings does not maximize total output, 

then there must be at least two couples for which we could switch partners and increase total 

output.  Given this, there must be an incentive for the individuals in those couples to capture that 

increase by a set of new matches and new division of output.  This will be illustrated below for a 

simple example of two couples sorting on height. 

Becker applied this very general result to the case of sorting on some trait A, where we 

will consider woman f to have a trait value Af and man m to have trait value Am, where A might 

be height, age, education, income, etc.  We will characterize marital output (which might be 

some measure of joint marital happiness) as a function of the values of A for each partner, 
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( , )mf m fZ Z A A= . Becker showed that the marriage market equilibrium will be characterized by 

positive assortative matching on A if  
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>

∂ ∂
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There will be positive assortative matching if the cross-partial in (1) is positive, and 

negative assortative matching if the cross-partial is negative.  A positive cross-partial derivative 

can be interpreted as implying that the value of A for the husband and wife are complements, 

while a negative cross-partial implies they are substitutes.  If, for example, having a higher 

educated husband raises the impact of the wife’s education on marital output, then we will tend 

to see positive assortative matching on education.  We draw on the result in (1) extensively 

below. 

Illustrative Model of Sorting on Height 

Some of the key theoretical points can be demonstrated with a very simple model of 

sorting on height in the marriage market.  Denote female height by Hf and male height by Hm. 

Suppose there are two women: F1 is 60” tall and F2 is 66” tall.  There are two men: M1 is 66” tall 

and M2 is 72” tall.  There are two possible pairings, 1) F1M1, F2M2, which is positive assortative 

matching on height, and 2) F1M2, F2M1, which is negative assortative matching on height.   

In order to find the marriage market equilibrium, we describe how the heights of couples 

affect marital utility.  Assume that people get utility from their individual consumption and some 

bonus that comes from being married.  The gains from marriage take the very simple form of 

some bonus K (representing, say, economies of scale in consumption or benefits of household 

public goods) that is offset by some penalty that depends on the height difference between 

spouses.  K can be thought of in monetary or consumption units, representing in the simplest 

example the amount of money the couple saves by being married.  The penalty associated with 

the height difference between couples can also be given a monetary interpretation, representing 

the amount of additional consumption that would be required to compensate for the disutility 

from a sub-optimal height difference between spouses. 

Now, consider various alternative cases for the loss function associated with the height 

difference between spouses.  For the first case, suppose that all men and women agree that the 

ideal marriage is one in which the husband is 6” taller than his wife.  Couples in which this is not 
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the case experience some loss of utility that increases at an increasing rate as the height 

difference between spouses increases.  A simple example is a quadratic loss function: 

 2( , ) ( 6)m f m fZ H H K H H= − − − . (2) 

If the husband is 6” taller than the wife then there is no loss of utility from marriage.  If 

the husband is the same height as the wife then the loss is is (0-6)2 =36.  As a concrete and very 

literal example, this could mean that the couple would need an additional $36 worth of 

consumption to make them as happy as a couple with the ideal height difference.  If the husband 

is 12” taller than the wife then the penalty is (12-6)2 =36.  With these payoff functions, we can 

consider the two possible sortings of couples.  If the taller man marries the taller woman and the 

shorter man marries the shorter woman, then each husband is 6” taller than his wife, generating a 

total marital utility of 2K (zero penalty in either marriage).  If we switch partners, then one 

couple (same height) has a penalty of 36 and the other couple (taller man and shorter woman) 

also has a penalty of 36, for a total penalty of 72.  Total marital utility is obviously highest with 

perfect rank-order sorting, and this is the competitive equilibrium we would expect to observe.  

If we started with the alternative sorting, everyone could be made better off by switching 

partners.  If we observe the perfect rank-order sorting equilibrium and conclude that everyone 

prefers that husbands are taller than their wives, our inference would be correct. 

Now consider a different payoff function in which the ideal couple is one in which the 

husband and wife have equal heights, with a penalty for height differences that is increasing in 

the difference:   

 2( , ) ( )m f m fZ H H K H H= − −   (3) 

With perfect rank-order sorting the total penalty is now 36 + 36 = 72, since each couple is 

6” from the ideal height difference.  In the alternate sorting we can create one ideal couple of 

equal heights, generating a penalty of zero.  But the other couple (the tall man and the short 

woman) has a height difference of 12”, creating a penalty of 144 (which we can think of as 72 

per spouse).  Perfect rank-order sorting produces higher total marital utility (lower total 

penalties).  This follows from the convex penalty function, which penalizes very large 

differences in height more than small differences.   

The logic in terms of a competitive marriage market is as follows:  Suppose we began 

with the sorting in which one couple has equal heights while the other couple has a 12” height 
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difference.  The individuals in the mismatched couple, F1 and M2 see that they would each be 

much happier if they could switch partners and have a 6” height difference instead of a 12” 

height difference.  The question is whether F1 would be able to induce M1 to switch from F2 to 

her.  Her penalty would decline from 72 (half of 144) to 18 (half of 36) if she changed partners. 

The penalty for M1 would increase from 0 to 18 (half of 36) if he switched partners.  Clearly F1 

can more than compensate M1 for changing, making him a side payment of at least 18, leaving 

herself better off after the switch.  The exact same story can be told for M2 inducing F2 to switch 

to him.  Every person will be better off after the re-sorting, so the positive assortative matching 

equilibrium is the one we should observe. 

The resulting sorting of spouses with the preferences in (3) is exactly the same as the 

sorting with the preferences in (2)–the sorting with positive assortative matching on height.  In 

this second case we would be drawing an incorrect inference if we interpreted the equilibrium as 

resulting from a preference for men to be taller than their wives.  In fact the preference is for 

equal heights, and the distribution of heights allows for such a case.  The reason we do not see it 

is because creating that match leads to another match of extremely unequal heights. 

Taking this case even further, consider a payoff function in which the ideal couple is one 

in which the wife is 6” taller than her husband, with, once again, a penalty for deviations from 

the ideal that is increasing in the difference:   

 2( , ) ( 6)m f f mZ H H K H H= − − −   (4) 

With perfect rank-order sorting the total penalty is 144 + 144 = 288, since each couple is 

12” from the ideal height difference.  In the alternate sorting the total penalty is 36 + 324 = 360.  

Once again it is positive assortative matching that produces the maximum total payoff across all 

marriages.  If we started with negative assortative matching, a process of renegotiation analogous 

to the one just described should lead to a re-sorting.  We will therefore expect that positive 

sorting will be observed as the equilibrium outcome.  This then, is the interesting case in which 

the underlying preferences are that men prefer to be shorter than their wives.  We never observe 

this in the actual marital outcomes, however.  The reason is that the convex payoff function 

pushes the equilibrium toward a sorting that has small average differences between spouses.  It is 

better to have everyone slightly off from the ideal rather than have some couples that are close to 

the ideal and other couples that are very far from the ideal. 
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A General Model of Marriage Matching on Characteristics 

The conclusions reached in the special case discussed above of two men and two women 

sorting on heights is very simple to apply much more generally.  It is straightforward to show 

that the model generalizes to cases with a large number of women and men covering a large 

range of heights.   

As long as the distribution of heights for men is shifted to the right from the distribution 

of heights for women, and as long as the penalty function to height differences between spouses 

is convex in the height difference (that is, the penalty to a 2” height difference is more than twice 

as large as the penalty to a 1” height difference), we should observe strong positive assortative 

matching on height, with the same set of matches implied by a wide range of preferences.  

Notably, assortative matching on height would occur even in cases when men prefer to be strictly 

shorter than their wives. 

For a more general version of the problem, consider a population with N men and N 

women, with all men and women getting married.  Assume that there is first order stochastic 

dominance in the distribution of heights, implying that the ith man is taller than the ith woman 

for all i, where i is the rank order, with i=1 indicating the tallest man and woman.1  Suppose that 

the payoff from man i, with height Hmi, marrying woman j, with height Hfj, can be characterized 

by some general payoff function that includes a convex penalty function in terms of their height 

difference, which we will define as ij mi fjg H H= − :  

 ( , ) ( ) ( )mi fj mi fj ijZ H H Z H H K f g= − = − , (5) 

with ( ) 0f g′′ > .  The f(g) penalty function could include all of the examples given above, 

implying a preference for taller husbands, a preference for taller wives, a preference for equality 

of heights, or many other preferences related to the height difference.  Note that the first 

derivatives MZ H∂ ∂  and FZ H∂ ∂ can be either positive or negative.  For example, if the penalty 

function is minimized with equal heights, then increasing the man’s height will reduce the 

penalty (and thus increase the payoff from marriage) if the man is shorter than the woman, but 

will increase the penalty if the man is taller than the woman.  Height is not necessarily a “good” 
                                                 

1 Although this may sound like a strong assumption, it is quite realistic.  For example, the income distributions of 
husbands and wives in the 2000 US census, which we use below, are characterized by first-order stochastic 
dominance, with the CDF for women lying everywhere above the CDF for men, implying that at any rank in the 
distribution, male income is higher than female income.   
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or “bad” trait in the sense of having an unambiguously positive or negative impact on the payoff 

from marriage.  Nonetheless, it is still true that Becker’s result about assortative matching in 

Equation (1) holds based on the cross-partial derivative:  

 
( , )

0m f

m f

Z H H
H H

∂
>
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. (6) 

To see this, consider a case in which the husband is shorter than the wife and there is a 

preference for equality. Increasing his height reduces the height gap and thus increases the total 

payoff from marriage.  The impact of reducing the gap is larger when the initial gap is larger 

(from the convexity of the penalty function), so the positive impact of increasing his height is 

increasing in the height of the wife.  Conversely, the impact of the husband’s height is negative 

when he is taller than his wife, but this effect will be smaller when the initial gap is smaller.  So 

the negative impact of husband’s height becomes less negative as the wife’s height increases, 

once again implying a positive cross-partial.  This implies that there will be positive assortative 

matching on height.   

In fact, we can show that there will be strict positive assortative matching in the sense 

that ith tallest man will be matched to the ith tallest woman, for all i.  To prove this, compare that 

sorting with some alternative set of partners for the ith tallest man and woman. Consider the ith 

ranked man and woman and the jth ranked man and woman, i<j, with heights Hmi,>Hfi,  Hmj>Hfj, 

and Hmi>Hmj  We do not make any assumption about the ranking of Hfi and Hmj, the tallest 

woman and the shortest man. There are two possible pairings of these two men and two women, 

with the following total payoffs from the two marriages: 

Payoff from pairing A: ( - ) ( - ).Mi Fi Mj FjZ H H Z H H+  

Payoff from pairing B: ( - ) ( - ).Mi Fj Mj FiZ H H Z H H+  

Pairing A is positive assortative matching, with the tallest man married to the tallest 

woman. Pairing B is negative assortative matching, with the tallest man married to the shortest 

woman.  Given the height rankings, it must be the case that  ji ii ijg g g< < and ji jj ijg g g< < . 

That is, the height gap between man i (the tallest man) and woman i (the tallest woman) must be 

larger than the height gap between woman i and man j, which must in turn be smaller than the 

gap between man i and woman j (the shortest woman).  And the gap between woman i and man j 

must be smaller than the gap between woman j and man j, which must be smaller than the gap 
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between between woman j and man i.  In other words, gji is the smallest gap, gij is the largest 

gap, with gii and gjj intermediate.   

The sum of the gaps for Pairing A can be written and rearranged as:  

( - ) ( - ) ( - ) ( - )

                         
Mi Fi Mj Fj Mi Fj Mj Fi

ii jj ij ji

H H H H H H H H
g g g g

+ = +

+ = +  
This simply states that the sum of the height gaps must be the same under either sorting.  

Since jig  is the smallest gap and ijg  is the largest gap, it follows from concavity of the payoff 

function (convexity of the penalty function) that  

 ( ) ( ) ( ) ( )ii jj ij jiZ g Z g Z g Z g+ > + .   (7) 

Equation (7) gives the key result.  It states that for men and women at any two ranks in 

the distribution, we will always get higher total payoff with perfect positive sorting, matching 

men and women with the same rank.  More generally, if we take any two men and women who 

are not matched with positive sorting, we will always get higher total payoff if we rearrange 

them with positive sorting.  Given this, it follows that the only sorting for the full distributions 

that will maximize total payoffs is perfect rank order sorting, given stochastic dominance of the 

distributions and given a concave payoff function.   

These results obviously extend to differences in other characteristics such as income.  

Income has the additional complication that, unlike height, it is not an exogenous trait.  The 

incomes of husbands and wives will be affected by decisions about labor supply and investments 

in human capital.  But assortative matching also plays a fundamental role in determining the 

income difference between spouses.  Our results imply that if the male income distribution 

stochastically dominates the female income distribution, and if there is a tendency for strong 

positive assortative matching on income, it will tend to be relatively rare for women to earn more 

than their husbands.  This tendency will exist even if the underlying norm is to have equal 

incomes between husbands and wives, or even if the norm is for wives to earn more than their 

husbands.  Of course many other factors may lead to strong positive assortative matching on 

income or income-related characteristics. Lam (1988), for example, demonstrates that there will 

tend to be positive assortative matching on income whenever the gains from marriage results 

from household public goods, such as children.  Individuals may have no preferences regarding 
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the difference between spousal incomes at all, but the equilibrium set of pairings in the marriage 

market may look as if there is a norm that a husband should earn more than his wife.  

III. IMPLICATIONS FOR SPOUSAL INCOME DIFFERENCES 

The theoretical results of Section II indicate that the presence of arbitrary social 

preferences over spousal income differences creates a strong tendency for positive sorting on 

income in marriage market equilibrium. Given a sizable gender gap in earnings, this positive 

sorting result indicates that it should be relatively rare for wives to out-earn their husbands, 

regardless of underlying preferences. We now demonstrate that if we calibrate the male and 

female income distributions according to Census data, and assume positive sorting on potential 

income, we can very closely replicate the empirical distribution of the wife’s share of earned 

household income. We use BKP’s results to guide our investigation. 

Simulated Distributions  

BKP assemble a strong case that “women are bringing personal glass ceilings from home 

to the workplace” (p. 574). Both in Census and administrative data, they find that the density 

function of the share of total household income earned by the wife drops sharply and 

discontinuously (based on McCrary’s (2008) statistical test) at 50 percent, the point at which the 

wife starts to out-earn the husband. This discontinuity, they argue, is evidence of a social norm 

that women not out-earn their husbands. They supplement these discontinuities with other 

findings: in marriage markets in which women are likelier to out-earn men, marriage rates are 

lower; when the wife’s full earning potential exceeds her husband’s she is less likely to work 

full-time; and when the wife does out-earn the husband the marriage is less stable and likelier to 

end in divorce.     

We begin by replicating BKP’s key finding using a sample of couples drawn from the 

2000 U.S. Census 5-percent sample (Ruggles et al. 2015).  Following BKP, we restrict the 

sample to couples aged 18-65, process earned income variables following the procedure outlined 

in the paper’s main text and appendix,2 and keep only couples in which both spouses report 

positive income. Figure 1 displays two 20-bin histograms of the distribution of the share of total 

household income earned by the wife: the one presented in BKP and our replication. Following 

                                                 
2 Among other things, the procedure removes the unnatural spike of couples reporting exactly identical incomes. 
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BKP, we apply a local linear smoother to the histogram bins, allowing for a break in the 

smoothed distribution at 50 percent. The two distributions (smoothed and unsmoothed) look very 

similar, and both display a sharp reduction in probability mass to the right of 50 percent. 

For the purposes of our simulation, we further restrict the sample to relatively young 

couples (aged 18-40) without children. This additional restriction is motivated by the fact that 

women disproportionately reduce their working hours or exit the labor force to raise young 

children, and re-enter the workforce with lower earnings potential (Mincer and Ofek 1982, 

Hotchkiss and Pitts 2007, Attanasio, Low, and Sanchez-Marcos 2008, Bertrand, Goldin, and 

Katz 2010). Our simple treatment of the income process and marital sorting will not address the 

dynamics of household fertility and how they interact with labor supply decisions.3 

Our final sample consists of 109,569 dual-earning couples, and for each couple we 

calculate the share of family income earned by the wife. Figure 2 plots the observed distribution 

of the wife’s share of family income. The main difference between this distribution and the full 

sample distribution is the reduced presence of couples where the wife earns below 25 percent of 

total family income, which likely reflects the impact of children on the wife’s labor supply and 

earned income. Otherwise, the distribution based on our sub-sample broadly matches the full 

sample distribution and, importantly, also exhibits a sharp drop at 50 percent. According to the 

McCrary test the estimate of the sharp drop is 12.4 percent, with a standard error of 1.8 percent. 

This plot and discontinuity estimate serve as benchmarks for our subsequent empirical exercises. 

In our first simulation, we randomly match men and women in our sample into couples. 

Figure 3 displays a smoothed distribution of the wife’s share of family income based on random 

matching, again allowing for a break at 0.5, overlaid on the observed distribution. The 

distribution generated by random matching is not too dissimilar from the observed distribution. 

Even this overly simple and surely unrealistic sorting process produces a mode of wife’s share of 

income around 0.42 and a drop-off in mass above that point. Notably, significantly fewer wives 

slightly out-earn their husbands than vice versa: 0.5 corresponds to the 70th percentile of the 

                                                 
3 The effect of the presence of children and marital tenure on the observed distribution of the wife’s share of total 
spousal income can be readily inferred from BKP’s Appendix Figures A.1 and A.2. These figures show that the 
leftward spike near 0 is much more pronounced in couples with children versus couples without, and as marriage 
tenure increases. Accurately reproducing this spike would require a dynamic labor supply model with a careful 
specification of the earnings process and how it is affected by a period of reduced or non-participation. This exercise 
is beyond the scope of this paper. 
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distribution of wife’s share of earned income. This exercise demonstrates that the prevailing 

male and female income distributions exert a strong influence on spousal income differences. 

Our next exercise investigates whether improvements over random sorting can be made 

by sorting couples positively on income. Reflecting the discussion of Section II and Lam (1988), 

positive sorting could arise from a variety of explicit preferences over spousal income 

differences, the presence of household public goods, or positive sorting on other characteristics 

related to income (such as education). 

In our Census sample, observed male log income 𝑦𝑦𝑖𝑖𝑚𝑚 is distributed nearly normally with 

mean 10.35 and standard deviation 0.75. Female log income 𝑦𝑦𝑖𝑖
𝑓𝑓also follows a roughly normal 

distribution with mean 10.00 and standard deviation 0.87. We use these log-normal parameters to 

simulate 100,000 male incomes 𝑌𝑌𝑖𝑖𝑚𝑚 and 100,000 female incomes 𝑌𝑌𝑖𝑖
𝑓𝑓. Next, we create couples by 

matching individuals not according to observed income rank, but rather the rank of observed 

income perturbed with noise. That is, for each individual of gender g we assign 𝑊𝑊𝑖𝑖
𝑔𝑔 = 𝑌𝑌𝑖𝑖

𝑔𝑔 + 𝑢𝑢𝑖𝑖, 

where u is normally distributed white noise, and pair up males and females according to their 

rank of W. This is consistent with at least two interpretations. One interpretation is that couples 

are perfectly sorted on the basis of permanent incomes and the white noise represents transitory 

income shocks. A second is that men and women care about other characteristics as well as 

income, or that marital matching is imperfect, for example due to the presence of search 

frictions.4 Under the latter interpretation, equilibrium sorting on observed income plus noise is 

the reduced form of a more complicated and unspecified matching process. 

Figure 4 displays a simulated distribution of the wife’s share of family income based on 

this very simple model, with the standard deviation of u set to 16,000, overlaid on the actual 

distribution. Other than failing to replicate the extreme left tail of the distribution, the simulated 

distribution is remarkably similar to the actual. Importantly, the simulated distribution also 

exhibits a sharp drop in mass across the 50 percent threshold. 

We next test whether the drop is actually discontinuous in nature via a Monte Carlo 

version of the McCrary (2008) test. We simulate 500 distributions of independently from the 

data-generating process and test for a discontinuity at 50 percent in each distribution. The 

                                                 
4 Common specifications of earnings processes (see, e.g., Moffit and Gottschalk, 2002) assume transitory white-
noise shocks enter log-linearly, rather than linearly as we have assumed. This might lead one to prefer the second 
interpretation over the first, although the first interpretation is simpler. 
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average point estimate is a 2.6 percent drop in mass, and the average t statistic is -1.1. Thus we 

cannot reject the null hypothesis that our simple data-generating process produces a distribution 

that is smooth at 50 percent. In a sense this should be expected, as our model does not specify 

any discrete choices or impose any discontinuous functional forms. Nonetheless, it is important 

to stress the point made by Figure 4: given the underlying male and female income distributions, 

the observed distribution of the share of family income earned by the wife is largely consistent 

with positive sorting on observed income plus noise. As Section II indicates, the observed 

matching could be consistent with a wide variety of underlying preferences. It could be based on 

a desire for equality in spousal incomes, a preference for wives to be richer than their husbands, 

or gains from marriage related to household public goods that lead to positive sorting on 

permanent income (i.e. with no explicit preference at all for equal or unequal spousal incomes).  

In the next sub-section we closely examine the discontinuity in the observed data and the 

failure of our model to replicate it. Before doing so, however, we address one key shortcoming 

of the previous exercise: the implicit assumption that observed female income is an exogenous 

trait.  Even despite focusing on a sample of childless couples of prime working age, this is likely 

an unrealistic assumption. For a variety of reasons, including specialization incentives, or the 

very social norm BKP argues exists, the maximization of household objectives may lead the wife 

not to work full-time. To address this, we endogenize the wife’s income via a simple labor 

supply model and explore the model’s predictions about the distribution of wifeshare. 

We assume that, for a given male m and female f, the match output function is given by 

𝑍𝑍𝑚𝑚𝑓𝑓 = 𝑍𝑍�𝑌𝑌𝑚𝑚,𝑌𝑌𝑓𝑓,𝑃𝑃� = 𝐶𝐶1−𝛾𝛾

1−𝛾𝛾
− 𝜓𝜓𝑃𝑃,     (8)    

with 𝐶𝐶 = 0.61(𝑌𝑌𝑚𝑚 + 𝑌𝑌𝑓𝑓𝑃𝑃), where Ym and Yf denote each spouse’s permanent income, P is the 

wife’s labor supply decision (constrained to be in the unit interval), γ is the CRRA parameter, 

and ψ is the disutility incurred by the household if the wife works. This specification of 

household utility has been used in recent work investigating determinants of wives’ labor supply 

(e.g. Attanasio et al., 2008). It assumes household consumption of earned income is a public 

good with congestion; the 0.61 is a McClements scale calibration capturing consumption 

economies of scale in marriage.5 We depart from the framework of Section II and now assume 

                                                 
5 To illustrate, suppose P=1 and Ym=Yf. Then the couple enjoys a higher level of joint consumption in marriage than 
either member would as single. 
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fully non-transferable utility. With this assumption positive sorting on permanent income occurs 

in marriage market equilibrium so long as each member’s permanent income positively affects 

match output.6 It is trivial to show that this holds here (regardless of the wife’s eventual labor 

supply decision). Assuming that each individual’s income from full-time work (full income) in a 

given period is the sum of his or her permanent income and a transitory shock, positive sorting 

on full income plus noise will arise in equilibrium. 

After marriage, the wife takes her husband’s and her own full income as given and 

chooses 𝑃𝑃 ∈ [0,1] to maximize the above utility function.  Assuming an interior solution, she 

optimally chooses 

𝑃𝑃∗ =
1

0.61�
𝜓𝜓

0.61𝑌𝑌𝑓𝑓
�
−1𝛾𝛾−𝑌𝑌𝑚𝑚

𝑌𝑌𝑓𝑓
;       (9) 

if P* lies outside of the unit interval, the appropriate corner solution applies. 

To use the above model to draw valid conclusions about the distribution of the share of 

spousal income earned by the wife in marriage market equilibrium, we must reasonably calibrate 

it. Outside of the calibration we impose 𝛾𝛾 = 1.5, a standard value estimated in the macro 

literature. We assume log-normally distributed full incomes and allow the work disutility 

parameter, ψ, to be heterogeneous in the population and negatively correlated with Yf.7 The 

model in total contains 8 parameters, which we calibrate by targeting 8 moments in our observed 

data: the means and standard deviations of male and female log observed income, the observed 

mean gender earnings ratio conditional on earning positive income (P*>0), the observed mean 

gender earnings ratio conditional on full-time work (defined in the data as at least 1600 hours 

worked in the last calendar year; defined in the model as P*>0.95), the female employment rate 

(defined in the data as the share of wives working positive hours in the last calendar year), and 

the female full-time employment rate. 

Table 1 summarizes the calibration—overall the model does a very good job of 

replicating the targets in the data. Notice also that we did not explicitly target any moment 

                                                 
6 Starting from perfectly positive sorting, it is easy to show that no two individuals can become better off by 
dissolving their current matches and matching with each other. The inability of individuals to make transfer 
payments means we no longer need the cross-partial assumption on the match output function to generate positive 
sorting on the given trait in marriage market equilibrium. 
7 Imposing a negative correlation, as has been estimated in the literature (Eckstein and Lifshitz 2011), ensures that 
positive sorting on potential income is not disturbed. 
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related to spousal income differences in the calibration, so we are not knowingly biasing the 

model in favor of our purpose. 

With the calibrated model we can now simulate the distribution of the wife’s share of 

spousal income, as displayed in Figure 5.8 The simulated distribution again matches the actual 

distribution very closely. Observe that because of the endogenous labor supply decision, some 

wives choose to work very few hours, and so the region of the distribution below 25 percent is 

much better replicated here than in Figure 4. On the other hand, this simulation produces a 

distribution in which slightly too many wives outearn their husbands relative to the actual data. 

Nonetheless, the overall shape of the distribution, including the sharp drop in mass across the 50 

percent threshold, is accurately replicated.9 

Overall these empirical simulations indicate that gender differences in the wage structure 

combined with any match utility function that delivers positive sorting on permanent income can 

sufficiently explain the surprisingly low incidence of wives out-earning their husbands. 

However, our simple models are not able to account for the discontinuous nature of the 

distribution of wives’ relative income across the equality threshold.  

A Closer Look at the Drop-Off in Mass at 50 Percent 

BKP estimate the sharp drop in mass at 50 percent to be significantly discontinuous in a 

variety of Census samples as well as in administrative data. Their analysis is complicated by the 

fact that unlike in our simulated data, the actual data contain a point mass of couples with 

identical earned incomes. This point mass is quite small in the administrative data (between 0.2 

and 0.3 percent of all couples), and rather large in the Census samples (around 3 percent of all 

couples, even after removing individuals with imputed income and couples where both spouses’ 

incomes are top-coded).10 Without the point mass, the straightforward way to proceed would be 

to test for the discontinuity of the distribution exactly at 50 percent, and interpret a negative and 

                                                 
8 The simulation uses a sample size of 120,000 men and 120,000 women. Since around 90 percent of wives choose 
to work, an initial sample of 120,000 returns around 108,000 dual-earning couples, which closely matches the 
sample size observed in the 2000 Census. 
 
9 Performing the same Monte Carlo version of the McCrary test as in the previous exercise we also estimate a small 
and statistically insignificant drop-off in mass at 50 percent. In the next sub-section we take a closer look at BKP’s 
discontinuity results and illustrate that they are driven by the small spike of couples earning identical incomes, 
which our simple simulations do not take into account. 
 
10 This point mass has been removed in Figures 2-4 to maximize comparability to the simulations as well as to what 
BKP present in their Figure III. 
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significant finding as evidence that couples are manipulating their earnings so as not to have the 

wife out-earn the husband. The presence of the point mass presents a challenge. Consistent with 

the wife strictly out-earning the husband to be a violation of a social norm, BKP test for a 

discontinuity just to the right of 0.5.  The negative and significant result, combined with the 

presence of the spike, might suggest that a non-trivial portion of couples manipulate their 

earnings so that the wife earns the same as or less than her husband. 

While this treatment of the data is sensible and in line with the hypothesis test BKP 

wished to conduct, it is unclear whether asymptotic inference based on the McCrary test is robust 

when there is a point mass close to the supposed breakpoint.11 Like a non-parametric regression 

discontinuity design, the test involves local linear smoothing of a finely-binned histogram on 

either side of the supposed breakpoint, and asymptotic inference is based on the size of the bins 

shrinking to zero at the correct rate as the number of observations increases to infinity. In BKP’s 

application of the test, for a small bin size, the bin immediately before the breakpoint will (by 

virtue of containing the point mass) be much taller than the bin immediately after the breakpoint. 

This could exert undue influence on the discontinuity estimate, especially if a small bin size and 

bandwidth is used to perform the test. 

To investigate the sensitivity of the discontinuity test to the presence of the point mass, 

we replicate BKP’s administrative sample and analysis. The data used are Survey of Income and 

Program Participation (SIPP) data linked to the Social Security Administration’s (SSA’s) 

detailed earnings records.12 BKP construct a sample of administrative earnings data for all dual-

earning couples aged 18 to 65 observed in the first year they were in the SIPP panel. They 

consider SIPP panels 1990 through 2004. We construct a sample according to the same 

conditions, but include the 1984 and 2008 SIPP panels as well, which are available in the most 

recent version of the SIPP/SSA data product. We obtain a sample of around 83,000 couples—

                                                 
11 In fact, one of the assumptions required to perform the test is that the distribution is continuous everywhere except 
possibly at the supposed breakpoint (McCrary 2008). 
 
12 The particular data we and BKP use come from a pre-linked and cleaned Census Bureau data product called the 
Gold Standard File (GSF). Users work with synthetic versions of the data remotely and then have Census run final 
programs internally on the actual GSF, subject the output to a disclosure review, and then release the output. More 
information can be found in Benedetto, Stinson, and Abowd (2013) and here: http://www.census.gov/programs-
surveys/sipp/guidance/sipp-synthetic-beta-data-product.html. 
 

http://www.census.gov/programs-surveys/sipp/guidance/sipp-synthetic-beta-data-product.html
http://www.census.gov/programs-surveys/sipp/guidance/sipp-synthetic-beta-data-product.html
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about 9,500 more than in BKP’s sample.13 Despite using a slightly different sample, our 

distribution of the wife’s share of total spousal income is virtually identical to BKP’s, as 

illustrated in Figure 6. 

In our replicated sample, 0.21 percent of all dual-earning couples earn identical incomes, 

compared to 0.26 percent in BKP’s sample. Using our sample we now perform 3 different 

versions of the McCrary test for a discontinuity in the distribution at 50 percent, based on three 

different treatments of the point mass: keeping the point mass and testing for a discontinuity at 

.500001, keeping the point mass and testing for a discontinuity at .499999, and deleting the point 

mass and testing for a discontinuity exactly at .50. For each version we use 4 different sets of 

tuning parameters to gauge the sensitivity of the test results. McCrary’s test procedure involves 

an algorithm that automatically chooses a bin size for the histogram and a bandwidth within 

which to apply the local linear smoother to the histogram. McCrary (2008) recommends using a 

smaller bandwidth than the automatic one (around half the size) to conduct robust asymptotic 

inference. We consider the automatically selected bandwidth, which in this case is around .084; 

and then bandwidths of .045, .023, and .011. Especially the last bandwidth may be too narrow for 

optimal statistical inference, but using successively smaller bandwidths allows us to gauge the 

sensitivity of the test to the presence of the point mass (which becomes increasingly dominant as 

the bandwidth shrinks). 

Table 2 reports the discontinuity estimates, which equal the estimated log increase in the 

height of the density function as one travels from just to the left of the supposed breakpoint to 

just to the right. A negative number thus indicates a sharp drop and a positive number indicates a 

sharp gain. Bolded estimates are statistically significant at the 5 percent level; italicized estimates 

are significant at the 1 percent level. Standard errors appear below estimates in parentheses. 

The first version of the test replicates BKP’s choice of retaining the point mass of couples 

and testing for a discontinuity just to the right of 50 percent. With the standard bandwidth and 

bin size, we estimate that the density function drops by a statistically significant 12.4 percent 

across the threshold. This is remarkably similar to BKP’s reported estimate of a 12.3 percent 

drop in their very similar sample (reported on p. 576). Observe that as the bandwidth shrinks, the 

                                                 
13 BKP report a sample size of 73,654, although it is unclear whether this number refers to all couples in their 
sample or all dual-earning couples. We have obtained BKP’s do-files and in future work will exactly replicate their 
sample. 
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estimate of the sharp drop rises in magnitude, such that with the smallest bandwidth we estimate 

a 57.5 percent drop—over 4 times as large as the first estimate. This suggests that the point 

estimates are sensitive to the existence of the point mass. 

When we retain the point mass and test for a discontinuity just to the left of 50 percent, 

we find the exact opposite result: the density function jumps discontinuously upward. Once 

again, the estimate starts out reasonably small (6.4 percent), and becomes very large (45.1 

percent) as the bandwidth shrinks.  The finding of a sharp gain in the distribution just to the left 

of 50 percent would suggest that couples manipulate earnings so as not to have the husband 

strictly out-earn his wife (i.e. there is missing mass just to the left of 50 percent). This is nearly 

opposite to the social norm that the wife should not out-earn her husband, which is suggested by 

the first version of the results. 

The third column of results derive from deleting the point mass and testing for a 

discontinuity exactly at 0.50. Two features stand out. First, while the estimates are negative they 

are no longer statistically significant—moreover, the estimate based on the standard bandwidth 

matches closely the estimates generated by performing the test with the standard bandwidth on 

our simulated data. Secondly, the estimates do not rise appreciably in magnitude or statistical 

significance as the bandwidth shrinks, because the point mass is no longer present. Overall these 

results illustrate the undue influence of the point mass of couples earning identical incomes. 

Therefore, if we ignore the one quarter of one percent of couples earning identical 

incomes, the conclusions that i) gender income gaps dictate the distribution of spousal income 

differences in marriage, and that ii) the actual distribution of spousal income differences could be 

consistent with a wide variety of underlying social preferences, are strongly supported by the 

data and empirical simulations. A related conclusion, stemming directly from the estimates in 

Table 2, is that in light of the point mass, one should not use a discontinuity test at the point that 

the wife begins to out-earn the husband to robustly infer social preferences. 

In light of these conclusions, it is worth exploring why the point mass exists in the first 

place, and what it means to remove it from the sample. For example, the existence of the point 

mass could indicate a social preference, in the population or a certain sub-population, for strict 

equality of spousal incomes.  
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Further exploration of the 2000 Census data reveals three interesting facts about the 

couples who report identical incomes in comparison to the full sample.14,15 First, compared to a 

couple reporting different incomes for husband and wife, when a couple reports identical earned 

incomes, it is far likelier that both the husband and wife report being self-employed. Second, 

over half of the couples who report identical incomes report identical business incomes, while 

less than 20 percent of all dual-earning couples report positive business income for either spouse. 

Third, 21 percent of couples in which each spouse earns positive business income report 

identical business incomes. Overall these facts suggest that couples with identical administrative 

earnings records are disproportionately couples whose sole source of earned income is a jointly 

owned business. For these couples, income declarations on tax forms are easily influenced by tax 

or Social Security incentives, or may reflect the fact that both owners have actually contributed 

equally to the business operation. The earnings of such couples are clearly not reflective of 

standard income processes. Thus there is a case to be made for excluding couples with identical 

administrative incomes to draw valid inferences about spousal income differences for the general 

population. 

 

IV. CONCLUSION 

Our theoretical and empirical results demonstrate that it is very difficult, and potentially 

quite misleading, to infer preferences about spousal characteristics from the observed distribution 

of differences in spousal traits. Actual marriage market outcomes are affected not just by 

preferences, but also by the underlying distribution of traits on both sides of the market.  If men 

are taller or richer than women on average, any preferences that lead to positive assortative 

matching will produce equilibrium sortings in which it is relatively rare for women to be taller or 

richer than their husbands. As we have shown, even a preference for men to be shorter than their 

wives will plausibly lead to an equilibrium in which most men are taller than their wives.   

                                                 
14 The Gold Standard File provides very little occupational information about the couples, which is why we use the 
Census for this exploration. It is important to keep in mind that the point mass of couples with identical incomes is 
over 10 times as large in the Census data, due to rounding of reported income as well as possible reporting biases. 
That is, many couples who report identical incomes in the Census data do not have identical administrative earnings 
records. However, it is reasonable to assume that couples who report identical incomes are (much) likelier than those 
who do not to have identical administrative records. 
15 This analysis is incomplete and will be expanded in the final version of the paper. 
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In the final version of this paper we will provide a more complete analysis of the 

theoretical results describing how preferences interact with the underlying distributions of traits 

to produce equilibrium marriage market outcomes. These include results using very general 

continuous distributions of traits and a wide range of preferences. These results are entirely 

consistent with the simple models presented above.  We will also use the theoretical results to 

discuss the ways in which preferences could be correctly inferred, including the use of data on 

actual resource distribution within couples or the use of information on individuals who end up 

unmarried in the marriage market.  We will also provide additional simulations based on actual 

distributions of income in the U.S. All our analyses support the results above, which show that 

we can generate distributions of the spousal distribution of income that are almost identical to the 

observed distributions without imposing any preferences regarding the relative incomes of 

husbands and wives.  Using these results, we will provide a more detailed discussion of the 

implications of the results for research on gender gaps within marriage and the role of social 

norms in driving the allocation of resources within households.   
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TABLE 1. MODEL CALIBRATION 

Parameter Symbol Calibrated Value 
Mean male log income μm 10.35 
Standard deviation of male log income σm 0.75 
Mean female log full income μf 10.16 
Standard deviation female log full income σf 0.70 
Mean disutility of work ψ .0019 
Standard deviation of disutility of work σψ ψ/2 
Correlation, disutility of work and female log full inc ρ -0.4 
Standard deviation of transitory income shock σu 13,000 

Targets in the data Data Model 
Mean male log observed income 
Standard devation male log observed income 
Mean female log observed income 
Standard deviation female log observed income 
Mean gender earnings ratio, all 
Mean gender earnings ratio, full-timers only 
Female labor-force participation rate 
Female full-time labor-force participation rate 

10.35 
0.75 
10.00 
0.87 
0.74 
0.80 
0.88 
0.67 

10.35 
0.75 
9.98 
0.87 
0.71 
0.79 
0.91 
0.67 

      

Notes: Calibration of marital sorting and female labor supply model discussed in Section III. 

 

 

TABLE 2. DISCONTINUITY ESTIMATES IN THE GOLD STANDARD FILE 
   

Bandwidth  Bin size Treatment of point mass of couples at 0.5 

Right of 0.5 Left of 0.5 Kick out 0.5 spike, 
test for break right at 0.5 

.084 .0016 -.124  
(.031) 

.064  
(.031) 

-.034  
(.032) 

.045 .0016 -.184 
(.040) 

.129 
(.040) 

-.031  
(.043) 

.023 .0016 -.310  
(.055) 

.240  
(.055) 

-.040  
(.061) 

.011 .0005 -.575  
(.078) 

.451  
(.081) 

-.078  
(.091) 

     

 

Notes: The first reported bandwidth and bin size correspond to those automatically selected by the McCrary (2008) 
test algorithm. McCrary (2008) recommends using a smaller bandwidth than the automatically selected one, as is 
done in the second through fourth rows. Point estimates report the log difference in the height of the density function 
as one crosses from just left of the supposed breakpoint to just right of it. Bold estimates are statistically significant 
at the 5 percent level; italicized estimates achieve significance at the 1 percent level. Standard errors appear below 
point estimates in parentheses. 
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Notes: Graph A is a screenshot of part of Figure III of BKP. Graph B is our replication. Each graph is based on a 
sample drawn from the 2000 Census consisting of dual-earning couples, in which both the husband and the wife are 
between 18 and 65 years old.  Each graph plots a 20-bin histogram of the distribution of the share of total household 
income earned by the wife. The dashed lines represent the lowess smoother applied to each histogram on either side 
of 0.5. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: The sample includes dual-earning married couples who do not have children and where both the husband and 
wife are between 18 and 40 years of age. The figure plots a 20-bin histogram of the observed distribution of the 
share of total household income earned by the wife.  The dashed lines represent the lowess smoother applied to the 
histogram on either side of 0.5. 

FIGURE 2. DISTRIBUTION OF RELATIVE INCOME, 2000 CENSUS 
COUPLES AGED 18-40 WITHOUT CHILDREN 

FIGURE 1. DISTRIBUTIONS OF RELATIVE INCOME, 2000 CENSUS 

B. Replication of BKP Figure III A. BKP Figure III 
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Notes: The sample is the same as in 
Figure 2. The figure plots 20-bin histograms of the observed distribution of the share of total household income 
earned by the wife (“Actual Sorting”) and of a simulated distribution based on random sorting of couples in the 
sample (“Random Sorting”).  The dashed lines represent the lowess smoother applied to the histogram on either side 
of 0.5. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The sample is the same as in Figure 2. The figure plots 20-bin histograms of the observed distribution of the 
share of total household income earned by the wife (“Actual Sorting”) and of a simulated distribution based on 
positive sorting of couples on income plus some noise (“Simulated Sorting”). See Section III for further detail on the 
simulation. The dashed lines represent the lowess smoother applied to the histogram on either side of 0.5. 
 

FIGURE 3. RELATIVE INCOME DISTRIBUTIONS, 2000 CENSUS: 
ACTUAL AND RANDOM SORTING 

FIGURE 4. RELATIVE INCOME DISTRIBUTIONS, 2000 CENSUS: 
ACTUAL AND SIMULATED SORTING 
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Notes: The sample is the same as in Figure 2. The figure plots 20-bin histograms of the observed distribution of the 
share of total household income earned by the wife (“Actual Sorting”) and of a simulated distribution based on 
positive sorting of couples on income plus some noise (“Simulated Sorting”), and in which the wife’s income is 
endogenized via a labor supply decision. See Section III for further detail on the simulation. The dashed lines 
represent the lowess smoother applied to the histogram on either side of 0.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Graph A is a screenshot of Figure I of BKP. The data underlying this graph are administrative income data 
from the 1990 to 2004 SIPP/SSA Gold Standard File. Graph B is our replication of Figure I of BKP. We use the 
latest version of the Gold Standard File, which includes the 1984 and 2008 SIPP panels as well. For both graphs the 
sample includes all dual-earning couples aged 18 to 65, with income information taken from the first year the couple 
was observed in the SIPP panel. Both graphs plot 20-bin histograms of the observed distribution of the share of total 
household income earned by the wife. The dashed lines represent the lowess smoother applied to each histogram on 
either side of 0.5. 

FIGURE 5. RELATIVE INCOME DISTRIBUTIONS, 2000 CENSUS: 
ACTUAL AND SIMULATED SORTING 

FIGURE 6. RELATIVE INCOME DISTRIBUTIONS IN ADMINISTRATIVE DATA 

B. Replication of BKP Figure I A. BKP Figure I 
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