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Abstract

Vaccination represents a canonical example of externalities in economics, yet there are
few estimates of their magnitudes. I provide evidence on the social and externality
benefits of influenza vaccination in two settings. First, using pre-existing differences
in state-level vaccination rates interacted with exogenous annual variation in vaccine
quality, I estimate the impacts of aggregate vaccination rates on mortality and work
absences in the United States. Scaled nationally, I find that a one percentage point in-
crease in the vaccination rate results in approximately 800 fewer deaths and 15 million
fewer work hours lost due to illness each year. The mortality reductions are concen-
trated among individuals 75 and older, but over half of the effect is attributable to
the vaccination of people under 75, suggesting a considerable externality effect. Sec-
ond, I examine a setting in which vaccination is targeted at a group with extremely
high externality benefits: vaccination mandates for health care workers. I find that
mandates lead to reductions in hospital diagnoses for influenza in affected counties,
consistent with substantial externality impacts. For both the general population and
the population of health care workers, the estimates suggest that programs increasing
vaccine take-up are likely to be cost-effective under reasonable assumptions about the
costs.
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1 Introduction

According to the Centers for Disease Control and Prevention (CDC), between 5% and 20%

of the U.S. population are infected with influenza each year; these infections result in an

average of approximately 200,000 hospitalizations and over 20,000 deaths.1 Influenza is a

vaccine-preventable disease, yet vaccination rates for influenza are substantially lower than

vaccination rates for other vaccine-preventable diseases. This is largely due to the fact

that the vaccine has to be received annually (and thus the cost of maintaining immunity is

relatively high) and due to the lack of public policy incentivizing vaccination.

Vaccination serves as a canonical example of positive externalities in economics. Those

who receive the vaccine incur some cost (monetary or otherwise) and experience a private

benefit through the reduced risk of becoming ill; the externality benefit comes through the

reduced risk of spreading the disease to others and the social benefit is the sum of the two.

Because the benefits of vaccination are not fully internalized by the recipient, vaccines will

be under-utilized relative to the social optimum in the absence of policy. This feature of

vaccination has long been recognized by economists, and many theorists have considered

how the socially optimal level of vaccination can be reached.2 Achieving a social optimum

requires information on both the marginal cost and the marginal social benefit of vaccination.

While the private benefits of vaccination can be measured to some extent through the use of

randomized controlled trials (RCTs), estimating the full extent of the social benefits requires

an analysis at the population level.

This paper measures the marginal social benefit of influenza vaccination in two settings.

First, I estimate the effects of state-level vaccination rates on influenza-related mortality and

work absences in the United States. This portion of the analysis addresses the social benefits

of vaccination in the general population. Second, I consider the efficiency gains to be had

through targeted vaccination by examining a situation in which the externality benefits of

vaccination are likely to be especially large. I analyze the impacts of county-level influenza

vaccination mandates that apply to health care workers (HCWs) in California.

I measure the causal impacts of state-level vaccination rates by interacting pre-existing

state-level differences in vaccination rates with year-to-year variation in the efficacy of the

vaccine. Vaccine efficacy is measured as the extent to which the strains included in the

season’s vaccine match the strains that end up circulating. Mis-matches occur because of

unpredictable genetic changes in the virus, and the prominence of these mis-matched viruses

is not known until after vaccines have been distributed. Mis-matches provide an exogenous

1Source: http://www.cdc.gov/flu/about/qa/disease.htm.
2For example: Stiglitz (1988); Brito et al. (1991); Francis (1997); Geoffard and Philipson (1997); Francis

(2004); Boulier et al. (2007); Althouse et al. (2010); Manski (2010, 2017); Neilson and Xiao (2018).
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source of variation in effective vaccination while allowing for actual vaccination rates to be

held constant.

I find that higher vaccination rates lead to significant reductions in influenza-related

mortality. Scaled nationally, I find that a one percentage point increase in the U.S. vacci-

nation rate would result in approximately 807 fewer deaths per year in expectation. The

mortality benefits primarily accrue to individuals 75 and older, but are mostly attributable

to the vaccination of people under 75, suggesting substantial externalities. I also find that

vaccination significantly reduces illness-related work absences. The estimates indicate that

a one percentage point increase in the U.S. vaccination rate would result in approximately

15 million fewer work hours lost due to illness annually, in expectation. I find no impacts

on either outcome during periods in which there is no influenza circulating and no impacts

on outcomes that are implausibly related to influenza. In monetary terms, the estimates

suggest that each vaccination confers at least $64 in social benefits due to reduced mortality

and $98 in terms of reduced work absences.

The first component of the analysis is relevant to the vaccination of an average member of

the population, yet there is likely substantial heterogeneity in social benefits of vaccination.

In the second component of the analysis, I consider vaccination policy targeted at individuals

with large potential externalities by exploiting the roll-out of county-level influenza vaccina-

tion mandates that apply to health care workers in California. Most of these mandates apply

to all licensed health care facilities in a county, and thus there is potential for these man-

dates to reduce the spread of influenza both within the hospital (the unit of analysis) and in

other health care settings (e.g., long-term care facilities). I find that these mandates increase

hospital worker vaccination rates by 10.3 percentage points, reduce the number of influenza

diagnoses for inpatient visits by 20.1%, and reduce the number of influenza diagnoses for

outpatient emergency department visits by 8.1% during seasons with an effective vaccine.

For inpatient visits, the impact is twice as large for influenza diagnoses that were not present

at the time of admission (i.e., hospital-acquired infection). I estimate the marginal benefit

of HCW vaccination in terms of health care cost savings to be $131 per vaccination.

An exercise comparing the two components of the analysis suggests that health care

worker vaccination is many times more effective at reducing the spread of influenza in com-

parison to vaccination in the general population. For both health care workers and the

general population, the estimated marginal benefits of vaccination are large in comparison

to the cost of vaccine administration, suggesting that programs that would increase vaccina-

tion at reasonable cost in either population are likely to be cost-effective. This is underscored

by the fact that the analysis is limited to the outcomes for which data is available and as

such the estimates do not reflect the benefits of vaccination along several other dimensions
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including productivity losses for those who are sick at work (Pichler and Ziebarth, 2017) and

long-term effects of in-utero exposure (Schwandt, 2017).

The primary contribution of this paper is to provide causal estimates of the social and

externality benefits of influenza vaccination. While a large medical literature evaluates the

benefits of influenza vaccination, much of the existing evidence on these benefits is derived

from RCTs in which vaccination is randomized across individuals within a group, leaving

no method for capturing externality effects.3 There are a limited number of studies in the

RCT literature that directly evaluate externality effects by randomizing across groups rather

than individuals (i.e., cluster RCTs). For example, Loeb et al. (2010) employ such a design,

randomizing across isolated communities in Canada. In their study, influenza vaccinations

were provided to children in the treatment communities and placebo vaccinations were pro-

vided to children in control communities. The authors find that vaccinating children led

to reductions in laboratory-confirmed influenza for both children and adults in the treated

communities, providing evidence of an externality benefit.

While it is possible to identify the presence of externalities in the context of an RCT, it is

difficult to identify the effects of vaccination on severe and economically important outcomes

such as mortality. The relative infrequency of the outcome would necessitate an extremely

large-scale study; furthermore, ethical concerns over providing placebo vaccinations to high

risk groups essentially relegates the study of any benefits (i.e., not only mortality) of influenza

vaccination in the elderly population to an observational setting. The potential for bias in

existing observational studies is large: a review of the evidence on vaccination in the elderly

population noted implausibly large effects of vaccination on all-cause mortality, explaining

that these results were likely due to, “systematic differences between the intervention and

control arms” (Jefferson et al., 2010).

To my knowledge, there are few examples of papers that effectively circumvent this

endogeneity issue; Ward (2014) is a notable exception. Ward (2014) uses exogenous variation

in vaccine efficacy to evaluate the impacts of a regional influenza vaccination campaign in

Ontario, Canada. The author finds that the program increased vaccination rates for non-

elderly adults by approximately 10.8 percentage points (the post-treatment vaccination rate

was approximately 33.3%) and resulted in a near elimination of influenza infection, a 92%

reduction. The results suggest that Ontario reached a threshold level of vaccination beyond

which the marginal benefits of vaccination fall to near zero. Models of influenza dynamics

suggest the existence of such a threshold (Boulier et al., 2007), but the fact that an annual

3Reviews of this evidence are available from several sources, including the annual Recommendations of the
Advisory Committee on Immunization Practices provided by the CDC (Grohskopf et al., 2014), a number of
Cochrane reviews (Jefferson et al., 2010, 2012; Demicheli et al., 2014), and others (Osterholm et al., 2012).
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epidemic is still experienced each year in the U.S. despite vaccination rates well above those

during the study period in Ontario suggests that such a threshold has not been reached

in the U.S. and that the results of the program in Ontario may have been specific to the

location or period of analysis.

Similar to Ward (2014), my identification strategy relies on exogenous year-to-year vari-

ation in vaccine efficacy. My strategy, however, has the ability to exploit substantially more

variation in vaccination rates and outcomes (across all U.S. states and 22 influenza seasons).

As such, the average impacts that I estimate are not unduly influenced by the experience

in any one region or time period. Compared to either Ward (2014) or a number of studies

in the medical literature that do not tackle the endogeneity issues as directly (Jefferson et

al., 2010), the estimates presented here are smaller in magnitude. That being said, the esti-

mates are of plausible magnitude and still suggest that the social benefits of vaccination are

substantial.

This paper also provides the first large-scale evidence on the impacts of influenza vacci-

nation mandates for health care workers. This is an important contribution as such policies

are actively being considered by regional public health departments. This is underscored by

editorial articles published in several prominent medical journals that call for the adoption

of such requirements (Stewart, 2009; Caplan, 2011; Hooper et al., 2014). The existing evi-

dence on the benefits of such policies is derived from a small number of studies that assess

the impacts of vaccination requirements primarily for employees of long-term care facilities.

De Serres et al. (2017) critiques the findings of four recent studies by noting the implausibility

of estimates based on non-specific outcomes. Another meta-analysis rates the overall quality

of evidence on the subject as either “low” or “very low” (Thomas et al., 2016). My study

has the advantages of using a highly specific outcome (hospital diagnoses for influenza), ex-

tremely large scale, and the ability to identify impacts in settings other than long-term care

facilities.

While the specific contributions of this paper are described above, this paper also con-

tributes to an empirical literature within economics that seeks to identify the economic im-

pacts of influenza infection more generally. Much of this literature has focused on the effects

of in-utero exposure to influenza on human capital development. Within this literature, most

research has examined pandemic influenza (Almond and Mazumder, 2005; Almond, 2006;

Kelly, 2011; Karlsson et al., 2014; Lin and Liu, 2014; Brown and Thomas, 2016), though

exposure to seasonal influenza (the focus of this study) has been found to negatively impact

health at birth and later-life outcomes as well (Currie and Schwandt, 2013; Schwandt, 2017).

There are fewer studies that focus on the more contemporaneous impacts of influenza in

the adult population, with notable exceptions studying vaccination (Ward, 2014) and other
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factors that can influence the spread of influenza (Adda, 2016; Stoecker et al., 2016). This

paper also contributes to a recent set of empirically-focused papers within economics that

study various questions related to vaccination (Carpenter and Lawler, 2017; Lawler, 2017;

Oster, 2018).

Finally, this paper contributes more generally to a literature in economics that seeks to

empirically identify externality impacts in a variety of settings.4 Notably, there are few pa-

pers (exceptions above) that empirically identify externality or social impacts of vaccination,

despite the fact that vaccines are often regarded as the “textbook” example of a positive

externality (Stiglitz, 1988).

The remainder of the paper is structured as follows. Section 2 provides background in-

formation and a conceptual discussion that is helpful for interpreting the empirical analysis

to follow. Section 3 (Part I) describes the analysis of vaccination rates in the general pop-

ulation, and Section 4 (Part II) describes the analysis of health care worker mandates in

California. Section 5 offers a discussion and concludes.

2 Background

In this section, I provide a brief overview of several points regarding influenza and influenza

vaccination that are necessary for interpreting the results of the empirical analysis. I also

provide a conceptual discussion of the benefits of vaccination, focusing on the theoretical

shape of the marginal benefit curves in the specific case of influenza vaccination.

2.1 Influenza and Influenza Vaccination

There are three key points regarding influenza for which I provide an overview in this section.

First, I discuss the burden of influenza; specifically, it is important to understand the ways

in which different groups are affected by the disease. Second, I discuss influenza vaccination,

summarizing the current state of knowledge regarding vaccine efficacy. Third, I discuss

in more detail the importance of vaccine match, as an understanding of the causes and

consequences of vaccine mis-match are key to understanding the identification strategy used

in the analysis to follow.

The total burden of influenza illness is large and crosses all demographic groups, though

4This literature is especially prominent in environmental economics, where many papers have sought to
measure the impacts of pollution on a variety of outcomes (see Graff Zivin and Neidell (2013) for a review).
Other examples include the evaluation of externality impacts of de-worming programs on health and schooling
outcomes (Miguel and Kremer, 2004) and the estimation of displacement effects in job placement programs
(Crépon et al., 2013).
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there is substantial heterogeneity in how groups are affected. Infection is particularly severe

in groups that the CDC identifies as at high risk for complication. These groups include:

children under 5, adults 65 and older, pregnant women, and individuals with a range of

chronic medical conditions. I focus on age as the dimension of heterogeneity to be studied

in this paper. This discussion reflects the findings of the CDC’s Recommendation of the

Advisory Committee on Immunization Practices, which summarizes the general findings

from an extensive list of references (Grohskopf et al., 2014).

For children, influenza is responsible for large number of outpatient visits and hospital-

izations, and this is especially true for infants.5 While outpatient visits and hospitalization

are fairly common, death attributable to influenza among children is relatively rare. For

non-elderly adults, influenza infection is typically less severe and less likely to result in

hospitalization or death. While severe outcomes are less likely, the burden of influenza is

still significant, often resulting in outpatient visits and worker absenteeism (Molinari et al.,

2007). The majority of deaths related to influenza occur in individuals at least 65 years

old. The CDC estimates that in 1976-2007, average annual deaths attributable to influenza

were 21,098 for individuals 65 and older, 2,385 for individuals 19-64, and 124 for individuals

under 19 (Thompson et al., 2010). As such, these estimates indicate that the 65 and older

population account for approximately 90% of all influenza-related deaths. Due to difficulties

in reporting and diagnosis, there is no consensus on the number of deaths that are caused

by influenza in each year. Dushoff et al. (2006), for example, estimate a higher number of

deaths compared to Thompson et al. (2010): an annual average of 41,400 for the period

1979-2001.

Influenza vaccine efficacy – the extent to which vaccination protects against laboratory-

confirmed influenza – is determined by several factors. Vaccine match is an especially im-

portant factor, but it is important to note that even when the vaccine is perfectly matched

it is not 100% effective. Vaccine efficacy also varies with age; diminished immune response

among the elderly means that they are less able to create the antibodies needed to gain

immunity. Estimates of vaccine efficacy in the prime-age population vary, though several

studies find values in the range of 50-60% in a well-matched season (Demicheli et al., 2014;

Grohskopf et al., 2014). Estimates of vaccine efficacy in the elderly population are more con-

tentious, primarily due to the fact that ethical concerns over providing placebo vaccinations

to high-risk populations limit the ability of researchers to use RCTs. There is some debate

as to whether the vaccine provides any protective benefits among the elderly (Simonsen et

5Neuzil et al. (2000) find that influenza was responsible for an annual average of 6-15 outpatient visits
per 100 children under 15. Additionally, Zhou et al. (2012) estimate annual influenza-related hospitalization
rates (per 100,000) equal to 151 for infants, 38.8 for children aged 1-4, and 16.6 for individuals 5-49.
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al., 2007), though a recent study reported by the CDC indicated efficacy of approximately

26% among people 65 and older (McLean et al., 2014) during a well-matched season.

Vaccine match – the degree to which the strains included in the vaccine match the

strains that end up circulating – is an especially important determinant of vaccine efficacy.

Understanding the identification strategy in the main analysis requires understanding the

process by which a vaccine mis-match occurs. For the North American vaccine, this process

begins in early Spring, when the World Health Organization convenes a meeting in order to

make recommendations on the composition of the following season’s vaccine. The vaccine

includes three (trivalent) or four (quadrivalent) strains, and the decision as to which strains to

include in the vaccine is primarily based on which strains were circulating most recently.6 The

Food and Drug Administration makes the ultimate decision regarding vaccine composition

in the U.S., and vaccine composition is common across all states. Due to the time it takes

to produce and distribute the vaccine, this decision must be made in early Spring so that

vaccines can be administered in the Fall. The influenza virus itself undergoes constant

genetic change (“antigenic drift”) such that there are always viruses in existence that are

genetically distinct from the dominant strains; vaccines may not provide protection against

these genetically distinct viruses. Significant mis-matches occur when one or more of these

genetically distinct viruses becomes a dominant strain in a given season. Vaccine mis-matches

are unpredictable prior to the start of influenza season. When a mis-match occurs, the non-

matched virus strain is typically included in the following year’s vaccine. This means that

matched and mis-matched strains do not represent a different set of virus strains, since mis-

matched strains become matched strains in following seasons. It is also important to note

that not only is the vaccine formulated well before influenza season begins, but individuals

typically have no information on vaccine match at the time of vaccination. I provide direct

evidence of this in Section 3.2.

Finally, a perfect match does not imply 100% efficacy, and a vaccine with zero matched

strains does not imply 0% efficacy. Instead, the match rate serves as an exogenously deter-

mined proxy for vaccine efficacy. CDC estimates of vaccine efficacy across seasons provide

insight into how efficacy varies with the match rate: over the period 2004/05 to 2015/16,

estimates of efficacy range from 10% during a low match season to 60% during a high match

season (Belongia et al., 2009; Treanor et al., 2012).

6The quadrivalent vaccine was introduced in 2012.
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2.2 Marginal Social Benefits of Vaccination

Before moving on to the estimation, it is useful to consider a simple economic framework

of externalities in the specific case of influenza. In this framework, there is a marginal

private benefit of vaccination (MPB) and a marginal social benefit of vaccination (MSB).

The MSB is assumed to be at least as large as the MPB at all points (i.e., the externality

is non-negative). In a competitive equilibrium, consumers purchase vaccines such that the

MPB equals the marginal private cost (MPC), and the vaccine is under-provided relative to

a social optimum. The economic intuition is straightforward and is the basis for the analysis

conducted in this paper. Considering the shape of the benefit curves in the specific context

of influenza provides additional insight.

Boulier et al. (2007) combine basic externality theory with a workhorse model of disease

dynamics (the susceptible-infected-removed “SIR” model) and parameterize the model to

the case of influenza in order to derive theoretical predictions for the shape of the marginal

benefit curves. Figure 1 produces a version of their result, allowing the MPB and MSB to

depend on vaccine efficacy. I have plotted the MSB and MPB assuming 100% efficacy, as

well as the MSB for 60% and 10% efficacy (efficacy is denoted E). The 60% and 10% curves

are intended to reflect a well-matched and a poorly-matched vaccine, respectively.

Consider first the case of a perfectly effective vaccine (which is unrealistic for influenza,

but instructive). The y-axis measures the number of infections such that at a vaccination

rate of zero, the model predicts that an additional vaccination will prevent more than 1.5

infections in expectation; 0.5 infections are prevented in private benefits and the remain-

der are prevented in external benefits (the gap between the MPB and MSB represents the

marginal externality). Measuring infections is equivalent to measuring the cost of disease

if it assumed that the cost of infection is homogeneous and equal to one. The MPB is

monotonically decreasing in the vaccination rate; this reflects the idea that an unvaccinated

individual becomes less likely to be infected as the number of infections in the population

decreases. While the MPB decreases, the MSB stays relatively flat until a threshold is

reached. This threshold represents the point at which essentially all cases of influenza have

been prevented and a seasonal epidemic fails to emerge (“herd immunity”). The shape of

these curves prior to the threshold imply that neither the externality nor the social benefit

of vaccination decreases prior to this point. Furthermore, it can be inferred that the U.S.

is not beyond the threshold, as an influenza epidemic does emerge in each season. Current

vaccination rates (approximately 43% in 2014) in combination with the persistence of an

annual epidemic is at odds with the model that assumes E = 100% and predicts a threshold

level of vaccination between 30% and 40%. At a more realistic E = 60%, the MSB falls and

the threshold increases. At E = 10% (i.e., a poor match season), the MSB is even smaller
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and the threshold is never reached.

I caution that this model depends on a number of parameter choices that are difficult

to estimate accurately, but considering the general shape implied by the model helps to

guide the interpretation of the results to follow.7 Importantly, the model predicts that

the externality makes up the majority of the social benefits of vaccination. The model

also predicts relatively constant marginal social benefits of vaccination below the threshold,

implying that estimates of the social benefits are unlikely to depend strongly on the level

of vaccination. In other words, we should expect that the relationship between vaccination

rates and the outcome is roughly linear until nearly all influenza cases are prevented.

Discussion of this framework also presents the opportunity to discuss potential heteroge-

neous impacts of vaccination (though heterogeneity is not explicitly built into the model).

It is worth considering how two groups in particular may differ from the remainder of the

population: the elderly population and health care workers. For the elderly, the cost of

infection is high and vaccine efficacy is relatively low. These factors combined imply that

the elderly benefit substantially from the vaccination of others and that a particularly large

portion of the benefits to the elderly will operate through an externality. Health care workers

(HCWs) are particularly interesting for two reasons. First, HCWs come in relatively frequent

contact with infected individuals and thus vaccination is more likely to prevent infection in

this group. Second, HCWs come in relatively frequent contact with individuals who have a

high cost of infection (e.g., individuals with a compromised immune system), and thus the

vaccination of HCWs may reduce the spread of infection precisely to those who would suffer

the most severe consequences. These potential heterogeneous impacts motivate the focus on

these groups in the empirical analyses to follow.

3 Part I: Vaccination in the General Population

3.1 Data

This analysis requires data on mortality by cause of death, illness-related work absences,

influenza vaccination rates, the timing and magnitude of influenza activity, and the vaccine

match rate. The unit of analysis is the state-year-month and the data cover the years 1994-

2016.8 Because the analysis centers around influenza seasons, years are redefined as “flu-

7Important parameters include vaccine efficacy and the “contact number”, which is the number of addi-
tional infections that result from a single infection when the entire population is susceptible.

8The sample includes all states in the contiguous U.S.; Alaska, Hawaii and Washington D.C. are omitted
in part because of small sample sizes in the data on vaccination rates, and in part because the extreme
latitudes for Alaska and Hawaii relative to the rest of the U.S. affect the timing and magnitude of influenza
season in these locations.
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years”, running from July through June so that each flu-year represents a distinct influenza

season. I often use “flu-years” and “influenza seasons” interchangeably. The data coverage is

ultimately July 1994 through June 2016. In most specifications, the two flu-years affected by

the 2009 H1N1 pandemic are omitted (2008/09 and 2009/10) so that the estimates represent

seasonal influenza. Summary statistics for all data described here are provided in Table 1.

3.1.1 Outcomes: Mortality and Work Absences

Mortality data are derived from the multiple cause of death files from the National Vital

Statistics System (NVSS). This is the restricted version of this data that includes state iden-

tifiers beyond 2005. It is important to note the use of multiple causes of death in classifying

mortality as influenza-related. Dushoff et al. (2006) find that a large number of influenza-

related deaths are excluded when only the underlying cause of death is used. Accordingly,

deaths are classified by diagnosis if any of the (up to 21) diagnosis codes fall into the relevant

category. Even using multiple causes of death, it is very rare for a death to be classified

as specifically due to influenza. As such, the category with the highest level of specificity

used in the analysis of mortality is deaths with any diagnosis for pneumonia/influenza (PI).9

Estimates are also presented that use only the primary cause of death instead of multiple

causes for each of 34 mutually exclusive cause-of-death categories.

Data on illness absences are derived from the Current Population Survey (CPS) basic

monthly files. Similar to Stearns and White (2018), the measure of illness absences is con-

structed using two questions posed to all individuals who report being employed. First,

individuals who report being employed but absent from work for the entire reference week

(i.e., worked zero hours) are asked the main reason for their absence. Second, individuals

who are employed and at work during the reference week report both their usual hours

worked and the number of hours actually worked in the reference week. Those who work

less than 35 hours during the reference week but report that they usually work at least 35

hours per week are asked the main reason for working less than usual. Each of these two

questions lists “own illness” as one possible reason for missing work and is the reason given

for approximately 19% of absences (for both entire-week and partial-week absences). The

main outcome of interest is the proportion of workers reporting an illness-related absence. In

9Because deaths due to influenza often occur as a result of complications or the exacerbation of pre-
existing conditions, even PI deaths may exclude deaths that occurred as a result of influenza infection. As
such, I also analyze deaths in two higher levels of aggregation: deaths with any respiratory or circulatory
diagnosis, and all-cause deaths. Because it is highly unlikely that deaths without a respiratory or circulatory
diagnosis occurred as a result of influenza infection, these non-respiratory/circulatory deaths are used as a
falsification test. The ICD9 and ICD10 codes used to classify these diagnoses are as follows: Influenza (ICD9:
487-488, ICD10: J9-J11), Influenza/Pneumonia (ICD9: 480-488, ICD10: J9-J18), Respiratory/Circulatory
(ICD9: 390-519, ICD10: I00-I99, J00-J99).
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addition to illness-related absences, absences for other reasons are analyzed as falsification

tests. Furthermore, for each worker reporting an absence, the survey also asks the number

of hours missed; as an alternate measure, the average number of hours missed (for either

illness or other reasons) is analyzed as well.

All measures of absence can be constructed only for individuals who work at least 35 hours

per week and thus represent only full-time workers. A standard set of individual covariates

are regressed out at the individual level prior to collapsing the residuals to the state-year-

month level; covariates are indicators for gender, age (<20, 20-30, 30-40, 40-50, 50-60, >60),

marital status (married, widowed/divorced/separated, never married), and education (less

than high school, high school diploma, some college, college graduate).

3.1.2 Vaccination Rates

Data on state-level vaccination rates are obtained through the Behavioral Risk Factor Surveil-

lance System (BRFSS). The BRFSS is a large-scale telephone survey that has been conducted

in all states since 1993. The BRFSS asks whether each participant has received an influenza

vaccination within the past 12 months.10 Due to the phrasing of the question, the season to

which the vaccine applies is ambiguous for the months in which vaccines are distributed (pri-

marily Sept.-Dec.). For example, in the month of October when many vaccines are received,

an affirmative response may refer to a vaccine received in the current month for the upcom-

ing influenza season, or to a vaccine received in the prior November or December for the

prior season. For the main specification, I use all of the data and assume that responses in

months Sept.-Dec. refer to the upcoming influenza season and responses in all other months

(Jan.-Aug.) refer to the current or prior season. In an alternative specification, responses

from months Sept.-Dec. are omitted to ensure that the season to which the response applies

is not ambiguous.11 All regressions are weighted by the number of BRFSS observations used

to calculate the vaccination rate for the corresponding observation (unweighted regressions

are presented in a robustness check).

10The exact phrasing of this question varies slightly from year to year. In more recent years, for instance,
the survey asks about various types of vaccination (i.e., injection or spray). I classify each individual as
having received an influenza vaccination if they received at least one dose of any type of influenza vaccine.

11Information on vaccination was not collected for all states in survey years 1994, 1996, 1998 or 2000.
In the main specification, vaccination rates for all influenza seasons are still calculated for all states; for
example, survey responses from Sept.-Dec. 1999 are used to construct vaccination rates for the 99/00
season, and responses from Jan.-Aug. 2001 are used to calculate vaccination rates for the 00/01 season.
In the alternative specification, only responses from Jan.-Aug. are used and vaccination rates cannot be
calculated in all seasons for all states; as such, the following seasons are omitted from these regressions:
93/94, 95/96, 97/98, 99/00. As discussed in Section 3.3.4, the results are not qualitatively different using
the alternate measure and excluding these seasons.
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3.1.3 Match Rates

Data on the vaccine match are derived from annual influenza season summaries, which consist

of data compiled from the CDC’s virologic surveillance system.12 This system consists of

laboratories located throughout the country that test respiratory specimens for the presence

of any influenza virus and characterize viruses according to the exact strain. The data

contain information on the number of viruses by strain and information indicating which

strains the season’s vaccine protects against. The match rate for each season is defined as

the percentage of characterized viruses that match the strains contained in that season’s

vaccine. It is possible that the vaccine can offer some level of protection against strains that

are not perfectly matched if the strain in the vaccine and the strain circulating are similar,

and this information is indicated in the data. I construct two versions of the match rate,

one in which strains are characterized as matched only if it is the exact strain contained in

the vaccine, and one in which strains are characterized as matched if the vaccine offers some

level of protection. The main specification uses the average of these two measures.13

3.1.4 Influenza Activity & Other Data

Data on the timing and magnitude of influenza activity are also obtained from the CDC’s

virologic surveillance system. The primary measure of influenza activity is the percentage

of tests that are positive for any type of influenza. Population data is required to construct

mortality rates. Population by state, year and age are derived from the U.S. Census Bureau.

Controls for temperature, humidity, and precipitation are included and derived from the

Global Summary of the Day files.

3.2 Empirical Framework

Estimating the impacts of population-level vaccination rates is an empirically difficult task.

To illustrate this difficulty, consider the following empirical equation:

Ysmy = βVsy + ΨXsmy + δmy + εsmy (1)

12These data are available at: http://www.cdc.gov/flu/weekly/pastreports.htm.
13The exact process by which I calculate the match rate is slightly more complicated than I have laid out

above. Each positive test received by the CDC is classified as either influenza A or influenza B. A subset of
influenza A viruses are sub-typed (H1N1 or H2N3) and a subset of each subtype are then characterized to
determine the exact strain. A subset of influenza B viruses are characterized to determine the exact strain.
The annual summaries contain information on the number of total tests, the number of positive tests, the
number of A and B viruses, the number of viruses sub-typed, the number of each subtype characterized, and
the number of viruses belonging to a specific strain. Though relatively straightforward, I have developed a
calculator that takes these numbers as inputs and outputs the match rate for each season. This calculator
(along with all input data) is available upon request.

12
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Ysmy measures the outcome in state s, flu-year y, and month m. The outcomes are either

the PI mortality rate (per 100,000) or the average number of work hours lost due to illness.

Vsy is the vaccination rate for state s and flu-year y, and δmy are month-year fixed effects.

Xsmy represents a set of state-level time varying controls. In the main specification, this

includes demographic controls and flexible controls for temperature, humidity and precipi-

tation.14 The benefit of relating vaccination rates to outcomes at the state-level is that all

within-state externalities are captured. The issue of course is that regressor in this equation

(Vsy) is endogenous. It is certainly plausible, for example, that individuals in states that

are more affected by influenza are more likely to get vaccinated. Indeed the estimate of β

from the naive regression described above is 0.086 (s.e. = 0.024); taken causally, this would

imply that higher vaccination rates lead to more influenza-related mortality. Controlling for

state-specific factors may ameliorate this endogeneity issue: the inclusion of state-by-month

fixed effects in the above equation produces a coefficient estimate of -0.012 (s.e. = 0.007).

That being said, it is reasonable to argue that if fixed differences in vaccination rates across

states are endogenous, then changes in vaccination rates are likely to be endogenous as well.

This would be the case if, for example, states with rapidly increasing vaccination rates are

more (or less) likely to pass effective health policy, or have individuals that are more (or less)

likely to adopt other beneficial health behaviors. Such possibilities are far from implausi-

ble, and as such the strategy described below does not rely on potentially endogenous fixed

differences or changes in vaccination rates for its identifying variation.

The strategy I use is to interact differences in vaccination rates with year-to-year vari-

ation in vaccine efficacy to generate plausibly exogenous variation in effective vaccination,

while controlling for the actual vaccination rate. This strategy is illustrated in Figure 2.

The top panel plots vaccination rates for two groups of states over time: a group of low-

vaccination states (the five states with the lowest mean vaccination rate over time) and a

group of high-vaccination states (the five states with the highest mean vaccination rate).

The figure also plots the match rate in each influenza season. Note that vaccination rates

in both groups evolve smoothly over time, and that the gap in vaccination rates evolves

smoothly as well. Further note that there is no visual evidence indicating that vaccination

rates are systematically different during high or low match seasons. The bottom panel plots

the effective vaccination rate over time (i.e., the product of the actual vaccination rate and

the match rate). During seasons in which the match is close to one, the gap in effective

14Demographics are population shares for 5-year age groups (0-4 to 75+), which vary at the state-by-year
level. Weather controls vary at the state-year-month level. Temperature is expressed as the number of days
in one of seven 10-degree mean temperature bins from <20F to >80F (60-70 omitted). Humidity is expressed
as the number of days in three 5g/kg specific humidity bins from <5 to >20 (<5 omitted). Precipitation is
expressed as a cubic in total monthly precipitation.
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vaccination between low- and high-vaccination states is preserved. During seasons in which

the match is poor, however, there is little difference between these states in effective vacci-

nation. The identification strategy compares the difference in the outcome between low- and

high-vaccination states in flu-years with a highly effective vaccine against the same difference

in flu-years with a relatively ineffective vaccine. Equation (2) describes this difference-in-

differences approach:

Ysmy = γ1(Vsy ∗My) + γ2Vsy + ΨXsmy + δsm + δmy + εsmy (2)

In this equation, My is the match-rate, measured nationally for each flu-year. A match

rate of zero implies that the vaccine is minimally effective whereas a match rate of one

implies maximum efficacy. γ2 absorbs the potentially endogenous component of the rela-

tionship between vaccination rates and the outcome by measuring the relationship between

vaccination rates and the outcome in seasons in which the vaccine is minimally effective (i.e.,

zero match rate). γ1 is the object of interest, and represents the differential effect of an in-

creased vaccination rate between flu-years when the vaccine is at maximum versus minimum

efficacy. Intuitively, γ1 picks up the impact of effective vaccination (i.e., the causal effect of

vaccination), but not the component of the relationship between vaccination rates and the

outcome that persists in seasons when the vaccine is ineffective.

Because this strategy exploits variation in the match rate rather than variation in vac-

cination rates themselves, it is useful to consider the conditions under which Equation (2)

identifies the effect of increased vaccination. Vsy ∗My only identifies the true effect of vacci-

nation under the condition that the vaccine is completely ineffective when the match rate is

zero. This condition is not satisfied in reality, however, since the vaccine can provide some

level of protection against non-matched strains. As such, Vsy ∗My identifies a lower bound

on the effect of vaccination, a concept which is illustrated in Figure A1 (and discussed in

figure notes) using the model of infectious disease from Section 2. We proceed with the

understanding that this strategy identifies a lower bound on the benefits of vaccination.

Identification relies on the assumption that the match rate is exogenous from year to year

and that unobserved factors that are correlated with vaccination rates are unrelated to the

match rate. One potential concern is whether it is possible for individuals to respond to the

match rate in terms of vaccination behavior (e.g., choose not to receive a vaccine if the match

is poor). Such behavior would introduce bias if there are differential responses across states

with different vaccination rates. The process by which the strains are chosen for inclusion

in the following season’s vaccine formulation, described in Section 2.1, supports the notion

that the match rate is effectively random from year to year. Also supporting this notion is

the fact that I find no evidence of serial correlation in the match rate, and no evidence of a
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trend in the match rate over time.15 Furthermore, evidence described below suggests that

there is limited scope for individuals to respond to the vaccine match.

From 2007 onward, the BRFSS has asked respondents not only whether they received

a vaccination, but the month in which they were vaccinated. Figure A2 plots the average

cumulative vaccination rate by month for the flu-years in which this data is available. Ad-

ditionally, this figure displays average influenza intensity by month. Together, this figure

shows that in a typical influenza season, nearly all vaccinations are administered before the

onset of the season’s influenza outbreak. Because information on the vaccine’s match cannot

be determined until a significant number of individuals are infected, this plot suggests that

there is limited scope for responding to the match rate at all, much less differentially across

states. That being said, while there is little scope for responding to match rates, it is not

impossible.

Table 2 provides more direct evidence on the question of whether individuals are re-

sponding to match rates in terms of vaccination behavior. Column 1 reports estimates from

a regression of the vaccination rate in a given state and influenza season on the match rate.

The estimate is small and statistically indistinguishable from zero. The estimate implies

that vaccination rates are 0.13 percentage points higher in 100% match seasons compared to

0% match seasons. The 95% confidence interval rules out a positive effect larger than 0.45

percentage points. In a more direct test of the identifying assumption, Column 2 presents

estimates of a test for differential responses to vaccine match by interacting the match rate

with the mean vaccination rate (over time) for each state; the results indicate no evidence

of a differential response among states that tend to have higher or lower vaccination rates.

To the extent that any concerns remain over the possibility of responses to the match rate

in terms of vaccination behavior, additional specifications are estimated wherein only pre-

existing variation in vaccination rates is employed. More specifically, the vaccination rate

and each of its interactions are instrumented using vaccination rates from prior seasons.

The estimates are insensitive to the choice of prior season, including the average vaccination

rate over the prior three seasons, or a time-invariant vaccination rate defined as the average

vaccination rate over the entire sample.

Further supporting a causal interpretation of the estimates is their robustness to a variety

of specifications and falsification tests, described in detail in Section 3.3. One falsification

test uses the idea that influenza vaccination will only have a causal effect on mortality

and work absences during periods in which influenza is circulating. This idea is explicitly

15Both serial correlation and trends are tested at the flu-year level (the level at which the match rate is
defined). A regression of My on My−1 yields a coefficient estimate of -0.051 (s.e. = 0.263), and a regression
of My on a time trend (flu-year) yields a coefficient estimate of 0.004 (s.e. = 0.010).
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built into the main estimation strategy (described below), in which within-year variation in

the timing and magnitude of influenza activity is exploited as a third source of variation.

This can be done either by estimating Equation (2) separately for periods of high and low

influenza activity, or more formally in a triple-difference approach. While both versions are

presented, the advantage of the triple-difference approach is that it allows for the use of

a continuous measure of influenza activity, which more precisely focuses on the periods in

which the largest impacts are expected.

Ysmy = φ1(Vsy ∗My ∗ Am) + φ2(Vsy ∗My) (3)

+ φ3(Vsy ∗ Am) + φ4Vsy + ΨXsmy + δsm + δmy + εsmy

Influenza activity, Am, can be defined in different ways. One option is to define Am

as an indicator representing influenza season months (i.e., December-March). Another ap-

proach is to more precisely focus on periods in which either the largest or smallest impacts

are expected, and define Am as average monthly influenza activity. Although these two

methods obtain similar results in terms of magnitude, the latter is preferred for precision.

The influenza activity measure is an index that is scaled to equal one during the month

with maximum average influenza activity. Am varies only across calendar months; within a

month, there is no variation across years or states. The measure takes its largest value (equal

to one by construction) during February and its smallest value (0.052) during July. Note

that the main effect for match (My), the main effect for activity (Am), and their interaction

(My ∗ Am) are implicitly included in the month-by-year fixed effects. In Equation (3), φ1

measures the difference in the causal effect of vaccination (γ1 from Equation (2)) between

periods of maximum expected influenza activity and periods of zero expected activity. The

coefficient φ2 represents a falsification test: the causal effect of vaccination during periods

in which essentially zero influenza is circulating.

Equation (3) includes both month-by-year fixed effects and state-by-month fixed effects.

The state-by-month fixed effects not only account for any fixed state-specific factors, but

allow seasonality in the outcome to vary by state. The identification strategy does not

rely on the inclusion of state fixed effects, but inclusion of state-by-month fixed effects

is preferred for precision. The main specifications include controls for 5-year age shares

and flexible controls for temperature, precipitation, and humidity (Barreca and Shimshack,

2012). Rather than including a more exhaustive list of state-by-year controls, I recognize

that Equation (3) allows for the inclusion of state-by-year fixed effects and demonstrate that

the results are not sensitive to their inclusion. These results are presented alongside a range
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of other specifications in Table A1. In all specifications, standard errors are clustered at the

state level.

3.3 Results

In interpreting the estimates, note that the three regressors (Vaccination, Match, and Ac-

tivity) are all continuous measures. Vaccination is measured on a scale of zero to 100 such

that the estimates can be interpreted as a one percentage point increase in the vaccination

rate, while the other two regressors are measured on a scale of zero to one.

3.3.1 Main Results

Table 3 provides estimates of the difference-in-differences equation described in Equation (2).

These estimates are presented for both the all-age PI mortality rate per 100,000 population

(Panel A) and the proportion of workers absent due to illness (Panel B). Column 1 includes

all months, and Columns 2-3 compare influenza season months (December-March) to non-

season months (April-November).

First, let us consider the coefficient estimates for Vacc, which represent the relationship

between vaccination rates and the outcomes when the match rate is zero. These estimates

are positive and larger during influenza season months. This suggests that states with higher

influenza-related mortality or more influenza-related work absences tend to have higher vac-

cination rates. In other words, these estimates pick up the potentially endogenous component

of the relationship between vaccination and the outcomes.

The coefficient estimates for the interaction term are the objects of interest. These esti-

mates represent the differential effect of higher vaccination rates between flu-years in which

the match is equal to one relative to flu-years in which the match is equal to zero. For PI

mortality, the all-month estimate in Column 1 is negative and significant; the point estimate

of -0.043 implies that a one percentage point increase in the vaccination rate decreases PI

mortality by 0.043 per 100,000 population in flu-years when the vaccine is perfectly matched

relative to flu-years when the match is zero. Magnitudes will be discussed in greater detail

in the discussion of Table 4 below. For work absences, the all-month estimate in Column 1

is also negative, but it is not statistically different from zero. The point estimate of -0.00010

implies that a one percentage point increase in the vaccination rate decreases the propor-

tion of workers absent due to illness by 0.00010 percentage points (an approximate 0.4%

decrease). The lack of precision and relatively small magnitude of these estimates in part

motivates analyzing months in which the benefits are expected to be largest.

For both PI mortality and work absences, the general patterns in comparing influenza
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season months to other months are similar: the estimates are larger in magnitude and sta-

tistically significant during influenza season and smaller in magnitude during other months.

The estimate for PI mortality during non influenza season months is negative and signifi-

cant, though this is not necessarily unexpected since the estimates represent months with

relatively little influenza activity rather than zero activity.

The triple-difference model formalizes the comparison of months with high and low ex-

pected influenza activity. This formalization has the advantages of (1) utilizing the entire

distribution of influenza activity rather than a binary classification of months in to “High”

and “Low” activity, and (2) providing a falsification check in the form of a coefficient estimate

that represents the causal effect of vaccination during periods of zero measured influenza ac-

tivity. The triple difference estimates for both PI mortality and work absences are reported

in Table 4. Column 2 in this table represents the main specification, but the table presents

two additional specifications as well: Column 1 represents a more parsimonious specification

that omits the state-by-month fixed effects and Column 3 builds on the main specification

by instrumenting for the vaccination rate (and all interactions) using the average vaccination

rate over three seasons prior (and all interactions).16

Next consider the magnitude of the estimates in Column 2 of Table 4. Note that all

subsequent analyses and calculations are based off of this specification. For both PI mortality

and illness absences, the coefficient on the V acc×Match×Activity interaction is negative

and significant at the 5% level, while the coefficient on the V acc×Match interaction is small

and indistinguishable from zero. The implication is that influenza vaccination rates decrease

both PI mortality and illness absences during periods of high influenza activity, but have no

impact on the outcomes when measured influenza activity is zero. The point estimate of -

0.073 on PI mortality implies that a one percentage point increase in the influenza vaccination

rate will decrease the PI mortality rate by 0.073 per 100,000 individuals during months with

maximum expected influenza activity relative to months with no expected influenza activity,

and during seasons in which the vaccine is perfectly matched relative to seasons in which the

vaccine is poorly matched. Similarly, the coefficient estimate of -0.00048 on illness absences

implies that a one percentage point increase in the influenza vaccination rate will decrease

the proportion of full-time workers absent due to illness by 0.00048 percentage points under

the same conditions.

Because these interpretations are somewhat nonintuitive, I also report an estimate of the

“Expected Annual Benefit” of vaccination. To calculate the expected annual benefit, I first

16Additional specifications that vary the fixed effects and use of the instrument are presented in Table A1,
and alternative definitions of the instrument are explored in Table A2. For ease of interpretation, these
alternative specifications are presented graphically alongside a variety of other robustness checks (discussed
later). Across all alternative specifications the estimates are of comparable magnitude.
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calculate expected monthly benefits and then sum across months (described in table notes).

These estimates imply that in a population of 100,000 individuals, a one percentage point

increase in the vaccination rate (i.e., 1,000 additional vaccines) would decrease PI mortality

by 0.249 and decrease work hours lost to illness among full-time workers by 4,716 hours in

expectation. Put differently, the estimates imply that 4,016 vaccinations are required to save

one life and 1.70 vaccinations are required to save one 8-hour work day. Finally, suppose the

estimates are scaled to the size of the U.S. population: a one percentage point increase in

the vaccination rate for one year would result in 807 fewer deaths and 15 million fewer work

hours lost in expectation. For mortality, this is a substantial, albeit plausible number given

that estimates of average annual deaths due to influenza lie in the range of approximately

20,000-40,000.

Before moving on, it is useful to explore alternative definitions of the outcomes for the

purpose of ensuring that the estimated benefits are concentrated in the outcomes that are

expected to be most heavily influenced. Consider the impacts on mortality by 34 standard

cause of death categories in Figure 3. The cause-of-death categorization here uses the un-

derlying cause of death only so that each category is mutually exclusive (as opposed to using

multiple causes of death to define PI deaths as in the main analysis). As such, it is possible

that deaths in non-PI categories have a secondary diagnosis for PI and so categories other

than PI should not be considered as true falsification tests. It is reassuring nonetheless that

the largest and most highly significant coefficient estimate is for the PI category.17

3.3.2 Age Heterogeneity and Decomposing Externality Effects

To this point, all estimates have represented the social benefits of vaccination. We next

consider evaluating mortality benefits by age with the ultimate goal of disentangling private

and external benefits. Age-specific estimates for mortality are provided for five age groups

(infants under 1, 1-9, 10-64, 65-74, and 75+) in Panel A of Table 5. Age-specific mortality

rates are calculated using the total state population in the denominator rather than the

age-specific population so that the estimates can be interpreted as an accounting of the total

17Table A3 presents alternate definitions of mortality based on multiple causes of death as well as alterna-
tive definitions for work absences. In both cases, the main estimates are provided for reference. For mortality,
results are provided for two broader definitions of influenza-related mortality (respiratory/circulatory, and
all-cause), and for a falsification test (non respiratory/circulatory mortality). The standard errors on these
broad categories are too large to draw meaningful conclusions. Alternative definitions for work absences are
provided as well. First is average hours absent due to illness rather than proportion absent; this estimate is
negative, marginally significant, and of similar magnitude to the main estimate (when scaled by the number
of hours per absence). Also provided are estimates for both average hours absent and the proportion ab-
sent for reasons other than illness as falsification checks; these estimates are small relative to the mean and
insignificant.
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benefits.18 The age-specific estimates indicate essentially all of the mortality benefits accrue

to the 75+ population (in fact the coefficient estimate is almost identical to the all-age

estimate). This is not a surprising result given that estimates of influenza-related mortality

are heavily concentrated among the elderly population: Grohskopf et al. (2014) reports that

the 65+ population accounted for over 90% of all influenza-related deaths between 1976 and

2007.

To evaluate the extent to which the mortality benefits of influenza vaccination operate

through an externality effect, I use the fact that the vast majority of benefits accrue to

individuals who are at least 75 years of age and separately estimate the effects of vaccination

rates for individuals who are either within or outside of that age group.19 More specifically,

the following equation is estimated:

Y O75
smy = ψ(V O75

sy ∗My ∗ Am) + ω(V U75
sy ∗My ∗ Am) (4)

+ Other Interactions & Controls + εsmy

In Equation (4), the full set of interactions described in Equation (3) for both people

under 75 and people at least 75 are included. As such, ψ represents a combination of direct

and externality effects, where the externality effects are limited to capturing the spread of

influenza among people within the 75 and older group. The coefficient ω represents the

effect of vaccination among people under 75 on influenza-related mortality for individuals

who are at least 75; this represents a pure externality effect. The results of this exercise are

presented in Panel B of Table 4. The results indicate that essentially all of the mortality

benefits of influenza vaccination operate through an externality channel, though it cannot

be rejected that the estimates for ψ and ω are equal. Nevertheless, this finding accords with

theoretical predictions presented in Figure 1 which indicate the majority of the social benefits

of vaccination operate through an externality. Furthermore, the theoretical prediction does

not taken into account the relatively low efficacy of influenza vaccination in older individuals.

Taking this heterogeneity into account, the model would predict an even greater proportion

of the benefits accruing to the elderly population operate through an externality, consistent

with the empirical result presented here.

18An additional set of estimates is provided in Table A4 that uses the age-specific population in construct-
ing mortality rates with very similar results.

19Age-specific vaccination rates are constructed using the BRFSS, which is individual-level data with
information on each respondent’s age.
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3.3.3 Monetizing Benefits

Any policy aimed at increasing influenza vaccination take-up should weigh the costs and

benefits of doing so; the goal of this section is to provide monetary estimates of the marginal

social benefits of vaccination in terms of both mortality and work absences.

The monetary benefits of influenza vaccination in terms of mortality depend on the

value of a statistical life (VSL). Because the mortality benefits are concentrated among

individuals at least 75 years of age, it is especially important that the VSL is age-adjusted.

I use the method of Murphy and Topel (2006), who develop a framework for estimating the

value of remaining life given a standard VSL figure that is evaluated using mortality risk

reductions from working-age adults. I apply two such figures: estimates from Ashenfelter

and Greenstone (2004) of $2.3 million (denoted “AG”) as a lower bound, and the current

EPA standard of $8.8 million as an upper bound.20 The Murphy and Topel (2006) framework

provides VSL estimates for single years of age; I follow Deschênes et al. (2017) to calculate a

VSL estimate for the 75+ age group, taking a weighted average of single-year VSL estimates

where the weight is the share of deaths from each single-year of age.

Table 6 presents the expected annual benefits of a policy that increases the national

influenza vaccination rate by one percentage point. The expected annual number of deaths

avoided for the 75+ group (807.3 deaths) is multiplied by the age-adjusted VSL.21 Benefits

per vaccination are determined by dividing the total benefit by 3.23 million (1% of the 2016

U.S. population), as that is the number of additional vaccinations required to achieve the

corresponding total benefit. The benefits per vaccination are calculated to be $64 using the

AG VSL, and $244 using the EPA VSL. Recall that the results from Table 5 suggest that

these benefits operate primarily through an externality channel.

Focusing only on mortality reductions in evaluating monetary benefits of vaccination

is problematic for at least two reasons. First, monetizing life is inherently controversial

among the general public. Second, it is possible that some of the deaths avoided due to

increased vaccination represent a population suffering from comorbidities; if this is the case

then the VSL estimates (which are only adjusted for age and not comorbidities) would be

overstated. As such, it is advantageous to also present benefits of vaccination that are

subject to less controversy and require fewer assumptions in monetizing. The process of

calculating monetary benefits for work absence reductions is somewhat more straightforward:

the expected annual number of hours saved for the U.S. population is multiplied by the

median hourly wage. The calculation suggests that each vaccine confers benefits equal to

$98 in terms of reduced work absences among full-time workers, in expectation.

20Each VSL figure is reported in 2016$.
21These calculations are similar to the “Expected Annual Benefits” calculations in Table 4.
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3.3.4 Robustness Checks

This section provides a brief summary of a number of robustness checks. All results are

presented in the Online Appendix, and specifications are discussed more fully in table and

figure notes. Many of these robustness checks are summarized in Figure A3, which displays

coefficient estimates and confidence intervals for a range of specifications.

Some of these robustness checks have already been mentioned. Table A1 presents a

series of specifications demonstrating that the estimates are insensitive to the choice of fixed

effects and the use of the instrumental variables strategy. Table A2 demonstrates that

the estimates are insensitive to various definitions of the instrument, including defining the

instrument as a time-invariant vaccination rate (the state-level average over the sample).

Table A4 demonstrates that the age-specific estimates are not sensitive to defining mortality

rates using the age-specific population.

Potential nonlinearities in the marginal effect of vaccination are explored in Figure A4.

This exercise shows little evidence that the marginal benefit of vaccination changes sub-

stantially over the observed distribution of vaccination rates (consistent with the theoretical

model in Figure 1). The possibility of lagged effects on mortality or work absences is ex-

amined in Table A5. The reported estimates represent the sum of contemporaneous and

lagged impacts (for multiple lag lengths), and the stability of the estimates suggest that the

vast majority of the impacts operate contemporaneously, though the standard errors grow

considerably as more lags are added.

Table A6 presents several additional sensitivity checks, all of which are also summarized

visually in Figure A3. Column 1 includes the two flu-years affected by the H1N1 pandemic.

Column 2 uses an influenza season indicator in place of influenza activity in the triple differ-

ence specification; a “scaled effect” is provided for comparability with the main estimates.

Column 3 uses a limited sample that ends in the 2007/08 flu-year to eliminate the influence

of three factors: (1) the H1N1 pandemic, (2) the development of the high-dose vaccine in

2009, and (3) the development of the quadrivalent vaccine in 2012. The estimate for mor-

tality is smaller in magnitude when seasons beyond 2007/08 are omitted (the estimate for

work absences is slightly larger), though it should be cautioned that much of the identifying

variation is thrown out when these seasons are omitted. Column 4 uses the sample 1998/99-

2014/15 in which region-specific information on the match rate and influenza activity are

available, and allows the match rate to be defined as region-specific. Column 5 provides

unweighted estimates. Column 6 uses an alternative calculation for vaccination rates, de-

scribed in Section 3.1.2. Column 7 uses a strict definition of vaccine match, described in

Section 3.1.3.
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4 Part II: Health Care Worker Mandates

The analysis conducted in Section 3 was intended to estimate the benefits of influenza vacci-

nation in the general population. The estimates are relevant to a policy that would increase

vaccination among those who are on the margin of the decision to receive a vaccination.

In this section, I recognize that there is likely to be substantial heterogeneity in benefits

depending on who receives the vaccine. Health care workers (HCWs) come in relatively

frequent contact with infected individuals and individuals whose cost of infection is high. As

such, HCWs are a group for whom the external benefits of vaccination are likely to be partic-

ularly large. I examine the effects of mandates requiring health care workers be vaccinated

against influenza on the outcomes of hospital patients in counties and hospitals subject to

the mandates. To begin, I describe the institutional background.

4.1 Institutional Background

On September 28, 2006, the Governor of California signed into law Senate Bill 739, requiring

that health facilities implement various measures to protect against the spread of infection.

This law required that all health facilities offer free vaccinations to employees and required

that they sign a statement declaring that he or she had declined vaccination if that was the

case. Though detailed data on vaccination rates prior to this policy are not available, it

is likely that these policies increased vaccination rates of HCWs. This means that baseline

levels of vaccination are relatively high by the time the first mandates go into effect in 2009.

This law also required all hospitals to report to the California Department of Public Health

(CDPH) on the percentage of HCWs vaccinated against influenza in each season, allowing

for estimation of first-stage impacts of vaccination mandates on vaccination rates.

In May of 2009, the H1N1 pandemic began. In response to the pandemic, a small number

of individual hospitals began requiring influenza vaccination for their workers. After the

2009 pandemic, these hospitals continued requiring annual influenza vaccinations for their

workers and in following influenza seasons several other hospitals began introducing their own

mandates. Beginning in the 2011/12 season, counties implemented county-wide vaccination

mandates, and in each season since more counties have followed.22 In the 2015/16 season,

341 hospitals in California (over 75% of hospitals) were subject to a mandate. Of these 341

hospitals, 27 implemented their own mandates and the remainder were subject to mandates

imposed at the county level. In other words, the vast majority (over 90%) of the hospitals

22Implementation dates for all hospital- and county-level policies are described in Table B1.
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ever subject to a mandate did not choose to impose it.23

The county-level policies were not all implemented in exactly the same fashion. Specif-

ically, a limited number of these policies applied only to hospitals, while most mandates

applied much more broadly. Typically, all licensed health care facilities would be subject

to these more broad mandates. Figure B1 maps the implementation of both hospital and

county-level mandates over time and distinguishes between the type of county-level mandate.

Because the vast majority of mandated hospitals are subject to county-level mandates that

apply beyond the hospital, these are the policies on which I focus. The main outcomes are

measured at the hospital level, but because these mandates apply more broadly, it is not

necessarily the case that an observed infection was transmitted within the hospital. It is

possible that these mandates affect the transmission of influenza in non-hospital health care

settings and in the community at large if HCWs act as important vectors for disease.

4.2 Data

To estimate the effects of HCW vaccination mandates on patient outcomes, I make use of

data on the timing of the mandates, vaccination rates for HCWs and hospital-level outcomes.

In the main analysis, the data cover flu-years 2007/08 through 2015/16.

4.2.1 Mandates & Vaccination Rates

Data on the timing of mandates is compiled from several sources. Information on hospital-

level mandates comes largely from the Immunization Action Coalition (IAC), a non-profit

immunization activist group that lists health care organizations across the U.S. that mandate

influenza vaccination and the dates of implementation.24 CDPH maintains a list of county-

level mandates with implementation dates, but the list is not completely accurate with

respect to the implementation dates. Through a process of searching for county-level public

health orders and identifying the initial date of implementation, I have either verified or

amended the dates of nearly all counties on the list provided by CDPH. For an example

county public health order (Alameda County in 2013), see Figure B2.25 Summary statistics

in Table 1 indicate the number of hospitals subject to mandates in each flu-year.

As required by California law, all licensed hospitals report information on the vaccination

status of their workers to CDPH for each season. This information is compiled in their annual

23To ensure results are not driven by hospitals that select into treatment or by the experience during the
H1N1 pandemic, Table B2 demonstrates that the results are robust to (1) excluding the hospitals that adopt
their own mandates, and (2) excluding flu-years affected by the pandemic.

24Source:http://www.immunize.org/honor-roll/influenza-mandates/.
25I have compiled a number of public health orders for other counties and years, and these documents are

available upon request.
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Hospital Employee Influenza Vaccination Reports. Though all hospitals provide information

on vaccination rates, the within-hospital response rate is not 100%. Reporting in the first

season in which reporting was required (2008/09) was particularly poor, and so data from

this season is omitted. For the remaining flu-years, the main first-stage estimates use only

hospitals that have response rates of at least 90% in all flu-years, though the estimates are

not sensitive to this restriction.

4.2.2 Hospital Patient Outcomes

The primary data source on outcomes are two restricted data files on the universe of inpatient

hospital admissions and outpatient ED visits in California between 2005 and 2016, obtained

through California’s Office of Statewide Health Planning and Development (OSHPD). In the

analysis to follow, inpatient admissions and outpatient ED visits are analyzed separately,

though I refer to any visit to the hospital (inpatient admission or ED visit) simply as a

“visit”. Note that ED visits often result in hospital admission; to avoid double-counting,

ED visits are dropped if the patient is transferred to another health care facility (i.e., all ED

visits are outpatient).

Unlike the mortality data in which influenza is rarely indicated as a cause of death,

hospital patients routinely receive diagnoses specifically for influenza, allowing the outcome

measure to be more specific. The primary outcomes of interest are the number of inpa-

tient admissions and the number of outpatient ED visits with any diagnosis for influenza;

admissions are classified as such if any of up to 25 diagnoses are for influenza.

The inpatient data include a number additional features that are utilized. One partic-

ularly useful feature is that each diagnosis includes an indicator for whether it was present

at the time of admission, allowing me to focus specifically on hospital-acquired infection.

Certain outcomes are less specific to influenza, but may be significantly affected during pe-

riods of very high influenza activity. These include average length of stay, average hospital

charges, and the in-hospital death rate.

In addition to these hospital-level measures, I also examine PI mortality, which is observed

at the county level using restricted data files from the NVSS. Summary statistics for all

outcomes are presented in Table 1.

Finally, the analysis also uses data on county-level time varying covariates: uninsurance

rates from Small Area Health Insurance Estimates (SAHIE), unemployment rates from Local

Area Unemployment Statistics (LAU), per-capita income and government transfers from the

Regional Economic Information System (REIS), and 5-year population age shares from the

Surveillance, Epidemiology and End Results system (SEER).
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4.3 Empirical Framework

I estimate the impacts of vaccination requirements using a standard difference-in-differences

(DD) framework that exploits quasi-experimental variation in the timing of mandates. Sim-

ilar to the general population analysis, I also use a triple-difference framework that addition-

ally exploits the timing and magnitude of influenza activity for outcomes that are not specific

to influenza. Because vaccination rates (the first stage) are measured annually, and because

there is no variation in influenza-specific diagnoses (the main outcomes) during months with

no influenza circulating, the triple-difference strategy is not appropriate for these outcomes.

Consider the following DD equation to be estimated at the annual level:

Yhy = α + πRequiredhy + ΨXcy + δh + δy + εhy (5)

In Equation (5), Yhy represents either vaccination rates (first stage), or the number

of influenza diagnoses (reduced form) at hospital h in flu-year y. Requiredhy is a variable

indicating whether there is a vaccination requirement in effect. Xcy is a vector of county-level

time-varying covariates, and δh and δy are hospital and flu-year fixed effects.26 The coefficient

of interest, π, is identified under the assumption that variation in the timing of the mandates

is uncorrelated with other unobserved time-varying determinants of the outcomes.

While the identifying assumption is fundamentally un-testable, I provide evidence from

indirect tests that support the assumption. Most importantly, in the discussion of results

I provide an event study version of Equation (5). This exercise provides strong evidence

that changes in the outcomes coincide precisely with the implementation of the policy, and

that the treatment effects are not identified off of differential trends between treatment and

control hospitals. Furthermore, the event study provides information on the necessity of

county- or hospital-specific time trends, which are included in some specifications.

Because influenza diagnoses represent a highly specific outcome, there are many hospital-

by-flu-year cells with the outcome equal to zero. Given the count nature of the data, and the

over-dispersion indicated in Table 1 (i.e., the variance is greater than the mean), a negative

26Covariates include the health un-insurance rate, the unemployment rate, per capita income, per capita
government transfers, and 5-year population age shares (0-4 to 75+).
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binomial model is used when influenza-specific diagnoses are the outcome.27 With a count

model it is important to allow the probability of an event to occur (i.e., an influenza-related

diagnosis) to differ by hospital size, which varies considerably across the sample. This is

done through the use of an exposure variable, which is set to be the mean annual number

of all-cause visits in 2005/06-2006/07 (prior to the period of analysis). The first stage is

estimated via OLS.

For outcomes that vary across all months of the year, the preferred specification is a

triple-differences, estimated at the monthly level and taking the following form:

Yhmy = α+ θ1(Requiredhmy ∗ Activitymy) + θ2Requiredhmy + ΨXcmy + δh + δmy + εhmy (6)

In Equation (6), the policy indicator is interacted with an index of influenza activity,

Activitymy. This measure of influenza activity is distinct from the measure used in Part I of

the paper in that it measures actual influenza activity in a given month-year rather than the

monthly average across years. In the analysis of health care workers, it is more reasonable

to argue that influenza activity, measured nationally, is exogenously determined. The use of

actual influenza activity allows the estimates to capture the effects of vaccination mandates at

the exact time the largest impacts would be expected, maximizing the power of the estimates.

The index ranges from zero to one, where one is the maximum observed value in the sample.

The main effect for activity is absorbed by the month-year fixed effects. θ1 measures the

effect of vaccination mandates during a time of peak influenza activity relative to a period

with zero influenza activity. θ2 measures the effect of influenza vaccination mandates during

times of very low influenza activity and is expected to be near zero. Because the outcomes

27There are several possible count models available, and in the case of panel data requiring fixed effects
(as here) the choice is not trivial (See Cameron and Trivedi (2013a,b) for a review of count models in general
and specifically for panel data.). The workhorse count model that allows for fixed effects is the Poisson
fixed effects estimator (Hausman et al., 1984; Wooldridge, 1999); this estimator, unlike many nonlinear
models, provides consistent estimates of the slope parameters in the presence of fixed effects. A deficiency
of the Poisson model, however, is that it assumes that the variance and mean of the outcome are equal
(i.e., equi-dispersion). The usual solution is to use a negative binomial in place of a Poisson model, which
allows for over-dispersion in the data. Hausman et al. (1984) offer a fixed-effects version of the negative
binomial, but subsequent work has pointed out that this model requires an additional and often unrealistic
assumption regarding the relationship between the fixed effects and the over-dispersion parameter (Allison
and Waterman, 2002; Guimaraes, 2008). An alternative strategy is to estimate a standard negative binomial
model with a full set of indicators as fixed effects. In nonlinear models using short panels, this leads to biased
and inconsistent estimates of the slope parameters due to an incidental parameters problem. That being
said, Allison and Waterman (2002) provide evidence from Monte Carlo simulations that suggests little bias
resulting from the incidental parameters problem in the case of the negative binomial model with indicator
as fixed effects. I adopt the negative binomial with indicators as fixed effects as the main specification,
though the results are not sensitive to the choice of count model.
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(average charges, average length of stay, and the in-hospital death rate) are not counts,

Equation (6) is estimated via OLS.

The data on mortality are derived from a different data source than the hospital-level

measures. The mortality data are only available at the county level and as such estimates

are conducted at the county level (with county fixed effects), and the outcome is PI deaths

per 100,000 population. In all models, standard errors are clustered at the county level.

4.4 Results

4.4.1 First Stage

The main result for the first stage is illustrated as an event study in Figure 4. This figure

shows that there is little evidence of differential trends between hospitals that do and do not

adopt vaccination mandates prior to implementation. In the first flu-year of implementation,

vaccination rates increase sharply and remain relatively flat thereafter. The result is shown

using a single treatment indicator in Table B3, revealing a highly significant coefficient

estimate of 10.3 percentage points in the preferred specification (Column 2).28

It is important to keep in mind that the first-stage estimates only represent vaccination

rates for hospital workers. This is especially important in considering the county-level re-

quirements, which apply far more broadly than to just hospital workers. Because vaccination

rates for other HCWs are not observed, results are displayed in the remainder of the paper

as reduced-form policy estimates rather than in an IV framework. That being said, there is

reason to believe that the first-stage effect for non-hospital HCWs may be larger than that

of hospital HCWs. The CDC conducts an online survey that provides national estimates of

influenza vaccination rates for HCWs by place of work and whether or not vaccinations are

required. The 2016/17 survey indicated vaccination rates of 82.6%, 68.7%, 58.5% and 56.2%

for HCWs in hospital, ambulatory care/physician’s office, long-term care, and other settings,

respectively. Because hospital workers tend to have the highest baseline vaccination rate, it

is likely that influenza vaccination requirements have a larger effect on workers in settings

with a lower baseline level. Indeed, the smallest gap in the vaccination rate between required

and non-required settings is for hospital workers. Specifically, the required/non-required gap

is equal to 19.3 percentage points (p.p.), 38.7 p.p., 39.0 p.p., and 37.4 p.p. for HCWs in

hospital, ambulatory care/physician’s office, long-term care, and other settings, respectively.

While this strongly suggests that effect of mandates on vaccination rates is larger in non-

hospital settings, it is also possible that enforcement is weaker in non-hospital settings and

28This table also shows that the estimate is robust to using less restrictive sample selection criteria on
data quality, or even using all hospitals regardless of data quality.
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this cannot be tested this with available data.

To get a rough estimate of the number of additional vaccinations received as a result

of these mandates, consider a hypothetical state-wide mandate that affected all workers in

licensed health care facilities in California. The Bureau of Labor Statistics indicates there

were approximately 1.18 million workers in industries plausibly affected by these mandates

in California during 2015.29 Assuming the mandates affected all HCWs in the same way

hospital workers were affected, multiplying by the first-stage estimate of 0.103 implies 121,154

additional vaccinations.

4.4.2 Influenza Diagnoses

Before discussing magnitudes, first consider a number of specifications for the reduced-form

estimates presented in Table 7; Panel A reports inpatient admissions and Panel B reports

outpatient ED visits. Column 1 represents estimates with no included trends, covariates, or

sample restrictions. The estimates are in the expected negative direction for both outcomes,

but only marginally significant for inpatient admissions and insignificant for ED visits. While

there is not enough variation in vaccine efficacy over the sample period to incorporate this

into the model as in Part I, there is one flu-year in the sample (2014/15) that had a poor

vaccine match and thus an ineffective vaccine. Dropping this flu-year from the sample

results in larger coefficient estimates, reported in Column 2. This flu-year is omitted from all

following specifications, which is preferable as it increases the ability to identify a statistically

meaningful result, but it does change the interpretation of the results: the estimates represent

the effect of HCW mandates during a well-matched season as opposed to the effects of the

mandates in expectation.

Columns 3 includes county-specific linear time trends, and the magnitudes grow sub-

stantially. Column 4 includes time-varying controls, and Column 5 includes hospital-specific

linear trends in place of county trends. The event studies presented in Figure 5 illuminate

the difference between specifications with and without trends. The result is substantially

stronger for inpatient admissions compared to ED visits, although the patterns are similar.

Diagnoses for influenza are increasing in affected hospitals relative to non-affected hospitals

in years prior to mandate implementation. In the first year of implementation, however,

there is a sharp decrease in the number of visits that persists in subsequent years. The

inclusion of hospital-specific linear time trends and time-varying covariates appears to fully

correct any pre-existing trends that were present in the model that did not include trends.

Models that include trends are preferred, but in models for inpatient admissions that include

29Employment in NAICS industries: 656211, 656214, 656216, 656219, 656221, 656222, 656223, 656231,
656232, 656233, 656239.
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hospital-specific trends, the maximization algorithm failed to converge. For this reason, the

estimates in Column 4 (with county trends instead of hospital trends) are preferred.30

Also note that the comparison between Column 3 (no controls) and Column 4 (with

controls) reveals only small differences in the estimates. While this is reassuring, Pei et al.

(2018) note that using control variables to estimate balance regressions is a more powerful

test of the identifying assumption than the more standard (and usually informal) comparison

of coefficients in regressions with and without controls. I replace the outcome in Equation (5)

with each of the 21 time-varying characteristics in Xcy (omitting the other characteristics)

and find that 20 out of 21 estimates are insignificant at the 5% level, providing more support

for the identifying assumption.31

These estimates indicate that in seasons with a well-matched vaccine, HCW vaccination

mandates are associated with a statistically significant 20.1% decrease in inpatient admissions

with an influenza diagnosis and a statistically insignificant 8.1% decrease in outpatient ED

visits with an influenza diagnosis.32 In interpreting these results, there are at least two

differences between inpatient and outpatient visits to consider. First, for inpatient visits it is

possible that the individual in question was infected with influenza during their hospital stay.

This means that policy-induced changes in diagnoses in an inpatient setting likely result from

a combination of hospital-acquired influenza as well as influenza acquired in a non-hospital

health care setting or in the community at large. For outpatient ED visits, the hospital-

acquired channel is unlikely. Second, influenza may be less likely to be correctly diagnosed

in an outpatient setting in which there is less time acquire laboratory confirmation (Dugas

et al., 2015). Both differences would lead to attenuated estimates for outpatient visits.

Consider next a comparison between the effects of vaccination mandates on hospital- and

non hospital-acquired influenza. The final two columns of Table 7 examine the distinction

between inpatient influenza diagnoses that were present on admission (POA) and those that

were not (Not-POA). Diagnoses that were present on admission are more likely to repre-

sent influenza acquired outside of the hospital, whereas Not-POA diagnoses likely represent

hospital-acquired infection. Influenza diagnoses are coded as present on admission for the

vast majority of visits, although there is some question as to how accurate POA coding is, es-

pecially since hospitals have financial incentives to avoid coding hospital acquired conditions

30The estimates are very similar using either county or hospital-specific trends. Note that there are 58
counties in California and approximately 450 hospitals (depending on the year); this means that estimating
models with hospital-specific time trends requires estimating almost 400 additional parameters.

31p-values from this test are reported in Table B4.
32Though the estimate for outpatient visits in Column 4 is insignificant, the estimates using slightly

different specifications in Columns 3 and 5 are similar in magnitude and significant at the 10% level.
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(Goldman et al., 2011).33 The point estimate for POA influenza diagnoses is very similar to

the estimate for all influenza diagnoses presented previously. Focusing on Not-POA diag-

noses, however, reveals an effect twice as large in relative terms: vaccination mandates lead

to an approximate 42.7% reduction in hospital-acquired influenza.

4.4.3 Additional Results & Discussion

A brief discussion of several additional results provides additional insight. Age-specific im-

pacts of HCW mandates on both inpatient and outpatient visits are provided in Table B5.

The estimates are negative for all age groups. While the differences tend not to be statis-

tically meaningful, the magnitudes in relative terms tend to be largest for children (infants

and children 1-9). This is worth noting in at least one respect: since vaccination of children

should not have been affected by these policies, the implication is that much of the identified

impacts operate through an externality.

Estimates for four additional outcomes that exhibit variation throughout the year are

presented in Table B6, estimated using Equation (6). The first three outcomes (average

length of stay, average charges, and the in-hospital death rate) are hospital-level outcomes

constructed using inpatient data. The estimates indicate small and marginally significant

reductions in average length of stay (1.02%) and average charges (1.96%), and no impact on

in-hospital deaths during months of peak influenza activity. These outcomes are distinct from

influenza-specific outcomes in that they may be viewed as measures of how well the hospital

is functioning more generally. In other words, it may be that changes in these outcomes

result from changes the number influenza infections, but may also reflect improvements in

the health of the hospital staff, increasing the quality of their work. Column 4 presents

estimates with the PI mortality rate as the outcome, and represents estimates at the county

level. While it would be advantageous to examine the same outcome in Parts I and II of this

paper, these estimates are underpowered to do so. None of the estimates reveal an impact

of vaccination mandates on outcomes during periods in which no influenza is circulating.

Next consider an estimate of the monetary benefits of HCW vaccination. Note that

the observed decreases in influenza diagnoses do not necessarily represent decreases in the

actual number of visits if a substantial number of the affected visits are for other diseases that

influenza infection complicated. To the extent that at least some of the observed reductions

in influenza diagnoses represent a change in the number of visits, it is possible to provide a

back-of-the-envelope calculation for the monetary benefit of a HCW vaccination in terms of

33The Deficit Reduction Act of 2005 stipulated that hospitals would not receive higher payments for certain
secondary conditions that were not POA. Influenza is not one of these specific conditions, but it could still
be the case that hospitals develop a habit of under-reporting all hospital acquired conditions.

31



hospital cost savings. Focusing only on visits most likely to be avoided by the mandates, I

re-estimate Equation (5) using only visits with a primary diagnosis for influenza (as opposed

to any diagnosis) for outpatient visits, and only visits with a primary diagnosis for influenza

that was present on admission for inpatient admissions. I consider a hypothetical statewide

vaccination mandate for California (relative to no mandate) that affects all HCWs in the

state. A number of assumptions are required to make this calculation, and a conservative

approach is taken in applying each. I estimate that, in terms of reduced health care costs,

each vaccine confers benefits of $111.59 through reduced inpatient visits, and $19.80 through

reduced outpatient visits, for a total of $131.40.34 An estimate of the marginal social benefit

would of course be larger if other outcomes such as mortality or work absences could be

considered in this context as well.

Finally, it is demonstrated in the event studies that the change in influenza diagnoses

coincides precisely with the timing of the mandates, suggesting that the estimates are a direct

and causal result of mandate implementation. That being said, the possibility remains that

health care workers simultaneously change their behavior in response to the mandates in

such a way that would cloud the interpretation of the mechanism underlying the results.

One possibility is that health facilities implementing vaccination mandates simultaneously

take on other measures to quell the spread of disease (e.g., hand-washing or sterilization

measures). This is more likely for hospital-level mandates, most of which were introduced

at the height of the H1N1 pandemic. For county-level mandates, which health facilities did

not directly select into, this appears to be less likely. In memos released by county public

health departments that I have gathered, there is no encouragement of any behaviors other

than vaccination or the requirement that workers who deny vaccination wear a surgical

mask.35 Table B2 demonstrates that the results are robust to the exclusion of hospitals

that implemented their own mandates. Together, this suggests that a simultaneous response

related to infection control on behalf of health care providers is unlikely to be a significant

34This calculation is described in more detail here. First, the mean annual number of inpatient and
outpatient visits for influenza in California are 4,190 and 34,221, respectively (excluding the H1N1 flu-
years). The estimated coefficients using only primary diagnoses for inpatient and outpatient visits are -0.230
and -0.094, implying 964 fewer inpatient visits and 3,216 fewer outpatient visits each year. The OSHPD
data include information on charges for inpatient visits, but not outpatient visits. Average charges for visits
with a POA primary diagnosis for influenza are $48,719. The Nationwide Emergency Department Sample
has information on ED outpatient charges for some states, and the average charges for visits with a primary
diagnosis for influenza are $1,472. Since charges do not represent hospital costs, this figure is multiplied by
the national average cost-to-charge ratio (0.507) for outpatient visits and a California-specific cost-to-charge
ratio (0.288) for inpatient visits. As such, the hypothetical statewide policy achieves annual savings of $13.52
million through reduced inpatient visits and $2.40 million through reduced outpatient visits. To arrive at a
per-vaccination figure, I divide by the number of additional vaccinations (121,154) received in a hypothetical
statewide policy, discussed in Section 4.4.1.

35See example memo in Figure B2.
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driver of the results.

Another possibility is that when health providers are required to be vaccinated, they

are more likely to encourage patient vaccination. If this is the case, an increase in non-

HCW vaccination rates coinciding with the mandates would be expected. Unfortunately,

this hypothesis is not testable with available data.36 While these possibilities exist, the

large increase in hospital worker vaccination rates in response to the mandates suggests

that the intended mechanism of HCW vaccination is at work. Furthermore, even without

precisely identifying all of the mechanisms at work, the reduced-form estimates of vaccination

mandates on the outcomes remain valid and imply that the policies have substantial benefits.

5 Discussion and Conclusion

In this paper, I estimate the marginal social benefits of influenza vaccination for the general

population (henceforth, GP) and for the population of health care workers (HCWs). Because

it is not possible to use the same identification strategy and outcomes for both analyses, a

direct comparison of the marginal benefits in each population requires fairly strong assump-

tions. I believe that such a comparison is still quite useful with this caveat in mind. To

compare the benefits of vaccination in these two populations, I calculate the number of GP

vaccinations or HCW vaccinations required to achieve a 1% reduction in influenza-induced

mortality (for GP) or a 1% reduction in influenza-induced outpatient visits (for HCW) in a

population of 100,000 individuals.37 I find that 312.5 GP vaccinations are required to achieve

a 1% reduction in mortality and 32.8 HCW vaccinations are required to achieve a 1% re-

duction in outpatient visits. Under the assumption that influenza mortality and influenza

outpatient visits are proportional to each other (or to the number of influenza cases), the

implication is that HCW vaccinations are nine times more effective at quelling the spread

36For the period in question, data on vaccination rates (BRFSS) is not available at the county level.
Furthermore, the BRFSS is not representative at the county level.

37This calculation is described in more detail here. For GP, the main estimates indicate that 1,000
additional vaccinations are required to reduce annual influenza mortality by 0.249 per 100,000. To get this
in relative terms, I require an estimate of annual influenza mortality, and use the nationwide 23,607 figure
estimated by Thompson et al. (2010). Using the 2007 US population (to reflect the period of study in
Thompson et al. (2010)), this implies 7.8 influenza deaths per 100,000 population. As such, my estimates
indicate that 1,000 additional vaccinations result in a 3.2% (0.25/7.8) decrease in influenza mortality for a
population of 100,000; in other terms, 312.5 vaccinations are required to achieve a 1% reduction. For HCW
vaccinations, I use only outpatient visits with a primary diagnosis for influenza as this provides a lower bound
(the smallest relative impacts) and I consider the same hypothetical statewide policy as in Section 4.4.3,
but scaled to a population of 100,000 instead of the 2016 California population (39.3 million). For the
entire state, I found that 121,154 vaccinations are required to achieve a 9.4% reduction in outpatient visits,
implying that 12,888 vaccinations are required to achieve a 1% reduction. Scaling this down to a population
of 100,000 implies that 32.8 HCW vaccinations are required to achieve a 1% reduction in outpatient ED
visits.
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of influenza in comparison to vaccinations in the general population. While this may seem

large, it is not unreasonable to argue that HCWs are many times more likely to come in

contact with infected individuals and much more likely to come into contact with individuals

who would suffer severe consequences from being infected (e.g., a hospital visit).

For both vaccination in the general population and health care workers, I have provided

policy-relevant estimates of the marginal social benefits in terms of the outcomes analyzed.

For the general population, these benefits are estimated to be $64 per vaccination in terms

of reduced mortality and $98 per vaccination in terms of work hours gained. For HCWs, the

benefits are estimated to be $131 per vaccination in terms of reduced health care costs. While

the impacts of HCW vaccination on work absences and mortality could not be estimated

directly in this study, one could reasonably assume that the benefits of HCW vaccination in

terms of these outcomes would be at least as large as those for the GP; under this assumption,

the benefit per HCW vaccination is $293. For mortality, I find that the majority of the social

benefits operate through an externality. For HCW vaccination, I do not explicitly estimate

the size of the externality, but it is likely that much of the social benefit operates through

the externality given that the largest relative benefits exist in a group whose vaccination

status is not affected (children).

How do these benefits compare to the marginal cost of vaccination? Prosser et al. (2008)

estimate that the cost of administering a vaccine (including the medicine, labor, overhead,

promotion, and other expenses) ranges from $15 in a mass vaccination setting to $37 in a

schedule doctor’s office visit.38 Administration costs, however, may only represent a portion

of the total private costs of vaccination if there are significant non-monetary costs such as

inconvenience or discomfort. Indeed, many choose not to vaccinate despite monetary costs

equal to zero (influenza vaccination is covered under Medicare, and many health plans cover

vaccination with zero copay). Recognizing these non-monetary costs of vaccination is critical

in the development of policies that encourage influenza vaccination.

What do the estimates presented in this paper suggest for vaccination policy? The

answer to this question depends on the type of policy under consideration. Let us consider

two prospective vaccination policies in turn: a policy to increase vaccination in the general

population and a policy to increase vaccination among health care workers.

The analysis of state-level vaccination rates is relevant to a policy that would increase

vaccination among the general population by targeting those on the margin of the decision

to vaccinate. Such a policy could be accomplished through a number of mechanisms: by

providing monetary incentives or by reducing non-monetary costs through increasing ac-

cessibility to vaccine providers, for instance. The marginal social and externality benefits

38Dollar estimates are converted to 2016$.
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estimated here suggest that vaccination policy resulting in marginal increases in the vac-

cination rate above current levels is beneficial so long as the marginal cost curve does not

increase steeply at the current level of vaccination. While a steep increase in the cost curve

is conceivable at some level of vaccination, as some individuals are opposed to vaccination

on religious grounds or concerns over vaccine safety, that level is likely to be quite high as

those individuals represent only a small portion of the total population (Kennedy et al.,

2005). Furthermore, Bronchetti et al. (2015) show that a relatively small financial incentive

can result in large increases in vaccine take-up, suggesting the existence of low-cost policies

that would increase vaccination in at least some segments of the population.

For health care workers, the estimates presented here are large in comparison to admin-

stration costs. It is worth noting that many health care facilities employ mass vaccination

campaigns that not only reduce the administrative costs of vaccination, but likely reduce

any inconvenience costs through making vaccination highly accessible (Prosser et al., 2008;

Nowalk et al., 2013). The estimates in this paper are derived from policies that mandate

influenza vaccination, creating an extremely high cost for those choosing not to vaccinate. It

is possible that other incentive-based programs could achieve a more efficient result if there

are individuals for whom the marginal cost of vaccination is very high, yet still choose to

vaccinate under a mandate given an even higher cost of choosing not to do so. In any case,

the social benefits of health care worker vaccination estimated here are large enough to sug-

gest that any policy increasing vaccination among health care workers would be cost-effective

under reasonable assumptions about the costs.

In summary, I estimate that the social benefits of influenza vaccination are substantial

and that much of the total benefits operate through externality effects. Determining the

socially optimal level of vaccination depends critically on the marginal cost of vaccination

– under reasonable assumptions about these costs, the results of this study indicate that

policies increasing take-up of influenza vaccination in either the general population or in the

population of health care workers are likely to be cost-effective.
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Figures & Tables

Figure 1: Marginal Benefits of Vaccination
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This figure presents a version of a model derived by Boulier et al. (2007) that describes the theoretical marginal social benefit
(MSB) and marginal private benefit (MPB) curves for the case of influenza vaccination. These benefits are allowed to depend
on vaccine efficacy. For the MSB, three levels of vaccine efficacy are presented: 100% (E=1), 60% (E=0.60), and 10% (E=0.10).
The 10% and 60% figures represent the lowest efficacy estimates (during a low match season) and highest efficacy estimates
(during a high match season) from CDC studies of vaccine efficacy for influenza seasons 2004/05-2015/16: https://www.cdc.
gov/flu/professionals/vaccination/effectiveness-studies.htm.

42

https://www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm
https://www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm


Figure 2: Actual and Effective Vaccination Rates
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Note – There was a vaccine shortage in the 2004/05 season, accounting for the dip in vaccination rates during that season.
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Figure 3: DDD Effect by Cause of Death
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Note – Estimates represent the coefficient estimates (in levels) on the triple interaction in Equation (3) where the outcome is
the mortality rate in various cause of death categories. Bars represent 95% confidence intervals. The mean monthly death rate
(per 100,000 population) for each category is shown in parentheses. Cause of death is categorized by primary cause of death,
so that each category is mutually exclusive. Cause of death categories are based on the 34-cause recode used by the NCHS for
the period 1971-1998; deaths in the 1999- period were mapped from the updated 39-cause recode. Note that the mean PI death
rate (1.88) is approximately one third of the death rate used in the measure for the main analysis that is based on multiple
causes of death; this implies that approximately two-thirds of deaths categorized as PI in the main analysis are categorized as
such based on a secondary diagnosis.
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Figure 4: First Stage Event Study (HCW Vaccination Rates)
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Points on this plot represent the point estimates from an event-study version of Equation (5) with HCW vaccination rates as
the outcome. Shaded regions represent 95% confidence intervals. The event-study is estimated by replacing the policy indicator
(Requiredhy) with a series of variables indicating years relative to the policy:

∑−2
j=−4 γjRequiredhyj +

∑2
j=0 γjRequiredhyj .

The indicator representing one year prior to the policy is omitted as the reference group. “-4 or Earlier” represents four or more
years prior to policy implementation; “2 or Later” represents two or more years after policy implementation. In both cases,
these are aggregated because any estimates beyond this window would be identified off of a very small set of hospitals.
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Figure 5: Reduced Form Event Study (Influenza Diagnoses)
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Points on the plots represent the point estimates from event-study versions of Equation (5) with influenza-related inpatient
admissions or outpatient ED visits as the outcome. The plot labelled “Hospital Trends” includes hospital-specific linear time
trends. Shaded regions represent 95% confidence intervals. The event-study is estimated by replacing the policy indicator
(Requiredhy) with a series of variables indicating years relative to the policy:

∑−2
j=−4 γjRequiredhyj +

∑2
j=0 γjRequiredhyj .

The indicator representing one year prior to the policy is omitted as the reference group. “-4 or Earlier” represents four or more
years prior to policy implementation; “2 or Later” represents two or more years after policy implementation. In both cases,
these are aggregated because any estimates beyond this window would be identified off of a very small set of hospitals.
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Table 1: Summary Statistics

National Data Mean SD

Vacc. Rate 0.344 (0.063) -
Vacc. Rate ≥ 75 0.698 (0.073) -
Vacc. Rate < 75 0.315 (0.064) -
Match Rate 0.726 (0.288) -
Influenza Activity (1993-2015) 0.392 (0.348) -
PI Mortality Rate 6.153 (2.037) -
% Absent for Illness 0.025 (0.009) -
Hours Absent for Illness 0.242 (0.117) -

California Hospital Data Mean SD # Hospitals Affected

Hospital Vacc. Rate (All Hospitals/Years) 0.801 0.142 -
Hospital Vacc. Rate (No Mandate) 0.744 (0.141) -
Hospital Vacc. Rate (Mandate) 0.902 (0.069) -
# Influenza Diagnoses (Inpatient) 21.81 (36.68) -
# Influenza Diagnoses (Inpatient POA) 21.28 (35.67) -
# Influenza Diagnoses (Inpatient Not POA) 0.51 (1.57) -
# Influenza Diagnoses (Outpatient ED) 135.3 (170.6) -
Average Length of Stay 5.43 (4.04) -
Average Charges 42,294 (23,057) -
Required 2009-10 - - 13
Required 2010-11 - - 18
Required 2011-12 - - 45
Required 2012-13 - - 116
Required 2013-14 - - 251
Required 2014-15 - - 335
Required 2015-16 - - 341

Zero hospitals had vaccination mandates prior to the 2009-10 season. In the 2015-16
influenza season, the total number of hospitals in California was 450 (so that 75.8%
were subject to a vaccination mandate). The total number of hospitals fluctuated
between 444 (2011) and 456 (2007) over the sample period. PI refers to pneumo-
nia/influenza; POA refers to diagnoses that are present on admission; ED refers to
emergency department visits.
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Table 2: Effect of the Match Rate on Vaccination Rates

(1) (2)

Match -0.131 -3.024
(0.295) (3.830)

Match × Mean Vacc. - 0.084
(0.112)

N 960 960
The outcome in these regressions is the vaccination rate
(which varies at the state-by-flu-year level and is scaled
between 0 and 100), and the regressor is the match rate
(which varies only at the flu-year level). The regres-
sions are estimated at the state-by-flu-year level. The
interaction with mean vaccination rates is intended to
test whether high- and low-vaccination states respond
differentially to match rates. Regressions include state
fixed effects and a linear time trend. Standard errors in
parentheses are clustered at the state level.

Table 3: Mortality and Absences – Diff-in-Diff

Panel A: Pneumonia/Influenza (PI) Mortality Rate (per 100,000)
All Months Flu Season Non Season

Vacc × Match -0.043 -0.077 -0.026
(0.012) (0.023) (0.010)

Vacc 0.022 0.049 0.008
(0.011) (0.022) (0.010)

N 11,520 3,840 7,680

Panel B: Percent Absent for Illness
All Months Flu Season Non Season

Vacc × Match -0.00010 -0.00033 0.00001
(0.00009) (0.00014) (0.00009)

Vacc 0.00010 0.00029 0.00002
(0.00009) (0.00012) (0.00009)

N 11,520 3,840 7,680

“Flu Season” represents December-March; “Non Season” represents April-November.
Standard errors in parentheses are clustered at the state level.
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Table 4: Mortality and Absences – Triple Difference

Panel A: Pneumonia/Influenza (PI) Mortality Rate (per 100,000)
(1) (2) (3)

Vacc × Match × Activity -0.087 -0.073 -0.081
(0.035) (0.031) (0.032)

Vacc × Match 0.010 -0.014 -0.008
(0.018) (0.013) (0.013)

Expected Annual Benefit -0.297 -0.249 -0.276
(Deaths per 100,000 population)

N 11,520 11,520 9,792

Panel B: Average Work Hours Absent for Illness
(1) (2) (3)

Vacc × Match × Activity -0.00048 -0.00048 -0.00049
(0.00018) (0.00016) (0.00017)

Vacc × Match 0.00013 0.00008 0.00009
(0.00010) (0.00010) (0.00010)

Expected Annual Benefit -4,695 -4,716 -4,874
(Hours per 100,000 population)

N 11,520 11,520 9,792

Month-Year Fixed Effects X X X
Weather Controls X X X
State-Month Fixed Effects - X X
IV - - X

All regressions also include the V acc× Activity interaction and the main effect for V acc; not
included are the Match×Activity interaction and the main effects for Match and Activity as
these are absorbed by the month-year fixed effects. The “IV” specification indicates that the
average vaccination rate over the three years prior is used as an instrument for the current year’s
vaccination rate. Standard errors in parentheses are clustered at the state level. The “Expected
Annual Benefit” for mortality is equal to

∑
m φ̂1 ×Match×Activitym, where φ1 is the coeffi-

cient on the triple interaction. This measures the expected annual reduction in mortality that
would be expected to result from a one percentage point increase in the vaccination rate for a
population of 100,000 (i.e., 1,000 additional vaccinations). For illness absences, the “Expected

Annual Benefit” is equal to
∑

m φ̂1×Match×Activitym×17×(30.5/7)×(126/323)×100, 000.
17 is average number of hours lost per absence. (30.5/7) represents the number of weeks per
month, since the coefficient measures the change in mean weekly hours lost, and (126/323)
represents the ratio of full time workers to the population in the U.S. Finally, the calculation
for the “Expected Annual Benefit” for absences requires multiplying by 100,000 since the out-
come is a proportion rather than a rate per 100,000 population. This measures the expected
annual reduction in hours lost among full time workers that would be expected to result from
a one percentage point increase in the vaccination rate for a population of 100,000 individuals.
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Table 5: Mortality by Age & Decomposing Externality

Panel A: All-Age Vaccination Rates & Age-Specific Mortality
Under 1 Age 1-9 Age 10-64 Age 65-74 Age 75+

D-D-D Effect -0.001 -0.001 -0.003 0.004 -0.073
(0.001) (0.001) (0.005) (0.006) (0.028)

N 11,520 11,520 11,520 11,520 11,520

Panel B: Age-Specific Vaccination Rates & Age-Specific Mortality
Under 1 Age 1-9 Age 10-64 Age 65-74 Age 75+

D-D-D Effect (75+) - - - - 0.001
(0.019)

D-D-D Effect (<75) - - - - -0.061
(0.031)

N 11,520

Age-specific mortality rates are calculated as the number of deaths per 100,000 all-age population (i.e., the
denominator is not age-specific). As such, these estimates represent an accounting of the total mortality
benefits of increased vaccination – the sum of the mutually exclusive age categories equals the total
effect. I report additional estimates in Table A4 in which the denominator is age-specific. In Panel A,
coefficient estimates represent estimates of the triple-interaction from Equation (3). In Panel B, coefficient
estimates represent estimates of the triple-interactions from Equation (4). Standard errors in parentheses
are clustered at the state level.
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Table 6: Monetized Benefits

Panel A: Mortality
Age-Adjusted VSL Number of Deaths Monetized Value Value Per Vaccination

(Scaled Nationally) (Scaled Nationally)

Age 75+ EPA VSL $975,689 807.3 $787,673,729 $243.79
Age 75+ AG VSL $256,118 807.3 $206,764,061 $63.99

Panel B: Work Absences
Median Hourly Wage Number of Hours Monetized Value Value Per Vaccination

(Scaled Nationally) (Scaled Nationally)

All Full-Time Workers $20.80 15,238,038 $316,951,200 $98.10

Value of a Statistical Life (VSL) estimates are generated using the EPA’s figure of $8.8 million or the estimate from Ashenfelter and Greenstone (2004)
of $2.3 million (denoted “AG”), applied to the method of Murphy and Topel (2006) to calculate age-adjusted VSL figures for each age group. Estimates
correspond to a one percentage point increase in the vaccination rate, and correspond to the specification in Column 2 of Table 4. The median hourly wage
is calculated as the median weekly wage in 2016 ($832) divided by median hours worked (40) for full-time workers; these figures are derived from the Bureau
of Labor Statistics https://www.bls.gov/news.release/wkyeng.t07.htm.51
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Table 7: Effects of HCW Mandates on Influenza Diagnoses

Panel A: Inpatient Admissions with Influenza Diagnosis
Specification Checks Present on Admission

(1) (2) (3) (4) (5) POA Not-POA

Required -0.0708 -0.1000 -0.214 -0.201 -0.216 -0.196 -0.427
(0.0389) (0.0459) (0.0687) (0.0775) (0.0783) (0.0757) (0.116)

N 3,609 3,208 3,208 3,208 3,208 3,208 3,208
Converged Yes Yes Yes Yes No Yes Yes

Panel B: Outpatient ED Visits with Influenza Diagnosis
Specification Checks

(1) (2) (3) (4) (5)

Required -0.0168 -0.0243 -0.0944 -0.0813 -0.105 - -
(0.0470) (0.0458) (0.0544) (0.0605) (0.0538)

N 2,700 2,400 2,400 2,400 2,400
Converged Yes Yes Yes Yes Yes

Exclude 2014-15 - X X X X X X
County Linear Trends - - X X - X X
County-Level Covariates - - - X X X X
Hospital Linear Trends - - - - X - -

Reported coefficient estimates are derived from negative binomial regression models, and as such the estimates can be approximately
interpreted as percent changes. Regressions are estimated at the hospital-by-year level. The smaller number of observations for outpatient
ED visits is due to the smaller number of emergency departments relative to inpatient hospitals. “Converged” indicates whether the
maximization algorithm converged; non-convergent specifications are those that require the estimation of many parameters (i.e., hospital-
specific trends) or have relatively few observations. Standard errors in parentheses are clustered at the county level.
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Online Appendix

Appendix A: Part I Robustness and Additional Analysis

Figure A1: Identifying Vaccine Benefits Using Variation in Efficacy
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This figure presents a version of a model derived by Boulier et al. (2007) that describes the theoretical marginal social benefit
(MSB) and marginal private benefit (MPB) curves for the case of influenza vaccination. Presented here are the total social
benefits (i.e., the integral of the MSB presented in Figure 1). These benefits are allowed to depend on vaccine efficacy, and two
levels of vaccine efficacy are presented: 60% (E=0.60), and 10% (E=0.10). The 10% and 60% figures represent the lowest efficacy
estimates (during a low match season) and highest efficacy estimates (during a high match season) from CDC studies of vaccine
efficacy for influenza seasons 2004/05-2015/16: https://www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm.
Suppose the goal is to measure the benefit of increasing vaccination rates from 25% to 40% during high efficacy (E=60%)
seasons: ∆ TSB = TSB(V=40%, E=60%) - TSB(V=25%, E=60%) = D - C. When would variation in the vaccine match rate
identify this effect? If efficacy is equal to 60% during high match seasons and zero during low match seasons, then the differential
effect of a high match season between low and high vaccination states identifies the same effect as increasing vaccination: ∆
TSB = (TSB(V=40%, E=60%) - TSB(V=40%, E=0%)) - (TSB(V=25%, E=60%) - TSB(V=25%, E=0%)) = D - C. If efficacy
is not zero during low match seasons (assume E=10%), then the differential effect of a high match season between low and
high vaccination states identifies the following: ∆ TSB = (TSB(V=40%, E=60%) - TSB(V=40%, E=10%)) - (TSB(V=25%,
E=60%) - TSB(V=25%, E=10%)) = (D - C) + (A - B). So long as TSB is monotonically increasing in vaccination, the quantity
(A - B) is negative and the difference-in-differences identifies a lower bound on the benefit of increased vaccination.
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Figure A2: Vaccination and Influenza Timing
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Note – This plot displays average monthly influenza activity and the average cumulative vaccination rate
across years. Data on the timing of vaccination is available beginning in 2007. The year of the H1N1 influenza
pandemic (2009) was excluded from the averages represented in this figure as it was a highly abnormal year
in terms of the timing of both influenza activity and vaccination.
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Figure A3: Robustness Analysis
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Note – The “Baseline” estimate (at the top) uses the specification from Column 2 of Table 4. All other estimates are variations
on the baseline model. Estimate 2-8 vary the set of controls (fixed effects) and use of the instrumental variables strategy (as in
Table A1). IV denotes use of the instrumental variable, MY denotes month-year fixed effects, S denotes state fixed effects, SY
denotes state-year fixed effects, and SM denotes state-month fixed effects. Estimates 9-13 vary the definition of the instrument
in the instrumental variables regressions (as in Table A2): the first defines the IV as the vaccination rate in the one year prior,
the second defines the IV as the average vaccination rate over the two years prior, and so on. “RF Mean Vacc” represents
reduced-form estimates using a fixed vaccination rate for each state (the mean across all years); because it is a reduced-form
estimate rather than an IV, the magnitude is not directly comparable. Estimates 14-20 represent a variety of other checks (as
in Table A6). “Unweighted” indicates no weights are used in the regression. “Alt Vacc Measure” uses only data on vaccination
that is unambiguous as to which season it applies (93/94, 95/96, 97/98, and 99/00 are omitted). “Include H1N1” includes the
08/09 and 09/10 influenza seasons. “Season Triple Diff” uses a flu-season indicator (Dec.-Mar.) in place of average monthly
influenza activity. “Pre-08” uses data only from prior to the 2008/09 season. “Region (98/99-14/15)” defines the match rate
at the regional level for the years in which it is possible. “Strict Match” uses a definition of the match rate that utilizes only
exactly matched strains.
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Figure A4: Nonlinearities
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Note – These plots test for nonlinearities in the effects of state-level vaccination rates by allowing for higher order polynomials in the triple interaction
specification described in Equation (3). The plots represent the marginal effects of vaccination at various vaccination rates; note that larger negative
numbers imply larger social benefits. Dashed lines represent the 1st and 99th percentiles in the distribution of vaccination rates, and dotted lines
represent the 10th and 90th percentiles. Shaded regions represent 95% confidence intervals.
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Table A1: Mortality and Absences – Specification Checks

Panel A: PI Mortality
(1) (2) (3) (4) (5) (6) (7)

D-D-D Effect -0.08241 -0.07291 -0.09753 -0.09227 -0.07947 -0.09227 -0.06234
(0.03655) (0.03054) (0.03347) (0.02559) (0.03570) (0.02559) (0.03461)

N 9,792 11,520 9,792 11,520 9,792 11,520 9,792

Panel B: Hours Absent for Illness
(1) (2) (3) (4) (5) (6) (7)

D-D-D Effect -0.00047 -0.00048 -0.00049 -0.00037 -0.00052 -0.00037 -0.00052
(0.00018) (0.00016) (0.00017) (0.00016) (0.00019) (0.00016) (0.00018)

N 9,792 11,520 9,792 11,520 9,792 11,520 9,792

Month-Year Fixed Effects X X X X X X X
State Fixed Effects - X X - - - -
State-Year Fixed Effects - - - X X X X
State-Month Fixed Effects - - - - - X X
IV (t-3) X - X - X - X

Estimates are reported for a variety of specifications distinct from those presented as the main results in Table 4. Standard errors in parentheses are
clustered at the state level.
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Table A2: Mortality and Absences - IV Specification

Panel A: PI Mortality
t-1 t-1 to t-2 t-1 to t-3 t-1 to t-4 Fixed (Mean)

D-D-D Effect -0.073 -0.078 -0.081 -0.081 -0.136
(0.032) (0.032) (0.032) (0.034) (0.036)

N 10,944 10,368 9,792 9,216 11,520

Panel B: Hours Absent for Illness
t-1 t-1 to t-2 t-1 to t-3 t-1 to t-4 Fixed (Mean)

D-D-D Effect -0.00052 -0.00050 -0.00049 -0.00050 -0.00062
(0.00017) (0.00016) (0.00017) (0.00017) (0.00021)

N 10,944 10,368 9,792 9,216 11,520

IV X X X X -
Reduced Form - - - - X

These estimates test the sensitivity of the IV estimates to the definition of the instrument for vaccination
rates. Columns 1-4 use the vaccination rate in the prior year, the average vaccination rate over the prior
two years, the average vaccination rate in the prior three years (the specification presented in Table 4),
and the average vaccination rate in the prior four years. Column 5 uses a time-invariant mean vaccination
rate (the average vaccination rate over the entire sample). Because the IV strategy requires instrumenting
for three interactions plus main effect of vaccination, using a time-invariant instrument in the presence
of state-by-month fixed effects means that one of the required instruments drops out. As such, these
estimates are reported as reduced-form estimates (i.e., the effect of the mean vaccination rate on the
outcome at time t), and the magnitudes are not directly comparable. Standard errors in parentheses are
clustered at the state level.
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Table A3: Mortality by Cause and Absences by Reason

Panel A: PI Mortality
PI Mortality R&C Mortality All Mortality Non-R&C Mortality

(Falsification)

D-D-D Effect -0.073 -0.005 -0.046 -0.041
(0.031) (0.065) (0.076) (0.041)

N 11,520 11,520 11,520 11,520
Mean Dep. Var. 6.15 35.52 72.16 36.63

Panel B: Hours Absent for Illness
% Absent - Illness Hours Absent - Illness % Absent - Other Hours Absent - Other

(Falsification) (Falsification)

D-D-D Effect -0.00048 -0.00517 0.00022 -0.00498
(0.00016) (0.00262) (0.00068) (0.01105)

N 11,520 11,520 11,520 11,520
Mean Dep. Var. 0.025 0.242 0.092 0.922

All estimates are from models that use the main triple-difference specification (described in column 2 of Table 4). For both mortality and work
absences, the first column duplicates the main estimates as reference. “R&C” refers to respiratory & circulatory mortality, which is a level of
aggregation higher than pneumonia and influenza (PI). Deaths with no respiratory or circulatory diagnosis are unlikely to be related to influenza
infection (column 4 of Panel A). “Hours Absent” provides an alternate definition for work absence: the average number of hours absent rather
than the proportion of workers absent. In columns 3-4, estimates are reported for non-illness work absences (e.g., vacation). Standard errors in
parentheses are clustered at the state level.
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Table A4: Mortality – Age Specific Mortality Rates

Under 1 Age 1-9 Age 10-64 Age 65-74 Age 75+

D-D-D Effect -0.065 -0.006 -0.004 0.080 -0.788
(0.062) (0.006) (0.006) (0.080) (0.413)

Mean Dep. Var. 1.27 0.12 1.17 13.02 71.33
N 11,520 11,520 11,520 11,520 11,520

in Table 5, age-specific mortality rates are calculated as the number of deaths per 100,000 total
individuals in the population to facilitate straightforward accounting of the total mortality benefits
of vaccination. Here, mortality rates are calculated as the number of deaths per 100,000 population
in the relevant age group. These results confirm the main findings that the benefits are concentrated
in the 75+ age group. Standard errors in parentheses are clustered at the state level.
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Table A5: Mortality and Absences - Lagged Impacts

Panel A: PI Mortality
Baseline (One Month) Two Month Three Month Four Month Five Months

D-D-D Effect -0.0718 -0.0643 -0.1318 -0.1096 -0.0882
(0.0308) (0.0302) (0.0330) (0.0429) (0.0603)

N 11,520 11,519 11,518 11,517 11,516

Panel B: Percent Absent for Illness
Baseline (One Month) Two Month Three Month Four Month Five Months

D-D-D Effect -0.00048 -0.00047 -0.00010 -0.00005 -0.00004
(0.00016) (0.00018) (0.00025) (0.00026) (0.00035)

N 11,520 11,519 11,518 11,517 11,516
These estimates test whether the contemporaneous month is sufficient to capture the full extent of influenza-related mortality. The
column labelled “Two Months” reports estimates that replicate the main estimates, but include a one month lag in the interactions
that include influenza activity. The reported coefficients are the sum of the contemporaneous and lagged impact. The column labelled
“Three Months” adds one and two month lags in the relevant interactions and the sum of all three coefficients are reported, and so
on for columns four and five. Standard errors in parentheses are clustered at the state level.
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Table A6: Mortality and Absences – Robustness

Panel A: PI Mortality
Include H1N1 Flu Season Pre-2009 Regional Match Unweighted Alt. Vacc. Strict Match

D-D-D Effect -0.097 -0.070 -0.030 -0.046 -0.055 -0.076 -0.077
(0.034) (0.023) (0.033) (0.034) (0.023) (0.034) (0.024)

Scaled Effect - -0.101 - - - -

N 12,672 11,520 8,064 8,640 11,520 9,792 11,520

Panel B: Percent Absent for Illness
Include H1N1 Flu Season Pre-2009 Regional Match Unweighted Alt. Vacc. Strict Match

D-D-D Effect -0.00060 -0.00040 -0.00056 -0.00041 -0.00048 -0.00037 -0.00046
(0.00018) (0.00011) (0.00021) (0.00018) (0.00017) (0.00019) (0.00018)

Scaled Effect - -0.00059 - - - -

N 12,672 11,520 8,064 8,640 11,520 9,792 11,520
All estimates are variants on models that use the main triple-difference specification (described in column 2 of Table 4). Column 1 includes the two flu-years
affected by the H1N1 pandemic. Column 2 uses an influenza season indicator in place of influenza activity in the triple difference; for this specification a
“Scaled Effect” is provided for comparability with the other estimates in which the point estimate is scaled by a factor of 1/(Āseason − Āoff ), where Āseason

and Āoff represent average influenza activity during influenza season and during the off-season, respectively. Column 3 represents a sample period prior to
the H1N1 pandemic and two technological developments in the influenza vaccine (high-dose vaccines and the quadrivalent vaccine). Columns 4 uses regional
variation in the match rate (also included in this regression are the main effect for Match and the Match×Activity interaction, which are no longer absorbed
by fixed effects). Column 5 does not weight by the number of BRFSS observations. Column 6 uses an alternative calculation for vaccination rates, described
in Section 3.1.2. Column 7 uses a strict definition of vaccine match, described in Section 3.1.3. Standard errors in parentheses are clustered at the state level.
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Appendix B: Part II Robustness and Additional Analysis

Figure B1: California Mandates
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These plots display the roll-out of influenza vaccination mandates. Circles represent policies implemented
at the hospital level and shaded regions represent policies implemented at the county level. The lighter
shaded regions represent county-level policies that apply only to hospitals, and the darker regions represent
county-level policies that apply more broadly.
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Current Situation 
 
As Health Officers for Alameda County and the City of Berkeley, we are updating our joint Health 
Officer orders mandating that all licensed health care facilities in Alameda County and the City 
of Berkeley require their health care workers (HCWs) to receive an annual influenza 
vaccination or, if they decline, to wear a mask during every influenza season (defined as 
November 1 to March 31 of the following year) while working in patient care areas.  This order 
applies to all facilities regardless of documented HCW influenza vaccination rate.  This 
updated order is effective August 28, 2013, and is ongoing and applies to each influenza 
season unless the order is rescinded or modified. 
 
Background Information 
 
Influenza infection affects 5-15% of the US population every year, leading to an estimated 3.1 million 
days of hospitalization and 31.4 million outpatient visits.  HCWs are both at risk for influenza and can 
transmit the virus to their patients and coworkers.  Patients in our health care facilities are particularly 
vulnerable to influenza. Young children, the pregnant, the elderly, and those with chronic health 
conditions are at greater risk for influenza-related hospitalization and death. Healthy People 2020 
objectives target a 90 percent seasonal influenza vaccination rate for all health care personnel. 
 
In your role as a health care provider and ours as Health Officers, we share common goals: reduce 
spread of serious diseases such as influenza, provide outstanding health care, and protect our 
HCWs. State law requires that general acute care hospitals and certain employers offer influenza 
vaccinations to employees. If employees decline vaccination, they are only required to sign a 
declination statement in lieu of vaccination. While compliance rates with these laws are high, actual 
HCW vaccination rates are not and may be below the level that will reduce the spread of infection in 
our health care facilities. Mandatory vaccination or masking policies have been shown to increase 
HCW vaccination rates to above 95%. After our first year of mandating these policies in Alameda 
County and Berkeley, overall HCW flu vaccination rates increased from 72% to 86% in acute care 
inpatient facilities.  
 

Mandatory Influenza Vaccination or Masking of Health 

Care Workers During Every Influenza Season 

  
Muntu Davis, MD, MPH  Janet Berreman, MD, MPH 
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Alameda County Health Care Services Agency  Public Health Division                      
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August 28, 2013 
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Page 2 of 2 
 

Our goals are to protect both patients and HCWs from influenza disease, hospitalization and death by 
increasing rates of influenza vaccination of HCWs and  reducing HCW-to-patient transmission of 
influenza and vice versa.   
 
Order:   
 
We, as the Health Officers of Alameda County and the City of Berkeley, require that each and 
every licensed health care facility in Alameda County and the City of Berkeley implement a 
program requiring their health care workers to receive an annual influenza vaccination or, if 
they decline, to wear a mask during every influenza season while working in patient care areas 
in that health care facility.   
 
Duration of Order  
This order is ongoing and applies to each influenza season unless the order is rescinded or modified. 
The influenza season is defined as November 1 to March 31 of the following year. In any given 
year, if influenza surveillance data demonstrate an unusually late peak and continued widespread 
influenza activity in the spring, we may extend the period during which the masking program shall 
apply for that year.  
 
Facilities Subject to the Order  
This order applies to all licensed health care facilities in Alameda County and the City of Berkeley, 
including, but not limited to, hospitals, skilled nursing and long term care facilities, and dialysis 
centers. This order applies to all facilities regardless of documented HCW influenza vaccination rate.  
 
Definition of HCWs  
For the purposes of this order, “health care workers” or “HCWs” are persons, paid and unpaid, 
working in licensed health care settings who have direct patient contact or who work in patient care 
areas.   
 
We appreciate your help and support in protecting the residents of our community. For any additional 
questions in Berkeley, please contact the Berkeley Public Health Division at 510-981-5300. For any 
additional questions elsewhere in Alameda County, please contact the Alameda County Public Health 
Department, Division of Communicable Disease Control and Prevention at 510-267-3230.    

Figure B2: Example Mandate Memo – Alameda County 2013/14
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Table B1: HCW Vaccination Policy Timing

Hospital Season County Season
Children’s of Orange 2009 (H1N1) Sacramento 2011-12
Community Hospital of LB 2009 (H1N1) San Francisco 2011-12
Hoag Hospitals 2009 (H1N1) Alameda 2012-13
Long Beach Memorial 2009 (H1N1) Amador 2012-13
Miller Children’s 2009 (H1N1) Contra Costa 2012-13
Orange Coast Memorial 2009 (H1N1) El Dorado 2012-13
Pacific Hospital of LB 2009 (H1N1) Mono 2012-13
St. Joseph (Orange) 2009 (H1N1) Nevada 2012-13
St. Jude (Fullerton) 2009 (H1N1) San Joaquin 2012-13
UC Davis 2009 (H1N1) Santa Clara 2012-13
UC Irvine 2009 (H1N1) Stanislaus 2012-13
UC San Diego 2009 (H1N1) Sonoma 2012-13
Saddleback Memorial 2009 (H1N1) Tehama 2012-13
Santa Rosa Memorial 2010-11 Santa Cruz 2013-14
Sierra Vista (SLO) 2010-11 Los Angeles 2013-14
Tri-City (Oceanside) 2010-11 Marin 2013-14
Petaluma Valley Hospital 2010-11 Monterey 2013-14
Oroville Hospital 2012-13 Napa 2013-14
Banner Lassen Medical Center 2012-13 Shasta 2013-14
Barton Memorial 2012-13 Trinity 2013-14
UCSF (Children’s - Oakland) 2012-13 Alpine 2014-15
Cottage Hospitals 2013-14 Calaveras 2014-15
Salinas Valley Hospital 2013-14 Fresno 2014-15
- - Mariposa 2014-15
- - Modoc 2014-15
- - Placer 2014-15
- - San Benito 2014-15
- - San Bernardino 2014-15
- - Santa Barbara 2014-15
- - Siskiyou 2014-15
- - Tuolomne 2014-15
- - Ventura 2014-15
- - Solano 2015-16
- - Yolo 2015-16
- - Humboldt 2016-17
- - Mendocino 2016-17
- - Butte 2017-18
- - Merced 2017-18
- - San Luis Obispo 2017-18

Note: Hospitals that implemented their mandates in 2009, labelled “2009
(H1N1)”, did so in response to the H1N1 pandemic. All other mandates
were implemented prior to the beginning of an influenza season.
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Table B2: Effects of HCW Mandates – Robustness Checks

Inpatient Outpatient
(1) (2) (3) (4)

Required -0.199 -0.212 -0.100 -0.0833
(0.101) (0.0659) (0.0816) (0.0555)

N 3,024 2,406 2,232 1,800
Converged Yes No Yes Yes

Exclude 2014-15 X X X X
County Linear Trends X X X X
County-Level Covariates X X X X
Exclude Hospital Adopters X - X -
Exclude H1N1 Seasons - X - X

The outcome in first two columns is the number of inpatient influenza diagnoses and the
outcome in columns 3-4 is the number of outpatient influenza diagnoses. These regressions
test the sensitivity of the main result to (1) the exclusion of hospitals that adopt their own
vaccination mandates (as opposed to being subject to a county-level mandate) in columns 1
and 3, and (2) the exclusion of seasons affected by the H1N1 pandemic (2008/09, 2009/10) in
columns 2 and 4. Reported coefficient estimates are derived from negative binomial regression
models, and as such the estimates can be approximately interpreted as percent changes. Re-
gressions are estimated at the hospital-by-year level. Hospitals with zero age-specific influenza
diagnoses in all years are automatically omitted, accounting for the difference in sample size
across age groups. “Converged” indicates whether the maximization algorithm converged.
Standard errors in parentheses are clustered at the county level.
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Table B3: Effects of HCW Mandates on Hospital Worker Vacc. Rates

(1) (2) (3) (4)

Required 0.106 0.103 0.0950 0.0959
(0.0145) (0.0169) (0.0113) (0.0113)

N 707 707 1,391 2,568
# Hospitals 101 101 202 387

90% RR All Years X X - -
90% RR All Most Years - - X -
All Hospitals - - - X
County-Level Covariates - X X X

Column 1 does not include time-varying covariates and Columns 2-4 do. Columns 2-4
represent different levels of stringency in selecting the sample for the first stage, based on
data quality. Hospitals are required to report the percentage of workers vaccinated in each
influenza season; poor quality data emerges when hospitals do not collect this information
for every worker (the response rate for a particular hospital and influenza season may be
less than 100%). Columns 1-2 reports estimates only from hospitals with a response rate
(RR) of at least 90% in all years (2009/10-2015/16); Column 3 reports estimates only from
hospitals with a response rate of at least 90% in all but one year (typically the first year);
Column 4 reports estimates from all hospitals regardless of data quality. Standard errors in
parentheses are clustered at the county level.
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Table B4: HCW Balance Test

Outcome Variable p-value (H0 : π = 0)
Percent Uninsured 0.4643
Percent Unemployed 0.1655
Per Capita Transfers 0.9887
Per Capita Income 0.0607
Age Share 0-4 0.7256
Age Share 5-9 0.3704
Age Share 10-14 0.7074
Age Share 15-19 0.3296
Age Share 20-24 0.0100
Age Share 25-29 0.1017
Age Share 30-34 0.6061
Age Share 35-39 0.3114
Age Share 40-44 0.3473
Age Share 45-49 0.1684
Age Share 50-54 0.3203
Age Share 55-59 0.9084
Age Share 60-64 0.1641
Age Share 65-69 0.8446
Age Share 70-74 0.3577
Age Share 75+ 0.6421

Note: Each row represents a county-level time-varying
characteristic. Each characteristic is used as the outcome
in the difference-in-differences (DD) regression model de-
scribed in Equation (5), and p-values correspond to tests
that the DD coefficient estimate is equal to zero. The re-
gression models used in these tests represent the most par-
simonious model, and include no time-varying covariates
as explanatory variables and no county-level linear trends.
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Table B5: Effects of HCW Mandates by Age

Influenza Diagnoses – Inpatient Admissions
Under 1 1-9 10-64 65-74 75+

Required -0.208 -0.220 -0.176 -0.0836 -0.153
(0.0866) (0.0979) (0.0912) (0.124) (0.0692)

N 1,936 1,576 3,192 3,032 2,912

Converged Yes No Yes No Yes

Influenza Diagnoses – Outpatient ED Visits
Under 1 1-9 10-64 65-74 75+

Required -0.116 -0.168 -0.0767 -0.112 -0.0767
(0.0767) (0.0977) (0.0571) (0.0728) (0.0743)

N 2,384 2,384 2,400 2,376 2,360

Converged Yes Yes Yes Yes No

Exclude 2014-15 X X X X X
County Linear Trends X X X X X
County-Level Covariates X X X X X

Reported coefficient estimates are derived from negative binomial regression models, and as such the
estimates can be approximately interpreted as percent changes. Regressions are estimated at the hospital-
by-year level. Hospitals with zero age-specific influenza diagnoses in all years are automatically omitted,
accounting for the difference in sample size across age groups. “Converged” indicates whether the maxi-
mization algorithm converged. Standard errors in parentheses are clustered at the county level.
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Table B6: Effects of HCW Mandates – Other Outcomes

ln(Avg. Length of Stay) ln(Avg. Charges) In-Hospital Death Rate PI Mortality Rate

Required×Activity -0.0102 -0.0196 -0.000176 -0.239
(0.00601) (0.0118) (0.000387) (0.283)

Required -0.00275 0.00906 -0.000218 0.0743
(0.00337) (0.00940) (0.000305) (0.0963)

Exclude 2014-15 X X X X
County Linear Trends X X X X
County-Level Covariates X X X X
Hospital-Level X X X -
County-Level - - - X
N 33,922 30,420 33,930 5,504

The estimates presented in columns 1-3 represent average outcomes for inpatient hospital admissions at the hospital-year-month level. The estimate in column
4 uses data on mortality at the county-year-month level. The coefficient estimate for “Required×Activity” represents the impact of HCW vaccination mandates
during periods with high influenza activity relative to zero activity, and the estimate for “Required” represents the impact during periods with zero influenza
activity. The distributions for length of stay and charges at the micro-level (i.e., before collapsing to the hospital-year-month level) have extremely long tails.
To ensure that the estimates are not driven by these outliers, I exclude micro-level observations that are above the 99th percentile of each variable’s distribution
before calculating monthly averages. Additionally, charges are not reported for all inpatient visits. Some hospitals in particular consistently fail to report charges.
Because these observations are unlikely to be missing randomly, I exclude hospitals that do not report charges for at least 95% of their patients over the sample
period in the analysis of average charges (approximately 13% of the hospitals in the sample). This accounts for the smaller number of observations for the
estimates of charges. Furthermore, length of stay is unreported for approximately 1% of admissions; averages cannot be calculated for these outcomes when all
hospital-year-month outcomes are missing – this typically only occurs when there is a single observation in that cell. All models are estimated via OLS. Standard
errors in parentheses are clustered at the county level.
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