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Abstract

We propose a new method to estimate continuous-time job search models. Our ap-
proach is based on an adaptation of the conditional choice probability estimation meth-
ods to a continuous-time job search environment. To do so, the proposed framework
incorporates preference shocks into the search framework, resulting in a tight con-
nection between value functions and conditional choice probabilities. Our method,
relative to standard estimation methods for continuous-time job search models, yields
considerable computational gains. In particular, we can estimate rich nonstationary
job search models without having to solve any differential equations, and in some cases
even avoiding any optimization. We apply our method to analyze the effect of unem-
ployment benefit expiration on the duration of unemployment and wages using rich
longitudinal data from Hungarian administrative records.
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1 Introduction

This paper proposes a new method to estimate continuous-time job search models. The
idea of this approach is to adapt conditional choice probabilities to a continuous-time job
search environment. To do so, our framework incorporates preference shocks into the search
framework, resulting in a tight connection between value functions and conditional choice
probabilities. A key advantage of the proposed approach, relative to standard estimation
methods for continuous-time job search models, is computational. While the empirical labor
search literature has been rapidly growing over the last few years (see Eckstein and van den
Berg, 2007 for a survey), structural estimation of these models often remains challenging.
This is particularly true for nonstationary environments, which tend to be the norm rather
than the exception in the context of job search (van den Berg, 2001, van den Berg, 1990,
Cahuc, Carcillo, and Zylberberg, 2014). The first and main contribution of this paper is to
provide a novel empirical framework that makes it possible to estimate job search models in
a simple, tractable, and transparent way.

We apply our methods to analyze the effect of unemployment benefit expiration on the
duration of unemployment spells and on accepted wages, using rich longitudinal adminis-
trative data from Hungary. Beyond illustrating how these methods can be used to estimate
nonstationary job search models at a limited computational cost, this application contributes
to the vast and growing literature on the relationship between unemployment benefits and
job search behavior (see, e.g., Johnston and Mas, 2018, Nekoei and Weber, 2017, Lollivier
and Rioux, 2010, Card, Chetty, and Weber, 2007, van den Berg, 1990, and Schmieder and
von Wachter, 2016 for a recent survey).

This paper fits into three different literatures. First, it contributes to the literature on the
estimation of dynamic discrete choice models using conditional choice probabilities (CCPs).
Since the seminal work of Hotz and Miller (1993), CCP methods have been increasingly used
as a way to estimate complex dynamic discrete choice models at a limited computational
cost (see Arcidiacono and Ellickson, 2011, and Aguirregabiria and Mira, 2010 for recent
surveys). While CCP methods have been used a variety of settings, they have been mostly
used in a discrete time environment. A recent exception is Arcidiacono, Bayer, Blevins,
and Ellickson (2016), who apply CCP methods to estimate dynamic equilibrium models of
market competition. However, to the best of our knowledge, none of these papers have
explored the use of CCP methods to estimate job search models in continuous time.

This paper also contributes to the empirical job search literature. Since the seminal
work of Flinn and Heckman (1982), a large number of papers have structurally estimated
various types of job search models (see Eckstein and van den Berg, 2007 for a survey).
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In this literature, structural parameters are generally estimated via maximum likelihood
or indirect inference methods, where the model needs to be solved within the estimation
procedure. As a result, estimation tends to be computationally demanding, especially so in
complex environments that are needed to capture important features of the labor market.
Nonstationarity in job search, which arises in particular when the level of unemployment
benefits varies over the unemployment spell, is an important example. Since the seminal
work of van den Berg (1990) who structurally estimates a continuous-time nonstationary
search model,1 examples of structural estimates of nonstationary job search models remain
scarce, likely in part because of the computational burden involved. Important references
include Cockx, Dejemeppe, Launov, and Van der Linden (2018), Launov and Walde (2013),
Lollivier and Rioux (2010), Paserman (2008), and Frijters and van der Klaauw (2006).

Finally, our application fits into the vast and growing empirical literature that investigates
the impact of unemployment benefit levels and duration on labor supply (see, e.g., Johnston
and Mas, 2018, Nekoei and Weber, 2017, Le Barbanchon, Rathelot, and Roulet, 2017, Lol-
livier and Rioux, 2010, Card, Chetty, and Weber, 2007, van den Berg, 1990, and Schmieder
and von Wachter, 2016 and Krueger and Meyer, 2002 for overviews of this literature).

The rest of the paper is structured as follows. In Section 2, we extend a stationary
continuous-time job search model to allow for preference shocks, and explain how the model
changes when unemployment benefits expire. In Section 3, we show how the value of unem-
ployment can be expressed in terms of the probability to accept a job offer. In Section 4,
we discuss a number of extensions to the baseline model. In Section 5, we demonstrate our
method: after describing the data, we outline a two-stage estimation procedure and discuss
its extension to feature unobserved heterogeneity. Finally, Section 6 concludes.

2 Model

Our baseline framework is a continuous-time nonstationary job search model with wage
posting. While this model shares many of the features of nonstationary job search models
that have been considered in the literature (van den Berg, 1990, Lollivier and Rioux, 2010),
a key distinction is that it incorporates preference shocks into the search framework. This
feature is instrumental to our approach as it makes it possible to connect the value functions
of unemployment and employment to the conditional choice probabilities. We first discuss
the particular case of a stationary environment, then we turn to the nonstationary case where
the value of unemployment is allowed to vary over time.

1See also Wolpin (1987), which is the first study to estimate a (discrete time) nonstationary search model.
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2.1 Stationary environment

Consider an economy in continuous time with infinitely lived workers, who discount the
future at a rate ρ > 0. In our model, both employed and unemployed individuals are looking
for jobs. They can receive job offers which are characterized by wages drawn from a common
discrete wage distribution with finite support Ωw = {w1, . . . , wNw} and with the probability
mass function f(·). Each time a worker receives an offer, she has to decide whether to
accept it or turn it down based on the expected value which she can get if she continues to
search. We model job offer arrival as a Poisson process, and allow employed and unemployed
individuals to sample jobs at different frequencies.

Workers have heterogeneous valuations of the job offers they receive. Specifically, we
model these differences through the preference shock ε which is drawn independently when-
ever a new job offer arrives. The preference shock ε represents the relative attractiveness of
a new job compared to the current state of the individual (employment at the current job
for the employed or unemployment for the unemployed) and is supposed to affect the instan-
taneous utility. Thus, a job offer with the wage w can be accepted or rejected depending on
the realization of the preference shock ε. We denote the ex ante probability of accepting a
job offer w – before the realization of the shock – by p1(w0, w) for employed workers, where
w0 is the wage at the current job, and by p0(w) for unemployed individuals. Finally, workers
get laid off at the exogenous Poisson rate δ > 0.

We now write the problem of the unemployed individuals. The flow utility of unem-
ployment is given by b and include the value of unemployment insurance and leisure. Job
offers arrive at a rate λ0. Upon arrival of a job offer w, and denoting by V0 the value of
unemployment and by V1(w) the value of employment (at a wage w), the individual decides
to accept the offer if and only if V1(w) + ε > V0. The Bellman equation for V0 writes:

(λ0 + ρ)V0 = b+ λ0Eε,w max {V1(w) + ε, V0}

The Emax term is the expected value resulting from the optimal choice conditional on
the job offer arrival. The expectation is taken both with the respect to the possible offered
wages and realizations of the preference shocks. Assuming that ε is drawn from a logistic
distribution, along with the independence between preference shocks and wage offers, we
obtain the following expression:

ρV0 = b− λ0Ew log (1− p0(w)) (2.1)
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where p0(w) is the ex ante probability of accepting a job offer w, given by:

p0(w) = 1
1 + exp {V0 − V1(w)} .

Equation (2.1) yields a simple expression of the value of unemployment as a function of
the structural parameters (ρ, b, λ0)′ and the conditional choice probabilities p0(w).

We now turn to the value of employment V1(w). The Bellman equation in this case
writes:

(λ1 + δ + ρ)V1(w) = u(w) + δV0 + λ1Eε,w′ max {V1(w′)− c1 + ε, V1(w)}

where u(w) is the flow utility associated with wage w, and c1 is a job-switching cost. As-
suming that the shocks ε are drawn from a logistic distribution, we can rewrite this equality
as:

(λ1 + δ + ρ)V1(w) = u(w) + δV0 + λ1V1(w) + λ1Eε,w′ {log [1 + exp (V1(w′)− V1(w)− c1)]}

which, in turn, can be rewritten as:

(δ + ρ)V1(w) = u(w) + δV0 − λ1Ew′ log (1− p1(w,w′)) (2.2)

where p1(w,w′) denotes the probability of accepting a new job offer w′ given the current
wage rate w, given by:

p1(w,w′) = 1
1 + exp {V1(w)− V1(w′) + c1}

.

Combined with Equation (2.1) above, it follows from Equation (2.2) that the value of em-
ployment at a wage rate w is a function of the flow utility of employment u(w), the structural
parameters (ρ, b, λ0, δ, λ1) and the conditional choice probabilities p1(w,w′) and p0(w′).

2.2 Nonstationary environment

We now extend the model discussed in the previous section by relaxing the assumption that
the value of unemployment is constant over time. Specifically, we introduce two sources of
nonstationarity: we allow the flow utility of unemployment b(t) and the job offer arrival rate
λ0(t) to vary as a function of time from the start of the unemployment spell. We assume
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that getting a job resets the unemployment duration, which implies that V1(w) remains
stationary. Indexing time spent unemployed by t, it is useful to first write the Bellman
equation for the unemployment value function V0(t) in discrete time. Denoting by ∆t the
discrete time unit, it follows from Bellman’s optimality principle that:

V0(t) = b(t)∆t+ λ0(t)∆t
1 + ρ∆tEε,w max {V1(w) + ε, V0(t+ ∆t)}+ 1− λ0(t)∆t

1 + ρ∆t V0(t+ ∆t).

which can be rewritten as:

ρV0(t) = b(t)(1 + ρ∆t) + λ0(t)Eε,w max {V1(w)− V0(t+ ∆t) + ε, 0}+ V0(t+ ∆t)− V0(t)
∆t

Next, letting ∆t → 0 and denoting by V̇0(t) the derivative of the V0(t) with respect to
unemployment duration, we obtain the following (continuous-time) differential equation in
V0(·):

ρV0(t) = b(t) + λ0(t)Eε,w max {V1(w)− V0(t) + ε, 0}+ V̇0(t)

Finally, denoting by p0(w, t) the ex ante probability of accepting a job offer w at time t,
this expression can be rewritten as a function of p0(w, t):

ρV0(t) = b(t)− λ0(t)Ew log (1− p0(w, t)) + V̇0(t) (2.3)

A couple of remarks are in order. First, an important difference relative to the stationary
environment is that Equation (2.3) now involves the derivative of the value of unemployment
with respect to duration of unemployment (V̇0(t)). This term represents the change in the
option value of job search due to variation over time in the value of unemployment. In
the particular case where nonstationarity arises because of over-time changes in the level of
unemployment benefits, the option value of searching for a job will decrease as job seekers
get closer to the unemployment insurance expiration date.

Second, Equation (2.3) is a simple linear first-order differential equation in V0(·), which
admits an exact analytical solution as a function of the structural parameters and the con-
ditional choice probabilities p0(w, t). This solution is given by:

V0(t) = exp(ρt)
(
V0(t0) exp(−ρt0)−

∫ t

t0
exp(−ρu)φ(u)du

)
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for any given t0 ∈ R+, with:

φ(u) = −b(u) + λ0(u)Ew log (1− p0(w, t))

Note that the existence of preference shocks ε is key to this derivation.2

Finally, following similar arguments to the stationary case, the value of employment
V1(w) is given by:

(δ + ρ)V1(w) = u(w) + δV0(0)− λ1Ew′ log (1− p1(w,w′)) (2.4)

where V0(0) is the value of unemployment at the beginning of an unemployment spell, and
p1(w,w′) denotes the probability of accepting a new job offer w′ given the current wage rate
w.

3 Identification

We have shown in the previous section that the unemployment and employment value func-
tions can be simply expressed as a function of the structural parameters of the model, the
wage offer distributions, as well as the conditional job acceptance probabilities. There are
two fundamental differences compared to Hotz-Miller type approach for dynamic discrete
choice models. First, in a search environment, choices (i.e., job offer acceptance or rejection)
are generally not observed by the analyst. Second, wage offers are generally unobserved as
well. Nonetheless, we provide in the following a simple constructive identification strategy
for the structural parameters, wage offer distributions as well as (conditional) job accep-
tance probabilities. These results hold in a standard empirical setting where one has access
to longitudinal data on i) accepted wages, along with ii) transitions from unemployment to
employment, iii) transitions from employment to unemployment, and iv) job-to-job transi-
tions. Note that we assume throughout this identification sketch that wages are drawn from
a discrete distribution with finite support. This distribution can be thought of as a discrete
approximation to the underlying (continuous) wage distribution.

2Absent these shocks, V0(t) would satisfy instead the following nonlinear second order differential equation:

ρV0(t) = b(t) + λ0(t)Ew max {V1(w)− V0(t), 0}+ V̇0(t)

This equation needs to be solved numerically as is done in particular in the seminal work of van den Berg
(1990).
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3.1 Restrictions implied by job-to-job transitions

3.1.1 Additional notation and assumptions

Given the structural model of the previous section, we now turn to identification. We assume
the following are directly identified from the data:

1. hij, the hazard rate of moving from a job with wage wi to a job with wage wj;

2. hi(t), the hazard rate out of unemployment at time t to a job that pays wi;

3. h0, the hazard rate of moving from employment to unemployment.

Note that the job destruction rate δ is directly identified from h0. Finally, as is standard in
this class of models, we assume throughout that the discount rate ρ is known.

We first show that under the assumptions outlined above, the offered wage distribution,
on-the-job offer arrival rate λ1, job switching cost c1, conditional choice probabilities of
accepting a new job offer given the current wage rate, and the flow utility of employment
(up to an additive constant) can be identified from the hazard rates associated with the
various job-to-job transitions from w to w′, with (w,w′) ∈ Ω2

w. We then show how to recover
the parameters associated with unemployment, namely the distribution of offered wages
g(w), the offer arrival rate λ0(t), the flow utility of unemployment b(t), and the conditional
choice probabilities of accepting a job offer while unemployed.

3.1.2 Wage offer distribution

By definition, hij is given by:
hij = λ1f(wj)p1(wi, wj)

where p1(wi, wj) is the probability of accepting a new job offering wj given the individual’s
current job pays wi.

Note that p1(wi, wi) = p1(wj, wj) for all {j, i} as the level of the wage does not affect the
probability of switching given the assumptions made earlier. It follows that:

hii
hjj

= f(wi)
f(wj)

Summing over wi in the support Ωw yields:

f(wj) = hjj∑
i hii

(3.1)
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3.1.3 Identification of λ1, c1, and p1(wi, wj)

The distributional assumption on the preference shocks ε yields a simple relationship between
probabilities of accepting a new job offer, the employment value functions and the switching
cost:

ln
(

p1(wi, wj)
1− p1(wi, wj)

)
= V1(wj)− c1 − V1(wi)

Thus implying:

ln
(

p1(wi, wj)
1− p1(wi, wj)

)
+ ln

(
p1(wj, wi)

1− p1(wj, wi)

)
= −2c1

Using the fact that:

p1(wi, wj) = hij
λ1f(wj)

(3.2)

we obtain:
ln
(

hij
λ1f(wj)− hij

)
+ ln

(
hji

λ1f(wi)− hji

)
= −2c1 (3.3)

It follows that the following equality holds for any given pair {wi′ , wj′} ∈ Ω2
w:

ln
(

hij
λ1f(wj)− hij

)
+ ln

(
hji

λ1f(wi)− hji

)
= ln

(
hi′j′

λ1f(wj′)− hi′j′

)
+ ln

(
hj′i′

λ1f(wi′)− hj′i′

)

For any {wi′ , wj′} ∈ Ω2
w such that p1(wi, wj)p1(wj, wi) 6= p1(wi′ , wj′)p1(wj′ , wi′) this equal-

ity identifies λ1, which is given by:

λ1 = (f(wj′)hj′i′ + f(wi′)hi′j′)hijhji − (f(wj)hji + f(wi)hij)hi′j′hj′i′

f(wj′)f(wi′)hijhji − f(wj)f(wi)hi′j′hj′i′
(3.4)

Finally, having identified λ1, the switching cost c1 and the conditional choice probabilities
are directly identified from Equation (3.3) and Equation (3.2), respectively.
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3.1.4 Flow utility of wages u(·)

Consider the log odds of choosing to accept a job offering wj when the current job pays wi.
Expressing the Emax term with respect to the value of the new job, we can write:

ln
(

p1(wi, wj)
1− p1(wi, wj)

)
= u(wj)− u(wi) + λ1

∑
w [ln (p1(wi, w))− ln (p1(wj, w))] f(w)
ρ+ δ + λ1

− c1

(3.5)
Since the job destruction rate δ is directly identified from the data on job-to-unemployment

transitions, it follows from the previous steps that the flow utility u(w) is identified up to a
constant. Assuming that the flow utility of employment is linear in the wage rate, u(w) = αw,
this in turn identifies u(·).

3.2 Restrictions implied by unemployment-to-job transitions

3.2.1 Identification of g(w), λ0(t), and p0(w, t)

The rich structure of our model allows us to identify a separate wage offer distribution for
unemployed individuals. Denote the probability of accepting an offer of w out of unemploy-
ment at time t as p0(w, t). The hazard rate from unemployment to employment at wage wi
in period t is then:

hi(t) = λ0(t)g(wi)p0(wi, t)

where g(w) denotes the distribution of offered wages to unemployed individuals. Thus
p0(wi, t) writes as:

p0(wi, t) = hi(t)
λ0(t)g(wi)

(3.6)

Taking the difference in log odds ratios of accepting jobs that offer wi and wj out of
unemployment at time t, we obtain:

ln
(

p0(wi, t)
1− p0(wi, t)

)
− ln

(
p0(wj , t)

1− p0(wj , t)

)
=
u(wi)− u(wj) + λ1

∑
w [ln (p1(wj , w))− ln (p1(wi, w))] f(w)
ρ+ λ1 + δ

Note that everything on the right hand side is known. Further, everything on the left hand
side can be expressed as a function of g(w) and λ0(t) using Equation (3.6):

ln
(

hi(t)
λ0(t)g(wi)− hi(t)

)
− ln

(
hj(t)

λ0(t)g(wj)− hj(t)

)
=
u(wi)− u(wj) + λ1

∑
w

[ln (p1(wj , w))− ln (p1(wi, w))] f(w)
ρ+ λ1 + δ
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Denoting the right hand side as κij, we express λ0(t) as:

λ0(t) = hi(t)hj(t)(eκij − 1)
g(wi)hj(t)eκij − g(wj)hi(t)

(3.7)

Repeating Equation 3.7 for another pair of wages i′, j′) yields:

hi(t)hj(t)(eκij − 1)
g(wi)hj(t)eκij − g(wj)hi(t)

= hi′(t)hj′(t)(eκi′j′ − 1)
g(wi′)hj′(t)eκi′j′ − g(wj′)hi′(t)

(3.8)

Combining Equation 3.8 for every (i, j)–(i′, j′) combinations, as well as the condition

∑
i

g(wi) = 1

identifies the distribution of offered wages for the unemployed. From there, Equation 3.7
identifies the offer arrival rate at each duration t. Having identified λ0(t), the conditional
choice probabilities p0(w, t) are identified from Equation (3.6).

3.2.2 Identification of b(t)

We express the following log odds ratio by normalizing the future value of working relative
to staying at the same job:

ln
(

p0(wi, t)
1− p0(wi, t)

)
= u(wi)− λ1

∑
w [ln (1− p1(wi, w))] f(w) + δV0(0)

ρ+ δ
− V0(t) (3.9)

Evaluating the previous equation at t = 0 and solving for V0(0) yields:

V0(0) = u(wi)− λ1
∑
w [ln (1− p1(wi, w))] f(w)

ρ
− ρ+ δ

ρ
ln
(

p0(wi, 0)
1− p0(wi, 0)

)

Note that at this stage everything on the right hand side is known, so that this equality
identifies V0(0). Plugging V0(0) back into Equation 3.9 then identifies V0(t) (for all t ≥ 0), and
thus also V̇0(t). It follows that one can directly solve for and identify b(t) using Equation (2.3):

b(t) = ρV0(t) + λ0(t)Ew log (1− p0(w, t))− V̇0(t) (3.10)

A remarkable implication of these results is that, by exploiting the tight connection
between value functions and conditional choice probabilities, we are able to recover the
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structural parameters of our nonstationary job search model without numerically solving
differential equations.

4 Extensions

In what follows, we describe three extensions to our baseline model. First, we explore
heterogeneity in the on-the-job offer arrival rates. Second, we incorporate wage changes
within the current employment spell. Third, we consider aggregate shocks to the economy.
We discuss these extensions and their identification individually for the ease of exposition:
however, it is possible to extend the baseline model with more than one at a time.

4.1 Heterogeneous offer arrival rates

Let the arrival rate of offers differ by the distance between the offered wage and the worker’s
current wage. Specifically, to a worker currently making i, offers paying j arrive at the rate
λ1(1−δ|j−i|). We can identify these heterogeneous arrival rates analogously to the base case:
the log odds of accepting this offer will be

ln
(

p1(wi, wj)
1− p1(wi, wj)

)
= ln

 hij

λ1
(
1− δ|j−i|

)
f(wj)− hij

 . (4.1)

Using this structure, we first identify the δ multipliers from the pair of log odds of
accepting offers j and j′ when the current job pays i and i′, respectively, such that |j − i| =
|j′ − i′| = s; that is,

ln
(

hij
λ1(1− δs)f(wj)− hij

)
+ ln

(
hji

λ1(1− δs)f(wi)− hji

)

= ln
(

hi′j′

λ1(1− δs)f(wj′)− hi′j′

)
+ ln

(
hj′i′

λ1(1− δs)f(wi′)− hj′i′

)
. (4.2)

These equations yield λ1(1 − δs); thus we identify δs up to a numèraire. Imposing further
constraints such that 1− δs = (1− δ̄s)(1− δ̄s−1) yields all multipliers.

From here, we identify λ1 itself from

ln
(

hij
λ1(1− δs)f(wj)− hij

)
+ ln

(
hji

λ1(1− δs)f(wi)− hji

)

= ln
(

hi′j′

λ1(1− δs′)f(wj′)− hi′j′

)
+ ln

(
hj′i′

λ1(1− δs′)f(wi′)− hj′i′

)
(4.3)
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where s = |j − i| and s′ = |j′ − i′|. Plugging in the structural parameters for the choice
probabilities and solving them for λ1, we get

λ1 = (1− δs′) (f(wj′)hj′i′ + f(wi′)hi′j′)hijhji − (1− δs) (f(wj)hji + f(wi)hij)hi′j′hj′i′

(1− δs′)2 f(wj′)f(wi′)hijhji − (1− δs)2 f(wj)f(wi)hi′j′hj′i′
.

(4.4)

4.2 Within-job wage changes

Let φij indicate the rate at which a job paying i transitions to a job paying j. The value
function can then be expressed as∑

j

φij + δ + ρ

 V1(wi) = u(wi) +
∑
j

φijV1(wj) + δV0(0)− λ1Ew ln (1− p1(wi, w)) . (4.5)

Note that identification of the offer distribution, arrival rate, the switching cost, and the
conditional choice probabilities is unchanged from the base case. Furthermore, identification
of the φ’s is straightforward, given observed wage changes within the same employer.

To identify the flow payoffs, we can eliminate V1(wj) on the right hand side by using the
following substitution:

V1(wj) = V1(wi) + c1 + ln [p1(wi, wj)]− ln [1− p1(wi, wj)] , (4.6)

implying we can rewrite the value function as

(δ + ρ)V1(wi) = u(wi) +
∑
j

φij (c1 + ln [p1(wi, wj)]− ln [1− p1(wi, wj)]) + δV0(0)

− λ1Ew ln (1− p1(wi, w)) . (4.7)

Flow payoffs are then identified as before.

4.3 Aggregate shocks

Now consider the case where the market economy is in one of K states. The state matters
for the arrival rate of job offers and the offered wage distribution. Assume we observe the
state of the economy. The rate at which the economy transitions from k to l is φkl which we
can identify from observed states of the economy. Note that the state-specific identification
of the offer arrival rates, offered wage distribution, the conditional choice probabilities, and
the switching cost all follow immediately from the base case, leaving the flow payoffs as the
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only unknown parameters. The value function is then(∑
l

φkl + δ + ρ

)
V1(wi, k) = u(wi) +

∑
l

φklV1(wi, l) + δV0(0)

− λ1kEw ln (1− p1(wi, w, k)) (4.8)

where p1(wi, wj, k) denotes the probability of accepting a job paying wj when the current
wage is wi and the current state of the economy is k. Note that V1(wi, l) can be expressed
as:

V1(wi, l) = V1(wj, l) + c1 + ln [p1(wj, wi, l)]− ln [1− p1(wj, wi, l)] . (4.9)

Taking Equation 4.8 and subtracting off the similar expression for V1(wj, k), then substituting
in for V1(wi, l) with Equation 4.9 yields

(∑
l

φkl + δ + ρ

)(
V1(wi, k)− V1(wj, k)

)
= u(wi)− u(wj)

+
∑
l

φkl (c1 + ln [p1(wj, wi, l)]− ln [1− p1(wj, wi, l)])

− λ1kEw
(

ln (1− p1(wi, w, k))− ln (1− p1(wj, w, k))
)
. (4.10)

We can then express the difference in value functions on the left hand side as the log odds
ratio (by putting a switching cost on both sides) to identify the flow payoffs up to a constant.

5 Empirical Implementation

5.1 Data

We estimate the model using matched employer-employee data from Hungarian administra-
tive records, provided by the Center for Economic and Regional Studies at the Hungarian
Academy of Sciences (CERS-HAS). The dataset used in this analysis combines data from
five administrative sources: (i) the National Health Insurance Fund of Hungary; (ii) the
Central Administration of National Pension Insurance; (iii) the National Tax and Customs
Administration of Hungary; (iv) the Public Employment Service National Labor Office; and
(v) the Educational Authority. The sample consists of half of the Hungarian population,
i.e., 4.6 million individuals, linked across 900 thousand firms. On the individuals’ side, a
de facto 50% random sample of the population are observed; every Hungarian citizen born
on Jan 1, 1927 and every second day thereafter are included. A key distinctive feature of
the Hungarian data is their frequency: individuals are observed on a monthly basis. One
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individual can be present in at most two work arrangements: labor market measures are
observed separately for them. We also have information on demographics, total earnings
and days worked (i.e., including tertiary and further work arrangements), as well as ben-
efit payments. On the firm side, all firms are included at which any sampled individuals
are observed to have worked. Balance sheet data from the tax authority are available on a
yearly basis. Consequently we cannot analyze within-year co-movements of individual and
firm measures. However, we can link the yearly information of the old and new firms to a
worker who experiences a job-to-job transition.

For estimation we use a sample of employed and unemployed individuals from January
2004 to October 2005. During this time, Hungary had a two-tier unemployment insurance
system: only those were eligible for second-tier benefits who had a sufficiently long work
history, and benefit payments in the second tier were lower than in the first. Those who
exhausted benefits in both tiers were eligible for social assistance. We supplement the main
database with detailed information on unemployment status, benefit eligibility, and benefit
take-up in both tiers from raw administrative records. From these records, we can directly
observe all relevant measures of unemployed individuals. For employed individuals, we ob-
serve their monthly earnings and their monthly employment status as well as an anonymous
identifier of their primary employers. From these data, we can infer the length of their
employment spells, as well as job-to-job transitions from changes in firm identifiers.

5.2 Estimation

In our estimation procedure, we impose the structure of our model on the hazards. Specifi-
cally, we estimate the following hazard rates:

1. hij, the hazard rate of moving from a job with wage wi to a job with wage wj;

2. hi(t), the hazard rate out of unemployment at time t to a job that pays wi;

3. h0, the hazard rate of moving from employment to unemployment.

We model these hazards in a competing hazard framework with right-censoring, which may
occur when the individual exits the labor force.

To fix ideas, imagine an individual who currently works in a job that pays wi. At any
point in time, four things may happen to this individual. She may switch to a job that pays
wj, which occurs at the rate hij; she may exit to unemployment which occurs at the rate h0;
she may exit the labor force which we treat as a right-censored employment spell; or none of
the above and she stays in her current job. Similarly, at time t an individual who is currently
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unemployed may transition to a job that pays wi, which occurs at the rate hi(t); she may
exit the labor force; or she may remain unemployed. Transitions to either of the discrete
wage bins or to unemployment are mutually exclusive, and we model them as competing
hazards.

5.2.1 Hazards for the employed

Let hij(t) denote the hazard of moving from wi to wj at time t. We abstract from the time
dimension in the case of job-to-job transitions, which is equivalent to assuming that the
baseline hazard is constant: hij(t) = hij for all t. Consequently, the cumulative hazard of
moving from wi to wj is

Hij(t) =
∫ t

0
hij(u) du = hij t. (5.1)

It then follows that the survival function for spells with the current wage wi can be written
as the product of the destination-specific cumulative hazards:

Si(t) =
∏
j

exp (−Hij(t)) =
∏
j

exp (−hij t) . (5.2)

We similarly treat employment-to-unemployment hazards, h0(t) = h0.

Assume that we observe data on SEn employment and SUn unemployment spells for each
individual n. For spell s we know its duration ts, the wage rates at the origin job is and, if
present, at the destination job js, and indicators of transition types (JJs for job-to-job, EUs

for employment-to-unemployment transitions). The likelihood of observing these data is

L =
N∏
n=1

SE
n∏

s=1

 W∏
i,j=1

[
(hij)JJs·1(js=j) exp(−hij ts)

]1(is=i)
 · (h0)EUs exp(−h0 ts). (5.3)

We impose the structure of our model on the hazard estimation: see Appendix A for
details.

5.2.2 Hazard rates out of unemployment

We put a flexible parametrization on the unemployment-to-job hazards. Specifically, we
assume that unemployment durations are distributed as a mixture of two Weibull hazards
with wage-dependent scale and shape parameters:

fj(t) = ξf 1
j (t) + (1− ξ)f 2

j (t) (5.4)

16



where ξ is a common mixing parameter across wages and each mixing distribution fnj (t),
n ∈ {1, 2} is parametrized as

fnj (t) =
αnj
γnj

t

γnj

αn
j −1

exp
(
t

γnj

αn
j

)

Therefore, the hazard of moving from unemployment to wj at time t is

hj(t) = fj(t)
S(t) (5.5)

with the survival function

S(t) =
∏
j

(
1−

∫ t

0
fj(s) ds

)
.

For unemployment spell s we observe its duration ts, the wage rate in the new job js, and
an indicator UEs of whether the spell leads to an unemployment-to-employment transition.
The likelihood of these data is

L =
N∏
n=1

SU
n∏

s=1

W∏
j=1

(hj(t))UEs·1(js=j) exp (S(t)) . (5.6)

5.3 Results

We now turn to the structural parameter estimates. A key strength of our approach is
its intuitive identification of offered wages; Table 1 displays these estimates. For employed
individuals, 35 percent of offers arrive from the lowest wage bin while higher offers are
monotonically less likely, except for the highest wage bin. As we argue later, this larger
fraction of high-wage offers are driven by composition effects. For the unemployed, 81 percent
of offers arrive from the lowest wage bin and higher wages are rarely offered. This pattern
reflects the substitution between low-paying, often temporary jobs and unemployment in the
Hungarian labor market setting.

Table 2 summarizes the remaining parameters for the employed. We find that one in
every three workers receives a job offer annually and one in five separates from their job. We
estimate a 0.64 wage elasticity parameter, and lower costs of switching to a job within one’s
current wage bin than to another wage.

Finally, Figure 1 presents the estimated time paths of offer arrivals and flow utilities from
benefits in unemployment. Offers arrive slower in the beginning of one’s unemployment spell
but accelerate as time goes by: around day 150, an offer arrives every five weeks. After that,
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Table 1. Offered wages

Wage bin For employed For unemployed
f(j) g(j)

1 0.350 0.810
2 0.174 0.044
3 0.131 0.038
4 0.096 0.032
5 0.064 0.028
6 0.049 0.022
7 0.036 0.015
8 0.030 0.007
9 0.028 0.003
10 0.042 0.000

Table 2. Structural parameters for the employed

Parameter Description Estimate
λ1 Offer arrival rate 0.278
δ Job separation rate 0.199
α Flow utility of wages 0.644
c10 Switching cost within same wage bin 0.226
c11 Switching cost to another wage bin 0.376

Figure 1. Structural parameters for the unemployed
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the rate drops as unemployment benefits expire. The flow utility of unemployment benefits
also changes over the unemployment spell. In the beginning, benefits are valuable as they
allow the worker to remain in unemployment until a high-wage offer arrives. As time goes
by, however, they quickly lose their value if the individual is still unemployed. The value
picks up slightly as offers start to accelerate at day 100, but sharply drops as offers die down.

These temporal patterns are not compatible with the predictions of stationary job search
models. The environment in which unemployed individuals seek jobs clearly changes over
time, which calls for modeling nonstationarity. Our model allows us to incorporate nonsta-
tionarity in a flexible yet computationally light way.

5.4 Extension: unobserved heterogeneity

We now extend the previous framework to allow for individual-specific unobserved hetero-
geneity. We assume that unobserved heterogeneity follows a discrete distribution with R ≥ 2
points of support. Individuals know their heterogeneity type r ∈ {1, . . . , R}, which is un-
observed to the econometrician. Here we discuss the identification and estimation of the
hazard rates of job-to-job and unemployment-to-job transitions; the previous identification
arguments then still apply, resulting in point identification of the structural parameters (ar-
rival rates, switching costs, and wage offer distributions) that are now also a function of
unobserved heterogeneity.

Consider an individual n ∈ {1, . . . , N} of type r ∈ {1, . . . , R}. Each individual has
SEn employment spells and SUn unemployment spells observed in the data. For employment
spells, we observe the current wage is, the employment duration ts, indicators for transition
types (JJs for job-to-job and EUs for employment-to-unemployment transitions), and, if the
spell leads to a new job, the accepted wage js. For unemployment spells, we observe their
duration ts, an indicator for unemployment-to-job transitions UEs, and, if the spell leads to
a new job, the accepted wage js. Given these data, the likelihood contribution of individual
n is

Ln =
R∑
r=1

πnr

SE
n∏

s=1
LEnsr

SU
n∏

s=1
LUnsr

 (5.7)

where πnr is the population probability of type r for initial conditions of n, and LEnsr and LUnsr
are the likelihood contributions of type-r employment and unemployment spells, respectively.
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We impose the following logit structure on the population probabilities:

πnr = exp(Xn θ(r))∑R
r=1 exp(Xn θ(r))

(5.8)

where Xn is a flexible polynomial of log initial wages and age.
Similarly to above, we model the hazard rates of job-to-job transitions as exponen-

tial hazards and unemployment-to-job hazard rates as Weibull hazards. Therefore, the
(log)likelihood contributions are given by

LEnsr =
 W∏
i,j=1

[
(hij(r))JJs·1(js=j) exp (−hij(r) ts)

]1(is=i)
 · h0(r)EUs exp(−h0(r)ts) (5.9)

and

LUnsr =
W∏
j=1

(hj(ts, r))UEs·1(js=j) exp
(
−
∫ ts

0
hj(u, r) du

)
(5.10)

with the mixture Weibull parametrization from above.
We estimate the hazard rates using the EM algorithm. The full loglikelihood can be

written as

logL =
N∑
n=1

log
 R∑
r=1

πnr

SE
n∏

s=1
LEnsr

SU
n∏

s=1
LUnsr

 (5.11)

where πnr’s are population probabilities. Furthermore, the expected loglikelihood is

logL =
N∑
n=1

R∑
r=1

qnr

SE
n∑

s=1
logLEnsr +

SU
n∑

s=1
logLUnsr

 (5.12)

where qnr is the posterior probability that individual n is of type r. Given that the likelihood
contributions of type-specific spells are additive, we can estimate the hazard rates of job-
to-job and unemployment-to-job transitions using partial likelihood. We implement the
following EM algorithm:

0. Initialize population probabilities {π(0)
nr }n,r as

π(0)
nr =

exp
(
Xn θ

(0)(r)
)

∑R
r=1 exp (Xn θ(0)(r))

(5.13)
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and posterior probabilities {q(0)
nr }n,r as

q(0)
nr =

π(0)
nr

(∏SE
n
s=1 L

E
nsr

∏SU
n
s=1 L

U
nsr

)
∑
r π

(0)
nr

(∏SE
n
s=1 L

E
nsr

∏SU
n
s=1 L

U
nsr

) (5.14)

where h(0)
ij (r) and h(0)

0 (r) are initial hazard values.

1. M-step. Taking posterior probabilities {q(m−1)
nr }n,r as given, estimate hazard rates

h
(m)
ij (r), h(m)

0 (r), and h(m)
j (t, r) by maximizing the expected loglikelihood in Equation

5.12. Appendix A contains the first-order conditions for the job-to-job hazards.

2. E-step. Renew population probabilities {π(m)
nr }n,r by maximizing the full likelihood in

Equation 5.11 with respect to the logit parameters according to Equation 5.8. Renew
posterior probabilities as

q(m)
nr =

π(m)
nr

(∏SE
n
s=1 L

E
nsr

∏SU
n
s=1 L

U
nsr

)
∑
r π

(m)
nr

(∏SE
n
s=1 L

E
nsr

∏SU
n
s=1 L

U
nsr

) . (5.15)

Repeat steps 1 and 2 until convergence.

Turning to the results, we find that unobserved heterogeneity separates workers to a high-
wage and a low-wage type. Type 1 workers receive lower wage offers than Type 2 workers:
the homogeneous results in Table 2 obscure these offer distributions. For unemployed Type
1 individuals, 71 percent of offers come from the lowest bin while it is only 64 percent for
Type 2. Type 1 workers also receive on-the-job offers less frequently and separate from their
job more often. At the same time, we find that unemployed Type 1 individuals get more
frequent offers, which lowers the value of benefits for them. These results likely stem from
composition effects: Type 2 workers rarely enter unemployment, so those who do struggle
to re-enter employment.
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Table 3. Offered wages

Wage bin
For employed For unemployed

f(j) g(j)
Type 1 Type 2 Type 1 Type 2

1 0.405 0.069 0.708 0.634
2 0.094 0.029 0.054 0.080
3 0.104 0.044 0.050 0.057
4 0.093 0.057 0.047 0.057
5 0.080 0.074 0.045 0.043
6 0.079 0.117 0.040 0.041
7 0.054 0.129 0.031 0.044
8 0.035 0.128 0.017 0.036
9 0.033 0.177 0.007 0.005
10 0.023 0.176 0.001 0.002

Table 4. Structural parameters for the employed

Parameter Description Estimate
Type 1 Type 2

λ1 Offer arrival rate 0.288 0.350
δ Job separation rate 0.234 0.031
α Flow utility of wages 0.410
c10 Switching cost within same wage bin 0.137
c11 Switching cost to another wage bin 0.687

Figure 2. Structural parameters for the unemployed
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6 Conclusion

In this paper, we propose a novel approach to estimating job search models. We extend the
canonical continuous-time job search model with on-the-job search to allow for preference
shocks which, in turn, allows us to estimate the model using conditional choice probability
methods, widely used in the discrete choice literature. Our proposed approach recovers the
shape of the probability to accept a job offer as a function of offered wages and duration of
unemployment for unemployed individuals, and as a function of offered wages and current
wages for employed workers. Conditional choice probability methods allow us to obtain
closed-form expressions for the remaining structural parameters of the model. As a result,
we overcome the computational burden of estimating complicated, such as nonstationary, job
search models. We illustrate our method by analyzing the impact of unemployment benefit
expiration on the duration of unemployment and wages in Hungary, using administrative
data from tax records and the unemployment registry.
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A Mathematical Appendix

A.1 Imposing the structural model on hazards

We construct the hazards of job-to-job, employment-to-unemployment, and unemployment-
to-employment transitions using our model. Recall that, by definition,

hij = λ1p(wi, wj)f(wj). (A.1)

We construct the offered wages from the exponential hazards of job-to-job transitions to the
same wage:

f(wj) = hjj∑
j hjj

=
∑
s 1(is = j)1(js = j)/∑s ts1(is = j)∑

j (∑s 1(is = j)1(js = j)/∑s ts1(is = j)) . (A.2)

Furthermore, we iterate the conditional choice probabilities to a fixed point within the esti-
mation procedure: In iteration m, we calculate the value function differentials as

(λ1 + δ + ρ) (V (n)
1 (wj)− V (n)

1 (wi)) = u(wj)− u(wi) + λ1
(
V

(n−1)
1 (wj)− V (n−1)

1 (wi)
)

+
∑
k

λ1 log
[
1 + exp

(
V

(n−1)
1 (wk)− V (n−1)

1 (wj)− c1
)]
f(wk) (A.3)

−
∑
k

λ1 log
[
1 + exp

(
V

(n−1)
1 (wk)− V (n−1)

1 (wi)− c1
)]
f(wk)

with the initial values V 0
1 (wj)− V 0

1 (wi) = u(wj)− u(wi).

B Additional Results

B.1 Discretizing wages

Our identification strategy relies on discretizing the wage distribution. In this section, we
first describe how we discretize current and accepted wages, then we present our hazard
estimates.

We create 10 wage bins for current and accepted wages. The cutoffs for these bins are
deciles of the distribution of accepted wages for employment spells that lead to a job-to-job
transition. Figure 3 plots how these cutoffs partition the empirical distributions of current
and accepted wages in our data. Figure 4 plots the resulting discrete distribution of current
wages: the left panel contains current wages for employment spells that lead to a job-to-job
transition and the right contains current wages for all employment spells. As the right panel
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suggests, a higher fraction of spells in the highest decile lead to job-to-job transitions than
in other deciles. Similarly, Figure 5 plots the discrete distribution of accepted wages for
job-to-job and unemployment-to-employment transitions. The job-to-job accepted wages in
the left panel are uniformly distributed due to our bin cutoff definition; the accepted wages
out of unemployment are right-tailed, in line with the notion that the unemployed tend to
move to low-paying jobs.

Based on these discrete wage distributions, we estimate hazard rates of job-to-job and
unemployment-to-employment transitions, as described in Section 5.2. Figure 6 reports our
estimates of constant job-to-job hazard rates. Two main patterns emerge from this figure.
First, switching to jobs within the same wage bin is associated with the highest hazard rate
among all transitions from the same wage bin. Second, the closer the accepted wage is to
the current wage, the higher the hazard of switching. Note that these hazard rates are daily
measures: to put them in context, a daily hazard rate of 0.01 percent is equivalent to a 3.65
percent cumulative hazard of job-to-job transitions within 365 days.

B.2 Without unobserved heterogeneity

B.3 Two unobserved types
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Figure 3. Discretizing observed wages

(a) Current wages
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(b) Accepted wages
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Notes: Current and accepted wages for employment spells that lead to a job-to-job transition.
Histograms with 50 HUF bin width, truncated at the 95th percentile. Vertical lines denote deciles.

Figure 4. Discrete distribution of current wages

(a) Spells with job-to-job transitions
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Notes: Panel 4a: discrete distribution of current wages for employment spells that lead to a job-
to-job transition. Panel 4b: discrete distribution of current wages for all employment spells.
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Figure 5. Discrete distribution of accepted wages

(a) Job-to-job transitions
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(b) Unemployment-to-employment transitions
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Notes: Panel 5a: discrete distribution of accepted wages for employment spells that lead to a job-
to-job transition. Panel 5b: discrete distribution of accepted wages for unemployment spells that
lead to an employment spell.

Figure 6. Hazard rates of job-to-job transitions
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Figure 7. Hazard rates

Figure 8. Survival function
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Figure 9. CCPs

Table 5. Population probabilities (percent)

Initial wage Type 1 Type 2
1 99.96 0.04
2 99.98 0.02
3 99.95 0.05
4 99.91 0.09
5 99.86 0.14
6 99.78 0.22
7 99.49 0.51
8 92.11 7.89
9 19.35 80.65
10 0.52 99.48
Total 87.31 12.69
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Figure 10. Value function

Figure 11. Hazard rates of job-to-job transitions
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Figure 12. Hazard rates

Figure 13. Survival function
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Figure 14. CCPs
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Figure 15. Value function
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