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Abstract

We study the compensation of gig workers in a natural field ex-
periment. To derive testable predictions, this paper presents a formal
model capturing a central feature of online freelance work: gig work-
ers’ability to choose both how much to work and how big an effort
to make. We analyse the set-up in a principal-agent model, showing
that the optimal contract includes a sales-based commission and uses a
gig-based piece rate to insure a risk-averse agent. This piece rate is in-
creasing in her risk aversion, intrinsic motivation and ability. We then
predict the effects of introducing a gig piece rate while reducing the
commission rate. The effects on the agents’ choices of quantity and
quality are heterogeneous in their risk aversion, intrinsic motivation
and ability.
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1 Introduction

The rise of the on-demand economy has seen a proliferation of firms that

rely on a workforce composed of freelancers rather than regular employ-

ees.1 Many of these firms operate virtual platforms on which freelancers are

matched with customers. There is considerable variation between platforms

in terms of the work parameters freelancers get to set themselves.2 An as-

pect emphasised by many platforms, however, is that freelancers set their

own schedules, deciding how much and when to work. Another characteris-

tic shared by many platforms is that compensation is purely output-based.

In other words, gig workers’compensation is often a direct function of the

success of the gig. As a consequence, gig workers typically face substantially

higher income uncertainty than regular employees while potentially enjoying

greater flexibility in their work arrangements.

In this project we study compensation contracts for freelancers in the

on-demand economy. To do so, we first describe a formal model that allows

us to analyse different potential drivers of freelancers’quantity and quality

choices. To empirically test the most important hypotheses derived from

the theory, we will conduct a field experiment on an online platform in a

second step. In the current version of this paper we present the analysis of

the formal model.

The field experiment will be carried out in collaboration with an online

platform run by a retail firm. That platform acts as an intermediary between

clients3 and gig workers, who provide remote shopping advice. Their service

may result in the online sale of physical goods, which is handled by the

platform. Gig workers decide how much they want to work: they set the

quantity of slots they make available for client consultations. Their efforts

also determine the quality achieved: the usefulness of their advice affects the

sales to each client. At the outset, gig workers’compensation is commission-
1Whether or not contractually defining the status of on-demand workers as that of

an independent contractor rather than an employee is legally valid (given the relevant
jurisdiction’s labour law) is being questioned by legal scholars - see, e.g., Prassl (2017).

2A recent article in The Economist discusses the example of Uber’s drivers (The Econo-
mist Print Edition, November 5 2016)

3We will use the words "customer" and "client" interchangeably in this paper.
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based, paying them a fraction of net sales to the clients they advised. This

is the status quo against which we will test an intervention that changes

the compensation scheme. The goal of the theoretical analysis presented

here is to provide intuition about the mechanisms that might be at play, to

inform the design of the optimal compensation policy for gig workers, and

to generate testable predictions for the field experiment.

We first analyse a principal-agent model that captures essential features

of the relationship between a platform and a gig worker. That is, we con-

sider a principal designing a contract to motivate an agent who not only

determines the quality of her work on all gigs but also how much labour

input to provide (how many gigs to offer). We first characterise the optimal

contract and show that optimal pay makes use of a sales-based commission

but also insures a risk-averse agent through a gig-based piece rate (order

bonus). That is, the principal optimally includes a payment in the contract

that depends only on the number of gigs. This is in contrast to purely

commission-based pay optimal for a risk-neutral agent. The key idea here is

that a pure commission rate induces incentives to provide too little labour

input when the agent is risk averse as the payoff from each gig is uncertain.

An order bonus, however, provides stronger incentives to increase labour

supply.

Second, we analyse the heterogeneity in agents’ reactions to the con-

tract with respect to risk aversion, ability and intrinsic motivation. When

modelling intrinsic motivation we allow for both conscientiousness4 and task

enjoyment as potential drivers of a desire to work and to do a good job. We

show that quality is increasing in an agent’s intrinsic motivation and that an

intrinsically motivated agent’s quality choice responds less strongly to the

commission rate.

Finally, we study a specific application of our model that allows us to

derive predictions for the field experiment. We consider a principal that ini-

tially pays her agent a pure commission without an order bonus. The above

result suggests that if the agent is somewhat risk averse the platform should

4We use conscientiousness in the sense of the Big Five personality trait, measuring the
extent to which an agent is driven by a sense of duty when performing a task.
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change its compensation policy and introduce an order bonus. We formally

analyse a hypothetical experiment where - in expectation - the introduc-

tion of an order bonus is “paid for” by the reduction in the commission

rate. That is, order bonus and commission are calibrated on a population of

agents in such a way that the average agent’s pay per order remains constant

if agents do not adjust quality. We then show that such a move from a pure

commission to a combination of a commission and an order bonus leads to

an increase in average quantity which will be more pronounced for more

risk averse agents and less pronounced for more able and more intrinsically

motivated agents. The shift in compensation will reduce quality but this

decrease will be less pronounced the higher the agent’s intrinsic motivation.

Finally, for a shift of any given size, profits will increase if and only if the

agent is suffi ciently risk averse.

2 The Model

Our framework builds on a multi-tasking model in the spirit of Holmström

and Milgrom (1991). Consider an agent who works for a principal, providing

a service to customers. The agent chooses the number of client orders to

fulfil n ∈ [0; n̄] and the average service quality q ∈ [0; q̄]. The agent has

(potentially) imperfectly known ability a ∼ N
(
m,σ2

a

)
with m > 0. She has

convex costs of effort c (q, n) where cqq > 0, cqqq ≥ 0, cnn > 0 and cqn > 0

such that the marginal cost of q increases when n goes up - providing a given

level of quality on more orders requires more effort. We also assume that

the marginal average cost of quality per order is (weakly) decreasing in the

number of orders:
∂

∂q∂n

(
c (q, n)

n

)
≤ 0

which is equivalent to cqn (q, n)n ≤ cq (q, n). Moreover, we impose the

following conditions that guarantee internal solutions: cq (0, n) ≤ 0 ∀n,
cn (q, 0) ≤ 0 ∀q, limq→q̄ cq (q, n) = ∞ ∀n, limn→n̄ cn (q, n) = ∞ ∀q and
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√
cnncqq + cqn > 1 ∀q, n.5 Note that, in addition to the direct disutility of

effort, the cost function can accommodate several behavioural components.

For example, the agent may be intrinsically motivated for the task (and thus,

for instance, may have negative marginal costs of effort up to a point or may

have psychological costs of not providing an appropriate quality given the

quantity she has chosen). We will later on consider a specific example to

explore this possibility.

When the agent fulfils n orders, she generates a level of sales

S =

n∑
i=1

(a+ q + εi)

where εi ∼ N
(
0, σ2

ε

)
. The agent has an outside option that yields a reser-

vation value wA > 0 (with certainty). We allow for the possibility that the

agent is risk averse with constant absolute risk aversion, where her Arrow-

Pratt measure of absolute risk aversion is r.

Both total sales S and the number of orders worked are verifiable and

we consider linear contracts that pay a wage

w = α+ β · n+ γ · S,

where β ≥ 0 is an order bonus, i.e., an order-based piece rate that does not

depend on quality, and γ ∈ [0, 1] is a commission rate.

3 Analysis

3.1 Characterizing Optimal Contracts

The agent’s objective function is

EU

[
α+ βn+ γ

(
n (a+ q) +

n∑
i=1

εi

)
− c (q, n)

]
.

5The first four conditions are Inada-type conditions that also allow for negative mar-
ginal costs at small levels of effort. The last condition guarantees the concavity of the
agent’s objective function.
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The variance of the agent’s compensation is

V

[
α+ βn+ γ

(
n (a+ q) +

n∑
i=1

εi

)]
= γ2

(
n2σ2

a + nσ2
ε

)
.

As the agent exhibits constant absolute risk aversion (see, for instance, Mil-

grom and Roberts (1992), Wolfstetter (2002) for details), she maximises

max
n,q

α+ βn+ γn (m+ q)− c (q, n)− 1

2
rγ2

(
n2σ2

a + nσ2
ε

)
with first order conditions6

β + γ (m+ q)− cn (q, n)− 1

2
rγ2

(
2nσ2

a + σ2
ε

)
= 0 (IC1)

and γn− cq (q, n) = 0. (IC2)

To determine the optimal contract the principal maximises her expected

profits

max
α,β,γ,n,q

(1− γ)n (m+ q)− βn− α

subject to the incentive compatibility constraints (IC1) and (IC2) and the

agent’s participation constraint

α+ βn+ γn (m+ q)− c (q, n)− 1

2
rγ2

(
n2σ2

a + nσ2
ε

)
≥ wA.

As the agent’s participation constraint must be binding (otherwise profits

could be increased by reducing α without violating the incentive compati-

bility constraints) we can substitute α from the binding participation con-

straint. The principal thus maximises

n (m+ q)− c (q, n)− 1

2
rγ2

(
n2σ2

a + nσ2
ε

)
subject to the incentive compatibility constraints.

We first characterise the optimal contract under risk neutrality (r = 0):

6See the Appendix for a proof of the concavity of the objective function.

6



Proposition 1 If the agent is risk neutral (r = 0) the optimal contract

never entails a strictly positive order bonus, i.e. β = 0, and the commission

rate is γ = 1.

Proof: See Appendix.

Intuitively, the order bonus β provides incentives only for quantity while

the commission rate γ provides undistorted incentives for both quality and

quantity: under a commission rate the agent’s pay is a linear transformation

of the principal’s profits. Introducing an order bonus distorts the agent’s

decision favouring quantity (see, for instance, Feltham and Xie (1994) and

Schnedler (2008) for analyses of performance measure ‘congruence’in mul-

titasking models).

However, this picture may change when the agent is risk averse. The

reason is that a commission contract imposes income risk on the agent.

An agent’s risk aversion lowers her marginal return to quantity n as each

additional order comes with an income risk (while risk aversion does not

affect the returns to extra quality provision). In other words, risk aversion

distorts the incentive effects of the commission, interfering with its ability to

provide appropriate quantity incentives to risk averse agents. Here, an order

bonus may become effective as it generates incentives to provide quantity

without imposing risk on the agent. Indeed, we can show that under risk

aversion the optimal contract entails both a (lower) commission rate and a

strictly positive order bonus:

Proposition 2 If the agent is risk averse, the optimal contract always in-
cludes an order bonus β > 0 and a commission rate γ < 1.

Proof: See Appendix.

3.2 Intrinsic Motivation

We now impose more structure on the cost function in order to study com-

parative statics with respect to behavioural determinants of the agent’s effort
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reaction. Consider the following specific cost function:

c (q, n) = n
(κ

2
q2 − η

2

(
τ − (q − q∗)2

))
+
ν

2
n2 (1)

with η, κ, η ∈ [0,∞[ and τ ∈
[
0, q∗2

]
. If τ = η = 0, the agent is purely

extrinsically motivated. In this case, the marginal cost of fulfilling another

order (increasing n) as well the marginal cost of providing more quality per

order (increasing q) is strictly increasing. Moreover, the cost of providing

a quality level q on each order is linearly increasing in the number of order

(i.e, for simplicity we ignore potential learning effects here).

If, however, η > 0, the cost function captures two behavioural motives for

doing more and better work. To see the role the parameters τ and η play

consider the intrinsic benefit from completing an order η
2

(
τ − (q − q∗)2

)
.

The parameter η measures the agent’s overall intrinsic motivation to com-

plete orders, τ measures task enjoyment and q∗ is a level of quality that

is optimal from a welfare perspective.7 An agent with a higher η has a

stronger incentive to choose a quality level that is close to the normatively

optimal level. For simplicity we assume that q∗ is equal to the first-best

quality.8 If τ = 0 then η
2

(
τ − (q − q∗)2

)
< 0; once an agent has decided to

complete an order, the intrinsic motivation to provide higher quality puts

a burden on the agent. Such a penalty for not doing a good job may be

incurred by an individual that does not enjoy the task but is driven by a

sense of duty, a feeling of obligation, or by conscientiousness. If, however,

τ > 0, her intrinsic motivation may give pleasure to the agent. In fact, if

τ = q∗2 then η
2

(
τ − (q − q∗)2

)
> 0 for all q ∈ (0, 2q∗). In this case the agent

enjoys working for on a client order (while of course still trading off the fun

of working with the effort costs captured in the first term in (1)).

7Note that we have a setting in mind where the agent picks a set of items that is sent
to customers via mail. The customers can then decide which items to keep and enjoy free
returns of the items they do not want. As the firm incurs costs without earning anything
on all returned items its ideal agent only selects items the customer wants to keep. In other
words, in our setting the firm’s objective function is closely aligned with the customer’s
interests.

8We thus have that (n∗, q∗) = argmaxn,q n (m+ q) −(
n
(
κ
2
q2 − η

2

(
τ − (q − q∗)2

))
+ ν

2
n2
)
which yields quality level q∗ = 1

κ
.
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We first characterise an agent’s reaction to a contract with a commission

rate γ ∈ [0, 1] and an order bonus β ≥ 0. We substitute the marginal costs

into the incentive compatibility conditions (IC1) and (IC2) to obtain the

following result:

Proposition 3 The agent chooses quality level

q =
γ + ηq∗

κ+ η

and quantity

n =
1

ν + rγ2σ2
a

(
β + γm+

(γ + ηq∗)2

2 (κ+ η)
− η q

∗2 − τ
2

− 1

2
rγ2σ2

ε

)
.

The agent’s choice of quality is increasing in her intrinsic motivation η while

the effect of the commission rate γ on her choice of quality q is decreasing

in η. The agent’s choice of quantity n is decreasing in her risk aversion r

and increasing in mean ability m. Her choice of n is increasing in η if and

only if task enjoyment τ is suffi ciently strong.

Proof: See Appendix.

If the agent is intrinsically motivated she makes a greater effort to pro-

vide quality; at the same time her quality provision is less responsive to the

commission rate. The intrinsic desire to do a good job may lead to a reduc-

tion in quantity if task enjoyment τ is small, i.e., if the agent does not much

enjoy the task per se but is nevertheless intrinsically compelled to provide

quality, (e.g., by her conscientiousness). Such an agent anticipates that she

will invest more effort every time she completes an order, receiving lower

utility than a purely selfish agent. She rationally fulfils fewer orders, work-

ing harder on each individual order. Instead an agent who is intrinsically

motivated and enjoys the task (suffi ciently high τ) both completes a higher

number of orders and provides higher quality on them.
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Finally, when we further simplify the model by assuming that there is

no uncertainty about the agent’s talent (σ2
a = 0) we can derive closed-form

solutions for the optimal contract parameters:

Proposition 4 When σ2
a = 0 the optimal commission rate is

γ =
1

1 + rσ2
ε (κ+ η)

,

and the optimal order bonus is

β = rσ2
ε

(
cm+ η (m+ q∗)

1 + rσ2
ε (κ+ η)

+
1

2 (1 + rσ2
ε (κ+ η))2

)
In the optimal contract the commission rate is strictly decreasing in the

agent’s risk aversion r and intrinsic motivation η. The optimal order bonus

is strictly increasing in the agent’s risk aversion r, intrinsic motivation η

and mean ability m.

Proof: See Appendix.

3.3 Application: Deriving Experimental Predictions

We now turn to an application designed to yield testable predictions for

the field experiment we will conduct. Consider a principal that initially

pays her agent a pure commission without an order bonus. Our results

from 3.1 suggest that if the agent is somewhat risk averse the principal

should reduce the commission rate while introducing an order bonus. We

analyse a particular change in contract the principal may experiment with:

introducing an order bonus that is paid for by the simultaneous reduction

of the commission rate.

To this end, consider a shift from a pure commission rate γ0 ∈ ]0, 1] to

a lower commission rate γ1 < γ0 combined with an order bonus β > 0; the

relative size of γ0− γ1 and β is calibrated on a population of agents in such

a way that the average agent’s pay per order remains constant if agents do

not adjust quality. We now analyse the (heterogeneous) effects of such an

10



intervention on expected quantity, quality and profits. For this purpose we

assume that agents know their ability a when choosing their efforts and thus

a person i is characterized by a vector (ai, ri, ηi, τ i). Moreover, we assume

that the personality traits are uncorrelated.9

First note that a shift that keeps the payment per order constant (at

prior quality) in the population of agents will imply that

E [γ0 (ai + qi0)] = β + γ1 (m+ E [qi0])⇔

β = (γ0 − γ1)

(
m+ E

[
γ0 + ηq∗

κ+ ηi

])
.

As

E [∆qi] = E

[
γ1 + ηiq

∗

κ+ ηi
− γ0 + ηiq

∗

κ+ ηi

]
= E

[
γ1 − γ0

κ+ ηi

]
it is clear that there will be a loss in quality and

∂E
[
γ1−γ0
κ+ηi

|ηi
]

∂ηi
= − γ1 − γ0

(κ+ ηi)
2 > 0

such that the loss in quality is the smaller, the more intrinsically motivated

an agent is (higher ηi). We can moreover show that quantity increases

(heterogeneously) and that profits increase for a certain type of agent:

Proposition 5 Consider a shift from a pure commission rate γ0 ∈ ]0, 1] to

a lower commission rate γ1 < γ0 combined with an order bonus β > 0.

(i) Such a shift reduces expected quality E [∆qi] < 0. The effect is the

smaller, the more intrinsically motivated an agent is (i.e., ∂E[∆qi|ηi ]
∂ηi

> 0).

(ii) The shift increases expected quantity E [∆ni] > 0; the effect is the larger,

the more risk averse the agent (i.e., ∂E[∆ni|ri ]
∂ri

> 0), the less able the agent

(i.e., ∂E[∆ni|ai ]
∂ai

< 0), and the less intrinsically motivated the agent is (i.e.,
∂E[∆ni|ηi ]

∂ηi
< 0).

9Note that only the proof of claim (iii) in Proposition 5 will hinge on the assumption
that the traits are uncorrelated. The predictions for the effects on quality and quantity
also arise when the traits are correlated.
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(iii) The shift increases expected profits if and only if the agent is suffi ciently

risk averse.

Proof: See Appendix.

4 Conclusion

An important feature of freelance work is the freedom to set one’s own

schedule: a freelancer in our setting, for example, can change the number of

jobs from one day to the next. In this paper we investigate the consequences

of such worker flexibility for a firm trying to determine the optimal pay

structure for its workforce. We formally analyse a principal-agent model

that incorporates the agent’s choice of quantity worked and accommodates

heterogeneity in risk aversion, ability and intrinsic motivation. We show

that the optimal contract for a risk-averse agent in this setting combines a

sales-based commission rate with an order-based piece rate (order bonus).

Moreover, the optimal order bonus is increasing in the agent’s risk aversion,

ability and intrinsic motivation.

Based on this model we derive predictions that we can test in a natural

field experiment we will conduct in collaboration with an online platform.

For this purpose we study the effects of a move from a pure commission

rate to a combination of an order bonus and a lower commission rate (set

in such a way that at prior quality levels expected payments per gig remain

constant). The model predictions that we will test are the following: first,

the intervention leads to an increase in average quantity and this increase is

more pronounced for more risk averse agents. Second, the shift in compen-

sation reduces quality but to a lesser extent the higher the agent’s intrinsic

motivation. Finally, for a shift of any given size, profits will increase if and

only if the agent is suffi ciently risk averse.

Extensions of our model provide a framework for studying other ques-

tions beyond the predictions we test in the field experiment. These include

the dynamics of employee and employer learning (i.e. by studying the effecs

of changes in σ2
a - the uncertainty about an agent’s ability) as well as the
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selection and sorting of workers into and out of freelance jobs depending on

individual characteristics and on the (menu of) contracts offered.
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5 Appendix

Concavity of the agent’s objective function
The objective function is strictly concave if

−cnn (q, n)− rγ22σ2
a < 0

−cqq (q, n) < 0(
−cnn (q, n)− rγ22σ2

a

)
(−cqq (q, n))− (γ − cqn (q, n))2 ≥ 0

the latter is equivalent to

(
cnn (q, n) + rγ22σ2

a

)
(cqq (q, n))− (γ − cqn (q, n))2 ≥ 0

which always holds if

cnn (q, n) cqq (q, n) ≥ (γ − cqn (q, n))2

for all γ, q, n

(i) if γ − cqn (q, n) ≥ 0

⇔
√
cnn (q, n) cqq (q, n) ≥ (γ − cqn (q, n))

which always holds (when γ ≤ 1) if
√
cnn (q, n) cqq (q, n) + cqn (q, n) ≥ 1

(ii) if γ − cqn (q, n) < 0

⇔
√
cnn (q, n) cqq (q, n) ≥ − (γ − cqn (q, n))

⇔ γ ≥ cqn (q, n)−
√
cnn (q, n) cqq (q, n)

which always holds because of the convexity of the cost function.

Proof of Proposition 1: The Lagrangean becomes

L = n (m+ q)− c (q, n)− λ1 (β + γ (m+ q)− cn (q, n))− λ2 (γn− cq (q, n))

14



and

∂ L
∂β

= −λ1 = 0

∂ L
∂γ

= −λ1 (m+ q)− λ2n = 0

∂ L
∂n

= m+ q − cn (q, n) + λ1cnn (q, n)− λ2 (γ − cqn (q, n)) = 0

∂ L
∂q

= n− cq (q, n)− λ1 (γ − cqn (q, n)) + λ2cqq (q, n) = 0.

Thus λ1 = 0 and, in turn, λ2 = 0 such that

m+ q − cn (q, n) = 0

n− cq (q, n) = 0

From the incentive compatibility constraints we must thus have that γn −
cq (q, n) = 0 which implies γ = 1. And

β + γ (m+ q)− cn (q, n) = 0

which implies that β = 0.

Proof of Proposition 2: From the Lagrangean

L = n (m+ q)− c (q, n)− 1

2
rγ2

(
n2σ2

a + nσ2
ε

)
−λ1

(
β + γ (m+ q)− cn (q, n)− 1

2
rγ2

(
2nσ2

a + σ2
ε

))
−λ2 (γn− cq (q, n))

we obtain

15



∂ L
∂β

= −λ1 (2)

∂ L
∂γ

= −rγ
(
n2σ2

a + nσ2
ε

)
− λ1

(
m+ q − rγ

(
2nσ2

a + σ2
ε

))
− λ2n (3)

∂ L
∂n

= m+ q − cn (q, n)− rγ2
(
2nσ2

a + σ2
ε

)
+λ1

(
cnn (q, n) + rγ2σ2

a

)
− λ2 (γ − cqn (q, n)) (4)

∂ L
∂q

= n− cq (q, n)− λ1 (γ − cqn (q, n)) + λ2cqq (q, n) . (5)

Setting (2) through (5) equal to zero, we have λ1 = 0 from (2) and conse-

quently λ2 = −rγ
(
nσ2

a + σ2
ε

)
from (3). Substituting these and simplifying,

the remaining two conditions become

m+ q − cn (q, n)− rγ2nσ2
a − rγ

(
nσ2

a + σ2
ε

)
cqn (q, n) = 0, (6)

n− cq (q, n)− rγ
(
nσ2

a + σ2
ε

)
cqq (q, n) = 0. (7)

Using (IC2) we can substitute cq (q, n) = γn into (7) to obtain

n− γn− rγ
(
nσ2

a + σ2
ε

)
cqq (q, n) = 0

⇔ γ =
n

n+ r (nσ2
a + σ2

ε) cqq (q, n)
< 1

⇔ γ =
1

1 + r
(
σ2
a + σ2ε

n

)
cqq (q, n)

(8)

when r > 0. Moreover, from (IC1) and (6) we have that

m+q−cn (q, n)−rγ2nσ2
a−rγ

(
nσ2

a + σ2
ε

)
cqn (q, n) = β+γ (m+ q)−cn (q, n)−1

2
rγ2

(
2nσ2

a + σ2
ε

)
m+ q + rγ2

(
1

2
σ2
ε

)
− rγ

(
nσ2

a + σ2
ε

)
cqn (q, n) = β + γ (m+ q)

⇔ β = (1− γ) (m+ q)− rγ
(
nσ2

a + σ2
ε

)
cqn (q, n) + rγ2 1

2
σ2
ε
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If we substitute γ = 1

1+r

(
σ2a+

σ2ε
n

)
cqq(q,n)

⇔ β =

1− 1

1 + r
(
σ2
a + σ2ε

n

)
cqq (q, n)

 (m+ q)

−r 1

1 + r
(
σ2
a + σ2ε

n

)
cqq (q, n)

(
nσ2

a + σ2
ε

)
cqn (q, n)

+r

 1

1 + r
(
σ2
a + σ2ε

n

)
cqq (q, n)

2

1

2
σ2
ε

⇔ β = r
(
nσ2

a + σ2
ε

) 1
ncqq (q, n) (m+ q)− cqn (q, n)

1 + r
(
σ2
a + σ2ε

n

)
cqq (q, n)

+
rσ2

ε

2
(

1 + r
(
σ2
a + σ2ε

n

)
cqq (q, n)

)2 (9)

This will be strictly positive if r > 0 and

2
(
nσ2

a + σ2
ε

)( 1

n
cqq (q, n) (m+ q)− cqn (q, n)

)(
1 + r

(
σ2
a +

σ2
ε

n

)
cqq (q, n)

)
+σ2

ε > 0

will always be the case for all m > 0 if

cqq (q, n) q ≥ cqn (q, n)n.

Because of the assumption that cqn (q, n)n ≤ cq (q, n) this condition holds if

cqq (q, n) q ≥ cq (q, n) . (10)

Note that due to cqqq ≥ 0 the marginal costs of quality are (weakly) convex

and thus

cq (n, 0) ≥ cq (n, q) + cqq (n, q) (0− q)⇔
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cqq (n, q) q ≥ cq (n, q)− cq (n, 0)︸ ︷︷ ︸ ∀q, n
≤0

which implies condition (10).

Proof of Proposition 3: Conditions (IC1) and (IC2) become

β + γ (m+ q)−
(κ

2
q2 − η

2

(
τ − (q − q∗)2

))
− νn− 1

2
rγ2

(
2nσ2

a + σ2
ε

)
= 0

and γn− n (κq + η (q − q∗)) = 0.

such that from (IC2)

γn− n (κq + η (q − q∗)) = 0

⇔ q =
γ + ηq∗

κ+ η

with
∂q

∂γ
=

1

κ+ η
and

∂q

∂η
=

q∗ (κ+ η)− (γ + ηq∗)

(κ+ η)2

=
κq∗ − γ
(κ+ η)2 =

1− γ
(κ+ η)2 > 0

We compute n by rearranging (IC1) and simplifying to obtain

β + γ (m+ q)−
(κ

2
q2 − η

2

(
τ − (q − q∗)2

))
− νn− 1

2
rγ2

(
2nσ2

a + σ2
ε

)
= 0

β + γ (m+ q)−
(κ

2
q2 − η

2

(
τ − (q − q∗)2

))
− νn− rγ2nσ2

a −
1

2
rγ2σ2

ε = 0
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n =
β + γ (m+ q)−

(
κ
2 q

2 − η
2

(
τ − (q − q∗)2

))
− 1

2rγ
2σ2

ε

ν + rγ2σ2
a

=

β + γ
(
m+ γ+ηq∗

κ+η

)
−
(
κ
2

(
γ+ηq∗

κ+η

)2
− η

2

(
τ −

(
γ+ηq∗

κ+η − q
∗
)2
))
− 1

2rγ
2σ2

ε

ν + rγ2σ2
a

=

β + γm+ γ γ+ηq∗

κ+η −
κ
2

(γ+ηq∗)2

(κ+η)2
+ η

2τ −
η
2

((
γ+ηq∗

κ+η

)2
− 2

(
γ+ηq∗

κ+η

)
q∗ + q∗2

)
− 1

2rγ
2σ2

ε

ν + rγ2σ2
a

=
β + γm+ γ γ+ηq∗

κ+η −
κ
2

(γ+ηq∗)2

(κ+η)2
+ η

2τ −
η
2

(
γ+ηq∗

κ+η

)2
+ η

(
γ+ηq∗

κ+η

)
q∗ − η

2q
∗2 − 1

2rγ
2σ2

ε

ν + rγ2σ2
a

=
β + γm+ (γ+ηq∗)2

κ+η − 1
2

(γ+ηq∗)2

(κ+η) − η
q∗2−τ

2 − 1
2rγ

2σ2
ε

ν + rγ2σ2
a

=
β + γm+ (γ+ηq∗)2

2(κ+η) − η
q∗2−τ

2 − 1
2rγ

2σ2
ε

ν + rγ2σ2
a

.

We then have
∂n

∂τ
=

1
2η

ν + rγ2σ2
a

> 0,

∂n

∂r
=

∂

∂r

{(
ν + rγ2σ2

a

)−1

(
β + γm+

(γ + ηq∗)2

2 (κ+ η)
− η q

∗2 − τ
2

− 1

2
rγ2σ2

ε

)}

= − γ2σ2
a

(ν + rγ2σ2
a)

2

(
β + γm+

(γ + ηq∗)2

2 (κ+ η)
− η q

∗2 − τ
2

− 1

2
rγ2σ2

ε

)
− γ2σ2

ε

2 (ν + rγ2σ2
a)

= − γ2σ2
a

(ν + rγ2σ2
a)

β + γm+ (γ+ηq∗)2

2(κ+η) − η
q∗2−τ

2 − 1
2rγ

2σ2
ε

ν + rγ2σ2
a

− γ2σ2
ε

2 (ν + rγ2σ2
a)

= − γ2σ2
a

(ν + rγ2σ2
a)
n− γ2σ2

ε

2 (ν + rγ2σ2
a)
< 0
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and

∂n

∂η
=

1

ν + rγ2σ2
a

(
2 (γ + ηq∗) q∗2 (κ+ η)− (γ + ηq∗)2 2

4 (κ+ η)2 − q∗2 − τ
2

)

=
1

ν + rγ2σ2
a

(
(γ + ηq∗)

(2c+ η) q∗ − γ
2 (κ+ η)2 − q∗2 − τ

2

)
=

1

ν + rγ2σ2
a

(
(γ + ηq∗) (2c+ η) q∗ − (γ + ηq∗) γ − q∗2 (κ+ η)2

2 (κ+ η)2 +
τ

2

)

=
1

ν + rγ2σ2
a

(
(γ + ηq∗) 2cq∗ + (γ + ηq∗) ηq∗ − (γ + ηq∗) γ − q∗2

(
κ2 + 2cη + η2

)
2 (κ+ η)2 +

τ

2

)

=
1

ν + rγ2σ2
a

(
2cq∗γ + 2cηq∗2 + γηq∗ + η2q∗2 − γ2 − ηq∗γ − κ2q∗2 − 2cηq∗2 − η2q∗2

2 (κ+ η)2 +
τ

2

)
=

1

ν + rγ2σ2
a

(
2cq∗γ − γ2 − κ2q∗2

2 (κ+ η)2 +
τ

2

)
=

1

ν + rγ2σ2
a

(
τ

2
− (γ − cq∗)2

2 (κ+ η)2

)
.

∂n
∂η is strictly negative if τ = 0 and for τ = q∗2 it is equal to

1

ν + rγ2σ2
a

(
q∗2 (κ+ η)2 − (γ − cq∗)2

2 (κ+ η)2

)

=
1

ν + rγ2σ2
a

(
κ2q∗2 + 2cηq∗2 + η2q∗2 − γ2 + 2cq∗γ − κ2q∗2

2 (κ+ η)2

)
=

1

ν + rγ2σ2
a

(
2cηq∗2 + η2q∗2 + (2cq∗ − γ) γ

2 (κ+ η)2

)

=
1

ν + rγ2σ2
a

(
2 ηκ + η2

κ2
+ γ (2− γ)

2 (κ+ η)2

)
> 0

Moreover, n is strictly increasing in τ which completes the proof.

Proof of Proposition 4: The optimal values of γ and β are obtained by
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substituting cqq and cqn into expressions (8) and (9):

γ =
1

1 + r
(
σ2
a + σ2ε

n

)
cqq (q, n)

β = r
(
nσ2

a + σ2
ε

) 1
ncqq (q, n) (m+ q)− cqn (q, n)

1 + r
(
σ2
a + σ2ε

n

)
cqq (q, n)

+
rσ2

ε

2
(

1 + r
(
σ2
a + σ2ε

n

)
cqq (q, n)

)2

The cost function is given by

c (q, n) = n
(κ

2
q2 − η

2

(
τ − (q − q∗)2

))
+
ν

2
n2.

cq = n (κq + η (q − q∗))

cqq = n (κ+ η)

cqn = (κq + η (q − q∗))

Substituting and setting σ2
a = 0,

γ =
1

1 + rσ2
ε (κ+ η)

which is strictly decreasing in r and in η.

Substituting cqq and cqn into β and setting σ2
a = 0 we obtain

β = rσ2
ε

(κ+ η) (m+ q)− (cq + η (q − q∗))
1 + rσ2

ε (κ+ η)
+

rσ2
ε

2 (1 + rσ2
ε (κ+ η))2

= rσ2
ε

cm+ η (m+ q∗)

1 + rσ2
ε (κ+ η)

+
rσ2

ε

2 (1 + rσ2
ε (κ+ η))2

= rσ2
ε

(
cm+ η (m+ q∗)

1 + rσ2
ε (κ+ η)

+
1

2 (1 + rσ2
ε (κ+ η))2

)
.

For the comparative statics note that β can be rearranged to obtain

β = σ2
ε

(
cm+ η (m+ q∗)

1
r + σ2

ε (κ+ η)
+

1

2
(

1
r + σ2

ε (κ+ η)
)2
)
,
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which is strictly increasing in r and in m. Finally,

∂β

∂η
= rσ2

ε

(
(m+ q∗)

(
1 + rσ2

ε (κ+ η)
)
− (cm+ η (m+ q∗)) rσ2

ε

(1 + rσ2
ε (κ+ η))2 − rσ2

ε

(1 + rσ2
ε (κ+ η))3

)

= rσ2
ε

(
m+ q∗ + rσ2

ε (κ+ η) (m+ q∗)− rσ2
εcm− rσ2

εη (m+ q∗)

(1 + rσ2
ε (κ+ η))2 − rσ2

ε

(1 + rσ2
ε (κ+ η))3

)
=

rσ2
ε

(1 + rσ2
ε (κ+ η))2

(
m+ q∗ + rσ2

ε

(
rσ2

ε (κ+ η)

1 + rσ2
ε (κ+ η)

))
> 0.

Proof of Proposition 5:
Claim (i) directly follows from the considerations in the text.

Claim (ii): Consider

∆ni =
1

ν

(
β + γ1ai +

(γ1 + ηiq
∗)2

2 (κ+ ηi)
− ηi

q∗2 − τ
2

− 1

2
riγ

2
1σ

2
ε

−
(
γ0ai +

(γ0 + ηiq
∗)2

2 (κ+ ηi)
− ηi

q∗2 − τ
2

− 1

2
riγ

2
0σ

2
ε

))

=
1

ν

(
β + (γ1 − γ0) ai +

(γ1 + ηiq
∗)2

2 (κ+ ηi)
− (γ0 + ηiq

∗)2

2 (κ+ ηi)
+

1

2
ri
(
γ2

0 − γ2
1

)
σ2
ε

)

=
1

ν

(
β + (γ1 − γ0) ai +

γ2
1 − γ2

0 + 2 (γ1 − γ0) ηiq
∗

2 (κ+ ηi)
+

1

2
ri
(
γ2

0 − γ2
1

)
σ2
ε

)

=
1

ν

(
β + (γ1 − γ0) ai +

(γ1 − γ0) (γ1 + γ0) + 2 (γ1 − γ0) ηiq
∗

2 (κ+ ηi)
+

1

2
ri
(
γ2

0 − γ2
1

)
σ2
ε

)
=

1

ν

(
β − (γ0 − γ1)

(
ai +

γ1 + γ0 + 2ηiq
∗

2 (κ+ ηi)

)
+

1

2
ri
(
γ2

0 − γ2
1

)
σ2
ε

)
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with β = (γ0 − γ1)
(
m+ E

[
γ0+ηiq

∗

κ+ηi

])
∆ni =

1

ν

(
(γ0 − γ1)

(
m+ E

[
γ0 + ηiq

∗

κ+ ηi

])
− (γ0 − γ1)

(
ai +

γ1 + γ0 + 2ηiq
∗

2 (κ+ ηi)

)
+

1

2
ri
(
γ2

0 − γ2
1

)
σ2
ε

)

=
1

ν

(
(γ0 − γ1)

(
m− ai + E

[
γ0 + ηiq

∗

κ+ ηi

]
− γ1 + γ0 + 2ηiq

∗

2 (κ+ ηi)

)
+

1

2
ri
(
γ2

0 − γ2
1

)
σ2
ε

)
Now consider the effect of the treatment on quantity in the population,

which is given by

E [∆ni] =
1

ν

(
(γ0 − γ1)

(
E

[
γ0 + ηiq

∗

κ+ ηi
− γ1 + γ0 + 2ηiq

∗

2 (κ+ ηi)

])
+

1

2
E [ri]

(
γ2

0 − γ2
1

)
σ2
ε

)

=
1

ν

(
(γ0 − γ1)

(
E

[
γ0 − γ1

2 (κ+ ηi)

])
+

1

2
E [ri]

(
γ2

0 − γ2
1

)
σ2
ε

)
> 0

=
1

ν

(
(γ0 − γ1)2

2
E

[
1

κ+ ηi

]
+

1

2
E [ri]

(
γ2

0 − γ2
1

)
σ2
ε

)
> 0

Now we can consider the partial derivatives

∂E [∆ni |ri ]
∂ri

=

(
γ2

0 − γ2
1

)
σ2
ε

2cn
> 0,

∂E [∆ni |ai ]
∂ai

= −γ0 − γ1

ν
< 0

and

∂E [∆ni |ηi ]
∂ηi

= −(γ0 − γ1)

ν

4q∗ (κ+ ηi)− 2 (γ1 + γ0 + 2ηiq
∗)

4 (κ+ ηi)
2

= −(γ0 − γ1)

ν

2cq∗ − γ1 − γ0

2 (κ+ ηi)
2

= −(γ0 − γ1)

ν

2− γ1 − γ0

2 (κ+ ηi)
2 < 0.

Claim (iii): Compare profits generated by an agent i before and after the
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shift. Initial profits are

Πi0 = (1− γ0)ni0(ai + qi0)

Profits after the shift are

Πi1 = (1− γ1)ni1(ai + qi1)− βni1

such that the change in profits is

∆Πi = ((1− γ1) (ai + qi1)− β)ni1 − (1− γ0)ni0 (ai + qi0)

substituting nit = 1
ν

(
β · t+ γtai + (γt+ηiq

∗)2

2(κ+ηi)
− ηi q

∗2−τ i
2 − 1

2riγ
2
tσ

2
ε

)
, t ∈ {0, 1},

∆Πi =

(
(1− γ1)

(
ai +

γ1 + ηiq
∗

κ+ ηi

)
− β

)
1

ν

(
β + γ1ai +

(γ1 + ηiq
∗)2

2 (κ+ ηi)
− ηi

q∗2 − τ i
2

− 1

2
riγ

2
1σ

2
ε

)

−(1− γ0)
1

ν

(
γ0ai +

(γ0 + ηiq
∗)2

2 (κ+ ηi)
− ηi

q∗2 − τ i
2

− 1

2
riγ

2
0σ

2
ε

)(
ai +

γ0 + ηiq
∗

κ+ ηi

)

First, note that ∆Πi is a linear function of ri. Taking the first derivative

with respect to ri we obtain

∂∆Πi

∂ri
=

(
(1− γ1)

(
ai +

γ1 + ηiq
∗

κ+ ηi

)
− β

)
1

ν

(
−1

2
γ2

1σ
2
ε

)
− (1− γ0)

1

ν

(
−1

2
γ2

0σ
2
ε

)(
ai +

γ0 + ηiq
∗

κ+ ηi

)
=

σ2
ε

2cn

[
γ2

0(1− γ0)

(
ai +

γ0 + ηiq
∗

κ+ ηi

)
− γ2

1(1− γ1)

(
ai +

γ1 + ηiq
∗

κ+ ηi

)
+ βγ2

1

]
.

Substituting β = (γ0 − γ1)
(
m+ E

[
γ0+ηiq

∗

κ+ηi

])
∂∆Πi

∂ri
=

σ2
ε

2cn

[
γ2

0 (1− γ0)

(
ai +

γ0 + ηiq
∗

κ+ ηi

)
− γ2

1(1− γ1)

(
ai +

γ1 + ηiq
∗

κ+ ηi

)
+γ2

1 (γ0 − γ1)

(
m+ E

[
γ0 + ηiq

∗

κ+ ηi

])]
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Hence,

∂E [∆Πi|ri]
∂ri

=
σ2
ε

2cn

[
γ2

0 (1− γ0)

(
m+ E

[
γ0 + ηiq

∗

κ+ ηi

])
− γ2

1(1− γ1)

(
m+ E

[
γ1 + ηiq

∗

κ+ ηi

])
+γ2

1 (γ0 − γ1)

(
m+ E

[
γ0 + ηiq

∗

κ+ ηi

])]
>

σ2
ε

2cn

[
γ2

0 (1− γ0)

(
m+ E

[
γ0 + ηiq

∗

κ+ ηi

])
− γ2

1(1− γ1)

(
m+ E

[
γ0 + ηiq

∗

κ+ ηi

])
+γ2

1 (γ0 − γ1)

(
m+ E

[
γ0 + ηiq

∗

κ+ ηi

])]

=
σ2
ε

(
m+ E

[
γ0+ηiq

∗

κ+ηi

])
2cn

[
γ2

0 (1− γ0)− γ2
1(1− γ1) + γ2

1 (γ0 − γ1)
]

=
σ2
ε

(
m+ E

[
γ0+ηiq

∗

κ+ηi

])
2cn

(
γ2

0 − γ2
1

)
(1− γ0) > 0,

as required.
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