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Abstract

We estimate explicit age-varying distributions of idiosyncratic persistent and transitory earnings
shocks over workers’ life-cycles using a German administrative data set. Large positive shocks, both
transitory and persistent, are characteristic for the first eight years of working life. After age 50, large
negative shocks become a major source of earnings risk. Between the ages of 30 and 50, most shocks
are small and transitory. Large persistent positive shocks early in life help to rationalize a large wealth
share and a high consumption level of the top one percent in an incomplete markets model.
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1. Introduction

Individual earnings risk changes over the life-cycle. During the early stage of working-life, finding all
year round employment and moving up the job-ladder imply large individual earnings fluctuations.1
During prime-age (30-50), workers settle into more stable employment and large earnings changes
become less frequent. Once closer to retirement, periods of non-employment and losing a high-tenured5

job become major risks.2 Karahan and Ozkan (2013), Blundell et al. (2015), and Lopez-Daneri (2016)
study this age variation in terms of changing variances of idiosyncratic transitory and persistent
earnings shocks. We follow this literature and also decompose male earnings changes into transitory
and persistent earnings shocks. Adding to this literature, we study positive and negative earnings
shocks separately and estimate explicit and age-varying distributions for these shocks. We show that10

age-variations in the occurrence of large positive and negative earnings shocks allow for a better
understanding of households’ consumption and savings decisions.

?This paper uses the Sample of Integrated Labour Market Biographies - Regional File 1975-2010, SIAB R 7510.
The data was provided via the Cornell Restricted Access Data Center, previous authorization of the Research Data
Center of the German Federal Employment Agency at the Institute for Employment Research, under the project
‘Labour Income Profiles are not heterogeneous: a European test’. Felix Wellschmied gratefully acknowledges support
from the Spanish Ministry of Economics through research grants ECO2014-56384-P, MDM 2014-0431, and Comunidad
de Madrid MadEco-CM (S2015/HUM-3444) and thanks the Department of Economics at ITAM for its hospitality.
We thank Erlend Berg, Annette Bergemann, Richard Blundell, Andrés Erosa, Etienne Lalé, Mariacristina De Nardi,
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Using German administrative individual earnings data, we first document that moments of positive
and negative residual earnings growth behave very differently from each other over the life-cycle.3
Positive residual earnings growth is relatively rare before age 30,4 but growth rates are large on15

average and highly dispersed. The relatively frequent negative residual earning growth is small on
average leading to a positively skewed distribution of residual earnings growth. The average size and
the dispersion of positive residual earning growth fall throughout the life-cycle, and the average size
and the dispersion of negative residual earnings growth grow throughout the life-cycle. The implied
simultaneous decline in the occurrence of large positive residual earnings growth and the more frequent20

large negative residual earnings growth leads to a negatively skewed distribution of residual earnings
growth after the age of 40. After the age of 50, negative residual earnings growth is XXX times larger
on average and the its variance is XXX times larger than at age 24. In contrast, positive residual
earnings growth is XXX times smaller on average and the its variance is XXX times smaller than at
age 24. The (negative) first order autocovariances of positive and negative residual earnings growth25

display much less life-cycle variation than the variances. That is, relative to the variance, the first
order autocovariance of positive residual earnings growth is relatively small (large) at the beginning
(end) of the life-cycle indicating that relatively little (much) of this positive growth is off-set the
following year. The opposite is true for negative residual earnings growth. That is, relatively much of
it is off-set at the beginning and changes are relatively more persistent towards the end of working-life.30

Using simulated methods of moments, we estimate a parametric model that maps the distribution of
residual earnings growth into age-varying distributions of transitory and persistent earnings shocks.
We obtain these distributions explicitly by modeling shocks as a mixture of specified parametric
distributions, similar to Geweke and Keane (2000), Bonhomme and Robin (2010), and Guvenen et al.
(2016). To be specific, we parametrize residual log earnings as a mixture of three components that,35

given our decomposition of the data, have a natural interpretation: a positive, a negative, and a
mean zero component. The latter is a transitory normally distributed shock with an age-varying
variance. In addition to this shock, with age-varying probabilities, workers draw either an innovation
to their positive component, an innovation to their negative component, or no further shock. An
innovation to the positive (negative) component is a combination of a transitory and a persistent40

log-normally distributed shock. Thus, persistent and transitory shocks are partially correlated in our
model which deviates from the more standard assumption in the literature of zero correlation. We
find that two prominent (observable) persistent labor market shocks, unemployment and job-to-job
transitions, support a positive correlation. That is, earnings are lowest on average in the year of
an unemployment spell, but return partially to their former level afterward (see also Jacobson et al.45

(1993)). Similarly, earnings are highest in the year of a job-to-job transition, possibly due to signing
bonuses but, on average, reverse towards their old level thereafter. To capture that the frequency of
occurrence and the implied earnings changes of these and other phenomena vary with age, we allow the
means and variances of the shocks to the positive and negative component to vary with age. These age
variations in the parametric shock distributions together with the age-varying sampling probabilities50

of the three components generates the age variation in the overall distributions of transitory and
persistent earnings shocks.

We find that the autocorrelations of both persistent positive and negative shocks are above 0.97, i.e.,
these shocks are close to permanent. Turning to their life-cycle properties, the probability to draw a
positive persistent shock increases from 11% at age 25 to 44% at age 55. Nevertheless, experiencing55

a positive persistent increase in log earnings of more than 0.2 is 7 times more likely at age 25 than
at age 55. This fact results from the mean and the variance of persistent positive shocks being more
than 5 times larger at age 25 than at age 55. Persistent negative shocks show qualitatively the exact

3The moments for females are available from the authors upon request.
4On average, earnings rise when young and decline when old. We study deviations from this predictable age pattern.
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opposite life-cycle behavior of positive shocks. They are small, have little dispersion, and occur with
relatively high frequency early in life, and become rare, large on average, and more dispersed late60

in life. To put these findings in perspective to the U-shaped variance of persistent shocks over the
life-cycle found by Karahan and Ozkan (2013), our results imply that the initial decrease is entirely
driven by positive shocks becoming less dispersed and the later increase is entirely driven by negative
shocks becoming more dispersed.

The probability to draw any persistent shock is U-shaped over the life-cycle and reaches a low of65

33% at age 40. That is, at prime-age, most workers experience only transitory mean-zero earnings
changes, and we find that these transitory shocks have little dispersion throughout the life-cycle. In
contrast, transitory shocks to the positive and negative component are large and highly dispersed.
The variance of negative transitory shocks is increasing and the variance of transitory positive shocks
is close to constant over the life-cycle. On a life-time average basis, the variance of transitory negative70

shocks is 2.6 times larger than the variance of transitory positive shocks and 11 times larger than the
variance of persistent negative shocks. As a consequence, most large negative shocks are transitory. A
negative change in log earnings of more than 0.2 is in 72% of the cases due to a transitory shock. The
corresponding number for positive shocks is only 55%. The difference is even more pronounced early
in life. At age 24, XXX% of all negative changes in log earnings of more than 0.2 are the result of a75

transitory shock. In contrast, XXX% of all positive changes in log earnings of more than 0.2 result
from persistent shocks at age 24.

Next, we introduce this estimated earnings risk into an Aiyagari (1994) type model to study the
implications of age-varying, non-normally distributed risk for consumption and savings decisions. We
contrast the results to the widely used age-invariant risk model (AIRM ) with mean-zero normally80

distributed transitory and persistent shocks. Compared to this latter model, the large but rare
persistent positive shocks early in life imply, as in the data, a relatively high dispersion in the right tail
of the cross-sectional earnings distribution. A few lucky workers, therefore, accumulate large wealth for
life-cycle purposes, particularly to finance consumption during retirement, and hold a relatively large
share of the overall wealth. This channel has a strong amplification mechanism for cross-sectional85

wealth inequality because these shocks occur early in life, but the resulting wealth concentration
persists throughout the life-cycle. Compared to the AIRM, the share of wealth holdings by the top
1% more than doubles, bringing the model closer to the data.

Similar to wealth inequality, consumption inequality is more pronounced in the right tail of the cross-
sectional distribution than in the AIRM. That is, the ratio of consumption of the top 1% relative90

to the median worker is relatively high and it grows relatively rapidly over the life-cycle. This shift
of resources away from the median and towards the highest life-time consumption workers reduces
welfare in our model relative to the AIRM. Counteracting this effect, consumption inequality at the
bottom of the distribution, driven by fewer very low consumption outcomes, is somewhat lower in
our age-varying risk model. Measuring welfare in terms of the consumption an unborn household is95

willing to pay to insure against idiosyncratic earnings heterogeneity, we find that the former effect
dominates, that is, welfare costs of incomplete insurance markets are higher in the age-varying risk
model.

Age-varying non-normally distributed risk also helps to explain the dynamics of cross-sectional con-
sumption inequality over the life-cycle. In specific, large negative tail shocks late in life increase the100

desired stock of workers’ precautionary savings. We show that more precautionary savings and a
shift towards more persistent and positive shocks increase the speed at which consumption dispersion
increases late in life. As a result,the cross-sectional variance of log consumption grows close to linear
in age, which is consistent with the German data analyzed by Fuchs-Schündeln et al. (2010).

Our findings contribute to the recent macroeconomic literature that studies the implications of non-105

normally distributed shocks for individuals’ savings and consumption. Civale et al. (2017) show
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that wealth inequality decreases when earnings shocks become more negatively skewed. Castañeda
et al. (2003) calibrate the earnings process such that it matches the observed right tail of the wealth
distribution which implies a “superstar” earnings state. The large and persistent positive shocks we
find early in the life-cycle have qualitatively the same effect. De Nardi et al. (2019) use a two-step110

approach to study higher-order earnings risk. They first estimate the model proposed by Arellano
et al. (2017) and, thereafter, estimate Markov processes on simulated data resulting from step one.
Importantly, this model allows for non-linear log earnings dynamics that imply shocks being less
persistent; therefore, less costly in terms of welfare. Our finding that a shift of resources towards
the right tail of the earnings distribution increases the welfare costs relative to an age-invariant risk115

model is complementary to theirs. Finally, Golosov et al. (2016) show that non-normally distributed
earnings shocks have important implications for the optimal redistribution in society.

The rest of the paper is organized as follows. Section 2 describes the German data set. Section 3
presents the moments of residual earnings growth over the life-cycle. Section 4 describes the econo-
metric model. Finally, Section 5 introduces our earnings process into a life-cycle savings model.120

2. Data and Sample Construction

2.1. Data Description
Our data source is the Sample of Integrated Labour Market Biographies (SIAB) for the years 1975-
2010. The data originates from the German notification procedure for social security. This requires
employers to report their employees’ working spells, earnings, and some socioeconomic information.125

The data covers the population of German employment with the exception of civil servants, the self
employed, and regular students (about 20% of the employment population). From this population,
the German employment agency draws a 2% random sample of individuals’ careers. In total, the data
has information on 1,594,466 individuals and 41,390,318 unique person-year records. Hence, SIAB
provides a large number of career-long earnings profiles with little measurement error.130

2.2. Sample Construction
We focus on earnings risk of workers with a high attachment to the labor force and abstract from
any selection resulting from earnings shocks.5 We drop workers in an apprenticeships, partial retire-
ment, marginal part-time workers (geringfügig Beschäftigte), and part-time workers not eligible for
unemployment benefits. Moreover, we only consider German male workers to avoid female decisions135

over maternity leave. We define a worker as employed within a year when he is contracted for at
least 90 days of that year. Thus, our analysis abstracts from earnings shocks arising from long-term
unemployment. Following the literature that focuses on workers with a high attachment to the labor
market, we keep for each individual the longest spell of earnings with at least 7 years of observations
(see Meghir and Pistaferri (2004), Guvenen (2009) and Hryshko (2012)).140

The age range under consideration is of some importance because we want to avoid misinterpreting
predictable earnings changes as shocks. For the time period of our sample, a high school degree takes
up to 13 years of schooling and male workers are obliged to perform 1 year of military service. Most
workers enter professional training (2-3 years) thereafter. Hence, we expect workers to have made a
full transition to the labor market by the age of 24. The intended retirement age in Germany used to145

be 65. Yet, Arnds and Bonin (2002) show that early retirement schemes lead to an average retirement
age around the age of 60. Moreover, generous unemployment benefits for high tenured workers often
lead to an effective retirement age of 55. To avoid these endogenous decisions, we restrict the panel
to workers aged 24 to 55. Finally, we discard workers in East-Germany as those observations are only

5See Low et al. (2010) for an analysis that allows employment selection upon earnings shocks.
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available after 1991. Our final sample contains information for 251,352 individuals with a total of150

3,566,212 person-year observations.

For each calendar year, we aggregate an individual’s earnings across all job spells. We deflate earnings
using the German consumer price index of 2010.6 Changes in real earnings may arise from inflation,
a change in working hours, a change in employer, an unemployment spell, bonuses, promotions, etc.
Workers entering the sample for the first time are statistically expected to enter in the middle of the155

year. Daly et al. (2016) show that this may lead to a bias in the estimates of permanent shocks.
To avoid the bias, we assume that earnings in the months those individuals are not observed are
the same as for the observed months in those years. Following Dustmann et al. (2009), we drop
real daily earnings that are below 5 euros. Daily earnings are top-coded by the limit liable to social
security. On average, this affects around 6% of observations per year. We follow Daly et al. (2016) and160

impute daily earnings from an extrapolated Pareto density fitted to the non top-coded upper-end of
the observed distribution for each year. Alternatively, we could drop workers affected by top-coding.
The moments of residual earnings growth are almost identical for the two approaches. We opt for
the former because it allows us to infer the entire cross-sectional earnings distribution of the German
employment population.7165

Our interest is in annual earnings changes that are idiosyncratic to the individual. To this end,
we remove predictable changes from earnings growth by running cross-sectional regressions for each
workers’ age. The regressions control for an education dummy, year dummies, region of residence,
and 14 major industries. Next, we assign each individual to a birth cohort defined as being born in a
7 year interval starting in 1923. Figure A2 in the Appendix, shows, using as example the variance of170

residual earnings over the life-cycle, that the data features both a calendar time and a cohort effect.
The latter may partially arise from the data not reporting one time payments before 1984. Following
Blundell et al. (2015), we average all data moments across cohorts to eliminate these types of time
effects, assigning equal weight to all cohorts. Therefore, our results can be interpreted as the risk
a typical cohort is facing. To compute the cross-sectional earnings inequality over the life-cycle, we175

follow Deaton and Paxson (1994) and regress the cross-sectional variance of log earnings on a full set
of age and cohort dummies. We again use a cohort-averaged approach and compute the cross-sectional
variance at age 24 as the mean of the cohorts intercepts.

Figure A3 in the Appendix compares the resulting life-cycle moments of the variance, skewness,
and kurtosis of earnings growth to those reported in Guvenen et al. (2016) for the US. The life-180

cycle behavior of these moments is remarkably similar across the two countries, yet, there are some
differences in the levels of these moments of earnings growth. The age-averaged variance of earnings
growth is two to three times larger in the US. For one, the difference arises because we use a more
stringent requirement for the days worked to enter into the sample than Guvenen et al. (2016).8
Moreover, the US data includes non-labor income. Yet, there are also some institutional differences185

between the countries worth highlighting. For many sectors, wage floors are centrally bargained
implying downward nominal wage rigidity and more concentrated earnings variations for workers,
which contributes to kurtosis being higher in Germany. Moreover, Germany has a strong employment
protection for high tenured workers that leads to a lower probability of becoming unemployed but
also to a lower probability to find a new job. Bachmann et al. (2013) show that both the German190

accession and separation rate of workers within establishments are only 60% of the US level, yet such
switches are a major source of earnings volatility. This latter fact also contributes to skewness being

6We obtain the consumer price index from OECD data; https://data.oecd.org/price/inflation-cpi.htm.
7By doing so, we assume earnings growth behaves similar for the top decile of the German earnings distribution

relative to the rest of the distribution.
8Lowering the work requirement to 65 days, which is similar to the requirement imposed by Guvenen et al. (2016),

increases the variance of residual earnings growth from 0.089 to 0.098.
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Notes: Panel (a) displays the cross-sectional variance of log residual earnings by age. It displays the age coefficients of
a regression of the variance of log earnings on a cohort and age dummies. Panel (b) displays the variance of residual
earnings growth over age. The dashed lines display block-bootstrapped 95% confidence intervals.

Figure 1: Variance of Residual Earnings and Earnings Growth

less negative on average in Germany. We find that skewness becomes more negative as we loosen the
requirement for the amount of days worked to enter into the sample, i.e., negative skewness is strongly
driven by workers reducing their amount of days worked from one year to the next. In Germany, there195

are fewer of such non-employment events.

3. Moments of Residual Earnings Growth

This section highlights the salient features of residual earnings dynamics over the life-cycle. Figure
1a displays the cross-sectional variance of residual log earnings. The variance is falling for the first
three years and reaches a low of 0.09. Inequality accelerates up to age 40 when its growth slows down200

somewhat. In total, between the ages of 27 and 55, residual earnings inequality more than doubles.
Guvenen et al. (2016) shows that cross-sectional inequality also doubles over the life-cycle in the US.
However, the cross-sectional variance of earnings at labor market entry is substantially higher in the
US (0.47 at age 27).

We now turn to the dynamics in residual earnings that create the life-cycle pattern in inequality. A205

common way to identify earnings shocks is to study the covariance structure of residual earnings growth
(we use interchangeably the terms growth/innovations/changes), gi,h, where i denotes the individual
and h denotes age. Figure 1b plots its cross-sectional variance over age. The variance declines by
almost 43% between the age 24 and age 55 with most of the decline, close to 80%, occurring before
age 30.210

To better understand the changes in the distribution of residual earnings growth that lead to the
decreasing variance, we study separately positive, g+

i,h, and negative, g−i,h, residual earnings growth.
Figure 2a displays the conditional variances of these innovations, V ar(gi,h|gi,h, ≶ 0). The figure shows
that the entire decline in the variance of residual earnings growth up to age 30 results from positive
changes becoming less dispersed. In contrast, the variance of negative residual earnings growth slightly215

increases during these years. Afterward, the variance of positive growth continues to decline and the
variance of negative growth continuous to increase. The latter is about 80% larger at age 55 than at
age 25.
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Notes: Panel (a) displays the variance of residual earnings growth over age conditional on residual earnings growth
being positive (negative). Panel (b) displays the corresponding means of residual earnings growth. The dashed lines
display block-bootstrapped 95% confidence intervals.

Figure 2: Variances and Means of Conditional Residual Earnings Growth

Figure 2b shows that the average sizes of conditional residual earnings growths closely track their
variances. Positive residual earnings growth is large on average early in life, and it becomes smaller220

throughout the life-cycle. Mean negative residual earnings growth is almost constant until the age of
50 and becomes larger in absolute size thereafter. Figure 3a plots the probability to observe a positive
innovation at each age, Prob (gi,h > 0). Its behavior over the life-cycle reconciles the different means
of conditional growth. Early in life, close to 70% of innovations are negative, but the probability of
a positive change is increasing throughout the working life, reaching 63% at the age of 55. Positive225

growth becoming more likely with age, and, at the same time, negative growth becoming larger with
age, implies that the distribution of earnings growth becomes more negatively skewed as workers age.
Figure 3b shows that the distribution is initially positively skewed, and skewness turns negative around
the age of 40.9 Importantly, the decline in skewness is driven by two simultaneous changes in the
tails of the overall earnings growth distribution. That is, a simultaneous decline in the occurrence of230

large positive residual earnings growth and a rise in the occurrence of large negative residual earnings
growth over the life-cycle.

Guvenen et al. (2016) highlight that earnings growth features fat tail behavior. We find a similar
magnitude of kurtosis in the German data.10 What is more, Figure 3c shows that kurtosis increases
in a concave fashion throughout the life-cycle. At its peak, it is 5 times larger than what is suggested235

by a normal distribution. The large kurtosis implies that a substantial fraction of workers experience
very small residual earnings changes. To put this into perspective, Figure 3d displays the fraction of
residual earnings growth by age that are above 5 percent (in absolute value). In the cross-section,
87 percent of workers experience a residual log earnings change of less than 5 percent. If residual
earnings growth had been normally distributed, this number would be only 13 percent. What is more,240

the profile has a strong age dimension that is the inverse image of the kurtosis over the life-cycle.
At prime-age, 50 percent of workers experience residual earnings changes of a magnitude smaller
than 5 percent. In contrast, early in life, only 21 percent of innovations are smaller than 5 percent,
a change of almost 30 percentage points. Under the assumption of normally distributed earnings

9To avoid outliers affecting the skewness, we opt for Kelly’s measure of skewness.
10To avoid outliers affecting the kurtosis, we opt for Crow-Siquiddi’s measure of kurtosis (Crow and Siddiqui (1967)).
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growth, the change in the fraction of workers with earnings changes less than 5 percent would only245

be 4.4 percentage points between the ages of 25 and 40.

So far, we have not addressed the persistence of earnings changes. The literature commonly dif-
ferentiates between persistent (e.g., promotions, large health shocks) and transitory (e.g., bonuses,
temporary sickness) changes. In order to understand the persistence of earnings changes, we study
the first and second conditional autocovariances. A negative first autocovariance of residual earnings250

growth implies that part of the current residual earnings growth is offset the next year, i.e., it provides
information regarding the amount of mean reversion. The second autocovariance identifies whether
this mean reversion lasts longer than one year. Figures 4a and 4b display the conditional first and
second autocovariances of residual earnings growth, respectively. The first autocovariance of positive
growth is small relatively to the first autocovariance of negative growth. Neither shows a pronounced255

life-cycle pattern. Given that the variance of positive earnings growth is decreasing throughout the
life-cycle, the ratio of the variance to the (negative) first order autocovaraince is decreasing throughout
the life-cycle. The opposite is true for negative residual earnings growth; its variance growth relative
to its first-order autocovariance. The second autocovariance is negative for both types of earnings
changes, but it is small in size after the age of 30 in either case. Figure 4c displays the age-averaged260

(unconditional) autocovariance at longer lags. All autocovariances oscillate around zero implying that
all mean reversion takes place during the first two years following an earnings change.

3.1. Sources of Earnings Innovations
Taken together, the data suggests that positive (negative) residual earnings fluctuations are partic-
ularly large before age 30 (after age 50). We finish this section by relating these large changes to265

observable labor market outcomes.

First, we consider workers younger than age 30. We define a large positive innovation as a positive
change in residual log earnings of at least 0.2 (or approximately 22%). Consistent with the job-ladder
effects documented by Topel and Ward (1992), we find that in 32% of cases where we observe a large
positive earnings change early in life, the individual changes his employer. Topel and Ward (1992)270

also show that young workers’ careers are characterized by repeated non-employment spells between
jobs. In this vein, we ask how many of the large positive innovations in the data coincide with workers
increasing the amount of days worked during a year. We define a “substantial” increase in days worked
as one where the amount of contracted days increases by more than 30 days from one year to the next.
Around 29% of large positive earnings innovations early in life are associated with such an increase in275

working days.

Turning to workers older than age 50, we define a large negative innovation as a negative change
in residual log earnings of at least -0.2 (or approximately -19%). Jacobson et al. (1993) show that
reemployment earnings are substantially lower after losing a highly tenured job. To understand the
importance of this effect for elderly workers in Germany, we calculate the share of large negative280

earnings changes associated with the worker changing employers. We find that the worker changed
employers in only 7% of cases where we observe a large negative innovation. Put differently, losing
a high paying job and reentering with a lower paying job is not a common phenomenon for elderly
German workers. Instead, large negative residual earnings changes are predominantly associated with
a reduction in working days. Workers reduce their amount of working days by at least 30 per year in285

57% of the cases where we observe a large negative earnings change.
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Figure 3: Skewness and Kurtosis of Residual Earnings Growth
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Figure 4: Autocovariances of Residual Earnings Growth
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4. A Time Series Model of Earnings Dynamics

4.1. Model
We model residual log earnings as the sum of permanent initial inequality and a stochastic component:

yi,h = αi︸︷︷︸
initial heterogeneity

+ ui,h︸︷︷︸
stochastic component

, (1)

where αi ∼ N(0, σ2
α). αi is the only source of deterministic unobserved inequality between workers290

in our model. Appendix A.4 show that our results are mostly invariant when including deterministic
heterogeneity in individual earnings growth.

Our aim is to explicitly estimate distributions of persistent and transitory shocks over the life-cycle.
We achieve this by modeling shocks to the stochastic component of residual earnings as an age-varying
mixture of several specified parametric distributions. To be specific, we let ui,h consist of a mean zero
component and, following our analysis above, a positive and a negative component that all have
age-varying properties:

ui,h = W+
i,h︸︷︷︸

positive

+ W−i,h︸︷︷︸
negative

+ ιni,h︸︷︷︸
mean zero

, (2)

where ιni,h ∼ N(0, σ2
ιn,h) is a transitory shock to earnings that realizes for each individual at every

age. The positive component, W+
i,h, and the negative component, W−i,h, contain both a persistent and

a transitory part:

W+
i,h = w+

i,h︸︷︷︸
persistent

+ τ+
i,h︸︷︷︸

transitory

W−i,h = w−i,h︸︷︷︸
persistent

+ τ−i,h︸︷︷︸
transitory

(3)

wji,h = ρjwji,h−1 + ξji,h for j = −,+ τ j = ιji,h + θjιji,h−1 for j = −,+ (4)

Thus, innovations to the positive and the negative components are a combination of a persistent,
ξji,h, and a transitory, ιji,h shock. This modeling captures a wide range of economic phenomena.
For example, Appendix A.1 shows the earnings patterns for workers experiencing a non-employment295

spell. Resulting from non-employment, earnings are lowest in the year of displacement, recuperate
somewhat afterward, but they stay persistently lower than before the displacement. The model will
identify this as an innovation to the negative component of log earnings. The initial reduction in days
worked will be identified as the transitory shock. The longer lasting earnings loss will be identified as
the persistent shock. The appendix also shows that job-to-job transitions display a similar pattern.300

Earnings are highest in the year of a job-to-job transition, possibly due to signing bonuses, but reverse
on average towards their old level thereafter. A move up the job ladder will be identified as a shock
to the positive component. The initial overshooting of earnings will be identified as the transitory
shock and the longer lasting earnings increase will be identified as the persistent shock. Note that the
correlation between persistent and transitory shocks is not perfect, though, because of the mean zero305

shocks, ιni,h, that realizes at each age.

We let the probability to receive innovations to the positive and negative components vary with age.
Mutually exclusive, and at each age, an individual draws with probability p−h an innovation to his
negative component, (both ξ−i,h, ι

−
i,h), and with probability p+

h an innovation to his positive component,
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(both ξ+
i,h, ι

+
i,h). With probability 1−p+

h −p
−
h he draws neither.11 We specify second order polynomials

in age for these probabilities:12

pjh = δjI + δjIIh+ δjIIIh
2 for j = −,+ h = 0 at age 24. (5)

Different from most of the literature on earnings dynamics, we explicitly specify the shock distri-
butions. The persistent and the transitory shocks to the positive and negative components follow
age-varying log-normal distributions:13

ξ+
i,h ∼ exp(N(µ+

h , σ
2
ξ+,h)), ξ−i,h ∼ −exp(N(µ−h , σ

2
ξ−,h)) (6)

ι+i,h ∼ exp(N(µ+
h , σ

2
ι+,h)), ι−i,h ∼ −exp(N(µ−h , σ

2
ι−,h)) (7)

We choose the log-normal specification because it allows the model to match the fat tails of the residual
earnings growth distribution. To provide intuition for this, Figure A6 plots the density function of
earnings growth. We do not impose it, but it is natural to think of the mean zero component as
mostly representing small changes in real earnings that are close to zero (inflation, small changes in310

hours, etc...), thus, capturing the many earnings changes close to zero. In contrast, the positive and
negative components allow the model to mostly match the fat tails of the distribution.14

To accommodate for the age-variation in the variances of positive and negative residual earnings
growth, the dispersion parameters in equations (6) and (7) vary with age in a linear fashion:

σkj ,h = γa,kj + γb,kjh for j = −,+ and k = ξ, ι h = 0 at age 24. (8)

Also, to allow for an age-varying conditional means, the location parameters of these shocks are
age-varying:

µjh = λja + λjbh for j = −,+ h = 0 at age 24. (9)

Different from Karahan and Ozkan (2013) and Blundell et al. (2015), we do not allow the variances
of shocks to change in an arbitrary fashion across ages but, to keep the number of parameters man-
ageable, restrict the age variation to be linear. In our framework, age variations in the unconditional315

distributions of transitory and persistent shocks arise from the age-variations in the parametric shock
distributions (equations (8) and (9)) together with the age-varying sampling probabilities of the three
components of log earnings (equation (5)). Figure A4 in the Appendix shows that, as a result, the
model generates non-linear moments, among them the variance of residual earnings growth, that are
very similar to the data.320

As workers accumulate different shocks over their life-cycles, the process implies that the variance of
log residual earnings is increasing over the life-cycle. However, Figure 1a shows that residual earnings

11In particular, we obtain a draw from a uniform distribution, si,h ∼ U(0, 1), for each worker at each age, and assign
the innovation to the negative component of that worker if si,h ∈ [0, p−

h
]. Similarly, we assign an innovation to the

positive component of that worker if si,h ∈ (p−
h
, p+
h

+ p−
h

]. Finally, we assign no innovation to these components if
si,h ∈ (p+

h
+ p−

h
, 1].

12We find that moving to a third order polynomial provides little improvement in the model fit to the data.
13To keep the number of parameters manageable, we impose the same location parameters for transitory and persis-

tent shocks.
14The log-normal assumption is also more convenient for the estimation of the model than a symmetric distribu-

tion. With the log-normal specification, the tail of the positive (negative) shock distribution does not cross into the
negative (positive) domain, providing stability in the implied moments of the process, particularly the conditional
autocovariances.

12



inequality is decreasing during the first years. We interpret this initial decline as resulting from
heterogeneity in the initial transitory components:

ιji,0 ∼ exp(N(µj0, σ
j
0)), for j = −,+. (10)

4.2. Identification
We estimate the model by the method of simulated moments (MSM) and use the block bootstrapping
procedure suggested by Horowitz (2003) to obtain standard errors that we report in Table A4. We
target three main sets of empirical moments over the life-cycle: (i) moments of unconditional residual
earnings growth: the mean, skewness, kurtosis, fraction of shocks above 5%, and the autocovariance325

function; (ii) moments of conditional positive and negative residual earnings growth: the means,
variances, share of positive changes, and the first and second autocovariances; and (iii) the variance
of residual log earnings. In total, we estimate 28 parameters using 492 moments. Section A.2 in the
Appendix describes further details about the estimation procedure and the set of moments.15

The matrix of first derivatives (evaluated at the minimum) of the moment conditions with respect to330

the parameter vector has full rank suggesting that our selected data moments do identify the model.
Section A.7 in the Appendix provides a visualization of this test. It displays the partial impact of
each parameter on each moment evaluated at the minimum. Most parameters affect all moments
simultaneously. To gain some intuition for the identification, we briefly discuss here which moments
have the strongest impact on the different parameters.335

As shown, e.g., by Hryshko (2012) the variance and first two autocovariances of earnings growth
identify the variance of persistent and transitory shocks and the persistence parameter of transitory
shocks in a model with a single persistent and a transitory mean zero shock. Moreover, the distant lags
of the autocovariance function of earnings growth identify the autocorrelation parameter of persistent
shocks. The intuition extends straightforwardly to our model with conditional shocks. The conditional340

variances and autocovariances identify the parameters ρ+, ρ−, θ+, θ−, γa,kj , for j = −,+ and k =
ι, ξ. Additionally, the conditional means of these changes contain information about the location
parameters λja, λ

j
b, for j = −,+.

Storesletten et al. (2004), show that the cross-sectional dispersion of residual log earnings over age
contains information on the model parameters in a model with a single persistent and a transitory345

mean zero shock. Again, the intuition carries over to our model and provides additional identification.
The cross-sectional variance of residual log earnings early in life identifies initial heterogeneity. The
initial changes in cross sectional inequality identify how much of this initial inequality is permanent,
σα, or transitory, λj0 and σj0, for j = −,+. The increase in inequality over the life-cycle contains
information on the size of positive and negative persistent shocks, and the shape of the increase350

contains information on their persistence parameters.

Finally, the fraction of positive shocks over the life-cycle, skewness, the share of shocks above 5%, and
kurtosis identify the variance of the mean zero component and the sampling probabilities, δjI , δ

j
II , δ

j
III ,

for j = −,+. To see the latter point, consider an increase in the sampling probability of positive
shocks. This implies a higher fraction of those and a more negatively skewed distribution of earnings355

growth. To understand the relationship with kurtosis, we show in the next section that the mean zero
transitory shocks, ιn, have little variance. Hence, these shocks allow the model to create a large share
of shocks centered around zero, thereby, a large kurtosis in earnings growth. Put differently, lower
probabilities to draw any persistent shock imply more kurtosis.

15To estimate earnings shocks from residual earnings growth, we require that the information set of the econometrician
is the same as that of the worker. Quite likely, it is impossible for the worker to predict wage changes conditional on all
the observables that we use in our regressions; therefore, we may underestimate earnings risk. However, our moments
are almost unchanged when excluding some of the observables. At the same time, a worker may have more information
than the econometrician about the path of his earnings, thus, leading to an overstatement of risk.
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Table 1: Parameter Estimates of the Labor Income Process

Model: (1) (2) (3) (4) (5)
Full No No Macro Micro

Parameters Model h ι

ρ− 0.9788 0.1357 0.4179 0.9764 0.9902
ρ+ 0.9767 -0.2057 0.2411
θ− 0.0452 -0.1014 - - -
θ+ 0.1530 0.9995 -
σα 0.0238 0.3486 0.3249 0.1225 -
σι̂ - - - 0.2299 0.1744
σξ̂ - - - 0.0960 0.1674
Obj. Function 82.70 196.05 138.79 - -

Notes: The table displays selected parameter estimates of the earn-
ings process described by Equations (1)-(10). The remaining pa-
rameter estimates are displayed in Table A3. Table A4 displays
standard errors. The process is estimated by the method of simu-
lated moments. We use the sample from SIAB described in Section
2.2. Column (1) is the full model. Columns (2)-(3) shut down
age-dependence and transitory shocks, respectively. The last two
columns display parameter estimates of the model in equation (11).

4.3. Description of the Empirical Results360

Table 1 reports selected parameter estimates for the process described by Equations (1) to (10).
Table A3 in the Appendix reports the remaining parameters. Column (1) is the full specification of
the econometric model. We estimate the time series properties of positive and negative persistent
shocks to be almost identical; they are both close to a unit-root process. Figure 5a shows, however,
that the variances of these two shocks differ in their size and their behavior over the life-cycle. Positive365

persistent shocks are heavily dispersed early in life. Their variance decreases from 0.08 at age 24 to
0.02 at age 55. In contrast, the variance of negative persistent shocks is close to zero early in life and
reaches 0.035 at age 55. The age-averaged mean of positive and negative persistent shocks is similar,
but their life-cycle behaviors differ (cf. Figure 5b). Positive shocks decrease in size throughout the
life-cycle, but negative persistent shocks are smallest early in life and become larger on average with370

age. Figure 5e shows that early in life, about 43% of workers receive a negative persistent shock and
this probability is decreasing to 13% late in life. In contrast, the probability to receive a persistent
positive shock is increasing throughout life. The joint probability to receive any persistent shock
during a year is U-shaped over the life-cycle and is particularly low around the age of 40 when 65% of
workers receive no such shock. That is, they only receive a transitory mean-zero shock. The variance375

of these latter shocks is close to zero for most of the life-cycle. Put differently, during ages when
individuals are unlikely to receive shocks to their positive or negative component, they face little
earnings risk.

Different from transitory mean-zero shocks, transitory shocks to the positive and negative components
do present major earnings risks. Figures 5c and 5d show that particularly negative transitory shocks380

are highly dispersed and large on average throughout the life-cycle. In fact, Figure 5f shows that
most large negative shocks, defined as a log-earnings decrease of at least 0.2, are transitory. Early in
life, almost all large negative shocks are transitory. The share declines with age and reaches close to
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50% at age 55. Also most large positive shocks are transitory, yet, the share of large positive shocks
explained by transitory shocks is somewhat smaller than in the case of large negative shocks. In385

contrast to large negative shocks, the share of large positive shocks explained by transitory shocks is
increasing in age, increasing from 50% at age 24 to over 60% at age 55.

Figure A4 in the Appendix compares the targeted moments in the model to the data. Moreover,
Table A2 shows the loss function with respect to the different data moments. Overall, the model
fits the data moments closely. The main conceptual issue is that the model cannot rationalize (by390

construction) a cross-sectional inequality that is decreasing for several years at the beginning of the
life-cycle.

4.4. Discussion of the Empirical Results
Age-varying distributions turn out to be key in fitting the moments of residual earnings growth over
the life-cycle. In Column (2), we restrict the mean and variances of all shocks to constants across395

ages. In this case, changes in the sampling probabilities of the age-invariant distributions drive all
life-cycle dynamics. Relative to our full model, the loss function more than doubles. Figure A5 in
the Appendix shows that the model generates little age variation in the moments of residual earnings
growth. In particular, the model fails to match the decrease in the variance of positive shocks, the age
variation in the share of positive shocks, and the resulting decrease in skewness over the life-cycle.16

400

Column (3) highlights the importance in distinguishing between persistent and transitory shocks.
Omitting transitory shocks provides a substantial worse model fit and raises the objective function.
The estimate for the autocorrelations of persistent shocks is substantially lower without transitory
shocks. The intuition is the following: When neglecting transitory shocks, the moments estimator
implies ρ << 1 to match the negative autocovariances of earnings growth at lag one and two. Col-405

umn (3) shows that particularly the estimated autocorrelation of persistent positive shocks decreases.
Similarly, Guvenen et al. (2016), who also estimate a model with mixture probabilities, find that
positive persistent shocks are only mildly persistent. They allow, similar to us, for a purely transitory
shock, but, different from us, they model the other two components as pure AR(1) processes. We find
that by modeling the positive and negative components to be a combination of both transitory and410

persistent shocks, our model identifies persistent shocks that are close to permanent and, at the same
time, identifies most large shocks as being purely transitory.

We find age variations in the variance of shocks that is similar to those Karahan and Ozkan (2013)
find in PSID data. Our specification allows for a deeper understanding of these life-cycle variations. In
particular, the decreasing dispersion in persistent shocks early in life is entirely driven by a decreasing415

dispersion of positive shocks. Similarly, the increasing dispersion of persistent shocks late in life
is entirely driven by an increasing variance of negative shocks. Finally, the increasing variance in
transitory shocks is mostly driven by an increasing variance of negative transitory shocks. Our results
regarding the persistence of a typical shock early in a worker’s life-cycle is somewhat different from
theirs, though. They find that a typical shock is less persistent when young than at prime age. Instead,420

we find that the share of persistent shocks is declining until prime-age (see Figure 5e).

Finally, we compare the results to the earlier literature that models a single age-invariant mean zero
AR(1) shock process. To capture the decline in the variance of log earnings at young ages, we extend

16The poor life-cycle behavior of the model also implies counter-intuitive parameter estimates, e.g., persistent shocks
are estimated to be almost transitory.
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this framework and allow for an age varying variance of transitory shocks at age 24:

ŷi,h = αi + Ẑi,h + ι̂i,h, E(ι̂i,h) = 0, V ar(ι̂i,h) = σ2
ι̂ (11)

Ẑi,h = ρẐi,h−1 + ξ̂i,h, E(ξ̂i) = 0, V ar(ξ̂i,h) = σ2
ξ̂
. (12)

ŷi,0 = αi + ι̂i,0 + ξ̂i,0 E(ι̂i,0) = 0, V ar(ι̂i,h) = σ2
ι̂0 (13)

In this model, either the autocovariance function of residual earnings growth, or the covariance function
of log residual earnings over the life-cycle identify the model moments. Heathcote et al. (2010)
show that what they refer to as Micro estimation (targeting moments of earnings growth) leads to
substantially larger persistent shocks than a Macro estimation (targeting covariances of cross-sectional425

inequality). As a consequence, simulations of the Micro estimates lead to a too large increase in cross-
sectional inequality over the life-cycle and simulations of the the Macro estimates imply a too negative
first-order autocorrelation of earnings growth, i.e., too much of the average shock is off-set the following
year.17 Columns (4) and (5) present the parameter estimates resulting from GMM estimators of the
two identification strategies.18 As expected, the standard deviation of persistent shocks is about twice430

as large in the Micro approach.

In the estimation of our full model, we target both sets of moments. Figure A4 in the Appendix shows
that our full model jointly matches the increase in residual earnings inequality over the life-cycle and
the autocovariance function of residual earnings growth. The reason for the relatively modest increase
in earnings inequality over the life-cycle (compared to the Micro model) is not that persistent shocks435

are small in size. Conditional on receiving such a shock, the age-averaged variance is similar to the
Micro estimation (0.0280). Instead, the fact that in a given year a substantial fraction of workers
receive no persistent shock is key.

17Daly et al. (2016) show that eliminating beginning and end of earnings spell observations helps to reconcile the
two approaches within this framework.

18For the Macro estimation, we use the variance and first two covariances of log residual earnings.
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Notes: The Figures display age specific estimates from the earnings process described by Equations (1)-(10).
Figure 5a displays the estimates of the variances of persistent shocks of the positive and negative components. Figure
5b displays the estimates for the means of persistent shocks. Figure 5c displays the estimates of the variances of the
three transitory shocks. Figure 5d displays the estimates for the means of transitory shocks. Figure 5e displays the
probabilities of drawing a shock to the positive and negative components. Figure 5f displays the fraction of shocks
above 0.2 that are transitory.

Figure 5: Model Predictions
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5. Life-Cycle Consumption and Savings Model

We now turn to the implications of our earnings process for consumption and wealth inequality and the440

degree to which workers can insure against idiosyncratic earnings shocks. To this end, we introduce
the estimated earnings uncertainty into a structural model with incomplete insurance markets.

For simplicity, we consider a partial equilibrium model with exogenous earnings and interest rates.
Individuals work for HW years in the labor market, and die with certainty at age H > HW . They have
CRRA preferences over consumption with a risk aversion parameter γ, and they discount the future
with factor β. There exists a one period risk free asset a that pays certain returns 1 + r. Individuals
face a zero borrowing constrained ah+1 ≥ 0 and make consumption decisions to maximize expected
life-time utility:

max
ci

h=1...H
,ai

h=1...H

{
E0

H∑
h=1

βh−1 c
1−γ
i,h

1− γ

}
aih+1 = (1 + r)aih + Y ih − cih

aih+1 ≥ 0, cih ≥ 0

where Y ih are post tax earnings of individual i at age h. During working life, log gross earnings follow
the sum of a common deterministic and an individual specific stochastic component:

Eih = exp(dh + vi,h) if h ≤ HW . (14)

The government reduces earnings inequality by applying a progressive income tax schedule. We apply
the statutory income and social security tax schedule from Germany to map gross earnings into after
tax income:

Y ih = G(Eih) if h ≤ HW . (15)

During retirement, workers face no further uncertainty and receive social security benefits. To avoid
keeping track of individuals’ average earnings, we assume social security benefits depend only on the
fixed type αi:19

Y ih = F (αi) if h > HW . (16)

5.1. Calibration
We calibrate the coefficient of relative risk aversion and the interest rate outside of our data. The
former, γ, is set to 1.5, consistent with Attanasio and Weber (1995). Following Siegel (2002), we fix the445

value of r to imply a yearly interest rate of 4%. To ensure that households have on average an adequate
level of self-insurance, we match median wealth to earnings ratios using data for Germany from the
Eurosystem Household Finance and Consumption Survey (see Eurosystem Household Finance and
Consumption Network (2013)). To make the data comparable to the SIAB, we restrict the sample
to males aged 24-55, who are employees and have positive earnings.20 We calibrate β to match a450

median wealth-to-earnings ratio of 4.3 at age 55 leading to a value of 0.973. As in the data, we assign
individuals initial assets equal to 71% of initial earnings.

Workers work until age 55 and, thereafter, spend twenty years in retirement. We match average
earnings during working life, dh, by estimating cohort averaged age profiles as in Deaton and Paxson
(1994). In what we call the age-varying risk model (AVRM ), the stochastic log earnings component,455

19Bundesministerium (2015) shows that the retirement replacement rate has decreased over the last decades and is
projected to continue to do so. We assume households expect the replacement rate from 2010.

20The survey imposes that earnings are larger than 1100 Euro per year to be considered employed, which is somewhat
more than our restriction in SIAB.
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(a) 99/50 Wealth Ratio (b) 99th Earnings Percentile

(c) 50th Earnings Percentile (d) 10th Earnings Percentile

Notes: Panel (a) displays the Gini coefficient of wealth over age from the structural models described in Section 5 and
the data. Panel (b) to (f) show selected percentile ratios of wealth and earnings by age.

Figure 6: Wealth and Earnings Inequality over the Life-Cycle

vi,h, follows the process estimated in Column (1) of Table 1. For simplicity, we impose θ+ = θ− = 0.
We compare the implications of this model to those from the Macro approach. To ensure that income
inequality is the same in the two models, we estimate the latter model on the variance and the first two
covariances of log earnings implied by the AVRM model, instead of the data. As it is common in the
literature, we assume shocks follow normal distributions. We refer to this model as the age-invariant460

risk model (AIRM ). We recalibrate β to match the median wealth-to-earnings ratio of 4.3 at age 55
which leads to a somewhat larger value (0.978) than in the AVRM.

5.2. Wealth Inequality
De Nardi et al. (2016) show that existing life-cycle models fail to rationalize sufficient cross-sectional
wealth inequality given the observed earnings inequality in US data. Particularly, the models imply465

too little wealth holdings by the very top of the wealth distribution. Wealth is also top-concentrated
in our German sample of workers: the top 1% own 18.5% of net wealth, and the bottom 50% only
own 6.8% of net wealth. The AVRM implies wealth shares of 9.6% and 13.5%, respectively. Thus,
wealth inequality is still much lower than in the data, but it is higher than in the AIRM which implies
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wealth shares of 5.5% and 15.8%, respectively.21 Figure 6a shows the 99/50 wealth ratio over the470

entire life-cycle. After age 35, the ratio is around seven in the AVRM, almost three times larger than
in the AIRM. The figure also highlights that the model, in part, falls short of the data because the
calibration restricts wealth inequality to equal earnings inequality at age 24.

The models feature wealth heterogeneity for two reasons. The first is heterogeneity in life-cycle
savings. Retirement benefits are lower than average earnings, thus, workers accumulate wealth to475

smooth consumption. Put differently, heterogeneity in life-time earnings translate into heterogeneity
in retirement savings. This channel is particularly potent to explain large top wealth inequality when
large earnings differences at the top of the distribution arise early in the working-life and are persistent,
hence, translate into large differences in total life-cycle earnings. Figure 6b shows that top earnings
(99th percentile) are much higher in the AVRM than in the AIRM, and they match almost perfectly480

the data. At the beginning of the life-cycle, top earnings are almost identical in the two models and
the data, but they grow much more rapidly in the AVRM than in the AIRM afterward. The high
growth in top earnings results from the rare but persistent and fat-tailed positive shocks early in life.
Figure 6c shows that median earnings are almost identical in the two models, and Figure 6d shows
that, as in the data, bottom earnings (10th percentile) are higher, hence closer to median earnings, in485

the AVRM than in the AIRM, thus, rationalizing that the two models feature the same variance in
log-earnings over the life-cycle.

The second reason for wealth inequality are precautionary savings in the model. Castañeda et al.
(2003) show that this mechanism contributes strongly to top wealth inequality when there exists a
”superstar” earnings state that occurs infrequently and is mildly persistent. When the state is only490

mildly persistent, workers have incentives to save most of the temporary earnings increase because
their earnings are expected to soon be lower. Though rare and large positive shocks early in life have
some flavor of this type of shock, these shocks are highly persistent. Given their persistent nature,
households increase consumption and the effect on precautionary savings is small. Large and persistent
negative shocks late in life do increase the need for precautionary savings. Yet, as Civale et al. (2017)495

show, negative skewness in the shock distribution increase precautionary savings most at the left tail
of the wealth distribution, thus, decreases wealth inequality.22 Measuring overall wealth inequality
by the Gini-coefficient of wealth, we find that the increase in top wealth inequality outweighs the
decrease in bottom inequality. That is, the Gini-coefficient of wealth is 0.54 in the AVRM and 0.49 in
the AIRM (0.64 in the data).500

5.3. Consumption Inequality and Insurance
Figures 7b to 7d compare the consumption distributions in the AVRM and the AIRM. Bottom in-
equality (50/10 consumption ratio) grows by similar amount in the two models over the life-cycle.
However, it is somewhat higher in the AIRM throughout the life-cycle. For one, lower bottom in-
equality results from higher bottom earnings in the AIRM. Moreover, the timing and composition of505

shocks play a role. Regarding the timing, note that at the beginning of life, when self-insurance is at
its lowest, the AVRM features relatively few large negative shocks, thus, relatively few catastrophic
events that lead to a large downward consumption adjustment. Regarding the composition, remember
that relatively many large negative shocks are transitory, thus, relatively easy to insure in the AVRM
and this is particularly the case at the beginning of the life-cycle. In contrast, in the AIRM, the510

fraction of large shocks that are negative is age-invariant, and the fraction of large shocks that are

21Cagetti and Nardi (2006) show that a model with entrepreneurial choice is one possibility to match the right tail
of the wealth distribution of workers because former entrepreneurs have high wealth holdings.

22Consistent with this, we find that fixing earnings uncertainty beyond age 40 to the process workers face at age 40
leaves top wealth inequality almost unchanged.
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(a) V ar[log Consumption] (b) 50/10 Consumption Ratio

(c) 90/50 Consumption Ratio (d) 99/50 Consumption Ratio

Notes: Figure 7a displays the variance of log consumption by age from the structural models described in Section 5.
Figures 7b to 7d display selected percentile ratios of consumption by age.

Figure 7: Consumption Inequality over the Life-Cycle

transitory is the same for positive and negative shocks.23 Upper consumption inequality (90/50 ratio)
grows somewhat faster in the AVRM, but the overall level is similar in the two models. The main
difference between the two models is, again, top inequality (99/50 ratio). Top inequality grows much
more rapidly with age in the AVRM, and it is substantially higher on average than in the AIRM.515

Those in the top 1% consume 2.8 times more than the median at age 55 in the former, but only 1.9
times more in the latter.

These consumption dynamics have qualitative ambiguous effects on the welfare costs of incomplete
insurance markets. On the one hand, fewer catastrophic consumption events, i.e., less consumption
inequality at the bottom of the distribution, imply lower welfare costs from incomplete markets in the520

AVRM. On the other hand, more resources allocated to the top 1% imply that the typical household

23We opt for a model with age-invariant shocks as comparison to the AVRM because it is the most widely used
framework. Alternatively, one could estimate age-varying variances for transitory and persistent shocks and assume
that these shocks are normally distributed. This extension would allow the fraction of large shocks and the fraction of
large shocks that are transitory to vary, but, by assumption, these fractions would be the same for positive and negative
shocks.
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has lower average consumption and, thus, implies higher welfare costs arising from incomplete markets.
Figure 8 displays these two effects graphically. It shows the densities of discounted utilities in the
AVRM and the AIRM. The two models have different discount factors and, as a result, discounted
utility is measured on a different scale. To make the two comparable, we normalize discounted utilities525

with the value of the respective social planner solutions.24 The figure shows that poor outcomes, values
smaller than one, are more likely in the AIRM. Put differently, even on a life-time utility basis, the
left tail of the consumption distribution is more dispersed in the AIRM leading to lower welfare. At
the same time, the AVRM has a higher probability of life-time utility outcomes that are much better
than the social planner solution. The probability to have an outcome better than the 99th percentile530

of the distribution of life-time utility outcomes in the AIRM is 2.38% in the AVRM. Again, this is
a different way of saying that the fatter right tail in the consumption distribution translates also in
a fatter right tail in the distribution of life-time utilities in the AVRM. Given that the two models
have the same amount of total labor income, the resources used to finance these right tail events must
come from workers in the center of the distribution. Indeed, the center of the distribution of life-time535

utilities is shifted to the left and is thinner in the AVRM relative to the AIRM. This also manifests in
a kurtosis of the distribution that is about three times larger in the former. Shifting resources from
median life-time consumption outcomes towards high life-time consumption reduces welfare. We find
that this effect dominates the effect of less catastrophic outcomes, i.e., welfare is lower in the AVRM.
An unborn worker is willing to pay 4.7% of life-time consumption to avoid the idiosyncratic earnings540

risk in the AVRM and 4.1% in the AIRM.

Next, we inspect in more detail the differences between the two models with respect to the dynamics of
cross-sectional consumption inequality over the life-cycle. Guvenen (2007) shows that the shape of this
moment is informative about the age-varying insurance households have against earnings risk. More
specifically, he shows that standard earnings risk models generate a concave profile of consumption545

inequality over the life-cycle because earnings shocks become effectively more transitory as workers
approach retirement. He shows that learning about deterministic differences in individual earnings
growth profiles can reconcile the model with the more linear increase in US data.25 Fuchs-Schündeln
et al. (2010) find that the German data also displays a close to linear increase in the variance of log
consumption over the life-cycle.550

Figure 7a shows that consumption inequality over the life-cycle also shows a concave shape in the
AIRM calibrated to German data. The model implies a total increase in the variance of log con-
sumption of 0.05 from age 25 to 55 which is consistent with the consumption data analyzed by
Fuchs-Schündeln et al. (2010).26 The total increase in consumption inequality over the life-cycle is
similar in the AVRM, however, the shape of the increase is somewhat different. In particular, after555

an initial fall, the increase is steeper than in the AIRM and shows less flattering at old age.

To understand how age-varying risk affects cross-sectional consumption inequality over the life-cycle,
we compute at each age the average consumption responses to different shocks using a linear regres-
sion:27

∆log(ci,h) = ϕ0,h+ϕξ+,h(ξi,h|ξi,h > 0)+ϕξ−,h(ξi,h|ξi,h < 0)+ϕι+,h(ιi,h|ιi,h > 0)+ϕι−,h(ιi,h|ιi,h < 0)+ςi,h.

Thus, φξh,+ = 1 − ϕξ+,h measures how much of a persistent positive shock does not translate into

24We define the social planner solution as the discounted utility resulting from optimal choices when resources can
be pooled across agents at each age, but not across ages.

25De Nardi et al. (2019) come to a different conclusion regarding the shape of this moment in US data. Their results
imply a concave shape.

26Similar to wealth data, consumption data is only available at the household level in Germany.
27In the AVRM, transitory shocks include those from the mean zero component of earnings, that tend to be small

and those draws from the positive and negative components that tend to be large. Because the former have almost no
dispersion, thus, almost no quantitative effect on consumption, we only focus on the latter.
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Notes: The figure shows the densities of discounted utilities in the AVRM and the AIRM. We set each relative to the
respective value of the social planner solution. Values greater than one imply a discounted utility larger than that of
the social planner.

Figure 8: Expected Values

(a) Persistent Shocks (b) Transitory Shocks
Notes: Panel (a) displays the fraction of persistent shocks that do not translate into consumption consumption changes
for the structural models described in Section 5. Panel (b) displays the the same for transitory shocks.

Figure 9: Insurance against Shocks

consumption. We define φξh,−, φιh,+, and φιh,+ analogously. In case of uncorrelated shocks, as in the
AIRM, and without conditioning on the sign of the shocks, these insurance coefficients are equal to
those calculated by Kaplan and Violante (2010).560

In both models, consumption responds more to persistent than to transitory shocks.28 Moreover,
consumption responds more strongly to positive than to negative shocks, particularly late in life, and
the asymmetry is larger in the AVRM. These asymmetric responses to shocks arise from precautionary

28In either model, average consumption responses are weaker than those found by Kaplan and Violante (2010)
for a US calibration. For one, the differences arise from their model featuring permanent shocks (shocks are highly
persistent in our case). Moreover, taxes are more progressive in Germany leading to smaller net earnings changes, thus,
consumption changes, given a gross earnings change. Relative to their findings, consumption responds particularly weak
at the beginning of life. Different from them, workers start with positive assets in our model which weakens consumption
responses, particularly of persistent negative earnings shocks. Moreover, net income growth is smaller in Germany over
the life-cycle which weakens initial consumption responses to positive shocks.

23



savings. A positive shock implies that fewer precautionary savings are required for the rest of working-
life, thus, can be consumed. Precautionary savings are higher in the AVRM because of the rare but565

large and often persistent negative shocks late in life. Remember that the probability to receive a
persistent shock and the probability to receive a positive shock are increasing late in life in the AVRM.
As a consequence, consumption responses become relatively large in this model leading to a relatively
rapidly growing consumption inequality.29

6. Conclusion570

This paper estimates age-varying distributions of transitory and persistent earnings shocks in Ger-
many. Early in working-life, workers experience rare but large positive shocks, both transitory and
persistent in nature. As workers move into prime-age, earnings risk decreases, both because earnings
fluctuate less and fluctuations are more transitory on average. For elderly workers, rare but large
(persistent and transitory) negative earnings shocks become a major source of risk. Our parametric575

earnings process is simple enough to introduce it into a model of consumption decisions with incom-
plete financial markets. The age-varying risk structure helps us to reconcile two stylized facts from the
data. First, relative to a model with an age-invariant AR(1) process and Gaussian shocks, wealth is
more concentrated in the top of the wealth distribution. Large persistent positive shocks early in life
imply high life-time incomes for a small group of workers. These workers have incentives to accumulate580

large savings for life-cycle purposes. As a result, the share of wealth held by the top one percent in-
creases by a factor of 1.8. Second, cross-section consumption inequality grows relatively more rapidly
close to retirement in our model. This results from positive and persistent shocks becoming relatively
more likely at the end of working-life and consumption responding relatively strongly to these types of
shocks. As individual consumption responses become stronger, the variance of consumption inequality585

increases.

Our analysis restricts itself to male workers with a high attachment to the labor force, mainly, because
our data does not allow us to identify workers participation decisions upon shocks as in Low et al.
(2010). Studying age-varying, non-normally distributed earnings risk while allowing at the same time
for employment decisions resulting from shocks promises further insights into the welfare costs of590

incomplete insurance markets. Similarly, little is know on how this richer risk structure affects joint
household decisions on labor supply, consumption, and fertility.

Age-varying risk also raises several questions regarding social insurance. On average, earnings risk is
negatively skewed, implying that insurance against catastrophic events is highly valuable to society.
Yet, early in life, when self-insurance is lowest, earnings risk is positively skewed; thus, decreasing595

the need of insurance. What is more, most large shocks early in life are of a transitory nature. The
optimal size and design of the welfare state is, therefore, an even more complex question than that
of age independent Gaussian shocks. Finally, the risk structure also has implications on the level of
attainable private (and public) insurance. Krueger and Perri (2006) analyze privately efficient risk
sharing contracts. We show that prime-aged workers face close to no risk; thus, have little incentives600

to enter into any private, or support large public, risk sharing contract.

29We find that when decreasing the variance of shocks after age 45 by 30% and recalibrating the location parameters
of the distributions to insure that the conditional means of the shocks are unchanged results in a flattering in the growth
rate of consumption inequality late in life. The results are available from the authors upon request.
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A. Appendix

A.1. Residual Earnings Dynamics After Observable Events

(a) Unemployment (b) Job-to-Job
The figure displays mean residual log earnings around observable labor market events. We normalize mean residual
log earnings to zero in the year before the event. The left panel shows the case of workers becoming unemployed and
the right panel shows the case of a job-to-job transition that resulted in an earnings gain in year one. The dashed lines
display bootstrapped 95% confidence intervals.

Figure A1: Residual Log Earnings after Unemployment and Job-to-Job Transition

Figures A1a and A1b display residual log earnings around observable labor market events. In con-680

structing these figures, we first obtain residual log earnings by regressing for each age the log earnings
on workers’ observable characteristics. Next, we define an unemployment event as a worker working
less than 300 natural days in a given year while in the previous year she worked more than 300 natural
days. Moreover, we define a job-to-job transition as a worker working more than 300 natural days
in two consecutive years while she changes her establishment. Tjaden and Wellschmied (2014) show685

that about one third of job-to-job transitions result in a downward move in the job ladder. To avoid
this complication, we condition on job-to-job transitions that lead to an earnings gain in the initial
year. We normalize a worker’s residual log earnings to zero in the year before the labor market event
occurs and trace average residual log earnings for the consecutive five years.

Figure A1a shows that residual log earnings fall by about 0.57 log points in the year of an unem-690

ployment spell. However, they partially recover during the consecutive years leaving a worker with
8% lower earnings on average after 5 years. This pattern is qualitatively consistent with the US data
analyzed by Jacobson et al. (1993). The reduction in workdays during the first year of unemployment
contributes to the initially large decline in earnings. As workers find work and reclimb the job-ladder,
their earnings return towards their pre-unemployment level. Figure A1b shows that job-to-job tran-695

sitions show a similar pattern. On average, residual log earnings rise by 0.14 log points in the year
of the transition but fall during subsequent years resulting in an average increase in log earnings of
0.06 after 5 years. A possible explanation for the initial overshooting of residual earnings are signing
bonuses paid upon hiring.

A.2. Estimation700

A.2.1. Constructing the Moments
We model log earnings as the sum of deterministic and stochastic components that may depend on
cohort and time effects. Let Y ci,h,t be the log earnings of individual i, at age h, belonging to the birth
cohort c, in year t:

Y ci,h,t = f(Xi,h,t) + yci,h,t, (A.17)
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Notes: Figure A2 displays the variance of residual earnings growth by age and birth cohorts. Birth cohorts 1-9 belong
to years of birth 1923-1929,1930-1936,...,1980-1986, respectively.

Figure A2: By Cohort Variance of Residual Earnings Growth

where f(Xi,t,h) is a function representing observable differences among workers (Xi,h,t) such as edu-
cation, region, age and industrial sector, and year effects. yci,h,t represents the unobserved component
of earnings. Rewriting the above process in first differences yields

∆Y ci,h,t = ∆f(Xi,t,h) + ∆yci,h,t. (A.18)

First, we remove predictable changes in log earnings, such as education, by running for each age
cross-sectional regressions. The regressions control for a dummy of workers’ education, year, region
of residence, and 14 major industries. Denote the corresponding residual by gci,h,t:

gci,h,t ≡ ∆yci,h,t (A.19)

So far, our specification allows the moments of residual earnings growth to be calendar year and birth
cohort specific. As an illustration of such effects, Figure A2 shows the variance of residual earnings
growth for each of our 9 cohorts. There are two salient features. First, there is a calendar year effect
with large variances for all cohorts about 5 years after the German reunification. For example, for705

the 5th birth cohort, born between 1951-1957 (green line) the German reunification occurs at ages
34-40, and the time effect increases the variances after age 45. Second, there is also a visible cohort
effect, with later cohorts facing substantial higher variances than earlier cohorts. We follow Blundell
et al. (2015) and eliminate these effects by averaging all moments (variance, skewness, kurtosis, etc.)
across cohorts, assigning equal weight to each. Therefore, our results can be interpreted as the risk a710

typical cohort faces.

To compute the cross-sectional earnings inequality over the life-cycle, V ar(yi,h), we follow Deaton and
Paxson (1994) and regress the cross-sectional variance of log earnings on a full set of age and cohort
dummies. We compute the intercept (age 24) as the mean effect across cohorts.
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A.3. US Comparison715

(a) Variance (b) Skewness (c) Kurtosis
Figures A3a, A3b and A3c display, respectively, the variance, skewness and kurtosis of residual earnings growth by
age for the US and Germany. The German data is described in Section 2.2. For the US, we compute for each age groups
(25-29,...,50-54) the average over the percentiles reported in Guvenen et al. (2016).

Figure A3: US and German Higher Order Moments

Figure A3 compares the variance, skewness and kurtosis of residual earnings growth. The German
data refers to labor earnings from the SIAB sample described in Section 2.2. For the US, we compute
for each age groups (25-29,...,50-54) the average over the percentiles reported in Guvenen et al. (2016).
Different from the SIAB data, the latter includes self-employment income and non-labor income.

A.4. Growth Rate Heterogeneity720

Our baseline specification omits heterogeneity in individual earnings growth rates. Guvenen (2009)
(and the citations within) show that this type of heterogeneity is potentially an important source of
individual earnings dynamics. In particular, this line of literature finds that the increase in the cross-
sectional inequality of earnings over the life-cycle is driven partly by this type of heterogeneity and
shocks to earnings, instead of featuring a close to permanent component as in our baseline results, are725

only mildly persistent. To show the robustness of our results, we estimate the following augmented
version of the model:

yi,h = αi + κih︸ ︷︷ ︸
initial heterogeneity

+ ui,h︸︷︷︸
stochastic component

, (A.20)

where αi ∼ N(0, σ2
α), κi ∼ N(0, σ2

κ), and COV (αi, κi) = 0. Our moments identify σ2
κ in two distinct

ways. First, Guvenen (2009) shows that a positive variance implies that the cross-sectional variance
of residual earnings growth increases in a convex fashion over the life-cycle. Second, Hryshko (2012)730

shows that the the autocovariance function of residual earnings growth converges at distant lags
towards σ2

κ.

Table A1 shows the results from estimating this model. The resulting change in the objective function
is small, and we find little unobserved heterogeneity in individual earnings growth rates. Within two
standard errors, the variance is smaller than XXX which is by an order of magnitude smaller than the735

values found by the literature that estimates this parameter jointly with modestly persistent earnings
shocks. These results are consistent with those in Blundell et al. (2015) who, similar to us, identify
the parameter from the autocovariance function of earnings growth with sufficient long lags. The tight
estimate of the parameter may be surprising at first, given the large noise in this moment even in
administrative data (see Figure 4c). Hryshko (2012) uses simulation exercises to show that a minimum740

distant estimator closely identifies σ2
κ when it takes all, though noisy, autocovariances into account.
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Table A1: Growth Rate Heterogeneity

ρ− ρ+ θ− θ+ σα σκ

0.9795 0.9767 0.0420 0.1486 0.0300 0.0025
Obj. Function 81.68

Notes: The table displays selected parameter estimates
of the earnings process described by Equation (A.20).
The process is estimated by the method of simulated
moments. We use the sample from SIAB described in
Section 2.2.

In a simpler model, Hryshko (2012) also shows that omitting transitory shocks downward biases
the estimate for persistent shocks and upward biases σ2

β . Following this idea, we reestimate the
model without transitory shocks.30 We find much lower AR(1) estimates and a larger estimate of
profile heterogeneity, σβ = 0.0112%. The intuition is simple. When neglecting transitory shocks, the745

moments estimator implies ρ << 1 to match the negative autocovariance function at lag one. Yet,
ρ << 1 alone implies that the autocovariance function is negative at intermediate lags. To obtain an
autocovariance function which is closer to zero at those lags, σβ >> 0 is required.

A.5. Moments Selection and Estimation
We simulate life-cycle employment histories for 20,000 workers who enter the labor market at the age
of 24 and work until the age of 55. The resulting simulated minimum distance estimator is given by:

θ̂ = argmin
θ

F (θ)′IF (θ) (A.21)

F (θ)n = fn(θ)−mn

ωn
, (A.22)

where fn(θ) is the nth model moment, and mn is the corresponding nth data moment. Similar to750

Guvenen et al. (2016), we employ a moment specific adjustment factor, ωn. We use this adjustment
factor to jointly deal with two issues presented by the data. First, the moments are measured on
different scales. For example, kurtosis is in absolute value about 500 times larger than the first auto-
covariance. If we had minimized the sum of absolute squared deviations (ωn = 1), the optimization
would not have had put any emphasis on moments with low absolute sizes. At the same time, we755

have several moments which are close to zero, such as the autocovariance function, but fluctuate sub-
stantially in relative terms from one age to the next. Thus, if we had minimized the sum of relative
squared deviations (ωn = abs(mn)), the optimization would have concentrated almost exclusively on
these large relative deviations close to zero that are likely the result of a small sample.

Using moment specific adjustment factors allows us to use absolute deviations but reduce the emphasis760

on moments with large absolute numbers. Unfortunately, it gives us a degree of discretion. We choose
the adjustment factors in an iterative fashion such that the implied loss function displayed in Table
A2 is consistent with the model fit we observe in Figure A4. We opt to give the variance of log
earnings over the life-cycle and the mean earnings growth by age (which is zero by construction in
the data) somewhat larger weights as we want to ensure a good fit with these moments. We keep the765

adjustment factors fixed when estimating restricted versions of the model.

30The results are available upon request from the authors.
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Most sets of moments contain 31 year moments. This is the case for the skewness, kurtosis, fraction
of positive shocks, fraction of shocks above 5%, unconditional mean, variance of log earnings, uncon-
ditional autocovariance, conditional mean and conditional variance. This amounts to 31 × 11 = 341
moments. The conditional first autocovariance are observed for 30 years. These amount to 30×2 = 60770

moments. Lastly, the initial mean of log residual earnings at age 24 amounts to 1 moment. The total
number of moments that we target is then N = 341 + 60 + 1 = 402.

Given our large parameter set, the issue of finding a global minimum arises. We first obtain reasonable
starting values by experimenting with different combinations of parameters. We tested different global
minimum algorithms and a pattern search algorithm performed best in finding a minimum. Provided775

the optimal parameters, we compare the minimum to (possibly) other minima where we start the
algorithm from different starting points. We find that the pattern search algorithm, in general, is able
to converge to the same minimum from different starting points.

We obtain standard errors by 100 block bootstraps. Using a global search algorithm in each iteration
is infeasible numerically. Therefore, we use a local optimizer, a sequential quadratic programming780

algorithm. Implicitly, we assume that a change in the data sample does not lead to a too large change
in our estimates, therefore, possibly downward biasing the standard errors.
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A.6. Model Moments

(a) E[gi,h|gi,h ≷ 0] (b) V ar[gi,h|gi,h ≷ 0] (c) V ar[gi,h]

(d) Kelly′s Skewness[gi,h] (e) Kurtosis[gi,h] (f) Prob(gi,h > 0)

(g) Prob(|gi,h| > 5%) (h) E[gi,h+kgi,h] (i) E[gi,h+1gi,h|gi,h ≷ 0]

(j) V ar[log Earnings] (k) E[gi,h]

Figure A4: Model Fit - Column (1), Table 1
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(a) E[gi,h|gi,h ≷ 0] (b) V ar[gi,h|gi,h ≷ 0] (c) V ar[gi,h]

(d) Kelly′s Skewness[gi,h] (e) Kurtosis[gi,h] (f) Prob(gi,h > 0)

(g) Prob(|gi,h| > 5%) (h) E[gi,h+kgi,h] (i) E[gi,h+1gi,h|gi,h ≷ 0]

(j) V ar[log Earnings] (k) E[gi,h]

Figure A5: Model Fit - Column (2), Table 1

(a) Data (b) Model
Figure A6a displays the kernel distribution of residual earnings growth at the age of 36 in our data described in Section
2.2. Figure A6b displays the densities of transitory shocks from the model described in Section 4.1 at age 36.

Figure A6: Density of Residual Earnings Growth
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Table A2: Objective Function Decomposition

Model: (1) (2) (3) (4)
Full No No Heterog.

Moments Model h ι Growth
E[g+] 11.42 23.61 21.03 11.44
E[g−] 4.78 7.65 6.36 4.78
V ar[g+] 4.19 15.02 6.65 4.11
V ar[g−] 6.51 6.10 5.95 6.27
Kelly′s Skewness[g]] 3.48 6.48 7.73 3.48
Kurtosis[g] 5.87 9.14 10.89 5.75
% of Positive Innovations 10.28 22.33 16.54 10.05
E[g−h gh+1] 5.49 12.07 - 5.54
E[g+

h gh+1] 6.54 7.26 - 6.64
E[g−h gh+2] 1.30 1.37 - 0.98
E[g+

h gh+2] 2.04 9.11 - 1.69
E[g] 7.15 6.98 5.45 8.45
% of Innovations > 5% 5.32 4.38 6.70 5.36
Uncond. Autocovariance 2.63 11.33 8.58 1.39
Initial E[log earnings] 1.29 5.53 1.92 1.38
V ar[log earnings] 4.42 47.70 41.00 4.37
Total 82.70 196.05 138.79 81.68

Notes: The table displays a decomposition of the loss function.
The process is estimated by the method of simulated moments.
We use the SIAB sample selection described in Section 2.2. Col-
umn (1) estimates our Baseline specification outlined in 4.1.
Columns (2)-(4) shut down , age-dependence, profile heterogene-
ity, and transitory shocks, respectively.

A.7. Online Appendix: Identification
In the following, we provide additional intuition for the identification of the parameters discussed785

in Section 4.2. To this end, we perform two related simulation exercises. First, we highlight the
relationship between a particular model parameter and the different data moments. To this end, we
simulate a 1% change in a model parameter from its optimum holding all other parameters fixed and
plot the resulting relative change in the age averaged model moments.31 Second, to highlight those
moments providing most of the identification of a particular parameter, we plot the non-aged average790

change in those model moments as a response to a change in the model parameter from its optimum.
In this exercise, we select changes in parameter values at discretion to make the effects best visible.

31All parameter changes affect the mean of log earnings and log earnings growth, and we choose to omit these
responses in our graph for illustration purposes.
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Table A3: Additional Parameter Estimates from Table
1

Model: (1) (2) (3) (4)
Full No No Heterog.

Parameters Model h ι Growth
δ−I 0.4844 0.5442 0.5621 0.4844
δ−II -0.0294 -0.0280 -0.0294 -0.0294
δ−III 0.0006 0.0006 0.0006 0.0006
δ+
I 0.1132 0.2521 0.2727 0.1111
δ+
II -0.0030 -0.0053 -0.0031 -0.0028
δ+
III 0.0004 0.0004 0.0004 0.0004
γa,ι+ 0.7989 1.7753 - 0.8033
γb,ι+ 0.0267 - - 0.0265
γa,ι− 1.4259 1.3716 - 1.4273
γb,ι− -0.0133 - - -0.0132
γa,ξ+ 0.8798 1.9205 1.1186 0.8807
γb,ξ+ 0.0171 - 0.0203 0.0166
γa,ξ− 0.6636 1.5199 1.3826 0.6692
γb,ξ− 0.0007 - -0.0012 -0.0001
λ+
a -1.6661 -4.5968 -1.8372 -1.6671
λ+
b -0.0747 - -0.0694 -0.0747
λ−a -3.0584 -3.4462 -3.4936 -3.0584
λ−b 0.0451 - 0.0380 0.0448
σιn 0.0169 0.0068 0.0083 0.0168
σ0,ι+ 0.5807 0.0000 0.0000 0.5715
σ0,ι− 1.5764 1.4263 1.7277 1.5765
µ+

0,ι -1.1461 -1.8582 -1.2565 -1.1589
µ−0,ι -3.0737 -2.6942 -3.8262 -3.0859
Objective Function 82.70 196.05 138.79 81.68

Notes: The table displays additional estimates to Table 1.
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Table A4: Standard Errors, Column (1) Table 1.

Parameters SE Parameters SE
ρ− 0.0000∗∗∗ δ−I 0.0000∗∗∗

ρ+ 0.0000∗∗∗ δ−II 0.0000∗∗∗

σα 0.0000∗∗∗ δ−III 0.0000∗∗∗

σιn 0.0002∗∗∗ δ+
I 0.0000∗∗∗

γ+
a,ι 0.0004∗∗∗ δ+

II 0.0000∗∗∗

γ+
b,ι 0.0006∗∗∗ δ+

III 0.0000∗∗∗

γ−a,ι 0.0001∗∗∗ γ−a,ξ 0.0003∗∗∗

γ−b,ι 0.0010∗∗∗ γ−b,ξ 0.0015
λ+
a 0.0017∗∗∗ γ+

a,ξ 0.0001∗∗∗

λ+
b 0.0010∗∗∗ γ+

b,ξ 0.0006∗∗∗

γ+
0,ι 0.0000∗∗∗ λ−a 0.0015∗∗∗

γ−0,ι 0.0002∗∗∗ λ−b 0.0017∗∗∗

λ−0,ι 0.0000∗∗∗ λ+
0,ι 0.0002∗∗∗

Notes: The table displays standard errors for the estimates
of our full model, displayed in Column (1) of Tables 1.
Standard errors are obtained by 100 block bootstraps. Es-
timates with superscripts {∗,∗∗ ,∗∗∗ } imply the parameter
is different from zero at the 10, 5, and 1 percent significance
level, respectively.

(a) Sensitivity (b) Simulation
Figure A7a displays the moment responses to a 1% increase in the standard deviation of permanent heterogeneity, σ̂α.
Figure A7b displays the simulated cross-sectional inequality of 3 and 6 times σ̂α from our main specification.

Figure A7: Permanent initial heterogeneity
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(a) Sensitivity (b) Simulation (c) Simulation
Figure A8a displays the moments response to a 1% increase in the standard deviation of heterogeneous earnings growth,
σ̂β . Figure A8b displays the simulated cross-sectional inequality of 5 and 10 times σ̂β from our main specification. Figure
A8c displays the simulated unconditional autocovariance of 5 and 10 times σ̂β from our main specification.

Figure A8: Heterogeneous earnings growth

(a) Sensitivity (b) Simulation

(c) Sensitivity (d) Simulation
Figures A9a and A9c display the moments response to a 1% increase of the persistence parameters, ρ̂+ and ρ̂−,
respectively. Figures A9b and A9d display the simulated cross-sectional inequality of selected parameter values that
are of moderate persistence (ρ ≈ 0.8).

Figure A9: Persistence of Persistent of shocks
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(a) Sensitivity (b) Simulation

(c) Sensitivity (d) Simulation
Figures A10a and A10c display the moments response to a 1% increase in the parameters guiding the variances of
transitory shocks, γ̂a,ι+ and γ̂a,ι− , respectively. Figures A10b and A10d display the simulated first-order positive and
negative autocovariance, respectively, of selected parameter values above and below the estimated parameters from our
main specification.

Figure A10: Variances of transitory shocks
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(a) Sensitivity (b) Simulation

(c) Sensitivity (d) Simulation
Figures A11a and A11c display the moments response to a 1% increase in the parameters guiding the persistence of
transitory shocks, θ+ and θ−, respectively. Figures A11b and A11d display the simulated first-order positive and
negative autocovariance, respectively, of selected parameter values above and below the estimated parameters from our
main specification.

Figure A11: Persistence of transitory shocks
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(a) Sensitivity (b) Simulation

(c) Sensitivity (d) Simulation
Figures A12a and A12c display the moments response to a 1% increase in the parameters guiding the means of shocks,
λ̂+
a and λ̂−

b
, respectively. Figures A12b and A12d display the simulated positive and negative mean, respectively, of

selected parameter values above and below the estimated parameters from our main specification.

Figure A12: Means of shocks
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(a) Sensitivity (b) Simulation

(c) Sensitivity (d) Simulation
Figures A13a and A13c display the moments response to a 1% decrease in the parameters guiding the variances of
persistent shocks, γ̂+

ξ,b
, and a 1% increase of γ̂−

ξ,a
, respectively. Figures A13b and A13d display the simulated positive

and negative variance, respectively, of selected parameter values above the estimated parameters from our main
specification.

Figure A13: Variance of persistent shocks
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(a) Sensitivity (b) Sensitivity

(c) Simulation (d) Simulation (e) Simulation
Figures A14a and A14b display the moments response to a 1% increase in the parameters guiding the sampling
probabilities of shocks, δ̂+

2 and δ̂−
1 , respectively. Figure A14c displays selected parameters guiding the probability

of positive and negative shocks. Figure A14d and A14e display the corresponding simulated fraction of positive
innovations and kurtosis.

Figure A14: Sampling probabilities
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