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Abstract

The literature offers two foundations for competitive search equilibrium, a Nash

approach and a market-maker approach. When each buyer visits only one seller (or

each worker makes only one job application), the two approaches are equivalent. How-

ever, when each buyer visits multiple sellers, this equivalence can break down. Our

paper analyzes competitive search equilibrium with simultaneous search using the two

approaches. We consider four cases defined by (i) the surplus structure (are the goods

substitutes or complements?) and (ii) the mechanism space (do sellers post fees or

prices?). With fees, the two approaches yield the same constrained efficient equilib-

rium. With prices, the equilibrium allocation is the same using both approaches if

the goods are complements, but is not constrained efficient. In the case in which only

prices are posted and the goods are substitutes, the equilibrium allocations from the

two approaches are different.
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1 Introduction

In competitive search models, capacity-constrained agents on one side of the market post and

commit to terms of trade. Agents on the other side of the market, after observing all posted

terms of trade, decide where to direct their search. Consider, for example, a product market

application of competitive search with S sellers, each with one unit of a homogenous good to

sell, and B buyers, each wanting to purchase one unit of the good. Each seller posts a price,

and buyers, after observing all posted prices, direct their search. That is, each buyer chooses

a seller from whom he or she tries to purchase the good. When setting its price, each seller

faces a tradeoff. The higher the price, the greater is the payoff the seller receives if the good

is sold but the lower is the probability of sale. The seller chooses a price to maximize his

or her expected payoff taking this tradeoff into account through a market utility constraint;

i.e., the seller realizes that any buyers its posted price might attract must expect a payoff no

lower than is available elsewhere in the market. In competitive search equilibrium, each seller

takes the buyer expected payoff that is available elsewhere in the market, i.e., the “market

utility,” as given. This, of course, requires B and S sufficiently large, i.e., competitive search

equilibrium is a large-market concept.

The literature offers two common interpretations of competitive search equilibrium. The

first views competitive search equilibrium as the limit of a sequence of Nash equilibria as

the numbers of players on the two sides of a market get arbitrarily large. Consider another

standard example, a labor market in which v firms, each with one vacancy, post and commit

to wages; then u unemployed workers direct their search after observing all posted wages.

For given u and v, one can compute the symmetric Nash equilibrium of this game. Letting

v, u→∞ while holding λ = u/v fixed, we can compute the sequence of Nash equilibria and

take the limit. This gives the competitive search equilibrium. This first interpretation is the

one presented in Peters (2000), Burdett et al. (2001) , Galenianos and Kircher (2012) and

Albrecht et al. (2020) among others.

A second interpretation of competitive search equilibrium uses the concept of “market

maker.” In the labor market example, again imagine an arbitrarily large market, i.e., v, u→
∞ with λ fixed. Suppose all firms post the same wage, w, so that workers randomize their

search and each vacancy expects λ job seekers. Then (w, λ) is a symmetric competitive search

equilibrium if there is no profitable possibility for a market maker to set up a “submarket”

in which firms are promised an arrival rate λ̃ of job seekers in return for posting a wage of

w̃. This is the interpretation of competitive search equilibrium presented in Moen (1997) and

Mortensen and Wright (2002) among others.

In the product market example when each buyer can contact only one seller and in the

labor market example when each worker can contact only one firm, the above interpretations
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lead to the same equilibrium allocation. This can be shown by comparing the analyses of,

e.g., Burdett et al. (2001) and Mortensen and Wright (2002). In the labor market example,

when each worker can only contact one firm, a deviating firm and a deviating market maker

offer workers the same alternative, namely, the chance to apply to a firm that is offering a

wage that differs from the one that other firms are posting. However, in settings in which

workers make multiple applications, the equivalence can break down. A deviating market

maker can attract multiple firms giving workers the option to send more than one application

to the deviant submarket, but under the Nash interpretation, each worker can send at most

one application to the deviant firm. This difference can change the equilibrium outcome.

Similarly, in a product market in which each buyer can approach multiple sellers, the Nash

and market maker interpretations of competitive search equilibrium can lead to different

outcomes.

Galenianos and Kircher (2009) consider a third way to calculate competitive search equi-

libria. To evaluate the expected payoff from a deviation by a seller, they let a measure zero of

the sellers tremble and offer any mechanism from a given mechanism space. This implies that

the number of submarkets is the same as the number of elements in the mechanism space. In

their equilibrium, no submarket yields a strictly higher expected payoff for sellers than the

equilibrium payoff. If a buyer who visits a deviant submarket pays all of his or her other vis-

its to the candidate equilibrium submarkets, then the equilibrium concept of Galenianos and

Kircher (2009) with trembling-hand sellers reduces to the market-maker equilibrium, which

is indeed the case for the model in Galenianos and Kircher (2009). However, it can be the

case that for some other models, a buyer is better off visiting more than one nonequilibrium

submarket. In this case, their equilibrium concept differs from the market-maker equilib-

rium concept. If a seller considers deviating to one submarket, this seller must then believe

that some other sellers will deviate to some other submarket simultaneously, even if this is

suboptimal for those other sellers. In the market-maker equilibrium, in contrast, a potential

deviant seller believes that other sellers will never enter submarkets that give them subopti-

mal payoffs. We therefore focus on competitive search equilibria based on either single-seller

(Nash) deviations or on market-maker deviations.

The purpose of our paper is to examine these two equilibrium concepts in a competitive

search environment in which buyers direct their search to multiple sellers or in which workers

apply to more than one job. We are interested in determining which market characteristics

lead to equivalence, i.e., when do the Nash and market-maker approaches yield the same

equilibrium outcomes, and when do they differ? Under what circumstances do the two

approaches generate equilibrium outcomes that are constrained efficient? We can think of a

market maker as a type of intermediary, so our results also contribute to the literature that

studies the role of intermediaries in markets.
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perfect complements perfect substitutes

entry fees Nash = MM (= efficiency) Nash = MM (= efficiency)

prices Nash = MM ( 6= efficiency) Nash 6= MM (= efficiency)

Table 1: Comparison of the Nash and the market-maker (MM) equilibria

The results of our paper are that under some conditions, the Nash and market-maker

equilibria coincide; under other conditions, the two equilibrium allocations differ. When

the Nash and market-maker equilibria are the same, the common equilibrium allocation is

constrained efficient under some conditions but inefficient under others, and sometimes the

common equilibrium allocation is efficient even though the Nash and market-maker out-

of-equilibrium payoffs differ. When the Nash and market-maker approaches give different

equilibrium allocations, only the market-maker approach gives efficiency. We generate this

range of outcomes by (i) allowing for two different mechanisms, namely, entry fees or prices,

and (ii) allowing for goods (or, in the labor market, jobs or workers) to be complements or

substitutes. This gives four (2× 2) cases. Table 1 summarizes the results.

It is noteworthy that the market-maker approach does not always yield the constrained

efficient outcome, even though market makers have the potential to attract all visits of buyers

who visit the deviant submarket. Suppose that market makers can enforce the following

exclusive participation rule: buyers should either pay all visits to the submarket or none. In

this case, we can think of the market maker as purchasing a ”bundle” of buyer visits at a

price equal to the buyers’ market utility with the objective of maximizing seller profit. Then

following the logic of competitive search models with single visits, the equilibrium is always

constrained efficient. However, in the absence of such an exclusive participation rule, the

number of visits per buyer to the deviant submarket is chosen optimally by the buyers and

depends on whether the visits are strategic complements or substitutes. If they are strategic

substitutes, then buyers who visit the deviant submarket will choose to pay exactly one visit

there, and the two approaches (Nash and market-maker) yield the same outcome on and off

the equilibrium path. We find that buyer visits are strategic substitutes when only entry

fees are employed and the goods are perfect substitutes, but when the mechanism consists

of prices alone, the visits are strategic substitutes when the goods are perfect complements.

If the visits are strategic complements, then buyers who visit the deviant submarket will

choose to pay all their visits there, which implies that the market-maker equilibrium is always

constrained efficient. This happens when sellers post only entry fees and the goods are perfect

complements and when sellers post only prices and the goods are perfect substitutes. In the

entry fee case, the difference between the Nash outcome and the market-maker outcome
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arises only off equilibrium, but, when only prices are posted, the equilibrium outcomes also

differ.

Although there is a large and growing literature on competitive search, only a few papers

have considered multiple visits/applications despite its empirical importance.1 Albrecht et al.

(2006), for example, allow workers to apply to multiple firms and show that when firms

Bertrand compete for workers with multiple offers, that unlike the case in which workers

make only a single application, the competitive search Nash equilibrium is not constrained

efficient.2 Albrecht et al. (2020) examine this further and show that the above conclusion

depends on the choice set of firms: if firms are allowed to post both prices and fees, then

there exists a continuum of competitive search Nash equilibria, one of which is constrained

efficient. As a complement to these results, Albrecht et al. (2020) add an appendix in

which they characterize the equilibrium outcome when a measure zero of firms deviates

“collectively.” In this case, the unique equilibrium is again constrained efficient. Our current

paper provides a general foundation for competitive search models in which agents make

multiple visits/applications using both the Nash and market-maker approaches.

In the next section, we set up a model of competitive search that allows for simultaneous

search by buyers in a product market or multiple job applications by workers. The setup

allows firms to compete by posting general mechanisms. Section 3 presents the case in which

firms compete by posting fees, and Section 4 presents the case in which firms can only post

prices (or wages). The final section contains concluding remarks.

2 The Model

2.1 Setup

There is a continuum of identical buyers with measure B and a continuum of identical sellers

with measure S. Each seller has one unit of an indivisible good to sell. Both buyers and

sellers are risk neutral. The value of no trade for a seller or a buyer is normalized to zero.

Buyers may demand more than one unit of the good. We focus on two polar cases: (i)

perfect substitutes where the value of obtaining one unit of the good is (normalized to) one,

and the value of any extra unit is zero, which implies that buyers will never buy more than

one unit, (ii) perfect complements where the value of a (≥ 2) or more offers of the good

is normalized to one, and any smaller number of offers has value zero, which implies that

buyers will either purchase zero or a units of the good. Many examples of complements

1See Wright et al. (2021) for an up-to-date review of the competitive search literature.
2Galenianos and Kircher (2009) and Kircher (2009) are two other papers that study multiple applications

in the labor market, but in their models, the two approaches (Nash and market-maker) are equivalent so the
issues that we consider in this paper do not arise.
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involve different products, but for simplicity we restrict ourselves to multiple units of the

same good that need to be purchased from different suppliers. In the labor market, perfect

complements could be multiple jobs needed to make work worthwhile. For example, consider

a cleaner for whom it is only worth incurring the travel costs when he or she receives an offer

for both a morning and an afternoon job. Alternatively, switching the roles of workers and

firms, a startup company might need a certain number of workers to start production. For

a product market example, consider a situation in which different ticket agencies only have

single tickets left for an opera and a couple wants to go to the opera together or not go at

all.

One side of the market (in the product market, this is the seller) posts and commits to

a mechanism ω from a mechanism space Ω. After observing all posted mechanisms, buyers

direct their search, and buyers can visit at most a (≥ a ≥ 2) sellers. To simplify the analysis,

for the case of perfect complements, we assume that a = a.

A mechanism ω is a list (t, p1, . . . , pa), where t is a fee and pi is the price if the buyer has

received i offers in total. Since all buyers are identical ex ante, sellers must randomly select a

buyer (if they have any).3 We do not allow for recall. That is, if a seller’s chosen buyer does

not accept the offer, we do not allow the seller to select another buyer. Since we consider

a large market, we assume that buyers cannot coordinate their visiting strategies, i.e., they

use symmetric strategies. Finally, sellers must independently and simultaneously select a

buyer, and trade is conducted according to the posted mechanism. Below we consider two

mechanism spaces Ω. Together with the two surplus structures (perfect complements and

perfect substitutes), this generates a variety of results that illustrate the relationship between

the two interpretations of competitive search equilibrium that are explored below. The first

is the simplest case where Ω consists of entry fees only, Ω = {(t, 0, . . . , 0)} (pi = 0 for i ≥ 1).

In this case, a buyer has to pay an entry fee t to visit a seller; after collecting all the entry

fees, sellers will offer the good randomly to one of the buyers for free. The second Ω does

not allow fees, i.e., Ω = {(0, p1, . . . , pa)}. Note that price posting is a special case in which

pi = p for i ≥ 1.

We allow for a general constant returns to scale meeting technology. Consider a seller

with expected queue length λ; i.e., λ is the expected number of buyers contacting the seller.

The probability that the seller meets at least one buyer is m(λ), which is assumed to be

strictly increasing and strictly concave. We do not assume a particular functional form for

the meeting technology m(λ). Special cases include the urn ball, m(λ) = 1 − e−λ, and the

geometric, m(λ) = λ/(1+λ), both of which are extensively used in the literature.4 We assume

3That is, before a particular buyer is selected, the seller does not observe the number of other offers that
its buyers have.

4With an urn-ball meeting technology, the probability that a seller meets exactly n buyers is given by
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that εm(λ) ≡ λm′(λ)/m(λ), the elasticity of m(λ), is strictly decreasing. This implies that

limλ→0 εm(λ) = 1 and limλ→∞ εm(λ) = 0 as is standard in the literature.5

If all sellers face the same expected queue length, then that common expected queue length

is λ = aB/S, but in general, the expected queue length depends on the posted mechanism and

may vary from seller to seller. For notational convenience, we let h(λ) denote the probability

that a buyer’s visit fails to lead to an offer:

h(λ) = 1− m(λ)

λ
, (1)

where we have used the fact that a buyer’s visit leads to an offer with probability m(λ)/λ

since the seller treats all buyers symmetrically. To simplify the exposition, we assume that

limλ→0 h(λ) = 0; as the number of buyers goes to zero, each buyer visit leads to an offer.

Note that h(λ) is strictly increasing since m(λ) is strictly increasing and strictly concave.

Finally, note that m(λ), or equivalently h(λ), completely determine the buyers’ and sellers’

probabilities of trade. They do not depend on the probabilities that a seller meets exactly

one buyer, two buyers, and so on, as long as the sum of these probabilities is m(λ). We now

impose a mild restriction on the meeting technology, namely, that the expected number of

buyers who arrive at a seller equals the expected queue length. Eeckhout and Kircher (2010)

defined this property as meetings are nonrival. Equivalently, we assume that when a buyer

contacts a seller, the buyer can always participate in the seller’s mechanism. This assumption

simplifies the analysis of equilibrium when sellers post fees and holds for common meeting

technologies such as the urn-ball.

Finally, we assume that the number of buyers is determined by free entry. We suppose

there is a large measure of potential buyers and that each must pay a fixed cost K to

participate, where 0 < K < 1. The measure of sellers in the market is given exogenously.

By endogenizing the number of buyers we can investigate whether the market equilibrium is

efficient by contrasting equilibrium tightness with the social planner’s market tightness.

2.2 Payoffs and equilibrium

To start, we define some terms. Consider a buyer who visits k deviant sellers who all post

mechanism ω̃ with corresponding expected queue length λ̃ and who visits a− k non-deviant

sellers who all post mechanism ω with corresponding expected queue length λ, where 1 ≤

e−λ λ
n

n! for n = 0, 1, . . . . With a geometric meeting technology, the corresponding probability is 1
1+λ

(
λ

1+λ

)n
.

5Since m(0) = 0, by L’Hôpital’s rule we have limλ→0 εm(λ) = limλ→0 λm
′(λ)/m(λ) = 1. Since εm(λ) is

always positive and is assumed to be strictly decreasing, limλ→∞ εm(λ) exists. If this limit is some x > 0,
then for λ large enough, we have logm(λ) = x log λ + some constant; the right-hand side tends to infinity
when λ→∞. However, since m(λ) is always smaller than 1, we have a contradiction and x must be 0.
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k ≤ a. The expected payoff for this buyer is denoted by Uk(ω̃, λ̃, ω, λ). In general, when

buyers can visit multiple sellers, a seller’s expected payoff depends not only on the seller’s

own mechanism and expected queue length, but also on which other sellers the buyer visits.6

Assume that all buyers that a deviant seller attracts pay k visits to deviant sellers who post

mechanism ω̃ with corresponding expected queue length λ̃ and a − k visits to non-deviant

sellers with mechanism ω and expected queue length λ. We denote the expected payoff of a

deviant seller by πk(ω̃, λ̃, ω, λ).

We look for a symmetric, pure-strategy equilibrium in which all sellers post the same

mechanism, ω. In this case, buyers simply randomize their visits, and their equilibrium ex-

pected payoff, or market utility U , is given by

U = U0(ω̃, λ̃, ω, λ) = Uk(ω, λ, ω, λ) for any k ≥ 1, (2)

where the second equality follows from the degenerate case ω̃ = ω and λ̃ = λ. Similarly, the

equilibrium expected payoff of sellers is given by πk(ω, λ, ω, λ) for any k ≥ 1.

To establish that a mechanism ω is an equilibrium, we need to show that no profitable

deviation exists. However, since buyers can visit multiple sellers simultaneously, single-

seller deviations and market-maker deviations, which have been used interchangeably in the

literature, may yield different outcomes.

Consider first the equilibrium in which there exists no profitable single-seller deviation.

To establish that there is no profitable deviation, consider a deviant seller who posts a

mechanism ω̃ and expects queue length λ̃. Since only a single seller deviates, buyers who

decide to visit the deviant seller must pay their other a−1 visits to nondeviant sellers. Since

we consider a large market, a deviation by a single seller does not change the market utility

of buyers. Thus buyer optimality implies that

U = U1(ω̃, λ̃, ω, λ), (3)

where the left-hand side denotes the buyer value of visiting only non-deviant sellers and the

right-hand side denotes the buyer value of visiting the deviant seller and a − 1 non-deviant

sellers. Equation (3) is the indifference condition that determines the expected queue length

at the deviant seller. The expected payoff of the deviant seller is then

πd(w̃) = π1(ω̃, λ̃, ω, λ), (4)

6As we discuss below, when sellers post only fees, a seller’s expected payoff depends only on his or her
posted fee and expected queue length (see equation (13) below), and does not depend on which other sellers
buyers visit.
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where λ̃ is implicitly determined by ω̃ through equation (3).

Definition 1. In a symmetric pure-strategy competitive search Nash equilibrium, sell-

ers choose a mechanism ω and buyers receive their market utility U such that the following

conditions are satisfied.

1. Buyer optimality. Market utility U is given by equation (2) on and off the equilibrium

path. For buyers who visit the deviant seller, the indifference condition, (3), holds.

2. Seller optimality. There exists no profitable deviation for sellers. That is, the expected

payoff from a deviation, given by equation (4), does not exceed the equilibrium payoff.

3. Free entry. The expected buyer payoff equals the entry cost K.

Next, we consider the market-maker equilibrium. A market maker can open a submarket

that is characterized by mechanism ω̃. This submarket can potentially attract multiple

buyers and multiple sellers, while taking the market utility of buyers as given. The difference

relative to the competitive search Nash equilibrium case is that a buyer can visit more

than one deviant seller. A market maker opens a deviant submarket in the following way.

First, the market maker announces a mechanism ω̃ and sellers that are part of the deviant

submarket are required to post ω̃. In return, the market maker promises market tightness

λ̃. The constraint reflects the idea that the market maker has to make it worthwhile for

buyers to participate in the deviant submarket. The mechanism ω is a competitive search

market-maker equilibrium if no market maker has an incentive to open a submarket with a

different mechanism.

Formally, suppose that the deviant submarket has mechanism ω̃ and expected queue

length λ̃. Then buyer optimality implies that

U = max
1≤k≤a

Uk(ω̃, λ̃, ω, λ) (5)

where the right-hand side is the payoff of a buyer who optimally chooses k, the number of

visits to the deviant submarket.

In all our models below, Uk(ω̃, λ̃, ω, λ) is unsurprisingly strictly decreasing in λ̃ since

buyers benefit from shorter queues. To analyze the solution to the buyer’s problem (5),

consider the indifference condition U = Uk(ω̃, λ̃, ω, λ) for a given k, from which we can solve

λ̃ as a function of ω̃. With a slight abuse of notation, call this solution λ̃ = λk(ω̃, ω, λ).

Lemma 1 below shows that buyer optimality can then be equivalently formulated as a no-

arbitrage condition: the optimal k must be such that the expected queue length in the deviant

submarket equals the largest possible value.
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Lemma 1. Assume that Uk(ω̃, λ̃, ω, λ) is strictly decreasing in λ̃. Then the number of visits

that a buyer who visits the deviant submarket pays to that submarket is the k that solves the

following maximization problem,

max
1≤k≤a

λk(ω̃, ω, λ), (6)

where λk(ω̃, ω, λ) is the expected queue length, λ̃, that solves U = Uk(ω̃, λ̃, ω, λ).

Proof. To see the logic behind (6), suppose otherwise that k1 is the equilibrium solution and

λk1(ω̃, ω, λ) < λk2(ω̃, ω, λ) for some k2. In that case, the no-arbitrage condition would be vio-

lated because a buyer could then pay k2 visits to the deviant submarket (w̃, λk1(ω̃, ω, λ)) and

obtain an expected payoff that exceeds the market utility: U = Uk2(ω̃, λk2(ω̃, ω, λ), ω, λ) <

Uk2(ω̃, λk1(ω̃, ω, λ), ω, λ), where the first equality follows from the definition of the function

λk(ω̃, ω, λ), and the second inequality holds because Uk2(ω̃, λ̃, ω, λ) is strictly decreasing in

λ̃.

Compared to the optimization problem in (5), the above alternative formulation is more

straightforward and can be understood as follows. For a given mechanism ω̃, λk(ω̃, ω, λ) is

the queue that makes buyers indifferent between receiving the market utility and paying k

visits to the deviant submarket and the remaining a−k visits to the non-deviant submarket.

Whenever there are too few visits to the deviant submarket (λ̃ < λk(ω̃, ω, λ) for some k),

there will exist a profitable deviation and an individual buyer could obtain an expected payoff

strictly above their market utility by visiting the deviant submarket. When the longest queue

is reached with k = 1, this means that buyers who visit the deviant submarket pay exactly

one visit there, so there are relatively many buyers visiting the deviant submarket, while if

it is reached with k = a, it means that buyers who visit the deviant submarket pay all visits

there, so there are relatively few buyers visiting the deviant submarket.

As before, the expected payoff of a seller who joins the deviant submarket is

πd(w̃) = πk(ω̃, λk(ω̃, ω, λ), ω, λ) (7)

where k solves the buyer’s maximization problem in (5) and λk(ω̃, ω, λ) is the value of λ̃ that

solves equation (5).

Definition 2. In a symmetric pure-strategy competitive search market-maker equilib-

rium, sellers choose a mechanism ω and buyers receive their market utility U such that the

following conditions are satisfied.

1. Buyer optimality. Market utility U is given by equation (2) on and off the equilibrium
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path. For buyers who apply to the deviant submarket, the indifference condition, (5),

holds.

2. Seller and market maker optimality. No market maker can create a profitable submar-

ket. That is, the expected payoff of sellers in a deviant submarket, which is given by

equation (7), is no greater than their equilibrium payoff.

3. Free entry. The expected buyer payoff equals the entry cost K.

In all the models that we consider below, the mechanisms are characterized by a scalar

(ω is either a price or a fee), and Uk(ω̃, λ̃, ω, λ) is strictly decreasing in ω̃. Thus from the

buyer indifference condition U = Uk(ω̃, λ̃, ω, λ), we can solve ω̃ as a function of λ̃, which,

as we will see later, is easier to analyze than the functions λk(ω̃, ω, λ). With a slight abuse

of notation, denote this solution by ω̃ = ωk(λ̃, ω, λ). That is, for a given expected queue of

buyers in a deviant submarket, λ̃, there exists a price or fee ωk(λ̃, ω, λ) such that a given

buyer is indifferent between receiving his or her market utility on the one hand and paying k

visits to the deviant submarket and the remaining a− k visits to the non-deviant submarket

on the other hand. Buyer optimality can then alternatively be formulated as follows: Given

λ̃, the expected queue length in the deviant submarket, the optimal k is such that the highest

price or fee prevails, i.e., the optimal k solves the problem,

max
1≤k≤a

ωk(λ̃, ω, λ). (8)

If the price or fee in the deviant submarket is lower than the highest possible, then, as

before, arbitrage is possible and buyers could receive more than their market utility. In this

alternative formulation, we can think of the choice variable of sellers in the deviant submarket

to be λ̃ instead of ω̃ since choosing the optimal mechanism is isomorphic to choosing the

optimal expected queue length that satisfies the constraint that when all buyers choose to

visit submarkets optimally, none of them can get more than the market utility. Thus the

expected payoff of deviant sellers can be expressed as a function of λ̃,

πd(λ̃) = πk(ωk(λ̃, ω, λ), λ̃, ω, λ)

where k solves the buyer’s optimization problem. Below, we follow this approach since

analytic expressions of ωk(λ̃, ω, λ) can be obtained relatively easily.

2.3 The Social Planner’s Problem

We first calculate total surplus and the marginal contribution to surplus by sellers and buyers.

In the perfect complements case, surplus is generated if and only if a buyer has a offers. In
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the perfect substitutes case, surplus is generated if and only if a buyer has at least one offer.

Note that because of constant returns to scale in the meeting technology, surplus per seller

depends only on market tightness λ = aB/S and can be written as

y(λ) =

λ
a

(1− h(λ))a = B
S

(
1− h(aB

S
)
)a

perfect complements

λ
a

(1− h(λ)a) = B
S

(
1− h(aB

S
)a
)

perfect substitutes
(9)

since λ/a is the number of buyers per seller. Total surplus is then simply

V (B, S) = Sy

(
aB

S

)
.

By direct computation, the marginal contribution to surplus of sellers, ∂V (B, S)/∂S or equiv-

alently y(λ)− λy′(λ), is

Vs(λ) =

(1− h(λ))a−1m(λ) (1− εm(λ)) perfect complements

h(λ)a−1m(λ) (1− εm(λ)) perfect substitutes
(10)

With perfect complements, a seller contributes to surplus if the seller meets at least one

buyer, which happens with probability m(λ), and the chosen buyer has a − 1 other offers,

which happens with probability (1− h(λ))a−1. In this scenario, a seller should obtain a share

of the surplus that equals his or her marginal contribution to the matching process. The

latter equals the elasticity of m with respect to the number of sellers, which equals 1−εm(λ).

With perfect substitutes, a seller does not create surplus if the seller does not meet a

buyer or if the seller meets a buyer but that buyer receives another offer. In that case, in

the absence of the seller in question, the total amount of trade would be the same. Thus the

seller contributes to surplus when he or she meets at least one buyer, which happens with

probability m(λ), and when that buyer has no other offers, which happens with probability

h(λ)a−1. Again when a seller contributes to surplus, the seller should receive a share equal

to the elasticity of the meeting function, which is the seller’s contribution to the meeting.

The marginal contribution to surplus by buyers, ∂V (B, S)/∂B or equivalently ay′(λ)

(since one buyer visits a sellers), is then

Vb(λ) =

(1− h(λ))a (1− a(1− εm(λ))) perfect complements

1− h(λ)a − ah(λ)a−1 (1− h(λ)) (1− εm(λ)) perfect substitutes
(11)

With perfect complements, a buyer contributes to surplus if he or she receives offers from a

sellers, which happens with probability (1−h(λ))a. In this scenario, the buyer should receive

12



the residual part of the surplus: 1− a(1− εm(λ)), since each seller receives 1− εm(λ). Note

that limλ→0 Vb(λ) = 1 since at λ = 0, h(0) = 0 and εm(0) = 1. As λ increases, Lemma 2 below

shows that Vb(λ) strictly decreases until it reaches zero at a point λ
c

where εm(λ
c
) = 1− 1/a

(see equation (11) above). Since we assumed that εm(λ) is strictly decreasing, when λ is

larger than λ
c
, Vb(λ) stays negative by equation (11) above. Furthermore, limλ→∞ Vb(λ) = 0

since limλ→∞ h(λ) = 1. With perfect complements, buyers impose a negative externality on

each other: if two buyers visit the same seller, then the buyer who is not chosen by the seller

will not be available for other sellers. Hence when the number of buyers is sufficiently large,

their marginal contribution turns negative.

With perfect substitutes, when a buyer has strictly more than one offer, which happens

with probability 1− h(λ)a − ah(λ)a−1 (1− h(λ)), then the buyer’s contribution to surplus is

1; when the buyer has exactly one offer, which happens with probability ah(λ)a−1 (1− h(λ)),

his or her contribution to surplus is εm(λ). As in the case of perfect complements, we have

limλ→0 Vb(λ) = 1 and limλ→∞ Vb(λ) = 0. However, by Lemma 2 below, Vb(λ) is always strictly

decreasing. With perfect substitutes, a buyer who is not selected can still trade with another

seller so the marginal contribution to surplus of buyers is always strictly positive in contrast

to the case of perfect complements.

Lemma 2. For perfect complements, Vb(λ) is strictly positive for λ < λ
c

and strictly negative

for λ > λ
c

where λ
c

is uniquely defined by εm(λ
c
) = 1 − 1/a. Furthermore, Vb(λ) is strictly

decreasing in λ when λ < λ
c
.

For perfect substitutes, Vb(λ) is strictly decreasing in λ with limλ→0 Vb(λ) = 1 and limλ→∞ Vb(λ) =

0.

Proof. See Appendix A.1.

Lemma 2 implies that for the case of perfect complements, Vb(λ) is always strictly decreas-

ing in λ when it is positive, which is equivalent to total surplus y(λ) being strictly concave

in λ when buyers’ marginal contribution to surplus is positive. For the case of perfect sub-

stitutes, Vb(λ) = ay′(λ) is always strictly decreasing in λ, which is equivalent to total surplus

y(λ) being strictly concave in λ.

The social planner’s problem is to choose the number of buyers to maximize net output,

i.e.,

max
B≥0

V (B, S)−KB

The socially optimal number of buyers is determined by the first-order condition Vb(λ) = K.

By Lemma 2, this condition is also sufficient.

13



3 Sellers compete by entry fees

Suppose that the only mechanism, ω, that sellers can post is an entry fee t. In the case of

perfect substitutes, an example of this is a simplified college admission problem. Identical

colleges post application fees and no tuition. Students then apply to multiple colleges. This

is a variation on Galenianos and Kircher (2009) with fee posting rather than wage posting.

Colleges have a limited number of seats, which we set for simplicity to 1. Each college posts

a fee t, which students have to pay whether they are admitted or not. Each college randomly

selects a student from its applicants.

We first consider the buyer side. The expected payoff of a buyer who visits k deviant

sellers with entry fee t̃ and expected queue length λ̃ and n− k non-deviant sellers is

Uk(t̃, λ̃, t, λ) =


(

1− h(λ̃)
)k

(1− h(λ))a−k − kt̃− (a− k)t perfect complements

1− h(λ̃)kh(λ)a−k − kt̃− (a− k)t perfect substitutes
(12)

In the case of perfect complements, a buyer obtains a offers with probability
(

1− h(λ̃)
)k

(1− h(λ))a−k,

and in the case of perfect substitutes, a buyer obtains at least one offer with probability

1− h(λ̃)kh(λ)a−k.

The expected payoff of a deviant seller is

πk(t̃, λ̃, t, λ) = λ̃t̃, (13)

since each buyer has to pay t̃ and the expected number of buyers for a deviant seller is λ̃.

Note that the above payoff does not depend on which other sellers the deviant seller’s buyers

visit.

In the next two subsections, we first solve for the competitive search Nash equilibrium

and then for the competitive search market-maker equilibrium.

3.1 Competitive Search Nash Equilibrium

Consider a deviant seller in the competitive search Nash equilibrium. Equation (3) gives the

relationship between the deviant seller’s posted fee t̃ and the expected queue length, λ̃.

Consider first the case of perfect complements. Substituting equation (12) into (3) yields

(1− h(λ))a − at =
(

1− h(λ̃)
)

(1− h(λ))a−1 − t̃− (a− 1)t,

where the left-hand side is U . From this indifference condition, we can solve for t̃ as a function
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of λ̃ as follows:

t̃ = t+ (h(λ)− h(λ̃))(1− h(λ))a−1, (14)

which implies that t̃ is decreasing in λ̃ since h(λ̃) is an increasing function. The expected

payoff of the deviant seller is

πd(λ̃) = λ̃t̃ = λ̃t+ λ̃
[
(1− h(λ̃))− (1− h(λ))

]
(1− h(λ))a−1, (15)

where for analytical convenience, we have defined the expected seller payoff as a function of

λ̃ instead of t̃. The above equation is strictly concave in λ̃, which can be seen by noting that

λ̃(1 − h(λ̃)) = m(λ̃) and the other terms are linear in λ̃. Thus the first order condition is

both necessary and sufficient.

In a symmetric pure-strategy equilibrium, the first order condition holds at λ̃ = λ. Hence,

for the case of perfect complements, in equilibrium

t∗ = λh′(λ)(1− h(λ))a−1. (16)

Substituting the above equation into (2) yields the market utility U :

U = (1− h(λ))a
[
1− a λh′(λ)

1− h(λ)

]
.

Note that by equation (1), we have λh′(λ)/(1− h(λ)) = 1− εm(λ). Therefore, for the case of

perfect complements, we have

U = Vb(λ),

where Vb(λ) is the buyers’ marginal contribution to surplus and is given by (11). Hence the

competitive search Nash equilibrium is constrained efficient for the case of perfect comple-

ments.

We can now consider the case of perfect substitutes. Substituting equation (12) into (3)

yields

1− h(λ)a − at = 1− h(λ̃)h(λ)a−1 − t̃− (a− 1)t.

Solving for t̃ as a function of λ̃ gives:

t̃ = t+ (h(λ)− h(λ̃))h(λ)a−1,
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which again implies that t̃ is decreasing in λ̃ since h(λ̃) is an increasing function. The expected

payoff of the deviant seller is

πd(λ̃) = λ̃t̃ = λ̃t+ λ̃
[
(1− h(λ̃))− (1− h(λ))

]
h(λ)a−1. (17)

As in the perfect complements case, the equation for the deviant seller’s profit is strictly

concave in λ̃. Thus the first order condition is both necessary and sufficient.

In a symmetric pure-strategy equilibrium, the first order condition holds at λ̃ = λ. Hence,

in equilibrium

t∗ = λh′(λ)h(λ)a−1. (18)

Substituting the above equation into (2) yields the market utility U :

U = 1− h(λ)a − aλh′(λ)h(λ)a−1. (19)

Again by equation (1), we have that λh′(λ)/(1−h(λ)) = 1−εm(λ). Therefore, for both cases

(perfect complements and perfect substitutes) we have

U = Vb(λ),

where Vb(λ) is the buyers’ marginal contribution to surplus and is given by (11). Hence the

competitive-search Nash equilibrium is constrained efficient for both cases.

3.2 Competitive search market-maker equilibrium

Now we consider the competitive search equilibrium when potential deviations are made by a

market maker. We first solve the buyer optimality problem in (5). That is, if a buyer decides

to visit the deviant submarket, what is the optimal number of visits or applications there?

Following our discussion after equation (8), we can calculate ωk(λ̃, t, λ) from the indifference

condition U0(t̃, λ̃, t, λ) = Uk(t̃, λ̃, t, λ) and then solve the optimization problem given by (8).

First consider the case of perfect complements. Since Uk(t̃, λ̃, t, λ) is given by (12), from

U0(t̃, λ̃, t, λ) = Uk(t̃, λ̃, t, λ) we can solve for t̃:

t̃ = ωk(λ̃, t, λ) = t− (1− h(λ))a
1

k

(
1− (

1− h(λ̃)

1− h(λ)
)k

)
. (20)

Next, consider the case of perfect substitutes. Again from U0(t̃, λ̃, t, λ) = Uk(t̃, λ̃, t, λ), we
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can solve for t̃:

t̃ = ωk(λ̃, t, λ) = t+ h(λ)a
1

k

1−

(
h(λ̃)

h(λ)

)k
 . (21)

For both cases (perfect complements and perfect substitutes), the maximization problem

in (8) can be easily solved with the help of the following technical result.

Lemma 3. For x > 0 and x 6= 1, 1
k
(1− xk) is strictly decreasing in k when k > 0.

Proof. See Appendix A.2.

The following lemma gives the solution to the buyer’s problem and shows that it de-

pends on whether the offers are complements or substitutes but not on the specific meeting

technology.

Lemma 4. Suppose sellers post only entry fees in the competitive search market-maker equi-

librium.

With perfect complements, buyers who visit the deviant submarket will pay all their visits

to sellers in that submarket.

With perfect substitutes, buyers who visit the deviant submarket will visit only one seller

in that submarket and make their other visits to sellers in the non-deviant submarket.

Proof. From Lemma 3, it follows that ωk(λ̃, t, λ) in (20) reaches its maximum at k = a.

Similarly, ωk(λ̃, t, λ) in (21) reaches its maximum at k = 1.

Strategic complements versus substitutes. To understand the intuition behind Lemma 4,

consider the simplest case where a = 2. Both the original and a deviant submarket can

be characterized by a state variable x = (h(λ),−t) (for the original submarket) and x̃ =

(h(λ̃),−t̃) (for the deviant submarket). Since a lower fee t̃ < t in the deviant submarket

implies a longer expected queue λ̃ > λ, we either have x > x̃ or x < x̃. Recall that

U1(t̃, λ̃, t, λ), the expected payoff of paying exactly one visit to the deviant submarket, is

given by equation (12) and can be rewritten as U(x, x̃) = S(h, h̃) − t − t̃, where h and h̃

is short-hand notation for h(λ) and h(λ̃), respectively, and S(h, h̃) is the expected surplus

which is given by (1−h)(1− h̃) for the case of perfect complements and by 1−hh̃ for the case

of perfect substitutes. The cross partial derivatives of U(x, x̃) are: U13(x, x̃) = S12(h, h̃),

where U13 is the cross partial derivative with respect to h and h̃ and U14 = U23 = U24 = 0.

Therefore, in the case of perfect complements, x and x̃ are strategic complements because

S12(h, h̃) = 1 > 0 while in the case of perfect substitutes, x and x̃ are strategic substitutes

because S12(h, h̃) = −1 < 0. In the former case, we have 1
2
U(x,x) + 1

2
U(x̃, x̃) > U(x, x̃) and
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in the latter case, the reverse inequality holds.7 Since fees are additively separable in the

buyer payoff function U(x, x̃), only the surplus function S determines whether x and x̃ are

strategic complements or substitutes. When the goods are perfect complements, strategic

complementarity in x and x̃ implies that a buyer should either pay all visits to the non-

deviant submarket or all visits to the deviant submarket (the exact number of buyers that

the deviant submarket attracts follows from a no-arbitrage condition: U(x,x) = U(x̃, x̃)).

When the goods are perfect substitutes, strategic substitutability implies that a buyer who

visits the deviant submarket visits only one seller there and visits one seller in the non-

deviant submarket. The fact that when goods are complements, x and x̃ are also strategic

complements is not obvious. In fact, we show below that when firms post only prices rather

than fees, in the case of perfect complements x and x̃ are strategic substitutes, while when

the goods are perfect substitutes, x and x̃ are strategic complements.

Lemma 4 implies that with perfect substitutes, the Nash equilibrium and market-maker

equilibrium coincide since even with a market maker, buyers who visit the deviant submarket

pay exactly one visit to a deviant seller. This implies that the expected payoff of a deviant

seller is the same in both types of equilibrium. However, with perfect complements a deviant

seller’s profit differs between the two cases. In the competitive search market-maker equi-

librium, buyer optimality reduces to the condition U0(t̃, λ̃, t, λ) = Ua(t̃, λ̃, t, λ), which then

determines t̃ as a function of λ̃:

t̃ = t+
1

a

(
(1− h(λ̃))a − (1− h(λ))a

)
. (22)

In the proof of Proposition 1, which is given below, we show that if λ̃ 6= λ, the right-hand side

of the above equation is strictly greater than the corresponding Nash case (equation (16)).

Therefore, for any fixed λ̃ 6= λ, a deviant seller’s expected profit is higher in the market-maker

case and it is given by

πd(λ̃) = λ̃t̃ = λ̃t+
1

a
λ̃
(

(1− h(λ̃))a − (1− h(λ))a
)

=
1

a

[
λ̃(1− h(λ̃))a − λ̃U

]
= y(λ̃)− λ̃

a
U (23)

7Consider a general payoff function f(x,y), where x ∈ Rm and y ∈ Rn are two variables that a decision
maker has to choose. Following the literature, we call x and y strategic complements (resp. substitutes) in
f if ∂2f/(∂xi∂yj) ≥ 0 (resp. ≤ 0) for i = 1, . . . ,m and j = 1, . . . , n. Strategic complementarity is equivalent
to the concept that f(x,y) has increasing differences in (x,y). That is, for any x′ ≥ x and y′ ≥ y,
we have f(x′,y′) − f(x,y′) ≥ f(x′,y) − f(x,y). Note that in our setup, U(x, x̃) is always symmetric in
(x, x̃): U(x, x̃) = U(x̃,x), so that increasing differences or equivalently strategic complementarity implies
that U(x,x) + U(x̃, x̃) > 2U(x, x̃), where we have a strict inequality because each component of x is
strictly greater than the corresponding component of x̃ and at least for one pair (i, j), the cross derivative
∂2U/(∂xi∂x̃j) is strictly positive.
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where y(λ̃), the total surplus per seller, is defined in equation (9). The second line above

shows that the expected payoff of a seller who joins the deviant submarket is the difference

between total surplus and the “cost” of buyers where the price of one buyer is U .

By Lemma 2 (the case of perfect complements), surplus per seller, y(λ̃), is strictly concave

in λ̃ when y′(λ̃) is positive, which implies that the first-order condition is both necessary and

sufficient for the deviant seller’s problem. In a symmetric pure-strategy equilibrium, the

first-order condition holds at λ̃ = λ, Therefore, ay′(λ) = U , or equivalently, the marginal

contribution to surplus per buyer equals the market utility, and hence the decentralized

equilibrium is constrained efficient. This implies that the equilibrium t is the same as the

one given by equation (16). Hence, for the case of perfect complements, even though the two

equilibrium concepts differ when we consider deviations, the equilibrium outcomes coincide.

Proposition 1 summarizes this.

Proposition 1. Assume that sellers post only fees. When the goods are perfect complements,

the equilibrium outcomes of the two versions of competitive search equilibrium (Nash and

market maker) coincide and both are constrained efficient. This occurs even though the

expected payoff of a deviant seller is higher in the market-maker equilibrium for any posted

fee t̃ 6= t.

When the goods are perfect substitutes, then the outcomes, both on and off the equilibrium

path, of the two versions of competitive search equilibrium (Nash and market maker) coincide.

The (common) equilibrium is constrained efficient.

Proof. See Appendix A.3.

The above logic for the efficiency result in the case of perfect complements can be general-

ized. Whenever buyers who visit the deviant submarket find it optimal to pay all their visits

there, the expected payoff of deviant sellers can be written as y(λ̃)− λ̃U/a, and the resulting

equilibrium is constrained efficient. The logic is the same as in the familiar case in which

a buyer can only visit one seller. A deviant seller’s problem is analogous to one where the

deviant seller can “buy” queues directly from a competitive market where the price for the

expected queue length is U/a. In the next section, in Lemma 7 and Proposition 3, we show

that the same observation holds when sellers compete with prices and the goods are perfect

substitutes. Thus whether a deviant submarket can attract all visits of buyers who decide to

pay at least one visit there depends both on the surplus structure (perfect complements or

perfect substitutes) and on the posted mechanism (fees or prices).
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4 Price competition

4.1 Perfect complements

Suppose that sellers can post prices (p1, . . . , pa) but cannot charge fees and that the products

that are offered for sale are perfect complements. Buyers purchase the product from a seller

if and only if all of the buyer’s a visits lead to offers. Hence, the prices p1, . . . , pa−1 when

the buyer has respectively 1, . . . , a − 1 offers do not matter, only pa matters. Without loss

of generality, we assume that p1 = · · · = pa = p, in which case the mechanism can be

reinterpreted as price posting.

As before, first consider the buyer side. The expected payoff of a buyer who visits k

deviant sellers with posted price p̃ and expected queue length λ̃ and a−k non-deviant sellers

with posted price p and expected queue length λ is

Uk(p̃, λ̃, p, λ) =
(

1− h(λ̃)
)k

(1− h(λ))a−k (1− kp̃− (a− k)p). (24)

This expected payoff reflects the assumption that a buyer who receives offers from k deviant

sellers and a − k non-deviant sellers receives a payoff of (1 − kp̃ − (a − k)p) times the

corresponding probability of receiving those offers.

Next consider the seller side. Assume that all buyers that a deviant seller faces follow the

same strategy: they all pay k visits to sellers in the deviant submarket (p̃, λ̃) and a− k visits

to the non-deviant submarket. Then the expected payoff of a deviant seller is

πk(p̃, λ̃, p, λ) = m(λ̃)
(

1− h(λ̃)
)k−1

(1− h(λ))a−k p̃. (25)

The deviant seller receives at least one visit with probability m(λ̃) and makes a sale if and

only if the chosen buyer receives a − 1 other offers (perfect complements), which happens

with probability
(

1− h(λ̃)
)k−1

(1− h(λ))a−k .

4.1.1 Competitive search Nash equilibrium

Consider a deviant seller who posts a price p̃ and expects queue length λ̃. In the Nash

approach, only a single seller deviates, so buyers who visit the deviant seller must pay their

other a− 1 visits to the non-deviant submarket.

As before, from the buyer indifference condition, equation (3), we can solve for the rela-
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tionship between p̃ and λ̃. Substituting equation (24) into equation (3) yields

p̃ = p+ (1− ap)

(
1− 1− h(λ)

1− h(λ̃)

)
,

which implies that p̃ is a decreasing function of λ̃ (since h(λ̃) is strictly increasing in λ̃);

i.e., a higher price leads to fewer buyer visits. Given the relationship between λ̃ and p̃, we

can represent the expected payoff of the deviant seller as a function of λ̃ only. That is,

substituting the above equation into equation (25) with k = 1 yields

πd(λ̃) ≡ π1(p̃, λ̃, p, λ) = (1− h(λ))a−1
(

(1− (a− 1)p)m(λ̃)− (1− ap)m(λ)

λ
λ̃

)
. (26)

Since m(λ̃) is strictly concave in λ̃ and 1−(a−1)p > 1−ap ≥ 0, πd(λ̃) is also strictly concave

in λ̃, so the deviant seller’s first-order condition is both necessary and sufficient. Taking the

derivative with respect to λ̃ yields

(1− (a− 1)p)m′(λ̃) = (1− ap)m(λ)

λ
.

In a symmetric pure-strategy equilibrium, the first-order condition holds at λ̃ = λ. Thus in

equilibrium we have

p∗ = (1− εm(λ)) (1− (a− 1)p∗) , (27)

where p∗ denotes the equilibrium price. Note that we derived the equilibrium price p∗ under

the assumption that a ≥ 2, but the above equation also gives the familiar result p∗ = 1−εm(λ)

for the case of a = 1. When a ≥ 2, a buyer purchases from a given seller if and only if all

the buyer’s other a − 1 visits generate offers. From an individual buyer’s and an individual

seller’s point of view, their match surplus is 1− (a− 1)p∗, given that the buyer needs to pay

(a − 1)p∗ to the other a − 1 sellers; hence the equilibrium price equals this match surplus

times 1− εm(λ). Simplifying the above equation yields

p∗ =
1− εm(λ)

a− (a− 1)εm(λ)
. (28)

Next, we compare the buyer’s equilibrium payoff with his or her marginal contribution to

surplus. By equation (11) (the case of perfect complements), the socially optimal price is

pSP = 1− εm(λ), (29)
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which is derived by setting Vs(λ) = (1− h(λ))a−1m(λ)pSP . From a social point of view,

sellers should get their share of the surplus, which is 1 − εm(λ). Therefore, the equilibrium

price is lower than the socially optimal price, which implies that the expected payoff of buyers

is strictly greater than their marginal contribution to surplus.

4.1.2 Competitive search market-maker equilibrium

In this case, a market maker can set up a deviant submarket. As before, we need to first

solve the buyer portfolio problem. That is, if a buyer decides to visit the deviant submarket,

what is the optimal number of sellers to approach in that submarket?

We can again first solve for p̃ from the buyer’s indifference condition, U0(p̃, λ̃, p, λ) =

Uk(p̃, λ̃, p, λ). This gives

p̃ = ωk(λ̃, p, λ) = p+ (1− ap)1

k

1−

(
1− h(λ)

1− h(λ̃)

)k
 . (30)

With this expression, the buyers’ maximization problem in (8) can be solved as before and

the optimal k = 1. It is never optimal to pay multiple visits to the deviant submarket, and

we only have to consider the case where buyers pay exactly one visit there. The following

lemma summarizes this case.

Lemma 5. With perfect complements, when sellers compete with prices only in a competitive

search market-maker equilibrium, buyers who visit the deviant submarket pay exactly one visit

to the deviant submarket and their other visits to the non-deviant submarket.

Proof. By Lemma 3, ωk(λ̃, p, λ) in (30) reaches its maximum at k = 1.

For the case of perfect complements, the response from a buyer to a seller deviation when

sellers post only prices is the opposite of the buyer response when sellers post only fees. When

sellers post only prices, buyers who decide to visit the deviant submarket find it optimal to pay

exactly one visit there even though the goods are perfect complements. To understand this,

consider again the simplest case of a = 2. Now define x = (h(λ),−p) and x̃ = (h(λ̃),−p̃)
where a lower price implies a longer queue so that we either have x > x̃ or x < x̃. By

equation (24) with k = 1 and a = 2, we have that the buyer payoff of paying exactly one

visit to the deviant submarket, U(x, x̃) = (1−h)(1− h̃)(1−p− p̃). In logs, this has a simple,

additively separable structure: lnU(x, x̃) = ln(1− h) + ln(1− h̃) + ln(1− p− p̃). The cross

partial derivatives of lnU are: (lnU)24(x, x̃) = ∂2 lnU/(∂(−p)∂(−p̃)) = −1/(1− p− p̃)2 < 0

and (lnU)13 = (lnU)14 = (lnU)23 = 0. Therefore, x and x̃ are strategic substitutes in lnU .

This implies that 1
2

lnU(x,x) + 1
2

lnU(x̃, x̃) < lnU(x, x̃) when x 6= x̃. To sum up, when
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the goods are perfect complements, x and x̃ are strategic substitutes. Consequently, a buyer

who visits the deviant submarket will approach only one seller there and pay the other visit

to the non-deviant submarket.

To better understand why buyer visits are strategic substitutes when sellers post prices

only, imagine a deviant submarket with a lower price and a longer expected queue than the

nondeviant submarket. A buyer who receives an offer from a seller in the deviant submarket

can only realize this discount if he or she receives a second offer, and the probability of that is

higher in the nondeviant submarket. Thus, the buyer sets k = 1. Now suppose instead that

sellers post only fees. In this case, buyer visits are strategic complements. If a buyer visits a

seller in a deviating submarket with a lower fee and longer expected queue, then the buyer

pays this lower fee regardless of which other seller he or she visits and whether or not another

offer is received. We have shown that it is more profitable for a buyer to either pay all visits

to the non-deviant submarket or all visits to the deviant submarket (where the no-arbitrage

condition guarantees that expected utility is the same as in the non-deviant submarket, i.e.,

fees drop sufficiently to compensate for the lower probability of two offers). Mixing between

the low and high fee submarkets yields lower expected utility because of complementarity in

the surplus function. That is, k = 2.

Lemma 5 implies that when considering deviations, the two concepts (market maker and

Nash) coincide. The following Proposition summarizes our results.

Proposition 2. Assume that sellers post prices (p1, . . . , pa) only. When the goods are perfect

complements, then the outcomes, both on and off the equilibrium path, of the two versions of

competitive search equilibrium (Nash and market maker) coincide. The (common) equilibrium

is not constrained efficient, and the equilibrium payoff of buyers is strictly greater than their

marginal contribution to surplus.

Proof. See the above discussion.

The inefficiency arises due to a externality that sellers impose on each other. With

perfect complements, a buyer only buys if he or she receives an offer from all visited sellers.

A seller who makes an offer to a buyer benefits from short queues at other sellers because

then the buyer in question is more likely to receive other offers. Individual sellers however

choose socially inefficient long queues and correspondingly low prices in order to secure trade

(reduce the probability of zero arrivals). As a consequence, in equilibrium, sellers receive

less than their social contribution to surplus. One may have expected that a market maker

would be able to internalize this externality, but the market maker cannot force buyers to

pay all their visits to a deviant submarket. It can offer sellers the opportunity to enter a

deviant high-price, short-queue submarket, but sellers realize that buyers will still pay their

other visits to non-deviant sellers, i.e., those with low prices and long queues.
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4.2 Perfect substitutes

We now consider the case of price competition with perfect substitutes, which is an extension

of the model presented in Albrecht et al. (2006). That model was set in the labor market and

assumed an urn-ball meeting technology and only considered the competitive search Nash

equilibrium.8 Here we consider a product market with a general meeting technology, m(λ),

and show that the Nash equilibrium differs from the market-marker equilibrium, which is

constrained efficient.

In the case of perfect substitutes, seller competition implies that a buyer with multiple

offers receives the full value of the match (p2 = · · · = pa = 0), and randomly chooses one of

the competing sellers. To see this, suppose that in a candidate equilibrium pn > 0 for some

n > 1. Then a deviant seller in the Nash approach or a deviant market maker could choose

p̃n = pn− ε for some positive but sufficiently small ε and p̃j = pj for j 6= n. Buyer optimality

then implies that λ̃ and λ are arbitrarily close for sufficiently small ε. However, this would

give a discrete increase in a deviant seller’s winning probability and corresponding profit.

Therefore, we must have p2 = · · · = pa = 0. The following lemma states this result formally.

Lemma 6. With perfect substitutes, when sellers compete with prices, p2 = · · · = pa = 0

both in the competitive search Nash equilibrium and the competitive search market-maker

equilibrium.

Proof. See Appendix A.4.

In equilibrium, a buyer receives no offers, and thus payoff zero, with probability h(λ)a.

The buyer receives exactly one offer, and thus payoff 1 − p1, with probability ah(λ)a−1(1 −
h(λ)), and the buyer receives multiple offers, and thus payoff 1, with the complementary

probability 1− h(λ)a − ah(λ)a−1(1− h(λ)). The market utility for buyers can be written as

U = 1− h(λ)a − ah(λ)a−1(1− h(λ))p1. (31)

Similarly, the equilibrium payoff of a seller can be written as

π = m(λ)ha−1p1, (32)

which equals the probability that the seller receives at least one visit times the probability

that its selected buyer receives no other offers times p1, the seller’s payoff in that event.

We now consider the payoffs associated with deviations. As before, first consider a buyer

who visits k deviant sellers who post p̃1 and have expected queue length λ̃ and a − k non-

8In Albrecht et al. (2006), workers send out multiple job applications, but they can only work for one
firm, which then corresponds to the case of perfect substitutes here.
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deviant sellers who post p1 and have expected queue length λ, where 1 ≤ k ≤ a. Then the

buyer receives no offers, and thus payoff zero, with probability h(λ)a−kh(λ̃)k; one offer from a

nondeviant together with no offer from a deviant, and thus payoff 1−p1, with probability (a−
k)h(λ)a−k−1(1−h(λ))h(λ̃)k; one offer from a deviant together with no offer from nondeviants,

and thus payoff 1− p̃1, with probability h(λ)a−kkh(λ̃)k−1(1− h(λ̃)); and multiple offers, and

thus payoff 1 with the complementary probability. The buyer’s expected payoff can then be

written as

Uk(p̃1, λ̃, p1, λ) = 1− h(λ)a−kh(λ̃)k

− (a− k)h(λ)a−k−1(1− h(λ))h(λ̃)kp1 − h(λ)a−kkh(λ̃)k−1(1− h(λ̃))p̃1, (33)

where the first line on the right-hand side denotes the total surplus and the second line

denotes the expected total payment.

Next, consider a deviant seller whose chosen buyer pays k visits to the deviant submarket

and a− k visits to the non-deviant submarket. The deviant seller’s expected payoff is given

by

πk(p̃1, λ̃, p1, λ) = h(λ)a−kh(λ̃)k−1m(λ̃)p̃1, (34)

where the deviant seller receives at least one visit with probability m(λ̃) and the selected

buyer’s other visits fail with probability h(λ)a−kh(λ̃)k−1.

Before considering the two versions of competitive search equilibrium, note that given

p2 = · · · = pa = 0, the socially optimal p1 can be derived from setting Vb(λ) = 1 − h(λ)a −
ah(λ)a−1(1−h(λ))pSP1 , where Vb(λ) is given by equation (11) (the case of perfect substitutes),

so

pSP1 = 1− εm(λ), (35)

which is the same as the corresponding value for the case of perfect complements (see equa-

tion (29)).

4.2.1 Competitive search Nash equilibrium

First consider the Nash approach. As before, the buyer indifference condition (3) determines

the relationship between the deviant seller’s posted price p̃1 and the expected queue length
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λ̃. Substituting equation (33) into (3) yields p̃1 as a function of h(λ̃) and hence of λ̃:

p̃1 = p1 +
p1(a(1− h)− 1) + h

h

(
1− 1− h

1− h̃

)
, (36)

where, to simplify notation, we have replaced h(λ) with h and h(λ̃) with h̃. Note that the

coefficient in front of the large parenthesis on the right-hand side is linear in p1, and it

is strictly positive at p1 = 0 and 1, which then implies that it is always strictly positive.

Therefore, p̃1 is strictly decreasing in h̃ and accordingly in λ̃. That is, a higher price p̃1 leads

to fewer buyer visits in expectation, i.e., a smaller λ̃.

After substituting equation (36) into (34) (with k = 1), we can write the expected profit

of the deviant seller as a function of λ̃ only,

πd(λ̃) = π1(p̃1, λ̃, p1, λ) = ha−2(1− h)

[(
(a− 1)p1 +

h

1− h

)
m(λ̃)− ((a− 1)p1 − (ap1 − 1)h)λ̃

]
.

Since m(·) is strictly concave, πd(λ̃) is strictly concave in λ̃, which implies that the first-order

condition is both necessary and sufficient. Note that

dπd(λ̃)

dλ̃

∣∣
λ̃=λ

= ha−1(1− h)

[
p1

(
1− (a− 1)

λh′

h

)
− λh′

1− h

]
,

where we have used the fact that m′(λ) = 1 − h(λ) − λh′(λ). If the equilibrium p1 ∈ (0, 1)

(interior solution), then the first-order condition requires that the above equation must be

equal to zero. If the equilibrium p1 = 0, then the above equation must be non-negative at

p1 = 0 (decreasing λ̃ is not profitable). If the equilibrium p1 = 1, then the above equation

must be non-positive at p1 = 1 (increasing λ̃ is not profitable). Note that the right-hand side

of the above equation is linear in p1 and at p1 = 0 it is strictly negative. If the derivative at

p1 = 1 it is strictly positive, then we have the interior solution. Otherwise, if at p1 = 1 the

derivative is negative, then we have a corner solution. To summarize, the equilibrium price

p∗1 is given by

p∗1 =

 λh′

1−h/(1− (a− 1)λh
′

h
) if 1− (a− 1)λh

′

h
> λh′

1−h

1 otherwise.
(37)

Note that for common meeting technologies such as the urn ball and geometric, for any λ,

we have

1− λh′

h
≤ λh′

1− h
⇔ λh′

h
≥ 1− h. (38)
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Given inequality (38), the interior solution never occurs. That is, in equilibrium we always

have p∗1 = 1,. This generalizes Albrecht et al. (2006) by allowing for a more general class of

meeting technologies.

Finally, we contrast the competitive search Nash equilibrium price with the socially op-

timal pSP1 . Since by equation (35), pSP1 = 1− εm(λ) = λh′/(1− h), we have

p∗1 > pSP1 , (39)

which holds, irrespective of whether or not equation (37) has an interior solution. Thus

the equilibrium p∗1 is too high and a seller’s equilibrium payoff is higher than their marginal

contribution to surplus. This occurs because if all sellers charged the socially optimal price,

each seller would have an incentive to deviate to a higher price. A higher price reduces the

expected queue length less than it would in the case of a = 1, since when a ≥ 2, buyers have

incentive to get multiple offers which would give them a price of zero. Buyers are therefore

less deterred by a higher price. For the social planner, however, there is no value in multiple

offers. That is, once a buyer has a first offer, a second offer adds nothing to total surplus;

indeed, a second offer to one buyer makes a first offer to another buyer less likely. In short, the

possibility of multiple offers means that the volume-margin tradeoff that the social planner

faces is not the same as the one faced by buyers and sellers.

4.2.2 Competitive search market-maker equilibrium

We now consider the competitive search market-marker equilibrium. Since buyers can pay

multiple visits to sellers in the deviant submarket, we first need to solve the buyer’s problem

in (8).

We follow the same procedure as before. First, from the buyer indifference condition,

U0(p̃1, λ̃, p1, λ) = Uk(p̃1, λ̃, p1, λ), which is a linear equation in p̃1, we solve for p̃1 as a function

of λ̃:

p̃1 = ωk(λ̃, p1, λ) =
1− h
h

(
h̃

1− h̃

)
p1 −

h+ ap(1− h)

h

(
h̃

1− h̃

)
1

k

(
1−

(
h

h̃

)k)
, (40)

where we have again replaced h(λ) by h and h(λ̃) by h̃. The above equation seems complicated

but as a function of k it has a simple structure. Maximizing p̃1 with respect to k is equivalent

to minimizing 1
k
(1− (h/h̃)k). Hence by Lemma 3, the optimal k for the buyer’s maximization

problem in (8) is k = a. The following lemma summarizes this result.

Lemma 7. With perfect substitutes, when sellers compete with prices only in a competitive

search market-maker equilibrium, buyers who visit the deviant submarket pay all their visits
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to the deviant submarket.

Proof. By Lemma 3, ωk(λ̃, p1, λ) in (40) reaches its maximum at k = a.

As in the case of perfect complements, the choice of how many visits to pay to the

deviant submarket differs depending on whether sellers post fees or prices for the case of

perfect substitutes. Even though the goods are perfect substitutes, when sellers compete with

prices, their offers are complementary to each other because buyers receive the full surplus

with multiple offers. To see that the offers are indeed strategic complements, consider again

the simplest case where a = 2. Define ζ = (1 − h)(1 − p1), ζ̃ = (1 − h̃)(1 − p̃1), x = (h, ζ),

and x̃ = (h̃, ζ̃). By equation (33) with k = 1 and a = 2, we have that the buyer payoff

of paying exactly one visit to the deviant submarket, U(x, x̃) = (1 − h)(1 − h̃) + hζ̃ + h̃ζ,

where the first term on the right-hand side represents the expected value of two offers, the

second term the expected value of one offer from the deviant submarket, and the last term

the expected value of one offer from the non-deviant submarket. Note that ζ is the buyer’s

expected value of visiting the non-deviant submarket conditional on the visit to the deviant

submarket failing to generate an offer. Since buyers always prefer short queues (low h)

and high ζ, a higher h̃ > h is always associated with a higher ζ̃ > ζ and vice versa, This

implies that we can either have x > x̃ or x < x̃. The cross partial derivatives of U are:

U13 = U14 = U23 = 1 and U24 = 0. Therefore, even though the goods are perfect substitutes,

x and x̃ are strategic complements in U , and a buyer who visits the deviant submarket will

pay both visits there. The main difference relative to the case in which firms compete with

fees is that with price posting, U(x, x̃) is no longer additive in surplus and payments but

instead has interaction terms between matching probabilities and prices, which makes x and

x̃ strategic complements.

To better understand why buyer visits are strategic complements in this case, note that

when the goods are perfect substitutes and firms post prices, buyers need only one successful

offer, but they get the full surplus when they receive two offers. Imagine a deviant submarket

with a higher price and a shorter expected queue than the nondeviant submarket. It is optimal

for a buyer to pay a second visit to the deviant submarket with the shorter expected queue

if he or she pays the first visit there, i.e., k = 2. It’s as if a visit to the high-price, low-

expected-queue submarket is an investment in which the buyer accepts the chance of paying

a higher price if they get only one offer. Paying a second visit to this submarket raises the

probability that the buyer will not have to pay the higher price but will rather get the whole

surplus. This is why the visits are strategic complements. When firms post fees, the buyer

is only interested in getting a single offer and buyer visits are thus strategic substitutes and

k = 1.

Since buyers who visit the deviant submarket pay all their visits there, the expected profit
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of a deviant seller is

πd(λ̃) = y(λ̃)− λ̃

a
U (41)

where total surplus per seller, y(λ̃), is defined in equation (9), λ̃/a is the number of buyers per

seller and U is the expected payoff that each buyer receives.9 Thus the competitive search

market-maker equilibrium is constrained efficient, and the equilibrium price p∗1 = pSP1 =

1− εm(λ) (see equation (35)). The following proposition summarizes the results.

Proposition 3. Assume that sellers post prices (p1, . . . , pa) only. When the goods are perfect

substitutes, then the competitive search market-maker equilibrium is constrained efficient,

whereas in the competitive search Nash equilibrium, the equilibrium payoff of buyers is strictly

less than their marginal contribution to surplus.

The key to this non-equivalence result has to do with the options available to buyers under

the two interpretations of competitive search equilibrium. Consider a candidate competitive

search equilibrium in which all sellers post p1. To be an equilibrium, there must be no

profitable deviation. Interpreting competitive search equilibrium as the limit of a sequence

of Nash equilibria, this means that no single seller can profit by posting a price other than p1.

In this case, a buyer can pay at most one visit to a deviant seller. Using the market-maker

interpretation, no profitable deviation means that a competing submarket, in which multiple

sellers post a price other than p1, cannot be profitably established. In this case, a buyer can

choose any number of visits from {0, 1, ..., a} to pay to deviant sellers. This expansion of

buyer choice matters when there are interactions among a buyer’s visits; that is, when the

value of any one visit depends on the outcomes associated with his or her other visits.

The intuition for why the competitive search market-maker equilibrium is constrained

efficient is that the market maker enables sellers to coordinate on pSP1 . Each seller in a

submarket where this price is posted knows that all other sellers in that submarket are

posting the same price and that any buyer who visits this submarket is not visiting sellers in

other submarkets. By joining the submarket with price pSP1 , sellers are implicitly agreeing to

cooperate with one another, i.e., to not raise p1 above the social planner value. Relative to

the Nash case, a seller in the submarket with price pSP1 receives a lower price when his or her

buyer has no other offer, but this is more than compensated for by a longer expected queue.

9Alternatively, we can use the buyers’ indifference condition Ua(p̃1, λ̃, p1, λ) = U to solve for p̃1 as a

function of λ̃ and then substitute it into equation (34) with k = a, which then yields the expected payoff of
a deviant seller:

πd(λ̃) = h̃a−1m(λ̃)
1− h̃a − U
ah̃a−1(1− h̃)

= y(λ̃)− λ̃

a
U.
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5 Final remarks

In this paper, we have explored the foundations of competitive search equilibrium with si-

multaneous search; e.g., in the labor market, this occurs when workers apply to multiple

vacancies and in the product market this occurs when buyers search at multiple sellers. It

has previously been shown that when searchers engage in a single search, i.e., workers send

one application or buyers visit only one seller, competitive search equilibrium is constrained

efficient and the equilibrium allocation is the same according to a Nash concept of equilib-

rium or a market-maker concept of equilibrium. We show that these results do not always

hold when agents make multiple searches. We find that if sellers post fees, but not prices, the

competitive search equilibrium is constrained efficient and, as in the case of single searches,

the Nash equilibrium and the market-maker equilibrium coincide, even though for the case of

perfect complements, the two approaches yield different outcomes off the equilibrium path.

If the sellers post prices and not fees, we find that if the goods in question are perfect comple-

ments, the Nash equilibrium and the market-maker equilibrium coincide but the equilibrium

is not constrained efficient. If the goods are perfect substitutes, the Nash equilibrium allo-

cation and the market-maker allocation are not the same, but the market-maker equilibrium

is constrained efficient.

Appendix A Proofs

A.1 Proof of Lemma 2.

Recall that

Vb(λ) =

(1− h(λ))a (1− a(1− εm(λ))) perfect complements

1− h(λ)a − ah(λ)a−1 (1− h(λ)) (1− εm(λ)) perfect substitutes

We first consider the case of perfect complements. In this case, Vb(λ) is positive if and only

if λ ≤ λ
c
, where εm(λ

c
) = 1 − 1/a. Recall that εm(λ) is assumed to be strictly decreasing.

Next, we have

V ′b (λ) = −a(1− h(λ))a−1h′(λ) (1− a(1− εm(λ)) + (1− h(λ))aaε′m(λ)

which is negative for λ ≤ λ
c
.

Next, consider the case of perfect substitutes. To see that Vb(λ) is positive, note that

1 − h(λ)a − ah(λ)a−1 (1− h(λ)) (1 − εm(λ)) > 1 − h(λ)a − ah(λ)a−1 (1− h(λ)) > 0, where

the first inequality holds because εm(λ) is between 0 and 1, and the second inequality holds
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because its left-hand side represents the probability that a buyer receives at least two offers,

which is strictly positive for a ≥ 2. Furthermore, we have

V ′b (λ) = −ah(λ)a−1
(
h′(λ)εm(λ) + (a− 1)

(
1− h(λ)

h(λ)

)
h′(λ)(1− εm(λ))− (1− h(λ))ε′m(λ)

)
which is strictly negative.

A.2 Proof of Lemma 3.

The derivative of 1
k
(1− xk) with respect to k is:

∂

∂k

(
1

k
(1− xk)

)
= − 1

k2
(
1− xk + kxk lnx

)
Define y = k lnx (equivalently xk = ey), then 1 − xk + kxk lnx = 1 − ey + yey. Note that
d
dy

(1−ey+yey) = yey, which is strictly positive when y > 0 and strictly negative when y < 0.

Thus at y = 0, 1−ey +yey reaches its minimum value, which is zero. When x > 0 and x 6= 1,

y 6= 0, and consequently 1
k
(1− xk) is strictly decreasing in k.

A.3 Proof of Proposition 1.

For the case of perfect complements, we showed in the text that the Nash and market-maker

equilibria have the same outcomes which are constrained efficient. What remains to be shown

is that the expected payoff of a deviant seller is strictly higher in the market-maker case than

in the Nash case for any t̃ 6= t.

In the Nash case, the relationship between t̃ and λ̃ is given by equation (14), and in the

market-maker case, it is given by equation (22). Denote the former relation by t̃ = fN(λ̃)

and the latter by t̃ = fMM(λ̃); both are strictly decreasing functions. Note that

fMM(λ̃)− fN(λ̃) =

[
t+

1

a

(
(1− h(λ̃))a − (1− h(λ))a

)]
−
[
t+ (h(λ)− h(λ̃))(1− h(λ))a−1

]
To simplify the notation, we write h̃ for h(λ̃) and h for h(λ). The derivative of the above

expression with respect to h̃ is then given by

(1− h)a−1 − (1− h̃)a−1

which is strictly negative when h̃ < h and strictly positive when h̃ > h. Hence the difference

fMM(λ̃) − fN(λ̃) reaches its minimum zero at h̃ = h or equivalently λ̃ = λ. When λ̃ 6= λ

(h̃ 6= h), it is strictly positive.
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Finally, the results for the case of perfect substitutes are shown in the text.

A.4 Proof of Lemma 6.

Consider first the market-maker case. Suppose that in equilibrium pn > 0 for some n ∈
{2, . . . , a}. Consider a market maker who creates a deviant submarket with p̃n = pn − ε for

some positive but sufficiently small ε and p̃j = pj for j 6= n. Suppose that the expected queue

length in the deviant submarket is λ̃. Note that if the prices are arbitrarily close, the queues

will be arbitrarily close (λ̃→ λ as ε→ 0).

Let P(j1, j2, λ) represent the probability that a buyer who pays j1 visits to a submarket

with expected queue length λ obtains exactly j2 offers. Then for 0 ≤ j2 ≤ j1, we have

P(j1, j2, λ) =

(
j1
j2

)
(1− h(λ))j2 h(λ)j1−j2 . (42)

Given ε, suppose that all buyers who visit the deviant submarket find it optimal to pay

k visits to the deviant submarket and a − k visits to the nondeviant submarket, then the

expected payoff of a deviant seller is

π̃ = m(λ̃)

[(min{k,n}∑
i=1

pn − ε
i
P(k, i− 1, λ̃)P(a− k, n− i, λ)

)

+
∑

1≤j≤a, j 6=n

pj
j

(min{k,j}∑
i=1

P(k, i− 1, λ̃)P(a− k, j − i, λ)

)]

where P(·, ·, ·) is defined by equation (42). The first line above represents the scenario in

which the deviant seller meets at least one buyer (with probability m(λ̃)) and the selected

buyer has n offers in total. Among the n offers, i offers come from deviant sellers and n− i
offers come from nondeviant sellers. This occurs with probability P(k, i−1, λ̃)P(a−k, n−i, λ),

where i ≤ min{k, n}. In this case, the buyer randomizes among the i offers from the deviant

submarket because the price p̃n is strictly less than pn. The second line represents the scenario

where the deviant seller’s chosen buyer has j offers in total (j 6= n). Among the j offers,

i offers come from deviant sellers and j − i offers come from the nondeviant sellers. This

occurs with probability P(k, i− 1, λ̃)P(a− k, j − i, λ), where i ≤ min{j, k}. In this case, the

buyer randomizes among all j offers because p̃j = pj.

A seller’s expected payoff in the candidate equilibrium can be obtained by setting λ̃ = λ

and replacing the term (pn − ε)/i with pn/n. Therefore, when ε→ 0, the difference between
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the expected profits of a deviant seller and a nondeviant seller is

lim
ε↘0

(π̃ − π) = m(λ)

min{k,n}∑
i=1

(pn
i
− pn

n

)
P(k, i− 1, λ̃)P(a− k, n− i, λ)

 .

Thus, there exist profitable deviations for sufficiently small ε (since all terms are positive),

and this does not depend on the visiting strategies of buyers who send at least one visit to

the deviant submarket.

Note that the above proof with k = 1 applies to the Nash case so we do not need a

separate proof.
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