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Motivation

• Most papers in this conference considered on/off or 0-1 or treatment/control
interventions.

• Some considered extensions to interventions in which more than 2 treat-
ments are compared.

• In all these interventions there is no restriction on who gets treated,
e.g. a typical counterfactual considered is the average outcome if all
members of the population are treated and the average outcome if none
of them is treated.

• Now consider a situation where there are as many treatment levels
as there are individuals (or a distribution of treatment levels in the
population) and constraints on treatment assignment.

• A particular case is when the treatment levels are fixed/indivisible. In
that case, assigning a particular unit another treatment can only occur
if we change the treatment of at least one other unit.

• This is a very simple example of a feedback effect in treatment assign-
ment, i.e. the SUTVA assumption does not hold.

• The constraints on treatment assignment can take different forms, e.g.
the treatment levels can be divisible and the total supply, i.e. the sum
of the levels, is fixed.

• I will only consider the indivisible case where the treatment assignment
matches units to treatments and different treatment assignments are
reallocations of treatment levels among units.

• One reason this may be interesting is because these are type of treat-
ments in the presence of peer effects or social interactions, e.g. room-
mates in college or gender composition of class.

• Literature on social interactions has concentrated on identifying the
effect of social interactions (estimating social multiplier), but has not
considered the effect of policy interventions.
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• Problem considered here is different from that in Manski (2004) and
Dehejia (2002) who consider optimal treatment rules (for 0-1 inter-
ventions) that are unconstrained (and do not violate SUTVA). Their
question: who should be treated to maximize the average outcome in
the population.
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Overview

• Examples

• Average Redistributional Effect

• Some econometric issues

• Empirical illustration
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Examples

Example 1: Production function (Athey and Stern, 1998))

• Notation

– Yi is output firm i

– Wi input of firm i

– Xi characteristic of firm i

• If i is assigned input w, then output is Yi(w) (causal).

• The relation between output and w is allowed to depend on Xi, e.g.

Yi(w) = g(w, Xi) (1)

• We assume that total supply of input is fixed, and that input is indi-
visible.

• Question: What is the effect on average output if we reallocate/redistribute
inputs among the firms?

• In sequel we focus on average output we could also consider other sum-
mary measures or full distribution, e.g., inequality measures.
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Example 2: Teacher assignment (Card and Krueger, 1992)

• Output Yi is (average) test score of class i, Wi is (quality of) teacher
assigned to class i, and Xi is ’quality’ of class i, as e.g. measured by
average test score in previous year.

• If pool of teachers fixed, then we can only consider reallocation.

• Question: What is the effect on the average (over the classes) test score
of teacher reallocation.
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Example 3: Roommates in college (Sacerdote, 2001)

• Yi is GPA of student student i, Wi is high school GPA of roommate,
Xi is high school GPA of student.

• Note that two inputs W and X act symmetrically.

• Effect of high school on college GPA depends on roommate high school
GPA: peer effect.

• Question: What is the effect of roommate reallocation on average GPA?

7



Example 4: Parents’ and child’s education (Kremer, 1997)

• Wi is father’s years of education and Xi is mother’s years of education,
and Yi is child i’s years of education.

• Like roommate example.

8



Example 5: Effect of group composition/diversity (Graham, Imbens, and
Ridder, 2006)

• Yi is test score of class i, and Wi fraction of girls in class i.

• Change the fraction girls in class (towards or away from equal repre-
sentation c.q. segregation) holding total number of girls and class size
distribution constant.

• Also reallocation problem, but under different restrictions, i.e. more
like supply constrained divisible problem.
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Average Redistributional Effect

• If we consider a large population then a feasible allocation is a joint dis-
tribution of inputs W, X over units consistent with given fixed marginal
distributions of these inputs.

• Special feasible allocations

– Current or status quo allocation. We do not assume that the sta-
tus quo is necessarily optimal, i.e. no model for status quo alloca-
tion, except assumption that allows us to estimate the production
function in (1).

– There is small literature on analyzing the observed allocation as
the outcome of choice by units (e.g. Fox (2006), Choo and Siow
(2006)) and if that choice is strictly on the basis of the outcome
variable that would potentially be helpful in identifying treatment
effects as in the Roy model.

– Random allocation, i.e. assignment of W independent of Xi.

– Positive perfect sorting/assortative matching, i.e. the order of W
in the reallocation is equal to that of Xi.

– Negative perfect sorting/negative assortative matching, i.e. the
order of W is the reverse of that of Xi.

– Comparison of positive assortative and random or negative assor-
tative matching gives a measure of complementarity of inputs.

– Optimal allocation, i.e. the allocation that maximizes the average
outcome.

10



Average Redistributional Effect (ARE)

• In this paper we do not compute the optimal allocation and do inference
for that allocation. Bhattacharya (2006) considers some issues regard-
ing inference on optimal allocations . Computation of and inference for
the optimal allocation are feasible if X, W take a fine number of val-
ues, e.g. years of education, but not if these variables are continuous,
as explained later.

• Instead we consider a (two-parameter) class of allocations, the corre-
lated matching allocations, that has all focal allocations as special case.
This is a manageable subset of all allocations.

• ARE is average outcome for a particular correlated matching allocation.
It is a treatment effect where the treatment is a re-allocation.

• All feasible allocations give the same average outcome if g is separable,
i.e. g(w, x) = g1(w) + g2(x).
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Special case: X, W binary.

• Population is infinite, but X, W take only two values x1, x2 and w1, w2.

• An allocation is a joint distribution rXW,ij, i, j = 1, 2 such that

rXW,11 + rXW,12 = pX,1 (2)

rXW,11 + rXW,21 = pW,1 (3)

rXW,11 + rXW,12 + rXW,21 + rXW,22 = 1 (4)

with pXW,ij, i, j = 1, 2 the population, i.e. status quo, distribution.

• The allocations satisfy

rXW,12 = pX,1 − rXW,11

rXW,21 = pW,1 − rXW,11

rXW,22 = 1− pX,1 − pW,1 + rXW,11

and hence are indexed by rXW,11.
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• Special allocations

– Status quo allocation with rXW,11 = pXW,11.

– Random allocation with rXW,11 = pX,1pW,1.

– Positive sorting allocation with rXW,11 = min{pX,1, pW,1}.
– Negative sorting allocation with rXW,11 = pX,1 −min{pX,1, pW,2}.

• Optimal allocation maximizes

g(x1, w1)rXW,11 + g(x1, w2)(pX,1− rXW,11)+ g(x2, w1)(pW,1− rXW,11)

+g(x2, w2)(1− pX,1 − pW,1 + rXW,11)

and is equal to positive sorting allocation if

g(x1, w1)− g(x1, w2)− g(x2, w1) + g(x2, w2) > 0

and to the negative sorting allocation if reverse holds.
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Extension to general X, W

• X and W take K: allocations indexed by (K − 1)2 parameters.

• Optimal allocation found by linear programming, i.e.

max
K∑

k=1

K∑
l=1

g(xk, wl)rXW,kl

subject to

K∑
k=1

rXW,kl = pW,l

K∑
l=1

rXW,kl = pX,k

rXW,kl ≥ 0

for l = 1, . . . , L and k = 1, . . . , K. This is a transportation problem.

• If we estimate the production function, then the optimal allocation is
a consistent estimator of the population optimal allocation.

• W, X continuous variables: Allocations are joint distributions of X, W
with given marginals. Optimal allocation is solution to infinitely di-
mensional LP problem (replace summations by integrals).

• Optimal allocations are considered in Imbens, Graham, and Ridder
(2006).
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Estimands and estimation

• Notation

– Yi(w) = output for unit i is assigned Wi = w.

– Xi = characteristic of i used in assignment of Wi (could be other
input).

– Zi vector of other covariates.

• Data: Yi(Wi), Wi, Xi, Zi.

• Assumption: Unconfounded/exogenous assignment of W

Y (w)⊥W |X, Z

• Z contains all variables that affect both assignment of W and Y (w).

• Credibility is same as in the 0-1 treatment case. Consider Y (w) with
w educational attainment child if mother has (counterfactual) level of
education w and W is observed level of education mother.

• This is assumption on marriage market: matching on X,Z and other
variables that are independent of Y (w).

• Under this assumption

g(w, x, z, ) = E(Y (w)|W = w,X = x, Z = z) = E(Y (W )|W = w, X = x, Z = z)

i.e. we can obtain g as the average observed output given W = w,X =
x, Z = z.

• If there is no Z such that assignment is unconfounded, we could identify
g using instruments. ’Strong’ instrument needed for non-parametric
identification, otherwise bounds.
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Estimands (continuous X, W )

• The correlated matching allocations are defined using a truncated bi-
variate normal cupola

φc(x1, x2; ρ) =
φ(x1, x2; ρ)

Φ(c, c; ρ)− Φ(c,−c; ρ)− [Φ(−c, c; ρ)− Φ(−c,−c; ρ)]

with −c < x1, x2 ≤ c. Denote the truncated bivariate cdf by Φc.

• The truncated normal bivariate distribution gives comprehensive allo-
cations, because the corresponding joint cdf

HW,X|Z(w, x|z) = Φc

(
Φ−1

c (FW |Z(w|z)), Φ−1
c (FX|Z(x|z)); ρ

)
has marginal cdf-s equal to HW,X|Z(w,∞|z) = FW |Z(w|z) and HW,X|Z(∞, x|z) =
FX|Z(x|z), it reaches the upper and lower Fréchet bounds on the joint
CDF for ρ = 1 and ρ = −1, respectively, and it has (conditionally)
independent W, X as a special case for ρ = 0.
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• Note that with additional covariates Z we hold the marginal distrib-
utions of X|Z and W |Z fixed. This is necessary, if g(w, x, z) is not
separable in z and we want to concentrate on the effect of reallocation
of W among units characterized by X, Z We need to hold the relation
between W and Z and X and Z constant.

• To obtain an estimate of βcm(ρ, τ) we note

βcm(ρ, τ) = τE(Y )+

(1− τ)

∫
x

∫
w

∫
z

g(w, x, z)
φc

(
Φ−1

c (FW |Z(w|z)), Φ−1
c (FX|Z(x|z)); ρ

)
φc

(
Φ−1

c (FW |Z(w|z))
)
φc

(
Φ−1

c (FX|Z(x|z))
)

·fW |Z(w|z)fX|Z(x|z)f(z)dwdxdz.
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Special cases

• Status quo assignment

βcm(ρ, 1) = E(Y )

• Positive perfect sorting

βcm(1, 0) = E
[
g

(
F−1

W |Z(FX|Z(X|Z)|Z), X, Z
)]

• Negative perfect sorting

βcm(−1, 0) = E
[
g

(
F−1

W |Z(1− FX|Z(X|Z)|Z), X, Z
)]

.

• Random sorting

βcm(0, 0) =

∫
x

∫
w

∫
z

g(w, x, z)dFW |Z(w|z)dFX|Z(x|z)dFZ(z).
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Estimators

• The ’production function’ g is estimated nonparametrically. Kernel
regression estimator of g

ĝ(w, x, z) =
N∑

i=1

yi ·K((vi − v)/h)

/ N∑
i=1

K((vi − v)/h).

• Correlated sorting

β̂cm(ρ, 0) =
1

N2

N∑
i=1

N∑
j=1

ĝ(wi, xj, zj)
φ

(
Φ−1(F̂W (wi)), Φ

−1(F̂X(xj)); ρ
)

φ
(
Φ−1(F̂W (wi))

)
φ

(
Φ−1(F̂X(xj))

)
• Positive perfect sorting

β̂cm(1, 0) =
1

N

N∑
i=1

ĝ
(
F̂−1

W (F̂X(xi)), xi, zi

)
.

• Negative perfect sorting

β̂cm(−1, 0) =
1

N

N∑
i=1

ĝ
(
F̂−1

W (1− F̂X(xi)), xi, zi

)
.
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Asymptotic properties of estimators

• Estimators are averages of nonparametric regression estimators over
their arguments.

• Relevant asymptotic theory is partial means as in Newey (1994) and
Linton and Nielsen (1995).

• β̂cm(1, 0) has parametric rate of convergence if we use a higher order
kernel and the appropriate bandwidth sequence.

• For β̂cm(1, 0) and β̂cm(−1, 0) we average over a singular distribution,
i.e. W is a function of X, so that the rate of convergence is slower than
parametric. This singular case is also the reason that we use a kernel
and not a series estimator for g.

• Because we take averages over a compact support, we have to deal with
boundary bias in the kernel estimators. Can be dealt with by trimming
or by the boundary kernel modification in Imbens and Ridder (2006)
that combine kernel and series estimators and applies to densities and
their derivatives and accommodates higher-order kernels.
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Testing for local reallocation effects

• Correlated sorting gives the effect of reallocations between perfect pos-
itive and negative assortative matching.

• Other approach is to consider small reallocations from the status quo
in the direction of positive assortative matching.

• Define Wρ = ρX +
√

1− ρ2W , so that if ρ = 0, Wρ = X and if ρ = 1 ,
Wρ = W .

• Define

β(ρ) = E
[
g(F−1

W |Z(FWρ(Wρ|Z)|Z), X, Z)
]
.

and consider

γ =
∂β

∂ρ
(0).

• We find

γ = E
[

∂g

∂w
(W, X,Z) · (X − E[X|W, Z])

]
.

(average measure of local complementarity)

• Advantage is that this test is not affected by potential support prob-
lems.
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Application

• Kremer (1997) considered effect of change in correlation of parents’
education on inequality of education among children,

• He specifies a linear relation between parents’ and child’s education,
i.e. no effect of redistribution on average education of children.

• We use data on 10272 children from the NLSY. For now only education
of father and mother (X, W ) and education of child Y .
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• Summary statistics

Table 1: Years of education NLSY; N = 12272

Mean Std.
dev.

Ed. child 13.06 2.38
Ed. mother 11.20 2.87
Ed. father 11.20 3.64

Correlation of parents’ education is 0.6.

• Regression of education child on education father and

mother, squares and interaction

Table 2: Regression of education of child on education parents; NLSY, N =
10272

Coefficient Standard
err.

Constant 11.27 .19
Ed. mother -.041 .036
Ed. father -.077 .029
Ed. mother2 .011 .0023
Ed. father2 .011 .0015
Ed. mother× Ed. father .0014 .0029
R2 .22
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• Average education child by education father and mother

Figure 1: Average years of education child by education father and mother
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Figure 2: Average years of education child minus predicted by education
father and mother
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• Correlated sorting effect

Table 3: Average education given correlated (ρ) sorting

ρ β̂cs Std(β̂cs)
-.99 11.5 .069
-.8 11.7 .048
-.6 11.9 .040
-.4 12.1 .037
-.2 12.4 .034
0. 12.6 .033
.2 12.8 .031
.4 12.9 .030
.6 13.0 .029
.8 13.0 .029
.99 13.1 .039
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Figure 3: Average years of education child given correlated sorting; 95% error
bands
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