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Abstract

We implement alternative bounding strategies to reanalyze data from the observational

study by Connors et al. (1996) on the impact of Swan-Ganz catheterization on mortality

outcomes. While the Connors et al. (1996) study assumes that there are no unobserved

differences between patients who are catheterized and patients who are not, we employ a

bounding strategy that allows for such unobserved differences. We implement both the

traditional bounds that exploit access to an instrumental variable but impose no other

assumptions (Manski, 1990) and the bounds of Shaikh and Vytlacil (2004) that impose

additional relatively mild nonparametric structural assumptions. Both of these approaches

require an instrumental variable that shifts the probability of catheterization, but which

does not alter mortality risks. We propose and justify using indicators of weekday admission

as an instrumental variable in this context.

We find that, while the traditional instrumental variable bounds are almost entirely

uninformative in our application, the Shaikh and Vytlacil (2004) bounds that do impose

some nonparametric structure often produce a clear answer—catheterization reduces mor-

tality at 7 days, and increases it at 30 days and after. Applying a further nonparametric

structural assumption—that doctors catheterize individuals with systematically worse la-

tent health—further narrows these bounds and strengthens these conclusions. Our findings

suggest an explanation for the fact that many ICU doctors are deeply committed to the

use of the Swan-Ganz catheter. Since most ICU patients leave the ICU well before 30 days

after admission have elapsed, ICU doctors never observe the increase in mortality. They

do, however, observe the decline in mortality at 7 days.
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Mannheim. Correspondence: Landau Economics Building, 579 Serra Mall, Stanford CA 94305; Email: vyt-

lacil@stanford.edu; Phone: 650-725-7836; Fax: 650-725-5702.
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1 Introduction

In randomized settings, inferring the effect of a treatment on an individual is comparatively

straightforward. Since each individual is either given or not given the treatment with equal

probability, on average there are no unobserved differences between the treated and untreated

groups. The researcher can therefore compare the average outcomes of the treated and un-

treated groups to estimate the treatment effect. Randomized studies, however, are often pro-

hibitively expensive or suffer from ethical complications, leaving the researcher instead with

more readily available observational data in which each individual or some proxy chooses

whether or not to adopt the treatment. In such settings, comparing the average outcomes of

the treated and untreated groups is unlikely to yield an accurate estimate of the treatment

effect, as decisions regarding whether or not to adopt the treatment will be made to maximize

the welfare of the recipient.

In this paper, we compare several different empirical approaches to the sample selection

problem in the context of the Swan-Ganz catheter, which is a device used by intensive care

unit (ICU) doctors to guide therapy in the ICU. There are two main theoretical novelties of

this paper. First, we implement a new bounding approach proposed by Shaikh and Vytlacil

(2004) that has heretofore not been evaluated empirically. Second, we extend the bounding

approach of Shaikh and Vytlacil (2004) to exploit the assumption that doctors are perform-

ing catheterization on those patients who have the highest expected mortality rates. The

Swan-Ganz example is also of interest substantively. Nearly all of the empirical work on the

mortality effects of the Swan-Ganz catheter has relied on observational data, but has ignored

the possibility described above that patients are catheterized non-randomly even conditional

on observed covariates.1 Even though most of this literature has concluded that the procedure

increases patient mortality, the use of the Swan-Ganz catheter remains extremely common

among ICU doctors. One possible reason that these studies have not let to a change in clinical

practice is that they failed to account adequately for the fact that those who are catheterized

are in fact the sickest patients.

This sort of sample selection problem is well known in economics,2 and much work has

been devoted to devising econometric techniques to cope with the problem (see the Handbook

of Econometrics for a review). The seminal paper by Heckman (1978) proposed a strictly

parametric approach to the problem—the eponymous “Heckit.” Heckman frames the issue in

terms of a switching regression model, where the unobservability of outcomes in one of the

two branches can be addressed as a missing variable in a regressor, as long as the parametric

assumptions made are correct.

1See Dalen (2001) and Section 2 below for a review of this literature. Recently, some randomized trials have

been conducted in specialized ICU subpopulations.
2In part this is because randomized studies are difficult to conduct in social science settings, while obser-

vational data are much cheaper to collect. In medicine, it is rare for observational studies to worry about

unobserved selection, though see McClellan et al. (1994) for an exception.
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Recent work has sought to relax the reliance on unverifiable parametric assumptions.3

Manski (1989) suggests a strategy of bounding the average treatment effect that exploits the

fact that a binary outcome variable is bounded from below by zero and from above by one.

The outcome variable being bounded implies that the mean of the outcome variable for all

groups is also bounded. Applying this idea leads to bounds on the treatment effect with a

width equal to one. Manski (1990) suggests a strategy of sharpening these bounds when an

instrument is available: First, calculate the treatment effect bounds over subgroups of the data

defined by the instrument; second, bound the treatment effect from below by the maximum

of the resulting lower bounds and from above by the minimum of the resulting upper bounds.

We will call these bounds the Manski IV bounds.

Manski (1990) does not impose any structure on the models for the outcome variable or

treatment variable. Shaikh and Vytlacil (2004), in contrast, model both the treatment and the

outcome variables using threshold crossing models. The assumptions underlying their bounds

are therefore stronger than those imposed by Manski (1990).4 This additional structure results

in bounds on the treatment effect that are often considerably narrower than the Manski IV

bounds. At the same time, Shaikh and Vytlacil (2004) still avoid imposing any of the arguably

more untenable parametric or distributional assumptions underlying the analysis of Heckman

(1978).

In this paper, we develop an extended case study of these two different approaches for

bounding the treatment effect by reanalyzing the data from a well known observational study

by Connors et al. (1996), which examines the impact of Swan-Ganz catheterization on mor-

tality outcomes among a population of patients admitted to the intensive care unit (ICU) at

five prominent hospitals. All five of the hospitals are members of the Study to Understand

Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT) group—Duke

University Medical Center, Durham, NC; MetroHealth Medical Center, Cleveland, OH; St.

Joseph’s Hospital, Marshfield, WI; and University of California Medical Center, Los Angeles,

CA. Analyzing observational data from these ICUs, Connors et al. (1996) reach the contro-

versial conclusion that patients who receive Swan-Ganz catheterization during their first day

in the ICU are 1.27 times more likely to die within 180 days of their admission. Even at 7

days after ICU admission, Connors et al. (1996) find that catheterization increases mortal-

ity. This conclusion is surprising to ICU doctors because these catheters are often placed in

3Another possible approach is to use linear two stage least squares (TSLS). Under the conditions considered

in this paper, TSLS will not recover the average effect of catheterization on mortality. However, Angrist et al.

(1996) suggest redefining the object of interest to be the “Local Average Treatment Effect” (LATE) instead

of the usual average treatment effect. As long as an instrument that satisfies their conditions is available, and

as long as there are no covariates or the model is fully saturated, they show that TSLS will yield consistent

estimates of the LATE parameter. See Heckman and Vytlacil (2000) for the relationship between the LATE

parameter and other mean treatment parameters including the average treatment effect.
4Note that Shaikh and Vytlacil also impose more structure than the bounding analysis of Heckman and

Vytlacil (1999), who impose a threshold crossing model on the treatment variable but not on the outcome

variable. See Heckman and Vytlacil (2001) for the relationship between the Heckman and Vytlacil (1999)

bounds and both the Manski (1990) IV bounds and the Balke and Pearl (1997) IV bounds.

3



severely ill ICU patients to inform better therapy aimed at reducing mortality. The finding

that catheterization increases mortality even by 7 days is especially puzzling since one might

expect ICU doctors to detect such an effect.5 The statistical strategy Connors et al. (1996) use

to reach this conclusion—the propensity score matching method—assumes away the possibility

of unobserved differences between patients who are catheterized and patients who are not.

Our analysis, by comparison, permits the possibility of unobserved differences between these

groups. We rely, instead, on the existence of an instrument for Swan-Ganz placement, and we

use this instrument to compute both of the bounds on the treatment effect described above. We

use the day of the week that the patient was admitted to the ICU as an instrument for Swan-

Ganz catheterization.6 We argue that this variable meets the two crucial requirements for an

instrument’s validity. First, it is strongly correlated with the application of the treatment.

On weekends, patients are less likely to receive any medical procedure during hospitalization,

including Swan-Ganz catheterization, as fewer medical staff are available on these days. Second,

we argue that within observable risk classes, day-of-the-week is uncorrelated with the outcome

of treatment; that is, the particular day of the week that a patient is admitted to the ICU has

little to do with mortality rates, and more to do with the arc of the patient’s medical condition.

We test whether weekday admission monotonically increases the odds of catheterization.

The main theme of our empirical analysis is to quantify in an important empirical setting the

trade-off between precision and verifiability. Accepting structural assumptions, like a threshold

crossing model for catheterization, increases the former at the cost of the latter. On the other

hand, estimators that are stubbornly agnostic altogether about unverifiable assumptions yield

imprecise estimates that provide little guidance to ICU doctors deciding whether or not to

catheterize a patient.

2 Background on Swan-Ganz Catheterization

A Swan-Ganz catheter is a long slender tube outfitted with sensors designed to measure hemo-

dynamic pressures in the right side of the heart and in the pulmonary artery. The catheter

also has a small balloon tip that allows a doctor to wedge the catheter into a pulmonary artery,

providing a measure of left atrial pressure. Under sterile conditions, an ICU doctor will typi-

cally insert the catheter into the left subclavian vein (underneath the clavicle) or right internal

jugular vein, and advance the catheter through the superior vena cava and into right side of

the heart. Once in place, the catheter is often left in place for days, so it can continuously

provide information to ICU doctors about the hemodynamic status of the patient.

5ICU doctors would typically not be expected to detect increased mortality if it occurs after the patient has

left the ICU. At 7 days, a substantial portion of the ICU population may still be in the ICU.
6This is not the first study in health economics to use this variable as an instrument for treatment decisions.

In a study of the effect of queuing time on mortality in a Canadian population undergoing hip-fracture surgery,

Hamilton et al. (2000) use day of the week of admission as an instrument for queuing time. Their study does

not examine the ICU population or the effect of Swan-Ganz catheterization.
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A Swan-Ganz catheter is primarily used to measure pressure at different locations (depend-

ing upon where the tip of the catheter is) in the right side of the heart: central venous pressure,

right atrial pressure, pulmonary artery pressure, and pulmonary artery wedge pressure. These

pressure measurements can provide important diagnostic information, such as whether the

patient’s heart valves are working, or whether the patient has pulmonary hypertension. Infor-

mation gleaned from Swan-Ganz measurements is often used by ICU doctors to make decisions

about treatment, such as whether to give the patient medications that affect the functioning

of the heart.

The placement of Swan-Ganz catheters is an extremely common procedure for ICU patients—

over 2 million patients in North America are catheterized each year (Paunovic and Sharma,

2003). Nevertheless, there are a number of potentially life-threatening complications that can

occur as a result of the procedure. During insertion, the doctor might miss the subclavian vein

and puncture the lung underneath it instead. The placement of any foreign body such as a

catheter can cause blood clots to form leading to a deadly pulmonary embolism.7 Left in place

for a while, the catheters can cause infections at the insertion point which can spread into the

blood stream and into the heart itself.

Even if the placement of the catheter is successful, the information generated by the pressure

measurements may itself cause harm. No test is perfect, Swan-Ganz catheterization included;

false positive diagnoses of heart failure, for example, or other misdiagnoses may lead doctors

to administer inappropriate medications and treatments that lead to bad outcomes. In light

of these potential adverse consequences from catheter placement, the Connors et al. (1996)

assertion that Swan-Ganz catheters increase mortality, while surprising, is not prima facie

implausible and needs to be taken seriously.

Connors et al. (1996) is not the first observational study to conclude that Swan-Ganz

catheterization may kill ICU patients. In the specialty journal, Chest, Gore et al. (1985) report

an autopsy study of the effects of Swan-Ganz catheterization on patients who had suffered an

acute myocardial infarction (heart attack). Zion et al. (1990) conduct a case-control study

of the effects of Swan-Ganz catheterization on a different set of heart attack patients. Both

groups of authors conclude that compared with patients who had catheters placed, patients

without catheters were less likely to die within a fixed period after the hospitalization for the

heart attack. The major criticism that both studies faced was that they did not sufficiently

allow for clinically important differences between the patients who had catheters placed and

those who did not. For example, Dalen (2001), commenting on the two reports, says:

The studies reported by Gore et al. (1985) and Zion et al. (1990) were not

randomized trials; rather, they were observational studies. Therefore, it is possible

that physicians accurately assessed patients at risk for increased risk of an adverse

outcome and selected patients who were more seriously ill for PAC use.

7Swan-Ganz catheters are often coated with an anti-coagulant to prevent blood clots from forming, but this

expedient is not 100% effective.
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The Connors et al. (1996) study was conceived in part as a response to this criticism.

The SUPPORT team included a dizzying array of clinical variables designed to control as

exhaustively as possible for observed differences between the patients with catheters placed

and patients without catheters. In addition, Connors et al. (1996) expanded the set of ICU

patients beyond just heart attack patients to all ICU patients. Weil (1998) argues that because

Connors et al. (1996) expanded the set of patients considered, they fail to consider important

clinical variables in their statistical work:

With respect to. . . disorder groups, it is not possible to join diagnoses regard-

less of expected outcome. Let me cite aseptic meningitis. It has a very different

course than meningococcal meningitis, and high-output failure of septic shock has

a different course than low-output failure of ischemic heart disease. . . None of these

were discretely classified in the Connors et al. (1996) study.

Despite substantial criticism, the publication of the Connors et al. (1996) study was seminal

in the Swan-Ganz catheterization literature in the sense that it has guided the arc of subsequent

research in two concrete ways. Subsequent studies have focused on expanding the set of ICU

patients considered in the analysis, and on minimizing the possibility of selection bias.

Polanczyk et al. (2001) conduct another observational study of Swan-Ganz catheterization

aimed at expanding the set of ICU patients considered to those undergoing elective non-cardiac

surgery. Swan-Ganz catheters are often placed in patients undergoing serious non-cardiac

surgery to help manage cardiac complications arising from the surgery. Like Connors et al.

(1996), Palanczyk and colleagues use a large set of clinical control variables along with propen-

sity score matching methods to limit the possibility of selection bias. Unlike Connors et al.

(1996), their major endpoints are cardiac events like heart attack, unstable angina, congestive

heart failure, and ventricular fibrillation. In their propensity score-matched analysis, they find

that the placement of a catheter in this group of patients doubles the odds of congestive heart

failure.

Hirano and Imbens (2001) reanalyze the Connors et al. (1996) data, using a modified version

of the propensity score matching method. Their key modification is aimed at thinning the set

of clinical control variables that are used to construct the propensity score. To do this, they

initially regress an indicator variable that equals one if a patient had a catheter placed on each

potential clinical control variable in turn, one at a time. Their final propensity score model

includes all control variables that show up as statistically significant (at some preset level) in

the univariate regression. Their main finding is that the Connors et al. (1996) conclusion that

catheterization increases mortality risk is robust to their model selection exercise.

Prior to Connors et al. (1996), attempts to organize a randomized trial failed because

doctors refused to recruit patients into the control group—the belief in the efficacy of catheter-

ization was so strong that doctors believed it unethical to deny this procedure to patients on
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the basis of chance.8

Since Connors et al. (1996), there have been two randomized trials on specialized ICU

populations. Unlike the observational studies, these studies do not find that catheterization

kills. Sandham et al. (2003) focus on high risk surgical patients aged 60 years and older who

were admitted to ICUs. While patients in the catheterized group were statistically more likely

to suffer a pulmonary embolism, there were no differences between the groups in survival

in hospital or at 6 and 12 months post-ICU admission. Richard et al. (2003) conduct a

randomized trial on 676 French ICU patients admitted because of shock, acute respiratory

distress syndrome (ARDS) or both. They find no statistically significant differences between

the catheterized and non-catheterized groups in 14, 28, and 90 day mortality; nor did they find

any differences in the likelihood of organ failure or other measures of serious morbidity. These

two studies are just the start of this research arc: there are a number of other trials currently

in preparation that examine the effect of catheterization on patients with a wide variety of

disease conditions (Dalen, 2001).

While it would be appealing to compare our results directly with the outcomes from these

two randomized trials, differences in the populations studied preclude anything but a tentative

comparison. Unlike the Sandham et al. (2003) trial, the Connors et al. (1996) SUPPORT data

that we reanalyze includes adult patients of all ages, not just elderly patients. Our sample

also includes non-surgical ICU patients, not just surgical patients. Like Sandham et al. (2003),

however, patients in our sample are severely ill, even by the standards of the typical ICU

patient. In principle, we could analyze the surgical ICU patients in our sample who are over 60

and with the same minimum level of disease severity (as measured by predicted mortality rate

at the time of ICU admission)—this would provide a more direct comparison. Unfortunately,

there are too few such patients in our sample to analyze fruitfully. The Richard et al. (2003)

trial includes both severely ill and less severely ill ICU patients. While Richard et al. (2003)

admit only patients with ARDS or shock or both to their trial, our data excludes no patients

on the basis of their diagnosis. One similarity between the Richard et al. (2003) sample and

ours is that, like them and unlike Sandham et al. (2003), we exclude no adults on the basis

of their age from the sample. We report some results for ARDS patients alone that can be

compared with the Richard et al. (2003) finding, though it is unclear whether our results for

ARDS patients would pertain if we were to analyze less severely ill patients, as had Richard

et al. (2003).

3 Notation and Assumptions

We now define notation and assumptions that we will use for our bounding analysis. Let Y

denote mortality, with Y = 1 if the individual dies within the given number of days of admis-

sion into the ICU unit and Y = 0 otherwise. Let D denote the treatment, with D = 1 if the

8See Fowler and Cook (2003) and Guyatt (1991).
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individual is catheterized and D = 0 otherwise. Denote by X the observed individual charac-

teristics determining mortality and by Z the observed individual characteristics determining

catheterization. We suppose that both Y and D are determined by threshold crossing models:

Y ∗ = r(X, D) − ε

Y = 1[Y ∗ ≥ 0]
(1)

D∗ = s(Z) − ν

D = 1[D∗ ≥ 0]
(2)

where 1[·] is the indicator function taking the value 1 if its argument is true and the value

0 otherwise. In these equations, ε and ν are unobserved random variables, where ε and ν

are possibly dependent, giving rise to selection bias. Y ∗ and D∗ are latent indices, with Y ∗

interpreted as a latent measure of health status and D∗ interpreted as a latent measure of

desire by hospital staff to conduct the catherization. We do not impose any functional form

on r or s, and we do not impose any parametric distributional assumption on (ε, ν).

We will assume that (X, Z) ⊥⊥ (ε, ν). Thus, we are allowing catheterization to be endoge-

nous, reflecting the possible correlation between ε and ν, but we are assuming that all other

regressors are exogenous. We also assume that (ε, ν) has a strictly positive density with respect

to Lebesgue measure on <2. This assumption eases the exposition, but it is not essential to any

of our arguments. We will also assume that there is at least one variable in Z that is not in X.

In other words, there is one variable that affects the decision to perform catheterization but

does not directly affect mortality. Such a variable is often referred to as an instrument or an

excluded variable, as it is excluded from the Y ∗ equation. In our application to catherization,

we assume that admission into the hospital on a weekend as opposed to a weekday affects the

hospital staff’s desire to provide catherization but does not directly affect mortality.

Using potential outcome notation, let Y1 denote the outcome that would be observed if the

individual receives treatment, and let Y0 denote the outcome that would be observed if the

individual does not receive treatment. The effect of catheterization on mortality for a given

individual is Y1−Y0, and the average effect of the catheterization on mortality given covariates

is then defined as

E(Y1 − Y0 | X) = Pr[Y1 = 1 | X] − Pr[Y0 = 1 | X].

The identification problem is that Y1 is only observed for individuals who receive catheteri-

zation, and Y0 is only observed for individuals who did not receive catheterization, and thus

without further assumptions it is not possible to identify the average treatment effect directly.

Given our model and assumptions, the potential outcomes are given by

Y1 = 1[r(X, 1) − ε ≥ 0]

Y0 = 1[r(X, 0) − ε ≥ 0],
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and the average treatment effect conditional on X is

E(Y1 − Y0 | X) = Pr[Y1 = 1 | X] − Pr[Y0 = 1 | X] = Fε(r(X, 1)) − Fε(r(X, 0)).

It is worthwhile to note that a special case of our model is the standard bivariate probit

model, which imposes linear index and bivariate normality assumptions: r(X, D) = Xβ+DXα,

s(Z) = Zγ, and (ε, ν) distributed bivariate normal with the normalizations that E(ε) = E(ν) =

0 and Var(ε) =Var(ν) = 1. In this case,

Y1 = 1[X(β + α) − ε ≥ 0]

Y0 = 1[Xβ − ε ≥ 0]

and

E(Y1 − Y0 | X) = Φ(X(β + α)) − Φ(Xβ)

where Φ(·) is the standard normal cdf. Our model nests the bivariate probit model as a special

case but does not impose any of these parametric assumptions.

4 IV Bounds

For ease of exposition, suppose that there are no X covariates and that Z is a binary random

variable. We will later relax these assumptions to allow for X covariates and to allow Z to be

a general random vector. For ease of exposition, order Z so that Pr[D = 1|Z = 1] > Pr[D =

1|Z = 0]; Z = 1 is therefore associated with the higher rate of catherization than Z = 0.

Thus, in our application, Z = 1 corresponds to a admission into an ICU on a weekday while

Z = 0 corresponds to admission on a weekend. Assume the researcher has available an i.i.d.

sample of (Zi, Di, Yi) observations. We now consider two alternative bounding strategies: the

Manski (1990) IV bounds and the Shaikh and Vytlacil (2004) bounds.9,10 We also compare the

Shaikh and Vytlacil bounds to the Manski and Pepper (2000) bounds that impose monotone

treatment response and instrumental variable assumptions, and we also consider an extension

of the Shaikh-Vytlacil bounds than strengthen their assumptions by imposing that doctors are

more likely to catheterize patients with the worst latent health.

First consider the Manski (1990) instrumental variables bounds. Manksi assumes that Y1

and Y0 are independent of Z, Pr[Y0 = 1 | Z] = Pr[Y0 = 1] and Pr[Y1 = 1 | Z] = Pr[Y1 = 1],

but does not impose any assumptions on the model for either the treatment or outcome.11

9Since our outcome variable is binary, we are specializing the Manski (1990) bounds to the special case of a

binary outcome variable. His bounds do not require the outcome to be binary.
10Other IV bounds not considered in this paper include the contaminated IV bounds of Hotz et al. (1997)

and the IV bounds of Balke and Pearl (1997) and Heckman and Vytlacil (1999, 2001).
11In the general case with Y potentially not binary, the Manski IV bounds impose only a mean independence

assumption and not a full independence assumption.
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Thus, Manski’s assumptions are strictly weaker than the assumptions considered in this paper.

Consider Pr[Y1 = 1 | Z = z] and note that

Pr[Y1 = 1 | Z = z] = Pr[D = 1, Y1 = 1 | Z = z] + Pr[D = 0, Y1 = 1 | Z = z].

The event (D = 1, Y1 = 1) is the same as (D = 1, Y = 1) since Y = Y1 when D = 1. Thus, the

term Pr[D = 1, Y1 = 1 | Z = z] = Pr[D = 1, Y = 1 | Z = z] is immediately identified from the

data. The term Pr[D = 0, Y1 = 1 | Z = z] = Pr[D = 0 | Z = z] Pr[Y1 = 1 | D = 0, Z = z], on

the other hand, is not identified from the data since we never know the outcome with treatment

when the individual did not receive treatment. However, any probability is bounded by zero

and one, so 0 ≤ Pr[Y1 = 1 | D = 0, Z = z] ≤ 1, and thus

Pr[D = 1, Y = 1|Z = z] ≤ Pr[Y1 = 1|Z = z] ≤ Pr[D = 1, Y = 1|Z = z] + Pr[D = 0|Z = z].

Since Pr[Y1 = 1] = Pr[Y1 = 1 | Z = z] by assumption, we have

Pr[D = 1, Y = 1|Z = z] ≤ Pr[Y1 = 1] ≤ Pr[D = 1, Y = 1|Z = z] + Pr[D = 0|Z = z].

Since we can evaluate the bounds at any value of z, we can take the maximum of the lower

bounds and the minimum of the upper bounds over possible values of z. Following the parallel

analysis for Pr[Y0 = 1], we have the following bounds:

BL
M ≤ E(Y1 − Y0) ≤ BU

M

where

BL
M = max

z
{Pr[D = 1, Y = 1|Z = z]} − min

z
{Pr[D = 0, Y = 1|Z = z] + Pr[D = 1|Z = z]},

BU
M = min

z
{Pr[D = 1, Y = 1|Z = z] + Pr[D = 0|Z = z]} − max

z
{Pr[D = 0, Y = 1|Z = z]}.

These bounds can be consistently estimated by substituting the conditional sample means for

the conditional population means. These bounds are sharp given Manski’s mean independence

assumption, which leaves open the question of whether the bounds can be improved upon

if imposing the threshold crossing, binary choice model on the treatment variable and the

outcome variable.

Now consider the Shaikh-Vytlacil bounds. The analysis of Shaikh and Vytlacil (2004)

imposes all of our assumptions: the threshold crossing, binary choice model for both D and

the outcome variable Y , as well as independence of (ε, ν) with Z. They do not, however,

assume any parametric distributional assumption on (ε, ν), and do not require a linear index

assumption. Thus, their assumptions are stronger than the assumptions imposed in the Manski

IV bounds but are much weaker than the assumptions required for a bivariate probit. Using

the model and independence assumptions,

Pr[Y = 1 | Z] = Pr[D = 1, Y = 1 | Z] + Pr[D = 0, Y = 1 | Z]

= Pr[D = 1, Y1 = 1 | Z] + Pr[D = 0, Y0 = 1 | Z]

= Pr [ν ≤ s(Z), ε ≤ r(1)] + Pr [ν > s(Z), ε ≤ r(0)] .

10



Recall that we have ordered Z so that Pr[D = 1 | Z = 1] > Pr[D = 1 | Z = 0]. Given

our model and independence assumptions, Pr[D = 1 | Z = 1] > Pr[D = 1 | Z = 0] implies

s(1) > s(0). Thus, if r(1) > r(0),

Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0] = Pr [s(0) < ν ≤ s(1), r(0) < ε ≤ r(1)] ;

and if r(1) < r(0) then

Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0] = −Pr [s(0) < ν ≤ s(1), r(1) < ε ≤ r(0)] .

This analysis is graphically illustrated in Figure 1 for the case where r(1) > r(0). Thus

Pr[Y = 1 | Z = 1] ≥ Pr[Y = 1 | Z = 0] indicates that r(1) ≥ r(0). Likewise, Pr[Y = 1 |
Z = 1] ≤ Pr[Y = 1 | Z = 0] indicates that r(1) ≤ r(0). From the structure of the threshold

crossing model on Y , r(1) ≥ r(0) implies that Y1 ≥ Y0 and r(1) ≤ r(0) implies that Y1 ≤ Y0.

We can thus improve upon the Manski results. If, for example, Pr[Y = 1 | Z = 1] ≥ Pr[Y =

1 | Z = 0], then Pr[Y = 1 | D = 1, Z] can be used as an upper bound on the unidentified term

Pr[Y0 = 1 | D = 1, Z] instead of 1; and Pr[Y = 1 | D = 0, Z] can be used as a lower bound on

the unidentified term Pr[Y1 = 1 | D = 0, Z] instead of 0. The resulting bounds are:

BL
SV ≤ E(Y1 − Y0) ≤ BU

SV

where, if Pr[Y = 1 | Z = 1] > Pr[Y = 1 | Z = 0], then

BL
SV = Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0]

BU
SV = Pr[D = 1, Y = 1 | Z = 1] + Pr[D = 0 | Z = 1] − Pr[D = 0, Y = 1 | Z = 0];

(3)

and if Pr[Y = 1 | Z = 1] < Pr[Y = 1 | Z = 0], then

BL
SV = Pr[D = 1, Y = 1 | Z = 1] − Pr[D = 0, Y = 1 | Z = 0] − Pr[D = 1 | Z = 0]

BU
SV = Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0];

(4)

and BL
SV = BU

SV = 0 if Pr[Y = 1 | Z = 1] = Pr[Y = 1 | Z = 0].

Consider the difference between these bounds and the Manski IV bounds. In general, the

Manski IV bounds do not simplify to a form that makes comparison with the Shaikh-Vytlacil

bounds convenient. However, given our assumption that the treatment is given by a threshold

crossing model, we have by the analysis of Heckman and Vytlacil (2001) that the Manski IV

bounds simplify to the following form:

BL
M = Pr[D = 1, Y = 1|Z = 1] − Pr[D = 0, Y = 1|Z = 0] − Pr[D = 1 | Z = 0]

BU
M = Pr[D = 1, Y = 1|Z = 1] + Pr[D = 0 | Z = 1] − Pr[D = 0, Y = 1|Z = 0].

Suppose that Pr[Y = 1 | Z = 1] ≥ Pr[Y = 1 | Z = 0]. In this case, BU
SV = BU

M . In other words,

the upper bound on average treatment effect has not changed. The lower bound, however, has

now changed to Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0]. Notice that BL
SV − BL

M = Pr[D =
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0, Y = 1 | Z = 1] − Pr[D = 1, Y = 1 | Z = 0] + Pr[D = 1 | Z = 0] = Pr[D = 0, Y = 1 | Z =

1] + Pr[D = 1, Y = 0 | Z = 0] ≥ 0, so the Shaikh and Vytlacil lower bound is larger than the

Manski lower bound. If, on the other hand, Pr[Y = 1 | Z = 1] ≤ Pr[Y = 1 | Z = 0], the lower

bound is the same, while the Shaikh and Vytlacil upper bound is now smaller than the Manski

upper bound.

Notice further that if Pr[Y = 1 | Z = 1] > Pr[Y = 1 | Z = 0], then the lower bound on

the average treatment effect is Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0] > 0; conversely, if

Pr[Y = 1 | Z = 1] < Pr[Y = 1 | Z = 0], then the upper bound on the average treatment effect

is Pr[Y = 1 | Z = 1]−Pr[Y = 1 | Z = 0] < 0. Thus, the bounds always lie on one side of zero,

unless Pr[Y = 1 | Z = 1] = Pr[Y = 1 | Z = 0], in which case the average treatment effect is

point identified to be zero.

Unlike the Manksi IV bounds, the Shaikh and Vytlacil (2004) bounds cannot be consistently

estimated simply by substituting the conditional sample means for the conditional population

means. The reason is that their bounds are a highly discontinuous function of Pr[Y = 1 |
Z = 1] − Pr[Y = 1 | Z = 0] at the origin and thus implementing the empirical analog of

the population Shaikh and Vytlacil bounds will result in an estimator that is inconsistent if

Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0] = 0.12

It is, however, possible to circumvent this difficulty and construct a consistent estimator

of the bounds in the following way. Let εn ↘ 0 be any sequence of constants such that√
nεn ↗ ∞. If the sample analogue of Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0] is larger than

εn, then use the sample analogue of (3) as the estimate of the bounds; if the sample analogue

of Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0] is less than −εn, then use the sample analogue

of (4) as the estimate of the bounds; otherwise, use {0} as the estimate of the bounds. If

Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0] > 0, then the rate restriction on the εn sequence

implies that with probability approaching 1 the sample analogue will eventually be larger than

εn. Similarly, when Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0] < 0 or = 0, we have that with

probability approaching 1 the sample analogue of Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0]

will be less than −εn or fall in (−εn, εn), respectively. Therefore, the estimate of the bounds

constructed in this way will be consistent. Since this argument only imposes a rate restriction

on the εn sequence, it will be implicit in our later analysis that we have chosen the level of the

εn sequence in a way so that the sample analogue of |Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0]|
is always larger than εn.

The Shaikh and Vytlacil analysis is related to the analysis of Manski and Pepper (2000).

Manski and Pepper consider combining a weakened instrumental variable assumption (“monotone

instrumental variables”, MIV) with a “monotone treatment response” (MTR) assumption. The

MTR assumption is that one knows a priori that Y1 ≥ Y0 for all individuals or one knows a

12If one is willing to believe a priori that E(Y1 − Y0) 6= 0, then Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0] 6= 0

and the Shaikh-Vytlacil bounds can be consistently estimated simply by substituting conditional sample means

for the conditional population means.
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priori that Y0 ≥ Y1 for all individuals. In the present context of the effect of catheterization on

mortality where much of the debate focuses on whether the average effect of catheterization is

positive, negative, or zero, imposing the MTR is not attractive since it would involve imposing

the answer to the question of interest. In comparison, the Shaikh and Vytlacil bounds identify

the sign of the average treatment effect from the data and do not impose it a priori. Shaikh

and Vytlacil (2004) compare their bounds to the Manski and Pepper (2000) bounds that would

result from imposing MTR and the Manski IV assumption. They show that if the treatment

effect is positive, then the Shaikh and Vytlacil bounds coincide with the Manski and Pepper

bounds that impose a priori a positive effect and impose the Manski IV assumption. If the

treatment effect is negative, then the Shaikh and Vytlacil bounds coincide with the Manski and

Pepper bounds that impose a priori a negative effect and impose the Manski IV assumption.

Thus, there is a tight link between the Manski and Pepper bounds and the Shaikh and Vytlacil

bounds, with the tradeoff that the Manski and Pepper analysis requires that one knows a priori

the sign of the treatment effect but does not impose the threshold crossing structure imposed

by Shaikh and Vytlacil.

Finally, we consider an extension to Shaikh and Vytlacil analogous to the idea of monotone

treatment selection in Manski and Pepper (2000). Consider adding the additional assumption

that doctors catheterize individuals with systematically worse latent health. In particular,

assume that individuals with unobserved (by the econometrician) characteristics that make

them more likely to be catheterized (have a low value of ν) are individuals with unobserved

(by the econometrician) characteristics that make them more likely to suffer mortality (have

a low values of ε). More formally, assume that ε and ν are positive quadrant dependent so

that13

PQD: Pr[ε ≤ t0 | ν ≤ t1] ≥ Pr[ε ≤ t0] for all t0, t1.

In other words, the probability that ε is small conditional on ν being small is at least as large

as the unconditional probability of ε being small. One can easily show that PQD is equivalent

to the assumption that Pr[ε ≤ t0 | ν ≤ t1] ≥ Pr[ε ≤ t0 | ν > t1] for all t0, t1, i.e., equivalent

to the statement that individuals receiving catheterization are at least as likely to have poor

latent health as individuals who do not receive catheterization. Using the PQD assumption,

we then have that

Pr[Y1 = 1|D = 1, Z] = Pr [ε ≤ r(1)|ν ≤ s(Z)]

≥ Pr [ε ≤ r(1)|ν > s(Z)]

= Pr[Y1 = 1|D = 0, Z]

where the inequality is exploiting the PQD assumption. Thus, we can bound Pr[Y1 = 1|D =

0, Z] from above by Pr[Y = 1|D = 1, Z]. Following symmetric reasoning, we can bound

13Positive quadrant dependence is a relatively weak measure of positive dependence between two random

variables. See Joe (1997) for the relationship between positive quadrant dependence and other concepts of

positive dependence.
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Pr[Y0 = 1|D = 1, Z] from below by Pr[Y = 1|D = 0, Z]. Combining this analysis with the

Shaikh and Vytlacil analysis, we have that, if Pr[Y = 1 | Z = 1] ≥ Pr[Y = 1 | Z = 0], then

Pr[Y = 1 | D = 1, Z] ≥ Pr[Y1 = 1 | D = 0, Z] ≥ Pr[Y = 1 | D = 0, Z]

Pr[Y = 1 | D = 1, Z] ≥ Pr[Y0 = 1 | D = 1, Z] ≥ Pr[Y = 1 | D = 0, Z];

if Pr[Y = 1 | Z = 1] ≤ Pr[Y = 1 | Z = 0], then

min{Pr[Y = 1 | D = 1, Z], Pr[Y = 1 | D = 0, Z]} ≥ Pr[Y1 = 1 | D = 0, Z] ≥ 0

max{Pr[Y = 1 | D = 1, Z], Pr[Y = 1 | D = 0, Z]} ≤ Pr[Y0 = 1 | D = 1, Z] ≤ 1.

We can now bound Pr[Y0 = 1] and Pr[Y1 = 1]. For example, if Pr[Y = 1 | Z = 1] > Pr[Y = 1 |
Z = 0] then Pr[Y1 = 1] can be bounded from above by the following argument:

Pr[Y1 = 1] = Pr[Y1 = 1 | Z = z]

= Pr[D = 1 | Z = z] Pr[Y1 = 1 | D = 1, Z = z]

+ Pr[D = 0 | Z = z] Pr[Y1 = 1 | D = 0, Z = z]

≤ Pr[Y = 1 | D = 1, Z = z].

Since this upper bound hold for z = 0, 1, we have

Pr[Y1 = 1] ≤ min
z

{Pr[Y = 1 | D = 1, Z = z]}.

Following an argument analogous to those given in Shaikh and Vytlacil (2004), one can show

that, given our assumptions,

min
z

{Pr[Y = 1 | D = 1, Z = z]} = Pr[Y = 1 | D = 1, Z = 1].

Following this line of reasoning, one can show the following bounds on E(Y1 − Y0):

BL
PQD ≤ E(Y1 − Y0) ≤ BU

PQD

where, if Pr[Y = 1 | Z = 1] > Pr[Y = 1 | Z = 0], then

BL
PQD = Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0]

BU
PQD = Pr[Y = 1 | D = 1, Z = 1] − Pr[Y = 1 | D = 0, Z = 0],

and if Pr[Y = 1 | Z = 1] < Pr[Y = 1 | Z = 0], then

BL
PQD = Pr[D = 1, Y = 1 | Z = 1] − Pr[D = 0, Y = 1 | Z = 0] − Pr[D = 1 | Z = 0]

BU
PQD = Pr[D = 1, Y = 1 | Z = 1]

+ (Pr[D = 0 | Z = 1] × min{Pr[Y = 1 | D = 1, Z = 1], Pr[Y = 1 | D = 0, Z = 1]})
− Pr[D = 0, Y = 1 | Z = 0]

− (Pr[D = 1 | Z = 0] × max{Pr[Y | D = 1, Z = 0], Pr[Y = 1 | D = 0, Z = 0]}) ,
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and BL
PQD = BU

PQD = 0 if Pr[Y = 1 | Z = 1] = Pr[Y = 1 | Z = 0]. Notice imposing our PQD

assumption decreases the upper bound on E(Y1−Y0) compared to the Shaikh-Vytlacil bounds

while leaving the lower bound unchanged. Notice that the reduction of the upper bound is

nontrivial if Pr[Y = 1 | Z = 1] > Pr[Y = 1 | Z = 0]. As with the Shaikh-Vytlacil bounds, these

bounds are a discontinuous function of the quantity Pr[Y = 1 | Z = 1] − Pr[Y = 1 | Z = 0],

which prohibits consistent estimation by simply substituting conditional sample means for

their population counterparts, but consistent estimation of these bounds can be achieved by

following a procedure similar to the one described above for the Shaikh-Vytlacil bounds.

Thus far, we have assumed that there are no X covariates and that Z is binary. Allowing

for X covariates only changes the analysis in a trivial fashion – the same analysis now holds

conditional on X. For estimation, if X is discrete or can be discretized, one can simply

continue to use conditional means in place of conditional expectations.14 If X is continuous,

one needs to use a nonparametric smoothing estimator such as a kernel regression estimator

to estimate the relevant conditional expectations. Allowing Z to take more than two values

is again straightforward. Suppose that z1 maximizes P (z) and that z0 minimizes P (z). Then

all of our analysis continues to hold simply by substituting the z1 evaluation point for the 1

evaluation point and the z0 evaluation point for the 0 evaluation point. For estimation, if Z is

discrete, one can examine the sample means of D conditional on Z to determine which z value

maximizes and minimizes P (z). If Z is continuous, then, as in the case when X is continuous,

one must resort to a more sophisticated nonparametric estimator.

5 Data

The Connors et al. (1996) data comes from five medical centers (the SUPPORT group), and

were collected to study medical decision-making for severely ill adult patients admitted to

hospitals and ICUs. To be admitted to the study, patients had to have a predicted six-

month mortality rate of 50% or more at the time of admission, and have one of nine disease

conditions: acute respiratory failure, chronic obstructive pulmonary disease, congestive heart

failure, cirrhosis, nontraumatic coma, metastatic colon cancer, late-stage non-small cell lung

cancer, and multiorgan system failure with malignancy or sepsis. Murphy and Cluff (1990)

provide a detailed description of patient recruitment procedures, including a detailed list of

exclusion criteria. Most prominent among these criteria are trauma, pregnancy, psychiatric

disease, and AIDS.

The SUPPORT group’s main research aim in collecting these data was to measure the

effect of placing a Swan-Ganz catheter early in the course of hospitalization. They count

a patient as having a catheter placed if the procedure was performed within 24 hours of

14Shaikh and Vytlacil (2004) consider how imposing that there is a covariate in X that is not contained in

Z can be exploited to narrow the bounds on the average treatment effect. See also Vytlacil and Yildiz (2004).

However, in our application there are no variables contained in X that are not contained in Z.
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entering the hospital. The main reason for this focus and this definition of catheterization is

their hypothesis that the biggest harm from catheterization comes from enabling ICU doctors

to act too aggressively in prescribing medications and treatments with severe side-effects,

inadvertently harming patients. The data includes 5,735 patients, all of whom were admitted

to or transferred to the ICU within 24 hours of entering the hospital. By including only people

who were admitted to the ICU, they allow the longest possible time for iatrogenic injury to

occur. This empirical strategy has the additional advantage of reducing unobserved clinical

heterogeneity among study patients. All patients in the sample share a common feature in

their clinical history—they were sick enough to end up in an ICU soon after hospital admission.

Connors et al. (1996) collected a large amount of information about each patient via stan-

dardized medical chart abstraction methods and interviews with patients and patient surro-

gates. Chart abstractors focused mainly on a detailed set of laboratory and clinical variables,

measured on the first through fourth weeks of the hospital stay. We use the information from

the first week of the hospital stay, as it is collected for every patient in the sample. The

interviews were used to collect both basic demographic information, as well as information

about functional status (that is, whether the patient is unable to perform some basic tasks like

bathing or dressing oneself).

Tables 1 - 3 compare patients who were catheterized during their first day of admission to

the ICU with those who were not. These tables present mean values of each variable on which

we make these comparisons, along with standard deviations of those variables, and the p-value

from a test of the hypothesis that the means of the variables are equal.

From these statistics, it is clear that patients who have catheters placed differ from patients

who do not along many clinically significant dimensions. Table 1 compares patients on the

basis of demographic variables and the primary diagnosis at admission. Catheterized patients

are more likely to be male (by 4.5%), privately insured (by 6.3%), richer (less likely to have

an income of less than $11,000 per year by 6.2%), and have more schooling (0.3 years more

on average). Catheterized patients are more likely to have congestive heart failure (CHF) as

the primary admitting diagnosis (by 2.6%) and much more likely to have MOSF with sepsis

as an admitting diagnosis (by 17.3%), but are less likely to have coma (by 5.3%) or chronic

obstructive pulmonary disease (COPD—by 8.5%) as admitting diagnoses.

Table 2 compares patients on the basis of disease history prior to admission, and functional

status measures as determined by the proxy interviews. Catheterized patients are more likely

to have cardiac diagnoses (by 4.4%), including a heart attack (by 1.3%) in their medical

history. They are less likely to have a malignant cancer (by 4.3%), dementia (by 4.7%), and

other psychiatric diagnosis (by 3.5%) in their history. Connors et al. (1996) use a standard

ICU mortality prediction model to summarize each patient’s severity of illness upon admission

to the ICU.15 Catheterized patients have a 4% lower two month predicted survival rate upon

admission than non-catheterized patients—clearly catheterized patients are observably more

15Connors et al. (1996) provide details about the calculations of predicted survival.
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severely ill than non-catheterized patients. This fact can also be seen by comparing mean

values of the acute physiology score, another standard ICU measure of severity of illness.

Table 3 compares catheterized and non-catheterized patients’ laboratory values at admis-

sion, as well as any secondary diagnoses these patients may have had at admission. Among

the laboratory values, all the clinically significant and interpretable differences point toward

the conclusion that catheterized patients are observably sicker. For example, the ratio of

serum oxygen levels to administered oxygen levels (PAO2/(0.01 ∗ FiO2)) are higher among

catheterized patients—an indication that they are more likely to require oxygen supplementa-

tion. Catheterized patients also have lower hematocrits and are thus more likely to be anemic.

They have higher levels of bilirubin, and are thus more likely to have liver disease.

Among the secondary diagnoses, catheterized patients are 9% more likely to have sepsis—a

serious blood-borne bacterial infection. They are also more likely to have renal secondary diag-

noses (by 2.7%) and gastrointestinal secondary diagnoses (by 4.5%). On the other hand, they

are less likely to have respiratory secondary diagnoses (by 12.8%) and neurological diagnoses

(by 10.8%). On balance, these secondary diagnoses also suggest that catheterized patients

were observably sicker on admission to the ICU.

Thus far we have ignored statistical complications stemming from the multiplicity of the

comparisons we are making between catheterized and non-catheterized patients. Because of the

large number of comparisons we are making, it is likely that at conventional significance levels,

we will reject several hypotheses of equal means falsely. As a result of this concern, we use

the Holm (1979) multiple hypothesis testing procedure to make the comparisons formally.16

These results are summarized in Table 4 below. This procedure is more powerful than the

conventional Bonferonni procedure for multiple hypothesis testing in the sense that it too

controls the probability of even one false rejection at the desired level, but always rejects at

least as many hypotheses.

At the .05 level, we find that patients who are catheterized differ from those who are not

catheterized along 41 of 63 possible variables. If we restrict attention to particular primary

diagnoses, we reject fewer hypotheses, but many important differences between the two groups

still remain. Among patients whose primary diagnosis is congestive heart failure, for example,

catheterized patients differ from non-catheterized patients among nine of 51 possible variables,

including demographic characteristics like age and income as well as some clinical variables like

blood pressure. If we restrict attention to only massive organ system failure diagnoses, we find

that catheterized patients differ from non-catheterized patients among the following five of 50

possible variables: sepsis, creatinine levels, pulmonary function test results, acute physiology

16Suppose one is interested in testing the s hypotheses H1, . . . , Hs using p-values p̂1, . . . , p̂s in a way that

controls for the familywise error rate at a level α (that is, the probability of making one or more false rejections

is no more than α). To this end, define the constants α1 ≤ . . . ≤ αs by the rule: αi = α

s−i+1
. Denote

by p̂(1) ≤ . . . ≤ p̂(s) the ordered values of the p-values and by H(1), . . . , H(s) the corresponding hypotheses.

The Holm (1979) stepdown procedure accepts all hypotheses if p̂(1) ≥ α1; otherwise, it rejects hypotheses

H(1), . . . , H(r), where r is the largest index such that p̂(1) < α1, . . . , p̂(r) < αr.
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score, and predicted survival. Finally, examining only patients whose primary diagnosis is colon

cancer, we reject eight of 55 hypotheses, finding that the two groups differ noticeably among

pulmonary function test results, respiratory rate, blood pressure, acute physiology score, and

predicted survival. Hence, even after accounting for the multiplicity of the comparisons, we

maintain our earlier conclusion that catheterized patients are significantly sicker than non-

catheterized patients.

6 Instrumenting with Admission Day

It should be clear from Tables 1 - 3 that a direct comparison of outcomes between catheterized

and non-catheterized patients is unlikely to yield the causal effects of catheterization. Even if

a full set of controls, such as all the variables in those tables, were included in the analysis,

the results would be unconvincing. If catheterized and non-catheterized patients differ on

so many observed dimensions, it seems highly unlikely that they do not differ on unobserved

dimensions as well.17 In this section, we develop suggestive evidence that day-of-the-week of

admission is an appropriate instrument to determine the causal effect of catheterization on

patient mortality.

6.1 Admission Day of Week Predicts Catheterization

We first establish that patients who are admitted to the ICU on a Saturday, Sunday, or Monday

are substantially less likely to be catheterized on the day of admission than patients admitted

on other days of the week. Figure 2 shows how the unconditional probability that a patient is

catheterized upon admission varies by day of the week. The lowest catheterization rates are

on Saturday—approximately 32% of all SUPPORT ICU patients admitted on a Saturday had

a Swan-Ganz catheter placed on day of admission. The catheterization rate rises on Sunday

and Monday to about 36%, and then rises again on Tuesday through Friday to about 40%.

The highest rates of about 41% are on Friday.

Figure 3 shows catheterization rates by day-of-the-week for four different and important

clinical subgroups, delineated by their primary diagnosis upon admission to the ICU. For

patients with congestive heart failure (CHF) or with multi-organ system failure (MOSF) with

sepsis as an admitting diagnosis, the likelihood of being catheterized decreases dramatically on

weekends. For patients with acute respiratory failure or MOSF with malignancy, the weekend

decline in catheterization rates is less pronounced, though still substantial—it is roughly on

par with the decline for the typical ICU patient.

Figure 4 shows catheterization rates by day-of-the-week for four other clinically important

subgroups, again delineated by primary diagnosis upon ICU admission: chronic obstructive

17See Altonji et al. (2005) for a formal justification of this argument.
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pulmonary disease (COPD), cirrhosis, coma, and lung cancer. For patients with these diag-

noses, the pattern of higher catheterization probabilities on weekdays is less clear, and in some

cases (such as for COPD), reversed. Since the instrument is apparently not strongly corre-

lated with the treatment for these diagnosis groups, we do not attempt to estimate separate

treatment effect bounds for these groups.

6.2 Patient Health and Day of Week of Admission

One disconcerting possibility for our study is that patients admitted to the ICU on a weekday

differ systematically from patients admitted on weekends. If that were true, then day-of-the-

week would be a poor candidate for an instrument since it would be correlated with unobserved

determinants of ICU patient mortality, such as health status. Our introspection leads us to

think that there should be no correlation between day-of-the-week of admission and unob-

served health, since the health crises that precipitate ICU admissions are unlikely to respect

distinctions between weekdays and weekends. However, we recognize that introspection alone

is an insufficient basis on which to make our case.

Tables 5 - 7 divide patients into two groups on the basis of the day-of-the-week instrument:

those who were admitted on a weekday and those who were admitted on a weekend.18 The

tables present mean values of each variable on which we make comparisons, along with standard

deviations of those variables and the p-value from a test of the hypothesis that the means of

the variables are equal.

Table 5 compares patients based on demographic variables on the primary diagnosis. We

reject the hypothesis that patients admitted on a weekend are equally likely as those admitted

on a weekday to have congestive heart failure as a diagnosis, but we find no other statistically

significant differences between the two groups (when testing at the α = 0.01 level). Table 6,

on the other hand, compares patients based on disease history and functional status. Weekend

patients are less likely to have cardiac disease and congestive heart failure in their medical

history, which is consistent with the finding that they are less likely to have congestive heart

failure as an admitting diagnosis. On the other hand, they have no other significant medical

history or functional status measure differences. Importantly, there is little difference between

these groups in predicted 2-month mortality, or in acute physiology score. Finally, Table 7

compares weekend and weekday patients on the basis of laboratory tests at admission and on

secondary diagnoses. There are no statistically significant differences between the two groups

on these bases.

Again, we have thus far failed to account for the multiplicity of the comparisons we are

making. We do so now by applying the Holm (1979) multiple hypothesis testing procedure.

These results are summarized in Table 4. Comparing patients admitted to the ICU on weekends

18We obtain similar results if we divide up the patients based upon whether they were admitted on Saturday

or Sunday against those admitted on Monday to Friday.
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with patients who are admitted on weekdays at the 0.05 level, we find that they differ only

along three of 63 variables: diagnosis of congestive heart failure, cardiac history, and history

of congestive heart failure. Otherwise, weekend and weekday patients appear to have similar

observed severity of illness.

There is no reason a priori to believe that differences in these three variables imply that

weekday patients are sicker, since congestive heart failure is no more serious a cause of admis-

sion to the ICU than the other causes (such as multi-organ system failure). Moreover, after

restricting attention to particular primary diagnoses, even differences in these three variables

essentially disappear. Among patients whose primary diagnosis is congestive heart failure, we

find only one statistically significant difference.19 Examining patients whose primary diagnosis

is MOSF with malignancy or MOSF with sepsis, there are no statistically significant differ-

ences. Similarly, among patients whose primary diagnosis is acute respiratory failure, we find

no statistically significant differences. Hence, we conclude that patients admitted on weekends

are observably similar to patients admitted on weekdays, especially within particular primary

diagnosis subgroups.

6.3 Day of Week, Hospital Staffing, and Outcomes

Though non-specialists sometimes find it shocking, it is well known in the health services

literature that medical staffing can have a major effect on treatment decisions.20 In a study

aimed at understanding why some patients get catheterized, while others do not, Rapoport

et al. (2000) emphasize both patient and hospital characteristics. In their data, patients

admitted to ICUs that staff a full time ICU physician are much less likely to be catheterized

(by two-thirds) than those admitted to ICUs with no full time physician.21 Clearly, medical

staffing decisions affect the decision to catheterize. However, Rapoport et al. (2000) do not

report whether day-of-the-week of admission to the ICU helps determine the placement of a

catheter.

Although the SUPPORT data do not permit a direct examination of the issue, it seems

clear that the reason that catheterization rates vary by day-of-the-week relates closely to ICU

staffing patterns. Medical personnel, just like most other workers, prefer having weekends off.

The small increase in catheterization rates on Friday, relative to other weekdays, is probably

due to an effort to reduce the stock of patients before the weekend. Whether this fact threatens

19Weekend ICU patients with congestive heart failure are more likely to earn between $11,000 and $25,000

per year; weekday ICU CHF patients are more likely to earn between $25,000 and $50,000 per year. This is not

an important clinical difference.
20For example, Dickert-Conlin and Chandra (1999) report that babies are less likely to be born on weekends

and holidays than on regular weekdays, which they attribute to staffing decisions by hospitals. In the United

States, the least likely day for a baby to be born is Thanksgiving holiday. See also Bell and Redelmeier (2001).
21They also find that white patients, patients with private insurance coverage, and patients admitted to a

surgical ICU (as opposed to a medical ICU) were more likely to be catheterized.
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the validity of our instrument depends upon whether there are unobserved differences in treat-

ment between weekday and weekend admissions, unassociated with catheterization, that help

determine if a patient lives or dies. If so, then admission day would not be a valid instrument.

Evaluating the import of treatment differences (catheterization) between weekend and

weekday admissions is made more complicated by the fact that Swan-Ganz catheterization

itself is a gateway to a large number of other treatments. For example, ICU physicians of-

ten use the information from catheterization to titrate the dose of inotropic drugs, such as

dopamine and dobutamine, that are designed to improve cardiac contractility. These drugs

have a narrow therapeutic range, and are thus getting the dose right can be the difference

between killing or inadequately treating a patient. Given our finding that catheterization

is less likely on weekends, it would thus be unsurprising to find decreased use of inotropes

on weekends as well. However, such treatment differences, which are causally related to the

catheterization decision, do not pose a problem for our instrument. We can simply reinter-

pret our treatment effect bounds as measuring the effect of catheterization and all the other

treatments it enables or encourages on mortality, rather than the isolated treatment effect of

catheterization by itself.

However, if staffing differences lead to weekend-weekday treatment differences for those

treatments that are not downstream from catheterization and which have substantial effects on

the mortality of ICU patients, then our treatment effect bounds will be biased. Unfortunately,

we cannot check this directly with the SUPPORT data that is available to us; while there is

considerable laboratory and diagnostic information, the only treatment information available

is on Swan-Ganz catheterization.

There is, however, an extensive medical literature on the effects of weekend-weekday staffing

differences on ICU mortality risk that suggests that (non-Swan-Ganz related) weekend-weekday

treatment differences are not important for patient outcomes. For example, Ensminger et al.

(2004) analyze 29,084 ICU patients from the Mayo Clinic. They find that, while patients

with weekend ICU admissions had a 4.3 percentage point higher in-hospital mortality when

compared with ICU patients admitted on a weekday, this difference can be explained entirely

by weekend-weekday differences in patient health status. Similarly, Wunsch et al. (2004) find

that raw weekday-weekend in-hospital mortality differences disappear in models that control

flexibly for patient health status.

Looking at mortality in the emergency room, rather than in the ICU, Dobkin (2003) finds

that controlling for observed patient characteristics alone does not erase weekend-weekday mor-

tality differences one day after hospitalization. He argues that unobserved weekday-weekend

differences in patient health status, caused by the triaging of more severely ill patients on a

weekday, explain this mortality difference entirely. He concludes that there is “no evidence of

excess mortality on the weekend in the California hospital system for people admitted through

the Emergency Department. This is despite significant delay in diagnostic and treatment

procedures for patients admitted on the weekend.”
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This literature suggests, though it does not prove, that the effect of weekday-weekend ICU

treatment differences have small effects on in-hospital or one-day post admission mortality, at

least in the samples examined. The best explanation for this finding is that medical person-

nel do a reasonable job triaging patients, and thus it is patients most likely to benefit from

catheterization who will be catheterized on Saturday, Sunday, or Monday.22 If doctors suc-

cessfully identify the most severely ill weekend patients for more intensive intervention, then

the effect of decreased staffing on the weekend on patient mortality in the short run (until

a weekday arrives) will be small. This does not mean that catheterization, or other treat-

ments, have a small mortality effect at other horizons after hospitalization. It does suggest

that the existence of weekend-weekday staffing differences do not, by themselves invalidate our

instrument.

7 Results

In this section, we show the results from two different approaches to estimating treatment

effects. In the first, more traditional approach, we estimate linear parametric models by

ordinary least squares and report confidence intervals around the treatment effect estimates

implied by those models. In the second, we report estimates from the three different bounding

strategies that we have considered in this paper: the Manski IV bounds, the Shaikh-Vytlacil

bounds, and our extension of the Shaikh-Vytlacil analysis that additionally imposes the PQD

assumption.

7.1 Linear Parametric Models

In Section 5, we have seen that catheterized patients differ in many ways from non-catheterized

patients. Figure 5 shows 95% confidence intervals around treatment effect estimates from

an estimator that ignores these differences altogether. The main outcome that we analyze

is mortality at varying periods after admission to the ICU—7 days, 30 days, 60 days, 90

days, and 180 days. Let Y (t) represent the event of a patient dying t or more days after

admission to the ICU. Let D represent the event of a patient being catheterized on the day

of admission to the ICU. Figure 5 shows the 95% confidence interval around the coefficient

obtained from a ordinary least squares (OLS) linear regression of Y (t) on D for different values

of t. This regression coefficient represents the estimated treatment effect of catheterization:

Pr[Y (t) = 1|D = 1] − Pr[Y (t) = 1|D = 0]. The panel on the right shows the treatment effect

estimates for a regression with no covariates other than D, while the panel on the left shows

these estimates for a regression with the full set of covariates listed in Tables 1 - 3. In all

22It is not clear to us why Monday catheterization rates are more similar to Sunday rates than they are to

other weekday rates, though that is clearly what the data suggest. Accordingly, we will refer to admissions on

Saturday, Sunday, and Monday as “weekend” admissions.
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cases, the point estimate of the treatment effect indicates that catheterized patients are more

likely to die. Including health covariates reduces the size of the increase in mortality from

catheterization but does not alter its sign. Based upon these results, one might conclude that

excess mortality due to catheterization 7 days after ICU admission is about two percentage

points, and that it increases to about six percentage points by 30 days after admission.

Figure 6 shows 95% confidence intervals around treatment effect estimates from linear

regressions for subsets of patients with different diagnoses at admission. For ICU patients

with MOSF with sepsis as the primary admitting diagnosis, the regression results suggest

catheterization increases mortality. The inclusion of covariates in the regression does not alter

this finding. For patients with congestive heart failure, the results without covariates suggest

the same conclusion, but when covariates are included, the confidence intervals span zero.

For patients with multi-organ system failure with malignancy, the point estimate at 7 days

suggests that catheterization may be clinically beneficial, though the result is not statistically

significant. Between 30 and 90 days, one cannot reject a hypothesis of no effect (in the model

with covariates included).

The problem with the OLS estimates is that they ignore the possibility of unobserved

selection. That the inclusion of covariates makes such a large difference in the treatment effect

estimates suggests substantial bias due to important controls omitted from the regression. We

attempt to address this deficiency with instrumental variables methods, using admission day-

of-week as our instrument. Because the error term of the model is not additively separable

from the regressors, standard linear instrumental variables is not a consistent estimator of the

average effect of catheterization in this context and in general access to an instrument does not

allow one to point identify or point estimate the average effect of catheterization on mortality.

We thus turn instead to bounding approaches that exploit access to an instrument.

7.2 Bounding Approaches

We consider three alternative sets of IV-bounds. Figure 7 shows the Manski and the Shaikh-

Vytlacil bounds for the whole sample, calculated using an indicator for whether the patient

was admitted to the ICU on a weekday as the instrumental variable. The panel on the left

represents the Manski IV bounds, while the panel on the right represents the Shaikh-Vytlacil IV

bounds. The Manski IV bounds are uniformly wide, and always straddle zero; in fact they are

little better than the naive Manski bounds, which have a width of one (since Y (t) is bounded

above by one and below by zero). The Shaikh-Vytlacil IV bounds, by construction, do not

straddle zero. The Shaikh-Vytlacil IV bounds suggest that catheterization reduces mortality

at 7 days, while it increases mortality at 30 days and later. Recall that Connors et al. (1996)

found that catheterization increases mortality at 7 days using this same data set that we use

here, but a different statistical method that assumes that there are no unobserved differences

between catheterized and non-catheterized patients. The width of the Shaikh-Vytlacil bounds

are about half the width of the Manski IV bounds.
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Figure 8 shows the Manski IV and Shaikh-Vytlacil IV bounds for the same diagnosis

subgroups as in the figures above: acute respiratory failure, congestive heart failure (CHF),

MOSF with malignancy, and MOSF with sepsis. The Manski IV bounds are uniformally

uninformative with a width of nearly one for all these diagnosis groups. The Shaikh-Vytlacil

results, by contrast, in many cases provide some clear guidance for ICU doctors. They suggest

that:

• Catheterization reduces mortality at 7 days for patients with an admitting diagnosis of

MOSF with malignancy or CHF, but increases it at 30 days and after. The same results

hold for ICU patients as a whole (recall Figure 7).

• Catheterization increases mortality at all horizons for patients with MOSF with sepsis

or acute respiratory failure, though the lower end of the bound is close to zero.23

Finally, Figures 9 and 10 show the PQD bounds,

BL
PQD ≤ E(Y1 − Y0) ≤ BU

PQD,

which impose the restriction that doctors are effective at triaging patients so that it is those

patients with the worst health who are actually catheterized. These figures show that imposing

this seemingly plausible restriction decreases the width of the treatment effect bounds, often

dramatically. Of course, by construction, the PQD bounds are always on the same side of zero

as the Shaikh-Vytlacil bounds. The reduction in bound width is greatest when the treatment

effect estimate is positive, that is when the finding is that catheterization increases mortality.

This is to be expected, as the PQD restriction rules out the possibility that doctors cause

great harm to large numbers of their patients. The reduction in bound width is smaller when

the treatment effect estimate suggests catheterization saves lives, but clinically important.

If catheterization saves lives, yet has a near zero effect, it might not be worthwhile given

the monetary costs. Since the PQD bounds (relative to the Shaikh-Vytlacil bounds) push the

upper bound further away from zero when catheterization saves lives, it may permit researchers

to render judgement that catheterization is cost-effective even as the Shaikh-Vytlacil bounds

permits the possibility that it may not be.

8 Conclusion

While direct comparisons of the mortality of catheterized and non-catheterized patients lead

to the conclusion that catheterization increases mortality, we show evidence that this result is

23Recall that by construction, the Shaikh-Vytlacil bounds can never cross zero. If the estimate of Pr[Y =

1|Z = 1] − Pr[Y = 1|Z = 0] is sufficiently close to zero, the estimate of the bounds will be the point zero, i.e.,

point estimation at zero. For any finite N , how one defines close to zero is arbitrary, and we have decided that

the estimated Pr[Y = 1|Z = 1] − Pr[Y = 1|Z = 0] is sufficiently far from zero in all cases not to set the bounds

to point estimation at zero.
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due to profound differences between the catheterized and non-catheterized patients; the former

are much more severely ill than the latter.

We provide suggestive evidence that weekday admission can serve as an instrumental vari-

able for catheterization. Patients admitted on a weekday are about four to eight percentage

points more likely to be catheterized than patients admitted on a weekend. Yet, weekday

and weekend patients appear similar in health status along a large number of dimensions.

Exploiting an instrumental variable permits us to address the unobserved differences between

catheterized and non-catheterized ICU patients.

We turn to bounding approaches that exploit access to our instrument, including a new

bounds estimator introduced by Shaikh and Vytlacil (2004), which we compare with the Man-

ski (1990) IV bounds. We also extend the analysis of Shaikh and Vytlacil (2004) to consider

bounds that impose the additional assumption that doctors catheterize individuals with sys-

tematically worse latent health We find that, while the Manski bounds are almost entirely un-

informative, the Shaikh-Vytlacil bounds typically produces a clearer answer—catheterization

reduces mortality at 7 days, and increases it at 30 days and after, though the lower bound of

the treatment effect is always close to zero. Applying a further nonparametric structural as-

sumption that doctors catheterize individuals with worse health further narrows these bounds

and strengthens these conclusions.

Our primary finding that catheterization improves mortality outcomes only in the short run,

and may increase it in the long run is intuitively appealing because it suggests an explanation

for the fact that many ICU doctors are deeply committed to the use of the Swan-Ganz catheter.

Since most ICU patients leave the ICU well before 30 days after admission have elapsed, ICU

doctors never observe the increase in mortality. They do, however, observe the decline in

mortality at 7 days.

Catheterization has long been a critical tool for ICU doctors, thought to help stabilize

severely ill patients. The information on heart and lung function that catheterization yields

can often lead doctors to the right treatment that keeps a patient alive in the ICU. Our results

suggest two possibilities, which are not mutually exclusive. The treatments and medications

that doctors feel emboldened to administer by the Swan-Ganz catheter may stabilize patients

in the short run, but may have malign longer run effects. Connors et al. (1996) suggest this

mechanism to explain their finding of longer run mortality increases from catheterization,

but their finding of increases in short run mortality leaves open the mystery of why doctors

would ever apply such stabilizing treatments. A second possibility is a simple selection story.

Catheterization saves the lives, in the short run, of the most severely ill patients, but the deaths

of these patient cannot be staved off for long. Disentangling these possibilities will require even

more detailed data and further research. In addition, formal inference for the Shaikh-Vytlacil

bounds and our extension of them has not yet been developed and is an additional topic for

further research.
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Figure 2: % Catheterized by Day-of-Week of Admission to ICU
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Table 1: Catheterized vs. Not Catheterized; Demographic and Diagnostic Comparisons

Variable Not Catheterized Catheterized p-value
N 3,551 (62%) 2,184 (38%)
Age 61.8 60.8

[17.3] [15.6] 0.0258
Male 53.9% 58.5%

[0.499] [0.493] 0.0006
Black 16.5% 15.3%

[0.371] [0.360] 0.2553
Other Race 6.0% 6.5%

[0.237] [0.247] 0.4423
Years of Education 11.569 11.856

[3.134] [3.157] 0.0008
No Insurance 5.2% 6.2%

[0.223] [0.242] 0.1141
Private Insurance 27.2% 33.5%

[0.445] [0.472] < 0.0001
Medicare 26.7% 23.4%

[0.442] [0.423] 0.0057
Medicaid 12.8% 8.8%

[0.334] [0.284] < 0.0001
Private Insurance & Medicare 21.0% 22.4%

[0.407] [0.417] 0.2017
Family Income < $11K per year 58.6% 52.4%

[0.493] [0.500] < 0.0001
Family Income $11K-$25K 20.1% 20.7%

[0.401] [0.405] 0.5728
Family Income $25K-$50K 14.1% 18.0%

[0.348] [0.384] 0.0001
Dx: Acute Respiratory Failure 44.5% 41.6%

[0.497] [0.493] 0.0313
Dx: COPD 11.2% 2.7%

[0.316] [0.161] < 0.0001
Dx: Congestive Heart Failure 7.0% 9.6%

[0.254] [0.294] 0.0004
Dx: Cirrhosis 4.9% 2.2%

[0.216] [0.148] < 0.0001
Dx: Coma 9.6% 4.3%

[0.295] [0.204] < 0.0001
Dx: Lung Cancer 1.0% 0.2%

[0.097] [0.048] 0.0011
Dx: MOSF with malignancy 6.8% 7.2%

[0.252] [0.259] 0.5177
Dx: MOSF with sepsis 14.8% 32.1%

[0.006] [0.010] < 0.0001
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Table 2: Catheterized vs. Not Catheterized; Disease History and Functional Status

Variable Not Catheterized Catheterized p-value
Hx: Cardiac Disease 16.0% 20.4%

[0.366] [0.403] < 0.0001
Hx: Congestive Heart Failure 16.8% 19.5%

[0.374] [0.396] 0.0101
Hx: Dementia 11.6% 6.9%

[0.321] [0.254] < 0.0001
Hx: Psychiatric Condition 8.1% 4.6%

[0.272] [0.209] < 0.0001
Hx: Chronic Pulmonary Disease 21.8% 14.4%

[0.413] [0.351] < 0.0001
Hx: Renal Disease 4.2% 4.9%

[0.201] [0.215] 0.2409
Hx: Liver Disease 7.5% 6.2%

[0.263] [0.242] 0.0748
Hx: GI Bleed 3.7% 2.5%

[0.189] [0.155] 0.0113
Hx: Immunological Disease 25.5% 29.1%

[0.436] [0.454] 0.003
Transferred from another hospital 9.4% 15.0%

[0.292] [0.357] < 0.0001
Hx: Acute Myocardial Infarction 3.0% 4.3%

[0.169] [0.204] 0.0052
Hx: Non-metatstatic Cancer 18.0% 15.3%

[0.384] [0.360] 0.0088
Hx: Malignant Cancer 24.6% 20.3%

[0.430] [0.403] 0.0002
2 Month Predicted Survival 60.7% 56.8%

[0.192] [0.198] < 0.0001
Duke Activity Scale Index 20.371 20.701

[5.482] [5.033] 0.0227
Acute Physiology Score 50.934 60.739

[18.814] [20.271] < 0.0001
Glasgow Coma Score 22.253 18.973

[31.374] [28.265] 0.0001
Diastolic Blood Pressure 84.9 68.2

[38.9] [34.2] < 0.0001
Do Not Resuscitate Order 14.1% 7.1%

[0.348] [0.257] < 0.0001
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Table 3: Catheterized vs. Not Catheterized; Laboratory Values and Secondary Diagnoses

Variable Not Catheterized Catheterized p-value
WBC Count 15.263 16.266

[11.414] [12.549] 0.0019
Heart Rate 112.873 118.928

[40.941] [41.471] < 0.0001
Respiratory Rate 28.978 26.652

[13.946] [14.175] < 0.0001
Temperature (oC) 37.633 37.595

[1.741] [1.828] 0.4293
PAO2/(0.01*FiO2) 240.627 192.433

[116.661] [105.538] < 0.0001
Albumin 3.164 2.978

[0.672] [0.925] < 0.0001
Hematocrit 32.7 30.509

[8.795] [7.415] < 0.0001
Bilirubin 1.997 2.706

[4.425] [5.329] < 0.0001
Creatinine 1.924 2.473

[2.025] [2.053] < 0.0001
Sodium 137.037 136.333

[7.678] [7.600] 0.0007
Potassium 4.077 4.05

[1.038] [1.012] 0.3213
PACO2 39.953 36.792

[14.244] [10.973] < 0.0001
Serum Ph 7.393 7.38

[0.107] [0.114] < 0.0001
Weight (kg) 65.04 72.36

[29.502] [27.730] < 0.0001
2nd Dx: Respiratory Diagnosis 41.7% 28.9%

[0.493] [0.454] < 0.0001
2nd Dx: Orthopedic Dx 0.1% 0.2%

[0.029] [0.043] 0.2988
2nd Dx: Neurological Dx 16.2% 5.4%

[0.368] [0.226] < 0.0001
2nd Dx: GI Dx 14.7% 19.2%

[0.354] [0.394] < 0.0001
2nd Dx: Renal Dx 4.1% 6.8%

[0.199] [0.251] < 0.0001
2nd Dx: Metabolic Dx 4.8% 4.3%

[0.215] [0.202] 0.3052
2nd Dx: Hematological Dx 6.7% 5.3%

[0.251] [0.223] 0.0252
2nd Dx: Sepsis 14.5% 23.6%

[0.352] [0.425] < 0.0001
2nd Dx: Trauma 0.5% 1.6%

[0.071] [0.124] < 0.0001
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Table 4: Number of Hypotheses Rejected by Holm Procedure

Variable Swan-Ganz Weekend Hypotheses
All 41 3 63
Congestive Heart Failure 9 1 51
Multi-Organ System Failure 5 0 50
Colon Cancer 8 0 55

Figure 3: % Catheterized by Day-of-Week of Admission by Diagnosis
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Figure 4: % Catheterized by Day-of-Week of Admission by Diagnoses (cont.)
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Table 5: Weekend vs. Weekday Admissions; Demographics and Diagnoses

Variable Weekday Weekend p-value
Age 61.12 62.106

[16.709] [16.588] 0.0501
Male 55.6% 55.9%

[0.497] [0.497] 0.8385
Black 16.1% 16.0%

[0.367] [0.367] 0.9645
Other Race 6.5% 5.3%

[0.247] [0.224] 0.1029
Years of Education 11.663 11.722

[3.137] [3.172] 0.5311
No Insurance 5.8% 5.0%

[0.234] [0.219] 0.2665
Private Insurance 29.9% 28.7%

[0.458] [0.453] 0.3813
Medicare 24.8% 27.2%

[0.432] [0.445] 0.0621
Medicaid 11.4% 10.9%

[0.318] [0.312] 0.5835
Private Insurance & Medicare 21.4% 22.1%

[0.410] [0.415] 0.5323
Family Income < $11K per year 56.3% 56.2%

[0.496] [0.496] 0.9297
Family Income $11K-$25K 20.3% 20.4%

[0.402] [0.403] 0.9443
Family Income $25K-$50K 15.6% 15.5%

[0.363] [0.362] 0.9641
Dx: Acute Respiratory Failure 42.5% 46.1%

[0.494] [0.499] 0.0141
Dx: COPD 7.9% 8.2%

[0.270] [0.275] 0.6965
Dx: Congestive Heart Failure 9.0% 5.0%

[0.286] [0.218] < 0.0001
Dx: Cirrhosis 4.0% 3.7%

[0.195] [0.189] 0.632
Dx: Coma 7.3% 8.5%

[0.260] [0.279] 0.1409
Dx: Lung Cancer 0.8% 0.3%

[0.089] [0.058] 0.0609
Dx: MOSF with malignancy 7.1% 6.5%

[0.257] [0.246] 0.3774
Dx: MOSF with sepsis 21.3% 21.6%

[0.006] [0.011] 0.8338
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Table 6: Weekend vs. Weekday Admissions; Disease History and Functional Status

Variable Weekday Weekend p-value
Hx: Cardiac Disease 19.0% 13.8%

[0.393] [0.345] < 0.0001
Hx: Congestive Heart Failure 18.9% 14.8%

[0.391] [0.355] 0.0004
Hx: Dementia 10.0% 9.3%

[0.300] [0.291] 0.4641
Hx: Psychiatric Condition 7.0% 5.9%

[0.256] [0.235] 0.1156
Hx: Chronic Pulmonary Disease 19.0% 19.1%

[0.392] [0.393] 0.8998
Hx: Renal Disease 4.7% 3.6%

[0.212] [0.187] 0.0765
Hx: Liver Disease 7.2% 6.3%

[0.259] [0.243] 0.2387
Hx: GI Bleed 3.2% 3.3%

[0.176] [0.179] 0.8603
Hx: Malignant Cancer 22.3% 24.7%

[0.417] [0.431] 0.0647
Hx: Immunological Disease 27.5% 25.2%

[0.447] [0.434] 0.0884
Transferred from another hospital 11.6% 11.5%

[0.320] [0.319] 0.9514
Hx: Acute Myocardial Infarction 3.4% 3.6%

[0.182] [0.187] 0.7249
Hx: Non-metatstatic Cancer 16.5% 18.3%

[0.371] [0.387] 0.1087
2 Month Predicted Survival 59.7% 58.1%

[0.196] [0.192] 0.0074
Duke Activity Scale Index 20.378 20.836

[5.297] [5.361] 0.043
Acute Physiology Score 54.415 55.389

[20.027] [19.743] 0.1055
Glasgow Coma Score 20.802 21.582

[30.116] [30.696] 0.3921
Diastolic Blood Pressure 78.667 78.1

[37.723] [38.967] 0.621
Do Not Resuscitate Order 0.113 0.116

[0.317] [0.321] 0.7453
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Table 7: Weekend vs. Weekday Admissions; Laboratory Values and Secondary Diagnoses

Variable Weekday Weekend p-value
WBC Count 15.555 15.903

[11.264] [13.443] 0.3303
Heart Rate 114.894 115.993

[41.115] [41.618] 0.3768
Respiratory Rate 28.049 28.215

[14.025] [14.233] 0.6948
Temperature (oC) 37.583 37.718

[1.777] [1.765] 0.0119
PAO2/(0.01 ∗ FiO2) 223.835 217.814

[115.790] [112.448] 0.0822
Albumin 3.098 3.077

[0.810] [0.702] 0.3652
Hematocrit 31.855 31.896

[8.372] [8.342] 0.8687
Bilirubin 2.313 2.135

[4.980] [4.248] 0.2174
Creatinine 2.147 2.092

[2.086] [1.955] 0.3724
Sodium 136.691 136.992

[7.669] [7.614] 0.1919
Potassium 4.076 4.04

[1.044] [0.983] 0.244
PACO2 38.607 39.155

[13.090] [13.443] 0.1676
Serum Ph 7.39 7.384

[0.109] [0.113] 0.0757
Weight (kg) 67.842 67.788

[29.346] [28.220] 0.9505
2nd Dx: Respiratory Dx 36.2% 38.6%

[0.481] [0.487] 0.1027
2nd Dx: Orthopedic Dx 0.2% 0.0%

[0.041] [0.000] 0.1173
2nd Dx: Neurologic Dx 11.7% 13.3%

[0.321] [0.340] 0.0905
2nd Dx: Gastrointestinal Dx 16.5% 16.3%

[0.371] [0.369] 0.8551
2nd Dx: Renal Dx 5.2% 5.0%

[0.222] [0.219] 0.8391
2nd Dx: Metabolic Dx 4.6% 4.8%

[0.209] [0.213] 0.7425
2nd Dx: Hematologic Dx 6.2% 6.0%

[0.242] [0.237] 0.7272
2nd Dx: Sepsis 18.2% 17.2%

[0.386] [0.378] 0.3744
2nd Dx: Trauma 0.9% 1.0%

[0.093] [0.100] 0.6297
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Figure 5: OLS Treatment Effect
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Figure 6: OLS Treatment Effect by Diagnosis
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Figure 7: Manski IV and Shaikh-Vytlacil Bounds
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Figure 8: Manski and Shaikh-Vytlacil Bounds by Diagnosis
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Figure 9: PQD Bounds
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Figure 10: PQD Bounds by Diagnosis
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