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Abstract

We develop new estimation methods for estimating causal effects based on the idea that
the amount of selection on the observed explanatory variables in a model provides a guide
to the amount of selection on the unobservables. We discuss two approaches, one of which
involves the use of a factor model as a way to infer properties of unobserved covariates from
the observed covariates. We construct an interval estimator that asymptotically covers the
true value of the causal effect, and we propose related confidence regions that cover the true
value with fixed probability.



1 Introduction

Distinguishing between correlation and causality is the most difficult challenge faced by

empirical researchers in the social sciences. Social scientists are rarely in a position to run

a well controlled experiment. Consequently, they rely on a priori restrictions about the

relationships between the variables that are observed or unobserved. These restrictions are

typically in the form of exclusion restrictions or assumptions about the functional form of the

model, the distribution of the unobserved variables, or dynamic interactions. Occasionally,

the restrictions are derived from a widely accepted theory or are supported by other studies

that had access to a richer set of data. However, in most cases, doubt remains about the

validity of the identifying assumptions and the inferences that are based on them. This

reality has lead a number of researchers to focus on the estimation of bounds under weaker

assumptions than those that are conventionally imposed.

In this paper, we develop estimation strategies that are useful in cases in which doubt

remains about the exogeneity of instrumental variables or the treatment itself. This is the

situation in many applications in economics and the other social sciences, with examples

including the effectiveness of private schools, the effects of education on crime, the effects of

crime on labor market outcomes, or the effects of obesity on health outcomes. Our approach

uses the degree of selection on observed variables as a guide to the degree of selection on

the unobservables. Researchers often informally argue for the exogeneity of an explanatory

variable or an instrumental variable by examining the relationship between the instrumental

variable and a set of observed characteristics, or by assessing whether point estimates are

sensitive to the inclusion of additional control variables.1 We provide a formal theoretical

analysis confirming the intuition and providing conditions under which such evidence can be

informative. It is important that we view this methodology as not an identification strategy

itself in the sense in which one needs an instrument or treatment that is approximately

exogenous in order for the bounds to be tight. If there is a lot of “selection on the observables”

then the bounds can be very wide, but in the ideal case in which there is very little selection

on observables, the bounds will be tight.
1See for example, Currie and Duncan (1995), Engen et al (1996), Poterba et al (1994), Angrist and Evans

(1998), Jacobsen et al. (1999), Bronars and Grogger (1994), Udry (1996),Cameron and Taber (2001), or
Angrist and Krueger (1999). Wooldridge’s (2000) undergraduate textbook contains a computer exercise
(15.14) that instructs students to look for a relationship between an observable (IQ) and an instrumental
variable (closeness to college).
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To fix ideas, let the Yi be a continuous outcome of interest determined by:

(1.1) Yi = αTi +X ′iΓX +W c′
i Γc + ξi

where Ti is a treatment variable.2 The parameter of interest is α, the causal effect of Ti on

Yi. Xi is a vector of observed variables with coefficient vector ΓX . Xi contains variables that

are always observed, and W c
i is a vector of additional characteristics that are relevant for

determining the outcome which may or may not be observable to the econometrician. The

final term, ξi, represents idiosyncratic shocks that are unrelated to the other components

in the model. We use the notation W ′
iΓ to refer to the observed components of W c′

i Γc and

W u′
i Γu to refer to its unobserved components. We can rewrite the model as:

(1.2) Yi = αTi +X ′iΓX +W ′
iΓ + (W u′

i Γu + ξi)

with the term in parentheses capturing all the unobservable components of the outcome.

The key idea in this paper is to model the relationship between Ti (or an instrument

Zi) and W u
i . Our operational definition of “selection on unobservables is like selection on

observables” is that the partial correlations of W ′
iΓ and W u′

i Γu with the treatment Ti are

the same. The motivation for this involves thinking about the breakdown of exactly which

characteristics are in Wi versus W u
i as being determined by random chance. In addition, we

view both Wi and W u
i as having a large number of elements, none of which dominates in

determining Yi.3 Dominant characteristics, like gender or schooling in a wage regression, are

assumed always measured and in Xi. Finally, although the principal source of endogeneity

bias here is that Ti is correlated with W u
i , an additional source of bias stems from the

correlation between Wi and W u
i . In the context of a model for the determination of W , the

correlations between the elements of Wi are informative about the nature of the correlation

between Wi and W u
i .

To illustrate the nature of the restrictions we use, consider the linear projection of Ti
onto Xi, W

′
iΓ and W u′

i Γu :

(1.3) Proj(Ti|Xi,W
′
iΓ,W

u′
i Γu) = φ0 +X ′iφX + φW ′

iΓ + φuW
u′
i Γu.

2We will also discuss a binary dependent variable model in which the outcome is 1(Yi > 0).
3We will utilize approximations that take the number of regressors in W c (and W ) to be large.
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Our formalization of the idea that, after controlling for Xi, “selection on the unobservables

is the same as selection on the remaining observables” is that:

Condition 1.

φu = φ.

One may contrast Condition 1 with the implication of the usual OLS orthogonality con-

ditions:

Condition 2.

φu = 0.

Roughly speaking, Condition 1 says that conditional on Xi, the part of Yi that is related

to the observables and the part related to the unobservables have the same relationship with

Ti. Condition 2 says that the part of Yi related to the unobservables has no relationship

with Ti.

A projection like that in equation (1.3) will only be directly useful when an approximation

for W u′
i Γui is available. When ξi is nonzero, the composite term (W u′

i Γu + ξi) is all that can

be approximated. The analog of equation (1.3) is

(1.4) Proj(Ti|Xi,W
′
iΓ, (W

u′
i Γu + ξi)) = φ0 +X ′iφX + φW ′

iΓ + φu(W
u′
i Γu + ξi).

With some abuse of notation, we continue to use φu as the last coefficient. Equal partial

correlations of Ti with W ′
iΓ and W u′Γu in this projection will imply an inequality of φ and

φu due to attenuation bias in the latter coefficient. This results in an intermediate condition

3 between the extremes of Conditions 1 and 2, defined as:

Condition 3.

0 ≤ φu ≤ φ if φ ≥ 0

0 ≥ φu ≥ φ if φ < 0.

We propose two alternative estimators that differ in how they model the relationship

between Wi and W u
i . We refer to the first estimator as OU, which refers to using properties

of observed ("O") covariates to infer the properties of unobserved ("U") covariates. OU

amounts to estimating equation (1.2) using moment conditions thatX andWi are orthogonal

to W u
i and the restriction φu = φ. This estimates a lower (upper) bound on α if φ is
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greater (less) than 0. It requires a high level assumption that implies, roughly speaking,

that conditional on Xi, the coefficient of the regression of Ti on (Yi − αTi) has the same

sign and is at least as large in absolute value as the coefficient of the regression of the part

of Ti that is orthogonal to Wi on the part of Yi − αTi that is orthogonal to Wi. The high

level assumption is required because the estimator does not make direct use of how the

observed and unobserved explanatory variables are interrelated to assess the consequences

of omitted variables that affect both the treatment and the outcome. Essentially, it treats

Wi as exogenous, in common with the vast IV literature that focusses on endogeneity of Ti
but treats the “controls”as exogenous. Furthermore, it does not provide a way to account for

the fact that randomness in which elements of W c
i are observed influences the distribution of

the estimator. This estimator has been applied in Altonji, Elder and Taber (2005a, 2005b;

hereafter, AET) to study the effectiveness of Catholic schools, as well as in a large number

of other studies.4 We complete the theoretical analysis of the estimator that is presented in

preliminary form in AET (2002).

We also propose a second estimator that we believe is a more satisfactory approach

because it relaxes the assumption thatWi is exogenous. In this second approach, we develop

a method of moments procedure that uses the bounds on selection embodied in Condition

3 and also uses a factor structure to model the covariance between the observable and

unobservable covariates. This structure allows us to infer properties of unobserved covariates

based on the observed correlation structure of the observed covariates Wi. We show that

this estimator, which we name OU-Factor, consistently identifies a set that contains α. We

also provide a general bootstrap procedure that may be used to construct confidence regions

for the identified set, as well as a less computationally demanding bootstrap procedure that

seems to works well in practice.

Our paper is related in spirit to the rapidly growing emphasis in econometrics on partial

identification and bound estimation. Some of these papers implicitly address omitted vari-

ables and selection bias. Indeed, we use the methods of Chernozhukov, Hong, and Tamer

(2007) in studying the distribution of our estimator. Rosenbaum and Rubin (1983) and

Rosenbaum (1995) propose examining the sensitivity of α to varying φu. As we’ve already

noted, our paper has antecedents in the very large number of papers that examine the link
4AET and a number of subsequent papers measure the amount of selection on the index of observables

that determine the outcome and then calculate a ratio of how large selection on unobservables would need to
be in order to attribute the entire OLS estimate of α to selection bias. The approach that is closely related
to the OU estimator.
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between Ti (or an instrumental variable or an regression discontinuity indicator in an IV

or regression discontinuity context) to the other covariates that influence Yi and use the

pattern as qualitative evidence about whether Ti is likely to be correlated with the omitted

variables that influence Yi. Our contribution is the development of a formal model of how

the observed variables relate to the unobserved variables and the translation of the informal

intuition that the patterns in the observables are informative about the unobservables into

bounds estimators.5

The paper continues in Section 2, where we provide a formal model of which covariates

are observed and which are unobserved. We provide an explicit set of assumptions under

which Condition 1, Condition 2, and Condition 3 hold, and we elaborate on why Condition

3 is the most plausible of the three. In Section 3 we present the OU estimator. We also

show that in general, Condition 1 is not sufficient to provide point identification of α. As a

practical matter, this is not critical, because we focus on the use of Condition 3 to identify

a range of admissible values for α. We then turn to the OU-Factor estimator based on

specifying a factor structure for W c
i . In Section 4 we provide some Monte Carlo evidence on

the performance of OU and OU-Factor. We offer brief conclusions in Section 5.

2 Selection Bias and the Link Between the Observed and
Unobserved Determinants of the Instrument and Out-
come

In this section, we begin with a formal discussion of how the observables W i are chosen from

the full set W c
i . This is the first step in developing a theoretical foundation for using the

relationship between a potentially endogenous variable (or an instrument for that variable)

and the observables to make inferences about the relationship between such a variable and

the unobservables. In doing so, we provide a foundation for quantitatively assessing the

importance of the bias from the unobservables. We then provide a set of conditions under

which Condition 3 holds, which is central to OU and OU-factor.
5A large literature on survey non-response and to item nonresponse that leads to missing data on depen-

dent variables or covariates for some observations, of which Kline and Santos (2010) is a recent example. We
ignore item non-response and focus on missingvariables.
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2.1 How are Observables Chosen?

We do not know of a formal discussion of how variables are chosen for inclusion in data sets.

Here we make a few general comments that apply to many social science data sets. First, most

large scale data sets such as the National Longitudinal Survey of Youth 1979, the British

Household Panel, the Panel Study of Income Dynamics, and the German Socioeconomic

Panel are collected to address many questions. Data set content is a compromise among

the interests of multiple research, policy making, and funding constituencies. Burden on

the respondents, budget, and access to administrative data sources serve as constraints.

Obviously, content is also shaped by what is known about the factors that really matter

for particular outcomes and by variation in the feasibility of collecting useful information

on particular topics. Major data sets with large samples and extensive questionnaires are

designed to serve multiple purposes rather than to address one relatively specific question.

As a result, explanatory variables that influence a large set of important outcomes (such as

family income, race, education, gender, or geographical information) are more likely to be

collected. Because of limits on the number of the factors that we know matter, that we know

how to collect, and that we can afford to collect, many elements of W c
i are left out. This is

reflected in the relatively low explanatory power of most social science models of individual

behavior. Furthermore, in many applications, the treatment variable Ti is correlated with

many of the elements of W c
i .

These considerations suggest that Condition 2, which underlies single equation methods

in econometrics, will rarely hold in practice. The optimal survey design for estimation of

α would be to assign the highest priority to variables that are important determinants of

both Ti and Yi (it would also be to useful to collect potential instrumental variables that

determine Ti but not Yi). Condition 2 is based on the extreme assumption that surveys are

sufficiently well designed to ensure that φu = 0.

We next consider an assumption which is, in a sense, the other extreme. The constraints

on data collection are sufficiently severe that it may be better to think of the elements of Wi

as an approximately random subset of the elements of W c
i , rather than being systematically

chosen to eliminate bias. Indeed, a natural way to formalize the idea that “selection on

the observables is the same as selection on the unobservables” is to treat observables and

unobservables symmetrically by assuming that the observables are a random subset of a

large number of underlying variables. We let the indicator Sj denote whether covariate j is
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observed in the data set. We assume a symmetric treatment of observables and unobservables

in this framework, that Sj is an iid binary random variable which is equal to one with

probability PS for all covariates in W c
i .

In many applications a small set of exogenous variables may play a critical role in deter-

mining Yi and Ti and are likely to be available in data sets appropriate for the research topic

in question. These variables are represented by Xi. In AET’s study of Catholic schools,

Catholic religion is such a variable. We will also want to allow for the use of instrumental

variables Zi.

There are many reasons to include indiosycratic shocks ξi in the framework. In many

problems outcomes are determined considerably after the treatment Ti , characteristics Xi,

or instruments Zi are determined. Consider the case of the effect of deciding to attend

Catholic high schools on 12th grade test scores studied by AET. All of the regressors used in

AET are measured in eighth grade. High school outcomes will be influenced by shocks that

occur during the four years of high school, many of which are unanticipated at the time of

decision regarding whether to attend a Catholic school. Given this sequencing, these shocks

influence high school outcomes but cannot affect the probability of starting a Catholic high

school. In addition, ξi will be needed to reflect random variability in a student’s performance

which has nothing to do with the decision to attend Catholic high school. Similarly, in health

applications, ξi may reflect health shocks (such as an accident or exposure to a virus) that

occur after the treatment choice Ti has been made.

2.2 Implications of Random Selection of Observables

We are now ready to consider the implications of random covariate selection from W c
i . We

begin with the general case. We first derive the probability limit of φu/φ as the number of

covariates in W c
i becomes large. We then consider several special cases.

We define outcomes as being determined by a sequence of models indexed by K∗, where

K∗ is the number of elements of W c
i .

6 A natural part of the thought experiment in which K∗

varies across models is the idea that the importance of each individual factor declines with

K∗. We take the dimensions of Xi and Zi as fixed.
6The “local to unity” literature in time series econometrics” (e.g., Stock, 1994) and the “weak instruments”

literatures (e.g., Staiger and Stock, 1997) are other examples in econometrics in which the asymptotic
approximation is taken over a sequence of models, which in the case of those literatures, depend on sample
size. However, in these cases the purpose of the model sequence is provide a better guide to the asymptotic
distribution of estimator, which is quite different from the present case.
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Define GK∗ as the information set consisting of the realizations of the Sj, coefficients Γj,

and the joint distribution of Wij conditional on j = 1, ..., K∗. That is, E(Wij | GK
∗
) is the

mean for a given j, where the expectation is only over i, but E(Wij) is an unconditional

expectation over both i and j. It may be helpful to think of this data generation process as

operating in two steps. First the “model” is drawn: for a given K∗, the joint distribution of

Wij, Ti, Zi, ξi, and Sj are drawn. GK∗ represents this draw. In the second stage of the data

generating process, individual data are constructed from these underlying distributions.

The two steps combine to generate Yi as is represented in Assumption 1.

Assumption 1.

(2.1) Yi = αTi +X ′iΓX +
1√
K∗

K∗∑
j=1

WijΓj + ξi

where (Wij,Γj) is unconditionally stationary (indexed by j), and Xi includes an intercept.

We use (and slightly abuse) non-standard notation in Assumption 1. Rather than explic-

itly indexing parameters by K∗, we suppress a K∗ index on (Wij,Γj) and bring a 1√
K∗

out

in front of the sum. This scaling guarantees that no particular covariate will be any more

important ex ante than the others. It embodies the idea that a large number of components

determine most outcomes in the social sciences. Any variables that play an outsized role in

Yi and Zi are assumed to always be in the set of special regressors Xi. Note that Assumption

1 involves unconditional stationarity. Conditional on GK∗ , the variance of the Wij and the

contribution of the Wij to the variance of Yi will differ across j.

Throughout we will project all variables on Xi and take residuals to remove Xi from the

regression. We will use “tildes” to denote the residuals from these projections, so we define

W̃ij ≡ Wij − Proj(Wij | Xi;GK
∗
)

T̃i ≡ Ti − Proj(Ti | Xi;GK
∗
)

Z̃i ≡ Zi − Proj(Zi | Xi;GK
∗
)

Ỹi ≡ Yi − Proj(Yi | Xi;GK
∗
)

where Proj denotes a linear projection.7 Let σK∗j,` = E
(
W̃ijW̃i` | GK

∗
)
. To guarantee that

var(Yi) is bounded as K∗ becomes large, we assume that
7Formally, the linear projection projection of a generic Yi on a generic Xi is defined by X ′iδ where δ

satisfies E[(Yi − X ′iδ)Xi | GK
∗
] = 0. Hereafter, this projection is meant to be the population projection

conditional on GK
∗
, i.e., for a very large N , but with K∗ draw of GK

∗
and fixed.
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Assumption 2.

0 < lim
K∗→∞

1

K∗

K∗∑
j=1

K∗∑
`=1

E(σK
∗

j,` ΓjΓ`) <∞ ; lim
K∗→∞

V ar

(
1

K∗

K∗∑
j=1

K∗∑
`=1

σK
∗

j,` ΓjΓ`)

)
→ 0 .

The next two assumptions guarantee that cov(Z̃i, Ỹi) is well behaved as K∗ grows.

Assumption 3. For any j = 1, ..., K∗,define µK∗j so that

E
(
Z̃iW̃ij|GK

∗
)

=
µK

∗
j√
K∗

.

We assume

E(µK
∗

j Γj) <∞ ; lim
K∗→∞

V ar

(
1

K∗

K∗∑
j=1

µK
∗

j Γj

)
→ 0 .

Below we prove that Assumptions 2 and 3 are satisfied by a factor model for Z̃i and

W̃ij, which is central to the OU-Factor estimator. In the appendix, we also illustrate the

assumptions using a second example in which the W̃ij are linked across j through an MA

model. The MA example is the most straightforward when one examines Assumptions 1

and 2 given that the two assumptions refer to observables as though they have a sequential

ordering.

Finally, we provide assumptions about the process under which observables are chosen.

Consider the case discussed above in which variables are chosen at random:

Assumption 4. For j = 1, ..., K∗, Sj is independent and identically distributed with 0 <

Pr (Sj = 1) ≡ Ps ≤ 1 . Sj is also independent of all other random variables in the model. If

var(ξ) ≡ σ2
ξ = 0, then PS < 1.

Assumption 5. ξi is mean zero and uncorrelated with Z̃i and W̃ij.

First we consider the relationship between φ and φu in the general case with nonzero

var(ξi) and then derive three key special cases.

Note that our asymptotic analysis is nonstandard in two respects. First, we are allowing

the number of underlying explanatory variables, K∗, to get large. Second, the random

variable W̃ij is different from the random variables Γj and Sj in the following way. For each

j we draw one observation on Γj and Sj which is the same for every person in the population;

however, each individual i draws her own W̃ij.
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Theorem 1. Define φ and φu such that

Proj

(
T̃i |

1√
K∗

K∗∑
j=1

SjW̃ijΓj,
1√
K∗

K∗∑
j=1

(1− Sj) W̃ijΓj + ξi;GK
∗

)

= φ

(
1√
K∗

K∗∑
j=1

SjW̃ijΓj

)
+ φu

(
1√
K∗

K∗∑
j=1

(1− Sj) W̃ijΓj + ξi

)
.

Then under assumptions 1-3 and 4-5, if the probability limit of φ is nonzero, then

φu
φ

p−→
K∗→∞

(1− Ps)A
(1− Ps)A+ σ2

ξ

where

A ≡ lim
K∗ →∞

E

(
1

K∗

K∗∑
j=1

σK
∗

j,j (Γj)
2

)
.

If the probability limit of φ is zero, then the probability limit of φu is also zero.

(Proof in Appendix-available from the Authors)

Next we consider three separate cases which we present as corollaries. We omit the proofs

of these as they follow immediately from the proof of Theorem 1.

Corollary 1. When σ2
ξ = 0,

plim(φ− φu) = 0.

Corollary 1 states that the coefficients of the projection of T̃i onto 1√
K∗

∑K∗

j=1 SjW̃ijΓj

and 1√
K∗

∑K∗

j=1 (1− Sj) W̃ijΓj approach each other with probability one as K∗ becomes

large. The other extreme is the case in which all the important control variables that

affect both Z̃ and Ỹ are included in the model, so the variation in the composite error term
1√
K∗

∑K∗

j=1 (1− Sj) W̃ijΓj + ξi arises from ξ only:

Corollary 2. When Ps = 1,

plim(φu) = 0.

What about the case in which selection on observables is stronger than selection on

unobservables but there is still some selection on unobservables? This corresponds to the

case in which var(ξ) > 0 and Ps < 1. The next Corollary considers this case:
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Corollary 3. When 0 < Ps < 1 and σ2
ξ > 0,

either

0 < plim(φu) < plim(φ),

or

plim(φ) < plim(φu) < 0,

or

0 = plim(φu) = plim(φ).

This Corollary plays a key role in the estimator below.

3 Estimators of α

We now discuss ways to estimate α. In Section 4.1 We set the stage by reviewing the OU

estimator introduced in AET (2002, 2005). Then we present OU-Factor, beginning with the

factor model of W c
i that it requires.

But before turning to the estimators, we provide an explicit model for Z̃ which we use

for both estimators.

Assumption 6.

(3.1) Z̃i =
1√
K∗

K∗∑
j=1

W̃ijβj + ψi,

where (i) ψi is independent of all of the elements of W̃ c
i .(ii) βj is a stationary process with

finite second moments. βj may be correlated with Γj.

It is convenient to rewrite the model for Z̃i as

(3.2) Z̃i =
1√
K∗

K∑
j=1

W̃ijβj + ui

where ui = 1√
K∗

∑K∗

j=K+1 W̃ijβj + ψi, and all variables are residuals from linear projections

onto the space of Xi.
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3.1 The OU Estimator

We repeat the outcome equation here for convenience

Ỹi = αT̃i + W̃ ′
iΓ + (W̃ u′

i Γu + ξi)

≡ αT̃i + W̃ ′
iΓ + εi

Instrumental variables estimation of α uses the standard moment conditions E(W̃iεi) = 0

and the IV moment equation E(Z̃iεi) = 0. The simplest form of the OU estimator replaces

the moment equation E(Z̃iεi) = 0 with condition 3. In most applications of OU to date

either Ti = 1(Zi > 0) or Ti = Zi, so we focus on this case:

T̃i = Z̃i =
1√
K∗

W̃ ′
iβ + ui

A problem, however, is that despite the fact that mean independence of εi and W̃ is main-

tained in virtually all observational studies of selection problems, is not likely to hold. With-

out it, α is not identified even if one has a valid exclusion restriction.8 Our discussion of

how the observables are determined makes clear that this is hard to justify in most settings-

including ours. If the observables are correlated with one another, as in most applications,

then the observed and unobserved determinants of Yi are also likely to be correlated. This

will lead to an inconsistent estimator whether one uses E(Z̃iεi) as a moment condition or

Condition 3. Note that this is not a problem with Theorem 1. That theorem did not require

E(Z̃iεi) = 0. The problem is that this theorem involves the true value of Γ, but we need an

assumption analogous to E(Z̃iεi) = 0 in order to consistently estimate Γ.

AET essentially assume away this problem (which the OU-factor does address). They

assume that E(εi | W̃i) is linear, and define G and e to be the slope vector and error term

of the “reduced forms”:

E
(
Ỹi − αT̃ | W̃

)
≡ W̃ ′G(3.3)

Ỹ − E
(
Ỹ − αT̃ | W̃

)
≡ e.(3.4)

Let φW ′G and φe be the coefficients of the projection of T on W ′G and e in a regression

model that includes X. Note that under the assumption that if E(Z̃iεi) = 0, then G = Γ and

under the assumptions of Theorem 1, 0 ≤ φe ≤ φW ′G when φW ′G > 0. AET show that this is

true under the following more general (though not necessarily easy to interpret) condition:
8The exception is when the instrument is uncorrelated with Wi (and Xi) as well as ξi, as when the

instrument is randomly assigned in an experimental setting.
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Assumption 7.

(3.5) lim
K∗→∞

∑K∗

`=1E
(
W̃ijW̃ij−`

)
E
(
βjΓj−`

)
∑K∗

`=1 E
(
W̃ijW̃ij−`

)
E (ΓjΓj−`)

= lim
K∗→∞

∑K∗

`=1 E

(˜̃
W ij

˜̃
W ij−`

)
E
(
βjΓj−`

)
∑K∗

`=1E

(˜̃
W ij

˜̃
W ij−`

)
E (ΓjΓj−`)

,

for the set of variables Wij in j = 1, ..., K∗,

where ˜̃W ij is the component of W̃ij that is orthogonal to the observed variables (Xi,Wi),

for all elements ofW ∗
i . Roughly speaking (3.5) says that the regression of Ti on

(
Ỹi − αT̃i − ξi

)
is equal to the regression of the part of T̃i that is orthogonal to W̃i on the corresponding part

of
(
Ỹi − αT̃i − ξi

)
. This condition holds under the standard assumption E(εi | W̃i;GK

∗
) = 0,

in which case G and ei equal Γ and εi, respectively. However, E(εi | W̃i;GK
∗
) = 0 is not

necessary for (3.5).9

Theorem 2. Define φfW ′G and φe such that

Proj

(
Z̃i |

1√
K∗

K∗∑
j=1

SjW̃ijGj,
1√
K∗

K∗∑
j=1

(1− Sj) W̃ijΓj + ξi;GK
∗

)

= φfW ′G
(

1√
K∗

K∗∑
j=1

SjW̃ijΓj

)
+ φe

(
1√
K∗

K∗∑
j=1

(1− Sj) W̃ijΓj + ξi

)
.

Then under assumptions 1-5 and 7, as K∗ gets large, then

φe
φfW ′G

p→

∑∞
`=−∞E

(
W̃ijW̃ij−`

)
E (ΓjΓj−`)∑∞

`=−∞E
(
W̃ijW̃ij−`

)
E (ΓjΓj−`) + σ2

ξ

if the probability limit of φ is nonzero. If the probability limit of φfW ′G is zero then the

probability limit of φe is also zero.

(Proof in Appendix available from Authors)

The upshot is that one can work with the system
9For example, one can show that (3.5) will also hold if E

(
βjΓj−`

)
is proportional to E (ΓjΓj−`) regardless

of the correlations among the Wj .
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Ỹi = αT̃i +
1√
K∗

W̃ ′
iG+ ei.

T̃i =
1√
K∗

W̃ ′
iβ + ui

0 ≤
∣∣∣∣cov(ui, ei|GK

∗
)

var(ei | GK∗)

∣∣∣∣ ≤
∣∣∣∣∣Cov(W̃ ′

iβ, W̃
′
iG|GK

∗
)

V ar(W̃ ′
iG|GK

∗)

∣∣∣∣∣
and estimate the set of α values that satisfy the above inequality restrictions. In prac-

tice, AET find that the lower bound is obtained when the equality of selection condition
cov(ui,ei|GK∗ )

var(ei|GK∗ )
=

Cov(fW ′iβ,fW ′iG|GK∗ )

V ar(fW ′iG|GK∗ )
is imposed and the upper bound corresponds to the case in

which T̃i is treated as exogenous, with cov(ui,ei|GK∗ )

var(ei|GK∗ )
= 0.

One can perform statistical inference accounting for variation over i conditional on which

Wi are observed in the usual way, and we omit the details. However, there is no obvious way

to account for random variation due to the draws of Sj which is another reason one might

prefer OU-factor

3.2 OU-Factor: A Bounds Estimator Based on a Factor Model of
W̃ij

3.2.1 A Factor Model of W̃ij

The biggest issue with the OU estimator is that it required assumption (3.5) which in general

is hard to justify in a model in which the Wij are chosen randomly from the set of W c
i .

Relaxing this assumption requires building a model of the relationship between the Wij that

we observe and the Wij that we don’t observe. We do this by building factor model of W̃ij,

which is central to the estimator proposed below. The factor model is a convenient way to

model the relationship among the covariates. We assume that W̃ij has a factor structure

(3.6) W̃ij =
1√
K∗

F̃ ′iΛj + vij, j = 1, ..., K∗,

where F̃i is an r dimensional mean zero vector of factors. We treat r as finite, so while

the dimension of W̃ij grows, the number of factors remains constant. Recall that W̃ij is the

residual from the projection of Wij upon Xi.We normalize the variance/covariance matrix

of F̃i be to the identity matrix. Define σ2
j ≡ E(v2

ij | GK
∗
), j = 1, ..., K∗. It is important to

contrast our work with other models using factor structures such as Cuhna, Heckman, and

14



Schennach (2010). In much of this other work what is driving outcomes is the factors them-

selves. Our model is quite different. We continue to assume that outcomes are determined

by W̃ij itself. We use the factor structure only as a model of the covariance structure of W c
i .

We define a model for T̃i :

(3.7) T̃i =
1√
K∗

K∗∑
j=1

SW̃jijδj +

[
1√
K∗

K∗∑
j=1

(1− Sj) W̃ijδj + ωi

]
, .

For convenience repeat the equation for Z̃i and T̃i :

(3.8) Z̃i =
1√
K∗

K∗∑
j=1

SjW̃ijβj +

[
1√
K∗

K∗∑
j=1

(1− Sj) W̃ijβj + ψi

]
,

(3.9) Ỹi = αT̃i +
1√
K∗

K∗∑
j=1

SjW̃ijΓj +

[
1√
K∗

K∗∑
j=1

(1− Sj) W̃ijΓj + ξi

]
.

The ωi, ξi and ψi are assumed independent of all of the W̃ij the instrument error term ψi

is assumed to be correlated with the treatment error ωi but not the outcome error ξi. The

brackets in each of these expressions collect unobservable terms. Note that if all the elements

of W c
i were observed (Sj = 1 for all j), our framework reduces to the standard instrumental

variables setup.

The stochastic structure of the model is that Λj, Γj, βj and σ2
j differ across j, but are

identical for all individuals in the population. We redefine GK∗to refer to aspects of the

model of W̃ij, T̃i, Ỹi, and Z̃i, that do not vary across individuals:

GK∗ =
{

(Γj, βj, δj,Λj, σ
2
j , Sj) for j = 1, ..., K∗

}
.

For estimation, we make the following additional assumptions.

Assumption 8. (i)
(
Γj, βj, δj,Λj, σ

2
j

)
is i.i.d with fourth moments; (ii) the error terms

(ωi, ψi, ξi) are mean zero with finite second moments and are independent of W̃ c
i ; ψi and ξi

are uncorrelated, ωi and ψi are correlated.

Assumption 8 (ii) allows for there to be a component of T̃i, that is correlated with the

instrument Z̃i but uncorrelated with the observed and unobserved determinants of Ỹi allowing

identification of α. In the Appendix we verify that the factor model of W̃i in conjunction

with the model (2.1) for Ỹi (3.1) for Z̃i, and (3.7) for T̃i, satisfies Assumption 1 of Theorem

1.
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3.2.2 An Estimator of an Admissible Set for α

We use the factor model to directly address the problem posed by the fact that the elements

of W̃i (as well as T̃i, and Z̃i) are likely to be correlated with the composite error term for

Ỹi. We proceed under the following assumptions. First, the econometrician observes K, the

number of observed covariates in W̃i but not K∗, the number of and unobserved covariates

in W c
i . Second, the econometrician observes the joint distribution of Yi, Zi, Ti, Xi and

{Wij : Sij = 1} . Third, we assume that K/K∗ → Ps0. Fourth, we assume that N becomes

large faster than K∗, with K∗

N
→ 0, so that we can take sequential limits. This seems like a

good approximation in problems where K and K∗ are large, but not for problems in which

the number of variables that determine Yi is small.

In general the model is not point identified, so we provide an estimator of a set that

contains the true values. The key subset of the parameter vector of our model is θ =

{α, φ, Ps, σ2
ξ). The parameter α is the key parameter denoted the treatment effect. Ps is

the probability that Sj = 1, σ2
ξ is the variance of ξi, and φ is the coefficient in front of

the observable index when we project Zionto the observables and the unobservables as in

Theorem 1. The true value of θ is θ0 = {α0, φ0, Ps0, σ
2
ξ0) which lies in the compact set Θ̄.

Our approach is to estimate a set Θ̂ that asymptotically will contain the true value θ0. The

key restrictions on the parameter set are

0 <Ps0 ≤ 1, and(3.10)

σ2
ξ0 ≥0.(3.11)

The case in which Ps0 = 1 corresponds to the standard IV case represented by Condition

2, while σ2
ξ0 = 0 corresponds to the “unobservables like observables” case represented by

Condition 1. We construct an estimate of the set of values of α by estimating the set of θ

that satisfy all of the conditions and then projecting onto the α dimension. We then discuss

construction of confidence intervals. While the upper and lower bound of the estimated set

does not have to correspond to the cases in which Ps0 = 1 and σ2
ξ0 = 0, in practice we find

that it does.

It will be useful to make use of matrix notation. We assume that the variables are

ordered so that j = 1, .., K corresponds to the K observed covariates inW c. Unless indicated

otherwise,

• For a generic variable Bi, i = 1, ..., N , B will represent the N × 1 vector.
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• For a generic variable Bj, j = 1, ..., K∗, B will represent the K× 1 vector of observable

characteristics and B∗ will represent the full K∗ × 1 vector.

• For a generic variable Bij, i = 1, .., N, j = 1, ..., K∗, B will represent the N ×K matrix

of observable characteristics, B∗the full N ×K∗matrix of covariates, and Bi represents

the K × 1 vector of Bij for a given i.

• We also employ the convention of using capital letters for matrices so, for example, the

matrix version of vij will be written as V.

Given the large amount of notation we concentrate on the 1 factor case (r = 1), so F̃i and

Λj are scalars. We fully expect that the results generalize to the multiple factor case. We

now present the estimator, which has two stages.

Stage 1

In the first stage we estimate the Λj and σ2
j for all observed variables. The moment conditions

are the K equations

(3.12) E
(
W̃ 2
ij|GK

∗
)

=
1

K∗
Λ2
j + σ2

j ; j : Sj = 1 ,

and the K · (K − 1)/2 equations

(3.13) E
(
W̃ij1W̃ij2|GK

∗
)

=
1

K∗
Λj1

Λj2
; j1, j2 : Sj1 = Sj2 = 1, j1 6= j2 .

This is a standard GMM problem. As N grows we will obtain
√
N consistent estimates

of 1√
K∗

Λj for each j and for σ̂2
j by using the sample analogues to (3.12) and (3.13). Note

that K∗ is not known since it depends on the number of unobserved variables. However,

the econometrician knows K. To simplify the exposition we define λ̂j to be the GMM

estimate of the parameter
√
K × 1√

K∗
Λj ≈

√
PS0Λj and λ to be the corresponding vector.

In practice we just replace the left side of the equations by 1
N

∑N
i=1

(
W̃ij1W̃ij2

)
and choose

λ̂j and σ̂2
j as the values that minimize the unweighted squared difference between the values

of 1
N

∑N
i=1

(
W̃ij1W̃ij2

)
and the predictions summarized in the moment conditions above.
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Stage 2

We estimate the rest of the parameters in a second stage. If we knew α0 we could estimate

Γ conditional on α0 by taking advantage of the K moment conditions corresponding to the

j for which Sj = 1,

√
K∗E

[
W̃ij

(
Ỹi − α0T̃i)

)
|GK∗

]
=
√
K∗E

 (
1√
K∗
F̃iΛj + vij

)
·(

1√
K∗

∑K∗

`=1
1√
K∗
F̃iΛ`Γ` + 1√

K∗

∑K∗

`=1 vijΓ`

)
+ ξi|GK

∗


= Λj

(
1

K∗

K∗∑
`=1

Λ`Γ`

)
+ σ2

vjΓj

p→ ΛjE(Λ`Γ`) + σ2
vjΓj.

We work with the sample analog of the above expression,[ √
K∗ 1

N
W̃ ′
(
Ỹ − α0T̃

) ]
=
[

1
K

1
Ps0
λ̂λ̂
′
Γ + ΣΓ

]
,

where Σ is the diagonal matrix composed of the σ2
j terms. Thus, for the parameter θ we can

construct the estimator

(3.14) Γ̂ (θ) ≈
[

1

PsK
λ̂λ̂
′
+ Σ̂

]−1
1

N
W̃ ′
(
Ỹ − αT̃

)
,

where we define Σ̂ to be the diagonal matrix composed of the σ̂2
j , which is estimated in the

first stage.

Theorem 1 presents the main idea behind our approach which is a projection of Zi onto

the observable index and the unobservable index. One may show that the coefficient in from

of the observables.

φ0 =

[
E(ΓjΛj)E(βjΛj) + E(Γjβjσ

2
j)
] [
Ps0 (1− Ps0)E(Γ2

jσ
2
j) + Ps0σ

2
ξ0

]
σ2
ξ0

[
P 2
s0E(ΓjΛj)2 + Ps0E(Γ2

jσ
2
j)
]

+
[
E(ΓjΛj)2 + E(Γ2

jσ
2
j)
]

(1− Ps0)Ps0E(Γ2
jσ

2
j)
.

Our first two equations represent the moment conditions associated with a projection of

Zi upon the observable index W̃ ′
i Γ̂ (θ) and the unobservables which we can write as Ỹi −
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αT̃i − W̃ ′
i Γ̂ (θ) . We define these as

q1
N,K∗ (θ) =

1

N

N∑
i=1

W̃ ′
i Γ̂ (θ)×(3.15) [

Z̃i − φW̃ ′
i Γ̂ (θ)− φ (1− Ps)Γ̂ (θ)′ Σ̂Γ̂ (θ)

(1− Ps)Γ̂ (θ) Σ̂Γ̂ (θ) + Psσ2
ξ

(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)]

q2
N,K∗(θ) =

1

N

N∑
i=1

((
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
))
×(3.16) [

Z̃i − φW̃ ′
i Γ̂ (θ)− φ (1− Ps)Γ̂ (θ)′ Σ̂Γ̂ (θ)

(1− Ps)Γ̂ (θ)′ Σ̂Γ̂ (θ) + Psσ2
ξ

(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)]

To understand the first two equations, note that when σ2
ξ = 0 they reduce to

q1
N,K∗ (θ) =

1

N

N∑
i=1

(
W̃ ′
i Γ̂ (θ)

[
Z̃i − φW̃ ′

i Γ̂ (θ)− φ
(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)])

q2
N,K∗ (θ) =

1

N

N∑
i=1

((
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
) [
Z̃i − φW̃ ′

i Γ̂ (θ)− φ
(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)])

.

These are the orthogonality conditions of a linear regression of Z̃i on (W̃ ′
i Γ̂ (θ)) and

(Ỹi−αT̃i−W̃ ′
i Γ̂ (θ)) when the two regression coefficients are restricted to be the same. They

are the empirical analogue of Corollary 1 of Theorem 1. Equations (3.15) and (3.16) are more

complicated because the presence of ξi leads to attenuation bias on the regression coefficient

on
(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)
.

When PS = 1, the second equation reduces to

q2
N,K∗(θ) =

1

N

N∑
i=1

((
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
) [
Z̃i − φW̃ ′

i Γ̂ (θ)
])
.

In this case Γ̂ (θ) could be estimated as the coefficient vector from a linear regression of(
Ỹi − αT̃i

)
on W̃i. (Our estimator is asymptotically equivalent to this with K∗ fixed and N

getting large.) In that case, W̃ ′
i Γ̂ (θ) would have to be orthogonal to the error term, so this

equation would reduce further to

q2
N(α, θ) =

1

N

N∑
i=1

(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)
× Z̃i,

which is the standard IV moment equation.
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The third equation essentially represents the fact that the total sum of squares must be

the sum of its components:

q3
N,K∗ (θ) =

1

N

N∑
i=1

(
Ỹi − αT̃i

)2

−

( Γ̂ (θ)′ λ̂

Ps

)2

+
Γ̂ (θ)′ Σ̂Γ̂ (θ)

Ps
+ σ2

ξ

(3.17)

Turning to (3.17), q3
N,K∗ (θ) is the difference between the total sum of squares of

(
Ỹi − αT̃i

)
in the data for the hypothesized value of α and the sum of squares implied by the model

estimate.

We will show that when evaluated at θ0 these equations q1
N,K∗ (θ) , q2

N,K∗ (θ) , and q3
N,K∗ (θ)

converge to zero as N and K∗ grow.

We define the estimator Θ̂ as the set of values of θ that minimize the criterion function

QN,K∗(θ) = KqN,K∗(θ)
′ΩqN,K∗(θ),

where

qN,K∗(θ) =
[
q1
N,K∗ (θ) q2

N,K∗ (θ) q3
N,K∗ (θ)

]′
and Ω is some predetermined symmetric positive definite weighting matrix and we can write

the Cholesky decomposition as. Ω = LL′.

3.3 Consistency of the Estimator

In this section we prove consistency using the standard methods from Chernozhukov, Hong,

and Tamer (2007). Define Q0(θ) as the probability limit of QN,K∗(θ) as N and K∗ get large.

Specifically we use sequential limits assuming that N grows faster than K∗. The identified

set, ΘI , is defined as the set of values that minimize Q0(θ). We verify the conditions in

Chernozhukov, Hong, and Tamer (2007) to show that the Hausdorff distance between Θ̂ and

ΘI converges in probability to zero and that θ0 ∈ Θi. Thus as the sample gets large our

estimate of Θ̂ will contain the true value with probability approaching 1.

We maintain the assumptions of the factor model W and Assumption (8). In addition

we add Assumptions 9 and 10 below.

Assumption 9. Θ̄ is compact with the support of Ps bounded below by p`s > 0.

Assumption 10. The dimension of F̃i is 1
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Define dh(·, ·)to be Hausdorff distance as defined in Chernozhukov, Hong, and Tamer

(2007).

Theorem 3. Assuming our factor model for W, and Assumptions 8-10, dh(Θ̂,ΘI) converges

in probability to zero and θ0 ∈ ΘI .

(Proof in Appendix)

One can form a set estimator for α0 just by taking the projection of Θ̂ onto α. That is,

we can define this set as

Â ≡
{
α : there exists some value of (φ, Ps, σ

2
ξ) such that {α, φ, Ps, σ2

ξ} ∈ Θ̂
}

3.4 Constructing Confidence Intervals

In this section we discuss confidence interval construction. We start with the ideal procedure

one would use given unlimited computing resources. We then discuss a more practical

approach, which is the parametric bootstrap we use in the Monte Carlos below.

3.4.1 A General Procedure

Before discussing inference it is useful to step back and consider our basic approach. In

terms of identification we have four parameters (α0, φ0, P
0
S , σ

0
ξ) but only 3 equations: the

population and limit of the sequence of models for (q1
N , q

2
N , q

3
N) .10 However, we also have

limits on the parameter space. In particular 0 < PS ≤ 1 and σ0
ξ ≥ 0. While we cannot get a

point estimator for (α0, φ0, P
0
S , σ

0
ξ), we construct the set estimator Θ̂ for this four dimensional

parameter. Our set estimate for α0 is just the set of α that lie within this identified set.

We can construct a confidence region in the analogous manner. That is, we could first

construct a confidence set for (α0, φ0, P
0
S , σ

0
ξ) and then let our confidence set for α be the

values of α that lie within this set. The most natural way to construct the larger confidence

set would be to “invert a test statistic.” That is, we would first construct a test statistic T (θ)

which has a known distribution under the null hypothesis: θ = θ0. For each potential θ,

we would construct an acceptance region of the test. When T (θ) lies within this acceptance

region, θ would belong to this confidence set, otherwise it would not. Given the confidence
10In the definition of the estimator, we have not explicitly defined Λ,Γ,β, or Σ as parameters but express

the estimates of these objects as functions of the data and θ. Because the dimension of these objects grows
with K∗, it is easier to focus on the elements of θ when considering consistency and inference
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set for the full parameter space, we take the confidence set to be the set of α that lie within

this set. More formally let TN,K∗(θ) be the estimated value of the test statistic and let T c(θ)

the critical value. Assuming we reject when the test statistic is larger than the critical value,

the confidence set is defined as

ĈN,K∗ =
{
θ ∈ Θ | T̂ (θ) ≤ T c(θ)

}
,

and our estimated confidence region for α can be written as

Ĉα =
{
α ∈ R | ∃ (φ, PS, σξ) : (α, φ, PS, σξ) ∈ ĈN,K∗

}
.

There are many test statistics one could use and many ways to calculate the critical value.

We consider the following algorithm based on the bootstrap. Consider testing the null

hypothesis θ = θ0.The most natural test statistic is the normalized criteria function, so that

TN,K∗(θ0) = K
(
q∗N,K∗(θ0)− qN,K∗(θ0)

)′
Ω
(
q∗N,K∗(θ0)− qN,K∗(θ0)

)
where q∗N,K∗(θ0) represents the bootstrap distribution of qN,K∗(θ0). Such a test statistic would

be computed as follows:

1. Estimate parameters to be used in generating data for the bootstrap. This involves

using the data generation process for Xi as well. Specifically, from the empirical

distribution of (Xi,Wi),

(a) Estimate (Λ,ΛX), Σ, and the data generating processes for Fi and vij.

(b) Estimate

Γ̂(θ)√
K∗
≡
[

1

PsK
λ̂
′
λ̂+ Σ̂

]−1
1

N
W̃ ′
(
Ỹ − α0T̃

)
β̂(θ)√
K∗
≡
[

1

PsK
λ̂
′
λ̂+ Σ̂

]−1
1

N
W̃ ′Z̃

(c) For the hypothesized value of PS, estimate the distribution of (ξi, ψi, ωi).

2. Generate NB bootstrap samples as follows for each sample.

(a) Draw K observable covariates from the actual set of covariates (with replacement)

with appropriate
(

Γ̂j, β̂j, λ̂j, Σ̂jj

)
.
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(b) Draw (K∗ − K) unobservable covariates from the actual set of covariates (with

replacement) with appropriate
(

Γ̂j, β̂j, λ̂j, Σ̂jj

)
.

(c) Now for i = 1, N generate all of the (Xi,W
∗
i ) using the DGP for Fi, vij and vxi.

(d) Using the DGP for ψi and ξi generate Zi and (Yi − α0Ti) (Note that we do not

need to generate data on Yii and Ti themselves because only
(
Ỹi − α0T̃i

)
enters

the moment conditions that define the test statistic.)

(e) Given generated bootstrap data construct q∗N,K∗(θ0) and then the test statistic

QN,K∗(θ). (This involves the intermediate steps of estimating Σ, λ and Γas well.)

3. From the bootstrap sample we can estimate the distribution of the test statistic and

calculate the critical value given the size of the test.

For this critical value to be correct, we need that the bootstrap distribution of TN,K∗(θ0)

provides a consistent estimate of the actual distribution of TN,K∗(θ0).

It will prove useful to define

χj =
[

ΛjΓj Λjβj Γjσ
2
jΓj Γjσ

2
jβj Sj

Λ2
j

σ2
j

SjΓjΛj SjΓjΛjσ
2
j SjβjΛj SjβjΛjσ

2
j SjΓ

2
jσ

2
j Sj

]′
and

χ0 = E
(
χj
)
.

Our next goal to show that the limit of qN,K∗(θ0) as N gets large is a known function of only

θ and the mean of χj.

Theorem 4. Under Assumptions 8-10

qn,K∗ (θ)
p→

N→∞
f

(
θ,

1

K∗

K∗∑
j=1

χj

)

where f is a known function. As long as at our true parameter θ0,

∂L′f(θ0, E(χj))

∂E(χj)
6= 0,

the bootstrap distribution of the test statistic is consistent.

(Proof in Progress)
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The proof of this theorem is not quite done-we still need to verify that we have all the

necessary regularity conditions.

The computational burden of computing T c(θ) for the desired confidence level is likely

to be very large. However, the moments that determine the criterion function of the model

are continuous functions of θ. Consequently, T c(θ) should be a smooth function of θ. We

propose computing a modest number of draws of QN,K∗(θ) for each of the grid points of θ

chosen and then approximating T c(θ) by fitting a quantile regression model to the draws for

the various values of θ. One can increase the number of grid points, number of draws, and

the flexibility of the quantile regression model as needed to ensure that the approximation is

accurate for the confidence level chosen. The restrictions 0 < PS ≤ 1 and 0 ≤ σ2
ξ < var(Ỹi)

as well as the fact that the sign of φu is known in some applications reduces the number of

points that must be entertained.

3.4.2 A Simplified Bootstrap Procedure

Given the computational complexity of the above procedure, we also propose a less demand-

ing alternative. An additional motivation for the alternative procedure stems from the fact

that one often has a strong prior about the sign of the selection bias. We can obtain tighter

bounds by imposing this prior (formally defined as “monotone selection” in Manski and Pep-

per, 2000). While our estimation interval can potentially be much more complicated, in

simulations we consistently find a compact region with one end of the region occurring at

the instrumental variable estimate (PS = 1) and the other occurring at the “observables

like unobservables” assumption (σξ = 0). Without loss of generality we will assume positive

selection bias so that the upper bound occurs under the constraint PS = 1. We will also

assume that the minimum value occurs at σξ. We propose a parametric bootstrap procedure

to construct one-sided confidence interval estimators for the lower and upper bounds of this

set, denoted αmin and αmax, respectively. For concreteness, suppose one choose a confidence

level of (1−ϕ). We construct these intervals such that the estimator α̂ϕ,min has the nominal

probability ϕ of being below αmin. The estimator α̂ϕ,max has the nominal probability ϕ of

exceeding αmax.

3.4.3 Construction of α̂ϕ,min

The procedure for estimating α̂ϕ,min involves the following steps.
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1. Estimate the model parameters under the assumption that σξ = 0 by solving the

system of equations

0 = q1
N(α̂min, φ̂, P̂S, 0) = q2

N(α̂min, φ̂, P̂S, 0) = q3
N(α̂min, φ̂, P̂S, 0)

for α̂, φ̂, and P̂S. In doing this we also obtain estimates of Λ,ΛX ,Σ, ΣXand γ for X

and the observable Wj.

2. Next estimate some additional parameters that will be used for generating the boot-

strap sample.

(a) Obtain estimates of the distributions for Fi, vij, and vxi given the estimates of

[Σ̂, Λ̂j]. This can be done in a number of different ways. One could specify a para-

metric distribution and estimate the distribution parameters. Alternatively, one

could do this completely nonparametrically. A third possibility is to take advan-

tage of the fact that our estimator involves up to second moments of the variables,

so only up to 4th moments of the distributions of these variables matter for the

sampling distribution of α̂min. Instead of specifying parametric distributions, one

could use a method of moments procedure to estimate up to the fourth moments

from sample estimates of E(W̃ r
ijW̃

s
ij′) and σ̂v, Λ̂j, j = 1..., K for various values

of r and s. One could then pick convenient parametric distributions for Fi and

vij, j = 1, ..., K and choose parameters of the distributions to match the relevant

moments.11 Call the estimates of the additional parameters of the Fi distribution

B̂F and the additional parameters of the vij distribution B̂vj
.12 A similar proce-

dure can be used to estimate additional parameters B̂vx of the distribution of the

vector vxi

(b) Next we need to estimate the distribution of (ξi, ψi, ωi). We can use the same

three approaches as in the previous case. To use the third we need estimates of
11Sticking with the one factor case and taking Wij to be mean zero, using independence of θi and the vij ,

and using the fact that var(θi) = 1, the moments are E(W 4
ij) = Λ4

jE(θ4i ) + E(v4
ij) + 4Λ21σ2

vij and
E(W 2ijW 2

ij′) = Λ2
jΛ

2
j′E(θ6i ) + σ2

vjσ
2
vj′ for all j, j′ 6= j pairs. The idea generalizes to the multiple factor

case.
12An alternative is to use the K observed Wj , impose the estimates Λ̂j and the estimates of σ̂vj , choose

parametric distributions for θi v1i, ..., vKi, and fit the parameters of those distributions. The chosen distri-
butions should not impose constraints on the second and fourth moments. In principle, one could work with
nonparametric distributions with the variance constrained to match the σ2

vj . A nonparametric approach is
unattractive from a computational point of view, and given that our estimators only involve first and second
moments , it does offer any clear advantages.
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fourth moments. To obtain them, one can use the fourth moments of Ỹi− α̂T̃i, Z̃i
and T̃i. Consider

E(ξ4
i ) = E(Ỹi − αT̃i)4 − E(

1√
K∗

K∗∑
j=1

W̃ijΓj)
4 − E(

1√
K∗

K∗∑
j=1

W̃ijΓj)
2σ2

ξ .

We have the estimate of α̂min, so E(Ỹi − αT̃i)
4 can be replaced with the corre-

sponding sample moment. We also have estimates of E( 1√
K∗

∑K∗

j=1 W̃ijΓj)
2 and

σ2
ξ . One can use a similar procedure to estimate E(ψ4

i ). The relevant moment

condition is

E(ψ4
i ) = E(Z̃i)

4 − E(
1√
K∗

K∗∑
j=1

W̃ijβj)
4 − E(

1√
K∗

K∗∑
j=1

W̃ijβj)
2σ2

ψ .

Note that this requires an estimate of β̂ and σ2
ψ, but estimating these is analo-

gous to estimating γ̂ and σ2
ξ where the dependent variable is now Z̃i rather than

Ỹi−αT̃i. Estimation of δ, σ2
ω and E(ω4

i ) is analogous. We would then pick conve-

nient parametric distributions for this joint distribution, and estimate parameters

Bξ,ψ,ω. The joint distribution should not constrain the second and fourth moments

unless one wishes to impose additional a priori information (such as normality)

on it. We leave implicit the fact that B̂ξ,ψ,ω depends on α̂min.

3. Construct the Bootstrap sample. This involves a few different steps.

(a) Using the estimates [β̂j, Γ̂j, σ̂v, Λ̂j, B̂j], j = 1, ..., K, and the estimates P̂S, draw K̂∗

values of [β̂j, Γ̂j, σ̂vj, Λ̂j, B̂j] by sampling with replacement from the K estimated

values. Let the first K correspond to the “observed” W ′s for purposes of the

bootstrap replication.

(b) Using (σ̂vj, Λ̂j, B̂j) and B̂F , generate (Fi)
(b), (vij)

(b) and then W
(b)
ij , i = 1...N.,

j = 1, ..., K̂∗ where (b) denotes the bth bootstrap replication, (b) = 1, ..., Nboot.

(c) Using the K̂∗ values of β̂j, the associated K∗ vectors W
(b)
ij , α̂min, and the draws of

ψ
(b)
i , use B̂ξ,ψ,ω to generate N values of (Z

(b)
i , T

(b)
i , Y

(b)
i ).

4. For each bootstrap sample compute α̂(b)
min by solving

0 = q1
N(b)(α̂

(b)
min, φ̂, P̂S, 0) = q2

N(b)(α̂
(b)
min, φ̂, P̂S, 0) = q3

N(b)(α̂
(b)
min, φ̂, P̂S, 0)

on the bootstrap samples.
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5. Calculate the ϕth quantile of the bootstrap sample of α̂min and subtract the different

between that and our point estimate from our point estimate of α̂min to obtain the

lower bound of our confidence set.

3.4.4 Construction of α̂ϕ,max

To obtain α̂ϕ,max, we assume that the largest value of α̂ that satisfies the restrictions of the

model is obtained when one imposes the assumption that P̂S = 1 and ignores the possibility

that unobserved W̃ij that induce positive correlation between T̃i and Ỹi. If one sets P̂S to 1

in the matrix
[

1

P̂S ·K
λ̂
′
λ̂+ Σ̂

]
and replaces the matrix with W̃ ′W̃ in equation 3.14) for Γ(θ̂),

then the solution for α̂ is IV. Under the null, all of the Wj are observed. Thus we do not

need to impose a model of how the Wj are related to each other to account for the effects

of missing Wj. One can construct the one sided confidence interval estimate using the

appropriate robust standard error estimator given assumptions about serial correlation and

heteroskedasticity in ξi. Alternatively, one can use a conventional bootstrap procedure.

While the simplicity of the above approach is attractive, it has an important shortcoming.

We have not been able to prove that OLS is the upper bound when PS is less than 1

Cov(W, ε) 6= 0. This is because bias in Γ̂ may lead to a partially offsetting bias in α̂.

4 Monte Carlo Evidence

In this section we present Monte Carlo evidence on the performance of the lower bound

estimator α̂min for the OU − Factor and α̂max, which we estimate based on α̂OLS because

in our context α̂max turns out to be essentially the same as the OLS estimator.13 We also

present evidence on the performance of the lower bound estimator for OU , which we refer

to α̂OU in the tables.

We assume that there are not X variables in the model (ΓX = 0) so the equations of the

model of Yi, Ti, and Wij:
13The OLS estimator is essentially the same as the estimate of α based on our moment equations with

PS set to 1. The two differ because we use the moments implied by the estimated factor structure rather
than the actual variance covariance matrix of W in the moment condition for Γ̂. In the designs we consider
we found that the maximum value of α̂ consistent with σ2

ξ > 0 occurred at PS = 1, although we have not
proved that this has to be the case for any model with a factor structure.
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Yi = α0Ti +
1√
K∗

K∗∑
j=1

WijΓj + ξi

= α0Ti +
1√
K∗

K∗∑
j=1

SjWijΓj +
1√
K

K∗∑
j=1

(1− Sj)WijΓj + ξi

Wij =
1√
K∗

FiΛj + vij

Ti = Zi =
1√
K∗

K∗∑
j=1

WK
ij βj + ψi

We focus on the case in which Fi is a scalar (r = 1). We vary assumptions about PS,

the fraction of the Wij variables that are included in the model.

4.1 W parameters

The distributions of the variables that determine Wij are

Fi ∼ N(0, 1)

vij ∼ N(0, σ2
vj); σvj ∼ U(1.0, 2.0)

Λj = Λ̄ + Λ̃j

Λ̃j ∼ U(−Λ̃max, Λ̃max)

For this specification,

E[Cov(Wj,Wj′)|j 6= j′] =
1

K∗
E(ΛjΛj′) =

1

K∗
Λ̄2 and

E[V ar(Wj)] =
1

K∗
Λ̄2 +

1

3K∗
[Λ̃max]2 + E(σ2

vj),

where the expectations are defined over j and j′. We report E[Cov(Wj ,Wj′ )]

E[V ar(Wj)]
in the tables

below.

4.2 Parameters of the Yj and Tj Equations

Γj and βj have expected values µΓ and µβ, respectively, and depend on a common component

εj and the components εΓj and εβj that are specific to Γj and βj. They are determined by
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Γj = µΓ +
gε

[g2
ε + (1− gε)2].5

εj +
(1− gε)

[g2
ε + (1− gε)2].5

εΓj

βj = µβ +
bε

[b2
ε + (1− bε)2].5

εj +
(1− bε)

[b2
ε + (1− bε)2].5

εβj,

where εj, εΓj
, and εβj

are uniform random variables with mean 0 and variance 1. They are

mutually independent and independent across j.

The parameters gε and bε determine relative weights on εj and the idiosyncratic terms

εΓj
, εβj

, thereby determining the covariance between Γj and βj. The weights are normalized

so that var(Γj) = var(βj) = 1 regardless of the choice of gε and bε. g2
ε and b2

ε are the shares

of the variances accounted for by the common component εj, respectively. For the above

design,

E(Γj · βj′) = µΓµβ +
gε · bε

[g2
ε + (1− gε)2].5 · [b2

ε + (1− bε)2].5
, j = j′

= µΓµβ , j 6= j′

cov(Γj, βj′) = corr(Γj, βj′) =
gε · bε

[[g2
ε + (1− gε)2].5 · [b2

ε + (1− bε)2].5].
, j = j′

= 0, j 6= j′.

E(Γj · Γj′) = µΓµΓ + 1, j = j′

= µΓµΓ, j 6= j′

E(βj · βj′) = µβµβ + 1, j = j′

= µβµβ, j 6= j′

Below we consider the effects of varying gε and bε, and we also consider a case in which

βj = 0 for all j.

4.3 Additional Parameter Values

We also examine the sensitivity of the estimates to the importance of ψ and ξ, the idiosyn-

cractic components of T and Y , respectively. To do this, we vary σ2
ξ so as to vary the

expected fraction of the variance of the unobservable component of Y that is due to ξ. That
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is, we choose σ2
ξ to manipulate

R2
ξ ≡ E

[
σ2
ξ/(

1

K∗
V ar(

∑K∗

j=K0+1
WjΓj|Γ) + θσ2

ξ)

]
,

where the expectation is defined over the joint distribution of Γ, β, and W . Similarly, we

set σ2
ξ to control

R2
ψ ≡ E

[
σ2
ψ/(

1

K∗
V ar(

∑K∗

j=1
Wjβj|β) + σ2

ψ)

]
.

We report R2
ψ and R2

ξ in the tables below. Note that for a given value of R2
ξ , the value of

σ2
ξ will depend on the choice of PS, but φ and φu will not. We view this as an attractive

parameterization because we are primarily concerned with ensuring that φ and φu do not

depend on PS.14 The expected values of φ and φu at the true α are complicated functions of

the parameters of the data generation process, so we simply compute the average values in

each design as well as the average estimate of φ̂ at α̂min. Note that the bias in OLS declines

with PS because ψ assumes an increasing important role as the source of variance in Ti that

is orthogonal to the observed Wj. However, the variance of ψ also rises when the covariance

among the Wj is increased and when we change µβ.

For all experiments, we set N = 2000 and report results based on 1000 Monte Carlo

replications. The bootstrap estimates of the .10 one-sided confidence interval estimate is

based on 1000 bootstrap replications for each Monte Carlo replication. We set K∗ to 100

and α0 to 1.0 in all the experiments reported, and we set R2
ψ to 0.5 in all experiments except

Table 1, where it is set to 1. We vary PS, R2
ξ , Λ̄, Λ̃max, µB, µΓ, gε, and bε across experiments.

Specifically, we set PS of 0.2, 0.4, and 0.8 and we set R2
ξ to 0, 0.2, and 0.4. We vary µB, µΓ,

gε, and bε such that E(βjΓj) takes on several different values. Finally, we vary Λ̄ and Λ̃max.

In one set of case, we set Λ̄ = 0, which means that E[Corr(Wij,Wij′)] = 0 if j 6= j′. In the

other set of cases, E[Corr(Wij,Wij′)] = 0.2 if j 6= j′.

14If we fix V ar(ξi) at a nonzero value, the ratio φε/φ approaches 0 (the case in which OLS is unbiased)
as PS approaches 1. In assessing how variation in PS matters, we wish to hold constant the degree to which
selection on observables is similar to selection on unobservables. For each Monte Carlo experiment we set
σ2
ψ and σ2

ξ to the fixed values

σ2
ξ = E

[
R2
ξ

1−R2
ξ

1
K∗

V ar(
∑K∗

j=K0+1
WjΓj |Γ)

]

σ2
ψ = E

[
R2
ψ

1−R2
ψ

1
K∗

V ar(
∑K∗

j=1
Wjβj |β)

]

given the values of the other parameters of the experiment.
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4.4 Monte Carlo Results

We first consider a baseline case in which Ti is randomly assigned. Table 1 reports results

for a design in which βj = 0 for all j (µβ = 0, var(εβj) = 0, and bε = 0), which means that T

does not depend on the Wj. For these designs, α̂OLS is unbiased because E(φ) = E(φu) = 0.

We report the median as our measure of central tendency, and we also report the 10th and

90th percentile values in order to show a measure of dispersion. The median values of φ, φu,

and φ̂ across replications are shown in the top three rows of the table.

The estimates of α̂OLS are tightly distributed around 1.0 in all three cases. The dispersion

declines with PS, reflecting a smaller variance of the unobserved components of Y as PS
increases. The values of α̂OU and of α̂min are also tightly distributed around 1.0, although

they are estimated less precisely than the OLS coefficients. When PS = 0.2, the 90th-10th

differential of α̂min is roughly double that of the 90th-10th differential for α̂OLS, but when

PS = 0.8, the three estimators have similar dispersion.

We turn next to designs in which OLS estimates of α0 are biased. In Table 2a, we set

µβ = µΓ = 0.3, which leads to bias in α̂OLS in the specifications we consider. In the first

three columns we chose bε and gε so that E(Γjβj) = 0.3. The median of âOLS is 1.256 when

PS = 0.2 and 1.101 when PS = 0.8. The decline in bias as PS increases reflects the fact that

the fraction of the variance in Ti that is uncorrelated with the excluded Wj rises with PS.

α̂min is essentially unbiased in all three cases, with the dispersion declining with PS. In the

last three columns we increase bε and gε so that E(Γjβj) = 0.6 (i.e., Corr(Γj, βj) = .51).

For each value of PS, the bias in OLS increases relative to the cases in which E(Γjβj) =

0.3. Interestingly, the α̂OU and α̂min estimators are less noisy compared to the E(Γjβj) =

0.3 case. When E(Γjβj) = 0.6 and PS = 0.8, as shown in column 6, α̂OU and α̂min have no

more sampling error than the OLS estimator.

Table 2b repeats the calculations found in Table 2a but introduces a factor structure such

that E[Corr(Wij,Wij′)] = 0.2 if j 6= j′. We impose this correlation by setting Λ̄ to 3.4. In

order to keep E[V ar(Wij)] constant relative to the Λ̄ = 0 case, we reduce Λ̃max from 6.2 to

2.0. The bias in OLS tends to be lower for this design, primarily because the regressors that

are included do a better job of controlling for the omitted Wj when the correlation among

theWj is higher. Intuitively, as E[Corr(Wij,Wij′)]→ 1, it does not matter which regressors

are actually observed and which are not. The increase in the correlation across Wj is also

associated with an improvement in the performance of α̂min relative to α̂OU . In particular,
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α̂OU is downward biased in all of the designs apart from the one shown in the final column.

This is likely due to the fact that the α̂OU estimator is based on the assumption that the

restriction φ = φu based on the true Γj carries over to the coefficient vector ΓP of the

projection of Yi−αiT on the observables Wi. However, the positive correlation between the

observed and unobserved covariates results in positive omitted variables bias (on average) in

the observed Γ̂j, because the unobserved covariates are positively correlated with Y . Since

the observed covariates are also positively correlated with T in these designs, the positive

bias on the estimates of Γj leads the projection of T on WiΓ
P to overstate the amount

of selection bias, inducing a negative bias in the α̂OU estimates. This negative bias also

affects the OLS estimator, partially counteracting the positive bias caused by the positive

correlation of T with the unobserved elements of W . As a result, the positive bias in the

OLS estimates is smaller in Table 2b than in Table 2a.

As is evident from the table, α̂min performs very well in the presence of a factor structure.

It has a median value very close to 1 and a sampling error that is similar to OLS. Presumably,

the superior performance of α̂min relative to α̂OU for the parameter values in Table 2b is due

to the fact that explicitly accounting for the factor structure eliminates the positive bias

on the estimates of Γj, which in turn eliminates the negative bias in the estimate of α0.

However, the difference in performance between α̂min and α̂OU is only large in a few designs,

such as that given by the first two columns in the table.

In Table 3, we relax the assumption that the observables are a random set of all the

unobservables by setting R2
ξ = 0.2. In the left panel, Λ̄ = 0 and Λ̃max = 6.2, as in Table

2a. Not surprisingly, allowing for a positive variance of ξ has no effect on the median of

OLS. However, the lower bound estimators α̂OU and α̂min are now both biased downward

because the assumption that φ = φu no longer holds. This is easy to see in the first column,

in which the median of φu across replications is 0.353, roughly 80 percent of the median

of φ (0.438). In other words, selection on unobservables is now only 80 percent as large

as selection on observables. When E(Γjβj) = 0.3 and the factor structure is such that

E[Corr(Wij,Wij′)] = 0, the medians of α̂OU vary from 0.784 to 0.975 depending on PS, and

the corresponding medians of α̂min vary from 0.878 to 0.979. However, the sampling variance

of the α̂OU and α̂min estimators is fairly wide when PS is small. When we increase bε and gε
so that E(Γjβj) = 0.6, the positive bias in OLS increases, as was the case in Table 2a, while

there is no systematic change for the other estimators. The sampling variances of α̂OU and
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α̂min are wider in this case than in the analogous cases in Table 2a (in which the assumption

φ = φu holds). We do not fully understand this pattern, but in spite of it, the lower bound

estimators usefully complement OLS.

The right panel of Table 3 sets Λ̄ and Λ̃max so that E[Corr(Wij,Wij′)] = 0.2. The

median values of α̂min do not change very much relative to the case of independent Wj,

but the sampling distribution narrows substantially. This likely reflects the fact that when

the Wj are correlated, it is easier to “fill in” for the effects of missing covariates using the

OU-Factor moment conditions, so that it matters less which elements of W ∗ are actually

observed.

Table 4 is analogous to Table 3, except now R2
ξ = 0.4, thereby lowering φu relative to

φ. The median of OLS is essentially unchanged relative to the cases in which R2
ξ is 0 or

0.2, which is not surprising. As one would expect, the medians of α̂OU and α̂min decline in

all cases, with the largest declines occurring when PS = 0.2. The medians of α̂min range

between 0.288 to 0.890 when E[Corr(Wij,Wij′)] = 0. The sampling variability of the α̂OU
and α̂min estimators also increases relative to Table 3. As expected, the sampling variance

of α̂min modestly improves when E[Corr(Wij,Wij′)] increases from 0 to 0.2.

Table 5 summarizes an experiment in which µβ = 1, µΓ = 5 and gε = bε = 0. For

this specification E(Γjβj) = 5, and Γj and βj are uncorrelated. In the first three columns,

E[Corr(Wij,Wij′)] = 0 and R2
ξ = 0. OLS is badly upward-biased in these designs, with

the median of α̂OLS equaling 2.109 when PS = 0.2, 1.929 when PS = 0.4 and 1.419 when

PS = 0.8. The medians of α̂OU and α̂min range between 0.889 and 1.065, although they have a

substantial sampling variance. In the middle three columns, E[Corr(Wij,Wij′)] = 0.2. The

bias in OLS declines but is still substantial when PS = 0.2. Both αOU and αmin perform well

in these designs, as they are tightly distributed around the true value of α. In the last three

columns we keep E[Corr(Wij,Wij′)] = 0.2 and set R2
ξ = 0.2. The medians of α̂OU and α̂min

are roughly 0.26 when PS = 0.2 and roughly 0.95 when PS = .8, and the estimators have a

relatively tight distribution. Overall, the designs in Table 5 highlight the fact that α̂OU and

α̂min can perform very well in cases in which OLS is badly biased upward, particularly when

φ = φu holds. When |φ| > |φu|, so that selection on observables is stronger than selection

on unobservables, the lower bound estimators yield values below the true α0, as expected,

but the resulting bounds are often useful.

Finally, in Table 6 we explore the performance of the simplified bootstrap procedure for
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six designs described above. All results in the table are based on 1000 Monte Carlo repli-

cations, each of which includes 1000 bootstrap replications. The two columns in panel A

correspond to columns 2 and 4 of Table 2a, in which Λ̄ = 0, so that E[Corr(Wij,Wij′)] = 0,

and R2
ξ = 0. In the first column, in which E(Γjβj) = 0.3, the empirical size, given by

Pr(α̂0.10,min < α), is 0.087, based on a nominal size of 0.10. When E(Γjβj) = 0.6, the empir-

ical size equals 0.090, so that in both cases the confidence region given by (α̂0.10,min, α̂0.10,max)

excluded α0 in slightly less than 10 percent of cases. The table also reports the median of

the estimated standard error of α̂min across Monte Carlo replications, where the standard

error in each replication is calculated across all 1000 bootstrap replications. In both cases,

this estimated median standard error is slightly smaller than the standard deviation (across

Monte Carlo replications) of αmin. The fact that the bootstrapped distribution of α̂min is

slightly more disperse than the analogous distribution across Monte Carlo replications is

likely the cause of the underrejection described above, i.e., that the empirical sizes of the

tests are slightly smaller than the nominal size.

In panel B, E[Corr(Wij,Wij′)] = 0.2, and designs in the two columns correspond to

columns 2 and 4 of Table 2b. Again, coverage rates are close to the nominal size of 0.10,

and median standard error estimate is in the ballpark of the standard deviation across

replications of α̂min.

Finally, in panel C, R2
ξ = 0.2. In these cases, the estimated sampling variances of α̂min

are slightly lower than the standard deviations across replications. While one might expect

that this pattern would lead to over-rejection, i.e., empirical sizes greater than 0.10, the

opposite case holds: in the first column, the empirical size is 0.038, and in the second it is

only 0.001. This underrejection occurs because the φ = φu condition does not hold, so that

the α̂min estimator is a conservative one – the lower bound given by α̂min will systematically

lie below α0, which is a restatement of the fact that the estimates of α̂min in Table 3 were

biased downward. As a result, the confidence region given by (α̂0.10,min, α̂0.10,max) will include

α0 in more than 90 percent of cases.

On the whole, the Monte Carlo results may be summarized as follows. First, the medi-

ans of α̂min and α̂OU are close to 1 when the assumption of equality of selection on observed

and unobserved variables is correct (R2
ξ = 0). There are some differences in performance

depending upon the specifics of the experiment, particularly the strength of the factor struc-

ture, but overall the two perform similarly. The sampling variances are narrower when the
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stronger is the factor structure, i.e., when E[Corr(Wij,Wij′)] = 0.2. Second, both α̂min

and α̂OU typically lie below the value of α0 when φ > φu. This is to be expected, because

both estimators are based on the assumption that φ = φu and are to be interpreted as lower

bound estimators if φ > φu > 0 ( in the case φ > 0). Third, the gap between the lower

bound estimators and α0 declines with PS, which is also to be expected. Fourth, the α̂min

and α̂OU estimators are usually less precise than is αOLS. The loss of precision depends on

the design and is negligible in the case in which T is randomly assigned (as in Table 1).

For some designs, such as some of the cases with a strong factor structure in Table 2b, the

sampling variance of α̂min is actually smaller than that of α̂OLS. Overall, the distribution

of α̂min and α̂OU are sufficiently precise to provide useful information about α in all of the

cases that we consider.

5 Conclusion

In many situations, exclusion restrictions, functional form restrictions, or parameter restric-

tions are not sufficiently well grounded in theory or sufficiently powerful to provide a reliable

source of identification. What can one do?

As we noted in the introduction, it is standard procedure to look for patterns in the

relationship between an explanatory variable or an instrumental variable and the observed

variables in the model when considering exogeneity. We provide a theoretical foundation for

thinking about the degree of selection on observed variables relative to unobserved variables,

and we propose two estimators that make explicit use of the pattern of selection in the

observables to bound the treatment effect. We contrast the standard IV or OLS assumption

that the researcher has chosen the control variables so that the instrument (or the treatment

itself) are not related to the unobservables with the assumption that the control variables

are randomly chosen from the full set variables that influence the outcome, and argue that

the truth is likely to lie somewhere in between.

Our estimators build on Theorem 1, which concerns the coefficients of the projection of

an outcome on the regression indices of the observables and the unobservables. A number of

assumptions are required, but roughly speaking, the theorem says that when the number of

observed and unobserved variables that influence the outcome are large, the coefficient on the

index of unobservables will lie between 0 and the coefficient on the index of observables. Both

OU and the OU − Factor estimators identify bounds by imposing the inequality restriction
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on the econometric model for the outcome. However, in the likely case that the observed

and unobserved variables are related, the coefficients on the control variables will to suffer

from omitted variables bias, invalidating the restriction and the case for bounds. The OU

estimator combines Theorem 1 with a high level assumption about the link among the

observed and unobserved variables. The OU −Factor estimator adds the assumption that

the observed and unobserved explanatory variables have a factor structure, which provides

additional moment restrictions that permit one to account for the effects of omitted variables.

We show that the estimator identifies a set that asymptotially contains the true value of the

treatment parameter. We derive the asymptotic distribution of the OU −Factor estimator

and present a parametric bootstrap approach to statistical inference. Our Monte Carlo

simulations are generally encouraging, particularly for OU − Factor.
There is a very long research agenda. More Monte Carlo evidence is needed in the context

of real world applications and data sets. Thus far we have not applied the OU − Factor
estimator, and we have not performed Monte Carlo studies for designs with multiple factors.

The OU estimator has the advantage of simplicity and has already been used in a number

of applications. However, a way to account for randomness in which explanatory variables

are included in W when constructing confidence intervals is needed. Ultimately, we believe

that incorporating a formal model of the relationships among the observed and unobserved

variables in W c is the more promising long-run research path. The linear factor model that

we employ in developing the OU − Factor estimator is a natural way to do this, but it is

also restrictive. Other models of the joint distribution of the covariates should be explored.

We only touch upon the case of heterogeneous treatment effects and so far we have only

considered models in which the index that determines the outcome is an additively separable

function.

More generally, we think of OU and OU − Factor as a start for an investigation into a

broader class of estimators based on the idea that if one has some prior information about

how the observed variables were arrived at, then the joint distribution of the outcome, the

treatment variable, the instrument, and the observed explanatory variables are informative

about the distribution of the unobservables.

In closing, we caution against the potential for misuse of the idea of using observables

to draw inferences about selection bias, whether through an informal comparison of means

or through the estimators we propose. The conditions required for Theorem 1 imply that it
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is dangerous to infer too much about selection on the unobservables from selection on the

observables if the observables are small in number and explanatory power, or if they are

unlikely to be representative of the full range of factors that determine an outcome.
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PS=0.2 PS=0.4 PS=0.8

Median of  0.004 -0.003 -0.002

Median of  0.001 -0.001 0.001

Median of estimated  (at min) 0.002 -0.002 -0.002

OLS

  10th percentile 0.943 0.986 0.988
                         

  Median 1.005 1.002 1.000
                         

  90th percentile 1.049 1.017 1.014
                         

OU

  10th percentile 0.911 0.981 0.985
                         

  Median 1.000 1.006 1.000
                         

  90th percentile 1.092 1.021 1.013

min

  10th percentile 0.909 0.981 0.984
                         

  Median 1.001 0.994 1.000

Table 1: Monte Carlo Results Based on Designs in which Z is Randomly Assigned (all  terms=0)
Factor structure: E(Corr(Wj,Wj'))=0

  Median 1.001 0.994 1.000
                         

  90th percentile 1.117 1.010 1.014

Notes: In all specifications, 0=1, E()=0, all  terms=0, N=2000, and K*=100.



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of  0.432 0.453 0.453 0.848 0.820 0.823

Median of  0.456 0.446 0.452 0.815 0.831 0.817

Median of estimated  at min 0.415 0.465 0.451 0.786 0.816 0.815

OLS

  10th percentile 1.167 1.102 1.038 1.376 1.264 1.119
                                                

  Median 1.256 1.180 1.101 1.477 1.351 1.181
                                                

  90th percentile 1.345 1.256 1.170 1.550 1.421 1.249
                                                

OU

  10th percentile 0.307 0.749 0.920 0.621 0.797 0.947
                                                 

  Median 0.940 1.007 1.004 0.987 0.997 1.004
                                                 

  90th percentile 1.422 1.269 1.086 1.382 1.156 1.057

min

  10th percentile 0.624 0.810 0.907 0.739 0.837 0.941
                                                

  Median 0.993 0.998 1.006 1.001 1.002 1.004

Table 2a: Monte Carlo Results Based on Designs in which R2
=0

Factor structure: E(Corr(Wj,Wj'))=0

E(*)=0.3 E(*)=0.6

  Median 0.993 0.998 1.006 1.001 1.002 1.004
                                                

  90th percentile 1.371 1.202 1.096 1.195 1.107 1.061

Notes: In all specifications, 0=1, E()=E()=0.3, N=2000, K*=100, R2
=0.5, and R2

=0.



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of  0.735 0.772 0.782 0.924 0.929 0.928

Median of  0.767 0.727 0.752 0.920 0.932 0.914

Median of estimated  at min 0.750 0.785 0.803 0.923 0.943 0.941

OLS

  10th percentile 1.084 1.029 0.955 1.224 1.192 1.060
                                                   

  Median 1.137 1.116 1.042 1.294 1.293 1.137
                                                   

  90th percentile 1.228 1.202 1.158 1.448 1.425 1.262
                                                   

OU

  10th percentile 0.639 0.616 0.777 0.864 0.872 0.880
                                                   

  Median 0.795 0.866 0.938 0.966 0.979 0.991
                                                   

  90th percentile 0.914 1.057 1.121 1.067 1.066 1.078

min

  10th percentile 0.864 0.889 0.933 0.911 0.923 0.959
                                                

  Median 0.989 0.993 1.002 0.983 0.999 1.005

Table 2b: Monte Carlo Results Based on Designs in which R2
=0

Factor structure: E(Corr(Wj,Wj'))=0.2

E(*)=0.3 E(*)=0.6

  Median 0.989 0.993 1.002 0.983 0.999 1.005
                                                

  90th percentile 1.105 1.088 1.049 1.068 1.058 1.041

Notes: In all specifications, 0=1, E()=E()=0.3, N=2000, K*=100, R2
=0.5, and R2

=0.



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of  0.438 0.444 0.454 0.850 0.816 0.832 0.909 0.899 0.806 1.097 1.077 0.956

Median of  0.353 0.347 0.337 0.632 0.640 0.631 0.564 0.533 0.580 0.689 0.670 0.697

Median of estimated  at min 0.412 0.495 0.474 0.670 0.718 0.791 0.678 0.712 0.802 0.755 0.823 0.915

OLS

  10th percentile 1.165 1.138 1.039 1.378 1.334 1.120 1.112 1.091 1.026 1.208 1.202 1.087
                                                                                                 

  Median 1.257 1.224 1.101 1.476 1.407 1.181 1.188 1.157 1.068 1.300 1.284 1.130
                                                                                                 

  90th percentile 1.345 1.314 1.171 1.551 1.479 1.248 1.280 1.231 1.134 1.397 1.379 1.217
                                                                                                        

OU

  10th percentile 0.213 0.258 0.884 0.033 0.439 0.889 0.333 0.505 0.725 0.379 0.556 0.852
                                                                                                

  Median 0.868 0.784 0.975 0.783 0.806 0.953 0.649 0.752 0.922 0.713 0.812 0.948
                                                                                                

  90th percentile 1.388 1.276 1.067 1.346 1.121 1.013 0.834 0.877 0.970 0.863 0.901 0.982

min

  10th percentile 0.227 0.576 0.865 0.275 0.493 0.882 0.447 0.690 0.904 0.380 0.641 0.907
                                                                                                 

  Median 0.879 0.878 0.979 0.738 0.812 0.952 0.788 0.871 0.969 0.732 0.840 0.963
                                                                                                 

  90th percentile 1.516 1.215 1.077 1.063 0.950 1.017 1.026 1.202 1.014 0.903 0.922 0.994

Table 3: Monte Carlo Results Based on Designs in which R2
=0.2

Notes: In all specifications, 0=1, E()=E()=0.3, N=2000, K*=100, R2
=0.5, and R2

=0.2.

E(*)=0.3 E(*)=0.3 E(*)=0.6

Factor structure: E(Corr(Wj,Wj'))=0.2

E(*)=0.6

Factor structure: E(Corr(Wj,Wj'))=0



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of  0.440 0.442 0.455 0.841 0.812 0.827 1.076 0.988 0.831 1.311 1.204 0.993

Median of  0.259 0.252 0.249 0.461 0.465 0.467 0.385 0.395 0.412 0.489 0.466 0.493

Median of estimated  at min 0.402 0.487 0.504 0.512 0.585 0.744 0.537 0.622 0.785 0.565 0.673 0.865

OLS

  10th percentile 1.188 1.149 1.028 1.364 1.313 1.125 1.130 1.117 1.023 1.219 1.204 1.084
                                                                                                   

  Median 1.270 1.228 1.093 1.466 1.392 1.165 1.198 1.164 1.084 1.284 1.281 1.140
                                                                                                   

  90th percentile 1.355 1.328 1.166 1.565 1.507 1.250 1.270 1.243 1.134 1.390 1.372 1.186
                                                                                                  

OU

  10th percentile -0.449 -0.280 0.750 -0.656 -0.185 0.712 -0.317 0.016 0.789 -0.353 0.034 0.786
                                                                                                  

  Median 0.705 0.551 0.887 0.446 0.437 0.825 0.294 0.513 0.876 0.267 0.537 0.891
                                                                                                  

  90th percentile 1.418 1.232 1.028 1.486 0.977 0.911 0.595 0.720 0.927 0.610 0.736 0.943

min

  10th percentile -0.505 -0.010 0.762 -0.628 -0.225 0.703 -0.299 0.175 0.817 -0.555 0.041 0.796
                                                                                                 

  Median 0.657 0.655 0.890 0.288 0.418 0.832 0.377 0.590 0.914 0.297 0.553 0.901
                                                                                                 

  90th percentile 1.702 1.582 1.021 1.080 0.699 0.920 0.932 0.789 0.966 0.662 0.739 0.954

Factor structure: E(Corr(Wj,Wj'))=0 Factor structure: E(Corr(Wj,Wj'))=0.2

E(*)=0.3 E(*)=0.6E(*)=0.6

Notes: In all specifications, 0=1, E()=E()=0.3, N=2000, K*=100, R2
=0.5, and R2

=0.4.

E(*)=0.3

Table 4: Monte Carlo Results Based on Designs in which R2
=0.4



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of  0.197 0.192 0.191 0.201 0.202 0.196 0.548 0.365 0.216

Median of  0.190 0.192 0.202 0.200 0.191 0.199 0.097 0.079 0.105

Median of estimated  at min 0.198 0.190 0.192 0.201 0.197 0.197 0.175 0.185 0.193

OLS

  10th percentile 2.009 1.823 1.266 1.402 1.164 1.027 1.350 1.151 1.024
                                                                            

  Median 2.109 1.929 1.419 1.480 1.223 1.047 1.479 1.212 1.054
                                                                            

  90th percentile 2.221 2.025 1.541 1.593 1.290 1.073 1.575 1.300 1.076
                                                                            

OU

  10th percentile -0.027 0.502 0.826 0.915 0.944 0.980 0.060 0.469 0.923
                                                                            

  Median 0.924 1.062 1.019 0.990 0.984 1.000 0.267 0.568 0.951
                                                                            

  90th percentile 1.613 1.428 1.200 1.057 1.043 1.018 0.424 0.655 0.974

min

  10th percentile 0.014 0.476 0.764 0.854 0.919 0.945 0.007 0.437 0.885
                                                                          

  Median 0.889 1.065 1.038 0.990 1.003 1.001 0.255 0.544 0.947
                                                                          

  90th percentile 1.597 1.469 1.199 1.106 1.062 1.050 0.431 0.665 0.993

Factor structure: 
E(Corr(Wj,Wj'))=0.2

Notes: In all specifications, 0=1, E()=1, E()=5, N=2000, K*=100, and R2
=0.5.

Table 5: Monte Carlo Results Based on Designs in which E()=1 and E()=5

R2
=0.0 R2

=0.0 R2
=0.2

Factor structure: 
E(Corr(Wj,Wj'))=0

Factor structure: 
E(Corr(Wj,Wj'))=0.2



E(*)=0.3 E(*)=0.6

Pr(min,0.10<) (Empirical Coverage Rate) 0.087 0.090

Median(Standard error( )) 0.378 0.169

 Panel A: E(Corr(W j ,W j' ))=0.0 and R 2
 =0.0

Table 6: Monte Carlo Evidence on the Performance of the Simplified Bootstrap Procedure

Median(Standard error(min)) 0.378 0.169

Standard deviation(min) 0.224 0.134

Median(min,0.10) 0.750 0.803

10th percentile(min) 0.810 0.837

Panel B: E(Corr(W j ,W j' ))=0.2 and R 2
 =0.0

E(*)=0.3 E(*)=0.6

Pr(min,0.10<) (Empirical Coverage Rate) 0.103 0.083

Median(Standard error(min)) 0.178 0.068

Standard deviation(min) 0.220 0.059

Median(min,0.10) 0.875 0.907

10th percentile(min) 0.889 0.923

Panel B: E(Corr(W j ,W j' ))=0.2 and R  =0.0

10th percentile(min) 0.889 0.923

E(*)=0.3 E(*)=0.6

Pr(min,0.10<) (Empirical Coverage Rate) 0.038 0.001

Median(Standard error(min)) 0.267 0.077

Panel C: E(Corr(W j ,W j' ))=0.2 and R 2
 =0.2

Median(Standard error(min)) 0.267 0.077

Standard deviation(min) 0.338 0.111

Median(min,0.10) 0.724 0.725

10th percentile(min) 0.690 0.641

Notes:

2) Estimates in the rows labeled Pr(min,0.10<) are the empirical sizes of the rejection regions described 

in the text, based on a nominal size of 0.10.  These quantities (and all others in the table) are based on 
1000 Monte Carlo replications, each of which includes 1000 bootstrap replications. 

1) In all designs, 0=1, E()=E()=0.3, N=2000, K*=100, R2
=0.5, and PS=0.4.

1000 Monte Carlo replications, each of which includes 1000 bootstrap replications. 


	ou52511
	MC10-30-10

