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1 Introduction

In many economic evaluation problems causal inference is complicated by endogeneity, implying that the

explanatory or treatment variable of interest is correlated with unobserved factors that also affect the

outcome. E.g., when estimating the returns to education, the schooling choice is plausibly influenced by

unobserved ability (see for instance Card, 1999) which itself most likely has an impact on the earnings

outcome. Due to the endogenous treatment selection (also known as selection on unobservables) the

earnings effect of education is confounded with the unobserved terms. In the presence of endogeneity,

identification relies on the availability of an instrumental variable (IV) that generates exogenous variation

in the treatment. In heterogenous treatment effect models with a binary treatment (which allow for effect

heterogeneity across different subpopulations), an instrument is valid if (i) the potential outcomes are

mean independent of the instrument, (ii) the potential treatment states are not confounded by instrument

assignment, and (iii) the treatment is weakly monotonic in the instrument. In this case, the local average

treatment effect (LATE) on those who switch their treatment state as a reaction to a change in the

instrument (the so called compliers) is identified,1 see Imbens and Angrist (1994) and Angrist, Imbens,

and Rubin (1996).2

As endogenous treatment selection is an ubiquitous problem in economics, it is no surprise that IV

estimation is a corner stone of empirical research. Taking the estimation of the returns to education as

an example, a range of instruments have been suggested to control for the endogenous choice of schooling.

Angrist and Krueger (1991) use quarter of birth which is related to years of education through regulations

concerning the school starting age but arguably does not have a direct effect on income. Card (1995)

exploits geographical proximity to college (which should affect the cost of college education) as instrument

for going to college. Further influential studies in labor economics include Angrist (1990), who uses the US

draft lottery as instrument for Vietnam veteran status in order to estimate its income effect, and Angrist

1For the identification of (local) quantile treatment effects the mean independence assumptions have to be
strengthened to full independence of the instrument and the joint distribution of potential treatments and potential
outcomes, see Frölich and Melly (2008).

2Note that under the strong restrictions of effect homogeneity and linearity of the outcome equation, an instru-
ment is valid if it is correlated with the treatment and uncorrelated with the error term (monotonicity is imposed
by construction in this kind of models), see for instance the text book discussions in Peracchi (2001), Wooldridge
(2002), Cameron and Trivedi (2005), and Greene (2008). In this case, the IV estimand can be interpreted as the
average treatment effect (ATE), given that the model is correctly specified. Clearly, the weaker IV restrictions
(uncorrelation instead of the mean independence restrictions and no assumptions on the first stage) are bought
by stronger structural assumptions. Then, IV validity cannot be tested in just identified models. In the subse-
quent discussion we will focus on heterogenous treatment effect models and show that the LATE assumptions have
testable implications for IV validity.
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and Evans (1998), who investigate the impact of fertility on female labor supply. They use the sex ratio

of the first two children as an instrument. Having two children with the same sex should increase the

likelihood of a third birth, given that some parents have a preference for a mixed sibling-sex composition.

Many, if not most instruments are far from being undisputed. E.g., the validity of quarter of birth

instruments is contested in Bound, Jaeger, and Baker (1995). Based on their estimations and other

studies, the authors present evidence on seasonal patterns of births that are related to family income,

physical and mental health, and school attendance rates, factors which may be correlated with potential

wages. As a further example, Rosenzweig and Wolpin (2000) criticize the sex ratio-instrument of Angrist

and Evans (1998) by arguing that having a third birth may directly affect both the marginal utility of

leisure and child costs and, thus, labor supply. Up to date, arguments in favor or against IV validity

are predominantly discussed on theoretical and behavioral bases, which are frequently not unanimously

accepted among researchers. In contrast, hypothesis tests have not played any role in applications with

just identified models.3

Kitagawa (2008), henceforth K08, provides the first formal test for just identified heterogenous treat-

ment effect models with a binary instrument based on somewhat more restrictive assumptions than the

ones outlined above, i.e., full independence of the potential outcomes/treatment states and the instrument

instead of mean independence. His method is based on the fact that the potential outcome distribution

under treatment of the always takers (those treated irrespective of the instrument) as well as the joint

distribution of the always takers and compliers are point identified if the instrument is valid. As shown

in Imbens and Rubin (1997), the difference of both yields to the distribution under treatment of the com-

pliers. An equivalent result holds for the identification of the compliers outcome distribution under non-

treatment. Naturally, the density of the complier outcomes under treatment and non-treatment must not

be negative, which is a testable implication. Therefore, K08 tests whether negative densities occur in sub-

sets of the outcome distribution and uses a bootstrap method for inference.

The first contribution of this paper is the proposition of alternative tests that are based on mean

potential outcomes instead of densities. In the case of a binary instrument, the underlying intuition is

as follows: Under IV validity, the mean potential outcome of the always takers under treatment is point

identified. It simply corresponds to the observed mean outcome in the treated subpopulation that does

3In contrast, tests for IV validity are available for overidentified models where the number of instruments exceeds
the number of endogenous regressors. Sargan (1958) was the first to propose such a test for the linear IV model
with homogenous effects.
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not receive the instrument. For the same potential outcome, one can derive upper and lower bounds in

the treated subpopulation receiving the instrument, where the width of the bounds depends of the relative

shares of compliers and always takers. Clearly, the point identified mean outcome in the absence of the

instrument must lie within the parameter bounds in the presence of the instrument.

If this condition is violated, the instrument either has a direct effect on the mean potential outcome of

the always takers, or the treatment is not monotonic in the instrument, or both. An equivalent result holds

for the never takers (those never treated irrespective of the instrument) by considering the outcomes of

the non-treated receiving the instrument and the non-treated not receiving the instrument. Therefore, the

LATE framework provides us with four testable inequality moment constraints based on point identifying

and bounding the mean potential outcomes of the always takers under treatment and the never takers

under non-treatment. For the practical implementation we consider three different bootstrap methods

of which the minimum p-value-based test with partial recentering proposed by Bennett (2009) appears

to have the best finite sample properties. As the K08 test, our approach tests for necessary, albeit not

sufficient conditions for IV validity. The latter requires the mean potential outcomes of the always/never

takers to be equal across different instrument states. However, only the inequality moment constraints are

testable, rather than equality of means. For this reason, our test becomes more powerful as the bounds

shrink or, put differently, as the compliers’ share becomes relatively smaller to the fractions of always

takers and never takers, respectively.

As a second contribution, we therefore show how the width of the bounds can be tightened to increase

testing power by imposing dominance of the mean potential outcome of one population over another (see

also Huber and Mellace, 2010b, and Zhang and Rubin, 2003). Testing power is maximized if equality in

mean potential outcomes is assumed. Then, the bounds collapse to a point and the inequality constraints

turn into equality constraints. E.g., given that the mean potential outcomes of the the always takers and

compliers are equal, IV validity implies that the mean outcome of the treated receiving the instrument is

equal to that of the treated not receiving the instrument. This can be easily tested by difference of means

tests. An equivalent result holds for the never takers and the compliers under non-treatment.

Our third contribution is the extension of our testing approach to potential outcome distributions

rather than potential means, which requires joint independence of the instrument and the potential

treatments/outcomes. Starting with the upper bounds on the potential outcome distributions of the

always takers under treatment and the never takers under non-treatment, we derive the same constrains
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as K08, namely that complier densities must not be negative in the mixed populations (where both

compliers and always or never takers occur). However, we add to the results of K08 by showing that also

the lower bounds provide two testable implications which have not been considered yet. The latter reflect

the intuitive fact that under the null, the joint probability of being a complier and having an outcome

that lies within a subinterval of the support must never be larger than the (unconditional) complier

share in the population. Clearly, exploiting all four constraints implied by IV validity increases the

asymptotic testing power. As for the tests based on mean independence, we also show how power can be

further increased by imposing stochastic dominance or equality assumptions on the potential outcome

distributions of different subpopulations.

The remainder of the paper is organized as follows. Section 2 discusses the IV assumptions in the

LATE framework and the testable implications. Section 3 proposes bootstrap tests based on moment

inequality constraints. Section 4 shows how mean dominance and equality restrictions can be used (on

top of the standard assumptions) to increase testing power. A generalization to non-binary instruments is

provided in Section 5. Testing under the stronger joint independence assumption is discussed in Section 6.

Simulation results are presented in Section 7. In Section 8, we apply our methods to the data of Acemoglu,

Johnson, and Robinson (2001), Angrist and Evans (1998), and Card (1995). The results suggest that in

particular unconditional IV validity (i.e., satisfaction of the IV assumptions without conditioning on further

variables) is likely to be violated in many empirical studies relying on instruments. Section 8 concludes.

2 IV assumptions and testable implications

Suppose that we are interested in the average effect of a binary and endogenous treatment D ∈ {1, 0}

(e.g., a training activity) on an outcome Y (e.g., labor market success such as employment or earnings)

evaluated at some point in time after the treatment. Under endogeneity, the effect of D is confounded

with some unobserved term U that is correlated with both the treatment and the outcome. Therefore,

identification of treatment effects requires an instrument (Z) that shifts the treatment but does not have

a direct effect on the mean outcome (i.e., any mean impact other than through the treatment). Denote

by D(z) the potential treatment state for Z = z, and by Y (d, z) the potential outcome for treatment

D = d and Z = z (see for instance Rubin, 1974, for a discussion of the potential outcome notation).

In heterogenous treatment effect models, the observed outcome of some individual i can be written as

Yi = ϕ(Di, Zi, Ui), where ϕ denotes a general function that might be unknown to the researcher. Likewise,
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the potential outcome is the value individual i would receive if the treatment and the instrument were set

to particular states, Yi(d, z) = ϕ(d, z, Ui).

As we observe only one potential outcome for each individual, any identification strategy relies

on identifying assumptions some of which may or may not be testable. Here, we will focus on those

assumptions required for LATE identification. The first restriction maintained throughout the discussion

is the so-called Stable Unit Treatment Value Assumption (SUTVA, e.g., Rubin, 1990), which rules out

interference between units and general equilibrium effects of the treatment. The SUTVA is formalized

in Assumption 1 (see also Angrist, Imbens, and Rubin, 1996) and states that the potential treatments

and outcomes of any subject i are unrelated to the actual treatment and instrument states of any other

individual:

Assumption 1:

Yi(d, z)⊥(Dj , Zj) and Di(z)⊥Zj , ∀j 6= i, d ∈ {0, 1}, and z in the support of Z (SUTVA).

For the sake of expositional ease, we will henceforth assume the instrument to be binary (Z ∈ {0, 1}),

while Section 5 will generalize the results to bounded non-binary instruments. As discussed in Angrist,

Imbens, and Rubin (1996), the population can then be categorized into four types (denoted by T ), according

to the treatment behavior as a function of the binary instrument. The compliers react on the instrument

in the intended way by taking the treatment when Z = 1 and abstaining from it when Z = 0. For the

remaining three types D(z) 6= z for either Z = 1, or Z = 0, or both: The always takers are always

treated irrespective of the instrument state, the never takers are never treated, and the defiers only take

the treatment when Z = 0, see Table 1.

Table 1: Types

Type T D(1) D(0) Notion

at 1 1 Always takers
c 1 0 Compliers
d 0 1 Defiers
nt 0 0 Never takers

We cannot directly infer on the type of any individual as either D(1) or D(0) is observed, but never

both. Without further assumptions, neither the share of the different types nor their mean potential

outcomes are identified. To see this, let πt ≡ Pr(T = t), t ∈ {at, c, nt}, represent the (unobserved)
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probability to belong to type T in the population and denote by Pd|z ≡ Pr(D = d|Z = z) the (observed)

conditional treatment probability given the instrument. We therefore impose the following unconfounded

type assumption, which implies that the instrument is assigned independently of the potential treatment

states:

Assumption 2:

Pr(T = t|Z = 1) = Pr(T = t|Z = 0) for t ∈ {at, c, d, nt} (unconfounded type).

Under Assumption 2, the share of any type conditional on the instrument is equal to its unconditional

proportion in the entire population. It follows that any of the four conditional treatment probabilities

is a combination of two unobserved type proportions, see Table 2. Similarly, each of the four observed

Table 2: Observed probabilities and type proportions

Cond. treatment prob. type proportions

P1|1 ≡ Pr(D = 1|Z = 1) πat + πc
P0|1 ≡ Pr(D = 0|Z = 1) πd + πnt
P1|0 ≡ Pr(D = 1|Z = 0) πat + πd
P0|0 ≡ Pr(D = 0|Z = 0) πc + πnt

conditional means E(Y |Z = z,D = d) is a mixture or weighted average of the mean conditional outcomes

of two types (denoted by E(Y |Z = z,D = d, T = t)), where the weights depend on the relative proportions:

E(Y |Z = 1, D = 1) =
πat

πat + πc
· E(Y |Z = 1, D = 1, T = at) (1)

+
πc

πat + πc
· E(Y |Z = 1, D = 1, T = c),

E(Y |Z = 0, D = 1) =
πat

πat + πd
· E(Y |Z = 0, D = 1, T = at) (2)

+
πd

πat + πd
· E(Y |Z = 0, D = 1, T = d),

E(Y |Z = 0, D = 0) =
πc

πnt + πc
· E(Y |Z = 0, D = 0, T = c) (3)

+
πnt

πnt + πc
· E(Y |Z = 0, D = 0, T = nt),

6



and

E(Y |Z = 1, D = 0) =
πd

πnt + πd
· E(Y |Z = 1, D = 0, T = d) (4)

+
πnt

πnt + πd
· E(Y |Z = 1, D = 0, T = nt).

From Table 2 and expressions (1) to (4) it becomes obvious that further assumptions are necessary

to identify the LATE, namely a mean exclusion restriction, monotonicity of the treatment in the

instrument, and the existence of compliers. Starting with the mean exclusion restriction, it is required

that the instrument does not exhibit an effect on the mean potential outcomes within any subpopulation

(however, it may affect higher moments):

Assumption 3:

E(Y (d, z = 1)|T = t) = E(Y (d, z = 0)|T = t) = E(Y (d)|T = t) for d ∈ {0, 1} and t ∈ {at, c, d, nt}

(mean exclusion restriction),

where the last equality makes explicit that the mean potential outcomes are not a function of the

instrument. Notice that the mean exclusion restriction is a stronger assumption than uncorrelation of

the instrument and the unobserved term, which is invoked in standard IV models with a linear outcome

equation and homogeneous treatment effects. This is the price to pay for considering more flexible models

(in terms of effect heterogeneity), which also gives rise to our testable implications.

By the mean exclusion restriction,

E(Y |Z = 1, D = 1, T = at) = E(Y |Z = 0, D = 1, T = at) = E(Y |D = 1, T = at) = E(Y (1)|T = at)

and

E(Y |Z = 1, D = 0, T = nt) = E(Y |Z = 0, D = 0, T = nt) = E(Y |D = 0, T = nt) = E(Y (0)|T = nt),

which provides the base for the testable implications outlined further below. Alternatively to Assumptions

2 and 3, one may assume that they only hold conditional on a vector of observed variables X as considered

in Frölich (2007), who shows nonparametric identification of the LATE in the presence of a conditionally

valid instrument (given X). In the subsequent discussion, conditioning on X will be kept implicit, such

that all results either refer to an supposedly unconditionally valid instrument or to an analysis within cells

of X.
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The final two assumptions required for LATE identification put restrictions on the (non-)existence of

particular types.

Assumption 4:

Pr(D(1) ≥ D(0)) = 1 (monotonicity).

Assumption 4 states that the potential treatment state never decreases in the instrument. This rules out

the existence of defiers (type d). Note that monotonicity is also implicitly assumed in the linear IV model,

where the effect of the instrument on the treatment is represented by a homogenous first stage coefficient.

Assumption 5:

Pr(D(1) > D(0)) > 0 (existence of compliers).

By Assumption 5, a subpopulation of individuals reacts on the instrument such that compliers do exist.

Assumptions 4 and 5 together state that E(D|Z = 1) − E(D|Z = 0) > 0, i.e., that the instrument has

an effect on the treatment. In the IV linear model this implies that the first stage coefficient must not be

zero, which is also referred to as IV relevance.

As defiers do not exist, the proportions of the remaining types are identified by P0|1 = πnt, P1|0 = πat,

P1|1 − P1|0 = P0|0 − P0|1 = πc. Furthermore, the mean potential outcomes of the always takers under

treatment and the never takers under non-treatment are point identified. Expression (2) simplifies to

E(Y |Z = 0, D = 1) = E(Y |Z = 0, D = 1, T = at), which is E(Y (1)|T = at) under Assumptions 1 to

4, and (4) becomes E(Y |Z = 1, D = 0) = E(Y |Z = 1, D = 0, T = nt) = E(Y (0)|T = nt). This allows

identifying the mean potential outcomes of the compliers under treatment and non-treatment by

E(Y |D = 1, Z = 1, T = c)

=
Pr(D = 1|Z = 1) · E(Y |Z = 1, D = 1)− Pr(D = 1|Z = 0) · E(Y |Z = 0, D = 1)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

= E(Y (1)|T = c)

and

E(Y |D = 0, Z = 0, T = c)

=
Pr(D = 0|Z = 0) · E(Y |Z = 0, D = 0)− Pr(D = 0|Z = 1) · E(Y |Z = 1, D = 0)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

= E(Y (0)|T = c).
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Therefore, the LATE on the compliers is

E(Y (0)|T = c)− E(Y (1)|T = c)

=
Pr(D = 1|Z = 1) · E(Y |Z = 1, D = 1)− Pr(D = 1|Z = 0) · E(Y |Z = 0, D = 1)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

− Pr(D = 0|Z = 0) · E(Y |Z = 0, D = 0)− Pr(D = 0|Z = 1) · E(Y |Z = 1, D = 0)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

=
Pr(D = 1|Z = 1) · E(Y |Z = 1, D = 1) + Pr(D = 0|Z = 1) · E(Y |Z = 1, D = 0)

E(D|Z = 1)− E(D|Z = 0)

− Pr(D = 1|Z = 0) · E(Y |Z = 0, D = 1) + Pr(D = 0|Z = 0) · E(Y |Z = 0, D = 0)

E(D|Z = 1)− E(D|Z = 0)

=
E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
. (5)

The last line gives the well known result that the LATE is identified by the ratio of two differences

of conditional expectations, namely the intention to treat effect divided by the share of compliers (see

Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996)).

Our discussion has demonstrated that Assumptions 1-4 allow pinning down the type proportions as well

as the mean potential outcomes of the always takers and never takers under treatment and non-treatment.

Together with Assumption 5, this identifies the LATE and the mean potential outcomes of the compliers.4

However, this framework also provides testable implications for IV validity based on deriving bounds on

the mean potential outcomes of the always takers and never takers in equations (1) and (3), respectively.

In fact, the mean potential outcome of the always takers in equation (1) is bounded by the mean over

the upper and lower proportion of outcomes that corresponds to the share of the always takers in this

mixed population. It is obvious that E(Y |Z = 0, D = 1) = E(Y (1)|T = at) must lie within these bounds,

otherwise either Z has a direct effect on the mean of Y , or the potential treatment state is confounded

with the instrument, or defiers exist in (2), or any combination of these violations occurs. An equivalent

result applies to the never takers under non-treatment.

To formalize the discussion, we introduce some further notation. Define the qth conditional quantile

of the outcome yq ≡ G−1(q), with G being the cdf of Y given Z = 1 and D = 1. Furthermore, let q

correspond to the proportion of always takers in (1): q = πat

πat+πc
= P1|0/P1|1. By the results of Horowitz

and Manski (1995) (see also the discussion in Huber and Mellace, 2010b), E(Y |Z = 1, D = 1, Y ≤ yq) is

the sharp lower bound of the mean potential outcome of the always takers, implying that all the always

4An equivalent result for the potential outcome distributions of the compliers under slightly stronger assumptions
has been derived by Imbens and Rubin (1997).
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takers are concentrated in the lower tail of the distribution that corresponds to their proportion. Similarly,

E(Y |Z = 1, D = 1, Y ≥ y1−q) is the upper bound by assuming that any always taker occupies a higher

rank in the outcome distribution than any complier. Therefore, the IV assumptions imply that

E(Y |Z = 1, D = 1, Y ≤ yq) ≤ E(Y |Z = 0, D = 1) ≤ E(Y |Z = 1, D = 1, Y ≥ y1−q). (6)

Equivalent arguments hold for the mixed outcome equation of never takers and compliers. Let yr ≡

F−1(r), with F being the cdf of Y given Z = 0, D = 0 and r = πnt

πnt+πc
= P0|1/P0|0, i.e., the proportion of

never takers in equation (3). Taking the mean over the lower and upper share of the outcome distribution

corresponding to r we obtain the lower and upper bounds E(Y |Z = 0, D = 0, Y ≤ yr), E(Y |Z = 0, D =

0, Y ≥ y1−r) on the mean potential outcome of the never takers. The latter is also point identified by

E(Y |Z = 1, D = 0) = E(Y (0)|T = nt), such that the IV assumptions require that

E(Y |Z = 0, D = 0, Y ≤ yr) ≤ E(Y |Z = 1, D = 0) ≤ E(Y |Z = 0, D = 0, Y ≥ y1−r). (7)

3 Testing

Expressions (6) and (7) provide us with four testable inequality moment constraints.5 Under the null

hypothesis that the instrument is valid it must hold that

H0 :



E(Y |Z = 1, D = 1, Y ≤ yq)− E(Y |Z = 0, D = 1)

E(Y |Z = 0, D = 1)− E(Y |Z = 1, D = 1, Y ≥ y1−q)

E(Y |Z = 0, D = 0, Y ≤ yr)− E(Y |Z = 1, D = 0)

E(Y |Z = 1, D = 0)− E(Y |Z = 0, D = 0, Y ≥ y1−r)


≡



θ1

θ2

θ3

θ4


≤



0

0

0

0


. (8)

Under the alternative hypothesis that IV validity does not hold at least one and at most two constraints

might be binding. This is the case because violations of the first and second as well as of the third

and fourth constraints are mutually exclusive, respectively. Furthermore, note that even if no inequality

constraint is violated, IV validity may not be satisfied. I.e., we detect violations only if they are large

enough such that the point identified mean outcomes of the always takers and/or never takers lie outside

5Note that expressions (6) and (7) hold under Assumptions 1-4 alone, i.e., the existence of compliers (Assumption
5) is not required. In principle, one could therefore test for IV validity even if the LATE is not identified, which
might, however, not be an interesting exercise in applied work.
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their respective bounds in the mixed populations. Ideally, we would like to test for the equality of the

mean outcomes of the respective population across instrument states. However, this is not feasible as it

remains unknown which individuals in the mixed populations belong to the group of always/never takers

or compliers. Therefore, without further assumptions, testing based on inequality moment constraints is

the best one can get. It is obvious that such tests gain power as the proportion of compliers decreases,

implying that the bounds on the mean outcomes of the always and never takers become tighter.

Several methods have been proposed for testing inequality constraints. The first approach generalizes

the standard Wald, LM, and LR statistics to test for inequality constraints and goes back to Wolak (1987,

1989b), who considers a linear regression framework, as well as Kodde and Palm (1986) and Wolak (1989a,

1991), who propose tests for nonlinear models. The idea is to compare the parameter estimates of the

constrained model with those of the unconstrained model under the least favorable configuration (LFC,

i.e., the parameter configuration for which the null is rejected with the lowest probability) to obtain a

test with asymptotically exact size. The limitation of this approach is that when the covariance matrix

of the parameters depends on unknown parameters, finding the LFC might become complicated. Indeed,

the limiting distribution of the test statistic is a non-trivial mixture of χ2 distributions (see Perlman,

1969 and Kudo, 1963) with weights that depend on the covariance matrix of the parameters which in

turn depends on the unknown parameters. The appendix outlines the estimation of the parameter vector

θ = (θ1, θ2, θ3, θ4)T in a GMM framework and the construction of the test proposed by Wolak (1991).

An alternative is to use tests that are based on the bootstrap (see Efron, 1979). As shown in Appendix

A.1, we can easily obtain asymptotically normally distributed estimators of all components of θ such that

θ itself has a continuous asymptotic distribution, which justifies the use of the bootstrap as valid inference

method. Apart from circumventing the problem of deriving the non-trivial limiting distribution of the test

statistic, bootstrap procedures are often more accurate in finite samples than methods relying asymptotic

theory (which may be a poor approximation for the sample at hand). Therefore, we consider three different

bootstrap tests and evaluate their finite sample performance in Section 7.

Let θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4)T denote the vector of estimates of the respective population parameters θ based

on an i.i.d. sample containing n observations. Furthermore, denote by θ̂b = (θ̂1,bθ̂2,b, θ̂3,b, θ̂4,b)
T (b ∈

{1, 2, ..., B}, where B is the number of bootstrap replications) the estimates in a particular bootstrap

sample b containing n observations that are randomly drawn from the original data with replacement.

The first method is based on the classical nonparametric bootstrap, with the exception that it includes a
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Bonferroni adjustment to account for the fact that we test four hypotheses jointly.

The basic steps are the following. In each bootstrap sample, we compute the recentered parameter

vector θ̃b = θ̂b − θ̂. Then, the vector of p-values Pθ̂ is estimated by the share of bootstrap replications in

which the recentered parameters are larger than the estimates in the original sample:

Pθ̂ = B−1
B∑
b=1

I{θ̃b > θ̂}, (9)

where I{·} denotes the indicator function.

Even though the p-values are consistent for assessing each constraint separately, they are not appro-

priate for making judgements about the joint satisfaction of the constraints. To the latter end, we use a

simple Bonferroni adjustment. As for instance discussed in MacKinnon (2007), the Bonferroni inequality

implies that the p-value for joint hypotheses can be computed by multiplying the minimum p-value by the

number of constraints, in our case four. Therefore, the p-value of the bootstrap test, denoted by p̂bs, is

p̂bs = 4 ·min(Pθ̂). (10)

While this procedure is easy to implement, the Bonferroni adjustment has the disadvantage that it

yields too conservative p-values when the test statistics are positively correlated, see for example the

discussion in Romano, Shaikh, and Wolf (2008). A further and probably more important limitation is that

the power of the test decreases as the number of non-binding constraints increases, which is particularly

relevant for the non-binary instrument framework of Section 5. Indeed, min(Pθ̂) is not affected by adding

irrelevant constraints, but it will be multiplied by a larger number. This problem and the importance

of allowing for a sample dependent null distribution (for which the number of binding constraints are

estimated from the data) has been acknowledged in a number of papers such as Andrews and Jia (2008),

Andrews and Soares (2010), Bennett (2009), Chen and Szroeter (2009), and Hansen (2005).6 One might

use any approach proposed in these papers or in Donald and Hsu (2010) (which is in the spirit of Hansen,

2005, with the exception that a simulation approach is used instead of bootstrapping) to overcome the

limitations of the Bonferroni adjustment.

6It is worth mentioning that testing inequality constraints is closely related to the fast evolving literature on
inference in models with moment inequalities, see for instance Andrews and Guggenberger (2007), Andrews and
Soares (2010), Chernozhukov, Hong, and Tamer (2007), Fan and Park (2007), Guggenberger, Hahn, and Kim
(2008), Linton, Song, and Whang (2008), and Rosen (2008).
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Here, we consider the novel minimum p-value-type test proposed by Bennett (2009) for joint inequality

moment constraints (which matches our testing problem, see his Assumption 1). The Bennett (2009) test

not only has an asymptotically exact size, but is - in contrast to Andrews and Jia (2008), Andrews and

Soares (2010), Hansen (2005), and Donald and Hsu (2010) - also invariant to studentization. Compared

to Chen and Szroeter (2009), it has the advantage that it does not require the choice of any smoothing

function. Furthermore, the test does not rely on the double (i.e., nested) bootstrap (see Beran, 1988) to

estimate the distribution of the minimum p-value min(Pθ̂) as suggested in Godfrey (2005), which may be

computationally intensive. Instead, it only demands two individual bootstraps, where the second resamples

from the distribution of the first bootstrap. Bennett (2009) considers both full (i.e., standard) recentering

of inequality constraints and partial recentering of only those constraints which are either violated in

the sample or not violated but within a small neighborhood of the boundary of the null hypothesis. He

shows that partial recentering (henceforth minP.p) has weakly superior finite sample properties than full

recentering (henceforth minP.f). The algorithm of both methods can be sketched as follows:

1. Estimate the vector of parameters θ̂ in the original sample.

2. Draw B1 bootstrap samples of size n from the original sample.

3. In each bootstrap sample, compute the recentered vector θ̃fb ≡ θ̂b − θ̂ for the minP.f test and the

partially recentered vector θ̃pb ≡ θ̂b −max(θ̂,−δn) for the minP.p test, where δn is a sequence such

that δn → 0 and
√
n · δn →∞ as n→∞.7

4. Estimate the vector of p-values for minP.f, denoted by Pθ̃f :

Pθ̃f = B−11 ·
B1∑
b=1

I{
√
n · θ̃fb >

√
n · θ̂}. (11)

5. Compute the minimum P-values for minP.f:

p̂f = min(Pθ̃f ). (12)

6. Draw B2 values from the distributions of θ̃fb and θ̃pb . We denote by θ̃fb2 and θ̃pb2 the resampled

observations in the second bootstrap.

7In the simulations and applications further below, we choose δn =
√

2·ln(ln(n))
n

· σ̂θi , i ∈ {1, 2, 3, 4}, where

σ̂θi is the estimated (in the B1 first stage bootstrap samples) standard deviation of the i-th inequality constraint,
as suggested by Bennett (2009). It is, however, not guaranteed that this choice is optimal, see for instance the
discussion in Donald and Hsu (2010).
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7. In each bootstrap sample, compute the minimum P-values of minP.f and minP.p, denoted by p̂f,b2

and p̂p,b2 :

p̂f,b2 = min(Pθ̃f ,b2), p̂p,b2 = min(Pθ̃p,b2), (13)

where

Pθ̃f ,b2 = B−11 ·
B1∑
b=1

I{
√
n · θ̃fb >

√
n · θ̃fb2}, Pθ̃p,b2 = B−11 ·

B1∑
b=1

I{
√
n · θ̃fb >

√
n · θ̃pb2}. (14)

8. Compute the p-values of the minP.f and minP.p tests by the share of bootstrapped minimum p-values

that are smaller than the respective minimum p-value of the original sample:

p̂minP.f = B−12 ·
B2∑
b2=1

I{p̂f,b2 < p̂f}, p̂minP.p = B−12 ·
B2∑
b2=1

I{p̂p,b2 < p̂f}. (15)

As already mentioned, minP.f and minP.p only differ in terms of recentering. The former test recenters

all four constraints, while the latter recenters only the restrictions that either violate the null or are in

the null but close (i.e., within δn) to equality in the original sample. Partial recentering allows estimating

the number of binding constraints from the data and therefore provides a better approximation of the

asymptotic distribution of the test under the null such that it dominates minP.f in terms of power, as

established in Bennett (2009). This finding is corroborated by the simulation results reported in Section

7.

4 Mean dominance and equality constraints

This section discusses restrictions on the order of the mean potential outcomes of different populations,

which where also considered by Huber and Mellace (2010b) in an IV context and Huber and Mellace

(2010a), Lechner and Melly (2007), Lee (2009), and Zhang and Rubin (2003) in sample selection models.

If these mean dominance assumptions appear plausible to the researcher, they may be invoked to increase

testing power.

The first assumption considered is mean dominance of the complier outcomes over those of the always

takers under treatment:
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Assumption 6:

E(Y (1)|T = c) ≥ E(Y (1)|T = at) (mean dominance of compliers).

Assumption 6 implies that the mean potential outcome of the compliers under treatment is at least as high

as that of the always takers. Therefore, the upper bound of the mean potential outcome of the always

takers in Equation (1) tightens to the conditional mean E(Y |Z = 1, D = 1). Under Assumptions 1-6, (6)

becomes

E(Y |Z = 1, D = 1, Y ≤ yq) ≤ E(Y |Z = 0, D = 1) ≤ E(Y |Z = 1, D = 1), (16)

which generally increases testing power due to the tighter upper bound. Whether this assumption is

plausible depends on the empirical application at hand and has to be justified by theory and/or empirical

evidence. In fact, one could also assume the converse, i.e., that the mean potential outcome of the compliers

cannot be higher than that of the always takers. This is formally stated in Assumption 7:

Assumption 7:

E(Y (1)|T = c) ≤ E(Y (1)|T = at) (mean dominance of always takers).

In this case, E(Y |Z = 1, D = 1) constitutes the lower bound of the mean potential outcome of the always

takers, and the testable implication becomes

E(Y |Z = 1, D = 1) ≤ E(Y |Z = 0, D = 1) ≤ E(Y |Z = 1, D = 1, Y ≥ y1−q). (17)

Finally, the combination of Assumptions 6 and 7 results in the restriction that the mean potential

outcomes under treatment of the always takers and compliers are the same, yielding the following equality

constraint:

Assumption 8:

E(Y (1)|T = c) = E(Y (1)|T = at) (equality of means).

Clearly, Assumption 8 entails the highest testing power and implies that

E(Y |Z = 1, D = 1) = E(Y |Z = 0, D = 1), (18)

such that the inequality restrictions turn into an equality constraint. Then, the validity of the instrument

can be tested by a simple two sample t-test for differences between means. To be precise, the latter
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tests the IV assumptions and Assumption 8 jointly: A non-rejection points to both a valid instrument

and homogeneity of the mean potential outcomes of always takers and compliers under treatment. Note

that equivalent results under mean dominance/equality apply to the compliers and never takers under

non-treatment. E.g., assuming E(Y (0)|T = c) = E(Y (0)|T = nt)

amounts to testing whether

E(Y |Z = 1, D = 0) = E(Y |Z = 0, D = 0). (19)

5 Generalization to non-binary instruments

This section generalizes the testable implications derived under mean independence to bounded

non-binary instruments. As discussed in Frölich (2007), in cases where the support of Z is bounded such

that Z ∈ [zmin, zmax], it is possible to define and identify LATEs with respect to any two distinct subsets

of the support of Z. To this end, we need to invoke Assumption 1 along with 2NB to 5NB, which are

generalizations of Assumptions 2 to 5:

Assumption 2NB:

Pr(T = t|Z = z) = Pr(T = t) ∀ z in the support of Z (unconfounded type).

Assumption 3NB:

E(Y (d, z)|T = t) = E(Y (d)|T = t) ∀ z in the support of Z, d ∈ {0, 1}, and t ∈ {at, c, d, nt}

(mean exclusion restriction).

Assumption 4NB:

Pr(D(z) ≥ D(z′)) = 1 ∀ z, z′ satisfying zmin ≤ z′ < z ≤ zmax (monotonicity).

I.e., z and z′ are two distinct subsets of the support of Z such that any element in z is larger than any

element in z′.

Assumption 5NB:

Pr(D(zmax) > D(zmin)) > 0 (existence of compliers).

Then, the LATE for compliers defined upon any z, z′ satisfying zmin ≤ z′ ≤ z ≤ zmax and
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Pr(D(z) > D(z′)) > 0 is identified by

E(Y (1)− Y (0)|D(Z ∈ z) > D(Z ∈ z′)) =
E(Y |Z ∈ z)− E(Y |Z ∈ z′)
E(D|Z ∈ z)− E(D|Z ∈ z′)

. (20)

Theorem 8 in Frölich (2007) shows that the LATE on the largest complier population possible is

identified by choosing z = zmax and z′ = zmin. In this light, the logic of Assumption 5NB becomes more

apparent: If it is not satisfied for zmax, zmin, it does not hold for any pair of z, z′. However, Assumption 5NB

merely states that compliers exist for at least one combination of distinct values of Z, but not necessarily

for all pairs of subsets z, z′. As monotonicity of the binary treatment implies that each individual switches

its treatment status as a reaction to the instrument at most once under the null, the complier share may

be small or even zero for some pairs z, z′.

While small or zero complier shares are undesirable for LATE estimation, the contrary holds for testing,

as πc = 0 maximizes asymptotic power. A further dimension relevant to testing power is the number of

subsets considered. I.e., it is useful to look at all possible pairs of neighboring8 z and z′ for which the

moment inequalities in (22) must be satisfied under instrument validity. In large samples small subsets

therefore appear preferable, firstly to minimize the complier share and secondly to maximize the number

of neighboring pairs of z and z′. However, in small samples a trade-off between finite sample power and

asymptotic power may well occur when doing so.

To generalize the testable implications to the non-binary case, define Z̃ as

Z̃ =

 1 if Z ∈ z

0 if Z ∈ z′
. (21)

Under Assumptions 1 and 2NB to 5NB, the results of Sections 2 and 3 must also hold when replacing Z

by Z̃. This implies that for any Z̃, we obtain four inequality constraints:



E(Y |Z̃ = 1, D = 1, Y ≤ yq)− E(Y |Z̃ = 0, D = 1),

E(Y |Z̃ = 0, D = 1)− E(Y |Z̃ = 1, D = 1, Y ≥ y1−q),

E(Y |Z̃ = 0, D = 0, Y ≤ yr)− E(Y |Z̃ = 1, D = 0),

E(Y |Z̃ = 1, D = 0)− E(Y |Z̃ = 0, D = 0, Y ≥ y1−r)


≤ 0.

8Note that under Assumptions 4ND, 5ND and for any fixed z, neighboring z and z′ give weakly lower complier
shares than non-neighboring pairs and thus, entail a higher asymptotic power.
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Let nZ̃ be the number of possible choices of Z̃ with neighboring subsets. Testing IV validity amounts

to applying the test procedures outlined in Section 3, where the number of inequality constraints is now

4 · nZ̃ instead of 4. To give an example, consider the case that Z may take the values 0, 1, or 2. The

number of possible definitions of Z̃ with neighboring z, z′ is 4:

z′ = 0 z = 1,

z′ = 1 z = 2,

z′ = 0 z = {1, 2},

z′ = {0, 1} z = 2.

This implies that we have 4× 4 = 16 testable inequality constraints based on neighboring pairs.

Notice that also considering the non-neighboring pair z′ = 0, z = 2 does neither increase finite nor

asymptotic power: A test base on the non-neighboring pair is weakly dominated by using z′ = {0, 1}, z = 2

and z′ = 0, z = {1, 2} in terms of the sample size (which influences finite sample power) and entails a

weakly higher complier share than any other neighboring pair. As a final remark, note that nZ̃ becomes

infinite when the instrument is continuous. In practice, the researcher will have to define a finite number

of subsets that depends on the richness of the data in the application considered and will, thus, again face

a trade-off between asymptotic and finite sample power.

6 Testing under joint independence

Even though stronger than necessary for LATE identification, the literature commonly imposes the follow-

ing joint independence assumption instead of Assumptions 2 and 3, see for instance Imbens and Angrist

(1994):

Assumption 2J:

Y (d, z) = Y (d) and Z⊥(Y (d), D(z)) ∀ d ∈ {0, 1} and z in the support of Z (joint independence).

Assumption 2J states that the potential outcome is a function of treatment, but not of the the instru-

ment (such that the exclusion restriction holds for any moment) and that the instrument is independent

of the joint distribution of the potential treatment states and the potential outcomes. It is sufficient for

the identification of local quantile treatment effects, see Frölich and Melly (2008), or other distributional

features.
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Henceforth assuming a binary instrument, the testing approach proposed in K08 exploits the fact

that under IV validity (now relying on Assumption 2J instead of 2 and 3) and for any subset V of the

support of Y , Pr(Y ∈ V,D = d|Z = d) − Pr(Y ∈ V,D = d|Z = 1 − d) can be shown to be equal to

Pr(Y ∈ V |D = d) · πc, and thus, cannot be negative for d ∈ {0, 1}. The underlying intuition is that

negative densities of complier outcomes must not occur in either treatment state, see Section 1. This is

formally stated in Proposition 1 of K08:

Pr(Y ∈ V,D = 1|Z = 0) ≤ Pr(Y ∈ V,D = 1|Z = 1),

Pr(Y ∈ V,D = 0|Z = 1) ≤ Pr(Y ∈ V,D = 0|Z = 0). (22)

Concerning the implementation of the test, K08 proposes the following bootstrap method. Let n1, n0

denote the numbers of observations with Z = 1 and Z = 0, respectively. Furthermore, define P (V, d) ≡

Pr(Y ∈ V,D = d|Z = 1) and Q(V, d) ≡ Pr(Y ∈ V,D = d|Z = 0). The sample analogues of these joint

probabilities given Z are, respectively,

Pn1
(V, d) =

1

n1
·

∑
i : Zi=1

I{Yi ∈ V and Di = d},

Qn0
(V, d) =

1

n0
·

∑
j : Zj=0

I{Yj ∈ V and Dj = d}. (23)

K08 defines the following KolmogorovSmirnov-type test statistic,

Tn =

√
n0 · n1
n

·max

 supV ∈V{Qn0(V, 1)− Pn1(V, 1)}

supV ∈V{Pn1
(V, 0)−Qn0

(V, 0)}

 , (24)

where V is a chosen collection of subsets in the support of Y . As Tn is non-pivotal, the author suggests to

use a bootstrap method for inference that is analogous to Abadie (2002). I.e., B bootstrap samples of size

n are drawn from the original data to compute Tb, the bootstrap analogue of Tn, in each sample. Then,

the p-value is estimated by

p̂K08 = B−1 ·
B∑
b=1

I{Tb > Tn}. (25)

An open issue of the K08 test is the choice of V. While a large number of subsets increases the chance to

detect a violation and, thus, asymptotic power it may entail a high variance in finite samples. I.e., there
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exists a trade-off between the richness of V and the finite sample power. However, a method to optimally

choose the subsets for a given sample is currently not available.

In what follows we show that the same constraints as in Proposition 1 of K08 plus two additional

restrictions are obtained when adapting our framework to probability measures (including the pdf and

cdf) rather than means. I.e., equivalent to equations (6) and (7) for the mean potential outcomes, the

results of Horowitz and Manski (1995) imply the following bounds on the probabilities that the potential

outcomes of the always takers under treatment and the never takers under non-treatment are in some

subset V :

Pr(Y ∈ V |Z = 1, D = 1)− (1− q)
q

≤ Pr(Y (1) ∈ V |T = at) ≤ Pr(Y ∈ V |Z = 1, D = 1)

q
,

Pr(Y ∈ V |Z = 0, D = 0)− (1− r)
r

≤ Pr(Y (0) ∈ V |T = nt) ≤ Pr(Y ∈ V |Z = 0, D = 0)

r
, (26)

where q, r are again the shares of always or never takers in the respective mixed populations. Under

Assumptions 1, 2J and 4 it follows that

Pr(Y (1) ∈ V |T = at) = Pr(Y ∈ V |Z = 0, D = 1),

Pr(Y (0) ∈ V |T = nt) = Pr(Y ∈ V |Z = 1, D = 0),

and therefore,

Pr(Y ∈ V |Z = 1, D = 1)− (1− q)
q

≤ Pr(Y ∈ V |Z = 0, D = 1) ≤ Pr(Y ∈ V |Z = 1, D = 1)

q
,

Pr(Y ∈ V |Z = 0, D = 0)− (1− r)
r

≤ Pr(Y ∈ V |Z = 1, D = 0) ≤ Pr(Y ∈ V |Z = 0, D = 0)

r
. (27)

This implies the inequality constraints

H0 :



Pr(Y ∈V |Z=1,D=1)−(1−q)
q − Pr(Y ∈ V |Z = 0, D = 1)

Pr(Y ∈ V |Z = 0, D = 1)− Pr(Y ∈V |Z=1,D=1)
q

Pr(Y ∈V |Z=0,D=0)−(1−r)
r − Pr(Y ∈ V |Z = 1, D = 0)

Pr(Y ∈ V |Z = 1, D = 0)− Pr(Y ∈V |Z=0,D=0)
r


≡



θ1

θ2

θ3

θ4


≤



0

0

0

0


, (28)

which may be tested using the same methods as outlined in Section 3. Equivalent to the restrictions used

in the K08 test, (28) allows us to construct tests with multiple constraints, depending on the definition
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and the number of the subsets V considered. E.g., it may be applied to the pdf at various points in the

outcome distribution. Then, the number of constraints obtained is four times the number of probability

measures considered.

Note that after some simple algebra (see Appendix A.3), (27) can be rewritten as

Pr(Y ∈ V,D = 1|Z = 1)− (P1|1 − P1|0) ≤ Pr(Y ∈ V,D = 1|Z = 0) ≤ Pr(Y ∈ V,D = 1|Z = 1),

Pr(Y ∈ V,D = 0|Z = 0)− (P1|1 − P1|0) ≤ Pr(Y ∈ V,D = 0|Z = 1) ≤ Pr(Y ∈ V,D = 0|Z = 0).

(29)

I.e., (29) includes the constraints (22) discussed in K08, but in addition implies the following:

Pr(Y ∈ V,D = 1|Z = 1)− Pr(Y ∈ V,D = 1|Z = 0) ≤ (P1|1 − P1|0),

Pr(Y ∈ V,D = 0|Z = 0)− Pr(Y ∈ V,D = 0|Z = 1) ≤ (P1|1 − P1|0).

The intuitive interpretation of this result is that the joint probability of being a complier and having an

outcome that lies in subset V cannot be larger than the (unconditional) complier share in the population,

which must hold in either treatment state. By adding these two constraints to the ones of K08, asymptotic

testing power increases. Equivalent to (6) and (7), the bounds in (29) become wider as the complier share

(P1|1 − P1|0) grows.

Similar to Section 4, one might increase testing power further by imposing dominance or equality

assumptions, here w.r.t. the probabilities that the potential outcomes of different subpopulations lie in

a subset V rather than mean potential outcomes. E.g., one might assume probability dominance of the

potential outcomes of the compliers over those of the always takers under treatment:

Assumption 6J:

Pr(Y (1) ∈ V |T = c) ≥ Pr(Y (1) ∈ V |T = at) (probability dominance of compliers).

Assumption 6J states that compared to the always takers, a weakly higher share within complier outcomes

is concentrated in a particular subset V of the potential outcome distribution under treatment (including

its pdf). This is useful if we have prior knowledge about the concentration of compliers and always takers

in some region of the potential outcome distribution. E.g., related to Assumption 6 (weak dominance of

the mean potential outcomes of compliers), one might assume that the compliers are relatively more likely
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to be in the upper part of the distribution, i.e., for V covering some “upper” part of the support of Y (1).9

Assumption 6J implies that the bounds in the first row of (29) tighten to

Pr(Y ∈ V,D = 1|Z = 1)− (P1|1 − P1|0) ≤ Pr(Y ∈ V,D = 1|Z = 0) ≤
P1|0

P1|1
· Pr(Y ∈ V,D = 1|Z = 1),

(30)

see Appendix A.4 for the proof of this and the subsequent results. Conversely, one may assume that in

some subset V of Y (1), the always takers are relatively more likely to occur than the compliers:

Assumption 7J:

Pr(Y (1) ∈ V |T = c) ≤ Pr(Y (1) ∈ V |T = at) (probability dominance of always takers).

In this case the first row in (29) can be written as

P1|0

P1|1
· Pr(Y ∈ V,D = 1|Z = 1) ≤ Pr(Y ∈ V,D = 1|Z = 0) ≤ Pr(Y ∈ V,D = 1|Z = 1).

(31)

Finally, the strongest restriction is to assume that the same proportions within complier and always taker

outcomes are concentrated in a particular subset:

Assumption 8J:

Pr(Y (1) ∈ V |T = c) = Pr(Y (1) ∈ V |T = at) (equality of probabilities),

which implies that

P1|0

P1|1
· Pr(Y ∈ V,D = 1|Z = 1) = Pr(Y ∈ V,D = 1|Z = 0).

(32)

Note that if Assumption 8J is assumed for all possible subsets V in V, this implies the equality of potential

outcome distributions. Analogous assumptions may be imposed on the potential outcome distributions of

the compliers and the never takers under non-treatment.

9Note that Assumption 6J is related to, but clearly distinct from stochastic dominance. E.g., if the potential
outcome distribution of the always takers dominates the one of the compliers, then Pr(Y (1) ∈ V |T = c) ≥
Pr(Y (1) ∈ V |T = at) must hold (at least once) in some lower V and be violated (at least once) in some higher V .
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7 Simulations

We investigate the finite sample properties of the bootstrap tests based on inequality moment constraints

by simulating IV models with both continuous and binary outcomes. For the continuous case, the data

generating process (DGP) is the following:

Y = D + βZ + U,

D = I{αZ + ε > 0},

(U, ε) ∼ N(0, 1), Cov(U, V ) = 0.5, Z,D ∼ Bernoulli(0.5).

The treatment variable D is endogenous due to the correlation of the errors U and ε in the structural and

the first stage equations, respectively. α determines the share of compliers in the population and, thus, the

width of the bounds such that we expect testing power to decrease in the coefficient. In the simulations α

is set to 0.2 and 0.6, which corresponds to shares of roughly 8 % and 23 %, respectively.10 These figures

are well in the range of complier proportions found in empirical applications, see for instance the examples

presented in Section 8. Whereas monotonicity is satisfied by the linearity and additivity of our model,

β gauges the violation of the exclusion restriction. The latter is satisfied for β = 0 and violated for any

β 6= 0 implying a direct effect of Z on Y . Therefore, power should increase in the absolute value of β, as

the probability that E(Y |Z = 0, D = 1) and E(Y |Z = 1, D = 0) fall outside the parameter bounds in the

mixed populations increases in the magnitude of the direct effect. In the simulations, we set β to 0 and 1.

Table 3 reports the rejection frequencies of the various tests at the 5% level of significance for sample

sizes n = 250, 1000 and 1000 simulations. The first and second columns indicate the level of α and

β, respectively. The third column (st.dist1) gives max(θ̂1, θ̂2)/st.dev.(Y ), i.e., the maximum distance

between the estimate E(Y |Z = 0, D = 1) and the bounds in the mixed population, standardized by the

standard deviation of Y . A positive value implies that the point estimate of the always takers’ mean

potential outcome falls outside the bounds, i.e., is either smaller than the lower bound or higher than

the upper bound. The fourth column (st.dist0) provides the distance parameter for the never takers:

max(θ̂3, θ̂4)/st.dev.(Y ). Columns 5 and 6 report the bias of the LATE and of the mean difference in Y

of treated and non-treated individuals (which ignores endogeneity), respectively. The LATE estimator is

heavily biased whenever β 6= 0 and clearly more so than taking mean differences. But even under the null

10The share of compliers is given by Φ(α) − Φ(0) = Φ(α) − 0.5, where Φ(·) is the cdf of the standard normal
distribution.
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with n = 250 and α = 0.2, the estimator performs poorly, suggesting that we should be cautious when

using IV estimation in small samples when the instrument is weak.

Table 3: Simulations - continuous outcome

n=250 rejection frequencies
mean-based tests prob.-based tests

α β st.dist1 st.dist0 b.LATE b.diff bs mP.p mP.f mP.p(2) mP.f(2)

0.2 0.0 -0.090 -0.103 -1.440 0.796 0.007 0.017 0.007 0.031 0.013
0.6 0.0 -0.223 -0.313 -0.110 0.774 0.000 0.000 0.000 0.001 0.000
0.2 1.0 0.494 0.458 27.841 0.886 0.933 0.960 0.916 0.982 0.961
0.6 1.0 0.259 0.096 4.825 1.009 0.380 0.506 0.373 0.794 0.691

n=1000 rejection frequencies
mean-based tests prob.-based tests

α β st.dist1 st.dist0 b.LATE b.diff bs mP.p mP.f mP.p(2) mP.f(2)

0.2 0.0 -0.118 -0.138 -0.282 0.795 0.001 0.003 0.001 0.005 0.003
0.6 0.0 -0.243 -0.357 -0.009 0.772 0.000 0.000 0.000 0.000 0.000
0.2 1.0 0.505 0.482 17.121 0.877 1.000 1.000 1.000 1.000 1.000
0.6 1.0 0.249 0.094 4.491 1.010 0.930 0.965 0.928 0.998 0.994

Note: Rejection frequencies at the 5% level. All tests are based on 499 bootstrap draws.

Columns 7 to 9 display the rejection frequencies for the tests based on the constraints under mean

independence in (8), namely the bootstrap test with Bonferroni adjustment (bs), the Bennett (2009) test

based on minimum p-values with partial (mP.p) and full (mP.f) recentering. Also columns 10 and 11 refer

to versions of the Bennett (2009) test, however, using the probability-based constraints of (28) under joint

independence. The partially and fully recentered statistics mP.p(2) and mP.f(2) are based on two subsets

V which are obtained by cutting the distribution of Y in each simulation into two. I.e., the breakpoint

between the subsets is half the difference of the maximum and minimum values of the simulated outcome

(max(Y )−min(Y ))/2).11 For all tests, the number of bootstrap draws is set to 499.

Under the null hypothesis (β = 0) the rejection frequencies of any method are quite low and clearly

smaller than 5 %. As expected, the empirical size decreases in α, because the constraints become more

negative due to a higher share of compliers, and in the sample size, which makes the estimation of θ̂ more

precise. Under the violation of IV validity (β = 1) all tests gain power as the sample size grows and lose

power as the share of compliers becomes larger. The most powerful approach appears to be the partially

recentered minimum p-value test based on the probability constraints (mP.p(2)), which dominates any

other method whenever the null does not hold. Note that also the fully recentered version (mP.f(2)) is

more powerful than all tests based on the mean constraints. The probability-based tests therefore clearly

have better finite sample properties than the mean-based approaches in our simulations with a continuous

11As for the K08 test, the optimal choice of the subsets V is an unsolved issue. By considering just two subsets
we sacrifice asymptotic power, but gain finite sample power.
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outcome.

Table 4: Simulations - binary outcome

n=250 rejection frequencies
mean-based tests prob.-based tests

α β st.dist1 st.dist0 b.LATE b.diff bs mP.p mP.f mP.p(2) mP.f(2)

0.2 0.0 -0.017 -0.082 -0.557 0.225 0.008 0.025 0.009 0.032 0.010
0.6 0.0 -0.082 -0.441 -0.032 0.212 0.000 0.001 0.000 0.001 0.000
0.2 1.0 0.132 0.715 6.031 0.073 0.795 0.848 0.527 0.849 0.769
0.6 1.0 0.123 0.106 0.856 0.113 0.186 0.339 0.124 0.338 0.185

n=1000 rejection frequencies
mean-based tests prob.-based tests

α β st.dist1 st.dist0 b.LATE b.diff bs mP.p mP.f mP.p(2) mP.f(2)

0.2 0.0 -0.040 -0.126 -0.088 0.226 0.003 0.009 0.002 0.010 0.004
0.6 0.0 -0.110 -0.522 0.000 0.212 0.000 0.000 0.000 0.000 0.000
0.2 1.0 0.131 0.759 3.685 0.071 1.000 1.000 1.000 1.000 1.000
0.6 1.0 0.121 0.142 0.800 0.115 0.817 0.902 0.792 0.899 0.813

Note: Rejection frequencies at the 5% level. All tests are based on 499 bootstrap draws.

Table 4 presents the rejection frequencies when the outcome is binary. The DGP is identical to the

first one with the exception that

Y = I{D + βZ + U > 0}.

In this case, the true treatment effect depends on the parameter α and is 0.386 for α = 0.2 and 0.403 for

α = 0.6. Also for the binary outcome, the LATE estimator is severely biased for β 6= 0. As before, all tests

are quite conservative under the null and even more so for the larger share of compliers and/or sample

size. Under the violation of IV validity, the minimum p-value-based test with partial recentering is again

most powerful. However, in contrast to the continuous outcome case, the mean- and probability-based

versions of the test have similar power. In conclusion, mP.p(2) appears to be the preferred choice in our

simulations as it is competitive under either definition of the outcome.

8 Applications

This section presents three applications to labor market and economic development data. In a highly in-

fluential study, Acemoglu, Johnson, and Robinson (2001) estimate the effect of institutional quality on

(PPP-adjusted) GDP per capita in 1995 for 64 countries, all of which are former colonies. Institutional

quality is measured by the average of an index for protection against expropriation (going from 0 to 10)
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within the years 1985 and 1995, where 0 corresponds to the lowest protection level. As there are well-

founded concerns that the economic and institutional development are endogenous, the authors suggest

to use the mortality rates of European colonizers in the 18th and 19th centuries as instrument for insti-

tutions. The underlying idea is that colonizers supposedly had fewer incentives to set up development-

minded institutions in colonies with high mortality rates than in areas with low rates where they could

settle permanently. Given that institutional settings persisted after the independence, European mortality

rates have an impact on current institutions. However, the instrument is only valid if factors potentially

correlated with mortality rates such as diseases, human capital, local political conflicts, etc. are not di-

rectly related with economic development today, which is for instance contested by Glaeser, La Porta,

Lopez-de Silanes, and Shleifer (2004).12

The lack of a consensus based on theoretical arguments motivates the application of our tests. As both

the instrument and the treatment are continuous and the sample is fairly small, this practically requires

us to discretize either variables. We therefore generate a treatment dummy that indicates the protection

against expropriation index to be larger than the median (6.475 index points) such that exactly half of the

sample is treated. Analogously, a binary instrument “low colonizer mortality” is created which is one if

log settler mortality is equal to or lower than the median (4.358 log points), and zero otherwise such that

32 observations receive the instrument and 32 do not. I.e., as apparent from the discussion in Section 5,

we sacrifice asymptotic power to increase the finite sample power.

The second an third applications were already briefly discussed in Section 1. Based on data from

the 1980 and 1990 U.S. Census Public Use Micro Samples (PUMS), Angrist and Evans (1998) assess the

effect of fertility on labor market participation (measured by a worked for pay dummy, weeks worked,

and hours per week worked) using the sex ratio of the first two children as instrument for fertility. I.e.,

if parents have a preference for mixed-sex siblings, having two children with the same sex should increase

the likelihood to get a third child. Indeed, they find that same sex increases the incidence of a third child

by roughly 6 percentage points in the 1980 wave of PUMS (394,840 observations). The authors argue that

the sex-ratio is a plausible instrument because it is virtually randomly assigned and should not have a

direct effect on labor market participation. However, using a simple model of fertility and labor supply

choices Rosenzweig and Wolpin (2000) demonstrate that a third birth may - through a change in the sex

12On top of this theoretically motivated argument, Albouy (2011) criticizes the way in which Acemoglu, Johnson,
and Robinson (2001) construct the mortality rates in the data (for example, 36 of the 64 countries in the sample
are assigned mortality rates of other countries) and argues that once the data issues are controlled for, the IV
estimates become unreliable. Acemoglu, Johnson, and Robinson (2005) reply to this criticism by arguing that the
the claims of Albouy (2011) are without foundation.
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ratio - directly affect both the marginal utility of leisure and child costs and, thus, ultimately labor supply.

Therefore, we test the IV validity based on the 1980 wave of PUMS and consider the binary worked for

pay dummy as outcome variable.

Card (1995) evaluates the returns to college education based on the 1966 and 1976 waves of the U.S.

National Longitudinal Survey of Young Men (NLSYM) (3,010 observations). Among others, he uses a

dummy for proximity to a 4-year college in 1966 as an instrument for the potentially endogenous decision

of going to college. Proximity should induce some individuals (in particular those from low income families)

to strive for a college degree who would otherwise not, for instance due to costs associated with not living

at home. However, the instrument may well be correlated with factors like local labor market conditions or

family background (e.g. parents’ education, which could shape preferences for particular residential areas)

which might be related to the outcome (log of weekly earnings in 1976). This has been acknowledged by

Card (1995) himself, who for this reason includes a range of control variables in his estimations. For testing,

we follow K08 (who also considers this data set) and define the educational level as binary treatment which

indicates one’s education to be 16 years or more such that it roughly corresponds to a four year college

degree. Again similar to K08, we test IV validity both in the entire sample (i.e., unconditionally) and in

a subsample. The latter only includes white individuals living in an urban area not located in the south

whose fathers have at least 12 years of education (554 observations), in order to control for factors that

are potentially correlated with both the instrument and the outcome.

Table 5 presents the results of the tests on IV validity. The first column gives the estimated complier

proportion, which is crucial for the power of the tests, the second and third columns report the standardized

maximum distances max(θ̂1, θ̂2)/st.dev.(Y ), max(θ̂3, θ̂4)/st.dev.(Y ). The remaining columns contain the

p-values of the bootstrap test with Bonferroni adjustment (bs) and the Bennett (2009) test with partial

and full recentering, based on both the constraints on the means (minP.p, minP.f) and on the probabilities

(minP.p(2)). In all tests, 1999 bootstrap replications are used. Despite the (in terms of testing power)

unfavorable constitution of a relatively large complier share and sample size in the Acemoglu, Johnson,

and Robinson (2001) application, the minP.p, minP.p(2), and minP.f(2) reject the null at the 5% level and

the minP.f at the 10% level. This casts doubts on the validity of the instrument, which are aggravated by

the relatively large values of st.dist1 and st.dist0 pointing to a large discrepancy of the point estimates and

the bounds. Even though it would have been interesting to test IV validity in subsamples defined upon

variables potentially related with the instrument and the outcome (such as the geographical distribution

of diseases) this is practically infeasible given the low number of observations.
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Things look very different when considering the Angrist and Evans (1998) data. All tests yield a p-value

of 100% and both the point identified mean potential outcomes of the always takers and the never takers

are within their respective bounds, as indicated by the negative values of st.dist1 and st.dist0. Again, it

has to be stressed that this does not automatically imply that IV validity is satisfied, however, the tests

provide no evidence for its violation. They clearly do so for the full sample of Card (1995): All methods

reject the null at the 1% level and the point estimate of the mean potential outcome of the never takers

falls well outside its bounds. While proximity does not appear to be an unconditionally valid instrument,

its validity cannot be rejected in the subsample. This is in line withe the results of K08 and demonstrates

the importance of carefully considering potential confounders, i.e., variables that are both related with the

instrument and the outcome, in empirical applications.

Table 5: Applications - IV validity tests

p-values
mean-based tests prob.-based tests

Study compliers st.dist1 st.dist0 bs minP.p minP.f minP.p(2) minP.f(2)

Acemoglu et al. (2001) 25.0% 0.678 0.226 0.112 0.049 0.098 0.006 0.016
Angrist and Evans (1998) 6.0 % -0.153 -0.128 1.000 1.000 1.000 1.000 1.000
Card (1995) (full sample) 6.9 % -0.203 0.224 0.000 0.001 0.001 0.001 0.002
Card (1995) (subsample) 13.2 % -0.419 -0.302 1.000 0.787 1.000 0.979 0.735

Note: All tests are based on 1999 bootstrap draws.

Finally, we test the mean equality constraints (18) and (19) using two sample t-tests. Table 6 reports

the sample analogues of E(Y |Z = z,D = d) (where z, d ∈ {0, 1}), denoted by ȲZ=z,D=d, the differences

(diff) ȲZ=1,D=1 − ȲZ=0,D=1 and ȲZ=0,D=0 − ȲZ=1,D=0, and the respective (asymptotic) p-values (p-val).

Not surprisingly, the tests yield low p-values for the Acemoglu, Johnson, and Robinson (2001) data and the

full sample of Card (1995), which did not even satisfy the weaker inequality constraints. In contrast, both

the Angrist and Evans (1998) application and the subsample of Card (1995) also pass the stricter difference

of means tests at any conventional level of significance. This suggests IV validity and homogeneity of the

mean potential outcomes of compliers and always takers under treatment and of compliers and never takers

under non-treatment.

Table 6: Applications - difference of means tests

Study ȲZ=1,D=1 ȲZ=0,D=1 diff p-val ȲZ=0,D=0 ȲZ=1,D=0 diff p-val

Acemoglu et al. (2001) 9.098 7.882 1.216 0.001 7.245 7.820 -0.576 0.042
Angrist and Evans (1998) 0.492 0.495 -0.003 0.266 0.614 0.615 -0.001 0.697
Card (1995) (full sample) 6.449 6.369 0.081 0.012 6.094 6.254 -0.160 0.000
Card (1995) (subsample) 6.465 6.483 -0.018 0.806 6.348 6.390 -0.043 0.569
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9 Conclusion

The LATE framework of Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996) with a binary

treatment and instrument implies that the mean potential outcome of the always takers under treatment

and that of the never takers under non-treatment can be both point identified and bounded. As the

points must lie within their respective bounds, this provides four testable inequality moment constraints

for instrument validity, a fact apparently neglected in the literature. For this reason we propose bootstrap

tests, of which the minimum p-value-based method with partial recentering of Bennett (2009) appears

to be most appropriate in terms of finite sample behavior. As a further contribution, it is shown how

testing power might be increased by imposing restrictions on the order of the mean potential outcomes

of different subpopulations which has also been considered in Huber and Mellace (2010b), among others.

Moreover, we demonstrate that IV validity and homogeneity in mean potential outcomes across particular

subpopulations can be tested jointly by simple difference of means tests.

We also relate our work to the approach of Kitagawa (2008) who tests for the incidence of negative

densities of complier outcomes to verify instrument validity. Interestingly, by adapting our framework

to probabilities rather than means of potential outcomes, one obtains the same testable implications as

Kitagawa (2008) plus two additional constraints not considered before. The latter increase the asymptotic

testing power. Furthermore, we investigate the finite sample properties of the various tests and consider

three empirical applications to economic development and labor market data of Acemoglu, Johnson, and

Robinson (2001), Angrist and Evans (1998), and Card (1995), which highlight the practical relevance of

the proposed methods.

The testing problem discussed in this paper raises the question of what can be done about identification

if instrument validity is rejected. Obviously, the most appropriate solution would be to search for better

instruments, but this may not always be feasible in practice. As an alternative, one could relax some of

the IV assumptions. Then, point identification is lost, but the LATE might still be partially identified

within reasonable bounds in the spirit of Manski (1989). E.g., Flores and Flores-Lagunes (2010) derive

bounds on the LATE when the exclusion restriction is violated, but monotonicity of the treatment in the

instrument holds, while Huber and Mellace (2010b) consider the violation of monotonicity, but maintain

the exclusion restriction.
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A Appendix

A.1 GMM framework

In order to show that the tests described in Section 3 are valid it is sufficient to show that all the parameters

involved in estimating the test statistics vector θ can be consistently estimated in a GMM framework. The latter

satisfies Assumption 1 of Bennett (2009), which encounters standard conditions such as i.i.d. sampling, uniformly

bounded moments of the moment functions up to a particular order, Lipschitz continuity, and an asymptotically

linear representation of the testing problem. In the spirit of Lee (2009), it can be shown that µ01 ≡ E(Y |Z =

0, D = 1), µ10 ≡ E(Y |Z = 1, D = 0), µlb11 ≡ E(Y |Z = 1, D = 1, Y ≤ yq), µ
ub
11 ≡ E(Y |Z = 1, D = 1, Y ≥ y1−q),

µlb00 ≡ E(Y |Z = 0, D = 0, Y ≤ yr) and µub00 ≡ E(Y |Z = 0, D = 0, Y ≥ y1−r) can be estimated as the unique

solution to an just identified GMM problem, where the moment function is defined as

g(ϑ,Wi) =



(Yi − µlb11) ·Di · Zi · I{Yi ≤ yq}

(I{Yi > yq} − (1− P1|0
1−P0|1

)) ·Di · Zi

(Yi − µub11) ·Di · Zi · I{Yi ≥ y1−q}

(I{Yi < y1−q} − (1− P1|0
1−P0|1

)) ·Di · Zi

(Yi − µlb00) · (1−Di) · (1− Zi) · I{Yi ≤ yr}

(I{Yi > yr} − (1− P0|1
1−P1|0

)) · (1−Di) · (1− Zi)

(Yi − µub00) · (1−Di) · (1− Zi) · I{Yi ≥ y1−r}

(I{Yi < y1−r} − (1− P0|1
1−P1|0

)) · (1−Di) · (1− Zi)

(Yi − µ01) · (Di) · (1− Zi)

(Yi − µ10) · (1−Di) · (Zi)

(Di − P1|0) · (1− Zi)

((1−Di)− P0|1) · Zi



,

where ϑ = (µlb11, yq, µ
ub
11 , y1−q, µ

lb
00, yr, µ

ub
00 , y1−r, µ01, µ10, P1|0, P0|1)T is the (12× 1)-vector of parameters and Wi =

(Yi, Zi, Di).

The GMM objective function for this just identified model is given by

G(ϑ,Wi) =
n∑
i=1

g(ϑ,Wi)
T

n∑
i=1

g(ϑ,Wi).

A consistent estimator of the parameter vector ϑ can be obtained by solving the following minimization problem

ϑ̂ = min
ϑ
G(ϑ,Wi). (A.1)
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√
n-consistency and asymptotic normality of ϑ̂ follows directly from Propositions 2 and 3 in Lee (2009). In

particular, from Theorem 7.2 of Newey and McFadden (1994) it follows that

√
n · (ϑ̂− ϑ0)

d→ N (0, (H(ϑ0))−1Ω(ϑ0)(H(ϑ0)T )−1),

where H(ϑ0) ≡ ∇ϑ0E(g(ϑ,Wi)) is the derivative of E(g(ϑ,Wi)) at ϑ0, the true value of ϑ, and Ω(ϑ0) is the

asymptotic variance-covariance matrix of g(ϑ0,Wi). Theorem 7.2 of Newey and McFadden (1994) also ensures that

the regularity conditions listed in Assumption 1 of Bennett (2009) are met and that the limiting distribution of

the test statistics θ exists and is continuous.

We close the discussion by providing the analytical representations of H(ϑ0) and Ω(ϑ0): 13

H(ϑ0) =



Hµlb
11,yq

02×2 02×2 02×2 02×2 Hyq,Pd|z

02×2 Hµub
11 ,y1−q

02×2 02×2 02×2 Hyq,Pd|z

02×2 02×2 Hµlb
00,yr

02×2 02×2 Hyr,Pd|z

02×2 02×2 02×2 Hµub
00 ,y1−r

02×2 Hyr,Pd|z

02×2 02×2 02×2 02×2 Hµ01,µ10 02×2

02×2 02×2 02×2 02×2 02×2 HP1|0,P0|1



where 0r×c is a r × c-matrix of zeros. Denoting by fdz the pdf of Y given D = d and Z = z, the non-zero

components of H(ϑ0) are

Hµlb
11,yq

= E(D · Z) ·

 −q (yq − µlb11) · f11(yq)

0 −f11(yq)

 ,

Hµub
11 ,y1−q

= E(D · Z) ·

 −q −(y1−q − µub11) · f11(y1−q)

0 f11(y1−q)

 ,

Hµlb
00,yr

= E[(1−D) · (1− Z)] ·

 −r (yr − µlb00) · f00(yr)

0 −f00(yr)

 ,

Hµub
00 ,y1−r

= E[(1−D) · (1− Z)] ·

 −r −(y1−r − µub00) · f00(y1−r)

0 f00(y1−r)

 ,

13As suggested by Newey and McFadden (1994) Ω(ϑ0) can be consistently estimated by

1

n
·
n∑
i=1

(g(ϑ̂,Wi) · g(ϑ̂,Wi)
T ).

Alternatively one can take the sample counterpart of the closed form solution of Ω(ϑ0) provided belove.
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Hµ01,µ10 =

 −E[(D) · (1− Z)] 0

0 −E[(1−D) · (Z)]

 ,

HP1|0,P0|1 =

 −E(1− Z) 0

0 −E(Z)

 ,

Hyq,Pd|z = E(D · Z) ·

 0 0

1
1−P0|1

P1|0
(1−P0|1)2

 ,

Hyr,Pd|z = E[(1−D) · (1− Z)] ·

 0 0

P0|1
(1−P1|0)2

1
1−P1|0

 .

Ω(ϑ0) is given by the block diagonal variance-covariance matrix

Ω(ϑ0) =



Ω11 Ω12 02×2 02×2 02×2 02×2

Ω12 Ω13 02×2 02×2 02×2 02×2

02×2 02×2 Ω21 Ω22 02×2 02×2

02×2 02×2 Ω22 Ω23 02×2 02×2

02×2 02×2 02×2 02×2 Ω31 02×2

02×2 02×2 02×2 02×2 02×2 Ω32


,

where the non-zero elements are

Ω11 =

 ∫ yq
−∞ (y − µlb11)2 · f11 · dy 0

0 q · (1− q)

 · E(D · Z),

Ω12 =

 I{y1−q < yq} ·
∫ yq
y1−q

(y − µlb11) · (y − µub11) · f11 · dy
∫min(yq,y1−q)

−∞ (y − µlb11) · f11 · dy∫∞
max(yq,y1−q)

(y − µub11) · f11 · dy
∫∞
−∞ I(y > yq) · I(y < y1−q) · dy − (1− q)2

·E(D·Z),

Ω13 =

 ∫∞
y1−q

(y − µub11)2 · f11 · dy 0

0 q · (1− q)

 · E(D · Z),

Ω21 =

 ∫ yr
−∞ (y − µlb00)2 · f00 · dy 0

0 r · (1− r)

 · E[(1−D) · (1− Z)],
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Ω22 =

 I{y1−r < yr} ·
∫ yr
y1−r

(y − µlb00) · (y − µub00) · f00 · dy
∫min(yr,y1−r)

−∞ (y − µlb00) · f00 · dy∫∞
max(yr,y1−r)

(y − µub00) · f00 · dy
∫∞
−∞ I(y > yr) · I(y < y1−r)dy − (1− r)2

·E[(1−D)·(1−Z)],

Ω23 =

 ∫∞
y1−r

(y − µub00)2 · f00 · dy 0

0 r · (1− r)

 · E[(1−D) · (1− Z)],

Ω31 =

 ∫∞
−∞ (y − µ01)2 · f10 · dy · E[D · (1− Z)] 0

0
∫∞
−∞ (y − µ10)2 · f01 · dy · E[(1−D) · Z]

 ,

Ω32 =

 P1|0 · P0|0 · E(1− Z) 0

0 P0|1 · P1|1 · E(Z)

 .

A consistent estimator of the asymptotic variance of ϑ̂ is given by n−1 · (H(ϑ̂))−1Ω(ϑ̂)(H(ϑ̂)T )−1. Then, it is

straightforward to construct an estimator for the variance of the test statistic θ̂, see Appendix A.2.

A.2 Wolak (1989, 1991) test

In order to describe the Wolak test it is useful to rewrite the test statistic θ as θ = Cϑ , where C is

C =



1 0 0 0 0 0 0 0 −1 0 0 0

0 0 −1 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0 0 1 0 0


.

We would like to test the null hypothesis H0 : Cϑ ≤ 0 against H1 : Cϑ > 0. Theorem 7.2 of Newey and McFadden

(1994) implies that ϑ satisfies Assumption 1 of Donald and Hsu (2010). Therefore, it follows that

√
n · (Cϑ̂− Cϑ0)

d→ N (0, J(ϑ0)),

where J(ϑ0) ≡ C(H(ϑ0))−1Ω(ϑ0)(H(ϑ0)T )−1CT . We consider the following test statistic proposed by Wolak

(1989a):14

Vn = min
{ϑ|Cϑ≤0}

n · (Cϑ̂− Cϑ)TJ(ϑ̂)−1(Cϑ̂− Cϑ)

14Wolak (1989a) proposes three asymptotically equivalent test statistics.
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Let ϑ∗ be the LFC (i.e., the parameter configuration for which the null is rejected with the lowest probability). As

Wolak (1991) shows, ϑ∗ ∈ B where B is the set of ϑ which satisfy the null hypothesis such that there are at least

two constraints that hold as equality. Moreover, for any ϑ ∈ B,

lim
n→∞

Pr(Vn ≥ c|ϑ) =

m∑
i=0

Pr(χ2
i ≥ c) · ψ(m,m− i, Cm(H(ϑ0))−1Ω(ϑ0)(H(ϑ0)T )−1CTm),

where m is the number of constraints that hold as equality, Cm is the corresponding sub-matrix of C and ψ(m,m−

i,Σ) is a weighting function. Let s be a m-dimensional vector of normally distributed elements with mean zero

and covariance Σ and s̃ be the solution to

arg min
γ≥0

(s− γ)TΣ(s− γ).

Then, ψ(m,m− i,Σ) is the probability that s̃ has exactly m− i positive elements. Therefore, one has to solve

m∑
i=0

Pr(χ2
i ≥ c(ϑ, α)) · ψ(m,m− i, Cm(H(ϑ0))−1Ω(ϑ0)(H(ϑ0)T )−1CTm) = α, (A.2)

for a given confidence level α and for each ϑ ∈ B in order to construct a test with asymptotically exact size. The

critical value is

c(α) = max
ϑ∈B

c(ϑ, α).

Since we have four inequality constraints, the number of configurations of ϑ such that ϑ ∈ B is 11 (all possible

combinations of the four constraints such that at least two of them hold as equality). This implies that (A.2) must

be evaluated 11 times in order to obtain the LFC.

A.3 Proof of equation (29)

First of all, notice that

Pr(Y ∈ V |Z = 1, D = 1)− (1− q)
q

=
Pr(Y ∈ V,D = 1|Z = 1)

q · Pr(D = 1|Z = 1)
− (1− q)

q
(A.3)

=
Pr(Y ∈ V,D = 1|Z = 1)

P1|0
−
P1|1 − P1|0

P1|0
.

Moreover

Pr(Y ∈ V |Z = 1, D = 1)

q
=

Pr(Y ∈ V,D = 1|Z = 1)

q · Pr(D = 1|Z = 1)
(A.4)

=
Pr(Y ∈ V,D = 1|Z = 1)

P1|0
.
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and

Pr(Y ∈ V |Z = 0, D = 1) =
Pr(Y ∈ V,D = 1|Z = 0)

P1|0
. (A.5)

Therefore the first line of 27 can be written as

Pr(Y ∈ V,D = 1|Z = 1)

P1|0
−
P1|1 − P1|0

P1|0
≤ Pr(Y ∈ V,D = 1|Z = 0)

P1|0
≤ Pr(Y ∈ V,D = 1|Z = 1)

P1|0
,

⇒

Pr(Y ∈ V,D = 1|Z = 1)− (P1|1 − P1|0) ≤ Pr(Y ∈ V,D = 1|Z = 0) ≤ Pr(Y ∈ V,D = 1|Z = 1).

(A.6)

An equivalent argument can be used to obtain the second line.

A.4 Proofs of the results derived in Section 6

A.4.1 Proof of the results derived under Assumption 6J

Under Assumptions 1, 2J, 4, and 6J it holds that

Pr(Y (1) ∈ V |T = at) ≤ Pr(Y ∈ V |Z = 1, D = 1). (A.7)

Since Pr(Y (1) ∈ V |T = at) = Pr(Y ∈ V |D = 1, Z = 0), (A.7) can be written as

Pr(Y ∈ V |Z = 0, D = 1) ≤ Pr(Y ∈ V |Z = 1, D = 1),

Pr(Y ∈ V,D = 1|Z = 0)

P1|0
≤ Pr(Y ∈ V,D = 1|Z = 1)

P1|1
,

Pr(Y ∈ V,D = 1|Z = 0) ≤
P1|0

P1|1
· Pr(Y ∈ V,D = 1|Z = 1). (A.8)
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Finally, one has to show that

Pr(Y ∈ V,D = 1|Z = 1) ≥
P1|0

P1|1
· Pr(Y ∈ V,D = 1|Z = 1),(

1−
P1|0

P1|1

)
· Pr(Y ∈ V,D = 1|Z = 1) ≥ 0,(

1−
P1|0

P1|1

)
≥ 0,

P1|1 − P1|0

P1|1
≥ 0,

P1|1 − P1|0 ≥ 0,

πc ≥ 0,

which is always satisfied as the complier proportion must not be negative.

A.4.2 Proof of the results derived under Assumption 7J

Under Assumptions 1, 2J, 4, and 7J it holds that

Pr(Y (1) ∈ V |T = at) ≥ Pr(Y ∈ V |Z = 1, D = 1). (A.9)

Following the same arguments as in A.4.1 it is easy to show that

P1|0

P1|1
· Pr(Y ∈ V,D = 1|Z = 1) ≤ Pr(Y ∈ V,D = 1|Z = 0). (A.10)

Finally, we need to show that

Pr(Y ∈ V,D = 1|Z = 1)− (P1|1 − P1|0) ≤
P1|0

P1|1
· Pr(Y ∈ V,D = 1|Z = 1),(

1−
P1|0

P1|1

)
· Pr(Y ∈ V,D = 1|Z = 1)− (P1|1 − P1|0) ≤ 0,

P1|1 − P1|0

P1|1
· Pr(Y ∈ V,D = 1|Z = 1)− (P1|1 − P1|0) ≤ 0,

Pr(Y ∈ V,D = 1|Z = 1)

P1|1
− 1 ≤ 0,

Pr(Y ∈ V,D = 1|Z = 1) ≤ P1|1,

P1|1 · Pr(Y ∈ V |Z = 1, D = 1) ≤ P1|1,

Pr(Y ∈ V |Z = 1, D = 1) ≤ 1,

which always holds.
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A.4.3 Proof of the results derived under Assumption 8J

Under Assumptions 1, 2J, 4, and 8J it holds that

Pr(Y (1) ∈ V |T = at) = Pr(Y ∈ V |Z = 1, D = 1). (A.11)

Following the same arguments as before it is easy to show that

Pr(Y ∈ V,D = 1|Z = 0) =
P1|0

P1|1
· Pr(Y ∈ V,D = 1|Z = 1). (A.12)
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