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Abstract

This paper discusses how to identify individual-specific causal effects of an
ordered discrete endogenous variable. The counterfactual causal information
is recovered by identifying the partial differences of a structural relation. The
proposed nonparametric shape restrictions exploit the fact that the pattern of
endogeneity may vary across the level of the unobserved variable. The restric-
tions adopted in this paper impose a sense of order to an "unordered" binary
endogeneous variable. This allows for a unified structural approach to study-
ing various "treatment" effects when self-selection is present. The usefulness
of the identification results is illustrated using the data on the Vietnam-era
veterans. The empirical findings reveal that when other observable character-
istics are identical, military service had positive impacts for individuals with
low (unobservable) earnings potential, while it had negative impacts for those
with high earnings potential. This heterogeneity would not be detected by
average effects which would underestimate the actual effects because different
signs would be cancelled out. This partial identification result can be used to
test homogeneity in response. When homogeneity is rejected, many parameters
based on averages may deliver misleading information.

1 Introduction

Policies provide individuals with incentives to change their choices. Different peo-
ple might respond to a policy change differently. If there exists heterogeneity in
responses, many econometric methods based on "averages" may fail to provide cor-
rect information.1 Policy evaluation literature typically uses the potential outcomes
approach in identifying treatment responses. This paper demonstrates how additively

1See Angrist (2004) for the potential outcomes approach, and Hahn and Ridder (2011) for the
structural approach.
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nonseparable structural functions are used in recovering heterogeneous causality and
provides a model that identifies individual treatment effects.2

Restrictions are imposed on the shape of the Hurwicz (1950) structure. The novel
restriction exploits the fact that the pattern of endogeneity may vary across the level
of the unobserved variable. The proposed model does not require differentiability
of the structural functions nor continuity of observed vairiables. The model does
not impose weak separability which would make it impossible to recover individuals’
heterogeneous treatment responses. It can be used to recover some partial informa-
tion on individual-level causal effects of a discrete variable by identifying the partial
difference of a nonadditive structural function.

1.1 Causality, Heterogeneity, and Nonseparable Structural
Relations

Suppose we are interested in the impact of a variable (Y ) chosen by individuals on
their outcome (W ) of interest, and suppose the economic decisions on W can be
described by the following relation3

W = h(Y,X, U), (1)

where X is a vector of characteristics that are exogenously given to individuals
such as age, gender, and race, and U is a normalized scalar index of unobservable
(possibly) multidimensional individual characteristics. Various unobserved factors
can affect the outcome and the choice, but they are assumed to do so, only through
the scalar indexes taking values between 0 and 1. The structural relation may be
derived from some optimization processes such as demand/supply functions. We are
agnostic about this. If there is not a well-defined economic theory behind them,
then the structural relations can be simply understood as how the outcome and the
choice are determined by other relevant (both observable and unobservable) variables.
The structural relation delivers the information on "contingent" plans of choice or
outcome when different values of X and U are given. Even among the individuals

2Under the potential outcomes framework, individuals’treatment effects - difference between the
outcomes with and without a treatment - are impossible to measure because only either of them is
observed, not both.

3In contrast with (1), switching regression models with a selection equation of the following form
have been widely used :

W0 = h0(0, X, U0)

W1 = h1(1, X, U1) (2)

The counterfactual outcomes are determined by distinct functional relations, h0 and h1, and the
unobserved heterogeneity for the two counterfactual events, U0 and U1, are allowed to be different.
The partial difference of h0 or h1would not be interpretaed as causal effects.
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with the same observed characterisics we observe a distribution of the outcome due to
the unobserved elements, U, and the conditional distribution of the outcome, FW |Y X ,
is determined by the interaction between the distribution of the unobserved elements,
FU |Y X and the structural relation, h(·, ·, ·).
Causal effects of a variable indicate the effects of the variable only, separated

from other possible influences. This counterfactual information is contained in partial
differences of the structural relation. When the outcome is determined by (1), the
causal effects of changing the value of Y from ya to yb on W other things being equal
would be measured by the partial difference of the structural function, h

∆(ya, yb, x, u) ≡ h(ya, x, u)− h(yb, x, u)

for some fixed values of X = x and U = u. Individuals with different values of X and
U may have different values of ∆(ya, yb, x, u), thus, heterogeneity can constitute of
both observed and unobserved components.
When Y is binary, the ceteris paribus effect of Y can be expressed by

∆(1, 0, x, u) = h(1, x, u)− h(0, x, u).

Adopting the notation of the potential outcomes framework, letWdi denote the hypo-
thetical outcome with Y = d for the individual i whose observed and unobserved char-
acteristics are x and u.4 Suppose there is a binary choice decision and let d ∈ {0, 1}.
If we can assume that W1i and W0i are generated by the structural relation then we
can write

W1i −W0i = h(1, x, u)− h(0, x, u).

This way we map the problem in the potential outcomes framework into the structural
approach5. This is the key relation that justifies the interpretation of h(1, x, u) −
h(0, x, u) as individual-specific treatment response.
Identification of causal effects calls for special attention if there is endogeneity

or selection problem. Y is called endogenous if U and Y are not independent. The
selection problem exists if the distribution of counterfactual outcomes, W0 and W1

counterfactual distributions are different from each other6. The identification problem
in the potential outcomes approach (identification of the object on the left) is caused

4See Heckman, Florens, Meghir, and Vytlacil (2008) for average effects of continuous treatment,
and Angrist and Imbens (1995), and Nekipelov (2009) for average effects of multi-valued discrete
treatment.

5By the structural approach we mean the sort of analysis in classical simultaneous equations
systems model. This should be distinguished from "structural estimation" where the underlying
optimization processes such as preferences are fully specified. Rather, the structural approach
I am considering simply assumes the existence of decision processes which can be expressed as
relationships between variables. Further specification of the decision processes is not required.

6If the counterfactual distributions are distinct from each other even after controling for observ-
able characteristics, there is selection on unobservables. Selection on unobservables is the case I am
considering in this paper.
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by the fact that either W1i or W0i is observed, but not both. Thus, the difference of
the two for each individual is never observed and cannot be replaced by observed Wi

if there exists the selection problem. Diffi culties in identification of the structural
function (identification of the object on the right) arise because observed informa-
tion from the relevant variables does not necessarily guarantee the information on
independent variation in each coordinate of the structural relation.
The potential outcomes approach does not utilize the information on the economic

processes that generate the potential outcomes. Instead of W1i −W0i, this paper fo-
cuses on identification of h(1, x, u)−h(0, x, u), by assuming the existence of economic
processes and by imposing restrictions on such decision mechanisms. See the recent
debate between Deaton (2009) and Imbens (2009)7. The proposed model can be used
to identify the signs of individual treatment responses. This model would be partic-
ularly informative when the signs of individual effects vary across the population, in
which case average effects would underestimate the true effects with different signs
being cancelled out.

1.2 Contributions

This paper contributes to the nonparametric identification literature by providing
new identification results on a non-additive structural function when an endogenous
variable is discrete/binary by using a control function approach without relying on
continuity of exogenous variables. Non-additive structural functions are used to model
heterogeneity. Use of nonseparable relation is not just a generalization.8 One of the
key implications of additively nonseparable functional form is that partial differences
are themselves stochastic objects that have distributions9. Thus, heterogeneity in

7We advocate the structural approach for two reasons : as Deaton (2009) and Heckman and
Urzua (2009) argue econometric models guided by economic models provide clearer interpretation
of data analysis. Moreover, assuming the existence of a structure derived from an economic model
allows us to use restrictions that may be justified by economic arguments such as monotonicity or
concavity of structural relation, which can result in identification of some parameters of interest. In
contrast with Imbens (2009)’s arguments, when a specific structural feature is aimed to be recovered
(not the whole structure), the structural approach helps, rather than hinders, inference of causal
information from data. On the other hand, the applicability may be limited to the extent that the
restrictions can be justified since the identifying power comes from such restrictions.

8If there exist different responses among the observationally identical agents, and if there exists
endogeneity, then nonseparable structural relation should be used. In this case conditional moment
conditions do not have identifying power. See Hahn and Ridder (2009).

9If the structural function is linear, that is, W = a+ bY + cX1 +U, then the partial derivative of
this linear function with respect to Y is b. Thus, assuming a linear structural relation corresponds to
assuming "homogenous" responses. On the other hand, an additively separable structural function,
for example, W = f(Y,X1) +U, allows for heterogeneity in responses, but once conditioning on the
observables, there are no differences among the people with different unobserved characteristics as

the ceteris paribus effect measured by the partial derivative,
∂f(y, x)

∂y
, is determined by observed

characteristics only.
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individual causal effects can be found by identifying partial differences of a non-
additive structural function. However, individual-specific causal effects have not been
discussed so far.
On the one hand, in the structural approach many studies dealing with endogene-

ity focus on identification of the structural function, rather than its partial differences,
but identification of partial differences is not necessarily guaranteed from the knowl-
edge of identification of structural function when it is non-additive. Existing identifi-
cation results of a nonadditive structural function are not applicable to identification
of the partial difference of a nonadditive function with respect to a binary endoge-
neous variable. Single equation IV models as in Chernozhukov and Hansen (2005)
and Chesher (2010) do not guarantee identification of partial differences. Imbens and
Newey (2009)’s control function approach is not applicable to discrete endogenous
variables. Chesher (2005) reports identification results of partial differences with re-
spect to an ordered discrete endogenous variable, but it is not applicable to a binary
endogenous vairiable. Jun, Pinkse, and Xu (2010) is not applicable if the IV is binary.
On the other hand, individual treatment effects are not recovered from the poten-

tial outcomes approach since both counterfactual outcomes are never observed. In-
stead, usually average effects are the focus of interest. Several papers (see Imbens and
Rubin (1997), Abadie (2002), and more recently, Chernozhukov, Fernandez-Val, and
Melly (2010), Kitagawa (2009), for example) focus on identification of the marginal
distributions of the counterfactuals whose information may be useful in recovering
QTE, but the individual treatment effect cannot be recovered from the information
on the marginal distributions of the potential outcomes.
Another distinct feature of the proposed model is that the identifying power does

not come from restrictions on data. In this paper nonparametric shape restrictions
on the structure are imposed, rather than relying on properties of observed variables.
Nonparametric identification under endogeneity often relies on the characteristics of
IV/exogenous variables - many results exploit continuity, rich support in exogenous
variation, large support conditions or certain rank conditions. Such results therefore
may have limited applicability since many microeconomic variables are discrete or
show limited variation in the support. In contrast with other studies, the new resuls
in this paper can be applied to a discrete, including binary, endogenous variable when
the IV is binary or when the IV is weak. The proposed model does not require differ-
entiability of the structural function and thus, can be applied to discrete outcomes.
The proposed weak rank condition can be applied to examples such as regression dis-
continuity designs, a case with a binary endogenous variable or weak IV or a binary
IV.

1.3 Related Studies

Since Roehrig (1988)’s recognition of the importance of nonparametric identification,
there have been many studies that aim to clarify what can be obtained from data

5



without parametric restrictions (see Matzkin (2007) for a survey on nonparametric
identification and the references therein). When parametric assumptions are avoided,
point identification is often not possible10 with a discrete endogenous variable. In such
cases one could aim to define a set in which the parameter of interest can be located.
This partial identification idea, which was pioneered by Manski (1990, 1995, 2003),
has been actively used in many different setups and since it now constitutes a vast
literature we only focus on policy evaluation literature.
Many authors11 emphasize the existence of heterogeneity in individual responses

in practice and the importance of the information regarding individual-specific, pos-
sibly heterogeneous causal effects of a binary endogenous variable was recognized
earlier. Many interesting parameters are functionals of the distribution of individual
treatment effects as Heckman, Smith, and Clements (1997) noted. In contrast with
average treatment effects which are found by a linear operator, other functionals such
as quantiles require the knowledge of the distribution of the individual treatment
effects12.
Some information regarding heterogeneity can be recovered by using quantiles.

One particular object that has been the focus of research is the quantile treatment
effect (QTE) defined by Lehman (1974) and Doksum (1974)13. The QTE can be
found from the marginal distributions in principle. to control for possible slection
issues, Abadie, Angrist, and Imbens (2002) study the QTE under the LATE-type
assumptions using a linear quantile regression model, Firpo (2007) under the matching
assumption, and Frolich and Melly (2009) under the regression discontinuity design.
Chernozhukov and Hansen (2005)’s moment condition based on their IV-QR model
provides a way to estimate QTE controlling for selection or endogeneity problem.
However, QTE should not be used to identify individual-specific treatment effects.
One approach to recover individual-specific causal effects is to recover hetero-

10Under the "complete" system of equations as Roehrig (1988) and Matzkin (2008), identification
analysis relies on differentiability and invertibility of the structural functions. However, differentia-
bility and invertibility fail to hold with discrete endogenous variables. Another well known example
is discussed by Heckman (1990) using the selection model - without parametric assumptions point
identification is achieved by the identification at infinity argument, which may not hold in practice.
11See, for example, Heckman (2000).
12When the treatment effects are homogeneous the problem is trivial and the distribution of the

treatment effects is degenerate. See Firpo and Ridder (2008) for more discussion.
13By estimating quantile treatment effects (QTE) using the Connecticut experimental data Bitler,

Gelbach, and Hoynes (2006) found that welfare reforms in the ninties had heterogeneous effects on
individuals as predicted by labour supply theory. They conclude that "welfare reform’s effects are
likely both more varied and more extensive". Average effects may miss much information and can
be misleading if the signs of individual treatment effects are varying across people. However, when
experimental data are not available, QTE does not have causal interpretation on individuals be-
cause individuals’rankings in the two marginal distributions of the potential outcomes may change.
Our model could be used to determine who benefits by identifying the signs of treatment effect of
individuals with different rankings of the scalar unobserved heterogeneity even with observational
data.
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geneity in treatment effects by identifying the distribution of W1 − W0 directly14.
Heckman, Smith and Clements (1997) use the Hoeffding-Frechet bounds, and Fan
and Park (2010) and Firpo and Ridder (2008) used Makarov bounds to derive in-
formation on the distribution of the treatment effects from the "known" marginal
distributions of the potential outcomes.
Alternative to these potential outcomes setups, one could use structural ap-

proaches. By adopting a triangular structural setup, Chesher (2003,2007) studies
identification of ∆(ya, yb, x, u) when Y is continuous, by the quantile-based control
function approach (QCFA, hereafter). Chesher (2005) showed how the QCFA pro-
posed by Chesher (2003) can be used to find the intervals that the values of the
structural function lie in when the endogenous variable is ordered discrete with more
than three points in the support. Jun, Pinkse, and Xu (2010) report tighter bounds
when a different rank condition from Chesher’s (2005) is used, while other restrictions
on the structure in Chesher (2005) are adopted. Jun, Pinkse, and Xu (2010) does not
have identifying power for a binary endogenous variable if the IV is binary. Vytalcil
and Yildiz (2007) use a triangular system and report a point identification result of
the average treatment effect of a dummy endogenous variable under weak separability
and an exclusion restriction. Their results rely on certian characteristics of variation
in exogenous variables and excluded variables to achieve point identification. Vytalcil
and Yildiz (2007) does not guarantee identification of partial difference. They focus
on identificaiton of the average effect, not the structural function. Manski and Pep-
per (2000) and Bhattacharya, Shaikh, and Vytlacil (2008) have partial identification
results on average effects. They exploit different monotonicity restrictions. More
discussion on these studies can be found in Lee (2011).

1.4 Organization of the Paper

The remaining part is organized as follows. Section 2 introduces the model for "or-
dered" discrete endogenous variables and contains the main identification results.
Section 3 discusses "unordered" binary endogenous variable as a different case of dis-
crete endogenous variable. Section 4 discusses the restrictions imposed in the model
and other related studies in more detail. Section 5 illustrates the usefulness of the
identification results by examining the effects of the Vietnam-era veteran status on
the civilian earnings using a binary IV. Section 6 concludes.

14The quantiles of treatment effects recovered from the distribution of W1i−W0i are examples of
D∆− treatment effects, while the quantile treatment effects (QTE) are examples of ∆D−treatment
effects discussed in Manski (1997). Neither of them is implied by the other, and they deliver different
information regarding distributional consequences of any policy. As Firpo and Ridder (2008) nicely
discussed, ∆D−treatment effects, such as QTE can deal with the issues such as the impact of a
policy on the society (population) in general, while D∆−treatment effects can be used to address
issues such as policy impacts on "individuals".
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2 Local Dependence and ResponseMatch (LDRM)
model - MLDRM

2.1 Restrictions of the Model MLDRM

I introduce a model that interval identifies the value of the structural function evalu-
ated at a certain point in the presence of an endogenous discrete variable by applying
the quantile-based control function approach (QCFA) in Chesher (2003). The model,
MLDRM , is defined as the set of all the structures that satisfy the restrictions15.

Restriction QCFA16 : Scalar Unobservables Index (SIU)/Monotonicity/Exclusion

W = h(Y,X, U),

Y = g(Z,X, V ),

with g(z, x, v) = ym, Pm−1(z, x) < v ≤ Pm(z, x),

m ∈ {1, 2, ...,M − 1}

The function h is weakly increasing17 with respect to variation in scalar U. From
here on other exogenous variables, X, are ignored. X can be added as a conditioning
variables in any steps of discussion without changing the results.
The variable W is a discrete, continuous, or mixed discrete continuous random

variable. The conditional distribution of Y given Z = z is discrete with points of
support y1 < y2 < ... < yM , invariant with respect to z and with positive probability
masses {pm(z)}Mm=1. Cumulative probabilities {Pm(z)}Mm=1 are defined as

Pm(z) ≡
m∑
l=0

pl(z) = FY |Z(ym|z), m ∈ {1, 2, ...,M},

p0(x) ≡ 0.

The latent variates are jointly continuously distributed and they are normalized
uniformly distributed on (0, 1) independent of Z. The value ym,m ∈ {2, ...,M − 1},
is an interior point of support of the distribution of Y.

15I adopt this definition of a model as a set of structures satisfying the restrictions imposed,
following Koopmans and Reiersol (1950).
16Triangularity assumption enables us to avoid the issue of coherency that may be caused due to

discrete endogenous variables when the outcome is discrete.
17If g is weakly increasing in v, then if h is weakly increasing in u and if g is weakly decreasing, h

should be weakly decreasing as well. This monotonicity restriction is one of the two key restrictions
in QCFA identification strategy. This enables us to use the equivariance property of quantiles.
In many applications this can be justified - under certain regularity conditions many optimization
frameworks predict that the equilibrium relations are monotonic in certain variables - law of demand
as a typical example. See Imbens and Newey (2009) for examples that justify monotonicity.
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The function g evaluated at Z = z, g(z, τV ) is identified by QY |Z(τV |z). The
monotonicity restriction on Y is reflected in the threshold crossing structure.

Restriction RC (Rank Condition)18 There exist instrumental values of Z,
{z′m, z′′m}, such that

Pm(z′m) ≤ τV ≤ Pm(z′′m)

for m ∈ {0, 1, 2, ...,M − 1}.

Restriction C-QI (Conditional Quantile Invariance) : The value of U, u∗ ≡
QU |V Z(τU |τV , z) is invariant with z ∈ zm ≡ {z′m, z′′m} for Pm(z′m) ≤ τV ≤ Pm−1(z′′m).

Define V ≡ (VL, VU ], where VL = maxz∈zm P
m−1(z), and VU = maxz∈zm P

m+1(z).19

Define alsoU ≡ (UL(z), UU(z)], where UL(z) = minτV ∈V QU |V Z(τU |τV , z), and UU(z) =
maxτV ∈V QU |V Z(τU |τV , z). The value, u∗, is not known, but it indicates τU− ranked
individual’s value of U in the conditional distribution of U given V and Z. The case
in which FU |V Z(u∗|v, z) is nonincreasing in v, for u∗ ∈ U is called PD (Positive
Dependence) and the other case, ND (Negative Dependence). The case in which
h(ym+1, u∗) ≥ h(ym, u∗) is called PR (Positive Response) and the other case, NR
(Negative Response).

Restriction LDRM (Local (Quantile) Dependence Response Match) :
FU |V Z(u|v, z) is weakly monotonic in v ∈ V for u ∈ U. If FU |V Z(u|v, z) is weakly
decreasing in v ∈ V for u ∈ U , then h(ym+1, u∗) ≥ h(ym, u∗), (PDPR) and if
FU |V Z(u|v, z) is weakly increasing in v ∈ V for u ∈ U , then h(ym+1, u∗) ≤ h(ym, u∗),
(NDNR) for any u∗ ∈ U for m ∈ {0, 1, 2, ...,M − 1}. See Figure 1.

2.2 Discussion on Restrictions

2.2.1 Restriction QCFA - Scalar Index Unobservables, U and V

These are the fundamental restrictions imposed in the quantile-based control function
method in Chesher (2003). Monotonicity of the structural functions in the scalar

18Restriction RC is related to the "relevance" condition for IV. If Z is a strong IV, Restriction
RC is satisfied. Chesher (2005)’s rank condition is that there exist values of Z, z′m, and z

′′
m such

that
Pm(z′m) ≤ τV ≤ Pm−1(z′′m)

thus, if Chesher (2005)’s rank condition holds, our rank condition also holds since Pm−1(z′′) ≤
Pm(z′′). In this sense, Chesher (2005)’s rank condition is stronger than our rank condition. Note
also that Chesher (2005)’s strong rank condition is not satisfied when the instrument is weak or
when a binary endogenous variable is present.
19For a binary endogenous variable V ≡ [0, 1].
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FU|V

0 U

u

F U |V=v

FU|V=P m?1ÝzÞ

F U|V=P m+1ÝzÞ

uDULÝzÞ UUÝzÞ u2
D

Figure 1: "Local" nature of Restriction LDRM : the information on endogeneity

is contained in FU |V - if Y is exogenous, then FU |V is invariant with values of V.FU |V is drawn

for different values of V by assuming monotonicity in V . The solid line is the distribution of U
given V = v. A point in the support of U, u∗ can be written as τU -quantile of U given V = v.
Monotonicity of FU |V (u∗|v) does not have to be global in U , all that is required is monotonicity
in some region U of u. In this graph, for v′ ≤ v′′ ≤ v′′′, FU |V (u∗|v) is decreasing in v, while
FU |V (u∗2|v) is increasing in v ∈ V.

indices of unobserved factors and the existence of Z that is excluded from the outcome
equation are key features together with independence between U and Z. The model
admits multiple factors of unobserved heterogeneity as long as they affect the outcome
though a scalar index.20

There is a tradeoff between using a vector and a scalar unobserved heterogeneity
- allowing for a vector unobserved heterogeneity in the structural relation would be
more realistic. Several studies report identification results without monotonicity re-
strictions (See Altonji and Matzkin (2005), Hoderlein and Mammen (2007), Imbens
and Newey (2009), and Chalak, Schennach, and White (2008), and Chernozhukov,
Fernandez-Val, and Newey (2009) for identification analysis without monotonicity).
However, what can be identified without monotonicity is objects with the hetero-
geneity in responses averaged out. On the other hand, the quantile-based approaches
under monotonicity can be adopted to recover heterogeneous treatment response only

20However, this scalar unobserved index assumption does not admit measurement error models
or duration outcomes. For structures with vector unobservables that cannot be represented by a
scalar unobservable, see Chesher (2009), where examples of such case are illustrated. The vector of
unobservables is called "excess heterogeneity" in Chesher (2009) - "excess" in the sense that we allow
for more unobservable variables than the number of endogenous variables. The distinction of the
number of endogenous variables from the number of unobservable variables stems from the analysis
of classical simultaneous equations models of the Cowles Commission, and more recent studies on
nonparametric identification of simultaneous equations models in Brown (1983), Roehrig (1988),
Matzkin (2008), and Benkard and Berry (2006), where the number of unobservables is equal to the
number of endogenous variables.
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if a scalar (index) unobserved heterogeneity is assumed.

2.2.2 Local Dependence and Response Match (LDRM)

Endogeneity is often defined as the dependence between an explanatory variable
and the unobserved elements in the structural relationship. They can be positively
dependent or negatively dependent. "Dependence" is used instead of "correlation" to
clarify the local information contained in Restriction LDRM. Under the triangularity
of this paper the source of endogeneity is caused by the dependence between U and
V. This information is contained in the conditional distribution of FU |V .
Restriction LDRM assumes first that FU |V (u|v) is monotonic in v in certain ranges

of U and V. Then it restricts the direction of the dependence in that range and the
direction of the response - whether the response is positive or negative or zero. For
example, college graduates may be different from high school graduates in terms of
ability (U) when other observed characteristics are identical. Restriction LDRM is
concerned with how the patterns of dependence vary with the level of the unobserved
characteristic. It may be the case that individuals with very low ability are not
allowed to get into college due to low test scores, on the other hand, individuals with
extremely high ability may not choose to go to college if they have better options that
will lead to higher income. This example shows the possibility that there is positive
dependence with the low level of ability, and negative dependencewith the high level.
Restriction LDRM is regarding each point in the support of the unobserved vari-

able U. Note that U is normalized to be uniform (0,1) and each point in (0,1) is
indicated by expressing it as quantiles. In this sense, "local" implication of Restric-
tion LDRM can be understood using quantiles.

Relaxation of LDRM What is required for the main results to hold, is less
restrictive than Restriction LDRM. Even though the match does not hold (that is,
either PDNR or NDPR is the case) as long as the reversal effect (different effect
from stated in LDRM restriction) is small, the bounds defined by the model are
still relevant and sharp. Consider the education and wage example. Suppose that
education is assumed to be positively dependent with unobserved ability, in other
words, more able people tend to decide to get educated. The case in which our
model is not applicable is the case in which education is so deterimental that the
hypothetical wage with one more year of education is smaller than without it, among
those with "similar" abliity. On the other hand, LDRM restricts that wage with one
more education needs to be larger or equal to that without it among the "same" level
of ability if more able individuals choose to get educated more.

Restriction No interaction Reversal (NIR) : FU |V Z(u|v, z) is weakly monotonic
in v ∈ V for u ∈ U. If FU |V Z(u|v, z) is weakly decreasing in v ∈ V for u ∈ U ,
then h(ym+1, u) ≥ h(ym, u∗) for u, u∗ ∈ U, with u ≥ u∗. Conversely, FU |V Z(u|v, z) is
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weakly increasing in v ∈ V for u ∈ U , then h(ym+1, u) ≤ h(ym, u∗), u, u∗ ∈ U, with
u ≤ u∗ for m ∈ {0, 1, 2, ...,M − 1}.

<Figure 2> and <Figure 3> are drawn for the case where the unobserved el-
ements are positively dependent. Restriction LDRM specified that h(ym+1, u∗) ≥
h(ym, u∗), (comparison of points A and B) thus, by monotonicity of h with respect to
U, h(ym+1, u) ≥ h(ym+1, u∗) ≥ h(ym, u∗), for u ≥ u∗ (that is, C ≥ B ≥ A). <Figure
3> shows the case in which Restriction LDRM fails (A≥ B). The left panel is the case
in which LDRM fails, but NIR holds, while the right panel is the case both LDRM
and NIR fail.

U

hÝym , uÞ
hÝym+1,uÞ

uD u

W

A

B
C

Figure 2: LDRM satisfied

2.2.3 Discrete Data

The restrictions imposed do not require continuity/differentiability of structural re-
lations nor rely on continuity of covariates/large support condition. This makes the
proposed model more useful since many variables in microeconometrics are discrete
or censored.

3 Main Results

3.1 Bound on the Value of the Structural Relation

We have the following interval identification for h(ym, u∗) for m ∈ {1, 2, ...,M − 1},
where u∗ = QU |V Z(τU |τV , z). For m = M, the bound in Theorem 1 is not applied21.

21The bounds cannot be applied to m = M. This restricts the identification results when M = 2,
as we will see in the next section.
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Figure 3: Failure of LDRM (A>B) for the case of positive dependence - the main results
still hold for for the left panel (A<C), while the main result does not hole for the right
panel (A>C).

Theorem 1 Under Restriction QCFA,C-QI,RC,and LDRM, there are the in-
equalities for m ∈ {0, 1, 2, ...,M − 1} and τ ≡ {τU , τV }

qLm(τ , ym, zm) ≤ h(ym, u∗) ≤ qUm(τ , ym, zm)

where u∗ = QU |V Z(τU |τV , z),
for some τU ∈ (0, 1) and τV ∈ [Pm(z′m), Pm(z′′m)],

z ∈ zm = {z′m, z′′m},
qLm(τ , ym, zm) = min{QW |Y Z(τU |ym, z′m), QW |Y Z(τU |ym+1, z′′m)},
qUm(τ , ym, zm) = max{QW |Y Z(τU |ym, z′m), QW |Y Z(τU |ym+1, z′′m)}.

The interval is not empty.
Proof. See the Appendix.

To identify all the values of the structural function, say, h(y1, u∗), h(y2, u∗), ..., h(yM−1, u∗),
for fixed u∗, we need to guarantee the rank condition holds for all m ∈ {1, 2, ...,M −
1}.There should exist two values of Z, {z′m, z′′m} for each m, such that Pm(z′m) ≤
τV ≤ Pm(z′′m). Therefore, how closely Y and Z are related and whether we have
enough variation in Z are key to the identification of the whole function.
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3.2 Sharpness

Suppose a set identifies the value of the structural feature. Then all distinct "ad-
mitted" structures that are "observationally equivalent" to the true structure should
produce values of the structural feature that are contained in the identified set. All
such structures that generate a point in the set, are indistinguishable by data. A
sharp identified set contains all and only such values that are generated by admitted
and observationally equivalent structures.
If the identified set is not sharp, some of the points in the set are not possible

candidates for the value of the structural feature, which would make the identified
set less informative.
Different points in a sharp identified set may have been generated by different

structures, but the distinct structures (i) should all satisfy the restrictions of the model
(consistent with the model), (ii) should be observationally equivalent (consistent with
the data), and (iii) any point in the interval should be considered to be the possible
value of the structural feature. (See Lee (2011) for the definition of sharpness).
Common support restriction is imposed for sharpness.

Restriction CSupp (Common Support) The support of the conditional dis-
tribution of W given Y and Z has support that is invariant across the values of Y
and Z.

Theorem 2 Under Restrictions CSUPP, QCFA,C-QI,RC,and LDRM, the bound
I(τ , ym, z) ≡ [qLm(τ , ym, zm), qUm(τ , ym, zm)], specified in Theorem 5.1 for each m =
0, 1, 2, ..,M − 1 and for some τ ≡ {τU , τV }, is sharp.
Proof. Use Lemma 1 in Section 2.2. See the Appendix.

Sharpness of an identified set is a logically essential property for inference. When
the identified set is not sharp, the confidence region is constructed "conservatively".
However, if an identified set is not shown to be sharp, then the inference based on the
non-sharp identified set can be meaningless - it could be the case that one never rejects
a hypothesis (regarding the structural feature) even if the hypothesis were not true.
For example, consider one is interested in H0 : θ(S) = 0. Without the information on
the outer region, confidence region constructed on the non-sharp identified set might
not be informative, since even if zero lied in the confidence region, one never knows
whether zero is in the outer region or not. If zero lied in the outer region of the
identified set, then the inference would fail with the power of the test being zero.

14



3.3 Many Instrumental Values, Overidentification, and Refutabil-
ity

If there are many pairs of values of Z that satisfy Restriction RC (overidentification),
then each pair defines the causal effect for a different subpopulation defined by each
pair. Taking intersection of each identified set cannot be a sharp identified set as is
discussed Lee (2011). To use all the information available from data and to justify
taking intersection of each set defined by distinct pairs of values of Z in producing a
sharp identified set in this case, a different restriction is imposed.

Let SUPP (Z) be the support of Z. Define Vm ≡ [Pm(z′m), Pm(z′′m)] for the pair,
{z′m, z′′m} that satisfies Restriction RC. Each pair defines different subpopulation over
which a causal interpretation is given. Define Zm as the set of pairs of {z′m, z′′m} that
satisfies Restriction RC, Zm ≡ {zm : Pm(z′m) ≤ τV ≤ Pm(z′′m), with zm = {z′m, z′′m}}.
Let Vm(Zm) ≡ {Vm(zm) : zm ∈ Zm} be a class of the set defined by Zm. Denote
V ≡ ∩Vm(Zm).

Restriction C-QIM (Conditional Quantile Invariance with Many Instru-
mental Values) : The value of U, u∗ ≡ QU |V Z(τU |τV , z) is invariant with all
z ∈ zm(∈ Zm).

Corollary 1 Under Restriction QCFA,C-QIM , RC,and LDRM, there are the
inequalities for m ∈ {0, 1, 2, ...,M − 1}, τ ≡ {τU , τV },

QL
m(τ , ym,Zm) ≤ h(ym, u∗) ≤ QU

m(τ , ym,Zm)

where u∗ = QU |V Z(τU |τV , z),
for some τU ∈ (0, 1) and τV ∈ V ≡ ∩mVm(zm)

QL
m(τ , ym,Zm) = max

zm
qLm(τ , ym, zm), zm ∈ Zm

QU
m(τ , ym,Zm) = min

zm
qUm(τ , ym, zm), zm ∈ Zm

qLm(τ , ym, zm) = min{QW |Y Z(τU |ym, z′m), QW |Y Z(τU |ym+1, z′′m)}
qUm(τ , ym, zm) = max{QW |Y Z(τU |ym, z′m), QW |Y Z(τU |ym+1, z′′m)}

This intersection interval is sharp and can be empty.
Proof. Idenitified intervals for each pair zm ∈ Zm, are shown in Theorem 1. The
bound in this corollary is found by taking intersection of all such identified intervals.
This intersection bound is sharp. The same sharpness proof of Thorem 2 applies
with some modification in (S2) constructed in the proof in Appendix. When there
exist many instrumental values that satisfy the rank condition, RC, the partition,
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{P l}Ml=1 defined in the proof of Theorem 2 can be re-defined as the following :

P l =

{
minz∈SUPP (Z){P l(z)}, if l < m− 1

maxz∈SUPP (Z){P l(z)}, if l > m

}
Pm−1 = min

z∈zL
{Pm(z)}

Pm = max
z∈zU
{Pm(z)},

where zL ≡ {zL : zL = min zm, zm ∈ Zm}
zU ≡ {zU : zU = max zm, zm ∈ Zm}
Zm ≡ {zm : Pm(z′m) ≤ τV ≤ Pm(z′′m),with zm = {z′m, z′′m}}.

zL(zU) is the set of smaller (larger) values of zm = {z′m, z′′m} ∈ Zm. The partition of
the support of V, (0, 1), is constructed such that P 1 < P 2 < ... < PM .

Intersection of identified sets may be empty, and even if it is not empty, the causal
interpretation of the intersection bound needs to be given to a different subpopulation.
Suppose that the intersection, V 6= ∅. Then the bound defined by Corollary 1

should be interpreted as causal effects for the subpopulation defined by V. If V = ∅,
no causal interpretation would be possible, even though the intersection bound may
not be empty since the subpopulation that is affected by the change in the values of
Z does not exist. If V 6= ∅, but the intersection bound is empty, then this means that
some of the restrictions in the model are not satisfied22. However, which restrictions
are misspecified is not known by the fact that the identified set is empty. This way
one can falsify the econometric model, rather than a specific restriction.

4 Binary Endogenous Variable

Although in many empirical studies, the distribution of the treatment effects can
deliever valuable information for any policy design, quantiles of the distribution of
differences of potential outcomes, W1 − W0, have been considered to be diffi cult
to point identify without strong assumptions.23 In this section I apply the LDRM
model to a binary endogenous variable and identify the ceteris paribus impact of
the binary variable, or treatment effects. As Chesher (2005) noted, models for an
ordered discrete endogenous variable can not directly be applied to binary endogenous
variables due to the "unordered" nature of binary variables, however, Restriction
LDRM imposes a sense of order to a binary endogenous variable, which enables the
model to identify the partial differences. The number of points in the support of Y
restricts the identification result.
22I am grateful to Pierre Debois, and Brendon McConell for this point.
23Note that in general, quantiles of treatment effects, QW1−W0|X(τ |x) 6= QW1|X(τ |x)−QW0|X(τ |x),

where the right hand side is the QTE.
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4.1 Bound on the Value of the Structural Relation

The model interval identifies h(1, u∗) and h(0, u∗) as is shown in the following corol-
lary.

Corollary 2 Under Restriction QCFA,C-QI,RC,and LDRM there are the inequal-
ities for y ∈ {0, 1}, z ∈ z = {z′, z′′}, and τ ≡ {τU , τV },

qL(τ , y, z) ≤ h(y, u∗) ≤ qU(τ , y, z)

where u∗ = QU |V Z(τU |τV , z),
for some τU ∈ (0, 1) and τV ∈ [P (z′), P (z′′)],

qL(τ , y, z) = min{QW |Y Z(τU |0, z′), QW |Y Z(τU |1, z′′)}
qU(τ , y, z) = max{QW |Y Z(τU |0, z′), QW |Y Z(τU |1, z′′)}

The bound is sharp.
Proof. See the Appendix

The identified intervals for h(1, u∗) and h(0, u∗) are the same. Nevertheless, this
is still informative in the sense that the identified interval restricts the possible range
that the values h(1, u∗) and h(0, u∗) lie in, and that under Restriction LDRM either
the upper bound or the lower bound on h(1, u∗)− h(0, u∗) should be zero.

Lemma 3 Under Restriction QCFA,C-QI,RC,and LDRM,

PDPR implies QW |Y Z(τU |ym+1, z′′m) ≥ QW |Y Z(τU |ym, z′m), and

NDNR implies QW |Y Z(τU |ym+1, z′′m) ≤ QW |Y Z(τU |ym, z′m).

Proof. See the Appendix.

Corollary 2 and Lemma 3 are used to recover heterogeneous treatment re-
sponses. Theorem 3 states the partial identification result of heterogeneous treat-
ment effects.

4.2 Bound on Partial Difference of the Structural Relation

Theorem 3 Under Restriction QCFA,C-QI,RC,and LDRM, h(1, u∗) − h(0, u∗) is
identified by the following interval:

BL ≤ h(1, u∗)− h(0, u∗) ≤ BU

BU = max{0, Q∆
10(τU)}

BL = min{0, Q∆
10(τU)},

where Q∆
10(τU) ≡ QW |Y Z(τU |1, z′′)−QW |Y Z(τU |0, z′)
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Proof. Suppose QW |Y Z(τU |1, z′′) ≥ QW |Y Z(τU |0, z′). From Corollary 2 we have

QW |Y Z(τU |0, z′) ≤ h(1, u∗) ≤ QW |Y Z(τU |1, z′′)
QW |Y Z(τU |0, z′) ≤ h(0, u∗) ≤ QW |Y Z(τU |1, z′′)

then we have

−(QW |Y Z(τU |1, z′′)−QW |Y Z(τU |0, z′)) ≤ h(1, u∗)− h(0, u∗) (3)

≤ QW |Y Z(τU |1, z′′)−QW |Y Z(τU |0, z′).

By Lemma 3, if QW |Y Z(τU |1, z′′) ≥ QW |Y Z(τU |0, z′), we should have

h(1, u∗)− h(0, u∗) ≥ 0

applying this to (3) yields the result. The case whenQW |Y Z(τU |1, z′′) ≤ QW |Y Z(τU |0, z′)
can be shown similarly.

Whether the treatment effect is positive or negative can be determined by data
from the sign of Q∆

10(τU) ≡ QW |Y Z(τU |1, z′′) − QW |Y Z(τU |0, z′) based on Theorem
3. If Q∆

10(τU) > 0, then

0 ≤ h(1, u∗)− h(0, u∗) ≤ Q∆
10(τU),

and if Q∆
10(τU) < 0, then

Q∆
10(τU) ≤ h(1, u∗)− h(0, u∗) ≤ 0.

If Q∆
10(τU) = 0, then h(1, u∗) − h(0, u∗) is point identified as zero. Either the upper

bound or the lower bound is always zero.
If Restriction LDRM were true about the underlying structure, then from this

restriction we could infer whether the dependence between the two unobservables is
positive or negative locally in a certain range by Lemma 3. If economic arguments
can justify the nature of the dependence pattern found from data, then this model
can be credibly applicable.

4.3 Discussion

4.3.1 Heterogeneous Causality Measured by Partial Differences

The major object of interest in this paper is the partial difference of the structural
quantile function, h(1, u∗) − h(0, u∗). The value u∗ is unknown, but is assumed to
be u∗ = QU |V Z(τU |τV , z) for some τU , τV ∈ (0, 1). h(1, u∗) − h(0, u∗) is interpreted
as a ceteris paribus impact of Y . When the value of Y changes from 1 to 0, the
value of U would change as well if there exists endogeneity. This is in contrast with
other identification results in additively nonseparable models. Other studies identify
the values of a nonadditive structural function, but their results do not guarantee
identification of partial differences.
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4.3.2 Rank Condition and Causal Interpretation

The rank condition restricts the group for whom the identification of causal impacts
is justifiable into those who are ranked between P (z′) and P (z′′), where P (z) =
Pr(Y = 0|Z = z). h(1, u∗)− h(0, u∗) would be understood as the treatment effects of
the τU−ranked individuals in the subpopulation whose V− ranking is between P (z′)
and P (z′′). When the value of Z changes from z′ to z′′, their treatment status changes
from y = 1 to y = 0.We call this group "compliers" following the potential outcomes
framework.

4.3.3 Applicability to Regression Discontinuity Designs (RDD) and Ran-
domised Trials

Recently, many studies (see Lee and Lemieux (2009), for a survey) adopted regres-
sion discontinuity design (RDD) to measure causal effects. Under this design if the
continuity condition at the threshold point of the "forcing variable" holds, the causal
effects of individuals with the forcing variable just above and below the threshold
point are shown to be identified. When the RDD is available, our rank condition24

is guaranteed to hold, thus, as long as Restriction LDRM is applicable in the con-
text of interest, the proposed model can be applicable to an RD design even when
all other variables are not continuous in the treatment - determining variable at the
threshold.25

5 Further Comments

5.1 Control FunctionMethods and Discrete Endogenous Vari-
ables in Non-additive Structural Relations

Control function approaches are understood as a way to correct endogeneity or the
selection problem by conditioning on the residuals obtained from the reduced form
equations for the endogenous variables in a triangular simultaneous equations sys-
tem. Control function methods (see Blundell and Powell (2003) for a survey) are
not considered to be applicable when the structural function is non-additive and the
endogenous variable is discrete. If the structural relation is additively separable, the
control function method can be applied to a case with a discrete endogenous variable.
(See Heckman and Robb (1986)).
Imbens and Newey’s (2009) control function method under non-additive structural

relation is conditioning on the conditional distribution of the endogenous variable

24Suppose a threshold point t0 of a variable T is known by a policy design such that the treatment
status (Y ) is partly determined by this vairiable. Then we can construct a binary variable Z such
that Z = 1(T > t0). In such a case, our rank condition holds.
25For example, age or date of birth, which are used for eligibility criteria, are often only available

at a monthly, quarterly, or annual frequency level.
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given other covariates as an extra regressor for the outcome equation. Chesher (2003)
used the QCFA. This uses the same information as Imbens and Newey (2009), but
instead of conditioning on the conditional distributions of the endogenous variable
given other covariates, the QCFA can be understood as conditioning on a quantile
of the conditional distribution. Imbens and Newey (2009) show that the two control
function approaches are equivalent when the endogenous variable is continuous.
When the endogenous variable is discrete, Imbens and Newey (2009)’s approach

does not have identifying power.26 Chesher (2003)’s QCFA fails to produce point
identification since the one-to-one mapping between the endogenous variable and the
unobserved variable that exists with a continuous endogenous variable does not exist
any more with a discrete endogenous variable. Rather, with a discrete endogenous
variable, a specific value of the endogenous vairiable maps into a set of values of the
unobservable variable, (called V-set), thus, the QCFA with a discrete variable could
be roughly described as conditioning on v-quantiles of the conditional distribution of
the endogenous variable given covariates, where v ∈ V-set. The smaller the V-set is,
the smaller the identified set is. Without imposing further restrictions, a sharp bound
cannot be defined. Chesher (2005) suggested to impose monotonicity of FU |V (u|v)
in v to define a bound on the value of the structural funciton. This monotonicity
restriction is adopted in this paper and Jun, Pinkse, and Xu (2010).

5.2 Nonparametric Shape Restrictictions

The identifying power of an eceonometric model comes from restrictions imposed
by the model. The restrictions can be categorized into two : those imposed on the
structure, and those on data. One could impose restrictions on data - existence of a
variable exhibiting certain patterns such as large support condition, rank conditions,
or completeness conditions.
Alternatively, one could adopt restrictions on the structure. Apart from Chesher

(2005) and Jun, Pinkse, and Xu (2010)’s monotonicity imposed on the distribution
of the unobservables, which is mentioned earlier, Manski and Pepper (2000)27 and
Bhattacharya, Shaikh and Vytlacil (2008) adopt certain monotonicity restrictions in
the structural relations. Under the MTS (Monotone Treatment Selection) - MTR
(Monotone Treatment Reponse) restriction Manski and Pepper (2000) estimated the
upper bounds on the returns to schooling. With monotonicity in response, the lower
bound is always zero.
Manski and Pepper (2000) develop their arguments by assuming that both se-

lection and response are increasing, but assuming that both are decreasing also leads

26Imbens and Newey (2009) defines a bound, but this is for the case in which the common support
assumption fails, not for a discrete endogenous variable.
27Okumura and Usui (2009) impose concavity to Manski and Pepper (2000) framework and show

that the identified interval can be shortened. However, when the endogenous variable is binary, the
Okumura and Usui (2009) bounds would be the same as those of Manski and Pepper (2000).
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to identification of average effects. However, with the LDRM restriction, weakly in-
creasing response should be matched with weakly increasing selection and vice versa.
MTR is equivalent to monotone response assumption in our model, and MTS holds
if FU |V (u|v) is weakly decreasing in v over the whole support of U. The LDRM allows
the direction (either PDPR or NDNR) of the match to vary over the support of U. On
the other hand, the MTR-MTS should be matched for the mean - either positive re-
sponse with positive selection or negative response with negative selection. Roughly
speaking, the LDRM restriction can be described as a local (quantile)28 version of
MTR-MTS. Manski and Pepper (2000) identifies average treatment effects, thus the
heterogeneity in treatment effects can be found for the subpopulation defined by the
observed characteristics, while LDRM model can recover heterogeneity in treatment
effects even among observationally identical individuals.
Bhattacharya, Shaikh and Vytlacil (2008) compare Shaikh and Vytlacil (2005)

bounds with Manski and Pepper (2000)29 by applying them to a binary outcome -
binary endogenous variable case. Bhattacharya, Shaikh and Vytlacil (2008)’s bounds
are found under the restriction that the binary endogenous variable is determined by
an IV monotonically. When IV, Z, and Y are binary, their monotonicity is equivalent
to the monotonicity here. Note also that when Y is binary, we can always reorder
0 and 1 due to the "unordered nature" of a binary variable. In contrast with their
claim, when Manski and Pepper (2000) is applied to a binary case, the direction of
the monotonicity of response and selection does not have to be determined a priori30.
Data will inform about the direction of the monotonicity, however, the direction of
MTR and MTS should be matched in a certain way31.

28Restriction MTR-MTS is regarding the mean, while Restriction LDRM is regarding each point
(locally) in the support of the unobserved variable, U. Every point in the support of U can be
expressed as quantiles of the distribution of U .
29In fact, what they consider is MTR-MIV in Manski and Pepper (2000) with the upper bound

of the outcome 1 and the lower bound 0 when the outcome is binary.
30When the endogenous variable is ordered discrete with more than two points in the support,

the direction should be assumed a priori to find the bounds.
31Following the notation of Manski and Pepper (2000) if data show that E(y|z = 0) ≤ E(y|z = 1),

then this is the case where non-decreasing MTR and non-decreasing MTS are matched because

E(y|z = 0) = E(y(0)|z = 0)
MTR
≤ E(y(1)|z = 0)

MTS
≤ E(y(1)|z = 1) = E(y|z = 1).

Whereas if the data show that E(y|z = 0) ≤ E(y|z = 1), then this is the case where non-increasing
MTR matched with non-increasing MTS as follows :

E(y|z = 0) = E(y(0)|z = 0)
MTR
≥ E(y(1)|z = 0)

MTS
≥ E(y(1)|z = 1) = E(y|z = 1).

The counterfactural E(y(1)|z = 0) can be bounded by E(y|z = 0) and E(y|z = 1), and the data
will inform us of which is the upper/lower bound - the direction of the match will be determined by
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The advantage of the LDRM assumption is that it allows the match to vary across
the level of the unobserved characteristic unlike MTS-MTR in Manski and Pepper
(2000) or Bhattacharya, Shaikh and Vytlacil (2008). The LDRM model would be
useful when the direction of the dependence is likely to be different across different
values of the unobserved characteristic. However, LDRMmay not be very informative
when the outcome is binary in practice, since the values that the partial difference
can take are -1,0, and 1, although it is still legitimate to apply the model to binary
outcomes in principle.

6 Empirical Illustration - Heterogeneous Individ-
ual Treatment Responses

By heterogeneous treatment responses I mean idiosyncratic treatment effects even
after accounting for observed characteristics32. Several studies33 allowed for individual
heterogeneity in response. However, identification is achieved by integrating out the
heterogeneity34 in these studies. By identifying average responses, much information
regarding the distributional consequences of a policy - heterogeneity in response -
would be lost.

I demonstrate how "partial" information (the signs and the bounds of treatment
effects, not the exact size of them) regarding who benefits (individual heterogeneous
response) can be recovered from data by using quantiles rather than averages when
"who" is indicated by individual observed characeristics and the ranking in the dis-
tribution of the unobserved characteristic35. This is "illustrated" by examining the
effects of the Vietnam-era veteran status on the civilian earnings using the data used
in Abadie (2002)36 - a sample of 11,637 white men, born in 1950-1953, from the March
Current Population Surveys of 1979 and 1981-1985. Annual labour earnings are used

data.
32This is called "essential heterogeneity" by Heckman, Urzua, and Vytlacil (2006).
33The standard linear IV model cannot identify heterogeneus treatment effects. See Heckman

and Navarro (2004) and Heckman and Urzua (2009).
For identification under heterogeneous responses see Heckman, Urzua, and Vytlacil (2006) for

binary endogenous variable, and Florens, Heckman, Meghir, and Vytlacil (2008), Athey and Imbens
(2006), Imbens and Newey (2009),Chernozhukov, Fernandez-Val, and Newey (2009), Hoderlein and
White (2009), among others. There is another line of research using random coeffi cient models
to recover the distribution of the response, see Card (2001) and Heckman and Vytlacil (1999) for
example.
34The averaged objects however can exhibit a certain degree of heterogeneity by allowing for

treatment heterogeneity.
35Most welfare programs are designed to support certain groups of people. If "who benefits"

from such programs could be recovered from data, this would be informative in judging whether the
groups targeted by the policy actually benefit from it.
36The data are obtainable in Angrist Data Archive :
http://econ-www.mit.edu/faculty/angrist/data1/data
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as an outcome, and the veteran status is the binary endogenous variable of concern.
Veterans have been provided with various forms of benefits in terms of insurance,

education, etc. How serious the impact of military service on veterans’labour market
outcomes, or whether they are compensated for their service enough has been an
important political issue and there has not been any consensus on this matter.
Angrist (1990) reports negative average impact of veteran status on earnings later in
life, which shows that on average military service had a negative impact on earnings
possibly due to the loss of labour market experience.

6.1 Bounds on Individual-specific Causal Effects of Vietnam-
era Veteran Status on Earnings

By applying his identification results of the marginal distribution of the potential
outcomes for compliers, Abadie (2002) reports that military service during the Viet-
nam era reduces lower quantiles of the earnings distribution, leaving higher quantiles
unaffected. The information from the marginal distribution of the potential outcomes
(for compliers) may be used to recover QTE, however, it does not reveal any infor-
mation on individual-specific impact on earnings of Vietnam-era veteran experience.
Let W be annual labour earnings, Y be the veteran status, and Z be the binary

variable determined by the draft lottery. Age, race, and gender are controlled so that
the subgroup considered is observationally homogenous. The unobserved variables U
and V indicate scalar indexes for "earnings potential" and "participation preference"
or "aptitude for the army" each. Note that there can be many factors that determine
these indexes, but we assume that these multi-dimensional elements can be collapsed
into a "scalar" index.

6.1.1 Selection on Unobservables

Enrollment for military service during the Vietnam era may have been determined by
the factors which may have been associated with the unobserved earnings potential.
This concern about selection on unobservables is caused by several aspects of decision
processes both of the military and of those cohorts to be drafted. On the one hand, the
military enlistment process selects soldiers on the basis of factors related to earnings
potential. For example, the military prefers high school graduates and screens out
those with low test scores, or poor health. As a consequence, men with very low
earnings potential are unlikely to end up in the army. On the other hand, for some
volunteers military service could be a better option because they expected that their
careers in the civilian labour market would not be successful, while others with high
earnings potential probably found it worthwhile to escape the draft. This shows that
the direction of selection could vary with where each individual is located in the
distribution of the earnings potential.
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6.1.2 Draft Lottery as an Instrument - Exclusion, Rank Condition, and
Independence

As in Angrist (1990) the Vietnam era draft lottery is used as an instrument to identify
the effects of veteran status on earnings. The lottery was conducted every year
between 1970 and 1974. The lottery assigned numbers from 1 to 365 to dates of birth
in the cohorts being drafted. Men with the lowest numbers were called to serve up
to a ceiling37. The ceiling was unknown in advance. I construct a binary IV based on
the lottery number the threshold point being chosen as 100 following Abadie(2002).
It would be natural to believe that this IV is not a determinant of earnings, and

the unobserved scalar indexes are independent of draft eligibility38.
To apply the identification results in Theorem 3, I investigate first whether the

data satisfy Restriction RC in the model. The participation rate39 among the draft-
non-eligible (Z = 0) is about 0.14 and the participation rate among the eligible is
0.22.

P (Y = 0|Z = 1, X = x) = 0.78 < P (Y = 0|Z = 0, X = x) = 0.86 (RC)

Thus, z′ = 1 and z′′ = 0 in this example. The compliers (or draftees) are defined as
those whose V -ranking is between 78% and 86%. Note that the V- ranking is never
observed, so we cannot tell whether an individual is a complier or not.

6.1.3 The Result and Causal Interpretation

The bounds on the partial differences, QW |Y Z(τU |1, z′′)−QW |Y Z(τU |0, z′), are found
by the differences in the quantiles of earnings for the veterans who were not eligible
and those of non-veterans who were draft-eligible.
LATE can be found by the model in Imbens and Angrist (1994). LATE is found

for compliers by integrating out the heterogeneity, therefore, hiding possibly useful
information regarding heterogeneity. While Angrist (1990) report negative impact on
earnings on average, our quantile based analysis reveals that when age, gender, and
race are controlled the veteran status had positive causal impacts for individuals with
low earnings potential, but negative causal impacts for individuals with high earnings
potential(see Figure 4).
The costs of military service may be larger than the benefits provided by the

government for those with high earnings potential, while the benefits provided may
37The draft eligibility ceilings were 195 for men born in 1950, 125 for men born in 1951, and 95

for men born in 1952. The eligibility ceiling is determined by the Department of Defense depending
on the needs in the year.
38There has been some discussion on individuals’draft lottery number caused behavior : some

men therefore volunteered in the hope of serving under better terms and gaining some control over
the timing of their service. If those who change their behavior according to their draft lottery
number show certain patterns in their unobserved factors, then the quantile invariance restriction
may be violated.
39Note that P (z) is not the usual propensity score, and 1− P (z) is the propensity score.

24



Application –impact of veteran status on earnings

High U

bU

1500

1000

500

0

500

1000

1500

Upper bounds Low er bounds

Low U

Figure 4: LDRM bounds on heterogeneous treatment effects of Vietnam era veteran status among

the observationally similar individuals

be suffi cient for those with low earnings potential. Considering the fact that benefits
in the form of insurance, pension, or education opportunities should be targeted at
people with less potential, the findings indicate that the compensation was enough
for this group. However, the Vietnam-era military service may have higher oppor-
tunity costs for individuals with high earnings potential. This may be used against
conscription.
The results in Figure 4 are interpreted as the causal effects for those who change

their participation decision as the value of Z changes. To the extent that we believe
the implication from Restriction LDRM on the distribution of the unobservable the
bounds would be considered to be informative regarding the population.

7 Conclusion

The presence of endogeneity and discreteness of the endogenous variable causes the
loss of the identifying power of the quantile-based control function approach (QCFA)
in the sense that the model based on the QCFA does not produce point identification.
I propose a model that set identifies the structural features when one of the regressors
is ordered discrete. I then apply the model to a binary endogenous variable. This
structural approach turns out to be useful in defining the bounds on the heterogeneous
individual treatment effects, which have not been studied so far under the structural
framework without distributional assumptions.
The set identification result of this paper is applied to recover heterogeneous

impacts of the Vietnam-era military service on earnings later in life. As we can
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see in this example, average effects may miss much information in some cases. Even
though the proposed model can give only partial information on the individual causal
effect, this may be useful in some economic contexts, especially when the sign of the
effects may be varying across individuals with different characteristics. The causal
interpretation is justified on the group of compliers defined by the pair of instrumental
values that satisfy the rank condition. Different pairs define different "compliers".
Heterogeneity in responses is recovered for different earnings potentials. If there exist
heterogeneity in responses between draftees and volunteers, then our findings cannot
be extrapolated onto volunteers.
In conclusion, by using nonparametric shape restrictions that can be argued in

each economic context, the proposed model provides partial information regarding
individual causal effects. This information can be more credible than parametric
restrictions to the extent they are justifiable by economic logic. The information on
the signs of individual treatment effects is crucial if they vary across the population,
since in such a case the average effect would be smaller with different effects with
different signs canceled out. This would lead to a misleading conclusion. The model
can also be used for robustness checks in data analysis for whether there exists any
heterogeneity in causal responses.
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Appendix - proofs

A.1 Proof of Theorem 1

Proof. We adopt Lemma 2 in Appendix in Chesher (2005).
Recall thatV ≡ (VL, VU ], where VL = maxz∈zm P

m−1(z), and VU = maxz∈zm P
m+1(z),

and where zm is the set of values of the values of Z that satisfy the rank condition.

Suppose thatQU |V Z(τU |τV , z) is weakly increasing in τV ∈ V. Then by Lemma 2 in Chesher
(2005) we have for Y = ym,

h(ym, QU |V Z(τU |VL, z′m)) ≤ QW |Y Z(τU |ym, z′m) (A-1)

≤ h(ym, QU |V Z(τU |Pm(z′m), z′m))

h(ym, QU |V Z(τU |VL, z′′m)) ≤ QW |Y Z(τU |ym, z′′m) (A-2)

≤ h(ym, QU |V Z(τU |Pm(z′′m), z′′m))

and for Y = ym+1

h(ym+1, QU |V Z(τU |Pm(z′m), z′m)) ≤ QW |Y Z(τU |ym+1, z′m) (A-3)

≤ h(ym+1, QU |V Z(τU |VU , z′m))

h(ym+1, QU |V Z(τU |Pm(z′′m), z′′m)) ≤ QW |Y Z(τU |ym+1, z′′m) (A-4)

≤ h(ym+1, QU |V Z(τU |VU , z′′m))

Under Restriction RC, Pm(z′m) ≤ τV ≤ Pm(z′′m), when QU |V Z(τU |τV , z) is weakly
increasing in v, then :

QU |V Z(τU |τV , z′′m) ≤ QU |V Z(τU |Pm(z′′m), z′′m)

QU |V Z(τU |Pm(z′m), z′m) ≤ QU |V Z(τU |τV , z′m)

and because h is weakly increasing in U ,

h(ym, QU |V Z(τU |τV , z′′m)) ≤ h(ym, QU |V Z(τU |Pm(z′′m), z′′m)) (B-1)

h(ym, QU |V Z(τU |Pm(z′m), z′m)) ≤ h(ym, QU |V Z(τU |τV , z′m)). (B-2)

Combining (A-4) and (B-1) we can find the upper bound on h(ym, QU |V Z(τU |τV , z′′m))

h(ym, QU |V Z(τU |τV , z′′m)) ≤ h(ym, QU |V Z(τU |Pm(z′′m), z′′m))

≤ h(ym+1, QU |V Z(τU |Pm(z′′m), z′′m))

≤ QW |Y Z(τU |ym+1, z′′m)

The first inequality is due to (B-1) and the second inequality is due to Restriction LDRM, and the

third inequality is due to (A-4).
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The lower bound on h(ym, QU |V Z(τU |τV , z′m)) can be found by (A-3) and (B-2) :

QW |Y Z(τU |ym, z′m) ≤ h(ym, QU |V Z(τU |Pm(z′m), z′m)) ≤ h(ym, QU |V Z(τU |τV , z′m)).

The first inequality is due to (A-3), the second is due to (B-2).

Finally, under the conditional quantile invariance (C-QI) and exclusion Restrictions (QCFA),

there is for z ∈ {z′m, z′′m} for u∗ = QU |V Z(τU |τV , z),

QW |Y Z(τU |ym, z′m) ≤ h(ym, u∗) ≤ QW |Y Z(τU |ym+1, z′′m)

Similarly, when QU |V Z(τU |τV , z) is weakly decreasing in τV ∈ V, we have

QW |Y Z(τU |ym+1, z′′m) ≤ h(ym, u∗) ≤ QW |Y Z(τU |ym, z′m)

A.2 Proof of Theorem 2 : Sharpness40

Define

h−1(ym, w) ≡ sup
u
{u : h(ym, u) ≤ w}. (*)

This implies

h(ym, h−1(ym, w)) ≤ w (**)

with equality holding when h(ym, u) is strictly increasing in u.

Recall that the structural feature of interest, is the value of the structural function evluated at

Y = ym and U = u∗, where u∗ = QU |V Z(τU |τV , z) for τV ∈ [Pm(z′m), Pm(z′′m)].
What is required to show sharpness41 (following Lemma 1 in Section 2), is to construct a

structure (Sa) such that (A) for any value, w∗ ∈ I(τ , ym, zm), w∗ = ha(ym, u∗), (B) is

40A more detailed version of proof can be found in the author’s webpage :
http://www.homepages.ucl.ac.uk/~uctpjil/
41In contrast with sharpness proofs in the potential outcomes approach (see for example, Firpo

and Ridder (2008), Heckman and Vytlacil (2001)), to show whether the points in the identified
set are consistent with the model we need to construct the underlying structural relation and the
distribution of the unobservables since the model is characterized by the restrictions imposed on
them.
Consider a binary endogenous variable case. In the potential outcomes framework FW1W0|X is the

hidden data generating process to be recovered from the observed data, FW |X , thus, sharpness proof
involves construction of FW1W0|X using FW |X that is consistent with the model and data. In the
structural approach the underlying economic data generating process is {h(1, u∗), h(0, u∗), FU |V } for
given u∗ in the triangular structure when ignoring other covariates, X. Therefore, sharpness proof
involves the construction of {h(1, u∗), h(0, u∗), FU |V } using FW |Y X and consistency with the model
and with the data should be shown.
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admitted by LDRM model (Sa ∈ MLDRM) and (C) the constructed structure is observation-
ally equivalent to the true structure (F a

W |Y Z = F 0
W |Y Z). In Part 1 we construct a structure

Sa ≡ {ha, F a
U |V Z(u|v, z)} and in Part 2 we show (A),(B), and (C)

Part 1 - Construction of an admitted and observationally equivalent
(o.e.) structure Sa ≡ {ha, F a

U |V Z}, such that θ(Sa) = a

The candidate structure is constructed such that all the values of h and FU |V Z can be deter-
mined. Some of the restrictions such as Restriction LDRM imposed in the model are regarding local

properties of the structure, while some of the restrictions such as monotonicity of h in u or whether
the constructed distribution of the unobservables is weakly increasing should be shown for all the

points in the support of U. To show such restrictions all the values in the support of the arguments
of the structural function and the distribution of the unobservables need to be determined by the

construction. Note also that there can be other ways of construction. The distribution of observ-

ables, FW |Y Z , is used in the construction of ha and F
a
U |V Z(u|v, z), such that by the interaction

of ha and F
a
U |V Z(u|v, z), FW |Y Z can be generated.

1-A Construction of a structural function42

Let I(τ , ym, zm) denote the identified interval, say, [QW |Y Z(τU |ym, z′m), QW |Y Z(τU |ym+1, z′′m)].
The structural function is constructed as

ha(y
m, u∗) ≡ Q0

W |Y Z(τm|ym, z) for some τm and vm (S1)

where u∗ ≡ Qa
U |V Z(τU |τV , z)

= Qa
U |V Z(τm|vm, z)

= Q0
U |Y Z(τm|ym, z)

for m = 1, 2, ...,M.

For given V = τV and Y = ym, by varying τU ∈ (0, 1), the whole values of ha(y
m, u∗) is

determined by (S1). On the other hand, the whole values of the structural function for given τU
can be defined.

1-B Construction of the distribution of the unobservables.
For a given structural relation, ha, and given the values of Y = ym and an arbitrary value of

U = u ∈ (0, 1) can be written as
h−1
a (ym, w#)

for some w# by (C*). Then we can find w1, w2, ..., wM for the fixed value u such that

wl = ha(y
l, u), for l = 1, 2, ...,M

42Unlike other bounds studies we need to construct the structural relation since we exploited
restrictions imposed on the structure such as monotonicity of the structural function in the unob-
servable and restriction LDRM.
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so that

h−1
a (ym, w#) = h−1

a (y1, w1) = h−1
a (y2, w2) = · · · = h−1

a (yM , wM)

for continuous W .

Let SUPP (Z) be the support of Z. For an arbitrary value u ∈ (0, 1), u is expressed as
u = h−1

a (ym, w#), for some w#. For a given z ∈ SUPP (Z), for any u, v ∈ (0, 1) × (0, 1),
F a
U |V Z(u|v, z) is constructed as follows :

F a
U |V Z(u|v, z)

= F a
U |V Z(h−1

a (ym, w#)︸ ︷︷ ︸
u

|v, z)

≡



F 0
W |Y Z(w1|y1, z), if 0 < v ≤ P 1

F 0
W |Y Z(w2|y2, z), if P 1 < v ≤ P 2

· · ·
F 0
W |Y Z(w#

�
|ym−1, z), (*) if Pm−2 < v ≤ Pm−1

F 0
W |Y Z(w#

�
|ym, z), (*) if Pm−1 < v ≤ Pm

F 0
W |Y Z(wm+1|ym+1, z), if Pm < v ≤ Pm+1

· · ·
F 0
W |Y Z(wM |yM , z), if PM−1 < v ≤ 1


(S2)

where w1, w2, ..., wM are found such that

wl = ha(y
l, u), and

P l = max
z∈SUPP (Z)

{P l(z)}, l 6= m− 1,m

Pm−1 = min
z∈zm
{Pm(z)} and Pm = max

z∈zm
{Pm(z)}

l = 1, 2, ...,M

Remarks

• For any given value v, if v ∈ (P l−1, P l], uses Y = yl, as the conditioning value.

• If u is expressed as h−1
a (ym, w#) for somew#, in the identified interval, and v ∈ (P l−1, P l],

where l 6= m− 1 and m, then find the value, wl such that

wl = ha(y
l, u)

then assign the value F a
U |V Z(u|v, z) ≡ F 0

W |Y Z(wl|yl, z).

• In (*) in (S2) if u = h−1
a (ym, w#) and v ∈ (Pm−2, Pm−1], then assign the value

F a
U |V Z(u|v, z) ≡ F 0

W |Y Z(w#|ym−1, z). Note the value, w, (indicated by �) is assigned.

• In (*) in (S2) if u = h−1
a (ym, w#) and v ∈ (Pm−1, Pm], then assign the valueF a

U |V Z(u|v, z) ≡
F 0
W |Y Z(w#|ym, z).
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• {P l}Ml=1 is a weakly increasing sequence. The partition of the support of V, (0, 1), by
{P l}Ml=1 is determined once a variable Z is given.

• Pm−1 = minz∈zm{Pm(z)} and Pm = maxz∈zm{Pm(z)} is chosen to guarantee condi-
tional quantile invariance restriction, which locally holds for τU quantile of U given V and

Z, for the range of V specified by the rank condition.

• IfW is discrete, F a
U |V Z(u|v, z) should be a step function in u as well as in v. For notational

simplicity, we assume that W is continuous. Other parts in the proof are not affected when

W is discrete, but in each part of the proof extra complication of notation occurs.

Proof of proper distribution
It is required to check whether the constructed distribution is proper : since each F 0

W |Y Z(w|ym, z),
for all m ∈ {1, 2, ...,M} is a proper distribution, F 0

W |Y Z(w|ym, z) lies between zero and one,
and weakly increasing in w. Thus, the constructed distribution F a

U |V Z(u|v, z) lies between zero
and one, but to guarantee nondecreasing property of F a

U |V Z(u|v, z) in u, we need to show that as

w increases, u = h−1
a (y, w) increases for given v and z. This can be shown by Lemma A.1.

Lemma A1 For given v and z, F a
U |V Z(u|v, z) weakly increases in u.

Proof. Consider two distinct values u′ and u′′. We express u′ and u′′ using h−1
a , for given

Y = ym as the following

u′ = h−1
a (ym, w′)

u′′ = h−1
a (ym, w′′)

Fix V = v and Z = z and suppose that V = v and Z = z corresponds to Y = yl, l =
1, 2, ...,M. Then by (S2) we have for some τ ′, τ ′′, w′l, and w

′′
l

τ ′ = F a
U |V Z(u′|v, z)

(S2)
=

{
F 0
W |Y Z(w′l|yl, z), if l 6= m− 1,m

F 0
W |Y Z(w′|yl, z), if l = m− 1, m

}
(1-1)

where u′ = h−1
a (ym, w′) = h−1

a (yl, w′l)

and

τ ′′ = F a
U |V Z(u′′|v, z)

(S2)
=

{
F 0
W |Y Z(w′′l |yl, z), if l 6= m− 1,m

F 0
W |Y Z(w′′|yl, z), if l = m− 1, m

}
(1-2)

where u′′ = h−1
a (ym, w′′) = h−1

a (yl, w′′l ).
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If we can show that w′′l ≥ w′l, when u
′′ ≥ u′, then the proof is done because then the assigend

value following (S2) for F a
U |V Z(u′′|v, z) is larger than F a

U |V Z(u′|v, z). Suppose

u′′ = Qa
U |V Z(τ ′′|v, z)

≥ Qa
U |V Z(τ ′|v, z) = u′

for τ ′′ ≥ τ ′.

Then w′′l ≥ w′l, since from (1-1) and (1-2)

w′′l = Q0
W |Y Z(τ ′′|yl, z) ≥ Q0

W |Y Z(τ ′|yl, z) = w′l

whenever u′′ = Qa
U |V Z(τ ′′|v, z) ≥ Qa

U |V Z(τ ′|v, z) = u′, that is, whenever τ ′′ ≥ τ ′.

Part 2
Part 2 - A :
Note that under Restriction Common Support, any point in the identified interval, w∗ ∈

I(τ , ym, zm) can be written as (see <Figure 5>)43

w∗ = Q0
W |Y Z(τm|ym, z′m) for some τm ≥ τU .

That is,

τm = F 0
W |Y Z(w∗|ym, z′m) for some τm ≥ τU

Note also that for any v ∈ (Pm−1, Pm] by construction from (S2)

F a
U |V Z( h−1

a (ym, w∗)︸ ︷︷ ︸
τm-quantile of FaU|V Z

|v, z′m)
(S2)
= F 0

W |Y Z(w∗|ym, z′m) = τm,

thus, by definition of quantiles,

h−1
a (ym, w∗) = Qa

U |V Z(τm|v, z′m) for some v ∈ (Pm−1, Pm] (ha − a)

For a given value, w∗, in the indentified interval, τm(≥ τU) is determined by w∗. Then
(ha−a) holds for a range of values of v ∈ (Pm−1, Pm]. Now we choose vm ∈ (Pm−1, Pm] such
that

u∗ ≡ Qa
U |V Z(τU |τV , z′m) (ha − b)

= Qa
U |V Z(τm|vm, z′m).

Then by inverting h−1
a in (ha − a), for given w∗ and τm(≥ τU), we have

w∗ = ha(y
m, Qa

U |V Z(τm|vm, z′m))

= ha(y
m, u∗).

43Alternatively, one can find τm such that w∗ = Q0W |Y Z(τm|ym, z′′m) for some τm ≤ τU
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wD = QW|YZ
0 Ýb|ym,zmv Þ forsome b ³ bU

QW|YZÝbU|ym ,zmv Þ

QW|YZÝbU|ym+1,zmvv Þ

FW|YZÝw|ym ,zmv Þ

Figure 5: Any point in the interval, w∗ ∈ I(τ ,m, zm), can be expressed using the
quantiles of FW |Y Z(w|ym, z′m) under the common support restriction.

Thus, this construction guarantees that the constructed structural function crosses the arbitrary

value in the identified interval

w∗ = ha(y
m, u∗),

that is, there exists a structural relation (that satisfies all the restrictions imposed by the model,

which will be shown in the next section) which crosses an arbitrary point, w∗, in the identified
interval.

Part 2 - B : Observational equivalence44 (F a
W |Y Z = F 0

W |Y Z)

We need to show that F a
W |Y Z = F 0

W |Y Z , for S
a = {ha, F a

U |V Z} constructed as in Part 1 :
for pam = Pm − Pm−1, for all m ∈ {1, 2, ...,M},

F a
W |Y Z(w|ym, z) =

1

pam

∫ Pm

Pm−1
F a
U |V Z(h−1

a (ym, w)|s, z)ds

=
1

pam

∫ Pm

Pm−1
F 0
W |Y Z(w|ym, z)ds

= F 0
W |Y Z(w|ym, z)

the first equality is due to Lemma 1 in Chesher (2005), the second equality is due to construction in

(S2), that is, F a
U |V Z(h−1

a (ym, w)|v, z) = F 0
W |Y Z(w|ym, z), for v ∈ (Pm−1, Pm] and the last

equality is due to integration over the constant and the definition of pam.

Part 2 - C : Admissibility by the model Sa ∈MLDRM

0. Rank condition : this can be shown using data. I suppose this restriction is satisfied.
1. Monotonicity of ha(ym, u) in u

44That is, the data distribution that is generated by the structure constructed in part 1
is actually what we observe. Note that this can be shown because we have constructed the
structure using the observed distribution.
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I consider whether ha(y, u) is nondecreasing in u. Recall that

ha(y
m, u) = ha(y

m, Qa
U |V Z(τm|vm, z))

by (S1)
≡ Q0

W |Y Z(τm|ym, z)

by choosing vm such that u = Qa
U |V Z(τU |τV , z) = Qa

U |V Z(τm|vm, z) = QU |Y Z(τm|ym, z),
for ∀τU , τV , τm ∈ (0, 1) and vm ∈ (Pm−1, Pm].

• First, fix vm, then ha(y
m, u) is weakly increasing in u since higher τm implies higher

u = QU |V Z(τm|vm, z), as well as higher QU |Y Z(τm|ym, z).

• Next fix τm, if we observe higher u, then it is because of higher vm if FU |V (u|vm, z) is non-
increasing in vm and lower vm if FU |V Z(u|vm, z) is nondecreasing in vm ∈ (Pm−1, Pm].
However, regardless of the direction of monotonicity, for vm ∈ (Pm−1, Pm], Y = ym.
Thus, the value of vm does not affect the value of ha as long as Y is fixed at Y = ym. That
is, for fixed τm, and Y, ha(y, u) is constant as u increases due to change in vm.

2. Conditional Quantile Invariance : u∗ ≡ Qa
U |V Z(τU |τV , z) is invariant with

respect to z ∈ zm ≡ {z′m, z′′m}, for τV ∈ [Pm(z′m), Pm(z′′m)]. Note that there should exist a
true structure, S0 = {h0, F

0
U |V Z} ∈ MLDRM ∩ Ω0, that generates the data we observe. The

distinction of the true structure, S0 from the constructed structure, Sa, should be noted in this
proof. For u∗ = h−1

a (ym, w∗)

τU ≡ F a
U |V Z(u∗|τV , z′m)

= F 0
W |Y Z(w∗|ym, z′m)

=
1

pm(z′m)

∫ Pm(z′m)

Pm−1(z′m)

F 0
U |V Z(h−1

0 (ym, w∗)|s, z′m)ds

=
Pr(U ≤ h−1

0 (ym, w∗) ∩ Pm−1(z′m) ≤ V ≤ Pm(z′m))

pm(z′m)

= F 0
U |V (h−1

0 (ym, w∗)|V ∈ (Pm−1(z′m), Pm(z′m)])

= F 0
U |Y (h−1

0 (ym, w∗)|ym)

= F 0
U |Y (u∗|ym)

the first equality is by construction in (S2), the second equality is due to Lemma 1 in Chesher (2005),

and the third equality follows by integration. The fourth equality is by definition of the conditional

probability, the fifth equality is due to how the value of Y is determined. Similarly for Z = z′′m,
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τU ≡ F a
U |V Z(u∗|τV , z′′m)

= F 0
W |Y Z(w∗|ym, z′′m)

=
1

pm(z′′m)

∫ Pm(z′′m)

Pm−1(z′′m)

F 0
U |V Z(h−1

0 (ym, w∗)|s, z′′m)ds

=
Pr(U ≤ h−1

0 (ym, w∗) ∩ Pm−1(z′′m) ≤ V ≤ Pm(z′′m))

pm(z′′m)

= F 0
U |V (h−1

0 (ym, w∗)|V ∈ (Pm−1(z′′m), Pm(z′′m)])

= F 0
U |Y (h−1

0 (ym, w∗)|ym)

= F 0
U |Y (u∗|ym)

yielding u∗ = Qa
U |V Z(τU |τV , z′m) = Qa

U |V Z(τU |τV , z′′m) = Q0
U |Y (τU |ym), invariant with

respect to z ∈ zm.

3. LDRM :
(1) First, it is noted that F a

U |V Z(u|v, z) is monotonic in v, for u ∈ U, v ∈ V, where U
and V are defined previously in Restrction LDRM. This is so since F a

U |V Z(u|v, z) is defined as a

step function, for the range of V = (Pm−1(z), Pm+1(z)] only two constants (F 0
W |Y Z(w∗|ym, z),

and F 0
W |Y Z(wm+1|ym+1, z)) should be considered, and with two constants, monotonicity always

holds.

(2) Now we check whether the constructed Sa = {ha, F a
U |V Z} satisfies the specified match.

Suppose for some τ ′′m, τ
′′
m+1, P

m(z′′m) and Pm+1(z′′m),

u∗ ≡ Qa
U |V Z(τU |τV , z) (3-1)

= Qa
U |V Z(τ ′′m|Pm(z′′m), z′′m) = Qa

U |V Z(τ ′′m+1|Pm+1(z′′m), z′′m),

This can be shown by observing the sign of

ha(y
m, u∗)− ha(ym+1, u∗) (3-2)

= ha(y
m, Qa

U |V Z(τ ′′m|Pm(z′′m), z′′m))− ha(ym+1, Qa
U |V Z(τ ′′m+1|Pm+1(z′′m), z′′m))

= Q0
W |Y Z(τ ′′m|ym, z′′m)−Q0

W |Y Z(τ ′′m+1|ym+1, z′′m),

where the first equality follows by (3-1), and the second equality is by construction in (S1).

To determine the sign of ha(y
m, u∗) − ha(ym+1, u∗), it is required to determine the sign of

Q0
W |Y Z(τ ′′m|ym, z′′m)−Q0

W |Y Z(τ ′′m+1|ym+1, z′′m). We first fix U = u∗, and vary the value of V .
Then use the monotonicity of FU |V Z in v in a certain range specified in the restriction and see if
the match holds.

(3-3)-(3-5) link the distribution of the unobservables with the distribution of the observables,

and they are found by expressing u∗ using h−1
a and the construction in Part 1.
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For u∗ = h−1
a (ym, w∗) and v = Pm(z′′m), let τ ′′m be

τ ′′m ≡ F a
U |V Z(u∗|Pm(z′′m), z′′m)

= F a
U |V Z( h−1

a (ym, w∗)︸ ︷︷ ︸
τ ′′m− quantile of FaU|V Z

|Pm(z′′m), z′′m) (3-3)

= F 0
W |Y Z( w∗︸︷︷︸

τ ′′m− quantile of F 0W |Y Z

|ym, z′′m)

Note that for u∗ = h−1
a (ym+1, wm+1) and v = Pm+1(z′′m), let τ ′′m+1 be:

τ ′′m+1 ≡ F a
U |V Z(u∗|Pm+1(z′′m), z′′m)

= F a
U |V Z( h−1

a (ym+1, wm+1)︸ ︷︷ ︸
τ ′′m+1− quantile of FaU|V Z

|Pm+1(z′′m), z′′m) (3-4)

= F 0
W |Y Z( wm+1︸ ︷︷ ︸

τ ′′m+1− quantile of F 0W |Y Z

|ym+1, z′′m)

Also, for Pm(z′m) < v < Pm(z′′m), we have45

τ ≡ F a
U |V Z(u∗|v, z′′m)

= F a
U |V Z(h−1

a (ym+1, wm+1)︸ ︷︷ ︸
τ− quantile of Fa

U|V Z

|v, z′′m) (3-5)

= F 0
W |Y Z( wm+1︸ ︷︷ ︸

τ− quantile of F 0
W |Y Z

|ym, z′′m)

Step 2 : Order of (3-3)-(3-5) :

Note Pm(z′m) ≤ Pm(z′′m) ≤ Pm+1(z′′m). Then PD implies that

τ ′′m+1 ≤ τ ′′m ≤ τ (*PD)

since we are comparing the values of the three conditional distributions evaluated at the same value

u∗. And ND implies that
τ ′′m+1 ≥ τ ′′m ≥ τ (*ND)

45This is for Pm−1(z′′) ≤ Pm(z′). Other cases can be shown similarly.

τ ≡ F aU |V Z(r|v, z′′)
= F aU |V Z(h−1

a (ym+1, wm+1)|v, z′′) (3-5′)

=

(
F 0
W |Y Z(wm+1|ym, z′′) if Pm−1(z′′) ≤ Pm(z′)

F 0
W |Y Z(wm+1|ym+1, z′) if Pm(z′′) ≤ Pm+1(z′)

)

39



Step 3 : Quantile expressions for w and u∗

Now we express u∗ and w∗ and wm+1 as quantiles of the distributions so that we can find the

order of the two, ha(y
m, u∗) and ha(y

m+1, u∗) using (*PD) and (*ND). (4-2)-(4-5) imply (4-6)
and (4-7) under continuity of W and U :

u∗ = Qa
U |V Z(τ ′′m|Pm(z′′m), z′′m) (3-6)

= Qa
U |V Z(τ ′′m+1|Pm+1(z′′m), z′′m)

= Qa
U |V Z(τ ′m+1|Pm+1(z′m), z′m)

= Qa
U |V Z(τ |v, z′′m), for Pm(z′m) < v < Pm(z′′m)

w∗
(a)
= Q0

W |Y Z(τ ′′m|ym, z′′m) = Q0
W |Y Z(τ ′′m|ym, z′′m) (3-7)

wm+1 (c)
= Q0

W |Y Z(τ ′′m+1|ym+1, z′′m)

(a) follows from (3-3), (b) from (3-5) and (c) is by (3-4).

Step 4 : Match?

Finally we use the construction of the structural function using (3-6). Then we can determine

the direction of the response : we have from (3-2)46

ha(y
m, u∗)− ha(ym+1, u∗)

= ha(y
m, Qa

U |V Z(τ ′′m|Pm(z′′m), z′′m))− ha(ym+1, Qa
U |V Z(τ ′′m+1|Pm+1(z′′m), z′′m))

= Q0
W |Y Z(τ ′′m|ym, z′′m)−Q0

W |Y Z(τ ′′m+1|ym+1, z′′m)

= Q0
W |Y Z(τ ′′m|ym, z′′m)−Q0

W |Y Z(τ |ym, z′′m)(
≤ 0 if PD
≥ 0 if ND

)
the third equality is by (c) in (3-7). Then the inequality follows because τ ′′m ≤ τ (*PD) and
τ ′′m ≥ τ (*ND), and the property of quantiles.

A.3 Proof of Corollary 2

Proof. We adopt Lemma 2 in Chesher (2005) whenm = 1 with P 0(z) = 0 and P 1(z) = P (z),
where P (z) = Pr(Y = 1|Z = z) and when m = 2 with P 2(z) = 1 and P 1(z) = P (z).

46Recall that this is the case for Pm−1(z′′) ≤ Pm(z′). The other case can be shown
similarly.

40



Suppose that QU |V Z(τU |τV , z) is weakly increasing in v. Then we have

h(0, QU |V Z(τU |0, z′)) ≤ QW |Y Z(τU |0, z′) (A-1)

≤ h(0, QU |V Z(τU |P (z′), z′))

h(0, QU |V Z(τU |0, z′′)) ≤ QW |Y Z(τU |0, z′′) (A-2)

≤ h(0, QU |V Z(τU |P (z′′), z′′))

h(1, QU |V Z(τU |P (z′), z′)) ≤ QW |Y Z(τU |1, z′) (A-3)

≤ h(1, QU |V Z(τU |1, z′))
h(1, QU |V Z(τU |P (z′′), z′′)) ≤ QW |Y Z(τU |1, z′′) (A-4)

≤ h(1, QU |V Z(τU |1, z′′))

We use (A-1) and (A-4).

QW |Y Z(τU |0, z′) ≤ h(0, QU |V Z(τU |P (z′), z′)) (A-1)

h(1, QU |V Z(τU |P (z′′), z′′)) ≤ QW |Y Z(τU |1, z′′) (A-4)

Under Restriction RC, P (ź) ≤ τV ≤ P (z′′), when QU |V Z(τU |τV , z) is weakly increasing in v,
then :

QU |V Z(τU |τV , z′′) ≤ QU |V Z(τU |P (z′′), z′′)

QU |V Z(τU |P (ź), z′) ≤ QU |V Z(τU |τV , z′)

and because h is monotonic in u and weakly increasing,

h(1, QU |V Z(τU |τV , z′′)) ≤ h(1, QU |V Z(τU |P (z′′), z′′)) (B-1)

h(1, QU |V Z(τU |P (ź), z′)) ≤ h(1, QU |V Z(τU |τV , z′)). (B-2)

Combining (A-4) and (B-1) we can find the upper bound for h(1, QU |V Z(τU |τV , z′′))

h(1, QU |V Z(τU |τV , z′′)) ≤ h(1, QU |V Z(τU |P (z′′), z′′)) ≤ QW |Y Z(τU |1, z′′)

Use the Restriction LDRM : h(1, u) ≥ h(0, u), for all values of z and u in the support of Z
and U. Applying Restriction LDRM to (B-2)

h(0, QU |V Z(τU |P (ź), z′)) ≤ h(1, QU |V Z(τU |P (ź), z′)) ≤ h(1, QU |V Z(τU |τV , z′)). (C)

Applying (A-1) to (C), we have the lower bound for h(1, QU |V Z(τU |τV , z′))

QW |Y Z(u|0, z′) ≤ h(1, QU |V Z(τU |τV , z′)).

Finally, under the conditional quantile independence restriction and exclusion Restriction C-QI

and QCFA, there is for z ∈ {z′, z′′} for u∗ = QU |V Z(τU |τV , z)

QW |Y Z(τU |0, z′) ≤ h(1, u∗) ≤ QW |Y Z(τU |1, z′′) (D-1)
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Consider next the identification of h(0, u∗).
Under Restriction RC, P (ź) ≤ τV ≤ P (z′′), when QU |V Z(τU |τV , z) is weakly increasing

in v, then :

QU |V Z(τU |τV , z′′) ≤ QU |V Z(τU |P (z′′), z′′)

QU |V Z(τU |P (ź), z′) ≤ QU |V Z(τU |τV , z′)

and because h is monotonic in U and weakly increasing,

h(0, QU |V Z(τU |τV , z′′)) ≤ h(0, QU |V Z(τU |P (z′′), z′′)) (B-3)

h(0, QU |V Z(τU |P (ź), z′)) ≤ h(0, QU |V Z(τU |τV , z′)). (B-4)

using (A-4) and (B-3), and Restriction LDRMwe can find the upper bound for h(0, QU |V Z(τU |τV , z′′))

h(0, QU |V Z(τU |τV , z′′))
(a)

≤ h(0, QU |V Z(τU |P (z′′), z′′))

(b)

≤ h(1, QU |V Z(τU |P (z′′), z′′))

(c)

≤ QW |Y Z(τU |1, z′′)

(a) is due to (B-3), (b) follows from Restriction LDRM, and (c) is from (A-4).

Applying (A-1) to (B-4) we have

QW |Y Z(τU |0, z′)
(a)

≤ h(0, QU |V Z(τU |P (ź), z′))
(b)

≤ h(0, QU |V Z(τU |τV , z′)).

(a) follows from (A-4) and (b) is from (B-4). Thus, the lower bound for h(0, QU |V Z(τU |τV , z′))

QW |Y Z(τU |0, z′) ≤ h(0, QU |V Z(τU |τV , z′)).

Finally, by Restriction C-QI and QCFA, there is for z ∈ {z′, z′′}

QW |Y Z(τU |0, z′) ≤ h(0, u∗) ≤ QW |Y Z(τU |1, z′′)

Note that the identified intervals for h(0, u∗) and h(1, u∗) are the same as we see in (D-1) and
(D-2).

A.4 Proof of Lemma 3

Proof. We show the case in which QW |Y Z(τU |ym, z′m) ≤ QW |Y Z(τU |ym+1, z′′m). The other
case can be shown similarly. We need to show that PDPR impliesQW |Y Z(τU |ym, z′m) ≤ QW |Y Z(τU |ym+1, z′′m).
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Let Q′′m+1 and Q′m indicate the values of τU− quantiles, Q′m ≡ QW |Y Z(τU |ym, z′m) and
Q′′m+1 ≡ QW |Y Z(τU |ym+1, z′′m). Then by definition of quantiles we have

τU = FW |Y Z(Q′m|Y = ym, Z = z′m)

= Pr(W ≤ Q′m|Y = ym, Z = z′m) (A)

= Pr(h(ym, U) ≤ Q′m|Y = ym, Z = z′m)

= Pr(U ≤ h−1(ym, Q′m)|Y = ym, Z = z′m)

similarly for Q′′m+1, we have

τU = Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = ym+1, Z = z′′m) (B)

where h−1 is defined as (C*) in Appendix C. Suppose PDPR. Then we have

τU = Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = ym+1, Z = z′′m) (C-1)

= Pr(U ≤ h−1(ym+1, Q′′m+1)|V ∈ (Pm(z′′m), Pm+1(z′′m)]

≤ Pr(U ≤ h−1(ym+1, Q′′m+1)|V ∈ (Pm−1(z′′m), Pm(z′′m)]

= Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = ym, Z = z′′m)

= Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = ym, Z = z′m) ≡ ũ (C-2)

where the first equality is by (B), the second equality follows from that the event {V ∈ (Pm(z′′m), Pm+1(z′′m)]}
is equivalent to the event {Y = ym+1, Z = z′′m}. The first inequality is due to PD (FU |V Z(u|v, z)
is non-increasing in v ∈ V ), and the third equality results from the same logic as in the second

equality. The last equality is due to Restriction C-QI. Then τU ≤ ũ.
From (A) and (C-2), we have

τU = Pr(U ≤ h−1(ym, Q′m)︸ ︷︷ ︸
u∗

|Y = ym, Z = z′m) ≤ Pr(U ≤ h−1(ym+1, Q′′m+1)︸ ︷︷ ︸
u∗∗

|Y = ym, Z = z′m) ≡ ũ

since τU ≤ ũ, which implies that

u∗ ≡ h−1(ym, Q′m) ≤ h−1(ym+1, Q′′m+1) ≡ u∗∗

by the nondecreasing property of distribution function, i.e., if a ≤ a′, FA|B(a|b) ≤ FA|B(a′|b).
Then we have

Q′m = h(ym, u∗)

Q′′m+1 = h(ym+1, u∗∗)

By PDPR and monotonicity of h in u, we have

Q′m = h(ym, u∗) ≤ h(ym+1, u∗)

≤ h(ym+1, u∗∗) = Q′′m+1

where the first inequality is due to PDPR and the second inequality is due to monotonicity of h in
u. Thus, we have shown that Q′m ≡ QW |Y Z(τU |ym, z′m) ≤ Q′′m+1 ≡ QW |Y Z(τU |ym+1, z′′m).
The other case can be shown similarly.

43


