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Abstract

In this paper, we model self-assessed health, and quantify its uncertainty through a stochastic ap-
proach based on the framework from Lee and Carter (1992). We combine explanatory and extrapola-
tive approaches by including macroeconomic factors (GDP and unemployment rate), and life-style
related factors (alcohol and tobacco consumption) into the stochastic model for health dynamics.
This leads to a significant improvement in the model fit, where a large part of the time trend in health
can be attributed to the trends in the observed variables. These observed variables affect separate
age groups differently. The backtesting analysis suggests that this approach is successful in terms of
forecasting, especially when combining the latent variable and macroeconomic fluctuations. As one
of the applications, this paper estimates and predicts life expectancy (LE) and healthy life expectancy
(HLE), and quantifies (healthy) longevity risk.

Keywords: Health stochastic process, Lee-Carter model, Lee-Carter model with observed vari-
ables, Health forecast

1 Introduction
Our focus is on modeling and predicting the future development of health in the United States pop-
ulation using a stochastic approach that allows quantifying the degree of uncertainty. Over the past
century, the United States has enjoyed unprecedented improvements in health and longevity. The
functional limitations of the U.S. people fell annually from the early twentieth century to the early
1990s (Costa (2002)).The elderly population has increased steadily both in absolute terms and as a
percentage of the total population. In particular, the elderly’s health has improved on average, which
is examined by Duggan and Imberman (2006) based on self-reported health provided by the National
Health Interview Survey (NHIS) for adults aged 50-64. A better understanding of the changes in
health is important to financial sectors like insurance company, pension funds, social security, and
government institutes. For example, Michaud, Goldman, Lakdawalla, Zheng, and Gailey (2009) ar-
gue that on the one hand, increased obesity reduces life expectancy, hence in principle, saves money
for pension annuities; on the other hand, it also increases morbidity for a number of years before
death, which increases medical expenditure in the future. Furthermore, they find that reduced smok-
ing lowers both mortality and morbidity, but increases life expectancy. Therefore, the net effect in
public liabilities remains unclear due to uncertain health changes. Moreover, understanding health
changes is also important for labor decisions. For example, in many countries, an increase in the
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retirement age is currently implemented. However, such a decision should not only be based on
an increase in life expectancy, but also on the remaining life years in good health, which is usually
called healthy life expectancy (HLE), see Sullivan (1971), Katz, Branch, Branson, Papsidero, Beck,
and Greer (1983) and Manton, Corder, and Stallard (1993).

There is an extensive literature on modeling past trends of health, but relatively little on investi-
gating its future developments. Predicting future health changes is complex because health might be
affected by many factors such as alcohol and tobacco consumption, or even the economic situation.
Recent changes in health care systems, like technological advances, strengthening of primary health
care, and supply control mechanisms have led to substantial variations in health changes as well. The
net effect of these large and offsetting trends remains uncertain, the speed and the volatility of these
trends remain uncertain as well, as does the future health and longevity of Americans.

We model the future health dynamics using a stochastic approach and its corresponding uncer-
tainty. However, most of the literature focuses on the future health changes using deterministic pro-
jections. For example, the Health Care Financing Administration (HCFA) assumes a fixed shape of
health by age group and forecast the long-run Medicare reimbursements for hospital stays. However,
the assumption of a fixed age schedule of health status is improbable over a long forecast horizon.
It treats the distribution of health over age as static and provides only point estimates. An influen-
tial series of articles, including Manton, Stallard, and Liu (1993) and Manton and Stallard (1994)
construct structural models for health status as a function of demographic characteristics, lifestyle
behaviors, and risk factors to extrapolate future health. Others, like Turra and Mitchell (2004), and
Portrait, Lindeboom, and Deeg (2001), model health changes using a deterministic trend of health
related factors. However, in order to generate forecasts from these models, one needs to first develop
forecasts of a large number of lifestyle behaviors and risk factors, which is a challenging task. Even
then, the highly nonlinear structure of the models might lead to forecast instability. Conversely, some
researchers just propose a simple linear projection based on historical trends. This paper contributes
to the existing literature by applying a stochastic approach to model health, which allows for uncer-
tainty surrounding the changes of health and its forecasts. By considering improvements in health
as a stochastic process, we adopt the approach proposed by Lee and Carter (1992), to model the
population health changes. In this way, its stochastic feature is captured by a single latent time index
in the first place.

In addition, we propose a development of the Lee-Carter model to combine extrapolative and
explanatory approaches on modeling health, which also allows for including expert opinion into the
forecast. Booth and Tickle (2008) subdivide the modeling of mortality in three main approaches,
namely ”expectation”, ”explanation”, and ”extrapolation”. The expectations approach makes use of
(subjective) expert opinion. The explanatory approach makes use of measured, exogenous variables
to try to explain the trends, see Girosi and King (2008) and King and Soneji (2011). The extrap-
olative approach, which has received most attention from researchers, relies on the assumption that
trends seen in the past data will be continued into the future. Most of the health studies so far are
based on the explanatory approach. The advantage is that feedback mechanisms and limiting factors
can be taken into account. But it is restricted only to certain causes of health with known determi-
nants, in which the key exogenous variables have to be known and can be measured. It usually poses
problems associated with the lack of independence among causes and data difficulties. Therefore, our
first attempt to model the health process stochastically is by means of an extrapolative approach. This
means we do not rely on health determinants. However, this pure extrapolative method assumes that
the future trend will essentially be a continuation of the past. This might be an unreasonable assump-
tion in the health modeling, since health changes are determined by many comprehensive and mixed
factors. A pure latent approach gives little insight into the reasons for health trends and whether or
not these trends will continue into the future. Although extrapolation is a reasonable approach, there
is still a place for explanatory methods to be applied. We propose to identify appropriate exogenous
determinants statistically and incorporate them into a latent stochastic health model. Such a combi-
nation of extrapolative and explanatory approaches in health modeling provides added value of the
current health literature. And, in principle, it can also allow for including expert opinion. Most of the
work on measuring and determining changes of health is based on a micro analysis. See Manton and
Stallard (1991), Manton, Stallard, and Tolley (1991), Manton, Stallard, and Corder (1997), Manton
and Land (2000), Portrait, Lindeboom, and Deeg (2001), Goldman, Shekelle, Bhattacharya, Joyce,
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Lakdawalla, Matsui, Newberry, Panis, and Shang (2004), Manton, Gu, and Lowrimore (2008), and
Michaud, Goldman, Lakdawalla, Zheng, and Gailey (2009) for example. Only few work has been
done to assess the evidence of the macroeconomic fluctuations to health changes. In this paper, we
incorporate macroeconomic variables, like GDP and unemployment rate to model the general health
of the population. Based on the historical pattern of health changes, we are able to address on how
well time and age as indicators of general population health status, by combining macroeconomic
variables additionally, we are able to link health with different scenarios of the economy.

The remainder of the paper is organized as follows. In the next section, we formally define
the health status index, and introduce the theoretical model we use to estimate the stochastic health
changes. Next, in Section 3, we describe the health data and the exogenous variables included in
the study. Section 4 applies our approach on modeling the health dynamics for the United States
from 1972 to 2008 for male and female separately. We then discuss our approach to forecast health
changes in the future. As one of the applications based on health modeling, life expectancy and
healthy life expectancy are estimated and forecasted in section 6. We conclude in section 7.

2 Health modeling
In this section, we will first propose the health measure used in this paper, and illustrate how to
construct the Health Status Index (HSI). Then, the Lee-Carter model is introduced to model dynamic
changes in the health process. Later on, based on the traditional Lee-Carter model, we propose to
combine the extrapolative and explanatory approaches by including the observed information into
the latent stochastic model.

2.1 Health measurement
Measurements of health are largely discussed in the current literature, among which self-assessed
health, being much more global and subjective in nature, is one of the important and commonly used
health status measurements. It can incorporate a variety of aspects of health, including cognitive and
emotional, as well as physical aspects, therefore, provide meaningful insights into an aging society.
For example, it gives vital perception on working eligibility, which is related to labor supply for
people themselves. Many research has been done based on the self-assessed health, for example,
Lechner and Vazquez-Alvarez (2003) use self-accessed degree of disability for Germany and address
that becoming disabled reduces the probability of being in employment by around 9%. Lakdawalla,
Goldman, and Bhattacharya (2004) analyze the validation of the self-assessed health condition to the
ability to work. Gomez and Nicolas (2006) examine how a self-assessed health affects the probability
of working for the Spanish population and find that there is a large probability that people quit the
labor market when reporting bad health. Furthermore, self-assessed health is one of the particularly
important indicators of the potential demand for health services and long-term care needs. In such a
context, we propose to use the self-assessed health in this article.

In line with the health definition introduced by Imai and Soneji (2007), we introduce the following
estimator, the Health Status Index (HSI) πx,t, to represent the proportion of the population in a certain
health condition, for example, ”good” or ”bad”. HSI is based on the discrete dataset, which is defined
as follows,

πx,t =
1

Nx,t

Nx,t∑
j=1

Hj,x,t. (1)

where at a survey time t, Nx,t represents the total number of survey respondents of age x, and Hj,x,t

is a zero-one indicator of a certain health condition for the jth respondent of this age. We choose
Hj,x,t = 1 to denote ”bad” health, andHj,x,t = 0 to denote ”good” health in this paper. Accordingly,
at time t, Health Status Index πx,t represents the proportion of people who are in bad health of age
x, reflects the general health level of the population of certain age and at a certain time.
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2.2 Health modeling in a latent framework
In the context of health analysis, we are interested in whether the Lee-Carter type of model is suitable
for modeling and forecasting health dynamics. As a consequence, we consider the changes of the
health status index as a stochastic process, and propose first to model this stochastic development
using the approach proposed by Lee and Carter (1992).

The Lee-Carter model is a single latent time factor approach and is one of the commonly used
methods in mortality analysis. A large development has been made based on the this basic frame-
work. For example, Renshaw and Haberman (2003a) include the first two sets of singular value
decomposition vectors in the estimation and forecast, rather than just the first set in the original Lee-
Carter model; Renshaw and Haberman (2003b) introduce a generalized linear modeling technology
as a parallel methodology with the Lee-Carter model and compare the two models in terms of struc-
ture and assumption; Cairns, Blake, and Dowd (2006) propose a two-factor stochastic model for the
development of the mortality through time, CBD model, in where the first factor affects mortality-
rate dynamics at all ages in the same way, whereas the second factor affects mortality-rate dynamics
at higher ages much more than at lower ages. Renshaw and Haberman (2006) further incorporate the
age-period cohort effect as an additional variable into the Lee-Carter model to improve the mortal-
ity projection. In addition to this, the CBD model is generalized from three ways by Cairns, Blake,
Dowd, Coughlan, Epstein, Ong, and Balevich (2007), they include a cohort effect, adding a quadratic
term into the age effect, and allowing the impact of the cohort effect to diminish over time instead
of remaining constant. These models offer significant qualitative advantages. Quantitative compar-
isons of these models can be found in Cairns, Blake, Dowd, Coughlan, Epstein, Ong, and Balevich
(2007), Dowd, Cairns, Blake, Coughlan, Epstein, and Khalaf-Allah (2010), and Cairns, Blake, Dowd,
Coughlan, Epstein, and Khalaf-Allah (2011). They conclude that no single model dominates, each
model’s performance depends on the country data and the criterion interested. See also the recent
books by Girosi and King (2008) and Pitacco, Denuit, Haberman, and Olivieri (2009). Other mod-
ifications include Tuljapurkar, Li, and Boe (2000), and Brouhns, Denuit, and Vermunt (2002), who
assume Poisson-distributed deaths and estimate the models’ parameters with an iterative maximum
likelihood algorithm. In the modeling and estimation of health changes, we will first only apply the
original Lee-Carter model. This is one of the first attempts to model health dynamics using a latent
stochastic framework in the current literature, there is no reason to assume a more complicated model
will be better perform than the Lee-Carter framework at this stage.

Let f(πx,t), x = x1, x2, . . . , xk, t = t1, t2, . . . , tn, denote a transformation of health status index
(HSI) for age x at time t. The Lee-Carter model describes f(πx,t) as a function of a single time
parameter and postulates the following relationship,

f(πx,t) = αx + βxκt + εx,t, (2)

Lee and Carter (1992) propose use f(mx,t) as the logarithm of the central mortality death rate mx,t

for age x at time t, implying f(mx,t) = log(mx,t). Whereas we introduce f(πx,t) as a transforma-
tion of the health status index πx,t. In this fashion, κt is a time-dependent univariate health index,
which represents the change in the level of f(πx,t) over time. αx describes the age-pattern of health
averaged over time, while βx describes the age-specific deviations from the averaged pattern when
κt varies. The εx,t (white noise) represents the error term, with mean 0 and variance σ2

ε,x, reflecting
particular age-specific historical influences not captured by the model.

In this model specification, βx and κt cannot be uniquely identified, because one of these two
elements could be multiplied by a constant while the other one is divided by the same constant
without altering the predicted values given by the model. Hence, Lee and Carter (1992) proposed the
normalization constraints, ∑

t

κt = 0,
∑
x

βx = 1. (3)

The first constraint implies that for each x the estimate for αx will be an average of the f(πx,t)
over calendar years. And the second one is to uniquely identify βx and κt. Cairns, Blake, Dowd,
Coughlan, Epstein, Ong, and Balevich (2007) argue that the first constraint is natural, but not for the
second one. However, different choices of the second constraint have no impact on the quality of the
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fit, or the model forecasts. Researchers also propose other constraints, for instance, Wilmoth (1993)
adoptes

∑
x β

2
x = 1.

In principle, one can choose f(πx,t) as any transformations of πx,t. We experimented with dif-
ferent transformations f(πx,t) to test whether they could increase the performance of the model,
including logit transformation, logarithm transformation, the Box-Cox transformation (see Box and
Cox (1964)), and MacKinnon and Magee transformation (see MacKinnon and Magee (1990)), 1.
However, different choices of f(πx,t) do not improve the mean squared error of the model signifi-
cantly, and provide very similar estimates. Therefore, we chose f(πx,t) = log πx,t instead of others,
because if we choose health indicator H to represent ”bad” health, κ will go to negative infinity
with time as each age-specific rate goes to 0; negative HSI cannot occur in this model, which is an
advantage for forecasting.

2.3 Lee-Carter model with observed variables
Applying the traditional Lee-Carter model, an extrapolative stochastic method, is one of the first at-
tempts of stochastic health modeling. However, such an approach does not allow for observed infor-
mation included in the model, which may simply omit the available information that can be collected
easily and helpful to improve the modeling. Especially for a complex factor as health, it is highly
possible to be determined by multiple elements. Since most industrialized countries have experi-
enced a well-documented improvement in overall health condition over the past 40 years, downward
trends can be expected in the HSI. These trends might be detected and modeled appropriately by not
only the latent stochastic index κt, but also the trended factors like macroeconomic fluctuations and
the life-style related factors. Therefore, this paper proposes a model in discrete time and modifies
the Lee-Carter approach by including observed information Z into the original framework to model
health. Here, Z can be macroeconomic fluctuations, such as like GDP and unemployment rate, or
life-style related factors, such as alcohol consumption and tobacco consumption. These variables
will be discussed in detail in the later section. In principle, Z is a m × n matrix, which contains m
observed variables. The health curve is thus modeled as

f(πx,t) = αx + βxκt + ρ′xZt + εx,t, t = t1, . . . , tn, x = x1, . . . , xk, (4)

where ρx is the m× 1 coefficient vector.
Note that by following the standard constraints (3) in the original Lee-Carter model, this model

still can not be uniquely identified. Because besides α, β, κ, and ρ as one solution, it exists a m× 1
vector τ , such that α, β, κ + τ ′Z, and ρ − βτ ′ is another set of solution. (See the appendix A.1 for
details). Therefore, we normalize vector in Zt with mean 0 and variance 1,∑

t

Zit = 0, σiZ = 1, for every i = 1, . . . ,m. (5)

Furthermore, we impose another constraint on ρ, that is∑
x

ρix = 1 for every i = 1, . . . ,m (6)

Given the constraints (3), (5), and (6), we can uniquely identify the parameters following the Newton-
Raphson’s recursive procedure. The details are illustrated in appendix A.2.

Then, the estimated κt are further adjusted by fitting the total observed number of people who are
in ”bad” health to the total expected number for each year t. Since it is desirable that the differences
between the actual and expected total number of people who are in ”bad” health in each year are
zero, the adjusted κ̂t’s solve the equation

xm∑
x=x1

Hx,t =

xm∑
x=x1

Nx,t exp(α̂x + β̂xκ̂t + ρ̂xZt), (7)

1The logit transformation is f(πx,t) = log(
πx,t

1−πx,t
); the logarithm transformation is f(πx,t) = log(πx,t); the Box-Cox

transformation is f(πx,t) =
πa
x,t−1

a
, given a certain parameter a; the MacKinnon and Magee transformation is f(πx,t) =

H(aπx,t)

a
, given a certain parameter a
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where at a certain age x and year t, Nx,t is the number of the survey respondents, and Hx,t is the
number of people in the survey who are in bad health. The identification constraints will be satisfied
by replacing κ̂t with κ̂t − κ̂t and α̂x with α̂x + β̂xκ̂t. There is no extra constraint needed on ρ.
Finally, as we do not expect irregular jumps of people’s health between adjacent ages nor in a short
period, we smooth estimated parameters using the B-spline method, proposed by Currie, Durban,
and Eilers (2004) to fit the health surface, in the age and time directions.

3 Data description

3.1 Health data
The empirical analysis in this paper is based on the consecutive annual cross-sectional health status
index from 1972 to 2010 in the United Sates. The health data is provided by the Integrated Health In-
terview Series (IHIS), which is the harmonized data and documentation for the U.S. National Health
Interview Survey (NHIS). NHIS provides the self-assessed health data, although being a set of sub-
jective data, it is very valuable because it provides the subjective opinion of people who make, for
example, labor decisions based on their own health perception. This is important for issues like the
effects of increasing the retirement age for the social security and pension funds, etc. Therefore, how
people themselves perceive their health status is a very important way to determine the health status.
The IHIS provides the integrated self-assessed health status of surveyed individuals from 1972 to
2010 and it rates an individual’s general health on a four-point scale (excellent, good, fair, or poor)
for 1972-81 or a five-point scale (excellent, very good, good, fair, or poor) from 1982 until now,
ranging from ”excellent” to ”poor”, in general. We define the health status index in the way that peo-
ple are deemed to be healthy unless they report ”poor” or ”fair”. The IHIS reports that the relative
frequency of responses more favorable than ”fair”, combining ”excellent,” ”very good,” and ”good”
versus combining ”excellent” and ”good” is similar before and after 1982.

When the sample size is too small, it will be insufficient to draw certain types of conclusions,
for example, we may have the spurious significance test results. In order to avoid the small sample
problem, we adjust the dataset according to IHIS-constructed weight variable w based on the Final
Annual Weight in the original NHIS public use files. This weight can be used for many analyses
at the person level. w represents the inverse probability of selection into the sample, adjusted for
non-response with post-stratification adjustments for age, race/ethnicity, and sex, using the Census
Bureau’s population control totals. For each year, the sum of these weights is equal to that year’s
civilian, non-institutionalized U.S. population. At a certain year t, let pj,x,t denote the probability
that an individual j at age x in the population is selected in the survey. wj,x,t = 1

pj,x,t
. In turn, whole

population size at age x is Nx,t =
∑
j wj,x,t. Then, the Health Status Index (HSI) is

πx,t =
1

Nx,t

∑
j

wj,x,tHj,x,t, (8)

where Hj,x,t = 1 indicates that the respondent reports ”poor” or ”fair” health.
Figure 1 describes the logarithm of the health status index (HSI) of males (left figures of the

upper two panels) and females (right figures of the upper two panels) in the United States. The two
figures in the second panel are the general average health status index over age and over time for
both male and female2. For different age groups, the health condition of both male and female is on
average improving over the years although at a different speed. The increasing trend of the HSI over
age for both genders indicates that, in general, people’s health condition is getting worse as people
age. And their decreasing trend of average HSI over time imply the their improvement of health over
time. These are shown by the graphs in the the last panel of Figure 1.

2The average health status index over age is calculated based on the total number of respondents over the survey years.
Similarly, the average health status index over time is calculated based on the total number of respondents at all ages.
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Figure 1: Description of the health status index in the U.S.

3.2 Observed variables
We choose two macroeconomic variables and two life-style related variables of the U.S. during the
period 1972-2008 from the OECD Statistics Extracts. The macroeconomic variables are real gross
domestic product per capita (GDP) and total unemployment rate, which are indicators of aggregate
economic activity and obtained in Country Statistical Profiles (2010) from the OECD statistics. The
alcohol consumption and tobacco consumption are obtained from OECD Health Data (2010) as life-
style related factors. The alcohol consumption is the annual consumption of pure alcohol in liters, per
person, aged 15 years and over in the population. The tobacco consumption is the annual consump-
tion of tobacco items (e.g. cigarettes, cigars) in grams per person aged 15 years or more. Figure 2
shows the in-sample changes of these variables.
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Figure 2: Description macroeconomic and non-medical health determinants

4 Model estimation

4.1 Analysis for the whole age group (0-85)
The analysis in this section is constructed for males and females in the United States of the age group
0 to 85, with the time horizon from 1972 to 2008. First, the original Lee-Carter model is estimated
for health changes. Then, we try to include only one observed variable among the four we discussed
before into the Lee-Carter model. Later on, by increasing the number of observed variables up to
four, we discuss the model choice based on the model selection criterion, namely the mean square
error (MSE) and Bayes Information Criterion (BIC). In the following empirical analysis, we choose
f(πx,t) = log(πx,t) in equations (4), where πx,t, the health status index, represents the proportion
of people who are in bad health.

4.1.1 Modeling health using the Lee-Carter model

First, we apply the original Lee-Carter model to estimate health. Figures 3 and 4 presents the esti-
mates for males and females. These estimates are also smoothed by the B-spline method proposed
by Currie, Durban, and Eilers (2004).

A simple and quick visual check of the model validity is to see whether the estimated residuals
ε̂x,t follow a random pattern, since εx,t by construction should be a random walk. The estimated
residuals for both genders are the first figures in Figures 3 and 4. They do not seem to violate
the assumption of randomness. For both genders, the estimated κ̂t is adjusted according to the
real number of people who are in bad health. It has a clear downward trend, which means that
the proportion of people in bad health has decreasing trend over time. The increasing shape of α̂x
indicates that on average people’s health is getting worse with age. However, this is not the case when
people are very young. Furthermore, the estimated β̂x represent the sensitivity of the time trend of
different age. It shows that the young are more sensitive to the time trend than the elderly, which
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indicates when people are getting old, it is less likely to change the bad health condition back to the
good.

Figure 3: Estimates of Lee-Carter model for health, Male: 0-85

Figure 4: Estimates of Lee-Carter model for health, Female: 0-85
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4.1.2 Modeling health using the Lee-Carter model with a single observed variable

In this section, the Lee-Carter model with a single observed variable is estimated for the age group
0-85 by different genders separately. We consider four models including, in turn, log GDP, un-
employment rate, alcohol consumption, and tobacco consumption. Table 1 lists the mean square
error (MSE) and the Bayes Information Criterion (BIC) for the original Lee-Carter model (the first
column), and the Lee-Carter model with a single observed variable (the right four columns). The
reductions of the MSE in percentage compared to the Lee-Carter are listed in brackets. By including
one additional observed variable into the Lee-Carter framework, the MSE improves from 8.6% to
18.9% for both genders. Generally speaking, the Lee-Carter model with GDP included yields the
largest increase in the model fit, followed by tobacco consumption.

Table 1: Mean square errors of Lee-Carter model and Lee-Carter model with a single observed variable
(Improvements in percentage are presented in the brackets)

LC Lee-Carter model with single observed variable
GDP Unemployment Rate Alcohol Tobacco

Male (MSE×10−4) 5.1029 4.3178 4.7001 4.559 4.483
Improvement(%) (18.2) (8.6) (11.9) (13.8)

BIC -7.1446 -7.3116 -7.2268 -7.2573 -7.2741
Female (MSE×10−4) 4.1211 3.4662 3.7965 3.6337 3.577

Improvement(%) (18.9) (8.6) (13.4) (15.2)
BIC -7.3583 -7.5313 -7.4403 -7.4841 -7.4999

Figures 19 to 24 in appendix B.1 present the estimates of the Lee-Carter model with a single
observed variable for males (the left panel), and for females (the right panel). First, through a simple
visual check of the estimated residuals, it indicates there is no pattern not being captured, since they
look reasonably random. We do not see the cohort effects in the health analysis by the Lee-Carter
type of model. Similar as in the original Lee-Carter model, α̂x have the upward shape, κ̂t have a
downward trend, and β̂x indicate a higher sensitivity in the younger age group than the elderly.

However, since both κt and Zt are in time dimension, it is likely that some of the fact in Zt is
captured by κt. As a consequence, it is difficult to illustrate how the observed variable affects health
in the model. Therefore, we perform the following transformation to construct a new variable which
is orthogonal with Zt. In this way, we can explain the effect comes from Zt on health. It can be
illustrated from the following relationship,

log(πx,t) = αx + βxκt + ρ′xZt + εx,t

= αx + βxκ̃+ ρ̃′xZt + εx,t,

with
κ̃t = κt − ((

∑
t

ZtZ
′
t)
−1(
∑
t

Ztκt))
′Zt, (9)

which is orthogonal with Zt. And

ρ̃x = ρx + (
∑
t

ZtZ
′
t)
−1(
∑
t

Ztκt)β
′
x, (10)

which can be interpreted as the effect of Zt on health. If Zt would not have any effect, then ρ̃x =
−→
0 .

Figure 5 presents the estimated transformed ρ̃x from the Lee-Carter model with each of the four
observed variables by genders. It shows that for both male and female, the increase of GDP reduces
the proportion of people in bad health, especially in the younger age level. The increase of unem-
ployment rate, alcohol consumption, and tobacco consumption have the opposite effect. In addition,
young people are more sensitive to these factors than the elderly. The GDP tends to have a negative
effect on people’s bad health, which is the opposite as the unemployment rate, this may because the
increase in GDP and decrease in the unemployment rate, both as signs of the improvement of the
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economy, generally improve people’s living conditions, the health expenditure, or even make people
happier, which in turn is positively affect health. As expected, we obtain positive signs from alcohol
and smoking consumption, which indicates these behaviors are bad for people’s health. Moreover,
the transformed κ̂, shown in Figure 24 in appendix B.1, do not seem totally lack of trends. This
implies that κ̂ still have time value on health changes.

Figure 5: Estimated transformed ρ in the Lee-Carter model with a single observed variable for health: 0-85
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Figure 6: Confidence intervals for transformed ρ in the Lee-Carter model with a single observed variable
for Health: 0-85

4.1.3 Quantifying the uncertainty

One of the advantage of the stochastic modeling is that it can provide the uncertainty of the parameter
estimates of interest. It is important to prove the indication of the likely range of the estimates.
To quantify the range of the estimates, we apply the bootstrapping method which could avoid any
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normality assumption of the residuals. After each estimation, we create the matrix R of residuals,
with elements ex,t. ex,t is the difference between real log(πx,t) and estimated ̂log(πx,t), namely,

ex,t = log(πx,t)− ̂log(πx,t),

where ̂log(πx,t) = α̂x + β̂xκ̂t + ρ̂′xZ. Since the residuals should be independent and identically
distributed, from these, it is possible to generate B replications of Rb, b = 1, 2, ..., B by sampling
with replacement the elements of the matrix R with elements ebx,t. And then, we will be able to

create the corresponding bootstrapped logarithm of health status index ̂log(πbx,t),

̂log(πbx,t) = α̂x + β̂xκ̂t + ρ̂′xZ + ebx,t.

Using the bootstrapped dependent variable, we reestimate B sets of estimated parameters α̂bx, β̂bx,
κ̂bt , and ρ̂bx. By sorting the bootstrapped estimates, we then find the 95% confidence interval of the
estimates. In our analysis we choose B = 2000. Therefore, the 0.975th, and the 0.025th empirical
percentiles, are respectively, the 1950th and the 50th number in the increasing ordered list of 2,000
bootstrapped estimates, and construct the 95% confidence interval for the estimates.

Furthermore, we put more attention on the movement of ρ̃x, since it describes the effect of Zt on
health changes. Based on the bootstrapping method, we could also construct a test that whether ˆ̃ρx
are jointly differ significantly from zero. This means under the null hypothesis that H0 : ˆ̃ρ =

−→
0 , we

have the test statistics
τ = ˆ̃ρ′(var(ˆ̃ρ))−1 ˆ̃ρ,

whereτ → χ2
l , l = rank(var(ˆ̃ρ)). The first column in Table 4 shows the test results of the null

hypothesis H0 : ρ̃x = 0 for each variable in the Lee-Carter model with a single observed variable. It
shows that the included variables all have significant effects on people’s bad health at 95% confidence
level. Figure 6 shows the confidence interval for each variable. We can see that, at most of the ages,
the observed variables have the significant effect on health since the confidence intervals do not
include zero value most of the times.

4.1.4 Modeling health using the Lee-Carter model with multiple observed variables

The previous section shows that the selected included observed variables clearly add additional time
effects to people’s bad health in the Lee-Carter model with a single variable for age group 0-85.
Additionally, we also would like to see how these factors would affect health jointly with the latent
variable. Therefore, in this section, we first implement the Lee-Carter model with two observed
variables, either the macroeconomic fluctuations (GDP and unemployment rate), or the health de-
terminants (alcohol and tobacco consumption). Later on, we will also test the performance of the
Lee-Carter model with three and all the four variables.

However, when we include more variables into the model, we also need to consider the multi-
collinearity problem. To test this, we construct the Variance Inflation Factor (VIF) (see chapter 4
of Greene (2002), and chapter 3 of Wooldridge (2003)), which is the test statistics for the multi-
collinearity in the linear regression between included variables. Values of VIF 3 that exceed 10 are
often regarded as indicating multicollinearity. Table 2 presents the VIF between observed variables.
It shows that when including GDP and tobacco consumption together, the severe multicolinearity
problem might occur. Therefore, when we estimate the Lee-Carter model with three variables, GDP,
unemployment rate, and alcohol consumption are chosen.

Table 3 presents the model fit of the Lee-Carter model with two, three, and four observed vari-
ables. Although the MSE reveals that the model fit increased more than 30% when including four
variables into the Lee-Carter model, we will have the serious problem of multicolinearity if we in-
clude both GDP and tobacco consumption as indicated by the high values of VIF. Furthermore, we
should also avoid models that are excessively parameterized. This can be addressed by using, for
example, the Bayes Information Criterion (BIC), which are shown in the last row of each panel in

3The method of calculating VIF is described in the appendix A.3
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Tables 1 and 3. In general, we prefer a smaller BIC value, this ensures that extra parameters are only
included when there is a significant improvement in fit. As can be seen, the Lee-Carter model with
four observed variables have the largest BIC, which also confirms that the Lee-Carter model with
four observed variables is not proper in our analysis. Similar with the Lee-Carter model with three
observed variables, due to a large BIC, we will also not make a model choice for this.

Table 2: Variance inflation factor (VIF) of observed variables.
(’∗’ denotes there exist severe multicollinearity)

GDP & Unemployment Rate Alcohol&Tobacco GDP& Alcohol GDP& Tobacco
VIF 1.5 3.8 3.8 60.1 ∗

GDP, Unemployment rate, Alcohol & Tobacco GDP, Unemployment Rate, & Alcohol
VIF 113.1∗ 3.9

Table 3: Mean square errors (MSE) of Lee-Carter model and Lee-Carter model with multiple observed
variables (OV).
(Improvement of MSE in percentage compared to the Lee-Carter model is presented in the brackets)

LC with two OV LC with three OV LC with four OV
GDP&Unemployment rate Alcohol & Tobacco

Male(MSE×10−4) 4.1277 4.3348 3.9292 3.7540
Improvement(%) (23.6) (17.7) (29.9) (35.9)

BIC -7.1387 -7.0897 -6.9700 -6.7976
Female(MSE×10−4) 3.3044 3.5054 3.1355 3.0806

Improvement(%) (24.7) (17.6) (31.4) (33.8)
BIC -7.3611 -7.3021 -7.1956 -6.9953

The estimated α̂x, β̂x, κ̂x and the residuals of the Lee-Carter model with two observed variables
are shown by Figures 25 to 30 in the appendix B.2, and estimated transformed ˜̂ρx are shown in
Figures 7 and 8. Transformed ˜̂ρx of the alcohol and tobacco consumption indicate that these two
variables affect people’s bad health condition in the same way as in the Lee-Carter model with a
single observed variable. However, the transformed ˜̂ρx in the Lee-Carter model with GDP and un-
employment rate tells a bit different story (see Figure 7). GDP still has a clear negative effect for
people’s bad health. However, in line with the results from the Lee-Carter model with three observed
variables, unemployment rate shows a negative effect for the younger age group and positive effect
for the elderly on their bad health, this is different as suggested by the Lee-Carter model only with un-
employment rate. The reason might be that in the Lee-Carter model with only one observed variable,
this variable captures all the variation which might not be true. Therefore, although BIC shows that
the Lee-Carter model with a single observed variable is in favor of two or three observed variable,
we still think the Lee-Carter model with two observed variables might be more proper to describe the
effects of the observed information on health. The Lee-Carter model with three observed variables
show the similar effects of GDP, unemployment rate, and alcohol consumption as in the Lee-Carter
model with two observed variables. The reason of the different behavior of the unemployment rate
behind it might be that the unemployment gives the young people more time besides working. This
allows them participate in sports, which helps to reduce the bad health condition. However, the in-
crease of the unemployment rate has much smaller effect for the elderly, since after the retirement,
the working condition is no longer a big issue to affect their health. As a consequence, the sensitivity
of the unemployment rate for the elderly is quite small. The Lee-Carter model with two observed
variables so far have relative small BIC value, and does not have the multicollinearity problem but
has a much higher improvement in the MSE, therefore, we will focus on this model in the following
analysis.
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Figure 7: Estimated transformed ρ in the Lee-Carter model with GDP and unemployment rate for health:
0-85

Figure 8: Estimated transformed ρ in the Lee-Carter model with alcohol and tobacco consumption for
health: 0-85
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Figure 9: Confidence intervals for transformed ρ in the Lee-Carter model with two observed variables
for Health: 0-85
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We also perform the joint significance test of the estimated ˜̂ρx for the Lee-Carter model with
multiple observed variables. Table 4 shows the test results for both genders. We can conclude
that in the Lee-Carter model with multiple observed variables, the observed variables have jointly
significant effects on health over age. However, Figure 9 shows that in the Lee-Carter model with two
observed variables, GDP and tobacco consumption still have the significant effect at most of the age,
unemployment rate, and alcohol consumption act insignificantly in many ages after incorporating
another variable into the model. Only in the Lee-Carter model with four observed variables, GDP
becomes insignificant, see the last column of Table 4. We think this is because the multicolinearity
problem generated by both including GDP and tobacco consumption.

Table 4: Test statistics of the observed variables (OV) in the Lee-Carter model with observed variables
for health, 1972-2008, 0-85
(’∗’ denotes the estimates are significantly different from 0 at the 5% level.)

H0 : ˆ̃ρ =
−→
0 , Male

Lee-Carter with Lee-Carter with Lee-Carter with Lee-Carter with Lee-Carter with
single OV GDP & Unemployment Alcohol & Tobacco three OV four OV

GDP 29482∗ 60428∗ 23426∗ 39.4
(0.0000) (0.0000) (0.0000) (1.0000)

Unemployment 62967∗ 136∗ 204∗ 609.2∗

Rate (0.0000) (0.00051) (0.0000) (0.0000)
Alcohol 83160∗ 3359∗ 1577∗ 333.2∗

(0.0000) (0.0000) (0.0000) (0.0000)
Tobacco 85070∗ 29518∗ 1364.7∗

(0.0000) (0.0000) (0.0000)

H0 : ˆ̃ρ =
−→
0 , Female

Lee-Carter with Lee-Carter with Lee-Carter with Lee-Carter with Lee-Carter with
single OV GDP & Unemployment Alcohol & Tobacco three OV four OV

GDP 53261∗ 40307∗ 18034∗ 579.1461∗

(0.0000) (0.0000) (0.0000) (0.0000)
Unemployment 44251∗ 124∗ 191∗ 118.9565∗

Rate (0.0000) (0.0044) (0.0000) (0.0108)
Alcohol 55958∗ 1346∗ 636∗ 153.3911∗

(0.0000) (0.0000) (0.0000) (0.0000)
Tobacco 47443∗ 23342∗ 332.6969∗

(0.0000) (0.0000) (0.0000)

4.2 Analysis for sub age groups
As illustrated by the analysis constructed for the age group 0-85, all the included variables have sig-
nificant effects, however, those variables might affect the HSI differently for different age intervals.
As concluded before, the Lee-Cater model with two observed variables will be applied in this section.
In this section, we estimate the model for the following sub age groups, namely, 0-18, 19-30, 31-54,
55-64, 65-85. Table 5 shows the model fit for the sub age groups. It can be seen that including the
observed variables will generally improve the model fit also for the sub group analysis, especially
for the elderly. Table 6 shows the significance test of different variables. In most of the cases, the
included variables still have a jointly significant effect on health for all the age groups at the 95%
significance level, except for females at the 0-18 age group, alcohol consumption has no longer a
significant effect on health.
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Table 5: Mean square errors of the Lee-Carter model and the Lee-Carter model with multiple observed
variables for sub age groups
(Improvement of MSE in percentage compared to the Lee-Carter model is presented in the brackets)

Male
LC LC with two OV LC with three OV

GDP&Unemployment rate Alcohol & Tobacco
0-18(MSE×10−3) 0.036 0.035 0.036 0.035
Improvement(%) (3.5) (1.9) (5.4)

BIC -9.87 -9.72 -9.71 -9.57
19-30(MSE×10−3) 0.059 0.053 0.054 0.052

Improvement(%) (11.5) (9.6) (13.0)
BIC -9.41 -9.36 -9.34 -9.20

31-54(MSE×10−3) 0.155 0.141 0.140 0.137
Improvement(%) (9.6) (10.6) (13.0)

BIC -8.41 -8.31 -8.32 -8.16
55-64(MSE×10−3) 0.398 0.367 0.353 0.343

Improvement(%) (8.5) (12.7) (16.0)
BIC -7.51 -7.43 -7.47 -7.34

65-85(MSE×10−3) 1.251 1.109 1.077 1.049
Improvement(%) (12.8) (16.1) (19.3)

BIC -6.32 -6.26 -6.29 -6.14
Female

LC LC with two OV LC with three OV
GDP&Unemployment rate Alcohol & Tobacco

0-18(MSE×10−3) 0.039 0.036 0.037 0.036
Improvement(%) (7.1) (6.2) (8.2)

BIC -9.80 -9.69 -9.68 -9.52
19-30(MSE×10−3) 0.073 0.068 0.069 0.066

Improvement(%) (6.2) (5.3) (9.3)
BIC -9.20 -9.10 -9.09 -8.96

31-54(MSE×10−3) 0.174 0.160 0.163 0.157
Improvement(%) (8.7) (7.2) (11.2)

BIC -8.29 -8.19 -8.17 -8.03
55-64(MSE×10−3) 0.360 0.339 0.342 0.319

Improvement(%) (6.4) (5.5) (13.1)
BIC -7.61 -7.51 -7.50 -7.41

65-85(MSE×10−3) 0.890 0.771 0.757 0.720
Improvement(%) (15.4) (17.6) (23.6)

BIC -6.66 -6.63 -6.65 -6.52

5 Health forecast
Having developed and fitted the health model, we are now ready to move to the problem of forecast-
ing. The forecasting performance of one model is one of the important criterions of the model evalu-
ation. One of the main focuses of this paper is obtaining plausible forecasts for the health process. In
this section, we first address the method to forecast κ and observed variables before forecasting the
health status index. The forecasting analysis in this section is based on the Lee-Carter model with
two observed variables (GDP and unemployment rate, and alcohol and tobacco consumption), and
the Lee-Carter model with three observed variables. We choose the estimation period from 1972 to
2000, and forecasting period from 2001 to 2008. Later on, we also construct a rolling window fore-
cast to compare the forecasting power between the traditional Lee-Carter model and the Lee-Carter
model with observed variables for health.
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Table 6: Test statistics of the observed variables (OV) in the Lee-Carter model with observed variables
for health of sub age groups, 1972-2008
(’∗’ denotes the estimates are significantly different from 0 at the 5% level. P-values are in the brackets)

H0 : ˆ̃ρ =
−→
0 , Male

Lee-Carter with two OV Lee-Carter with three OV
GDP Unemployment Rate Alcohol Tobacco GDP Unemployment Rate Alcohol

0-18 (103) 158.03 0.68 0.06 112.73 63.559 0.576 0.084
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

19-30 (103) 58.69 1.55 0.02 14.82 12.063 2.009 0.628
(0.0000) (0.0000) (0.0413) (0.0000) (0.0000) (0.0000) (0.0000)

30-54 (103) 148.23 0.18 0.37 33.06 26.976 0.683 1.176
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

55-64 (103) 374.00 0.50 2.13 78.72 90.773 0.112 2.975
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

65-85 (103) 10.02 8.90 3.8429 3.1596 3.8903 2.8618 1.2880
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

H0 : ˆ̃ρ =
−→
0 , Female

Lee-Carter with two OV Lee-Carter with three OV
GDP Unemployment Rate Alcohol Tobacco GDP Unemployment Rate Alcohol

0-18 (103) 197.86 0.07 0.03 107.46 77.815 0.032 0.060
(0.0000) (0.0000) (0.0928) (0.0000) (0.0000) (0.0000) (0.0000)

19-30 (103) 185.19 2.32 1.56 87.06 51.237 1.233 0.133
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0310) (0.0000)

30-54 (103) 366.43 6.59 0.05 82.63 65.934 7.174 1.375
(0.0000) (0.0000) (0.0044) (0.0000) (0.0000) (0.0000) (0.0000)

55-64 (103) 316.92 6.65 3.48 120.98 85.225 2.129 0.704
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

65-85 (103) 9.0731 2.5770 3.8376 3.1818 3.687 0.366 1.801
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

5.1 Point forecast
In the traditional Lee-Carter approach for mortality, the adjusted estimated κt is modeled and fore-
casted using the Box-Jenkins time series method. Lee and Carter (1992) and most of applicants,
including Tuljapurkar, Li, and Boe (2000) concluded that the dynamics of κt can be described as a
random walk with drift µ. This ARIMA(0,1,0) time series model is,

κt = µ+ κt−1 + et, (11)

where the innovation et is assumed to follow a normal distribution with mean 0 and variance σ2
e .

Then, the h ahead point forecast through an ARIMA(0,1,0) model can be derived as follows,

κ̂h = κ1 + (h− 1)µ. (12)

However, in the Lee-Carter model with observed variables, since both κ and the observed variable
present time trends of the health changes, we propose to apply vector autoregression (VAR) model
to describe the dynamics evolution of κ and the two observed variables.

In the estimation period 1972 to 2000, we found that κ and the four observed variables are all
I(1) processes. Table 7 shows the Augmented DickeyFuller test of these time series. Therefore, it is
reasonable to consider their first difference in the VAR model. By applying the Akaike Information
Criterion (AIC) and Bayes Information Criterion (BIC), the lag length of the model is determined.
Both criterion suggest to choose one lag in the VAR modeling in the estimation period, 1972-2000.
Let Z denotes the m× n matrix contains m observed variables.

Yt = C + ΘYt−1 +−→ε t, (13)
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where Yt =

(
∆κt
∆Zt

)
, C is a constant vector, Θ is a (m+ 1)× (m+ 1) coefficient matrix, and

−→ε t is a (m+ 1)-dimensional vector of white noise terms with covariance matrix Σ.

Table 7: Unit root test for the observed variables and the estimated κ from different models, 1972-2000

Observed variables
GDP Unemployment Rate Alcohol consumption Tobacco consumption

Test Stat.(p-Value) Test Stat.(p-Value) Test Stat.(p-Value) Test Stat.(p-Value)
Level -0.030(0.632) -1.600(0.101) 0.273 (0.742) -0.369(0.508)

First difference -2.883(0.006) -4.171(0.001) -4.550(0.001) -3.554(0.001)

Health Indices κt from the Lee-Carter model with
GDP & Unemployment Rate Alcohol & Tobacco GDP, Unemployment Rate & Alcohol

Males
Level -0.639(0.409) -0.660(0.402) -0.745(0.371)

First difference -4.971(0.001) -4.690(0.001) -4.933(0.001)
Females

Level -0.431(0.485) -0.376(0.505) -0.557(0.439)
First difference -4.412(0.001) -4.095(0.001) -4.482(0.001)

From the VAR model, we are able to predict the Yt+h h years ahead based on Yt at time t.

Ŷt+h|t = C + ΘYt+h−1

= C
1−Θh

1−Θ
+ ΘhYt.

As a consequence, we are able to create the h years ahead point forecast for κ̂t+h and Ẑt+h based on
κt and Zt. And then the point forecast of ̂log(πx,t+h) can be derived according to equation (4).

̂log(πx,t+h) = α̂x + β̂xκ̂x,t+h + ρ̂′xẐx,t+h.

Alternatively, according to equation (14), we can derive

∆ ̂log(πx,t+h) = ̂log(πx,t+h)− ̂log(πx,t+h−1)

= β̂x∆κ̂x,t+h + ρ′x∆Ẑx,t+h.

And

̂log(πx,t+h) = ∆ ̂log(πx,t+h) + ∆ ̂log(πx,t+h−1)+, . . . ,+∆ ̂log(πx,t+1) + ̂log(πx,t)

= β̂x(∆κ̂x,t+h + ∆κ̂x,t+h−1+, . . . ,+∆κ̂x,t+1)

+ ρ̂′x(∆Ẑx,t+h + ∆Ẑx,t+h−1+, . . . ,+∆Ẑx,t+1) + ̂log(πx,t).

Therefore, instead of predicting κ and Z, we could predict the their first differences ∆κ and ∆Z.
And then, the health status index for m period ahead based on its observed value at time t. In this
way, the jump-off bias can be avoided.

5.2 Forecasting uncertainty
Due to the random character of ε in equation (13), whose exact value is unknown at time t, process
risk arises. We quantify such process risk using the simulation method in the forecasting analysis.

Under the assumption that −→ε t is a vector of white noise terms with covariance matrix Σ, we
simulate S = 2000 innovations and sample paths of κ and Z from the multidimensional VAR model
(13). By sorting the 2000 simulated sample paths in an increasing order, we then find the 95% fore-
casts confidence interval, which are the 50th and the 1950th sample path in the increasing ordered
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list of 2,000 simulated forecast. Similarly, based on the simulated κ and Z, we can derive the 2000
simulated π, and its corresponding forecasting interval.

Figures 10 and 11 show the forecasts of κ, observed variables, and the average health status
index over age and over time with the 95% confidence interval, for males (left panel) and females
(right panel) based on the Lee-Carter model with GDP and unemployment rate, and with alcohol and
tobacco consumption separately. Figure 12 show the forecasts from the Lee-Carter model with three
observed variables.
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Figure 10: Forecasts based on Lee-Carter model with GDP and unemployment rate for both genders
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Figure 11: Forecasts based on Lee-Carter model with alcohol and tobacco consumption for both genders
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Figure 12: Forecasts based on Lee-Carter model with three observed variables for both genders
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We can see that the 10 years’ forecasts for the observed variables according to the VAR model
are quite reasonable, except for the year 2009 and 2010, in which the financial crisis happened. This
suggests that the VAR model works fine in terms of forecast when not considering extreme events.
The last two panels of Figures 10 to 12 show the forecasted average HSI over time and over age with
and without jump-off correction.

Forecasting accuracy is measured by three different ways, namely the mean squared forecasting
error (MSFE), the mean absolute forecasting error (MAFE), and the mean forecast error (MFE). On
average of both age and time dimensions, MSFE is the average square of the differences between
the forecasts and actual value, MAFE is the average of the absolute value of the differences between
the forecasts and actual value, and MFE is the average differences between the forecasts and actual.
They are calculated as follows,

MSFE =
1

X × T
∑
x

∑
t

(forecast− actual)2

MAFE =
1

X × T
∑
x

∑
t

|forecast− actual|

MFE =
1

X × T
∑
x

∑
t

forecast− actual.

Table 8 presents the forecast accuracy based on Lee-Carter model, and the Lee-Carter model
with two or three observed variables, with the cases of either correcting the jump-off error or not. In
general, after correcting the jump-off error over time, the forecast accuracy impairs. This is because
after the correction, the forecasting error decreases at the time dimension, but increases at the age
dimension, which is also shown by graphs in the last panel of Figures 10 to 12. Therefore, it is not
necessary to correct the jump-off point in the forecasting analysis for health process changes.

Furthermore, according to MSFE and MAFE, by including the observed variables, we improve
the forecasting accuracy of the model compared with the original Lee-Carter model. MSFE suggested
that the forecasting accuracy is increased from Lee-Carter model with GDP and unemployment rate,
with alcohol and tobacco consumption, and with three observed variables by 28.9%, 13.4%, and
23.7% respectively for males, and 30.4%, 13.2%, and 21.9% for females. The negative sign of MFE
indicates that we over forecast the decrease of the bad health on average. In terms of the forecasting
accuracy (MSFE and MAFE), the Lee-Carter model with GDP and unemployment rate outperforms
other models we investigated. 4 In addition, we also generate the forecast of the health status index
based on the real observed variables and the forecasted κ. The forecasting accuracy are shown in the
second panel of table 8. The Lee-Carter model with GDP and unemployment rate still has the smallest
forecasting errors (MSFE and MAFE) compared with others. It enhances the previous conclusion
that the Lee-Carter model with GDP and unemployment rate performs the best among others in the
forecasting analysis.

5.3 Backtesting for a rolling window forecast
Now, the health data set in this section is divided into a fitting period and forecasting period. We
construct a rolling window forecast to test the the forecasting power of the model. Under the conclu-
sion above that there is no need to correct the jump-off error in the analysis of health changes, the
following forecasts will not consider the correction of the jump-off bias. Based on data in the first
fitting period, 1972-2000, we compute 1 to 5 steps ahead forecasts, 2001-2005, and determine the
forecast errors by comparing the forecasts with the actual out-of-sample data. Then, we move the

4Instead of using the multivariate VAR model for κ and Z, we also tried to use the autoregression (AR) model for trans-
formed κ̃, and a VAR model for Z separately. Since the transformed κ̃ is orthogonal with the observed variables, it would
ideally not affect the forecasting results if we model κ̃ separately. Nevertheless, in this case, we do not bound to choose the
same number of lag in the VAR model for all the variables at the same time, but have different lag choices for κ̃ in AR model,
and Z in VAR model. However, we found that such forecasting way is not better than the one we used in terms of the forecast-
ing accuracy. Therefore, we do not think it is necessary to apply a more complicated method than a VAR model to predict all
the variables.
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Table 8: The comparison of forecast accuracy

Forecast HSI based on forecasted κ and observed variables using VAR model
MSFE(10−3) MAFE MFE

Jump-off No jump-off Jump-off No jump-off Jump-off No jump-off
Lee-Carter with Male

no OV 0.7249 1.0602 0.0184 0.0216 -0.0019 -0.0032
GDP & UnEm 0.5625 1.0243 0.0162 0.0212 -0.0053 -0.0034

AL & TO 0.6394 1.0507 0.0173 0.0215 -0.0028 -0.003
GDP, UnEm, & AL 0.5858 1.0511 0.0167 0.0214 -0.0039 -0.0022

Female
no OV 0.7387 0.7434 0.0196 0.0193 -0.0045 -0.0053

GDP & UnEm 0.5665 0.6842 0.0171 0.0184 -0.0061 -0.0049
AL & TO 0.6524 0.7363 0.0185 0.0193 -0.0053 -0.0054

GDP, UnEm, & AL 0.6059 0.7360 0.0178 0.0192 -0.0058 -0.0050

Forecast HSI based on forecasted κ and real observed variables
MSFE(10−3) MAFE MFE

Jump-off No jump-off Jump-off No jump-off Jump-off No jump-off
Lee-Carter with Male
GDP & UnEm 0.5802 1.1195 0.0163 0.0219 -0.0029 -0.0009

AL & TO 0.7482 1.1887 0.0182 0.0224 0.0004 -0.0002
GDP, UnEm, & AL 0.6122 1.1331 0.0168 0.0220 -0.002 -0.0003

Female
GDP & UnEm 0.5866 0.7301 0.0173 0.0190 -0.0043 -0.0031

AL & TO 0.7659 0.8582 0.0196 0.0203 -0.0025 -0.0023
GDP, UnEm, & AL 0.6471 0.7874 0.0184 0.0197 -0.0039 -0.0029

fitting period one year ahead, and compute also 1 to 5 steps ahead forecasts, and the forecast errors.
Such procedure is repeated 6 times, until the last forecasting year is 2010. The lag length in the VAR
model estimates is chosen still based on the AIC and BIC values in each rolling window estimation.
The following graph show the MSFE and MAFE in the Lee-Carter model with two or three observed
variables comparing with the original Lee-Carter model for both genders.

According to the MSFE, we found quite significant improvement of forecasting accuracy from
the Lee-Carter model with two or three observed variables compared with the traditional Lee-Carter
model. The MSFE decreases at most 36.3% and at least 8.2%. The largest improvement comes from
the Lee-Carter model with GDP and unemployment rate.
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Figure 13: MSFE and MAFE comparison between Lee-Carter model and Lee-Carter model with ob-
served variables for males
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Figure 14: MSFE and MAFE comparison between Lee-Carter model and Lee-Carter model with ob-
served variables for females

6 Life expectancy and healthy life expectancy
Previous sections indicate that the Lee-Carter model with two observed variables are generally in
favor of the Lee-Carter model with higher number of observed variables due to the BIC criterion.
Besides, the Lee-Carter model with GDP and unemployment rate provides the lowest forecasting
error. Therefore, in this section, we are going to focus on the Lee-Carter model with the macroeco-
nomic fluctuations included. However, in an aging population a major question is whether increases
in life expectancy will be associated with greater or less increase in life years spent with good health.
Therefore, it is ever more important to complement forecasts of life expectancy with forecasts of
healthy life expectancy.
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6.1 Deriving Life Expectancy and Healthy Life Expectancy
Theoretically, a real or a hypothetical cohort mortality is considered as a continuous-time process.
In practice, discrete data is usually adopted to construct approximations of the continuous-time life
table functions. We could either construct the period life table or the cohort life table to estimate
and predict the life expectancy of people. The period life table is based on the population stationarity
assumptions, illustrated in detail by Chiang (1984) and Preston, Heuveline, and Guillot (2001), which
are the age-specific hazard rate is constant over time, the birth rate is constant over time, and the net
migration rates at all ages are zero. However, including Sullivan (1971), many researchers point
out that since the age-specific rates may change considerably over the lifespan of any real birth
cohort, expectations based on a period life table solely may not reflect accurately the life experience
of infants born in any specific period. Imai and Soneji (2007) proved that life expectancy can be
estimated without stationarity and other assumptions by using a cohort life table. The estimation
still remains unbiased with consecutive cross-sectional data. For this reason, in this section, we will
estimate the life expectancy ex,t of the population of age x at the certain time t through both period
life table and cohort life table.

The life table measure is of great use to estimate the remaining lifetime of a group of persons
with a certain age. However, whether the remaining life is in good health is another crucial issue
regardless of their ages. In line with the method proposed by Sullivan (1971), we include additional
age-specific information of health status into a life table to separate the remaining lifetime into a
healthy and an unhealthy part. The healthy years that are spent during the whole remaining years of
living is the so called healthy life expectancy. At the certain time t, for people of age x ∈ A, where
A is the set of the starting ages for the age interval, their life expectancy ex,t can be written as

êx,t =
1

lx,t

∑
i∈A

Li,t, (14)

where li,t is the number of alive at age i in the survey year t, Li,t is the total number of person-years
lived in this survey year, and A = i ∈ A : i ≥ x. As a consequence, their healthy life expectancy
eHx,t can be estimated by

êHx,t =
1

lx,t

∑
i∈A

(1− π̂i,t)Li,t, (15)

where π̂i,t is the Health Status Index. Sullivan (1971) originally defines πi as the disability prevalence
ratio and suggests in his paper the following estimator,

π̂i =
1

Ni

Ni∑
j=1

Wij(tij)

365
, (16)

where Wij(tij) is the self-reported number of days of disability per year for the jth respondent
in the interval beginning at age i, and êHx in (15) corresponds to disability free life expectancy.
However, Imai and Soneji (2007) show that it is unlikely to estimate disability free life expectancy
without bias using Wij(tij), accordingly to the disability prevalence ratio over the one-year period.
Rogers, Rogers, and Belanger (1990) also prove Sullivan’s method actually underestimates disability
free life expectancy because of the bias in the estimation of the disability prevalence. Hence, Imai
and Soneji (2007) propose π̂i is the sample fraction of the disabled among the survey respondents
within the age interval [i, i+ 1). Most of the applications, including Imai and Soneji (2007) use the
following measure to estimate πi in the same way as we described in equation (1), in which Hj,x,t

is the disability indicator. Imai and Soneji (2007) prove that by incorporating only one additional
stationarity assumption, which is the age-specific disability prevalence ratio is constant over time, i.e.
π(x, t) = π(x) for all t, Sullivan’s estimator is unbiased and consistent in the period life table, and
the standard variance estimator is consistent and approximately unbiased. Imai and Soneji (2007)
also point out that the estimator π̂i from ((1)) also can be computed as a weighted average with
appropriate sampling weights. This is the method we adopt to construct HSI, see equation (8).

Details of constructing period life table and cohort life table, and the calculation of life expectancy
and healthy life expectancy can be found in the appendix A.4.
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6.2 Empirical analysis
To construct a life table, we will need the mortality data. In this paper, we use the consecutive annual
cross-sectional mortality rate from 1972 to 2007 in the United Sates. The mortality data is obtained
from the Human Mortality Database5 (HMD), which contains detailed population and mortality of
the U.S. at different age and time. In line with the previous literature (see, for example, Cairns,
Blake, Dowd, Coughlan, Epstein, Ong, and Balevich (2007)), the relative raw mortality rates exhibit
a downward trend over time at different ages, and have been erratic. Since this paper mainly focuses
on the analysis of health, we will not pay excessive attention on the mortality analysis. A more
comprehensive way of modeling will be proceeded in the future research. So far, we choose the
original Lee-Carter model, without observed variables to estimate and forecast the mortality rate.
This implies, we choose the dependent variable in (2) to be f(mx,t) = log(mx,t), where mx,t

represents the central death rate at age x of year t. With the number of death Dx,t and the exposure-
to-risk, Ex,t at age x of year t, the raw (observed) mortality rate is computed according to

mx,t = Dx,t/Ex,t.

We first construct both period life table and cohort life table. And then, life expectancy (LE) for
males and females can be estimated from both period and cohort life tables. By incorporating the
health status index and its prediction, we are able to estimate and predict the healthy life expectancy
(HLE) for both genders according to the method described in section 6.1. Here, the health status
index is estimated by the Lee-Carter model with macroeconomic fluctuations, namely GDP and
unemployment rate. This is due to the fact that the Lee-Carter model with two observed variables
has better performance in the estimation and forecast analysis.

First, we construct a period life table from 1972-2007, and predict the period life table 5 years
ahead, to 2012. The age group is from 0-85+. We assume everyone who is alive at age 85 dies
within the last age interval [85,∞) and central mortality rate after age 85 are the same. Similarly, we
also assume everyone who is healthy at age 85 becomes also unhealthy within the last age interval
[85,∞) and the health status index are the same after 85 years old. When forecasting the mortality
rate, we did correct the jump off bias, because it highly improves the mean square forecasting error
in mortality forecasts. Second, in order to construct the cohort life table and the five years ahead
forecast, we have to predict the mortality rate 90 years ahead, based on the sample period 1972-
2007. Then the life expectancy can be estimated. This is the same for deriving the healthy life
expectancy, we also have to predict people’s health condition 90 years ahead.

Take 65 years old as an example. Figure 15 show the life expectancy and healthy life expectancy
of males and females at 65 years old from period life table (on the left) and cohort life table (on
the right). It shows that both period life table and cohort life table indicate that life expectancy and
healthy life expectancy are increasing for males and females. Males’ life expectancy and healthy
life expectancy tend to be close to females in a long run. The life expectancy and the healthy life
expectancy from the cohort life table are generally higher than from the period life table, this is
because we assume the age-specific mortality rate is constant over time in period life table, but not
in cohort life table.

5The website of Human Mortality Database is http://www.mortality.org/
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Figure 15: Life expectancy and healthy life expectancy from both period and cohort life table for both
genders at age 65

Figures 16 to 17 show the LE and HLE at certain ages using the period life table (left hand side)
and the cohort life table (right hand side). The predicted downward trends of the mortality rate and
health result in increases in life expectancy and healthy life expectancy.

Figure 16: Life expectancy: Male and Female
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Figure 17: Healthy life expectancy: Male and Female

In addition, we also would like to see the relative increase of life expectancy and healthy life
expectancy. Let RLEt and RHLEt denote the relative increase of life expectancy and healthy life
expectancy at time t compared with time t0 separately. RLEt and RHLEt are defined as follows,

RLEx,t =
LEx,t
LEx,t0

DHLEx,t =
HLEx,t
HLEx,t0

.

Here, we choose t0 = 1972. Take 65 years old as an example, Figure 18 shows the increase of life
expectancy and healthy life expectancy relative to 1972 for both male and female from period life
table (one the left) and cohort life table (on the right), and the corresponding forecasting confidence
interval. We can see that the relative increases of HLE is a bit higher than the relative increase of
the LE, however both are significantly above zero. Moreover, relative increases of LE and HLE from
male are faster than from the female.
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Figure 18: Relative increase of life expectancy and healthy life expectancy from period and cohort life
table for both genders at age 65

7 Conclusion
This paper develops a stochastic model to estimate and forecast health changes with uncertainty.
Better understanding health dynamics is very important for the government policy decisions like the
increase of the retirement age, or the health expenditure. This article makes two main contributions.
First, it treats the health dynamics as a stochastic process, and adopts the Lee-Carter model on health
modeling. It is found that the Lee-Carter model fits the self-accessed health data quite well for the
United States. Second, it incorporates observed variables into the Lee-Carter model to better capture
the behavior of health changes besides the latent health index in the traditional Lee-Carter approach.
In this fashion, the health dynamics are forecasted not only based on its historical pattern, but also
on the changes of its highly related factors, which are easier to predict.

The Lee-Carter model with observed variables leads to a significant improvement in the model fit,
where a large part of the time trend in health can be attributed to the trends in the observed variables.
This article also investigated the optimal number of observed variables included in the Lee-Carter
model by incorporating GDP, unemployment rate, alcohol consumption and tobacco consumption.
In addition, we not only estimate health changes for the age group from 0 to 85 years old, but also
investigate the effects of the observed variables on 5 sub age groups.

To summarize our key findings. First, a latent Lee-Carter framework works quite well on esti-
mating and modeling health changes based on the analysis from 1972 to 2010 for male and female
separably. Second, by combining the latent variable and observed variables, we are able to im-
prove the model fit quite significantly. These observed variables generally have significant effects on
health dynamics for separate age groups in different ways. The Lee-Carter model with two observed
variables outperforms other discussed models in estimation. The macroeconomic fluctuations in par-
ticular are able to capture the changes of health to a large extent. In addition, the Lee-Carter model
with observed variables leads to a significant improvement in terms of forecasting, suggested by the
backtesting analysis. The Lee-Carter model with macroeconomic fluctuations, namely GDP and un-
employment, not only outperforms the Lee-Carter with a single or three observed variables, but also
gives the smallest forecasting errors. This indicates that the economic situation can largely explain
health dynamics. This is very helpful to predict the future development of health. Finally, this article
estimates and forecasts life expectancy and healthy life expectancy with uncertainties as one of the
applications from modeling health dynamics. Both period life table and cohort life table are con-
structed for the purpose of the analysis. In the study period, 1972 to 2008, healthy life expectancy of
both male and female has a larger relative increase than life expectancy relative to 1972. Males’ life
expectancy and healthy life expectancy are generally lower than the females’, but converging to the
females’. However, this article has not consider modeling the mortality rate in a more comprehensive
way, namely incorporating the observed variables to capture the mortality trends or considering the
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recent development of the Lee-Carter model. Besides, it has not separate different scenarios of the
changes of the observed variables for forecasting the health status index, which might affect the life
table. These interesting questions will be further investigated in future research.
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A Appendix

A.1 Constraints for the Lee-Carter model with observed variables
In the Lee-Carter model with observed variables, let α, β, κ, and ρ to be one set of the solution. There
exists a m× 1 vector τ that

f(πx,t) = αx + βxκt +

m∑
i=1

ρx
kZt

i + εx,t

= αx + βxκt + βx

m∑
i=1

τkZt
i +

m∑
i=1

ρx
iZt

i − βxτ i
m∑
i=1

Zt
i + εx,t

= αx + βx(κt +

m∑
i=1

τ iZt
i) +

m∑
i=1

(ρx
i − βxτk)Zt

i + εx,t

= αx + βxκ̃t +

m∑
i=1

ρ̃x
iZt

i + εx,t.

where, κ̃t = κt +
∑m
i=1 τ

iZt
i still satisfies

∑
t κ̃t = 0, and ρ̃x = ρx

i − βxτ i will not be uniquely
identified. Therefore, we will have to impose another constraint, such as∑

x

ρix = 1, for every i (17)

To prove that constraint is sufficient, for each i, we first suppose ρix which satisfies the above
constraint is not unique, then there exist a transformation of ρix, ρ̃x = ρx

i− βxτ i, is the solution and
also satisfies

∑
x ρ̃

i
x = 1. This leads to∑

x

ρ̃x =
∑
x

(ρx
i − βxτ i)

=
∑
x

ρx
i −
∑
x

βxτ
i = 1.

where
∑
x ρ

i
x = 1. This actually results in τ i = 0. As a consequence, κ̃t = κt and ρ̃ix = ρix for

every i. κt and ρx in this way can be uniquely identified.

A.2 Estimation of Lee-Carter model with Observed Variables
1. Parameters αx, βx, ρx and κt are estimated by minimizing

FLS(α, β, ρ, κ) =

xk∑
x=x1

tn∑
t=t1

(πx,t − αx − βxκt − ρxZ ′t)2. (18)

2. Obtain the partial derivatives ofFLS(α, β, ρ, κ) with respect to α, β, ρ and κ and set them with
the equation form f(ξ) = 0, where ξ is one of the parameters α, β, ρ and κ,

0 =

tn∑
t=t1

(πx,t − αx − βxκt − ρxZ ′t),

0 =

xk∑
x=x1

βx(πx,t − αx − βxκt − ρxZ ′t),

0 =

tn∑
t=t1

κt(πx,t − αx − βxκt − ρxZ ′t),

0 =

tn∑
t=t1

Zt(πx,t − αx − βxκt − ρxZ ′t),
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3. We update each parameter by using a univariate Newton-Raphson recursive scheme. Starting
from some initial value ξ(0), the (r + 1)th iteration gives ξ(r+1) from ξ(r) by

ξ(r+1) = ξ(r) − f(ξ(r))

f ′(ξ(r))
.

The recursive relations are specified as follows,

α̂(r+1)
x = α̂(r)

x +

∑tr
t=t1

(πx,t − α̂(r)
x − β̂(r)

x κ̂
(r)
t − ρ̂

(r)
t Z ′t)

tn − t1 + 1
,

κ̂(r+1)
x = κ̂

(r)
t +

∑xk

x=x1
β̂
(r)
x (πx,t − α̂(r+1)

x − β̂(r)
x κ̂

(r)
t − ρ̂

(r)
t Z ′t)∑xk

x=x1
(β̂

(r)
x )2

,

β̂(r+1)
x = β̂(r)

x +

∑tr
t=t1

κ̂
(r+1)
t (πx,t − α̂(r+1)

x − β̂(r)
x κ̂

(r+1)
t − ρ̂(r)t Z ′t)∑tn

t=t1
(κ̂

(r+1)
t )2

,

ρ̂(r+1)
x = ρ̂(r)x +

∑tr
t=t1

Zt(πx,t − α̂(r+1)
x − β̂(r+1)

x κ̂
(r+1)
t − ρ̂(r)t Z ′t)∑tn

t=t1
Z2
t

.

Finally, these parameters are adjusted by the identifiability constraints (??), and κ̂(r+1)
t are further

adjusted by fitting the total observed deaths to the total expected deaths for each year t. This iteration
will be proceeded R times until we get the smallest difference between the estimated deaths and the
observed deaths. There is no extra constraint on ρ.

A.3 Calculation of Variance Inflation Factors
Consider we have the following multiple linear regression model:

y = β0 + β1x1 + β2x2 + . . .+ βkxk + ε (19)

To test whether there exist the multi-collinearity between the independent variables, we can apply
the following three steps to calculate the variance inflation factor for variable xj .

• Calculate k different VIFs, one for each xj by first running an ordinary least square regression
that has xj as a function of all the other explanatory variables in the above equation. If j = 1,
for example, the equation would be

x1 = c0 + c1x2 + c2x3 + . . .+ ck−1xk + e

where c0 is the constant and e is the error term.

• Then, calculate the VIF with the following formula:

VIF =
1

1−R2
j

where R2
j is the coefficient of determination of the regression equation in step one.

• Analyze the magnitude of multi-collinearity by considering the size of the VIF. A common
rule of thumb is that if VIF¿ 10, then multi-collinearity is high, proposed by Michael, Christo-
pher, and John (2004).

A.4 Life expectancy and healthy life expectancy from period and cohort life
table
Theoretically, a real or a hypothetical cohort mortality, which can be considered as a continuous-time
process, is determined by the hazard function µ(x, y), denoting the instantaneous rate of mortality at
a given age x ∈ [0,∞] for a cohort born at time y. In the age-continuous context, life expectancy of
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an individual at age x who is born at time y, represented by e(x, y), can be derived given the hazard
function µ(x, y). Let l(0, y) be the total number alive of newborns for this cohort, as the hypothetical
cohort that experiences the current observed cross-sectional mortality rates, the number of people
survived at age x is

l(x, y) = l(0, y) exp[−
∫ x

0

µ(τ, y)dτ ]. (20)

l(x, y) is equivalent with the survival function of this cohort if we normalize l(0, y) to be 1. Then
life expectancy, e(x, y) can be computed as

e(x, y) =
1

l(x, y)

∫ ∞
x

l(τ, y)dτ. (21)

Sullivan (1971) employed a relatively simple modification of the conventional life table model to
compute the expected duration of certain defined conditions of interest among the living population.
For example, the expected remaining healthy lived years for an individual, which is the so called
healthy life expectancy (HLE). A variable called disability prevalence ratio, denoted by π(x, y), is
commonly used in the literature about Sullivan’s method. π(x, y) is the proportion disabled at age x
for the cohort born at time y. That is, given that an individual of this cohort who survived up to age
x, the conditional probability that he/she is disabled at age x.

In this thesis, π(x, y) is defined as the Health Status Index (HSI), which reflects the proportion
of population in bad health for a cohort that has birth year y at age x. Consequently, the number of
survivors who are healthy at age x is [1 − π(x, y)]l(x, y). Healthy life expectancy eH(e, y) in turn
can be computed as

eH(x, y) =
1

l(x, y)

∫ ∞
x

[1− π(τ, y)]l(τ, y)dτ. (22)

In practice, discrete data is usually adopted to construct approximations of the continuous-time
life table functions. I will first illustrate the traditional Sullivan’s method without the time component
in a period life table within the discrete data framework, and then address a cohort life table by
including the time component, which can determine life expectancy for specific cohort.

A.4.1 Period Life Table

Sullivan’s approach of computing healthy life expectancy is derived from a period life table based
on discrete data. A general setting of life expectancy analysis based on a period life table will be
described in this section, and a specific setting adopted by this paper will be specified in section ??.
Let nx denote the length of an age interval starting at age x ∈ A. A is the set of the starting ages
for the age intervals of a period life table. Except the oldest age interval [ω,∞) which starts at age
ω, all the other age intervals have the same length (nx = n). Molla, Wagener, and Madans (2001)
argued that the age beginning at the oldest age interval does not have any effect on a life table being
constructed. When n = 1, a period life table is called unabridged, and it is said to be abridged if
n > 1.

Sullivan’s computations of the expectation for healthy life is based on the stationarity assumptions
of the population, which are illustrated in detail by Chiang (1984) and Preston, Heuveline, and Guillot
(2001) as follows,

1. The age-specific hazard rate is constant over time, i.e. µ(x, y) = µ(x).

2. The birth rate is constant over time

3. The net migration rates at all ages are zero.

The stationarity assumptions indicate the following,

1. The survival function is constant over time, i.e. l(x, y) = l(x).

2. The raw death rate equals the raw birth rate.

3. The total size of the hypothetical cohort is assumed to remain constant over time.
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4. The age distribution in any interval [x, x+nx) of the hypothetical cohort is constant over time
and is proportional to the survival function. That is, for age s ∈ [x, x+ nx), the density of the
age distribution is l(s)∫ x+nx

x
l(τ)dτ

.

Thus, the age-specific mortality rate, which is denoted by nxMx, can be written as,

nx
Mx =

∫ x+nx

x
l(τ)µ(τ)dτ∫ x+nx

x
l(τ)dτ

. (23)

Note that the time component is not modeled in Sullivan’s method because of stationarity.
In the age-continuous context, notations like q(x), l(x), e(x) etc. are commonly used, whereas

for age-discrete calculations, notations like qx, lx, ex, etc. are adopted in common demographic
notation.

The starting point of creating a period life table in the discrete context is to include the total
number of person-years in a population over a calendar year, which is the so called exposure-to-risk
nx
Ex, and the total number of deaths within an entire year nx

Dx for the interval [x, x+ nx), where
the prescripts indicate the length of the interval under consideration. The central death rate for this
interval, denoted by nx

mx, can be written as,

nx
mx =

nx
Dx

nx
Ex

. (24)

nxmx is an estimator of nxMx in (23), because, nxEx and nxDx are usually obtained from the census
data and vital statistics in practice, and they are very large, see Imai and Soneji (2007).

Then, nx
qx, representing the conditional probability of death within an age interval with length

nx, given that an individual of the hypothetical cohort survived up to age x, can be calculated as, (see
Molla, Wagener, and Madans (2001))

nx
qx =

nxnx
mx

1 + nx(1−nx
ax)nx

mx
, (25)

where nx
ax is the average proportion of years lived in the age interval [x, x+ nx) among those who

are alive at age x but die within the interval, and can be obtained from complete life tables. Hence,
lx+nx , the number of alive at age x+ nx, is calculated by multiplying lx, the number of survivors at
age x, by the probability of surviving from age x to x+ nx, (1−nx

qx). That is,

lx+nx
= lx(1−nx

qx). (26)

The total number of person-years lived in this interval is then given by

nx
Lx = nxlx+nx

+ lxnx
qxnx

ax, (27)

where lxnx
qx means the proportion who die in the interval contributes nx

ax years on average. Within
this framework, life expectancy at age x can be written as

ex =
1

lx

∑
i∈Ax

niLi, (28)

where Ax = {i ∈ A : i ≥ x}.
Imai and Soneji (2007) showed that under the stationarity assumptions, ex calculated from the

discrete data equals e(x) in the theoretical definition (21). This is because, lx used in discrete setting
and l(x), see (26), used in continuous setting both refer to the proportion alive at exact age x, thus
they are numerically identical. Moreover, in the continuous context,

nxq(x) =

∫ x+nx

x
l(τ)µ(τ)dτ

l(x)
, (29)

nxa(x) =

∫ x+nx

x
l(τ)µ(τ)(τ − x)dτ∫ x+nx

x
l(τ)µ(t)dτ

. (30)
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Substituting (29) and (30) into (27) and integrating by parts yield

nx
Lx =

∫ x+nx

x

l(τ)dτ (31)

This proves that ex equals e(x).
We choose one year age interval, namely nx = 1. Let ax be the average number of years lived

within the age interval [x, x +1) for people dying at that age. We assume that ax = 0.5 for all
single-year ages except age 0. We then compute qx from mx and ax according to the formula,

qx =
mx

1 + (1− ax)mx
, (32)

for x = 0, 1, 2, . . . , ω − 1, For the open age interval, we set ∞aω = 1
∞mω

and ∞qω = 1.
For infants, we adopt the formulas for a0 suggested by Preston, Heuveline, and Guillot (2001),

which are adapted from the Coale, Demeny, and Vaughan (1983) model life tables. Thus, if m0 ≥
0.107:

a0 = 0.35, for males
a0 = 0.33, for females.

On the other hand, if m0 < 0.107

a0 = 0.045 + 2.684 ·m0 for males
a0 = 0.053 + 2.800 ·m0 for females.

A.4.2 Healthy Life Expectancy from Sullivan’s Method

The life table measure is of great use to estimate the remaining lifetime of a group of persons with a
certain age. However, whether the remaining life is in good health is another crucial issue regardless
of their ages. By including additional age-specific information of health status into a period life
table, Sullivan (1971) suggested a measure to separate the remaining lifetime into a healthy and an
unhealthy part. The healthy years that are spent during the whole remaining years of living is the so
called healthy life expectancy, and can be estimated from cross-sectional data by

êHx =
1

lx

∑
i∈A

(1−ni
π̂i)ni

Li, (33)

Sullivan (1971) originally defined niπi as the disability prevalence ratio and suggested in his paper
the following estimator,

ni π̂i =
1

niNi

ni
Ni∑

j=1

Wij(tij)

365
, (34)

whereWij(tij) is the self-reported number of days of disability per year for the jth respondent in the
interval beginning at age i, and êHx in (33) corresponds to disability free life expectancy. However,
Imai and Soneji (2007) showed that it is unlikely to estimate disability free life expectancy without
bias using Wij(tij), accordingly to the disability prevalence ratio over the one-year period. Rogers,
Rogers, and Belanger (1990) also proved Sullivan’s method actually underestimates disability free
life expectancy because of the bias in the estimation of the disability prevalence.

Hence, Imai and Soneji (2007) proposed ni π̂i is the sample fraction of the disabled among the
survey respondents within the age interval [i, i + ni). Most of the applications, including Imai and
Soneji (2007) use the following measure to estimate ni

πi

ni
π̂i =

1

ni
Ni

ni
Ni∑

j=1

Yij(tij), (35)
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where niNi denotes the total number of the survey respondents in the age interval [i, i + ni), and
Yij(tij) is the disability indicator for the jth respondent of that interval whose age is tij ∈ [i, i +
ni) at the time of the survey. Most of the literature adopts (35) as the estimate of ni

πi. Imai and
Soneji (2007) proved that by incorporating only one additional stationarity assumption, which is
the age-specific disability prevalence ratio is constant over time, i.e. π(x, y) = π(x) for all y,
Sullivan’s estimator is unbiased and consistent, and the standard variance estimator is consistent and
approximately unbiased. Imai and Soneji (2007) pointed out that the estimator ni

π̂i from (35) also
can be computed as a weighted average with appropriate sampling weights.

Differently to the current literature, measures of health status other than disability are used in this
thesis to refine the decomposition of life expectancy. Yij(tij) in (35), is redefined as the indicator of
bad health of the jth respondent of that interval whose age is tij ∈ [i, i+ni) at the time of the survey.
The corresponding niπi, which reflects the proportion of the population in bad health is called health
status index.

A.4.3 Cohort Life Table

However, including Sullivan (1971), many researchers point out that since the age-specific rates may
change considerably over the lifespan of any real birth cohort, expectations based on a period life
table solely may not reflect accurately the life experience of infants born in any specific period.
Imai and Soneji (2007) proved that life expectancy can be estimated without stationarity and other
assumptions by using a cohort life table. The estimation still remains unbiased with consecutive
cross-sectional data. For this reason, life expectancy will be created using a cohort life table in this
thesis based on the consecutive cross-sectional surveys, which are often easier to obtain, to construct
a cohort life table. The age interval is chosen to be one year, that is nx = n = 1. Therefore, for
notational simplification, the prescripts nx for the corresponding notations are omitted. In summary,
the procedures of constructing a cohort life table and calculating life expectancy from the consecutive
cross-sectional data are as follows. Note that explicit reference to the year of birth y is trivially given
by t = y + x.

1. First observe the total number of death Dx,t, and the exposure-to-risk Ex,t to calculate the
central death rate

mx,t =
Dx,t

Ex,t
. (36)

2. We choose nx = 1, according to (25), the conditional probability of death for this cohort is

qx,t =
mx,t

1 + (1− ax)mx,t
(37)

and the survival probability px,t = 1− qx,t follows.

3. When we normalize l0,t = 1 and nx = 1, the quantities lx,t is

lx,t = lx−1,t−1 × px−1,t−1 = p0,t−x × . . .× px−1,t−1.

and
Lx,t = lx+1,t+1 + lx,tqx,tax,t

,

4. Consequently, life expectancy in a cohort life table can be estimated as follows,

êx,t =
1

lx,t

∑
i∈Ax

Li,t. (38)

In the cohort life table, we construct axt
the same way as in the period life table.
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A.4.4 Healthy Life Expectancy Using Cohort Life Table

Sullivan’s healthy life expectancy can be estimated in an unbiased and consistent way without sta-
tionarity assumptions by using the consecutive cross-sectional health data based on a cohort life table.
Healthy life expectancy is derived by involving the health status index for the cohort age age x of
year t, π̂x,t into (38),

êHx,t =
1

lx,t

∑
i∈A§

(1− π̂i,t)Li,t. (39)

where π̂x,t can be calculated from the health surveys defined analogously as (35),

π̂x,t =
1

Nx,t

Nx,t∑
j=1

Yij(tij). (40)

where Yij(tij) is the indicator of bad health of the jth respondent of that interval whose age is
tij ∈ [i, i+ ni) at the time of the survey .
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B Appendix

B.1 Lee-Cater model with single observed variable, 0-85

Figure 19: Residuals Lee-Carter model with single observed variable for Health: 0-85
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Figure 20: Estimated α in the Lee-Carter model with single observed variable for Health: 0-85
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Figure 21: Estimated β in the Lee-Carter model with single observed variable for Health: 0-85
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Figure 22: Estimated κ in the Lee-Carter model with single observed variable for Health: 0-85

48



Figure 23: Estimated ρ in the Lee-Carter model with single observed variable for Health: 0-85
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Figure 24: Estimated transformed κ in the Lee-Carter model with single observed variable for Health:
0-85
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B.2 Lee-Cater model with two observed variables, 0-85

Figure 25: Residuals Lee-Carter model with two observed variables for Health: 0-85

Figure 26: Estimated α in the Lee-Carter model with two observed variables for Health: 0-85
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Figure 27: Estimated β in the Lee-Carter model with two observed variables for Health: 0-85

Figure 28: Estimated κ in the Lee-Carter model with two observed variables for Health: 0-85
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Figure 29: Estimated ρ in the Lee-Carter model with two observed variables for Health: 0-85
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Figure 30: Estimated transformed κ in the Lee-Carter model with two observed variables for Health:
0-85
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