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Abstract

We propose a sieve maximum likelihood estimation procedure for a copula-based sample selection

model. That is, we impose a parametric copula assumption on the joint distribution function

of error terms, but estimate the marginal distributions semiparametrically by the method of

sieves. Compared with the semi-nonparametric maximum likelihood estimation procedure due

to Gallant and Nychka (1987), our approach allows to incorporate parametric prior information

into the estimation process, is less computationally demanding and makes it easy to test for the

validity of parametric assumptions. Furthermore, we provide asymptotic distribution results for

our estimator. Our maximum likelihood approach to estimating a sample selection model has

advantages over least squares based techniques proposed in the literature if the distribution of

the error terms of main and selection equation is of interest.
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1 Introduction

The sample selection model has become the standard econometric tool when dealing

with sample selectivity. The model typically consists of a main equation (of interest)

and a selection equation, where the latter determines the probability of being in the

selected sample. If sample selectivity is present, ordinary least squares estimation of the

main equation is likely to produce inconsistent estimates because the selected sample

is a nonrandom sample from the overall population. Heckman (1979) showed that the

sample selection problem can be interpreted as an omitted variable bias problem. He

demonstrated that ordinary least squares estimation of the main equation including a

selectivity correction term (known as the inverse Mills ratio) leads to consistent estimates

of the parameters of interest. Besides estimating the model by ordinary (or weighted)

least squares techniques, it is also possible to estimate the model by maximum likelihood.

Gallant and Nychka (1987) have proposed a semi-nonparametric maximum likelihood

estimator for estimating the sample selection model. The virtue of their approach is that

it is not necessary to assume a parametric (joint) distribution for the error terms of the

underlying econometric model. Consequently, consistent estimates of the parameters of

interest can be obtained under weak conditions. This is an important advantage over the

model proposed by Heckman (1979) who assumed a bivariate normal distribution for the

error terms of main and selection equation.

In this paper, we propose a sieve maximum likelihood estimator for the sample se-

lection model. We make the crucial assumption that the joint distribution of the error

terms of main and selection equation can be characterized by a specific copula, but we es-

timate the marginal distributions semiparametrically by the method of sieves along with

the structural parameters of interest. Our estimation concept is thus sieve maximum

likelihood estimation (Chen, 2007).

Our modeling and estimation approach has several advantages over the Gallant and

Nychka (1987) procedure. First, our approach allows to incorporate prior information

on the distribution of error terms into the estimation process. For example, the joint

distribution of error terms may be characterized by fat tails, hence a Student t copula
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may be an appropriate modeling choice (Heckman, 2003). Furthermore, the selection

equation may reasonably be estimated by probit or logit, hence the marginal distribution

of the selection equation’s error term is normal or logistic, respectively. Since a copula

couples two marginal distributions into a joint distribution, such prior information on the

joint or marginal distributions can be easily incorporated into our econometric model.

This is not possible in the Gallant and Nychka (1987) approach, who estimate the entire

joint density function of error terms semi-nonparametrically by a series expansion.

Second, our method is less computationally demanding than the Gallant and Nychka

(1987) procedure. In Gallant and Nychka (1987) a two-dimensional density function is

approximated semi-nonparametrically by a series expansion (where the number of se-

ries term grows with the sample size). The coefficients of the series expansion are then

estimated along with the parameters of interest. However, the approximation of a two-

dimensional density function requires a considerable number of series terms, which leads

to a computationally demanding estimation process. Our approach, on the other hand,

requires only the approximation of the one-dimensional marginal distributions, which is

far easier than approximating a (bivariate) joint distribution.1

Third, Gallant and Nychka (1987) have proved the consistency of their estimator, but

no (asymptotic) distribution results have been provided. Yet, such distribution results are

necessary for hypotheses testing and obtaining confidence intervals. Of course, one could

obtain estimates under the assumption that the number of series terms is fixed rather

than increasing with the sample size; in that case, distribution results would follow from

standard (parametric) maximum likelihood theory. However, this procedure is in general

not justified due to the semiparametric nature of the estimation problem. Concerning our

proposed method, conditions under which a sieve maximum likelihood estimator is con-

sistent and asymptotically normally distributed have been provided by Chen et al. (2006)

and Chen (2007). As will be shown below, under suitable assumption these conditions

are fulfilled in case of our estimator, hence we are able to provide distribution results.

Fourth, our approach offers an easy way to test for the validity of parametric assump-

1The same argument has been used by Chen et al. (2006).
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tions. Incorporating correct parametric prior information into an econometric model is

desirable since this typically leads to efficiency gains. However, prior information may not

be correct, hence it is important to test for the validity of such assumptions. Our copula

framework provides an easy way to do so because one can separately test for the validity

of the assumed copula and for the validity of the assumed marginal distributions. Details

are given in Section 4.

Besides Gallant and Nychka (1987), several other authors have developed semi-nonparametric

estimators for the sample selection model which do not rely on strong parametric assump-

tions. Examples include Powell (1987), Ahn and Powell (1993), Das et al. (2003) and

Newey (2009). These authors propose least-squares based estimation procedures to con-

sistently estimate the structural parameters of the main equation. These estimation pro-

cedures are typically two-step. In a first step, the selection equation is estimated by some

semi-nonparametric technique. As in case of the model with normally distributed error

terms, one augments the main equation with a selectivity correction term (a generaliza-

tion of the inverse Mills ratio term). Then one either gets rid of the selectivity correction

term by differencing out (Powell, 1987; Ahn and Powell, 1993), or approximates the term

by, e.g., a series expansion (Das et al., 2003; Newey, 2009). In a second step, estimation

of the main equation is carried out by some variant of ordinary or weighted least squares.

Our and the Gallant and Nychka (1987) approach differ from these least-squares based

techniques in two important ways. First, our and the Gallant and Nychka (1987) approach

are one-step. This facilitates the computation of standard errors and confidence inter-

vals (in case of our estimator) because one does not have to adjust for the uncertainty

associated with the first-step estimation. Second, our and the Gallant and Nychka (1987)

approach are not based on least-squares but maximum likelihood estimation. This requires

a specification of the joint distribution of error terms of main and selection equation. Con-

sidered conversely, a virtue of our and the Gallant and Nychka (1987) approach is that

they also provide information on the joint distribution of the error terms.

Information on the joint distribution of error terms is useful for a couple of reasons.

First, sample selectivity is a problem only if the error terms are dependent. Distributional
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information helps to identify these dependencies, and thus reveals how the sample selec-

tion mechanism works. Second, from the joint distribution one can derive the marginal

distributions of error terms. For instance, if the main equation is a wage equation, an

object of interest might be if wage densities are fat-tailed (Heckman and Sedlacek, 1990).

Third, the joint distribution is interesting because treatment parameters depend on the

tail behavior of error terms (Heckman et al., 2003).

A drawback of our proposed approach might be that it is necessary to specify a para-

metric copula for the joint distribution of error terms in advance. However, if one has

prior information (e.g., from economic theory or empirical regularities) on the features

of the joint distribution (such as fat tails), then the copula framework provides a very

flexible environment to include such prior information into the econometric model. Chen

et al. (2006) also estimate a copula model with unknown marginal distributions and note

that “this class of semiparametric multivariate distributions is able to jointly model any

type of dependence with any types of marginal behaviors and has proven useful in diverse

fields” (Chen et al., 2006, p. 1228). Hence, our approach exhibits the same flexibility as

the semiparametric approach of Gallant and Nychka (1987), but may be preferred due to

the reasons given above.

The remainder of the paper is organized as follows. In Section 2 we provide the model

and our proposed estimation strategy. In Section 3 we derive the asymptotic properties of

our proposed estimator. Section 4 contains remarks and extensions concerning different

aspects of estimation, testing, and model specification. Finally, Section 5 concludes the

paper.
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2 Model Setup and Estimation

We consider an ordinary sample selection model given by

y∗i = x′
iβ + εi (1)

d∗i = w′
iγ + ui (2)

di = 1(d∗i > 0) (3)

yi =















y∗i if di = 1

“missing” otherwise

, (4)

where i = 1, . . . , n indexes individuals. The first equation is the main equation, where

y∗ is a latent outcome variable, x is a vector of (exogenous) explanatory variables with

corresponding parameter vector β and ε denotes the error term. The second equation

is the selection equation, where d∗ is the latent dependent variable, w is a vector of

(exogenous) explanatory variables with corresponding parameter vector γ and u denotes

the error term. The last two equations comprise the selection mechanism. The latent

variable y∗ can only be observed if d∗ > 0, or, equivalently, if the selection indicator d is

equal to one.

We make the following assumptions:

Assumption 1: {(xi, wi, εi, ui)}ni=1 are i.i.d. from some underlying distribution.

Assumption 2: The joint distribution function of ε and u is given by Hε,u(a, b) =

C(Fε(a), Fu(b); τ), where C : [0, 1]2 → [0, 1] is a known copula with dependence parameter

τ , and Fε and Fu denote the marginal distribution functions of ε and u. Furthermore, the

marginal density functions fε and fu are absolutely continuous with respect to Lebesgue

measure.

Assumption 3: (x, w) and (ε, u) are independent.

Assumption 4: (i) x and w do not contain a constant term. (ii) w contains at least one

variable (with a nonzero coefficient) which is not included in x. (iii) The first element of

γ is equal to one in absolute value.

Assumptions 1 and 2 imply that our model can be estimated by maximum likelihood.
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Assumptions 3 and 4 are basic conditions for identification. Assumption 4 (ii) is a well-

known exclusion restriction which is a standard condition for identification of sample

selection models. Assumption 4 (iii) is a scale normalization for the parameters of the

selection equation, since these are only identified up to scale.

The joint probability density function (p.d.f.) of ε and u is given by

hε,u(a, b) = c(Fε(a), Fu(b); τ)fε(a)fu(b), (5)

where c(·, ·; τ) denotes the p.d.f. associated with C(·, ·; τ). The log-likelihood function

then follows as

lnL(β, γ, τ, fε, fu;Z)

=

n
∑

i=1

{

(1− di) ln

∫ ∞

−∞

∫ −w′

iγ

−∞

hε,u(ε, u)dudε+ di ln

∫ ∞

−w′

iγ

hε,u(yi − x′
iβ, u)du

}

=

n
∑

i=1

{

(1− di) lnFu(−w′
iγ) + di ln

(

fε(yi − x′
iβ)−

∂Hε,u(ε,−w′
iγ)

∂ε

∣

∣

∣

∣

ε=yi−x′iβ

)}

, (6)

where Z = {zi}ni=1 and zi = (yi, xi, di, wi) denotes the observed data. Note that the log-

likelihood function is not only maximized over the structural parameters β, γ and τ but

over the unknown functions fε and fu as well. Furthermore, note that it suffices that the

log-likelihood function depends on fε and fu and not additionally on Fε and Fu, because

we have that Fε(x) =
∫ x

−∞
fε(v)dv and Fu(x) =

∫ x

−∞
fu(v)dv. Our interest focuses on

estimation of the structural parameters θ = (β ′, γ′, τ)′, while the unknown functions fε

and fu are considered as nuisance parameters. Remember that the first element of γ is

equal to one in absolute value due to identification, hence it need not be estimated. This

restriction will be suppressed in the following in order to ease the notation.

Since fε and fu are of infinite dimension, estimation requires that we approximate

these functions. We follow Chen et al. (2006) and Chen (2007) and approximate these

densities by the method of sieves. That means, we approximate an unknown function (the

densities) by a (e.g., linear) combination of known basis functions (such as polynomials or

splines) and unknown sieve coefficients. The unknown sieve coefficients are then estimated
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along with the structural parameters β, γ and τ . Since we approximate density functions,

we have to restrict the approximating functions to satisfy two fundamental properties of

densities, i.e., that they are not negative and that they integrate to one. The former

property can be satisfied if we approximate not the density function by the method of

sieves but the square root of the density function instead. This is the approach taken in

Chen et al. (2006), who propose the following sieve space:

Fn,η =







fn,η(x) =

[

Kn,η
∑

k=0

ak,ηAk,η(x)

]2

,

∫

fn,η,(x)dx = 1







, Kn,η → ∞,
Kn,η

n
→ 0, (7)

where fn,η is an approximation to fη, η ∈ {ε, u}, based on Kn,η sieve coefficients, {Ak,η(·) :

k ≥ 0} denote known basis functions and {ak,η(·) : k ≥ 0} are unknown sieve coefficients

which must be estimated. Note that Kn,η depends on the sample size n but grows at a

slower rate. For the basis functions Chen et al. (2006) suggest to use Hermite polynomials

or splines; for details, see Chen et al. (2006). To ensure that the approximation of the

density function integrates to one in applications, one can set

fn,η(x) =

[

∑Kn,η

k=0 ak,ηAk,η(x)
]2

∫

[

∑Kn,η

k=0 ak,ηAk,η(v)
]2

dv
. (8)

Let

hn,ε,u(a, b) = c(Fn,ε(a), Fn,u(b); τ)fn,ε(a)fn,u(b), (9)

where Fn,η(x) =
∫ x

−∞
fn,η(v)dv, η ∈ {ε, u}. Then, our proposed sieve maximum likelihood
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estimator θ̂n of θ is obtained by maximizing

lnL(β, γ, τ, a0,ε, . . . , aKn,ε,ε, a0,u, . . . , aKn,u,u;Z)

=

n
∑

i=1

{

(1− di) ln

∫ ∞

−∞

∫ −w′

iγ

−∞

hn,ε,u(ε, u)dudε+ di ln

∫ ∞

−w′

iγ

hn,ε,u(yi − x′
iβ, u)du

}

=
n
∑

i=1

{

(1− di) lnFn,u(−w′
iγ) + di ln

(

fn,ε(yi − x′
iβ)−

∂Hn,ε,u(ε,−w′
iγ)

∂ε

∣

∣

∣

∣

ε=yi−x′iβ

)}

(10)

over θ and the unknown sieve coefficients (a0,ε, . . . , aKn,ε,ε, a0,u, . . . , aKn,u,u).

As an example, we consider the well-known Gaussian copula. In that case, the joint

cumulative distribution function of ε and u is given by

Hε,u(a, b) = Φ2(Φ
−1(Fε(a)),Φ

−1(Fu(b)); τ), (11)

where Φ2(·, ·, τ) is the c.d.f. of the bivariate standard normal distribution with correlation

coefficient τ , i.e.,

Φ2(a, b) =

∫ a

−∞

∫ b

−∞

1

2π
√
1− τ 2

exp

(

− 1

2(1− τ 2)
(x2 + y2 − 2τxy)

)

dydx, (12)

and Φ−1(·) is the inverse of the c.d.f. of the univariate standard normal distribution. This

implies that the joint p.d.f. of ε and u is given by

hε,u(a, b) =

∣

∣

∣

∣

∣

∣

∣







1 τ

ρ 1







∣

∣

∣

∣

∣

∣

∣

−1/2

exp






−1

2







Φ−1(Fε(a))

Φ−1(Fu(b)







′











1 τ

τ 1







−1

− I2













Φ−1(Fε(a))

Φ−1(Fu(b)













× fε(a)fu(b), (13)

where I2 is the 2-by-2 identity matrix. Lee (1983) was the first who applied the Gaussian
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copula to sample selection models. He showed that the log-likelihood function is given by

lnL =

N
∑

i=1

{(1− di) ln(1− Fu(w
′
iγ))

+di ln fε(yi − x′
iβ) + di ln Φ

(

Φ−1(Fu(w
′
iγ)) + τΦ−1(Fε(yi − x′

iβ))√
1− τ 2

)}

. (14)

Besides the Gaussian copula, there exist many other copulas which can be used to

model dependencies among the error terms. Popular examples are copulas from the

Farlie-Gumbel-Morgenstern (FGM) family and the Archimedean class of copulas. The

Archimedean class encompasses some well-known copulas such as the Clayton copula, the

Frank copula and the Gumbel copula. We refer the reader to Smith (2003) for a description

of these copulas. Smith (2003) also provides the likelihood functions for sample selection

models based on these copulas.

3 Asymptotic Properties

In this section, we derive consistency and asymptotic normality of our proposed sieve

maximum likelihood estimator using the results in Chen et al. (2006) and Chen (2007).

First, let A = Θ× Fε × Fu denote the parameter space. As in the last section, the sieve

MLE is defined as

α̂n = arg max
α∈An

lnL(α;Z) =

n
∑

i=1

ln l(α, zi), (15)

where α = (θ′, fε, fu)
′ and α̂n = (θ̂′n, f̂n,ε, f̂n,u)

′ ∈ Θ×Fn,ε×Fn,u = An. The true value of

the parameter vector is denoted as α0 = (θ′0, f0,ε, f0,u)
′ ∈ A.

Our first goal is to derive consistency of our proposed estimator. Suppose that d(·, ·) is

a (pseudo) metric on A. We make the following assumptions (in addition to Assumptions

1-4), which are taken from Conditions 3.1’, 3.2’, 3.3’, 3.4 and 3.5 in Chen (2007):

Assumption 5: (i) E[lnL(α, Z)] is continuous at α0 ∈ A, E[lnL(α0, Z)] > −∞

(ii) for all ǫ > 0, E[lnL(α0, Z)] > sup{α∈A: d(α,α0)≥ǫ}E[lnL(α, Z)].

Assumption 6: Ak ⊆ Ak+1 ⊆ A for all k ≥ 1; and for any α ∈ A there exists a sequence
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πkα0 ∈ Ak such that d(α0, πkα0) → 0 as k → ∞.

Assumption 7: For each k ≥ 1,

(i) lnL(α, Z) is a measurable function of the data Z for all α ∈ Ak; and

(ii) for any data Z, lnL(α, Z) is upper semicontinuous on Ak under the metric d(·, ·).

Assumption 8: The sieve spaces, Ak, are compact under d(·, ·).

Assumption 9: For all k ≥ 1, plimn→∞ supα∈Ak
| lnL(α)− E[lnL(α)]| = 0.

Assumption 5 is an identification condition which implies that the true parameter vec-

tor α0 uniquely maximizes the expected value of the log-likelihood function. Assumptions

6 and 8 contain assumptions on the sieve spaces. In particular, it is assumed that asymp-

totically the difference between an (unknown) function and its sieve approximation tends

to zero. Assumption 7 is a continuity condition, while Assumption 9 assumes uniform

convergence of the sample log-likelihood to its population counterpart over the sieves.

We establish the following consistency theorem:

Theorem 1: Suppose that Assumptions 1-9 hold. Then d(α̂n, α0) = op(1).

Proof: See Chen (2007), pp. 5589-5591.

In order to establish asymptotic normality, we show that Conditions 4.1-4.5 in Chen

(2007) are fulfilled. We derive asymptotic normality only for the structural parameters of

interest contained in θ. Our exposition closely follows Chen (2007, ch. 4).

Let

∂l(α0, z)

∂α′
[α− α0] = lim

ω→0

l(α0 + ω[α− α0], z)− l(α0, z)

ω
(16)

be the directional derivative of l(α0, z) in the direction [α−α0] and suppose that it is well

defined for almost all z. Let V be the completion of the space spanned by A−α0 . As in

Chen et al. (2006), we define the Fisher norm on this space as

||v||2 = E

[

∂l(α0, z)

∂α′
[v]

]2

, (17)
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which induces the Fisher inner product

〈v, ṽ〉 = E

[

∂l(α0, z)

∂α′
[v]

∂l(α0, z)

∂α′
[ṽ]

]

. (18)

Let f(θ0) = λ′θ0, where λ is an arbitrary unit vector with the same dimension as θ. It

follows from the Riesz representation theorem that there exists v∗ ∈ V such that, for any

α− α0 ∈ V ,

λ′(θ − θ0) = 〈α− α0, v
∗〉 (19)

with ||v∗|| < ∞.

To proceed further, it is necessary to compute the Riesz representer v∗. Define

Dwj
(z) =

∂l(α0, z)

∂θj
− ∂l(α0, z)

∂f ′
[wj], j = 1, . . . , dim(θ), (20)

where f = (fε, fu)
′. Then, the Riesz representer v∗ = ((v∗θ)

′, (v∗f )
′)′ is given by

v∗f = −(w∗)′v∗θ (21)

v∗θ = (E[Dw∗(z)Dw∗(z)′])−1λ (22)

w∗
j = arg inf

wj

E[(Dwj
(z))2], (23)

where w = (w1, . . . , wdim(θ))
′ and Dw(z) = (Dw1(z), . . . , Dwdim(θ)(z))

′.

We make the following assumptions:

Assumption 10: θ ∈ int(Θ),Θ a compact subset of Rdim(θ).

Assumption 11: The log-likelihood function lnL(α, z) is twice continuously pathwise

differentiable with respect to α ∈ A and ||α−α0|| = o(1), and the derivatives are uniformly

bounded with respect to α ∈ A and z.

Assumption 12: E[Dw∗(z)Dw∗(z)′] is positive definite.

Assumption 13: There is πnv
∗ ∈ An such that ||πnv∗ − v∗|| = O(K−ψ) = o(n−1/2).

Assumptions 10-12 are standard. Assumption 13 places a smoothness condition on
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the Riesz representer v∗, which is similar to Assumption 3 of Newey (1997). We establish

the following theorem:

Theorem 2: Suppose that Assumptions 1-4 and 10-13 hold, and that ||α̂n−α0|| = op(1).

Then
√
n(θ̂n − θ0)

d−→ N (0, I∗(θ0)
−1), where I∗(θ0) = E[Dw∗(z)Dw∗(z)′].

Proof: See the Appendix. Furthermore, θ̂n is semiparametrically efficient (see Chen,

2006).

In order to calculate standard errors or confidence intervals for θ̂n, one needs an esti-

mate of the asymptotic covariance matrix I∗(θ0)
−1. Such an estimate can be obtained in

the following way (see Chen, 2007, p. 5616). Let

ŵ∗
j = arg min

wj∈(Fn,ε×Fn,u)

1

n

n
∑

i=1

[(D̂wj
(zi))

2], (24)

with

D̂wj
(z) =

∂l(α̂0, z)

∂θj
− ∂l(α̂0, z)

∂f ′
[wj], j = 1, . . . , dim(θ). (25)

Define D̂w(z) = (D̂w1, . . . , D̂wdim(θ)
)′. Then an estimate Î∗(θ̂n)

−1 of I∗(θ0)
−1 is given by

Î∗(θ̂n)
−1 =

(

1

n

n
∑

i=1

[D̂ŵ∗(zi)D̂ŵ∗(zi)
′]

)−1

. (26)

The following theorem establishes the consistency of Î∗(θ̂n)
−1 for I∗(θ0)

−1:

Theorem 3: Suppose that Assumptions 1-4 and 10-13 hold, and that ||α̂n−α0|| = op(1).

Then Î∗(θ̂n)
−1 = I∗(θ0)

−1 + op(1).

Proof: Follows from Lemma 2 in Ackerberg et al. (2012), pp. 493-494.

In fact, Ackerberg et al. (2012) showed that there is a simpler way to obtain Î∗(θ̂n)
−1.

Suppose there is a fictitious practitioner who uses the same sieve space (7) to approximate

the unknown densities fε and fu, but she treats the number of sieve terms, Kn,η, η ∈ {ε, u},

as fixed rather than as increasing with the sample size. Consequently, she has a finite

dimensional parameter vector and maximum likelihood estimation and inference can be

carried out as usual. However, since the number of sieve terms is considered fixed, the
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maximum likelihood estimator will not be consistent for the parameters of interest (i.e.,

θ) and will not have the correct limiting distribution proposed in Theorem 2.

To fix ideas, let α̃ = (θ′, κ′)′ denote the parameter vector to be estimated by our

fictitious practitioner, where κ = (a0,ε, . . . , aKn,ε,ε, a0,u, . . . , aKn,u,u)
′ contains the sieve co-

efficients. Note that the practitioner faces the same problem as in our sieve estimation

approach, but the difference is that the practitioner treats Kη, η ∈ {ε, u} as fixed. The

information matrix of the practitioner is given by

Ĩ(α̃0) =







E
[

∂l(z,θ0,κ0)
∂θ

∂l(z,θ0,κ0)
∂θ′

]

E
[

∂l(z,θ0,κ0)
∂θ

∂l(z,θ0,κ0)
∂κ′

]

E
[

∂l(z,θ0,κ0)
∂κ

∂l(z,θ0,κ0)
∂θ′

]

E
[

∂l(z,θ0,κ0)
∂κ

∂l(z,θ0,κ0)
∂κ′

]






, (27)

which can be consistently estimated by

ˆ̃I( ˆ̃αn) =







1
n

∑n
i=1

∂l(z,θ̂n,κ̂n)
∂θ

∂l(z,θ̂n,κ̂n)
∂θ′

1
n

∑n
i=1

∂l(z,θ̂n,κ̂n)
∂θ

∂l(z,θ̂n,κ̂n)
∂κ′

1
n

∑n
i=1

∂l(z,θ̂n,κ̂n)
∂κ

∂l(z,θ̂n,κ̂n)
∂θ′

1
n

∑n
i=1

∂l(z,θ̂n,κ̂n)
∂κ

∂l(z,θ̂n,κ̂n)
∂κ′






, (28)

where θ̂n and κ̂n denote the practitioner’s estimates of θ0 and κ0. An estimate of the

asymptotic covariance of
√
n(θ̂n − θ0) is then given by the upper left block of the inverse

of ˆ̃I( ˆ̃αn). Ackerberg et al. (2012) derived the following result: Despite the fact that the

likelihood function is misspecified (since Kn,ε and Kn,u are treated as fixed), the practi-

tioner’s estimate of the asymptotic covariance of
√
n(θ̂n− θ0) is numerically equivalent to

Î∗(θ̂n)
−1.

The practical implication of this result is simple but powerful. A researcher who

wants to carry out sieve maximum likelihood estimation just has to maximize the log-

likelihood function over θ and the unknown sieve coefficients, and the (asymptotically)

correct standard errors for θ̂n can be easily obtained from the inverse of the information

matrix, provided that the information matrix is based on the outer product of gradients

(and not on the Hessian matrix). Hence, any statistical software package which is ca-

pable of dealing with user-supplied likelihood functions can be used for sieve maximum

likelihood estimation and inference, as long as the researcher is allowed to specify how

the information matrix shall be calculated.
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4 Remarks and Extensions

4.1 Closed Form Likelihood Function

The log-likelihood function in (10) does not exhibit a closed form expression due to the

presence of integral terms. Integrals arise because of the presence of the distribution

functions Fn,ε and Fn,u, which are related to fn,ε and fn,u via Fn,ε(x) =
∫ x

−∞
fn,ε(v)dv and

Fn,u(x) =
∫ x

−∞
fn,u(v)dv. Moreover, the copula function may contain integrals as well;

the Student t copula would be an example where this is the case (Demarta and McNeil,

2005). Calculating the integrals within an optimization routine is of course possible, but

may be computationally demanding if the sample size and/or the number of parameters

increases. Put differently, it may take a quite long time until the optimization routine

finds the maximum likelihood estimates. In this subsection we describe a method how the

integrals in Fn,ε and Fn,u can be replaced by closed form expressions, which may facilitate

maximum likelihood estimation in practice. The integrals appearing through the copula

function are not considered here.2 Fortunately, many well known copulas (such as the

Gaussian copula, Archimedean copulas) indeed have closed form expressions. Sample

selection models based on these copulas are analyzed in Smith (2003).

Our method to obtain closed form expressions for Fn,ε and Fn,u essentially relies on an

expansion of the unknown densities fε and fu by Hermite polynomials. More specifically,

we propose to approximate the unknown density functions by

fn,η(x) =

[

∑Kn,η

k=0 ak,η(x/ση)
k
]2

φ(x/ση)/ση

∫∞

−∞

[

∑Kn,η

k=0 ak,η(v/ση)k
]2

φ(v/ση)/σηdv
, η ∈ {ε, u}, (29)

where ση > 0 is a scale parameter which must be estimated, and φ(·) is the standard

normal probability density function.

An important advantage of using Hermite polynomials as basis functions in these

2To deal with such integrals, Maximum Simulated Likelihood techniques may be employed.
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expansions is that Fn,ε and Fn,u have closed form expressions.3 Note that

Fn,η(x) =

∫ x

−∞

[

∑Kn,η

k=0 ak,η(v/ση)
k
]2

φ(v/ση)/σηdv

∫∞

−∞

[

∑Kn,η

k=0 ak,η(v/ση)k
]2

φ(v/ση)/σηdv
, η ∈ {ε, u}. (30)

To see that Fn,ε and Fn,u have closed forms, consider the denominator of (30) first. To

ease notation, we suppress η in the following formulas. The denominator can be simplified

by making a change of variables z = x/σ, which yields

∫ ∞

−∞

[

K
∑

k=0

ak(x/σ)
k

]2

φ(x/σ)/σdx (31)

=

∫ ∞

−∞

[Z ′aa′Z]φ(z)dz (32)

=tr

[

aa′
∫ ∞

−∞

ZZ ′φ(z)dz

]

, (33)

where a = (a0, . . . , aKn
)′ and Z = (z0, z1, z2, . . . , zKn)′. The integral term represents

moments of the standard normal distribution. For example, if Kn = 2, we have that

Z = (1, z, z2)′ and

∫ ∞

−∞

ZZ ′φ(z)dz =

∫ ∞

−∞













1 z z2

z z2 z3

z2 z3 z4













φ(z)dz =













1 0 1

0 1 0

1 0 3













(34)

with

∫ ∞

−∞

zkdz = 0, k = 1, 3, 5, . . . (35)

∫ ∞

−∞

zkdz = (k − 1)(k − 3) · ... · 1, k = 0, 2, 4, . . . . (36)

Hence, the denominator does not involve integrals any more and thus has a closed form.

3Using Hermite polynomials to approximate the square root of a density has been suggested by e.g.
Gallant and Nychka (1987). Of course, there may exist other basis functions which imply closed form
distribution functions. However, such other basis functions will not be considered here.
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Next, consider the numerator of (30). We have that

∫ x

−∞

[

Kn
∑

k=0

ak(v/σ)
k

]2

φ(x/σ)/σdv (37)

=

∫ x/σ

−∞

[

Kn
∑

k=0

ak(z)
k

]2

φ(z)dz (38)

= tr

[

aa′
∫ x/σ

−∞

ZZ ′φ(z)dz

]

(39)

and

∫ x/σ

−∞

ZZ ′φ(z)dz =



















b′0:Kn

b′1:(Kn+1)

...

b′Kn:(2Kn)



















([Kn+1]×[Kn+1])

, (40)

where b′i:j = (bi, . . . , bj) with

b0 = Φ(x/σ) (41)

b1 = −φ(x/σ) (42)

bk = −φ(x/σ)(x/σ)k−1 + (k − 1)bk−2, k = 2, . . . , 2Kn, (43)

where Φ(·) is the standard normal cumulative density function. Hence, by these trans-

formations the integrals in the numerator of (30) vanish as well. Therefore, Fn,ε and Fn,u

have closed form expressions.

4.2 Initial Values for Maximum Likelihood Estimation

The likelihood function (10) usually contains a lot of parameters to be estimated, since

the sieve coefficients must be estimated as well. As in case of integral terms, this may be

associated with further computational complexity. However, having good initial values for

the maximum likelihood estimation routine may reduce this computational burden. Such

initial values can be easily obtained for the parameters β and γ if consistent estimates
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are available. For instance, the parameters of the selection equation, γ, may be estimated

by a suitable semiparametric estimator for binary choice models. The Klein and Spady

(1993) semiparametric estimation procedure can be used in this case. The parameters of

the main equation, β, can be estimated by the approaches proposed by Powell (1987) or

Newey (2009).

4.3 Testing for the Validity of Parametric Assumptions

As described in the introduction, a great advantage of our estimation approach is that

it is easy to test for the validity of parametric assumptions. Testing for the validity of

parametric assumptions is important since incorporating (correct) parametric information

into a model typically results in efficiency gains.

It is easy to test for the validity of parametric assumptions in our copula framework

because one can separately test for the validity of a certain joint distribution (represented

by the copula) and for the validity of certain marginal distributions. Suppose we want to

test if a certain copula is valid to describe the joint distribution of error terms. We could

then estimate the model by the Gallant and Nychka (1987) procedure which does not

make any (parametric) assumptions on the joint distribution. Then we would estimate

the model by our approach, including the assumed copula whose validity we seek to test.

Since the Gallant and Nychka (1987) and our approach are based on maximum likelihood

estimation, one can test whether the parametric copula assumption is justified by applying

the Vuong (1989) test for nonnested models.

In a similar manner, one can test for the validity of certain parametric marginal

distributions. Given a valid parametric copula, we would estimate the model by our

approach with unspecified marginal distributions, and then with one or both marginal

distributions parametrically specified. Again the Vuong (1989) test may help decide

if the parametric assumptions on the marginal distribution(s) are correct. In case of

the selection equation only one may also apply the Horowitz and Härdle (1994) testing

procedure to test if a certain parametric marginal distribution is valid for the selection
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equation’s error term.4.

4.4 Binary Dependent Variable

This subsection focuses on an extension of our semiparametric copula model to the case of

a binary dependent variable. Sample selection models with a binary dependent variable

have been used by van de Ven and van Praag (1981), Boyes et al. (1989), Greene (1992)

and Mohanty (2002). These authors, however, assumed a bivariate normal distribution

for the error terms of main and selection equation, as Heckman (1979) did. Thus, the

following exposition generalizes these models by allowing for distributions apart from the

bivariate normal.

The model is now given by

y∗i = x′
iβ + εi (44)

d∗i = w′
iγ + ui (45)

di = 1(d∗i > 0) (46)

yi =















1(y∗i > 0) if di = 1

“missing” otherwise

. (47)

The difference between this model and the benchmark model from Section 2 is that the

dependent variable associated with the main equation, y1, now assumes only the values

one or zero.

Under the same assumptions as in Section 2, the log-likelihood function for this model

4In the context of sample selection models, the Horowitz and Härdle testing procedure has been applied
by e.g. Martins (2001) and Genius and Strazzera (2008).
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is given by

lnL(β, γ, fε, fu;Z) =
n
∑

i=1

{

(1− di) ln

∫ ∞

−∞

∫ −w′

iγ

−∞

hε,u(ε, u)dudε

+ di(1− yi) ln

∫ −x′iβ

−∞

∫ ∞

−w′

iγ

hε,u(ε, u)dudε+ diyi ln

∫ ∞

−x′iβ

∫ ∞

−w′

iγ

hε,u(ε, u)dudε

}

=

n
∑

i=1

{(1− di) lnFu(−w′
iγ) + di(1− yi) ln[Fε(−x′

iβ)−Hε,u(−w′
iγ,−x′

iβ)]

+ diyi lnHε,u(−w′
iγ,−x′

iβ)} . (48)

Estimation and inference can be carried out as described above for the benchmark

model. In fact, there is no conceptual difference between the model considered in this

section and the benchmark model, apart from the binary nature of the dependent variable.

4.5 Endogeneity

In this subsection we show how our semiparametric copula model can be extended to

the case of endogenous covariates. Taking the potential endogeneity of covariates into

account is important since parameter estimates will be inconsistent otherwise. To provide

an illustration, we consider the classical example for which sample selection models have

been used. Suppose a researcher wants to estimate a wage equation for females, and that

her interest centers on the female returns to education. If she fitted a wage regression to

the observed sample of working females only, she would obtain inconsistent estimates due

to sample selectivity. So she would instead fit a sample selection model to the observed

data. But is sample selectivity the only source of endogeneity in this example? Indeed,

there may be sociological or intelligence-related factors (which we will summarize by the

term “ability”) which affect not only the wage (main equation) and the probability of

labor force participation (selection equation), but education as well. If the researcher

does not take the potential endogeneity of education into account, she will obtain an

inconsistent estimate of the female returns to education.

To conceptualize these ideas, we consider the following extension of the model from
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Section 2:

y∗1i = x̃′
iβ̃ + δ1y2i + ε̃i (49)

d∗i = x̃′
iγ̃ + δ2y2i + δ3w̃i + ũi (50)

di = 1(d∗i > 0) (51)

yi =















y∗i if di = 1

“missing” otherwise

(52)

y2i = x̃′
iα1 + q′iα2 + vi, (53)

where y2 is the endogenous covariate. The third equation is a reduced form equation for

y2 which includes an instrumental variable q which is not contained in x or w (exclusion

restriction). Furthermore, v is an error term which is assumed to be independent of x̃, w̃

and q, but correlated with ε̃ and ũ. For instance, v, ε̃ and ũ may be affected by a common

variable like ability in the aforementioned example.

To estimate this model, we can insert the reduced form equation for y2 into the main

and selection equation, which gives the following reduced form model:

y∗1i = x′
iβ + εi (54)

d∗i = w′
iγ + ui (55)

di = 1(d∗i > 0) (56)

yi =















y∗i if di = 1

“missing” otherwise

(57)

y2i = x′
iα + vi, (58)

where x = (x̃′, q′)′, w = (x′, w̃′)′, ε = δ1v + ε̃, u = δ2v + ũ, β = ((β̃ + δ1α1)
′, δ1α

′
2)

′, γ =

((γ̃ + δ2α1)
′, δ2α

′
2, δ

′
3)

′ and α = (α′
1, α

′
2)

′. Note that this model is conceptually similar to

the model from Section 2. If only the reduced form parameters β and γ were of interest,

the model could be estimated as in Section 2. However, one usually seeks to estimate the
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structural parameters (β̃ ′, δ1, γ̃
′, δ2, δ3, α)

′. We propose the following estimation strategy:

Obtain the first order conditions associated with the likelihood function resulting from

the reduced form equations (54)-(57). The likelihood function is the same as in Section 2,

because the reduced form equations contain exogenous covariates only. Then estimate the

structural parameters by using the first order conditions and the reduced form equation for

y2 in a Generalized Method of Moments or minimum distance framework. This procedure

will give consistent estimates of the structural parameters. Asymptotic normality results

can be derived as well, but may be different from those in Section 2 (depending on

the estimation procedure). However, the results in Ackerberg et al. (2012) can still be

applied: The estimation problem may be treated as if it were parametric, and parameter

estimates and estimates of standard errors and confidence intervals may be obtained in

the usual parametric way. As demonstrated by Ackerberg et al. (2012) for quite general

classes of estimators, the standard error estimates are numerically equivalent to those

which would be obtained under the correct presumption that the estimation problem was

semiparametric.

One word of caution remains, though. The joint distribution implied by the copula and

the (unknown) marginal distributions is now the joint distribution of the composite error

terms ε and u. This has to be taken into account when interpreting the joint distribution

of the error terms associated with the reduced form model.

5 Conclusions

In this paper we proposed a sieve maximum likelihood estimation approach for a copula-

based sample selection model. We also provided the asymptotic properties of our proposed

estimator and showed that its asymptotic covariance matrix can be easily obtained using

statistics software which is capable of dealing with user-supplied likelihood functions. To

facilitate estimation, we showed how closed form likelihood functions can be obtained

and how appropriate initial values for maximum likelihood estimation may be chosen.

We demonstrated that parametric assumptions on the joint or marginal distributions of

error terms can be easily tested for in our framework. We also extended our basis model
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to the cases of a binary dependent variable and endogeneity of covariates.

The semi-nonparametric maximum likelihood estimation approach of Gallant and Ny-

chka (1987) has not often been used in applied econometrics. One reason may be that no

distribution theory is available, which is necessary to compute standard errors and con-

fidence intervals. Another reason may be that the approximation of a two-dimensional

density function is rather complex, hence the whole estimation problem is complex as well.

The approach derived in this paper reduces the complexity since only one-dimensional

densities have to be approximated. Furthermore, standard errors and confidence intervals

can be easily obtained in practice by treating the estimation problem as if it were para-

metric. We thus hope that our exposition fosters the application of semi-nonparametric

maximum likelihood estimators to sample selection models, especially if the distribution

of the error terms of main and selection equation is of interest.
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Appendix

Proof of Theorem 2:

We prove Theorem 2 by verifying that the Conditions 4.1-4.5 in Chen (2007) are ful-

filled. For convenience, we restate these conditions here. In the following, µn(g(z)) =

1
n

∑n
i=1(g(zi)− E[g(zi)]) denotes the empirical process indexed by the function g.

Condition 4.1:

(i) There is ω > 0 such that |f(θ) − f(θ0) − ∂f(θ0
θ

[θ − θ0]| = O(||θ − θ0||ω) uniformly in

θ ∈ Θ with ||θ − θ0|| = o(1).

(ii) ||∂f(θ0)
∂θ

|| < ∞.

(iii) There is πnv
∗ ∈ An such that ||πnv∗ − v∗|| × ||α̂n − α0|| = op(n

−1/2).

Condition 4.2’:

sup
{ᾱ∈An:||ᾱ−α0||<δn}

µn

(

∂l(ᾱ, z)

∂α
[πnv

∗]− ∂l(α0, z)

∂α
[πnv

∗]

)

= op(n
−1/2). (59)

Condition 4.3’:

E

[

∂l(α̂n, z)

∂α
[πnv

∗]

]

= 〈α̂n − α0, πnv
∗〉+ o(n−1/2). (60)

Condition 4.4:

(i) µn(
∂l(α0,z)
∂α

[πnv
∗ − v∗]) = op(n

−1/2).

(ii) E[∂l(α0,z)
∂α

[πnv
∗]].

Condition 4.5: n1/2µn(
∂l(α0,z)
∂α

[v∗])
d−→ N (0, σ2

v∗), with σ2
v∗ > 0.

Condition 4.1 (i) is fulfilled with ω = ∞. Condition 4.1 (ii) is fulfilled by Assumption 12.

Condition 4.1 (iii) is satisfied by Assumption 13 and the consistency of α̂n.
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Condition 4.2 can be verified using Theorem 3 from Chen et al. (2003). Theorem

3 requires continuity conditions on m(z, α) = ∂l(α,z)
∂α

[πnv
∗] − E[∂l(α,z)

∂α
[πnv

∗]], which are

satisfied in our case because of Assumption 11.

Condition 4.3 is trivially satisfied because we have used the Fisher norm (Chen 2007,

p. 5617). Condition 4.4 (i) is fulfilled because we have i.i.d. observations and

E

[

µn(
∂l(α0, z)

∂α
[πnv

∗ − v∗])

]2

= n−1E

[

∂l(α0, z)

∂α
[πnv

∗ − v∗]

]2

(61)

= n−1||πnv∗ − v∗||2 = o(n−1). (62)

Hence, by the Markov inequality we have that µn(
∂l(α0,z)
∂α

[πnv
∗ − v∗]) = op(n

−1/2). Condi-

tion 4.4 (ii) is satisfied since

E

[

∂l(α0, z)

∂α
[πnv

∗]

]

= E

[

∂l(α0, z)

∂α
[πnv

∗]

]

− E

[

∂l(α0, z)

∂α
[v∗]

]

+ E

[

∂l(α0, z)

∂α
[v∗]

]

= E

[

∂l(α0, z)

∂α
[πnv

∗ − v∗]

]

, (63)

and by Jensen’s inequality,

(

E

[

∂l(α0, z)

∂α
[πnv

∗ − v∗]

])2

≤ E

[

∂l(α0, z)

∂α
[πnv

∗ − v∗]

]2

= ||πnv∗ − v∗||2 = O(K−2ψ) = o(n−1) (64)

by Assumption 13, hence E
[

∂l(α0,z)
∂α

[πnv
∗ − v∗]

]

= o(n−1/2). Condition 4.5 is fulfilled

because we have i.i.d. observations and

σ2
v∗ = V ar

[

∂l(α0, z)

∂α
[v∗]

]

(65)

= V ar

[

∂l(α0, z)

∂θ
− ∂l(α0, z)

∂f ′
[w](v∗θ)

]

(66)

= (v∗θ)E[Dw∗(z)Dw∗(z)′](v∗θ)
′ (67)

= λ′(E[Dw∗(z)Dw∗(z)′])−1E[Dw∗(z)Dw∗(z)′](E[Dw∗(z)Dw∗(z)′])−1λ (68)

= λ′(E[Dw∗(z)Dw∗(z)′])−1λ > 0 (69)
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by Assumption 12. By Theorem 4.3 in Chen (2007) it follows that n1/2(f(θ̂n)−f(θ0))
d−→

N (0, σ2
v∗), hence

√
n(θ̂n − θ0)

d−→ N (0, (E[Dw∗(z)Dw∗(z)′])−1) = N (0, I∗(θ0)
−1). (70)
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