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Abstract

We propose a new method to estimate changing skill prices and skill accumulation
across multiple sectors. The method exploits workers’ wage growth in panel data, allowing
for an unrestricted multidimensional distribution of skills and endogenous switching due to
skill shocks. We apply our method to high-quality German administrative records and find
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services profession dropped despite rising skill prices for two reasons: (1) extraordinary
high and increasing turnover in the profession, which prevented skill accumulation, and (2)
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are consistent with a pervasive impact of routine-biased technical change on the German
wage structure, and with increasingly precarious work biographies driving inequality at
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1 Introduction

From the mid 80’s onwards, employment in Germany has polarized strongly. Occupations
from the middle of the skill and wage distribution reported large employment drops whereas
occupations at the margins achieved employment gains (Dustmann, Ludsteck, and Schénberg,
2009). According to the seminal work of Autor, Levy, and Murnane (2003), middling occu-
pations are characterized by a comparatively large amount of routine tasks which workers
perform. In contrast, high skill occupations mainly consist of non-routine analytical or inter-
active tasks and low skill occupations can be described by a mixture of interactive and manual
tasks. Therefore, the work performed in middling occupations is much more vulnerable to be
replaced by automation technologies or to be offshored than the work done in the occupations

at the fringes.

If the replacement of routine tasks by technology or foreign labor not only affects the em-
ployment channel but also the wage channel, we would suspect that the wage distribution
also polarized over time resulting in wage declines for middling and wage gains for low and
high skilled occupations (Autor, Katz, and Kearney, 2006). Admittedly, wage inequality in
Germany increased substantially over the last couple of decades (Card, Heining, and Kline,
2013; Dustmann, Ludsteck, and Schénberg, 2009) but this happened monotonically upwards
the skill distribution as low skill (service) occupations had even stronger wage losses than
middling (producing) occupations and high skill (managerial, clerical) occupations reported
wage gains. A polarization of the wage distribution was only observed for the US in the 90’s
(Acemoglu and Autor, 2011).

Nevertheless, in this paper, we argue that pure mean wage changes within skill bins are a bad
indicator to qunatify the impact of technological change on inequality and polarization. Wage
changes for an individual worker are the result of shifts of the worker’s skills and the prices
paid for those. Hence, mean wage changes within certain occupational skill groups contain
a price and a composition effect. If the price paid for producing professions falls because
of new automation technologies or offshoring, this does not necessarily imply occupational
wage polarization as, for example, production workers may transition into occupations at a
different part of the skill distribution and thereby alter the skill composition of their new
and old occupation (Autor, Katz, and Kearney, 2006). Such a movement could, for instance,
lead to falling mean wages of service occupations if low skilled production workers leave their
former profession and start a new career in the service sector. Although, the relative price
for services may have risen over time, the evolution of the mean wage of service occupations

is ambiguous. If we want to quantify the impact of automation and offshoring on the wage



distribution, it is therefore necessary to disentangle price and composition effects as a possible

polarization of skill prices could be offset by composition effects through selection.

To do so, we estimate the equilibrium price paid for working in professions associated with
high intensities of routine tasks compared to professions mainly associated with analytical,
interactive, and manual tasks. We therefore develop a novel estimation method which exploits
the interplay between workers’ sorting into professions and their wage growth in panel data.
The method has the advantages that it makes minimal assumptions about the distribution of

workers’ skills and that it can be implemented in simple linear wage regressions'.

In addition, we are also able to flexibly account for how individuals acquire skills over their
working lives, extending the work of Yamaguchi (2012). Our estimation flexibly allows that
workers acquire skills “on the job”. Within each profession they perform analytical, interactive,
routine or manual tasks. By performing those tasks, they build up their profession specific
skills. We allow the task content to differ on a fine grid of 120 occupations as Production
workers may perform more routine tasks than Sales and Office workers whereas Managers,

Professionals and Technicians demand for more analytical tasks.

To estimate skills and prices paid for those, we rely on the identifying assumption that,
conditional on the evolution of skills, workers only change from a routine intensive profession

to, say, an analytical intensive one if the wage in the latter is higher than in the former.

We combine two datasets for our empirical analysis. As we model skills to be acquired on the
job by performing tasks, we make use of a unique Germany survey dataset, the Qualification
and Career Survey (QCS), to measure the intensity with which tasks are performed in each
occupation. Second, we employ the Sample of Integrated Labor Market Biographies (SIAB).
This administrative dataset has information on both, workers’ wage growth and their sorting
into professions over time. It therefore allows us to estimate the evolution of workers’ profession
specific skills over the life-cycle and to elicit the market prices paid for those. We combine the

datasets by using occupational identifiers which we can construct for both datasets.

We use our skill price estimates to decompose the evolution of mean wages within professions
into the effects of a changing skill composition and the prices paid for those skills. In addition,
the estimated prices also allow us answering the question whether routine-biased technological
change was important in the German context and to quantify its impact on the increase in
inequality. Finally, possessing information about employment and profession price changes,
we are able to compute labor supply elasticities with respect to different professions. These

labor supply elasticities are important variables for policy makers, because they indicate to

!The approach is inspired by the recent papers of Bohm (2015), Cortes (2016) and Gottschalk, Green, and
Sand (2015).



what extent workers can switch professions in response to different market prices and thus

adjust to a shifting labor demand structure in the economy.

The paper is structured as follows. Section 2 presents the self selection model as well as a
method to estimate it’s parameters, the market skill prices and parameters which govern the
evolution of skills. Section 3 describes the datasets we employ. Evidence on the claims about
the German employment and wage structure which were made above is presented in section
4. The estimation results are depicted in section 5. Section 6 discusses the findings and

concludes.

2 Model

We assume that there are k = 1, ..., K distinct occupational groups or sectors which we simply
refer to as “professions”®. Each worker is employed in such a profession k and is endowed with
sector specific log skills sy, ; ; for which he receives a log wage w; ¢ = Wi = Tt + Sk,i¢- The
returns to profession skills 7, ; are market prices which may vary offer time and which changes

we want to estimate.

Skills are acquired through “learning on the job” by performing tasks x, ; ;. In each occupation,
all the workers conduct the same amount of analytical, interactive, routine or manual tasks and
so accumulate skills. Skills of Production and Operate workers may mainly be accomplished
by performing routine tasks; whereas skills of Managers, Professionals and Technicians may

mostly be collected by executing analytical and interactive tasks?.

A worker chooses to work in the profession k in which he has a comparative advantage.

Therefore, he self selects into a certain profession and ends up with a wage:

(1) wiy =max{mi s+ S1,it,.-.,TKt+ SK,it}

By the envelope theorem, a marginal change in the potential wage at time ¢ then is:

2The five groups used for the empirical analysis are inspired by the grouping of Acemoglu and Autor
(2011). To construct the groups, we map the 120 occupations contained in the SIAB to be either Man-
agers/Professionals/Technicians, Sales/Office, Production/Operate or Services. See section A.1 for the map-
ping.

8See table 4 for our mean task intensity estimates for each profession.



dwiir =d(mis+s14¢) ifliie=1
(2) dwi,t =

dwgir = d(mre + Skie) if I =1

where Iy;; = 1[maxj=1, g{wjit} = wiid] = Hwgiz > wjie Vi # k| = Hwkie — wjiz >

0Vj # k] is the profession choice indicator. We can rewrite this to:

K
(3) dwiy = I ;dwy i + ...+ Ixidwg i = Z Iy pdwy ; ¢
k=1

Define profession j to be the reference profession to which we estimate relative profession

prices and Wy ;¢ = Wk ;¢ — wj;¢. Then we can rewrite 3 to:

K
(4) dwiyt = dwj’@t + Z Ik,i,tdwk,i,t
k=1 k]

To get from marginal changes to absolute ones, hold constant @y ;¥ k£ # j at first. Then

integrating 4 with respect to the baseline wage w;; gives:
(5) Wi tlwj, i e, Wk,5,eY kA7 — Wistlwg i —1,0k,5,6¥ k#5 — Aw]ﬂvt

Now hold constant w;;; instead and integrate with respect to w;;;. Then, similarly, we

receive:

(6)
Wy q,t—1—Wj,4,t—1

VEe{l s Kb LA G Wity s i sin,iaY kil — Withw 0,07 kil = / Iy pdiy g

Wit~ Wit

If we sum up the one equation defined by 5 and the K — 1 equations defined by 6, we get:

WE 4.t

K
(7) Aw;p = Awj; s + Z / Iy ; 7 dwy ; -

k=1,k#j Wi ,i,t—1



To make this estimable, we linearly approximate the choice indicator for 7 € (t — 1,t) as we
only observe workers in the endpoints of two periods ¢ and £ — 1 but not in between when the

prices become so that workers are indifferent between the choice of two professions:

Inge — Ipiz—1 , - _
(8) Inir = Ipip—1 + ————"—(Wkir — Whit—1)
Wk it — Wi t—1

After plugging this approximation into 7, we end up with a very intuitive result*:

K
(9) Awip = Amje+ Asjiv+ Y Tnip(Amhy — Amje) + T (Asp i — Asji)
k=1k#j
K K
= Z Ay iy i + Z Aspitdiit
k=1 k=1

= T itk i ¢ —
where I, = Sbtokiil 2"’” L

Due to the approximation of the integral, the wage change for ¢ from ¢t — 1 to ¢t can be
decomposed as follows: If 7 stayed in profession k, he gets a potential wage gain Awy, ;; from
that profession. If ¢ switched, he gets half of the potential wage gain from the origin and
half from the destination profession. If we didn’t approximate the integral, the decomposition
would be more exact. For example, the worker could receive 1/8 of the wage gain of his

previous profession and 7/8 of the gain of his destination profession.

To estimate 9, we need data on log wage changes Aw; ;, moves from to profession to profession
from which we construct I ki and the change in skills. As we don’t have data on skill changes,

we make several competing assumptions to model Asy, ; ;.

2.1 Time-Constant Skills

If the workers profession specific skills do not change over time®, i.e. Asy iy =0, then B, =
Ay, identifies the changing profession prices in a simple linear wage regression of the log

change in wages on profession choice indicators:

4See appendix A.3 for the derivation.
5Notice that workers can have different levels of skills but those remain at the same level for the whole
lifetime.



K
(10) Awi,t = Z 5k,tf_k:,z',t
k=1

If workers do not switch professions, a related specification with profession fixed effects (FE)
would also identify Ay, (see Cortes (2016) for a related approach). If workers do switch, one
can also use an “average” FE for destination and origin profession. As we approximated the
integral linearly, the average implies weights of 0.5 for destination and origin. The intuition
is that switching workers derive one part of their wage gain from the gain in the origin and

one part from the destination profession.

2.2 Time-Varying Skills Without Depreciation

If sj;4 is not time constant, then endogenous switches can occur. To account for this, we
model the evolution of skills like Yamaguchi (2012) as “learning by doing” on the job. For

simplicity we do not allow for depreciating skills at first.

Workers accumulate profession specific skills by performing analytical, interactive, routine or
manual tasks. In each occupation, a different set of tasks is required at work. We estimate the
task contents of professions by using the survey data described in section 3.2. The resulting

mean estimates for each profession for can be found in table 4.

Let the task content which worker i of age group a performs at time ¢t — 1 be described by
Tip—1 = (analytical, interactive, routine, manual); ;1. Analytical tasks are transformed into

profession skills with factor 7{%* which we estimate in the data and likewise for the other

tasks with factors 7};“3,7120;127212“. In addition, we also include a constant 7" in the skill
formation process to allow some professions to have higher accumulation paths than others.

Hence, the change in profession specific skills is modeled as:
T
(11) Askit = Vka - (1 %,tq) ‘]I[agei7t,1 €al+ gt

In this notation vy, is a five dimensional parameter vector which we estimate. As the speed
of skill accumulation probably declines with age, we make the transformation age specific.
The age groups we use are 21-30, 31-40 and 41-50 year olds. To be able to identify prices
and skills, we have to rely on the assumption that the skill accumulation process is constant

over time, i.e. 7y 4 is time independent. In addition, we assume that the prices changed at an



equal speed in the pre-polarization era (1975-1984):

(12) Ampy =7 ift<1984, k=1,...,K

We consider this assumption to be valid as we do not observe much employment polarization
or huge differences in wage gains between the professions in this period as shown by figure 1

and figures 2 and 5.
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Figure 1: Wages and employment in the pre-polarization era (the wage break in 1983 is not
yet fully corrected which is why the wages of Managers/Professionals/Technicians behave so
strangely).

We so arrive at the wage equation:

K K
_ T _
(13) Awi,t - Z ﬁk,tlk,i,t + Z"}/k,a . <1 'fi,t—l) . H[agei’t_l c G]Ik,i,t + Uit
k=1 k=1
Again, the price changes are identified by Ay, = i in simple regressions®.

2.3 Time-Varying Skills With Depreciation

In a next step, we allow for depreciating skills. We model the evolution of skills to depend on

the previous state:

(14) Aspir = (dg — 1)spit—1+ag-Tig—1+hg - Gig—1+ Vkiz

5Nevertheless, we have an endogeneity bias as the error term wu;; = vj ¢ + Zszl kot j (Vksit — Vji) kit 1S
correlated with the regressor Iy ;¢ if vkt # v;.:.:Vk # j (Cortes (2016, p. 68) makes this assumption).



The model will be estimated with Maximum-Likelihood. For initial conditions for sg, we will
use finer grained task measures and various sociodemographic characteristics. dy reflects the
depreciation of skills in profession k. In the same spirit as Yamaguchi (2012), we allow the
rate to differ across tasks. ap measures “learning by doing”. If di > 0, then skills depreciate
which agents can only overcome by performing tasks measured by x;;—1. We condition the

analysis on sociodemographic groups contained in G ;1.

3 Data

The empirical analysis makes use of two German datasets. To map occupations into tasks,
we employ the Qualification and Career Survey (QCS). This is a survey of employees carried
out six times in the years 1979-2012 by the German Federal Institute for Vocational Training
(Bundesinstitut fiir Berufsbildung; BIBB) and the Research Institute of the Federal Employ-
ment Service (Institut fiir Arbeitsmarkt-und Berufsforschung; IAB). For our main analysis of
wage growth and occupational choice we rely on social security records, the STAB, provided
by the IAB as well.

3.1 SIAB

The SIAB is a 2% random sample of administrative social security records from 1975 to 2010.
It is representative for 80% of the German workforce but excludes the self-employed, civil
servants and individuals performing their military service. The STAB contains an individual’s
full employment history, the occupation, wage, and some sociodemographics. For a more
detailed description see Dustmann, Ludsteck, and Schonberg (2009). We prepared the data,
to the greatest extend, as they did.

At first, spells which are most likely to be missing because of data problems are imputed as
described in Drews, Groll, and Jacobebbinghaus (2007). After that, the education variable is
imputed as it contains a lot of inconsistencies and missing values as described in Fitzenberger,
Osikominu, and Volter (2006). We generate an education variable with three possible out-
comes: low (without postsecondary education), medium (apprenticeship or Abitur) and high

(university degree).

Then the spell structure is transformed into a panel structure. The longest spell for a person
within a year is used as the observation for this year. All of the results are weighted by the

spell duration we observe.



Afterwards, the dataset is restricted to full-time working, West—German men with age between
21 and 50. We restrict the dataset in this way as we want to avoid selection problems. Women
often have long career breaks due to birth of children which come along with lower wages and
sorting into different occupations than before the child was born. Workers older than 50 begin

to select into retirement.

We also have to drop observations where no information on the occupation is available and
where the daily wage is below than the left censoring limit as this is assumed to be unreasonable
as described in Biittner and Réssler (2008). Since the definition of a wage changed from 1983
to 1984, we observe a break in the data. Before 1984 wages did not contain bonuses and one

time payments. We correct for this following Dustmann, Ludsteck, and Schonberg (2009).

Additionally, wages are top coded and the threshold differs across years. We impute the wages
using the same main method as Card, Heining, and Kline (2013). We perform a series of 324
tobit imputations for age (21-30, 31-40, 41-50) times education (low, medium, high) times
year (1975-2010) cells separately to allow for heteroskedasticity across groups and years. We
therefore regress the observed, censored log wage on a constant, age, years of education, the
mean wage in other years, the fraction of censored wages in other years as well as a dummy if
the person was only observed once in his life”. We use the predicted values X’ from the tobit
regressions together with the estimated standard deviation o to impute the censored wages y°©
as follows: y¢ = X'B+ c® [k +u(1 — k)], where u ~ U[0,1] and k = ®[(c — X'3) /o] and ¢

is the censoring limit.

All of the analysis and imputation steps are weighted by the length of the spell which we use
for the observation in one year as workers with longer spells will have higher yearly incomes

than people with shorter spells.

3.2 QCS

The Qualification and Career Survey was conducted six times between 1979 and 2012. Partic-
ipants were asked what tasks they perform on the job, e.g. “how often do you repair stuff?”.
We classify a task item to be either analytical, interactive, routine or manual. The mapping of
task items into tasks can be found in appendix A.2. Within each wave, we assign each person
a four dimensional task vector by averaging over the corresponding task items. Each element
of the task vector is normed to lie in [0, 1]. However, the four task measures do not necessarily

sum up to one as we want to account for the fact that some occupations are more intense in

"If that is the case, the mean wage in other years and the fraction of censored wages in other years is
replaced by the sample mean.

10



all tasks than others. We append the six QCS waves and then average the task measures over

professions.

In that respect we differ from Spitz-Oener (2006) as we do not consider the data to be well
suited to derive time varying differences. We check our task measures on the occupation
level by employing a very recent and unique dataset conducted by the BIBB as well (Task—
Zusatzbefragung 2012)%. This survey collects information on the actual time which an em-
ployee spent with certain tasks and so very precise task measures can be derived. In 90% of
the cases we can not reject equality between our computed measures employing the six waves

and the measure derived from the Zusatzbefragung.

We construct the same occupation identifiers in both datasets and so combine them on the
occupation level. We end up with a dataset with information on wage growth, occupational

transitions, sociodemographics and task intensity data.

4 Stylized Facts

As already documented by other authors (Dustmann, Ludsteck, and Schénberg, 2009; Goos,
Manning, and Salomons, 2009), employment in Germany, such as in most other developed
countries, has polarized strongly starting in the mid 80’s. In figure 2, we plot the change
in employment shares over two time periods by skill percentiles. The skill of a worker is
approximated by the mean years of education in 1975 within the occupation he works in.
At the lower end of the skill distribution, mostly Service occupations are located. The
middle consists of producing occupations contained in the professions Production/Operate
and Craftsmen whereas high skill occupations can be found in the Sales/Office and Man-
agers/Professionals/Technicians groups. We see that prior to 1985, there were employment
gains at the top but no gains at the bottom of the skill distribution. We therefore call the
period 1975-1984 the pre-polarization period. In contrast, the next 26 years are described by
a dramatic polarization of the employment distribution. Both, low and high skill occupations

reported dramatic employment gains whereas middling occupations lost employment.

8Unfortunately, the sample size is not high enough (N = 2272) to use this dataset alone.
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Figure 2: Employment changes within occupational skill percentiles.

In figure 3, changes in employment shares relative to 1985 are shown. Counsistent with figure
2, the professions found in the middle of the skill distribution lost employment while the

remaining professions gained.
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Figure 3: Employment in professions over time.

At the same, the wage distribution became much more dispersed as the upper percentiles

gained relative to 1985 whereas the lower percentiles lost over time (see figure 4). As one may

12



already suspect by the fact that the 10th percentile lost relative to 1985 and the greatest part
of workers in Service occupations earns wages within this percentile, the wage distribution did

not polarize.
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Figure 4: Wage percentiles over time.

As can be seen from figure 5, occupations from all parts of the skill distribution reported wage
gains. However, those were largest for the high skill occupations. The pre-polarization era

was characterized by equal gains across the skill distribution.
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Figure 5: Wage polarization.
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Figure 6 shows that the polarization did not occur because mean Service wages did not rise

relative to middling occupations but even lost.
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Figure 6: Wages in professions over time.

As already discussed in section 1, routine-biased technological change does not necessarily
imply wage polarization as wage changes are a mixture of price and composition effects (Autor,
Katz, and Kearney, 2006). However, skill prices should polarize over time when one accounts
for the self selection and thereby accounts for composition effects. The value for skills necessary
for occupations intense in routine tasks should decrease over time relative to skills necessary

for occupations who are less vulnerable to automation and offshoring.

5 Estimation Results
In this section, we present the estimation results for the price changes as given by equation

13. Figure 7 shows the estimated yearly task price changes. Skills are modeled to be acquired

on the job by performing tasks and the speed of the accumulation depends on age.

14
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Figure 7: Estimated yearly task price changes Ay ;.

If we sum the yearly price changes up, we receive absolute prices relative to the prices in the
pre-polarization era as the identification of the skill accumulation equation relied on the fact
that prices evolved at the same speed in the pre-polarization era as described by 12. The

results are shown in figure 8.
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Figure 8: Absolute yearly task prices relative to the prices in 1985, 23211%85 ATt
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To get rid of the trend 7 which is common to all of the estimated prices above, we can sub-
tract the estimated price of a baseline group from all other prices as the additive trend is the
assumed to be the same for the prices of all professions. We use the middling profession Pro-
duction/Operate as the baseline group so that we can easily identify whether prices polarized

or note. The resulting estimates are shown in figure 9.
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Figure 9: Absolute yearly task prices relative to the prices in 1985 and relative to the prices
of the baseline group Production/Operate, 23211%85 ATyt — ATprod/op,t-

Prices paid for skills in professions intense in analytical, interactive and manual tasks rose.
Whereas, the prices for middling professions stagnated or even fell. This finding is what we
call skill price polarization. As Goldschmidt and Schmieder (2015) point out, Service jobs
have been increasingly outsourced into distinct firms in Germany within the last two decades.
Hence, in total, we may even underestimate the price increase for Service jobs as firms who

employ the outsourced workers pay less on average than their former firms.

The change in employment is consistent with the change in prices. Employment in the margin
professions rose as did their prices, employment in middling professions as well as the prices
paid for skills in those. However, wages did not behave like prices as Service wages did not
rise. The implication from our model is that mean skills within Services most have offset a

potential rise in wages. The next section explores this in greater detail.
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6 Reconciling the Facts

6.1 FElasticities

The easiest thing to do is to calculate cross price elasticities of employment for each profession

k with respect to a baseline profession j. We calculate those as follows:

A% (employment, ;)

(15) €k/j,t = Aﬂ-j,t

Those elasticities answer the question, how employment in k reacts to a one percentage point

change in the price of j between ¢ and t — 1.

The results can be found in table 1.

W Man /Prof/Tech Sales/Off Prod/Op Crafts Services
price for j

Man/Prof/Tech 0.41 0.85 -3.15 -3.23 2.43
Sales/Off 0.85 1.77 -6.59 -6.75 5.09
Prod/Op -0.95 -1.14 4.23 4.34 -3.27

Crafts -0.35 -0.73 2.72 2.79 -2.10
Services 2.27 4.75 -17.62 -18.07 13.61

Table 1: Cross price elasticities between 1990 and 2010.

As you can see, the magnitude of the results is largest for the relation between middling
professions and Services. If the price for Service skills rises one percentage point faster than
in the pre-polarization period, employment in middling professions declines by roughly 17
percentage points. The same is true for the other two professions at the fringes. Hence, a price
increase for professions on the margins seems to absorb workers from middling professions. If
prices for the middling professions rise, then this effect also appears, i.e. workers from the

fringes are absorbed into the middle, but the effect is much smaller in magnitude.

6.2 Decompositions

If low skilled workers from middling professions moved to Services, then wage polarization
would not necessarily occur although the price paid for Service skills rose. The new mean
Service worker could then have lower skills because of a negative selection out of Produc-
tion/Operate and into Services. In addition, Service workers could have lower life cycle skill

accumulation on average if there is much turnover, i.e. if Service workers’ often switch into un-
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employment, other professions or out of the labor force. Our estimates allow us to disentangle

those channels. We do so by proceeding as follows:

1. We first plot the implied skill changes within professions over time. We make use of the
identity defined in 1, i.e. w;t = wr;¢ = T + Ski¢ if I = 1. If we take expectations

conditional on all workers being in k£ on both sides, we end up with:
(16) Elwit| ke = 1] = gt + Elsk it lkie = 1]
Taking first differences of this equation yields:

(17)
Elwi|lpir = 1] — Elwig—1|Iki—1 = 1) — Ampe = Elsp it/ ki = 1] — Elsgit—1|Iri—1 = 1]

The resulting skill change estimates contain the change in mean skills within profession k
from one period to the next. We receive them as a residual from mean wage changes and price
changes. In figure 10, we accumulate the year to year change in mean skills, prices and wages

of the sample analogues of E(-) for all of the professions®.

°In the following figures, we rely on the assumption that prices did not change at all in the pre-polarization
period, i.e. Ampy = 7 = 0,t < 1984. If we stay with the less restrictive assumption that prices did not
change relative to each other, i.e. Am = 7,t < 1984, we are only able to estimate relative price changes.
Hence, we would need to subtract skills from a baseline group somehow. For the first exercise, this is not a
problem. However, for the more detailed decompositions in the next steps, it gets complicated as entrant and
exit probabilities are not equal across professions (hj , # h5:,j # k and hy ;1 # hj 1,5 # k)).
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Figure 10: Decomposition of mean wages into prices and skills relative to Prod/Op and 1985.

You see that skills within Services decrease very fast, whereas the other stay constant or

increase. However, the fact that prices increase suggests that there is either a negative selection
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of workers from different professions, unemployment or out of the labor force into Services

taking place, or Service workers accumulate skills more slowly.

2. To disentangle those channels, we further decompose the mean skill changes within pro-
fessions. Therefore, denote with hf , = P(Iy;—1 = O|I};; = 1) the fraction of workers who
work in profession k at time ¢ but did not so at ¢ — 1, i.e. the share of entrants. Further, let
h,‘;t_l = P(Iyi+ = 0/l ;+—1 = 1) bet the fraction of workers who worked in k& at ¢ — 1 but did

not do so anymore at t, i.e. the fraction of leavers.

By the law of total expectations, we can split up the terms defined in 17 as follows:

(18)
Elskitl kit = 1] — Elsgit—1|lgit—1 = 1]
= (1= hg )E[skitlkis = kie—1 = 1 + hi Elsk el ki = 1, Iie—1 = 0]
— (1 =hg DBk -1 kit = Tei—1 = 1] = by 1 Elskii—1lgie = 0, Igip—1 = 1]
(19)
= (1= hy )E[AsE ]+ hi [Elsg i) — Els 1]l + (M1 — b ) [ElsE 1) — Elsg0-1]]

accumulation selection

In this notation, s (stayer) describes the conditioning set given by {Ij;+ = Iri—1 = 1}, €
(entrant) describes {Iy ;¢ = 1,1 ;-1 = 0} and o (leaver) describes {I;;+ =0, I} ;1 = 1}.
As the prices are the same for all of the groups of stayers, entrants and leavers, we are able to

compute the empirical analogue for the accumulation and selection parts in equation 19 as:

(20) E[ASi,m] = E[Awlf:,z',t] — ATy
(21) Elsi i — Elsfit1] = E[Awp ;] — E[Awf ;1 ] — Amgy
(22) E[Sz,z‘,t—l] - E[Sz,i,t—l] = E[wz,i,t—l] - E[wi,i,t_1]

The interpretation of the parts in 19 is as follows:

On the one hand, skills could fall relative to the baseline group as the skill accumulation could
get worse. This might happen because workers transition in and out of, say, Services (much

turnover) and so have career breaks which are penalized through a lower skill accumulation.

On the other hand, skills could fall because of negative selection effects. The first part of the
selection term describes a possible negative influence of entrants if E[s ;] < E[s7 ;, ], i.e. if

entrants into Services are much worse than the workers who leave Services.
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The second part of the selection term is an adjustment factor and is more subtle (and what
now comes is not fully right). If a profession k is shrinking over time, then h%,t_l > h?t which
is the case for the middling professions but reversed for the professions on the margins. In
addition, if E[sj ;, ;] > E[s} ;] then low skilled people leave k and so selection is less worse

for the declining profession.

The incremental results can be seen in appendix figure 17. The accumulated results of this

exercise together with wages and prices in figure 11.
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Figure 11: Decomposition of mean wages into prices and skills relative to 1985.

You see that the greatest part of the changes in skills are explained by changes in the accu-

mulation process except for Services where the influence of selection on the deterioration of

mean skills is also quite substantial. This finding could be explained by the possibility that



high skill workers in middling professions stay within their profession for longer time and so
accumulate more skills whereas there is more turnover in Services as well as negative drain of
low skilled middling workers into this profession. Because of more turnover the accumulation
suffers as people in Services may have disproportionately more career breaks which worsens
their accumulation of skills. In addition, the increasing price for Service skills may attract low

skilled workers from middling professions where the price does not increase.

6.3 Plausibility checks
6.3.1 Selection

To check for plausibility of our estimates, we compute yearly transition probabilities into
Services from profession—wage—percentile bins and from unemployment. Figure 12 shows the

results.
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You see that the probability to move into Services is highest for workers from middling profes-
sions and unemployment. And, in addition, it is especially high for workers with a low wage

in the middling professions. If we assume that those workers are the lowest skilled workers
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within their former professions, then this finding is consistent with our hypothesis that wage
polarization did not occur because of a negative skill selection out of the middle and into the
bottom.
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Figure 13: Selection from unemployment and at entry.

In addition, figure 13 shows into which professions workers transition after unemployment and
at labor market entry. You see that middling occupations are less likely in 2010 to be entered
than 1985 and Services became more likely. This suggests that less able workers move into

Services today and thereby worsen the skill structure.

6.3.2 Accumulation

Workers in middling professions were 2.5 years older in 2010 than in 1985 whereas workers
in professions at the fringes were only 1.3 years older. Consistently with the work of Autor
and Dorn (2009), the workforce in middling professions is getting old. This may happen as
retiring workers are not replaced anymore or young workers’ jobs are destroyed more often
within recessions than those of older workers (Jaimovich and Siu, 2014). Although, the pace
at which young workers acquire skills is higher for young than for old workers (see figure 14),
experienced workers have higher mean skills than the young. Therefore, the accumulation
channel may be slightly positive for middling professions. In addition, jobs at the fringes have
higher degress of mobility as workers transition in and out over time and so workers within
those professions have interruptions in their labor market histories more often leading to less

skill accumulation.
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Figure 14: Skill accumulation over age. We present the parameter estimates and therefore
the skill accumulation estimates for a hypothetical worker who stayed within one profession
over his whole working period, i.e. between ages 21 and 50. As suspected, the acquisition is
concave over the life cycle for all professions and highest for high skill occupations.
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A Appendix

A.1 Mapping of Occupations into Professions

Managers Entrepreneurs, managing directors, divisional managers
Management consultants, organisors until chartered accoun-
tants, tax advisers
Members of Parliament, Ministers, elected officials until as-
sociation leaders, officials

Professionals Architects, civil engineers
Bank specialists until building society specialists
Chemists, chemical engineers until physicists, physics engi-
neers, mathematicians
Data processing specialists
Economic and social scientists, statisticians until scientists
n.e.c
FElectrical engineers
Health insurance specialists (not social security) until life,
property insurance specialists
Home wardens, social work teachers
Journalists until librarians, archivists, museum specialists
Mechanical, motor engineers
Music teachers, n.e.c. until other teachers
Musicians until scenery/sign painters
Physicians until Pharmacists
Social workers, care workers until religious care helpers
University teachers, lecturers at higher technical schools and
academies until technical, vocational, factory instructors
VVermessungingenieure bis sonstige Ingenieure

Technicians Biological specialists until physical and mathematical spe-
cialists
Chemical laboratory assistants until photo laboratory assis-
tants
Electrical engineering technicians until building technicians
Foremen, master mechanics
Measurement technicians until remaining manufacturing
technicians
Mechanical engineering technicians
Other technicians
Technical draughtspersons

Crafspeople Agricultural machinery repairers until precision mechanics
Bakery goods makers until confectioners (pastry)
Bricklayers until concrete workers

Continued on next page
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Sales personnel

Office workers

Production work-
ers

Butchers until fish processing operatives

Carpenters

Carpenters until scaffolders

Cutters until textile finishers

Electrical fitters, mechanics

Gardeners, garden workers until forest workers, forest culti-
vators

Motor vehicle repairers

Other mechanics until watch-, clockmakers

Plumbers

Roofers

Room equippers until other wood and sports equipment
makers

Stucco workers, plasterers, rough casters until insulators,
proofers

Telecommunications mechanics, craftsmen until radio, sound
equipment mechanics

Tile setters until screed, terrazzo layers

Toolmakers until precious metal smiths

Commercial agents, travellers until mobile traders
Forwarding business dealers

Publishing house dealers, booksellers until service-station at-
tendants

Salespersons

Tourism specialists until cash collectors, cashiers, ticket sell-
ers, inspectors

Wholesale and retail trade buyers, buyers

Cost accountants, valuers until accountants

Office auxiliary workers

Office specialists

Stenographers, shorthand-typists, typists until data typists
Building labourer, general until other building labourers,
building assistants, n.e.c.

Ceramics workers until glass processors, glass finishers
Chemical laboratory workers until vulcanisers

Chemical plant operatives

Drillers until borers

Electrical appliance fitters

Electrical appliance, electrical parts assemblers

Engine fitters

Farmers until animal keepers and related occupations
Generator machinists until construction machine attendants
(Goods examiners, sorters, n.e.c.

Continued on next page
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Operators, labor-
ers

Service personnel

Goods painters, lacquerers until ceramics/glass painters
Iron, metal producers, melters until semi-finished product
fettlers and other mould casting occupations

Locksmiths, not specified until sheet metal, plastics fitters
Machine attendants, machinists’ helpers until machine set-
ters (no further specification)

Metal grinders until other metal-cutting occupations

Metal polishers until metal bonders and other metal connec-
tors

Metal workers (no further specification)

Miners until shaped brick/concrete block makers

Other assemblers

Packagers, goods receivers, despatchers

Painters, lacquerers (construction)

Paper, cellulose makers until other paper products makers
Paviors until road makers

Plant fitters, maintenance fitters until steel structure fitters,
metal shipbuilders

Plastics processors

Sheet metal pressers, drawers, stampers until other metal
moulders (non-cutting deformation)

Sheet metal workers

Special printers, screeners until printer’s assistants
Spinners, fibre preparers until skin processing operatives
Steel smiths until pipe, tubing fitters

Tracklayers until other civil engineering workers

Turners

Type setters, compositors until printers (flat, gravure)
Welders, oxy-acetylene cutters

Wine coopers until sugar, sweets, ice-cream makers

Wood preparers until basket and wicker products makers
Motor vehicle drivers

Navigating ships officers until air transport occupations
Post masters until telephonists

Railway engine drivers until street attendants

Stowers, furniture packers until stores/transport workers
Transportation equipment drivers

Warehouse managers, warehousemen

Artistic and assisting occupations (stage, video and audio)
until performers, professional sportsmen, auxiliary artistic
occupations

Assistants (no further specification)

Continued on next page
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Cashiers

Cooks until ready-to-serve meals, fruit, vegetable preservers,
preparers

Dental technicians until doll makers, model makers, taxider-
mists

Dietary assistants, pharmaceutical assistants until medical
laboratory assistants

Doormen, caretakers until domestic and non-domestic ser-
vants

Factory guards, detectives until watchmen, custodians
Hairdressers until other body care occupations

Household cleaners until glass, buildings cleaners
Housekeeping managers until employees by household cheque
procedure

Laundry workers, pressers until textile cleaners, dyers and
dry cleaners

Medical receptionists

Non-medical practitioners until masseurs, physiotherapists
and related occupations

Nursery teachers, child nurses

Nurses, midwives

Nursing assistants

Others attending on guests

Restaurant, inn, bar keepers, hotel proprietors, catering
trade dealers until waiters, stewards

Soldiers, border guards, police officers until judicial enforcers
Street cleaners, refuse disposers until machinery, container
cleaners and related occupations
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A.2 Generation of Task Variables
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analytical interactive routine manual
Man/Prof/Tech 0.34 0.39 0.18 0.14
Sales/Off 0.15 0.30 0.15 0.09
Prod/Op 0.09 0.15 0.33 0.23
Crafts 0.10 0.19 0.30 0.28
Services 0.17 0.27 0.20 0.26

Table 4: Mean task measures by profession.
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A.3 Derivation of Equation 9

Plug in the approximation from 8 into 7, to get:

K D ;
k,i,t I . _I .
kit kyit—1 , ~ ~ ~
Aw;y = Aw;j;p + g / Tip—1 + = (Wkyi,r — Whit—1)dWp,ir
k=T kA ket Wkt — Whiit—1

i - - 1 Init — Ikit—1 , .o 9
= Awj;t + D1 (Wgip — Wpip—1) + 5= (Wi ;4 — Wi ;1—1)
2 T . 12} 3ty
k=1 k4] WEg 4.t Wk 3.t—1

Tiip — Iiig—1 _ _
- fwk,i,tfl(wk,i,t - wk,i,tfl)
Wit — Wkit—1

K
- N 1 5 1 B
= Awj; ¢ + § It —1Wkit — L Wk p—1 + o kit Wit + §Ik,i,twk,i,t71
k=Tk]
1 5 1 -
— =it Wkt — ki t—1 Wk it—1
2 2
Ko
= Amji+ Asjic+ Y o lkia=1 (T = i + kg = Sjit) =
k=T k]

1
ilk,i,t(ﬂ'k,i,t—l — TWjit—1+ Skit—1— Sjit—1)

+ §Ik,i,t(7rk,t — Tt + Skt — Sjit) — ifk,i,tfl(ﬂ'k,i,tfl — Tjit—1 + Skit—1 — Sjit—1)

K
1
= Amjy+ Asjir+ Y ok (Ame — Amje + Aspie — Asjie)

k=1,k#£j

1
+ §Ik,vz,t(A7Tk,t — AT+ Aspit — Asjit)

i+ I

K
= Amji+ Asjir+ Y (Ampy — Amje + Aspi — Asjie)

. 2
k=1,k#j
K
= Amj+ Asjir+ Y, Trit(Amks — Am50) + Trit(Askie — Asjig)
k=1,k#j
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A4

Additional Figures
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Figure 15: Wage percentiles over time, overall and percentiles of workers who just entered the

profe
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Figure 16: Influence of switching on polarization.
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Figure 17: Incremental results for the decomposition of mean wage changes into prices and
skills.
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Figure 18: Share of switchers (new entrants) in each profession/unemployment over years.
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