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Abstract
This paper examines the role of automation threat in employers’ monopsony power. Using

plant-level longitudinal data, I estimate the wage markdowns—wedge between the marginal
revenue product of labor and the wage—based on the production approach to quantify em-
ployer market power in German manufacturing and how it has changed over time. I find that
most manufacturing plants operate in a monopsonistic market, and a worker in a German man-
ufacturer earns 75 cents on each euro generated, on average. Leveraging the estimated wage
markdowns and information on industrial robots, I quantify the causal impact of robot pene-
tration on wage markdowns using a shift-share instrumental variable approach and find that
robot exposure deepens employers’ labor market power. I then examine to what extent work-
ers performing job tasks with different exposure to displacement risks from automation are
subject to monopsony power and how automation affects monopsony power over those hetero-
geneous workers. I show that routine task-performing workers are subject to the lowest degree
of monopsony power, while workers performing mostly nonroutine manual tasks are exposed
to the highest degree of monopsony power in German manufacturing. I also develop a simple
task-based model with heterogeneous firms that characterizes the empirical facts for policy dis-
cussion, and predictions from the model similarly suggest that robot adoption enhances wage
markdowns.
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1 Introduction
The idea that employers “exploit” their workers by departing from competition in labor markets is
not new in economics. However, research interests in labor market power (equivalently, employer
power or monopsony) have been re-established in light of recent empirical evidence.1 There is
a growing consensus that firms, rather than markets, set wages based on those recent estimates
on various measures of labor market power (see Manning (2021), Card (2022), and Ashenfelter
et al. (2022) for recent surveys of the literature on monopsony). Due to this growing consensus on
monopsonistic wage setting, the current literature on monopsony power has been actively explor-
ing the sources of that power. But many questions about the causes of monopsony power remain
unclear (Card, 2022). Hence this paper fills this gap in the literature by highlighting automation or
automation threat as a driver of monopsony power.2

Automation has been found, in a separate strand of literature, as a significant source of changes
in wages (e.g., Autor et al., 2003), employment (e.g., Acemoglu and Autor, 2011; Acemoglu and
Restrepo, 2018, 2019), and wage inequality (e.g., Acemoglu and Restrepo, 2019, 2022). Although
these analyses on the labormarket effects of automation incorporatemonopolistic competition in the
product market, they often assume that labor markets are perfectly competitive despite the recent
evidence on monopsony power. However, a few papers, such as Chau and Kanbur (2021) and
Acemoglu and Restrepo (2023), show that introducing labor market imperfection presents notable
differences in the effects of technological progress on employment, wages, and wage inequality. But
the impact of automation technologies on employer power in wage negotiation is still understudied,
and there are several unanswered questions about the potential role of automation in employers’
labor market power. For example, whether robots use deepen labor market power and whether
there is any role of displacement threat from automation in employer power. It is also natural to
consider the distinction between automation threat and realized adoption of robots when we analyze
the role of technology adoption in bargaining power or wage negotiation.

In this paper, I thus explore the role of automation in employers’ labor market power, focusing on
automation threats. Specifically, I first estimate plant-level wagemarkdowns using a semi-structural

1Despite the renewed interest in monopsony power, the term “monopsony” dates back to Robinson (1969). Boal
and Ransom (1997), Manning (2003), and Ashenfelter et al. (2010) provide comprehensive surveys on monopsony
literature over its development stages.

2One might consider why automation threats should affect wage negotiation while automation should have already
displaced the replaceable workers, and the remaining workers who are not or less replaceable by automation technolo-
gies should not be subject to automation threats. But there are at least two reasons why automation threats could still
exist in the robot-adopting firms or local labor markets. First, existing studies on the labor market effects of automation
suggest that worker displacement does not occur instantly, and the displacement effect materializes after some periods
following an automation shock. For example, Bessen et al. (forthcoming) show that it takes five years for automation
to have displacement effects at the firm in the Netherlands. So it is likely that workers at automating firms can still
be subject to automation threats, especially during the early stages of robot adoption. Second, the remaining workers
might be subject to a displacement risk in the future, although not replaceable by the current technologies. So those
remaining workers could be the ones who are subject to automation threats.
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control functionmethod and a production function approach to quantify labor market power for Ger-
man manufacturers and how it has changed over time. I then empirically estimate the causal impact
of robot adoption on wage markdowns at the local labor market level. Finally, I construct a model of
oligopsony featuring heterogeneous firms with task-based production technologies that operate in a
market with Cournot competition to characterize the empirical facts about the relationship between
automation and labor market power for policy discussion.

To empirically answermy research question, I quantify the establishment-level degree ofmonop-
sony power in the labor market using “production approach” derived from the duality of the firm’s
profit-maximization and cost-minimization problems (Morlacco, 2019;Mertens, 2020; Brooks et al.,
2021; Yeh et al., 2022; Delabastita and Rubens, 2023), which measures labor market power or wage
markdowns—wedge between a firm’s marginal revenue product of labor (MRPL) and the wage that
the firm pays to its workers—by accounting for product market power or pricemarkups. This “mark-
down” equals unity in a perfectly competitive labor market.3 The production approach has twomain
advantages over other measures of monopsony power.4 First, it provides an establishment-specific
measure of monopsony power that varies over time. It allows me to show how automation “shock”
affects the degree of monopsony power at the establishment or local labor market level. Second,
this empirical approach is generic and not restricted by any of the different theories of labor market
power, such as oligopsony, classic differentiation, and equilibrium search models.5

For my empirical analysis, I use an establishment panel survey (IAB Establishment Panel–IAB
BP) and novel matched longitudinal employer-employee data (LIAB) from Germany, one of the
world’s leading countries in robotization and automation (Figure 1).6 The detailed firm-level longi-
tudinal dataset (IAB BP) with direct and comprehensive information to estimate production func-
tion under labor market imperfection such as labor headcounts7 and thus to quantify firm-level

3Yeh et al. (2022) quantify the plant-level markdowns in the U.S. manufacturing industry using the “production
approach” based on data from the U.S. Census and find an average markdown of 1.53 over the period 1976-2014,
implying that a worker earns only 65 cents on each dollar generated.

4The degree of monopsony power is commonly measured by the wage elasticity of labor supply to the firm using, for
example, amethod pioneered byManning (2003), who also has shown that themarkdown is proportional to the elasticity
of labor supply based on profit maximization problem. The monopsony power can also be indirectly measured by labor
market concentration based on the Herfindahl index borrowed from Industrial Organization (IO) literature (Azar et al.,
2019). Another indirect or proxy measure of employer power, which is sufficient for measuring the direction of change
in employer power, is the number of firms in the market relative to the number of workers. For example, Chau and
Kanbur (2021) used the ratio of employers to workers as a measure of employer power.

5See Boal and Ransom (1997) for a systematic review of these theories of monopsony power.
6Germany is one of the leading countries in the world in terms of the stock of industrial robots per worker (Acemoglu

and Restrepo, 2020; Dauth et al., 2021). It indicates that Germany is an ideal environment to examine the impact of
automation on monopsony power.

7Some studies such as De Loecker et al. (2016), Yeh et al. (2022), Bau and Matray (2023), and Lochner and Schulz
(forthcoming) use the total wage bill as a proxy measure of labor; however, compensation of employees is less represen-
tative of physical labor inputs than labor headcounts at the firm with wage-setting power where workers are underpaid
or exploited and thus the labor cost underestimates the labor inputs and introduces measurement error in markdown
estimates. Although the estimated effect of automation on markdown will be consistent even in the presence of this
measurement error in the dependent variable, which will be captured in the error term, the measurement error might
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markups according to De Loecker and Warzynski (2012) enables me to accurately measure the
“markdown” using the production approach at the establishment8 or firm level over time between
1994 and 2018. The production function is estimated using the semi-structural control function ap-
proach offered by Ackerberg et al. (2015). Olley and Pakes (1996) developed the control function
approach, which was further refined by Levinsohn and Petrin (2003) and Wooldridge (2009) with
different functional forms and specifications. The German establishment panel also contains direct
information on the firm’s robot adoption from 2014-2018, which I use to document the facts about
the firm’s robot adoption to motivate my model features. For my analysis estimating the causal im-
pact of automation, I use industry-level data on the stock of robots obtained from the International
Federation of Robotics (IFR) covering more periods since 1993.

I focus on estimating the causal impact of automation on labor market power at the level of
local labor markets mainly due to two reasons: (i) firm-level information on robot adoption in the
IAB BP data is limited, and (ii) automation threats are more related to the state of automation at
some aggregate level such as industry or local labor market levels, rather than at the firm level.
First, although German establishment panel data provide the firm’s robot adoption at extensive and
intensive margins, the information covers only five years between 2014-2018. So it is challenging
to make credible and robust inferences about the automation impact using the firm-level measure
due to the lack of statistical power. Second, since my focus in this paper is the effect of automation
threats on employers’ labor market power, not the impact of realized robot adoption, analysis using
firm-level robot adoption is less informative because the industry’s or labor market’s exposure to
robots is more indicative of automation threats. Given these, I leverage local labor market-level
analysis to identify the causal impact of automation threat on labor market power. The identifica-
tion of causal effect relies on a shift-share instrumental variable (IV) design that instruments robot
exposure of the local labor market in Germany with robot exposure of the same labor markets in
other high-income advanced countries (Acemoglu and Restrepo, 2020; Dauth et al., 2021).

This study contributes to several strands of literature. The novel contribution is that I show
automation as a significant source of employers’ labor market power. First, my work is related to
the rich literature that models labor market power. I develop a task-based model of oligopsony with
heterogeneous firms, and my model serves as an alternative to benchmark models of monopsony.
The model explicitly presents the effects of automation on wage markdowns under firm hetero-
geneity in the style of Melitz (2003). Relatedly, Leduc and Liu (2022) offer a business cycle model

erase the non-zero true causal effect. Hence, it is ideal to use headcounts as labor inputs in estimating production
function and markdown under the relaxation of perfectly competitive labor market assumption.

8The German data provide employer information at the establishment level, a single production unit, rather than
the firms in the legal sense. A potential issue with using establishment as a level of observation is that multiple es-
tablishments in a firm could be subject to common shocks and influence each other. However, more than 70% of
the establishments in my data are those in a single firm, reflecting the German economy in which a large portion of
firms are small and medium enterprises. I thus interchangeably use the terms establishment, plant, firm, and employer
throughout the paper.
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with labor market search frictions in which the threat of automation weakens workers’ bargaining
power in wage negotiations.9,10 The model introduced in this paper diverts from their framework
in several ways. First, my model embodies two main elements of a firm’s automation decisions:
(i) robots displace some tasks previously performed by labor in a task-based framework, and (ii)
robot adoption is lumpy. Second, my model features markdowns or monopsony power rather than
bargaining power. The existing bargaining model does not characterize these features. Hence my
work contributes to the literature on labor market power by offering an alternative framework of a
simple task-based model that incorporates some key micro facts on a firm’s robot adoption derived
from the data to characterize the relationship between robot adoption and markdown. By focus-
ing on labor market power, this alternative framework formalizes automation as a source of wage
markdowns and labor market concentration and stimulates future works on monopsony power. The
model mainly aims to showcase the mechanisms for policy discussions.11

Second, my work is related to literature estimating the reduced-form effects of automation, es-
pecially on labor market power. I contribute to this literature by providing the first reduced-form
evidence on the causal impact of automation on labor market power. Specifically, I estimate the
causal effect of robot penetration on labor market power at the local labor market level using a
shift-share IV strategy. In the empirical literature investigating the link between automation tech-
nologies and labor market power, few recent papers estimate the non-causal empirical relationship
between the proxy of automation technologies and labor market power. For example, Kirov and
Traina (2021) provide one of the earliest attempts to understand the empirical relationship between
automation technologies and monopsony power by estimating a positive relationship between ICT
investment and firm-level wedge between marginal revenue product of labor (MRPL) and wage
across U.S. manufacturing plants. Mengano (2023), on the other hand, finds that ICT usage plays
a minor role in workers’ bargaining power across French manufacturing firms. But, in this paper, I

9In this paper, I focus on monopsony rather than bargaining power, which is based on outside options of each of the
two agents (employer andworker) involved inwage bargaining or negotiation. From a technical perspective, monopsony
and bargaining power are distinct; however, researchers sometimes use them to interpret the same phenomenon. For
example, a clear difference in addition to the role of the outside option is that monopsony involves one employer (or
multiple employers in the recent view of the monopsony) and a group of workers. However, bargaining power is about
negotiations between one employer and one worker. See Manning (2021)’s footnote 1 for motivation of the differences.

10Relatedly, Arnoud (2018) documents that automation threat is associated with lower workers’ bargaining power.
The author approximated workers’ bargaining power using an observed wage; however, the observed compensation
is not fully informative about employees’ bargaining power relative to employers. This challenge in measuring bar-
gaining power has been one of the limitations of investigating the determinants of employer’s bargaining power. But
recent developments in the literature made progress in measuring bargaining power and outside options. For example,
Caldwell and Harmon (2019) estimate workers’ bargaining power for different skill groups by analyzing how Danish
workers’ wages respond to changes in the information of their outside options, i.e., the basis of workers’ bargaining
power. Caldwell and Danieli (2022) also develop an index of outside options based on workers’ commuting costs,
preferences, and skills. Additionally, Jäger et al. (2022) directly measure workers’ outside option by asking workers’
expected wage change if forced to leave their current employer in a survey.

11Another model that includes both technology adoption and inputs and output market power is also proposed by
Rubens (2022), who study the impact of market power on technology adoption, which is the opposite direction of the
relationship I investigate in this paper.
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find that robot adoption deepens employers’ labor market power.
Third, my work is related to a growing literature examining heterogeneity in monopsony power

by worker characteristics. I focus on worker heterogeneity by job tasks performed at the workplace,
including routine, nonroutine manual, and nonroutine cognitive tasks. I first quantify markdowns
for such workers and then estimate the effects of automation on labor market power for them. Some
studies show that monopsony power differs by worker characteristics such as gender (Hirsch et al.,
2010; Caldwell and Oehlsen, 2022), distaste for commuting (Datta, 2022), and job tasks being per-
formed by the worker (Bachmann et al., 2022) using administrative and experimental data. These
studies on heterogeneity in labor market power mainly estimate the elasticity of labor supply for
different workers as a measure of monopsony power. Although Bachmann et al. (2022) document
the heterogeneity in monopsony power for routine, nonroutine manual, and nonroutine cognitive
task-performing workers by estimating labor supply elasticity, this study examines the same hetero-
geneity using a different method, i.e., quantifying markdowns. Using these measures, I estimate
the heterogeneous effects of robot adoption on monopsony power for workers who vary by their
degrees of exposure to displacement risks.

Finally, my work is related to a research agenda analyzing the prevalence and evolution of
monopsony power. I find that a worker in a median German manufacturer receives only 85 cents
on the marginal euro, which is different from previous estimates for German manufacturing from
Mertens (2020), who suggests that the median manufacturer pays a wage higher than the competi-
tive market. I also provide additional distributional estimates and show that a worker in the average
plant earns 75 cents on each euro generated. I thus show that median and average German manufac-
turers operate in an imperfectly competitive labor market. Additionally, I provide the first estimates
on the evolution of labor market power in German manufacturing. Using the aggregation method
suggested by Yeh et al. (2022), I show that the aggregate markdown in German manufacturing sub-
stantially increased between 1994 and 1997 after the German reunification, mainly through a sharp
decline in markups. But markdown has decreased since then with some plateau between 2000 and
2008. Despite a weak cross-sectional correlation between labor market concentration measured by
Herfindahl-Hirschman Index (HHI) and markdown at the market level (Bassier et al., 2022; Berger
et al., 2022; Yeh et al., 2022), my aggregatemarkdownmeasure and employment-basedHHI present
generally similar pattern over time, specifically until 2011.

The rest of the paper proceeds as follows. Section 2 characterizes some facts on a firm’s robot
adoption. Section 3 presents the theoretical model that formalizes the automation impact on labor
market power founded on the main micro facts. Section 4 describes the German data. Section 5
describes the construction of plant-level wage markdowns and discusses the estimated wage mark-
downs in German manufacturing and its evolution from 1994-2018. Section 6 lays out the local
labor market-level analysis on the effects of robot adoption on wage markdowns. Section 7 presents
the analysis with heterogeneous workers. Section 8 discusses the main findings and implications.
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2 Key Facts on Firm Robot Adoption
This section presents four key facts that inform themodeling choices and the empirical analysis. The
first two facts relate to the distribution of robots across industries. Most robots and robot adopters
concentrate in the manufacturing industry, and robot adopters are rare even within manufacturing.
The third fact documents a non-random selection of firms into robot adopters, which informs that
more productive firms before automation adopt robots, highlighting the importance of featuring
heterogeneous firms in the model. The fourth fact concerns the lumpiness of the number of robots
used at the firm, whichmotivates tomodel robot adoption as a singlemachine displacing a particular
share of tasks completely.

Fact 1. Robot adopters are highly concentrated in manufacturing industry.

Figure 2 depicts the share of robot-adopting manufacturers in the total number of robot-adopting
firms between 2015 and 2018. The takeaway from the figure is that more than three-quarters of robot
adopters are manufacturing plants. This observation is consistent with the automation literature. It
justifies the focus of the empirical analysis on the manufacturing industry when investigating the
impacts of automation.

Fact 2. Robot adopters are rare.

Fact 1 above shows that robot users are mainly manufacturing firms. But how prevalent are robot
adopters in general and in the manufacturing industry? Table 1 reports the share of robot users
across German plants. In 2018, only 1.48% of all surveyed plants, which are representative, used
robots. Most of the plants in the survey are non-manufacturing firms, and less than 1% of the non-
manufacturing firms are robot users. Although the manufacturing industry is robot-intensive, as
indicated by fact 1, only 7.19% of the manufacturing plants were robot users in 2018. Thus robot
adoption is relatively rare, even in the manufacturing industry.

Fact 3. Robot adopters are larger with more employees, especially, in the manufacturing
industry.

To further characterize the robot adopters, I estimate the following regression using the 2018 cross-
sectional sample:

Yjkd = α + βRobots Adoptionjkd + φk + ϕd + εjkd (1)

where Yjkd is a characteristic of firm j in the industry k and district d, Robots Adoptionjkd is either a
dummy variable for robot adoption status that takes the value of 1 if plant j used robots in 2018 and
zero otherwise, or the number of robots used by the plant, φk and ϕd are respectively the three-digit
industry and district fixed effects. I do not use the sampling weights provided in the data to estimate
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equation (1) as the specification already approximates the sample design of the IAB Establishment
Panel (region and industry). I have also estimated the same regressions with survey weights, and the
qualitative results remain the same. I report only robust standard errors in the baseline regressions
shown in Table 2, but clustering by the plants does not change the qualitative implications.

I focus on plant size measured by the number of employees as the plant characteristic Yjkd, and
Table 2 shows that robot-adopting manufacturers are large (top panel). Here I show the positive
relationship between robot adoption and plant size only for manufacturing firms, but the fact also
generally holds when I include non-manufacturing plants. As Column (5) of the top panel suggests,
the average plant size of the robot adopters is more than three times (e1.200 ≈ 3.320) as large as that
of the non-adopters. The bottom panel of Table 2 shows the relationship between robotization and
plant size on the intensive margin within the robot adopters. As shown in Column (5) of the bottom
panel, the association between robot adoption and plant size is positive on the intensive margin.

Numerous studies document this observation using data on industrial robot use amongmanufac-
turing firms in different countries, including the U.S. (Acemoglu et al., 2022), Denmark (Humlum,
2019), Spain (Koch et al., 2021), France (Acemoglu et al., 2020; Bonfiglioli et al., 2020), and Ger-
many (Deng et al., 2021).

Fact 4. Robot adoption is lumpy, especially, in the manufacturing sector.

Figure 3 shows the distribution of the average number of robots per plant in 2018 within the manu-
facturing sector. The first takeaway is that many firms in the bottom deciles use only a single robot
in their production. The second observation is that the average number of robots used at the firm
discretely changes as we move along the distribution. The third takeaway is that robots concentrate
amongst robot adopters. This discrete nature of robot adoption motivates the choice in Section 3 to
model automation as a lumpy investment.

Recently, a few papers using data on robot adoption among manufacturing firms suggest that
robot adoption is lumpy (see, e.g., Humlum, 2019).

3 A Simple Model of Automation and Labor Market Power
To formalize how automation impacts labor market power, I propose a task-based model of oligop-
sony in which firms play an employment-setting game. My model features heterogeneous firms,
automation, and wage markdowns.

3.1 Setup

The model is general, and the economy can consist of multiple industries. But, based on fact 1 in
Section 2 that suggests robot adopters concentrate in the manufacturing sector and for simplicity,
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I consider an economy with only one industry, e.g., manufacturing. Recent studies characterizing
the robot-adopting firms also consistently suggest that robot adoption is highly skewed towards the
largest firms (e.g., Acemoglu et al. (2022) for the U.S., Koch et al. (2021) for Spain, and Deng et al.
(2021) for Germany). It is potentially due to fixed costs to automate (Hubmer and Restrepo, 2021).
Given this evidence in the literature and fact 3 in Section 2, the model features heterogeneous firms
that differ by their productivity in the style of Melitz (2003).

In the industry, there is a finite number of heterogeneous employersM ∈ Z+ that produce an
output of yj = zjxj , where zj is the firm’s j’s productivity and xj is inputs of production. The
industry-wide production output is thus y =

∑
j yj , and the average productivity is z̄ =

∑
j zj/M .

Firms pay a fixed cost f , which is common across firms, to stay operating in the market. A unit of
inputs xj is an assembly of a continuum of tasks o normalized to 1, i.e., o ∈ [0, 1]. To complete a
unit of tasks, producers hire workers lj (i.e., labor-only firms) or use human labor lj and robots rj ,
which substitutes labor for some tasks (i.e., semi-automated firms).

Based on fact 4 in Section 2, automation is modeled as lumpy and non-lumpy investments. I
consider the lumpiness of robots as a robot having sufficient capacity to completely replace workers
in θ share of tasks (i.e., number of robots at the firm rj = 1). I also allow some firms to have
multiple robots, i.e., rj > 1, and they replace rjθ share of tasks. The cost of robot adoption is
ρ(rj) per robot where ρ′(rj) < 0, i.e., a decreasing unit cost of robot adoption. So the total cost
of robot adoption is rjρ(rj). Given these different automation strategies, there are three groups of
firms. First, let j = 1, . . . ,M1 be the list of single-robot employers who continue to hire workers
to complete the remaining (1− θ) share of tasks per unit output. Second, let j = M1 + 1, . . . ,M2

be the list of multiple-robot adopting firms, and workers complete (1− rjθ) share of tasks. Third,
let j = M2 + 1, . . . ,M be the list of labor-only firms where only labor completes all tasks.

Industry-wide labor supply is given by an upward-sloping labor supply schedule w(l) > 0,
where the labor market clearing condition is defined as

l =

M1∑
j=1

lj +

M2∑
j=M1+1

lj +
M∑

j=M2+1

lj =

M1∑
j=1

(1− θ)xj +

M2∑
j=M1+1

(1− rjθ)xj +
M∑

j=M2+1

xj.

Then I denote an inverse of labor supply elasticity as

εw ≡
∂ lnw(l)

∂ ln l
. (2)

Output price is normalized into a unity, and I assume there is no market power in product market for
simplicity without loss of generality and to focus on labor market power in this benchmark model.
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3.2 Labor Market Power

First, the profit maximization problem of firms that do not automate is simply

π0
j ≡ π0(zj) = max

xj
zjxj − w(l)xj − f,

which yields the labor market power:

σ0
j ≡ σ0(zj) ≡

zj − w(l)

w(l)
=
εwlj
l
, (3)

where zj is the marginal revenue product of labor (MRPL) of firm j, w(l) is the industry-level
aggregate wage, and thus zj/w(l) is firm j’s markdown. The term εw is the inverse of the labor
supply elasticity defined in equation (2), and lj/l is firm j’s employment share in the sector. I
take the percentage difference of MRPL from the wage, σj , as my measure of employers’ labor
market power. When zj/w(l)→ 1 or σ → 0, the MRPL equals the wage w(l), as in a competitive
equilibrium. In contrast, when zj/w(l) > 1 or σ = 0, employer j pays their workers less than
their MRPL zj , i.e., they have labor market power. Because I assume that firms pay the same
wage at the industry-level w(l) and more productive firms have higher MRPL zj , more productive
firms have higher markdowns in equilibrium, which follows from the left-hand side of equation (3),
consistent with Berger et al. (2022). Since labor supply elasticity is defined at the industry level
and ∂σ0

j/∂lj = εw/l > 0, it follows from the right-hand side of equation (3) that larger firms with
more workers have higher markdowns in equilibrium. Larger firms are thus more productive in the
model.

Second, the profit maximization problem of firms that adopt a single robot is

π1
j ≡ π1(zj) = max

xj
zjxj − (1− θ)w(l)xj − ρ(rj)− f,

which implies

σ1
j ≡ σ1(zj) ≡

zj/(1− θ)− w(l)

w(l)
=
εwlj
l
, (4)

where worker’s productivity in a single robot-adopting firm is enhanced by automation, i.e., zj/(1−
θ) > zj .

Third, the profit maximization problem of firms that adopt multiple robots is

πRj ≡ πR(zj) = max
xj

zjxj − (1− rjθ)w(l)xj − ρ(rj)rj − f.
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The marginal cost of labor input is declining with automation:

(1− rjθ)w(l)(1 + εwlj/l) < (1− θ)w(l)(1 + εwlj/l) < w(l)(1 + εwlj/l), given rj > 1,

suggesting that firms adopting more robots enjoy strictly lower marginal costs than non-robot-
adopting firms. It follows that firms with more robots tend to raise their output more readily than
less automated firms. Furthermore, the marginal cost of robot adoption decreases with automation
for robot-adopting firms:

ρ(rj) + ρ′(rj)rj < ρ(rj), given ρ′(rj) < 0.

The first order condition with respect to labor input li implies the wage markdown as

σRj ≡ σR(zj) ≡
zj/(1− rjθ)− w(l)

w(l)
=
εwlj
l
. (5)

We see that the productivity effect of automation is critical in assessing the impact of automation
on wage markdowns. But there is another component in the labor market power, i.e., labor share
(lj/l), which I investigate below.

3.3 Employment, Labor Share, and Labor Market Concentration

The equilibrium profits of the labor-only firm (i.e., π0
j evaluated at profit-maximizing employment

level) can be expressed as a function of labor share lj/l as

π0
j = w(l)lεw(lj/l)

2 − f,

which is obtained by organizing the terms in the firm’s profit function and substituting equation (3)
in π0

j function. Similarly, the equilibrium profits of single-robot firms and multiple-robot firms as
a function of labor share lj/l is, respectively

π1
j = (1− θ)w(l)lεw(lj/l)

2 − ρ(rj)− f,

and
πRj = (1− rjθ)w(l)lεw(lj/l)

2 − ρ(rj)rj − f.

It follows immediately that the two profit levels are strictly increasing in the square of the respective
wage markdowns

π0
j =

w(l)l

εw
(σ0

j )
2 − f, π1

j =
(1− θ)w(l)l

εw
(σ1

j )
2 − ρ(rj)− f, πRj =

(1− rjθ)w(l)l

εw
(σRj )2 − ρ(rj)rj − f.
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Denote the share of the wage bill in total revenue at the industry level as

sL ≡
w(l)l∑
j zjxj

.

Then the following proposition characterizes the relationship between the industry-level labor share
(i.e., the share of the firm’s output revenue that goes to labor) and the labor market concentration
(measured by Herfindahl–Hirschman index–HHI).

Proposition 1 (Relationship between Labor Share and Labor Market Concentration). The labor
share is inversely related to labor market concentration as

HHIl =
M∑
j=1

(
lj
l

)2

=
1

εw

(
1

sL
− 1

)
.

Refer to the Online Appendix A.1 for detailed derivation.
It also implies that HHI is a sufficient statistic of the labor share conditional on labor supply

elasticity without any need for data on revenue and wages. This result stays the same independent
of the automation states of the firm.

3.4 Market Equilibrium

I assume a linear functional form for labor supply schedule w(l) = α+βl, where α, β > 0, to have
a closed-form solution. Henceforth, the first-order conditions of the profit maximization problem
of single-robot, multiple-robot, and labor-only firms, respectively, are

zj = (1− θ)(α + βl + βlj), j = 1, . . . ,M1, (6)

zj = (1− rjθ)(α + βl + βlj), j = M1 + 1, . . . ,M2, (7)

zj = α + βl + βlj, j = M2 + 1, . . . ,M. (8)

Denote

z̄1 =

M1∑
j=1

zj
(1− θ)M1

, z̄2 =

M2∑
j=M1+1

zj
(1− rjθ)(M2 −M1)

, z̄3 =
M∑

j=M2+1

zj
M −M2

as the average labor productivity of the single-robot firms (zj/(1 − θ)), the multiple-robot firms
(zj/(1− rjθ)), and the labor-only firms (zj). Also, denote

zθ = M1z̄1 + (M2 −M1)z̄2 + (M −M2)z̄3, (9)
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and then denote z̄θ ≡ zθ/M as the average productivity of the three types of employers under
automation. By definition, the average productivity of all firms under automation z̄θ is strictly
greater than the corresponding average when no firms automate z̄. Proposition 2 summarizes the
market equilibrium.

Proposition 2 (Market Equilibrium). The employment and wages at the equilibrium are

l∗ =
m

β
(zθ − α(1/m− 1)), w(l∗) = m(α + zθ),

wherem = 1/(M + 1).
Refer to the Online Appendix A.2 for detailed derivation.

The comparative statics from equilibrium employment and the equilibrium wage with respect
to productivity zθ suggests that automation increases both industry-level wage and industry-level
employment through productivity effect, given that ∂l∗/∂zθ > 0 and ∂w(l∗)/∂zθ > 0.

But how does automation affect the employment of an individual firm i at the equilibrium after
accounting for the general equilibrium impacts? Proposition 3 summarizes the nuanced results on
the employment impact of automation on individual employers.

Proposition 3 (Employment Impact of Automation for Individual Employers).
3.1. Employment in labor-only firms always decline in automation as ∂l∗j/∂zθ = −m

β
< 0.

3.2. Employment in single-robot firms is higher than that when no firms are automated if and only
if productivity zj is sufficiently high, i.e.,

zj > (1− θ)m1z̄1 +
1− θ
θ

m2(z̄2 − z̄),

wherem1 = M1/(M+1),m2 = (M2−M1)/(M+1), z̄ =
∑M

j=1 zj/M =
∑M2

j=M1+1 zj/(M2−
M1) by construction, and z̄2 > z̄ by definition.

Refer to the Online Appendix A.3 for detailed derivation.
Automation has distributional effects across employers. First, the smallest and least productive

labor-only firms face higher wages and low employment, which reduce profits. Second, more pro-
ductive firms that automate have higher labor productivity and hire more workers despite the higher
equilibrium wage.

The equilibrium wage markdowns in labor-only, single-robot, and multiple-robot firms are ex-
pressed respectively as:

σ0
j =

zj − w(l∗)

w(l∗)
, σ1

j =
zj/(1− θ)− w(l∗)

w(l∗)
, σRj =

zj/(1− rjθ)− w(l∗)

w(l∗)
.

Since equilibrium wage increases with automation, wage markdown in labor-only firms unambigu-
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ously decreases with automation. But the general equilibrium impact of robot adoption in wage
markdown in single- and multiple-robot firms is nuanced. We can show that wage markdowns in
automated firms increase with automation, and the increase is higher in multiple-robot firms than
single-robot firms due to the higher positive productivity effect.

These produce the following proposition:

Proposition 4 (General Equilibrium Impact of Automation on Wage Markdowns).
4.1. Automation unambiguously reduces the markdown σ0

j in labor-only firms.
4.2. The equilibrium markdowns in single-robot (σ1

j ) and multiple-robot firms (σRj ) are greater
than markdowns in labor-only firms.

4.3. Markdown in multiple-robot firms is increasingly greater than in single-robot firms as robot
adoption intensifies.

Refer to the Online Appendix A.4 for detailed derivation.
These results taken together suggest that automation has a systematic impact on wage mark-

downs, although the effect exhibits (i) heterogeneity across firms, which (ii) ranges from a negative
effect on all labor-only firms to a positive effect on automated firms with the highest productivity,
and (iii) the positive impact of automation on wage markdown in automating firms strengthens as
automation intensifies.

In Online Appendix A.5, I extend the benchmark model above with no dynamic patterns of
employer exiting or entering the market and where automation shock is exogenous by introducing
endogenous exit-entry flows and automation decisions.

4 Data
The primary data set is drawn from rich administrative data fromGermany provided by the Research
Data Center (FDZ) of the Federal Employment Agency in the Institute for Employment Research
(IAB). I also use several other supplementary datasets from different sources.

4.1 Establishment Data

I use firm-level panel data, IAB Establishment Panel (IAB BP), which covers a large representa-
tive sample of establishments to estimate the production function and, thus, wage markdowns in
Germany. The longitudinal structure of the IAB BP data enables me to use the control function
method, which uses lagged information for identification. The IAB BP data include comprehen-
sive and detailed establishment information necessary for production function estimation, such as
annual revenue, number of workers, purchase of intermediate materials, and investments.

A unique feature of the IAB BP data is that it is the first data with direct information on robots.
Other studies mostly use indirect or proxy measures of robot adoption such as imports of robots
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and automation technologies (Humlum, 2019; Acemoglu et al., 2020; Barth et al., 2020; Bonfigli-
oli et al., 2020; Domini et al., 2021), ICT investment or usage (Kirov and Traina, 2021; Mengano,
2023), and investment in and costs of automation technologies (Aghion et al., 2020; Bessen et al.,
forthcoming). An exception to this unique feature of my data on automation is the Spanish admin-
istrative data, used by Koch et al. (2021), which reports direct information on robots but only on the
extensive margin. But the IAB BP survey data also provide information on the firm’s robot use on
the intensive margin (number of robots used by the firm), providing greater flexibility and enabling
me to offer new insights and facts about the firm’s robot adoption.

For the establishment data, I also extract the district (or kreis) where the plant locates from
the Establishment History Panel (BHP), which contains more general information on the industry,
location, and total employment for each establishment. Using the unique establishment identifier,
I merge this dataset with the IAB BP and the matched data to import the district information. So
regions in this paper will be at the district level unless otherwise noted.

To estimate the production function and thus quantifymarkdown using the production approach,
I approximate the firm’s capital stock and impute workers’ top-coded wage information and educa-
tional attainment recorded in the German administrative data. I relegate details on these imputation
procedures to Online Appendix B.1.

4.2 Industry-Level Robots Stock

The main limitation of information on the firm’s robot adoption in the IAB BP dataset is that a
retrospective question was asked only once in 2019 about the firm’s use of robots over the previous
five years preceding the survey year from 2014 to 2018. It provides relatively restrictive periods. So
I use industry-year panel data on the stock of industrial robots in 50 countries, including Germany,
reported by the International Federation of Robots (IFR) since 1993 as the primary measure of
automation in my regressions that spans for more periods. Graetz and Michaels (2017) and Graetz
and Michaels (2018) introduced the use of IFR’s robots stock data, which have been later used by
Acemoglu and Restrepo (2020) for the U.S. and by Dauth et al. (2021) for Germany. The data
come from annual surveys of robot suppliers and cover 90% of the world. The robots stock is
dis-aggregated for 20 manufacturing industries.12

I construct the long change in the number of robots and then normalize it by workforce size
in the base year. Section 6.1 discusses the construction of this variable in detail, particularly in

12Following Graetz and Michaels (2017, 2018) and Dauth et al. (2021), I drop the IFR industries: all other manufac-
turing, all other non-manufacturing, and unspecified. It does not significantly affect the representativeness of the data
as these three groups of industries only account for 5% of the total stock of robots in Germany. I also ignore agricul-
ture, mining, electricity/gas/water supply, construction, and education to be consistent with my markdown estimation,
performed for only manufacturing plants. The establishments in non-manufacturing industrial sectors reported in the
IAB BP data are too few. Thus the estimated markdowns are noisy. I exclude non-industrial sectors in the markdown
estimation and in this paper mainly because information on production prices is not available for those industries. So
I cannot deflate the revenue.
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equation (23). I obtain workers count at the industry-by-location level from the BHP extension of
the weakly anonymized version of the Sample of Integrated Labour Market Biographies (SIAB),
which produces the most reliable results.

4.3 Matched Employer-Employee Data

I use the longitudinal version of matched employer-employee data (LIAB) mainly for analysis with
heterogeneous workers. The LIAB records employment trajectories for each employee who worked
at one of the plants in the establishment sample for at least one day over the period. The establish-
ment part of the matched data comes from two sources: IAB Establishment Panel (IAB BP) and
Establishment History Panel (BHP). I described how I used the IAB BP dataset above in detail.
The BHP data, on the other hand, contain more general information on the industry, location, and
total employment for each establishment. Some of the covariates I control in my labor market-level
regressions come from the BHP data.

Theworker’s information in thematched data contains the employment history of each employee
with social security records. Specifically, I use data from the EmployeeHistory (Beschäftigtenhistorik—
BeH). The information on employees includes variables such as daily wage and detailed occupation
classifications at the 5-digit level from 1975 to 2019. The worker-level data is mainly used for my
analysis, where workers are heterogeneous by job tasks performed at the workplace.13

4.4 Worker-Level Job Tasks

I use worker-level representative cross-sectional data from the Federal Institute for Vocational Train-
ing and Training (BIBB)–so-called “BIBB/IAB (and BIBB/BAuA) Employment Surveys”–for my
analysis in which workers differ by their job tasks performed at their workplaces. This data con-
tains information on occupational skill requirements or qualifications and working conditions in
Germany for 20,000 - 35,000 individuals in the active labor force. Although there are existing task
intensity measures for occupations in other countries like the U.S. (Autor and Dorn, 2013) and
the U.S. and Germany are both developed countries, I used this worker-level data from Germany
to accurately measure task contents for occupations in the German context because occupational
task contents are likely to be different for each country (Caunedo et al., forthcoming). Using the
BIBB/IAB and BIBB/BAuA Employment Surveys, I categorize activities that employees perform
at the workplace into routine, nonroutine manual, and nonroutine cognitive tasks to group workers
into categories that differ by their exposure to automation technologies. The BIBB Employment
Survey has been collected every 6-7 years since 1979, and I use five waves of the survey that match
the period of my analysis.

13The dataset records parallel episodes if an individual simultaneously does multiple jobs. I restrict the data to the
highest-paying job of an employee as the main episode following the literature, Dauth et al. (2021), for example.
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5 Measuring Markdowns

5.1 Theoretical Framework

There are several different but related approaches to measure the monopsony power (see Manning,
2021, for a recent survey on measures of monopsony). The choice of method to use depends on
the objectives of the analysis, the framework under consideration, and the data available to the
researcher. In the traditional model, the labor market has a single buyer. Since there is only one
buyer, that buyer faces the entire market’s labor supply curve, which is upward sloping—in contrast
to the horizontal labor supply curve for an individual firm in the perfectly competitive labor market.
In the early stage of the literature, monopsony power has been measured as ‘potential monopsony
power” in the language of Bronfenbrenner (1956) by estimating wage elasticity of labor supply to
the firm under the assumption of an isolated labor market with a firm. We rarely use the traditional
model with this assumption because, in practice, it is unlikely that there is only one employer in the
labor market.

The literature suggests several sources of upward-sloping labor supply curve to an individual
firm in the presence of other firms. As reviewed in Boal and Ransom (1997) and later summarized
by Naidu and Posner (2022), they include (i) collusion and Cournot competition among firms, (ii)
workers’ heterogeneous preferences for firms, (iii) the presence of workers’ moving costs to change
employers, (iv) search friction, and (v) efficiency wages at large firms. The labor supply elasticity
still can be functional to quantify the labor market power; however, there are other measures, such
as job separation rate, if models of job search (Burdett and Mortensen, 1998) are used to interpret
the source of monopsony power.

In my empirical analysis, I estimate wage markdown, a wedge between the marginal revenue
product of labor (MRPL) and the wage, as a measure of labor market power. Below I briefly show
the relationship between markdowns and labor supply elasticity to motivate my choice in this paper.

Consider a revenue function R(l) = (a− bl/2)l and the associated profits R(l)−W (l) where
W (l) = ws(l)l denotes total labor cost. An inverse labor supply function is given byws(l) = ū+τ l

where ū is the constant utility when a worker does not work, and t ∈ [0, T ] is the mobility cost,
which is assumed to be exogenous at this point, and τ ≡ T/L where L is a population of workers.
The first-order condition for profit maximization problem implies that profits are maximized at an
employment level where MRPL, Rl(l) = a− bl, generated to the firm equals the marginal cost of
labor, Wl(l) = ū + 2τ l. Since the marginal cost of labor exceeds the wage, lo number of workers
will be hired by the firm, which is less than the socially efficient amount l∗. The firm pays a wage
of wso less than the socially efficient level, w∗.
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The profit maximization problem in the basic monopsony model is

max
l≥0

R(l)− ws(l)l, (10)

where I ignore the index of firm i and time t for notational simplicity at the moment. The first-order
condition of this maximization problem is

Rl(l) =

(
wl(l)l

w(l)
+ 1

)
w(l) =

(
ε−1S + 1

)
w(l), (11)

and, thus, the markdown ν, a wedge between the MRPL and the wage, is

ν ≡ Rl(l)

w(l)
= ε−1S + 1 (12)

where Rl(l) = ∂R(l)
∂l

is the MRPL, w(l) is the wage, and εS = ∂l
∂w(l)

w(l)
l

is the elasticity of labor
supply. The markdown equals unity (ν = 1) in perfectly competitive labor markets. In labor
markets with imperfect competition, on the other hand, employers have market power if ν > 1.

As shown in the optimality condition in equation (12) and in Figure 4, the wedge between
the MRPL and the monopsony wage is directly linked to the wage elasticity of labor supply to
an individual firm. In addition to measuring the monopsony by estimating the elasticity of labor
supply on the right-hand side of equation (12) as mentioned above, we can measure the degree of
monopsony power by estimating the wedge between the (nominal) wage wso and MRPL wdo on the
left-hand side of equation (12), which is expressed by the distance betweenwso andwdo in Figure 4.
This wedge (or misallocation in the language of Hsieh and Klenow (2009) and Adamopoulos et al.
(2022)) between the MRPL and the wage is called “markdown” in the literature. This approach
to measuring the monopsony power is often called as “production approach,” which I used in this
paper.

The main reason I prefer to use the production approach over other measures of monopsony is
that methods other than the production function approach do not provide firm- or local labor market-
specific monopsony measure that varies over time. In contrast to other methods, the production
approach I use in this paper allows me to estimate the degree of monopsony at the firm and local
labor market levels over time, enabling me to investigate the causal impact of automation “shock”—
robot adoption—on labor market power. Another main advantage of the production approach is that
we do not need to take any stance on the source of monopsony power to quantify markdowns.

When applying the production function approach, one can directly take the ratio of MRPL to the
nominal wage that the firm pays its workers as in the left-hand side of the equation (12) to compute
the markdown. However, the main limitation of this method is that the wage markdown would be
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contaminated by the firm’s price markup when we do not use physical output.14 Thus, we need
to consider the firm’s markup to measure the markdown more accurately, and I use the production
function approach by closely followingYeh et al. (2022). As they have shown, the cost minimization
problem implies the following relationship between labor markdown and product markup:

νjt =
θLjt
αLjt
· µ−1jt , (13)

where νjt is the markdown in equation (12) for firm j in year t, θLjt = (∂F (ljt)/∂ljt)(ljt/F (ljt)) is
the output elasticity of labor F (ljt), µjt = pjt/λjt is the firm’s price (pjt)-cost (λjt) markup, and
αLjt = Wjt(ljt)/Rjt(ljt) denotes a firm’s labor share of revenue Rjt(ljt). In this paper, I thus use
equation (13) to construct the markdown by estimating its components. I obtain the output elasticity
of labor, θLjt, from the production function estimation, which Section 5.2 discusses in detail. The
firm-level markups are estimated based on the production function estimation as in De Loecker and
Warzynski (2012), who show that µjt = θMjt (αMjt )−1 where θMjt is the output elasticity of a variable
inputMjt other than labor, e.g., material inputs, and αMjt is the share of expenditures on inputMjt

in total sales or revenue. An expenditure on labor as a share of revenue is calculated directly from
the data, where labor cost is calculated average annual wage bill of a worker multiplied by the total
number of workers at the establishment. The section below describes how I estimate the production
function, which provides inputs to construct the markdown measure.

Online Appendix C briefly lays out other measures of monopsony power and discusses their
linkages with wage markdowns.

5.2 Production Function Estimation

I estimate production function using “proxy variable” method (Olley and Pakes, 1996; Levinsohn
and Petrin, 2003; Ackerberg et al., 2015). In my production function estimation procedure, I closely
follow Yeh et al. (2022) and De Loecker and Warzynski (2012) that rely on assumptions from
Ackerberg et al. (2015).

14For example, one can calculate the marginal product of labor under Cobb-Douglas production technologies as

MPLjt =
∂Yjt
∂Ljt

= β
Yjt
Ljt

,

where β is the elasticity of output to labor obtained from production function estimation, and Yjt = AjtK
α
jtL

β
jt andLjt

are respectively the firm j’s output and labor input use in year t. If we have information on physical outputs and output
prices, we can estimate the MPL and compare it with real wages to calculate the markdown. However, output prices
that the firm charges its consumers are often absent in the data. So one would observe the nominal output or revenue, a
function of output price that includes markups. One can deflate the sales income using industry-specific output prices
to approximate the physical outputs. However, it will still include firm-specific markups. Hence, comparing the MPL
and wage provides biased estimates on markdowns.
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I bring the data to the following production function to estimate parameters β:

yjt = f(xjt;β) + ωjt + εjt, (14)

where yjt is log output, xjt is a vector of log inputs, both fully variable inputs (e.g., intermediate
materials mjt) and not fully variable inputs (e.g., labor ljt15 and capital kjt). The firm-specific
productivity ωjt embeds the constant term. The error term εjt reflects measurement error in gross
outputs yjt defined as revenue deflated by producer price index for industrial products at the 2-digit
industry level.16 I write the production function in general terms as I estimate the log transformation
of the production function f(·) in various functional forms (e.g., Cobb-Douglas and translog) with
translog17 as the primary specification given its flexibility.

The main challenge in estimating the firm-level production function in equation (14) is the
classical problem of endogeneity of inputs, i.e., input demand is likely to be correlated with unob-
servables, particularly the firm’s productivity. To address this challenge and provide a consistent
estimate of production function parameters, I rely on the refined control function approach pro-
posed by Ackerberg et al. (2015) (ACF). The ACF method is designed for value-added production
functions, and Gandhi et al. (2020) suggest that we cannot accurately identify gross output produc-
tion function parameters using the ACF approach without further assumptions. Hence, our data
that reports the firm’s revenue and purchases of intermediate materials enable me to use the ACF
approach. The identification strategy behind the control function method of ACF (also Olley and
Pakes (1996) and Levinsohn and Petrin (2003)) relies on the assumption that firms dynamically
optimize their decisions in discrete times. The intuition behind identifying consistent estimators
using control function or “proxy variable” methods can be thought through the logic of IV estima-
tors (Wooldridge, 2009; Yeh et al., 2022). Online Appendix D describes the technical details of the
ACF procedure.

Table 3 summarizes the main variables used for markdown estimation, estimated total factor
productivity (TFP), average daily wage, and firm-level robot adoption.

15In this paper, I use the number of workers as a labor input, while one can approximate the labor by wage bills.
For example, Lochner and Schulz (forthcoming) argue that wage bills better capture heterogeneous labor inputs as it
accounts for workers’ ability differences. The use of wage bills generally addresses ability differences of workers as,
for example, high-skilled labor inputs cost more, and wage bills will reflect it. However, wage bills will be a biased
measure of labor input for labor markets with imperfect competition because wage bills undervalue productivity when
an employer has some monopsony power to pay less to its workers than wages in competitive markets. Hence, in our
setting with imperfect competition in the labor market, it is better to use the headcount of employees as a labor input.

16I obtained the producer price index (PPI) from the Federal Statistical Office of Germany. The PPI is only available
for industrial products in the mining, agriculture, and manufacturing sectors, which is another reason I focus on the
manufacturing industry in this study. I calculate the annual average PPI by averaging monthly PPIs.

17The output elasticities of labor and intermediate materials are calculated by θLjt = β̂l+ β̂klkjt+ β̂lmmjt+2β̂llljt

and θMjt = β̂m + β̂kmkjt + β̂lmljt + 2β̂mmmjt, respectively. Here β̂l and β̂m are parameter estimates on labor and
intermediate materials, β̂ll and β̂mm are parameter estimates on quadratic terms, β̂kl, β̂lm, β̂km, β̂lm are the parameter
estimate on cross term, and l andm are respectively log labor and log intermediate materials.
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5.3 Estimated Markdowns in German Manufacturing Plants

There are two reasons why I focus on the manufacturing industry in this paper. First, most of the
actions in robot adoption happen amongmanufacturers according to the fact 1 in Section 2. Second,
labor input must satisfy an assumption VI of Yeh et al. (2022), which states that the firm uses labor
only for output production, not marketing, hiring, and other purposes.

I present the results of my markdown estimation in Table 4. The plant-level estimates clearly
show that labor market power in German manufacturing is sizable and larger than unity. The aver-
age establishment throughout the period charges a markdown of 1.333–that is, a plant’s marginal
revenue product of labor is, on average, 33 percent higher than the wage it pays its workers. Alter-
natively, taking the reciprocal, a markdown of 1.333 implies that a worker receives around 75 cents
on the marginal euro generated. Furthermore, I find that labor market power is widespread across
manufacturing plants. Half charge a markdown of 1.179 (85 cents on the marginal euro), and the
interquartile range is around 0.7.

My estimate on median value for wage markdowns is quite different from the previous estimate
by Mertens (2020), who shows that there is no labor market power on the median in the German
manufacturing sector (implied wage markdowns νit = 0.880) using the AFiD-data over the period
2000-2014. My estimate on the mean value for wage markdowns is generally consistent with Bach-
mann et al. (2022)’s findings suggesting that the German labor market is not perfectly competitive.
The market power in an average employer that I have estimated is smaller than that found in other
countries, for example, 65 cents in the U.S. (Yeh et al., 2022) and 50 cents in Brazil (Felix, 2022)
earned for each marginal dollar. Overall, I find that both average and median manufacturing plants
operate in a market with monopsonistic competition.

5.4 Aggregated Markdowns

This section thus far focuses on plant-level markdown estimates used for firm-level analysis. Now
I turn to discuss how I construct aggregate markdowns at the level of local labor markets, which
is used for my labor market-level analysis, and at the year level. I aggregate the establishment-
level markdowns at the local labor market level using the weighted harmonic mean of micro-level
markdowns following Yeh et al. (2022). This method of defining aggregate markdown as a function
of micro-level markdowns is similar to that used for aggregating firm productivities in Hsieh and
Klenow (2009) and Itskhoki and Moll (2019). One of the advantages of this aggregation method
is that we do not need to impose any specific structures in labor and output markets to construct a
consistent aggregate measure. Additionally, several studies document that the labor market is local
as workers find it costly to search for jobs far from their homes (Manning and Petrongolo, 2017;
Marinescu and Rathelot, 2018) and in different occupations and industries that require different sets
of skills (Kambourov and Manovskii, 2009). To account for the local nature of labor markets, I use
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weights based on sales (De Loecker et al., 2020).
In doing so, I first define the local labor market. Following Berger et al. (2022), I define an

industry-geographical area pair as a local labor market. I focus on three-digit industries (ISIC
Rev.4, or equivalently WZ2008 classification) and states. This results in about 80 sectors within
manufacturing and 17 geographical areas.

The aggregate markdowns and markups are defined, respectively, as

Vklt =

(∑
j∈Ft(k,l)

sjt ·
θLjt
θLklt
· (νjtµjt)−1

)−1
(∑

j∈Ft(k,l)
sjt ·

θMjt
θMklt
· µ−1jt

)−1 , (15)

and

Mklt =

 ∑
j∈Ft(k,l)

sjt ·
θMjt
θMklt
· µ−1jt

−1 , (16)

where θLklt and θMklt are, respectively, the average output elasticities of labor and intermediate ma-
terials in the industry k, location l, and year t. Here sjt =

pjtyjt
PkltYklt

are sales weights and Ft(k, l)
denotes the set of firms in local labor market (k, l).

I further aggregate themarkdowns andmarkups across labormarkets using employment weights
(Rossi-Hansberg et al., 2021) to examine whether monopsony power in German manufacturing has
increased over time. Specifically, I define

Vt =
∑
k∈K

∑
l∈L

ωkltVklt, (17)

and
Mt =

∑
k∈K

∑
l∈L

ωkltMklt, (18)

where ωklt is the employment share of labor market (k, l).
Figure 5 illustrates the resulting time trend of aggregate markdowns, Vt, which has substan-

tially increased between 1994 and 1997, while it has been on a downward trend with some plateau
between 2000 and 2008.18

5.5 Comparing Aggregate Markdowns with Labor Market Concentration

To provide additional evidence on the situation of labor market power in Germany, I calculate labor
market concentration using Herfindahl-Hirschmann Index (HHI). Using the matched employer-
employee data structure, I construct the HHI for labor markets at the occupation (3-digit KldB

18Online Appendix E.1 shows that my markdown estimates are generally robust to the Cobb-Douglas production
function. I discuss my estimates of markups in Online Appendix E.2.
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1988), region, and year level. Using industry as part of the definition of labor markets is not ideal for
calculating labor market concentrations. However, I also use sector (3-digit ISIC Rev.4) instead of
occupations to be consistent with the markdown measure and compare aggregate markdowns with
HHI. Additionally, I use a range of alternative definitions for profession, industry, and geography
for robustness checks. Given that my markdownmeasure is quantified using the IAB BP data, I also
use the IAB BP data to calculate the labor market concentration. The HHIs are computed for the
entire economy and manufacturing firms since the markdown is estimated only for manufacturing
plants.

Given that I have worker-level administrative data matched with their employers, I first count
workers at each establishment and then construct the HHI in labor market (o, l) and time t as

HHImt =
I∑
j=1

s2jmt, (19)

where s2jmt is the market share of firm j in marketm = (o, l) as a number between 0 and 100, and o
and l denotes occupation and geography index, respectively. In the alternative definition, I calculate
(19) for marketm′ = (k, l) where k is the industry index. A firm’s market share in a given market
m (or m′) and time t is defined as the sum of workers at a given firm in a given market and time
divided by the total workers in that market and time. The average HHIs are calculated by weighted
average using employment as weights. Formally,

HHIlt =
∑
o∈O

ωoltHHIolt (or HHIlt =
∑
k∈K

ωkltHHIklt), (20)

and
HHIlt =

∑
k∈K

∑
l∈L

ωkltHHIklt. (21)

Table 5 shows summary statistics for labor market concentration in Germany for alternative
market definitions. In our baseline market definition as a 3-digit KldB 1988 occupation by 141
commuting zones by year, the average overall HHI is 4243. The average HHI implies that the
equivalent number of firms recruiting is only 2.4 on average. Looking at percentiles of the HHI
beyond the mean, the 75th percentile of HHI is 6250. To put this number into perspective, a market
with one firm having 75% of vacancies and another one with 25% yields an HHI of 6,250. 56%
of the labor market is highly concentrated (above 2,500), and 16% of the market is moderately
concentrated (have an HHI between 1500 and 2,500). The remaining 28% have a low concentration
(below 1500 HHI).

Since my focus in this paper is manufacturing plants, I also zoom in on the manufacturing
sector in Germany and calculate the HHIs. Table 6 reports the summary statistics for labor market
concentration in the manufacturing industry. The main takeaway from the table is that labor market
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concentration in the manufacturing industry is greater than the country average and, thus, than in
the non-manufacturing sector.

Previous studies using only production data, such asYeh et al. (2022), are constrained in compar-
ing themarkdownmeasure with occupation-based HHIs as such datasets do not have information on
vacancies by occupation. Fortunately, our matched data provide a unique opportunity to compare
occupation-based and industry-based measures of HHI and aggregate markdowns. From Tables
5-6, we see that HHIs calculated using 3-digit occupations and 3-digit industries are consistent.

To compare the HHIs with my measure of markdowns, I first calculate the bivariate correla-
tion between the HHIs and wage markdowns across local labor markets (three-digit industry-state
cells). I find that the cross-sectional correlation between Vklt and HHIklt is weak: across years, this
correlation is close to zero, negative sometimes and rarely statistically significant.19 Despite this
weak cross-section correlation, Figure 6 demonstrates that time trends in aggregate labor market
concentration (HHIt) and markdowns (Vt) are generally the same, especially before 2011. The cor-
relation between aggregate HHI and aggregate markdowns is 0.17 for the entire period, 1994-2018,
while the correlation coefficient between 1994 and 2011 is 0.85. These observations are generally
consistent with previous studies (Bassier et al., 2022; Berger et al., 2022; Yeh et al., 2022).

6 Effect of Automation on Labor Market Power
In this section, I estimate the causal impact of automation on labor market power at the local labor
market level, relying on a shift-share instrumental variable (IV) approach.

6.1 Empirical Specification

To investigate the causal effect of automation shock (measured by predicted exposure to robots at
the local labor markets) on local labor market-level markdowns, I estimate the following equation:

∆Markdownr = α + β1 ̂∆Robotsr + β2∆̂Trader + β3∆̂ICTr + X′rγ + εr (22)

where r is the local labor market regions, and ∆ represents the long-difference between 199620

and 2018. The term ∆Markdownr is the change in local markdowns over the period 1996-2018,
̂∆Robotsr is the change in the predicted number of robots per worker (as defined in equation (23) be-

low), and ∆̂Trader and ∆̂ICTr are the predicted local exposures to net exports and ICT investment,
respectively. The vector X′r contains broad region dummies (i.e., dummies for north, south, east,

19I provide details in Online Appendix E.3.
20The aggregate markdown measure, robot penetration, and other controls span from 1994 to 2018; however, I use

1996 instead of 1994 as the beginning period because aggregate markdowns are calculated for a few local labor markets
(or kreise) and even a few establishments in 1994 and 1995. So I consider the periods between 1996 and 2018 to cover
more representative local labor markets and provide more robust estimates.
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and west regions) and demographic characteristics of the local workforce. The demographic con-
trols include the share of females; the share of foreigners; the share of workers over 50 years old;
and the share of workers with no vocational training, vocational training, and university degree.
The region dummies and demographic controls are at levels before the start of the shock period
instead of changes to prevent endogenous adjustments on the local labor force after the shock to
contaminate the effects of changes in robot exposure on changes in markdown.

The key explanatory variable, the change in local labor market’s exposure to robots, is con-
structed as

̂∆Robotsr =
K∑
k=1

(
Employmentkr
Employmentr

× ∆Robotskr
Employmentk

)
, (23)

where K = 20. For the construction of trade exposure and exposure to ICT investments, I closely
follow Dauth et al. (2021). The change in trade exposure, ∆̂Trader, is measured by an increase
in German net exports vis-à-vis China and 21 Eastern European countries from 1996 to 2018 for
every manufacturing industry k using UN Comtrade data, normalized by the initial wage bill to
account for industry size. The change in exposure to ICT investment, ∆̂ICTr, is defined by the
change in real gross fixed capital formation volume per worker for computing and communication
equipment from 1996 to 2018 using data on installed equipment at the industry level reported in
the EU KLEMS database.

The research design in this paper exploits substantial variation in industry compositions across
local labor markets. This variation further creates variation in exposure to technological change,
e.g., industrial robots. However, the robot data for Germany over longer periods, only available
from the IFR as described in Section 4, are collected only at the industry level. Hence I follow
Acemoglu and Restrepo (2020) and Dauth et al. (2021) and use a shift-share design to allocate each
industry’s robots stock across kreise or counties according to their shares of the industry’s total
employment. So I call this a “predicted” local exposure and denote it with a hat.

6.2 Identification and Assumptions

To identify the effect of robots on wage markdowns, I use variation in predicted robot exposure
across industries, assuming that some sectors are more likely to adopt industrial robots than oth-
ers. But variation in exposure to robots adoption across industries in Germany could be due to
differences in industry-level demands. Hence, to address biases resulting from this endogenous
distribution of robots across local labor markets and time, I use a shift-share instrumental variable
approach that introduces the plausibly exogenous and supply-driven variation in robot exposure.
Acemoglu and Restrepo (2020) proposed this strategy for identifying the impacts of automation,
which was later used by Dauth et al. (2021) and Acemoglu and Restrepo (2022). In this setting,
robot adoptions in other high-income advanced countries introduce the plausibly exogenous and
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supply-driven variation in predicted robot exposure in Germany.21 The change in the number of
robots in the same set of industries in each other country is normalized and allocated across regions
using German’s lagged industry-by-region employment counts from 1984.

For this instrumental variable estimation approach to work, the constructed shift-share instru-
ments must satisfy two main assumptions: (i) the inclusion restriction or relevance and (ii) the
exclusion restriction. Below I discuss each of these assumptions in my context and then briefly
address issues related to statistical inference.

Inclusion restriction or relevance: There must be a strong correlation between changes in
Germany’s robot exposure and those in other high-incomeEuropean countries. As I show in the next
section, the popular rule-of-thumb—the F -statistic on the excluded instruments being more than 10
in the first-stage regression—informs the validity of the relevance assumption (Kleibergen and Paap,
2006; Cameron and Miller, 2015). The existing studies show that these shift-share instruments
satisfy relevance assumption for the U.S. (for example, Acemoglu and Restrepo, 2022) and for
Germany (Dauth et al., 2021).

Exclusion restriction: A shift-share instrumental variable framework I use in this paper yields
consistent estimates if the “shifts” or shocks are orthogonal to unobserved factors that determine the
outcomes (Borusyak et al., 2022).22 This condition will hold if shocks to the robot adoption in other
high-income European countries are unrelated to changes in local economic conditions in Germany,
regardless of whether local exposures to these shocks (i.e., variation in the share component) are
endogenous. Given that I estimate an overidentified model in which the number of instruments
exceeds the number of endogenous regressors, I can formally test the orthogonality assumption.
Employing overidentifying restrictions test (H0: all IVs are uncorrelated with εr), I cast evidence
on whether the instruments satisfy the orthogonality condition (Sargan, 1958, 1998; Hansen, 1982;
Altonji et al., 2005).

Statistical inference: I cluster the standard errors by 40 aggregated labor market regions23

to allow for heteroskedasticity and serial correlation within clusters. I also cluster the standard
errors at the level of local labor markets or kreise, which provides more clusters, to check the
robustness of my results. Additionally, as pointed out by Adao et al. (2019), conventional standard
errors on shift-share explanatory variables such as ̂∆Robotsr might be underestimated because
regression residuals are likely to be correlated across regions with similar industry shares. Hence
they propose to compute the standard errors by allowing the correlation amongst error terms within
region-industry share groups. I apply their method of calculating cluster-robust variance. In doing
so, I closely follow Dauth et al. (2021)’s procedure and similarly use employment shares across

21The instrument is constructed for each country c = (Spain, Finland, France, Italy, Norway, Sweden, and the United
Kingdom) as similar to Dauth et al. (2021), and thus I estimate the over-identified model.

22See Goldsmith-Pinkham et al. (2020) for settings where identification comes from the orthogonality of the “share”
component of the shift-share instruments.

23I am grateful to Wolfgang Dauth for sharing the crosswalk from German kreise to 50 aggregate regions. Out of
these 50 regions, the wage markdowns are estimated for 40 local labor markets due to data availability.
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industries.

6.3 Results

Table 7 presents the baseline results from estimating reduced-form specification in equation (22)
where I regress the long difference in aggregate markdowns between 1996 and 2018 on the long
difference in exposure to robots for the same period.

OLS estimates: In panel A of Table 7, I first look at the local labor market-level relationship
between wage markdowns and robot exposure using ordinary least squares (OLS) regressions. Col-
umn (1) shows results from a specification that controls for broad region dummies and demographic
characteristics of the local labor market. The relationship between robot exposure and markdown
changes in a kreis is positive. The estimate is statistically significant at the 10% level when con-
ventional standard errors are applied; however, it becomes statistically insignificant when I correct
the standard errors, allowing error terms to be correlated within region-industry share groups.

In Column (2), I include the initial employment shares of nine broad industries instead of the
initial employment share of manufacturing workers to control for more detailed industry trends
within the manufacturing sector. As a result, the coefficient estimate on robot exposure remains
positive and slightly increases in magnitude; however, statistical significance, using conventional
or unconventional standard errors, remains the same.

In Column (3), I control for predicted exposure to net exports vis-à-vis China and 21 Eastern
European countries, as described in Section 6.1. In Column (4), which is the preferred specification,
I add the predicted exposure of local labor markets to ICT equipment. Trade exposure and ICT
investment variables have a minor effect on our coefficient of interest. The coefficient estimate and
statistical inference are qualitatively unchanged.

IV estimates: Panel B of Table 7 shows the results when the regressions are estimated with IV
(2SLS) regressions. The jointF -statistic on the excluded instruments is large enough to suggest that
robot adoptions in other high-income European countries provide plausible variations in German
robot adoption. Hansen’s J-statistic indicates that the excluded IVs are exogenous and valid instru-
ments. The IV estimates are similar in sign and close in magnitude to the OLS counterparts. The
results from my preferred specification, shown in Column (4), suggest that automation increases
wage markdowns, and the impact is statistically significant at the 5% level.

7 Effects of Automation on Markdowns of Heterogeneous
Workers

This section relaxes an assumption of homogeneous workers and considers heterogeneous workers
with different exposure to automation risks. To examine the heterogeneous effects of automation or
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automation threats, I split workers into several groups based on their potential likelihood of being
directly affected by robots. Using those worker classifications, I first measure markdown for such
workers by estimating production function with heterogeneous labor inputs and quantifying the
heterogeneous effects of robot exposure on labor market power.

7.1 Definition of Heterogeneous Workers

Using the BIBB/IAB and BIBB/BAuA Employment Surveys and following an approach offered by
Antonczyk et al. (2009) and later used by, for example, Bachmann et al. (2022), I calculate task
intensity measure for an individual i as

TIikt =
number of activities in category k performed by i at time t∑
k number of activities in category k performed by i at time t

, (24)

where t = 1991-1992, 1998-1999, 2006, 2012, and 2018, and k indicates routine, nonroutine man-
ual, and nonroutine cognitive tasks. I generally follow Spitz-Oener (2006) to classify job activities
into these three broader task categories k. Then I aggregate the individual-level task intensity mea-
sures at the occupational groups by taking averages of individual task intensities by occupational
categories. The population weights in the BIBB datasets are applied to calculate representative
aggregate measures. It provides a continuous measure of task intensity for each routine, nonroutine
manual, and nonroutine cognitive task category for each 3-digit occupation. Finally, I merge these
task intensity measures to the matched employer-employee data by occupation and year combina-
tions.

The main advantage of using the BIBB/IAB and BIBB/BAuA Employment Surveys compared
to other measures of tasks intensity, for example, offered by Autor and Dorn (2013), is that the
TIikt measure varies over time. It allows us to capture the changing nature of the task content of
occupations (Edmond and Mongey, 2022). As a robustness check, I use Autor and Dorn (2013)’s
static measure of task intensity developed for U.S. occupations using data from O∗NET.

I define workers directly and indirectly affected by robots in different ways based on tasks per-
formed at the workplace and their education level.

Routine, nonroutine cognitive, and nonroutine manual workers: The difference between
workers in terms of the risk of being replaced by robots needs to be considered when examining the
automation impact on workers because automation might have different implications on employers’
labor market power given that recent technological change is biased toward replacing routine tasks
(Autor et al., 2003; Goos et al., 2014). Depending on the potential risk of displacement and the real-
ized impact of robots, automation threats might have different implications on labor market power
for workers who differ in their tasks performed at work. In mechanical terms, automation could
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have differential effects on such workers, given its heterogeneous impacts on their productivity and
wages, leading to a differential impact on their markdowns. Due to these nuanced mechanisms,
the effects of robot adoption are likely to be highly heterogeneous for workers performing different
tasks. Hence, I first examine the heterogeneity by job tasks concentrating on routine, nonroutine
cognitive, and nonroutine manual tasks task-performing workers.

I consider that a worker is a routine, nonroutine cognitive, or nonroutine manual worker if
the maximum of the three normalized task intensity indices is RTIijt, NRCTIijt, or NRMTIijt,
respectively, for worker i at firm j in year t. Note that I added employer index j since I use the
linked data for this analysis, and RTIijt, NRCTIijt, and NRMTIijt denote TIikjt index in equation
(24) when task category k is routine, nonroutine cognitive, and nonroutine manual, respectively.
These indices are normalized to have mean zero and unit standard deviation.

Defining three types of labor inputs performing different tasks allows more heterogeneity for
estimating the markdown and the impact of robot adoption on labor market power. This grouping
of workers is similar to that in Bachmann et al. (2022), who measure monopsony power for such
workers by estimating the labor supply elasticity. So I can also compare my estimates of markdown
for these workers with their results.

Table 8 summarizes the employment, wage bill, and daily wage for routine, nonroutine cogni-
tive, and nonroutine manual workers.

High- and low-skilledworkers: Although some highly-educatedworkers perform routine tasks
and face automation risks, such as bank tellers, low-education workers are generally subject to au-
tomation risks more than high-education workers (Acemoglu et al., 2023). Also, from the perspec-
tive of labor market power, the outside employment options for low-education and high-education
workers are likely to be different, so markdowns for workers with different education levels are
expected to be unequal (Yeh et al., 2022). Even if markdowns for such workers are equal, the impli-
cation of automation on their markdowns could be different. So I distinguish workers by education
categories as follows:

low-education: without a vocational training degree,
high-education: with a vocational training degree, or

with a degree from a University or a University of the Applied Sciences.

Low- and high-education workers are not synonymous for low- and high-skilled workers; however,
some studies refer to education as skills (Antonczyk et al., 2009; Yeh et al., 2022) potentially be-
cause education level and ability or skills tend to be positively correlated. Hence, this categorization
can be considered as a split of low-skilled and high-skilled workers. If robot adoption in Germany is
more consistent with skill-biased technological change, automation impact might be more nuanced
among workers categorized by skills or education than job tasks.

Table 9 presents the summary statistics on employment, wagebill, and daily wage for high- and
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low-skilled workers.

7.2 Estimated Markdowns

I estimate the production function similar to equation (14) but with heterogeneous labor inputs, then
quantify the markdown for those workers. Table 10 shows the estimated plant-level markdowns for
heterogeneous workers in the German manufacturing industry who differ by job tasks performed at
their workplaces and their skills or education level.

The estimated markdowns for workers who differ by their job tasks performed at the workplace
suggest that (i) these workers are also subject to monopsony power in average manufacturing plants,
and (ii) routine workers are subject to less monopsony power than nonroutine cognitive (NRC) and
nonroutine manual (NRM) workers (Panel A of Table 10). These observations are strongly con-
sistent with Bachmann et al. (2022)’s results. I also find that NRM workers are the most exploited
workers since they are subject to the highest monopsony power. This result differs from Bachmann
et al. (2022), who suggest NRC workers are subject to the highest degree of monopsony power.
Specifically, I find that NRM, NRC, and routine workers receive 41 cents, 55 cents, and 68 cents
on each euro generated, respectively. These estimates are generally comparable in magnitude with
Bachmann et al. (2022)’s markdown estimates at the mean implied from their estimated labor sup-
ply elasticities for workers who perform NRM (νit = 1.602 or 62 cents per euro), NRC (νit = 2.043

or 49 cents per euro), and routine (νit = 1.589 or 63 cents per euro) tasks in Germany using admin-
istrative data on individual labor market histories (SIAB) for the years 1985-2014. My estimates
differ from Bachmann et al. (2022)’s results mainly for NRM workers, and the difference could be
due to four reasons. First, our contexts are different. My estimates are only for the manufactur-
ing industry, while they cover all industries in the country. Second, we use different methods with
different assumptions. I estimate markdown using the production approach, while they estimate
labor supply elasticity using Manning (2003)’s method. Third, we use different data sets. I use the
IAB Establishment Panel and the LIAB data to estimate the production function, while they use
the Sample of Integrated Labour Market Biographies (SIAB) data. Finally, the period used in my
markdown estimation spans between 1994-2018, while they use periods from 1985-2014.

The estimated markdowns for high-skilled and low-skilled workers show that (i) the two types
of workers face monopsony power in average manufacturing plants, and (ii) the markdown for low-
skilled or low-educated workers is larger than themarkdown for high-skilled or high-educated work-
ers (Panel B of Table 10).

The distribution ofmarkdowns for workers performing different tasks illustrates that markdowns
are highest formanual workers, second-highest for cognitiveworkers, and lowest for routineworkers
(Figure 7). Markdowns are always relatively higher for low-skilled workers (Figure 8).

Explaining the markdown gap at the mean: Using a traditional but widely-used descriptive
method of Blinder-Oaxaca decomposition (Oaxaca, 1973; Blinder, 1973), I decompose the differ-
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ences in wage markdowns across these heterogeneous workers into a component accounted for by
differences in observed characteristics and unexplained or unobserved differences.

The following equation of Blinder-Oaxaca decomposition estimates the separate OLS regres-
sions of markdown for heterogeneous workers (types 1 and 2) for firm j at year t (the j and t
subscripts are suppressed to simplify the notation):

Y 1 = β1
0 +

K∑
k=1

β1
kX

1
k + ε1

Y 2 = β2
0 +

K∑
k=1

β1
kX

2
k + ε2

(25)

where Y is the markdown, which is explained byK variables (X1, . . . , XK) in the linear regression
model. For example, type 1 workers are low-skilled, and type 2 workers are high-skilled workers
under skill heterogeneity.

Given that the OLS with a constant term produces residuals with a zero mean, the wage mark-
down differential across different workers is expressed, using means Y and (X1, . . . , XK), as

Y
1−Y 2

= (β1
0 − β2

0)︸ ︷︷ ︸
coefficients

+
K∑
k=1

β2
k(X

1

k −X
2

k)︸ ︷︷ ︸
endowments

+
K∑
k=1

X
2

k(β
1
k − β2

k)︸ ︷︷ ︸
coefficients

+
K∑
k=1

(X
1

k −X
2

k)(β
1
k − β2

k)︸ ︷︷ ︸
interaction

, (26)

where the first term captures the difference in intercepts. The second term identifies the impact
of skill or task differences in the explanatory variables evaluated using the type 2 worker coeffi-
cients (explained component). This component is also known as the “endowment effect”. The third
term is the unexplained differential and represents the impact of the skill or job tasks (unexplained
component), also known as the “coefficients effect”. The fourth term is a component involving
an interaction due to the simultaneous effect of differences in endowments and components. The
Blinder-Oaxaca decomposition method includes the first and the third terms into the unexplained
component since they similarly denote differences between the two groups that cannot be explained
by the observed covariates.

Table 11 presents results from the Blinder-Oaxaca decomposition on the contribution of worker
characteristics to the gap in markdowns due to job task differences. The result suggests that unob-
served task differences explain a substantial part of the difference between markdowns for workers
performing different tasks after accounting for some worker characteristics. Table 12 presents re-
sults from the Blinder-Oaxaca decomposition on the contribution of worker characteristics to the
skill gap in markdowns. The result shows that unobserved skill differences explain more than one-
third of the difference between markdowns for high- and low-skilled workers.24

24Appendix Figures G.1 and G.2 show the detailed results from the Blinder-Oaxaca decomposition for task and skill
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Trends in aggregate markdowns: I aggregate the plant-level markdowns for heterogeneous
workers using equations (15) and (17) similar to my baseline analysis to show how employers’
labor market power has changed for different workers in German manufacturing over time. Figure
9 illustrates the resulting time trend of aggregate markdowns, Vt, for workers performing different
tasks. Markdown for routine task-performing workers has been decreasing since 199825 (panel
(a)), which is strongly consistent with Bachmann et al. (2022) who show that yearly labor supply
elasticity, proportional to the inverse of markdown, has been increasing for workers with mean
routine task intensity (RTI). In contrast, labor market power for nonroutine cognitive and nonroutine
manual workers is generally upward-sloping from 1998-2018. Note that robot penetration has been
continuously increasing during this period. So automation threats might be more prevalent for
workers less or not displaceable by current industrial robots as markdowns for NRC and NRM
workers have been increasing along with robot penetration.

Figure 10 illustrates the time evolution of aggregate markdowns for workers with different skills.
The results for low-skilled and high-skilled workers are generally consistent with workers perform-
ing various tasks. Specifically, employers’ labor market power for low-skilled or low-educated
workers has been relatively stable but generally on a downward-sloping pattern. On the contrary,
the markdown for high-skilled or high-educated workers is upward-sloped between 1998-2018.

7.3 Heterogeneous Effects of Automation

The causal effects of robot exposure on markdown for heterogeneous workers will be estimated
generally using equation (22), and I will include the estimation results in the next iteration.

8 Discussion
There is growing evidence that the labor market is not perfectly competitive. In this paper, I doc-
ument that workers earn 75 cents on each marginal euro generated in an average German manu-
facturing firm. But what gives employers such monopsony power in the labor market? To answer
this question, I provide theoretical and empirical evidence on automation or automation threats as
a source of labor market power. Using administrative data from Germany, I show that automation

differences, respectively.
25There are several reasons that I show the time evolution of aggregate markdowns under worker heterogeneity.

Although the plant-level estimates for heterogeneous workers are available from 1994-2018, the aggregate numbers are
censored for 1994 and 1995, given that the markdowns are estimated for too few firms (less than 20) for each period.
I omitted 1996 and 1997 because estimates were too noisy for some groups of workers, potentially due to several
reasons. First, during the mid-1990s, there might be some left-over impacts of economic transformations in Germany
that happened in the early 1990s, such as the German reunification. Second, similar to 1994-1995, the underlying
establishments in which aggregate markdowns are based were also relatively small, which might also be contributing
to noisy estimates. Therefore, to provide a more robust inference about trends of labor market power for heterogeneous
workers, I focus on periods since 1998.
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increases the estimated markdowns for German manufacturers at the local labor market level. This
result is consistent with predictions from my model about the effect of labor-saving technologies
or robot adoption on markdowns. I also find that monopsony power is highly heterogeneous for
workers who perform different job tasks.

This evidence has two critical implications for understanding wage-setting in the labor markets.
First, it shows that labor-saving technologies play a significant role in pay-setting. Second, worker’s
mobility and skill sets also play a substantial role in wage negotiation, given that less mobile workers
who perform nonroutine cognitive tasks and low-skilled and nonroutine manual task-performing
workers are subject to higher markdowns.

This paper made notable contributions to several strands of literature, and the primary contri-
butions are in monopsony literature. First, my model serves as an alternative framework that incor-
porates some micro facts of robot adoption to understand the role of robot adoption in wage-setting.
Second, this is the first study to provide a causal interpretation of the effects of automation on labor
market power. Third, I document the relationship between the task content of jobs and labor mar-
ket power and examine the causal effects of automation on labor market power for heterogeneous
workers performing routine, nonroutine manual, and nonroutine cognitive tasks.

32



References
Acemoglu, Daron, Gary W. Andersen, David N. Beede, Catherine Buffington, Eric E. Chil-
dress, Emin Dinlersoz, Lucia S. Foster, Nathan Goldschlag, John C. Haltiwanger, Zachary
Kroff, Pascual Restrepo, and Nikolas Zolas. 2022. “Automation and the Workforce: A Firm-
Level View from the 2019 Annual Business Survey.” NBER Working Paper No. 30659.

Acemoglu, Daron, and David Autor. 2011. “Skills, Tasks and Technologies: Implications for
Employment and Earnings.” In Handbook of Labor Economics. eds. by Orley Ashenfelter, and
David Card: Elsevier, 1043–1171.

Acemoglu, Daron, Hans R. A. Koster, and Ceren Ozgen. 2023. “Robots and Workers: Evidence
from the Netherlands.” NBER Working Paper No. 31009.

Acemoglu, Daron, Claire Lelarge, and Pascual Restrepo. 2020. “Competing with Robots: Firm-
Level Evidence from France.” In AEA Papers and Proceedings. 110: 383–388.

Acemoglu, Daron, and Pascual Restrepo. 2018. “The Race between Man and Machine: Implica-
tions of Technology for Growth, Factor Shares, and Employment.” American Economic Review,
108(6): 1488–1542.

Acemoglu, Daron, and Pascual Restrepo. 2019. “Automation and New Tasks: How Technology
Displaces and Reinstates Labor.” Journal of Economic Perspectives, 33(2): 3–30.

Acemoglu, Daron, and Pascual Restrepo. 2020. “Robots and Jobs: Evidence from US Labor
Markets.” Journal of Political Economy, 128(6): 2188–2244.

Acemoglu, Daron, and Pascual Restrepo. 2022. “Tasks, Automation, and the Rise in U.S. Wage
Inequality.” Econometrica, 90(5): 1973–2016.

Acemoglu, Daron, and Pascual Restrepo. 2023. “Technology and Rent Dissipation.” Working
Paper.

Ackerberg, Daniel A., Kevin Caves, andGarth Frazer. 2015. “Identification Properties of Recent
Production Function Estimators.” Econometrica, 83(6): 2411–2451.

Adamopoulos, Tasso, Loren Brandt, Jessica Leight, and Diego Restuccia. 2022. “Misalloca-
tion, Selection, and Productivity: A Quantitative Analysis with Panel Data from China.” Econo-
metrica, 90(3): 1261–1282.

Adao, Rodrigo, Michal Kolesár, and Eduardo Morales. 2019. “Shift-Share Designs: Theory
and Inference.” The Quarterly Journal of Economics, 134(4): 1949–2010.

Aghion, Philippe, CélineAntonin, SimonBunel, andXavier Jaravel. 2020. “What Are the Labor
and Product Market Effects of Automation? New Evidence from France.” CEPR Discussion
Paper No. 14443.

Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber. 2005. “An Evaluation of Instru-
mental Variable Strategies for Estimating the Effects of Catholic Schooling.” Journal of Human
Resources, 40(4): 791–821.

Antonczyk, Dirk, Bernd Fitzenberger, and Ute Leuschner. 2009. “Can a Task-based Approach
Explain the Recent Changes in the German Wage Structure?” Jahrbücher für Nationalökonomie
und Statistik, 229(2-3): 214–238.

33



Arnoud, Antoine. 2018. “Automation Threat and Wage Bargaining.” Working Paper.
Ashenfelter, Orley C., Henry Farber, and Michael R. Ransom. 2010. “Labor Market Monop-
sony.” Journal of Labor Economics, 28(2): 203–210.

Ashenfelter, Orley, David Card, Henry Farber, and Michael R. Ransom. 2022. “Monopsony
in the Labor Market: New Empirical Results and New Public Policies.” Journal of Human Re-
sources, 57(S): S1–S10.

Autor, David H., and David Dorn. 2013. “The Growth of Low-Skill Service Jobs and the Polar-
ization of the US Labor Market.” American Economic Review, 103(5): 1553–1597.

Autor, David H., Frank Levy, and Richard J. Murnane. 2003. “The Skill Content of Re-
cent Technological Change: An Empirical Exploration.” The Quarterly Journal of Economics,
118(4): 1279–1333.

Azar, José, Ioana Marinescu, andMarshall Steinbaum. 2019. “Measuring Labor Market Power
Two Ways.” In AEA Papers and Proceedings. 109: 317–321.

Bachmann, Ronald, Gökay Demir, and Hanna Frings. 2022. “Labor Market Polarization, Job
Tasks, and Monopsony Power.” Journal of Human Resources, 57(S): S11–S49.

Barth, Erling, Marianne Roed, Pål Schøne, and Janis Umblijs. 2020. “How Robots Change
Within-Firm Wage Inequality.” IZA Discussion Paper No. 13605.

Bassier, Ihsaan, Arindrajit Dube, and SureshNaidu. 2022. “Monopsony inMovers the Elasticity
of Labor Supply to Firm Wage Policies.” Journal of Human Resources, 57(S): S50–S86.

Bau, Natalie, andAdrienMatray. 2023. “Misallocation and CapitalMarket Integration: Evidence
from India.” Econometrica, 91(1): 67–106.

Berger, David, Kyle Herkenhoff, and Simon Mongey. 2022. “Labor Market Power.” American
Economic Review, 112(4): 1147–93.

Bessen, James,MaartenGoos, Anna Salomons, andWiljan van denBerge. forthcoming. “What
Happens to Workers at Firms that Automate?” Review of Economics and Statistics.

Blinder, Alan S. 1973. “Wage Discrimination: Reduced Form and Structural Estimates.” Journal
of Human Resources, 8(4): 436–455.

Boal, William M., and Michael R. Ransom. 1997. “Monopsony in the Labor Market.” Journal
of Economic Literature, 35(1): 86–112.

Bonfiglioli, Alessandra, Rosario Crinò, Harald Fadinger, and Gino Gancia. 2020. “Robot Im-
ports and Firm-Level Outcomes.” CEPR Discussion Paper No. DP14593.

Borusyak, Kirill, Peter Hull, and Xavier Jaravel. 2022. “Quasi-Experimental Shift-Share Re-
search Designs.” The Review of Economic Studies, 89(1): 181–213.

Bronfenbrenner, Martin. 1956. “Potential Monopsony in LaborMarkets.” ILR Review, 9(4): 577–
588.

Brooks, Wyatt J., Joseph P. Kaboski, Yao Amber Li, and Wei Qian. 2021. “Exploitation of
Labor? Classical Monopsony Power and Labor’s Share.” Journal of Development Economics,
150: 102627.

34



Burdett, Kenneth, and Dale T. Mortensen. 1998. “Wage Differentials, Employer Size, and Un-
employment.” International Economic Review, 39(2): 257–273.

Caldwell, Sydnee, and Oren Danieli. 2022. “Outside Options in the Labor Market.” Working
Paper.

Caldwell, Sydnee, and Nikolaj Harmon. 2019. “Outside Options, Bargaining, and Wages: Evi-
dence from Coworker Networks.” Working Paper.

Caldwell, Sydnee, and Emily Oehlsen. 2022. “Gender, Outside Options, and Labor Supply: Ex-
perimental Evidence from the Gig Economy.” Working Paper.

Cameron, A. Colin, and Douglas L. Miller. 2015. “A Practitioner’s Guide to Cluster-Robust In-
ference.” Journal of Human Resources, 50(2): 317–372.

Card, David. 2022. “Who Set Your Wage?” American Economic Review, 112(4): 1075–1090.
Caunedo, Julieta, Elisa Keller, andYongseok Shin. forthcoming. “Technology and the Task Con-
tent of Jobs across the Development Spectrum.” The World Bank Economic Review.

Chau, Nancy H., and Ravi Kanbur. 2021. “Employer Power, Labour Saving Technical Change,
and Inequality.” In Development, Distribution, and Markets: Festschrift in Honor of Pranab
Bardhan. eds. by Kaushik Basu, Maitreesh Ghatak, Kenneth Kletzer, Sudipto Mundle, and Eric
Verhoogen: Oxford University Press, 158–180.

Datta, Nikhil. 2022. “Local Monopsony Power.” Working Paper.
Dauth, Wolfgang, Sebastian Findeisen, Jens Suedekum, and Nicole Woessner. 2021. “The Ad-
justment of Labor Markets to Robots.” Journal of the European Economic Association, 19(6):
3104–3153.

De Loecker, Jan, Jan Eeckhout, and Gabriel Unger. 2020. “The Rise of Market Power and the
Macroeconomic Implications.” The Quarterly Journal of Economics, 135(2): 561–644.

DeLoecker, Jan, Pinelopi K. Goldberg, Amit K. Khandelwal, andNina Pavcnik. 2016. “Prices,
Markups, and Trade Reform.” Econometrica, 84(2): 445–510.

De Loecker, Jan, and Frederic Warzynski. 2012. “Markups and Firm-Level Export Status.”
American Economic Review, 102(6): 2437–2471.

Delabastita, Vincent, and Michael Rubens. 2023. “Colluding Against Workers.”Working Paper.
Deng, Liuchun, Verena Plümpe, and Jens Stegmaier. 2021. “Robot Adoption at German Plants.”
IWH Discussion Paper No. 19/2020.

Domini, Giacomo, Marco Grazzi, Daniele Moschella, and Tania Treibich. 2021. “Threats and
Opportunities in the Digital Era: Automation Spikes and Employment Dynamics.” Research
Policy, 50(7): 104137.

Edmond, Chris, and Simon Mongey. 2022. “Unbundling Labor.” Working Paper.
Felix, Mayara. 2022. “Trade, Labor Market Concentration, and Wages.” Working Paper.
Gandhi, Amit, Salvador Navarro, and David A. Rivers. 2020. “On the Identification of Gross
Output Production Functions.” Journal of Political Economy, 128(8): 2973–3016.

Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift. 2020. “Bartik Instruments: What,

35



When, Why, and How.” American Economic Review, 110(8): 2586–2624.
Goos, Maarten, Alan Manning, and Anna Salomons. 2014. “Explaining Job Polarization:
Routine-Biased Technological Change and Offshoring.” American Economic Review, 104(8):
2509–2526.

Graetz, Georg, and GuyMichaels. 2017. “Is Modern Technology Responsible for Jobless Recov-
eries?” American Economic Review: Papers & Proceedings, 107(5): 168–173.

Graetz, Georg, and Guy Michaels. 2018. “Robots at Work.” Review of Economics and Statistics,
100(5): 753–768.

Hansen, Lars Peter. 1982. “Large Sample Properties of Generalized Method of Moments Estima-
tors.” Econometrica, 50(4): 1029–1054.

Hirsch, Boris, Thorsten Schank, and Claus Schnabel. 2010. “Differences in Labor Supply to
Monopsonistic Firms and the Gender Pay Gap: An Empirical Analysis using Linked Employer-
Employee Data from Germany.” Journal of Labor Economics, 28(2): 291–330.

Hsieh, Chang-Tai, and Peter J. Klenow. 2009. “Misallocation and Manufacturing TFP in China
and India.” The Quarterly Journal of Economics, 124(4): 1403–1448.

Hubmer, Joachim, and Pascual Restrepo. 2021. “Not a Typical Firm: The Joint Dynamics of
Firms, Labor Shares, and Capital–Labor Substitution.” NBER Working Paper No. 28579.

Humlum, Anders. 2019. “Robot Adoption and Labor Market Dynamics.” Working Paper.
Itskhoki, Oleg, and Benjamin Moll. 2019. “Optimal Development Policies with Financial Fric-
tions.” Econometrica, 87(1): 139–173.

Jäger, Simon, Christopher Roth, Nina Roussille, and Benjamin Schoefer. 2022. “Worker Be-
liefs About Outside Options.” NBER Working Paper No. 29623.

Kambourov, Gueorgui, and Iourii Manovskii. 2009. “Occupational Specificity of Human Capi-
tal.” International Economic Review, 50(1): 63–115.

Kirov, Ivan, and James Traina. 2021. “Labor Market Power and Technological Change in US
Manufacturing.” Working Paper.

Kleibergen, Frank, and Richard Paap. 2006. “Generalized Reduced Rank Tests Using the Sin-
gular Value Decomposition.” Journal of Econometrics, 133(1): 97–126.

Koch, Michael, Ilya Manuylov, and Marcel Smolka. 2021. “Robots and Firms.” The Economic
Journal, 131(638): 2553–2584.

Leduc, Sylvain, and Zheng Liu. 2022. “Automation, Bargaining Power, and Labor Market Fluc-
tuations.” Federal Reserve Bank of San Francisco Working Paper 2019-17.

Levinsohn, James, and Amil Petrin. 2003. “Estimating Production Functions Using Inputs to
Control for Unobservables.” The Review of Economic Studies, 70(2): 317–341.

Lochner, Benjamin, and Bastian Schulz. forthcoming. “Firm Productivity, Wages, and Sorting.”
Journal of Labor Economics.

Manning, Alan. 2003.Monopsony in Motion: Imperfect Competition in Labor Markets. Princeton
University Press.

36



Manning, Alan. 2021. “Monopsony in Labor Markets: A Review.” ILR Review, 74(1): 3–26.
Manning, Alan, and Barbara Petrongolo. 2017. “How Local Are LaborMarkets? Evidence from
a Spatial Job Search Model.” American Economic Review, 107(10): 2877–2907.

Marinescu, Ioana, and Roland Rathelot. 2018. “Mismatch Unemployment and the Geography
of Job Search.” American Economic Journal: Macroeconomics, 10(3): 42–70.

Melitz, Marc J. 2003. “The Impact of Trade on Intra-Industry Reallocations and Aggregate Indus-
try Productivity.” Econometrica, 71(6): 1695–1725.

Mengano, Paolo. 2023. “Trends in Worker Bargaining Power.” Working Paper.
Mertens, Matthias. 2020. “Labor Market Power and the Distorting Effects of International Trade.”
International Journal of Industrial Organization, 68: 102562.

Morlacco, Monica. 2019. “Market Power in Input Markets: Theory and Evidence from French
Manufacturing.” Working Paper.

Naidu, Suresh, and Eric A. Posner. 2022. “Labor Monopsony and the Limits of the Law.” Journal
of Human Resources, 57(S): S284–S323.

Oaxaca, Ronald. 1973. “Male-Female Wage Differentials in Urban Labor Markets.” International
Economic Review, 14(3): 693–709.

Olley, G. Steven, and Ariel Pakes. 1996. “The Dynamics of Productivity in the Telecommunica-
tions Equipment Industry.” Econometrica, 64(6): 1263–1297.

Robinson, Joan. 1969. The Economics of Imperfect Competition. MacMillan Press.
Rossi-Hansberg, Esteban, Pierre-Daniel Sarte, and Nicholas Trachter. 2021. “Diverging
Trends in National and Local Concentration.” NBER Macroeconomics Annual, 35(1): 115–150.

Rubens, Michael. 2022. “Oligopsony Power and Factor-Biased Technology Adoption.” NBER
Working Paper No. 30586.

Sargan, John D. 1958. “The Estimation of Economic Relationships using Instrumental Variables.”
Econometrica, 26(3): 393–415.

Sargan, John D. 1998. “Estimating using Instrumental Variables.” In Contributions to Economet-
rics: John Denis Sargan. Cambridge University Press.

Spitz-Oener, Alexandra. 2006. “Technical Change, Job Tasks, and Rising Educational Demands:
Looking Outside the Wage Structure.” Journal of Labor Economics, 24(2): 235–270.

Wooldridge, JeffreyM. 2009. “On Estimating Firm-level Production Functions Using Proxy Vari-
ables to Control for Unobservables.” Economics Letters, 104(3): 112–114.

Yeh, Chen, Claudia Macaluso, and Brad Hershbein. 2022. “Monopsony in the US Labor Mar-
ket.” American Economic Review, 112(7): 2099–2138.

37



Figures

Figure 1: Robot Penetration, 1994-2018

Notes: The figure shows the penetration of robots for selected countries including Germany from 1994-2018 using
data on robot stock from the IFR. Europe includes Germany, Finland, France, Italy, Norway, Spain, Sweden, and the
United Kingdom. Robot penetration is defined as the robot stock normalized by the dependent employment in full-time
equivalents (FTEs) obtained from OECD.Stat, except for Germany for which the employment data come from the Es-
tablishment History Panel (BHP) data. Only total employment was available for South Korea, so I imputed the depen-
dent employment for South Korea using dependent employment-to-total employment ratio from European countries.
Source: IFR, OECD, BHP or BEH, and own calculations.

Figure 2: Robot Adopters by Industry

Notes: The figure plots that share of manufacturing and non-manufacturing robot adopters in total number of robot
adopters over the period 2015-2018 using data from the IAB Establishment Panel (IAB BP). The 2014 data was not
presented for compliance with data privacy.
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Figure 3: Distribution of Robots (2018, robot adopting plants)

Notes: Based on the IAB Establishment Panel (IAB BP) data. The figures depict the distribution of average number of
robots per manufacturing plant in 2018. Sampling weights provided in the data are applied.

Figure 4: A Basic Model of Monopsony
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Figure 5: Time Evolution of the Aggregate Markdown, 1994-2018

Notes: Markdowns are constructed using the IAB Establishment Panel (IAB BP) data from 1994-2018 under the as-
sumption of translog production and aggregated according to expressions (15) and (17). The employment share of
labor market ωklt is based on total number of employees.

Figure 6: Aggregate Markdowns and Local Concentration, 1994-2018

Notes: Based on the IAB Establishment Panel (IAB BP). The solid black line shows the time trend of the aggregate
markdown as in equation (17), and the dashed red line shows the time trend of employment-based labor market con-
centration as in equation (21). The aggregate markdown and local concentration index are normalized relative to their
initial value in 1994.
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Figure 7: Distributions of Wage Markdowns for NRC, Routine, NRMWorkers, 1996-2018

Notes: Based on the IAB Establishment Panel and matched employer-employee (LIAB) data. The classification of
nonroutine cognitive, routine, and nonroutine manual task-performing workers is based on the BIBB/IAB and BIB-
B/BAuA Employment Surveys. The figure depicts the markdown distributions for NRC, routine, and NRM in a given
year over the period 1996-2018. NRC, nonroutine cognitive; NRM, nonroutine manual.
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Figure 8: Distributions of Wage Markdowns for Workers with Different Skills, 1996-2018

Notes: Based on the IAB Establishment Panel and matched employer-employee (LIAB) data. The figure depicts the
markdown distributions for high-skilled (with at least vocational training) and low-skilled (no vocational training) work-
ers every other year from 1996-2018.
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Figure 9: Time Evolution of the Aggregate Markdowns for Workers Performing Different Tasks,
1998-2018

(a) Routine (b) Nonroutine Cognitive

(c) Nonroutine Manual

Notes: The figure depicts the time evolution of aggregatemarkdowns for routine (panel (a)), nonroutine cognitive (panel
(b)), and nonroutine manual (panel (c)) workers between 1998 and 2018. Plant-level markdowns are constructed using
the IAB Establishment Panel and matched employer-employee (LIAB) data under the assumption of translog produc-
tion and aggregated according to expressions (15) and (17). The employment share of labor market ωklt is based on the
total number of employees. The classification of routine, nonroutine cognitive, and nonroutine manual task-performing
workers is based on the BIBB/IAB and BIBB/BAuA Employment Surveys.
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Figure 10: Time Evolution of the Aggregate Markdowns for Workers with Different Skills,
1998-2018

(a) Low-skilled (b) High-skilled

Notes: The figure plots the time evolution of aggregate markdowns for low-skilled (no vocational training) and high-
skilled (with at least vocational training) workers between 1998 and 2018. Plant-level markdowns are constructed using
the IAB Establishment Panel and matched employer-employee (LIAB) data under the assumption of translog produc-
tion and aggregated according to expressions (15) and (17). The employment share of labor market ωklt is based on
the total number of employees.
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Tables

Table 1: Share of Robot Adopters by Manufacturing and Non-Manufacturing in 2018

Weighted (%) Unweighted (%) Number of Surveyed Plants

Manufacturing 7.19 12.48 1,755
Non-manufacturing 0.96 0.92 6,953
Total 1.48 3.25 8,708

Notes: Based on the IAB Establishment Panel (IAB BP) data. The second column shows the share of robot adopters
in 2018 calculated using survey weights, while the third column reports the share without survey weights. The last
column reports the number of surveyed plants including both adopters and non-adopters.

Table 2: Relationship between Robot Adoption and Plant Size

Dependent variable: Log(Employment)
(1) (2) (3) (4) (5)

Panel A. Extensive margin
Robot use dummy 1.647*** 1.372*** 1.229*** 1.187*** 1.200***

(0.081) (0.081) (0.083) (0.087) (0.100)

Observations 2171 1481 1481 1475 1381
Adjusted R2 0.12 0.21 0.30 0.32 0.34

Panel B. Intensive margin
Log(Robots) 0.305*** 0.215*** 0.175*** 0.194*** 0.265**

(0.058) (0.060) (0.063) (0.067) (0.116)

Observations 280 235 233 209 121
Adjusted R2 0.07 0.16 0.19 0.23 0.18

State FE X X X
Industry FE (2-digit) X
Industry FE (3-digit) X X
District FE X

Notes: Based on the IAB Establishment Panel (IAB BP) data. The table reports the coefficient estimates on the dummy
variable of robot use (top panel) and the number of robots (in log, bottom panel) used by manufacturing plants in 2018.
Sampling weights provided in the data are not applied. The dependent variable is the the number of total employees
at the firm (in log). Robust standard errors are reported in parentheses. Significance: *p < 0.10, **p < 0.05, and
***p < 0.01.
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Table 3: Summary Statistics

Mean SD Min Max Obs.

Log TFPR 0.015 0.289 -1.218 1.327 13007
Log revenue 7.552 1.663 3.578 14.243 13187
Log output 7.660 1.653 3.788 14.674 13187
Log capital 7.114 1.686 2.934 14.403 13187
Log labor 3.103 1.241 0.693 8.596 13187
Log material inputs 6.848 1.796 2.945 13.915 13187
Material cost (% revenue) 0.485 0.190 0.020 0.990 13187
Labor cost (% revenue) 0.270 0.130 0.015 1.000 13187
Daily wage (€) 72.854 41.839 1.005 722.534 10252
Firm’s robot adoption status (dummy, % firms) 0.084 0.278 0 1 1289
Number of robots at the firm 0.487 3.717 0 100 1289

Notes: The table summarizes the main firm-level characteristics including revenue productivity (TFPR), sales revenue,
production output and inputs, input costs as a share of revenue, average daily wage paid to a worker, and robot adoption.
Variables cover the period 1994-2018 and come from the IAB Establishment Panel (IAB BP) except for the daily wage,
which come from the matched employer-employee (LIAB) data. The unit of observation is the firm, and sampling
weights are applied.
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Table 4: Estimated Plant-level Markdowns in German Manufacturing

Industry group Median Mean IQR75-25 SD

Wearing apparel 2.131 2.144 0.716 0.670
Leather and related products 1.950 1.834 1.027 0.614
Beverages 1.644 1.535 0.757 0.578
Other transport equipment 1.397 1.409 0.928 0.597
Chemicals and chemical products 1.387 1.559 0.926 0.679
Rubber and plastics 1.370 1.490 0.696 0.561
Furniture 1.367 1.567 0.677 0.670
Other non-metallic minerals 1.323 1.429 0.686 0.610
Wood and wood products (excl. furniture) 1.322 1.589 0.847 0.701
Paper and paper products 1.278 1.350 0.411 0.382
Basic pharmaceutical products 1.266 1.334 0.705 0.580
Textiles 1.260 1.520 1.073 0.816
Food products 1.217 1.350 0.725 0.599
Repair and installation of machinery and equipment 1.175 1.376 0.756 0.623
Motor vehicles, trailers, and semi-trailers 1.153 1.251 0.580 0.503
Fabricated metals, excl. machinery and equipment 1.141 1.286 0.674 0.565
Basic metals 1.136 1.297 0.730 0.533
Machinery and equipment 1.103 1.268 0.501 0.581
Electrical equipment 1.091 1.140 0.457 0.391
Computer, electronic, and optical products 1.003 1.139 0.554 0.505
Other manufacturing 0.990 1.078 0.514 0.431
Printing and reproduction of recorded media 0.895 1.032 0.482 0.468

Whole sample 1.179 1.333 0.708 0.604
Sample size 13,175

Notes: Markdowns are estimated using the IAB Establishment Panel (IAB BP) from 1994-2018 under the assumption
of a translog specification for gross output. Each industry group in manufacturing corresponds to the manufacturing
categorization of the Federal Statistical Office. The distributional statistics are calculated using sampling weights
provided in the data.
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Table 5: Summary Statistics for Labor Market Concentration – All Industries – 2018
(for different market definitions)

Mean Min Max 25th 75th fraction fraction
Pctile Pctile moderately highly

concentrated concentrated

Panel A. By Occupation × Region
Baseline geographical definition: 141 CZs
HHI (By 3-digit KldB 1988) 4243 34 10000 1357 6250 0.16 0.56

Alternative occupational definition:
HHI (By 3-digit KldB 2010) 3472 31 10000 950 5000 0.17 0.45
HHI (By 2-digit KldB 1988) 2980 40 10000 779 4286 0.18 0.39
HHI (By 2-digit KldB 2010) 1784 37 10000 446 2081 0.14 0.21
HHI (By 1-digit Blossfeld) 961 25 10000 277 1094 0.09 0.08

Alternative geographical definition:
HHI (By Kreis) 5246 37 10000 2000 10000 0.15 0.68
HHI (By 258 CZs) 4869 37 10000 1765 10000 0.15 0.64
HHI (By 42 regions) 2916 27 10000 698 4075 0.17 0.37
HHI (By Federal state) 2257 10 10000 422 3001 0.13 0.29

Panel B. By Industry × Region
Baseline geographical definition: 141 CZs
HHI (By 3-digit ISIC Rev.4) 4557 30 10000 1528 7812 0.15 0.61

Alternative industrial definition:
HHI (By 2-digit ISIC Rev.4) 3365 26 10000 885 5000 0.16 0.45

Alternative geographical definition:
HHI (By Kreis) 5552 43 10000 2356 10000 0.14 0.72
HHI (By 258 CZs) 5178 34 10000 2000 10000 0.15 0.68
HHI (By 42 regions) 3398 24 10000 797 5000 0.15 0.46
HHI (By Federal state) 2837 8 10000 562 4043 0.14 0.38

Notes: Based on data from the Employee History (BeH). The table shows summary statistics for labor market
Herfindahl-Hirschman Index (HHI) under various market definitions, for the year 2018 using German matched
employer-employee (longitudinal LIAB) data from the Federal Employment Agency. In the top panel, the baseline
is calculated using 141 commuting zones (CZs) for the geographic market definition and 3-digit KldB 1988 codes
for the occupational market definition. In the bottom panel, I use industry instead of occupation in the definition of
labor market. The baseline is calculated using 141 CZs for the geographic market definition and 3-digit ISIC Rev.4
(WZ2008) industry codes for the industrial market definition. The calculation under alternative market definitions is
done by changing the baseline along one dimension. Note that regions are a cluster of kreis (or counties in the U.S.)
and there are total of 42 regions in Germany.
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Table 6: Summary Statistics for Labor Market Concentration – Manufacturing – 2018
(for different market definitions)

Mean Min Max 25th 75th fraction fraction
Pctile Pctile moderately highly

concentrated concentrated

Panel A. By Occupation × Region
Baseline geographical definition: 141 CZs
HHI (By 3-digit KldB 1988) 5800 204 10000 2638 10000 0.13 0.76

Alternative occupational definition:
HHI (By 3-digit KldB 2010) 5285 145 10000 2200 10000 0.15 0.70
HHI (By 2-digit KldB 1988) 4907 183 10000 2000 8828 0.17 0.66
HHI (By 2-digit KldB 2010) 4022 177 10000 1429 5547 0.18 0.55
HHI (By 1-digit Blossfeld) 2871 150 10000 909 3863 0.18 0.38

Alternative geographical definition:
HHI (By Kreis) 6747 313 10000 3750 10000 0.10 0.86
HHI (By 258 CZs) 6327 253 10000 3333 10000 0.12 0.82
HHI (By 42 regions) 4814 75 10000 1724 9260 0.16 0.63
HHI (By Federal state 4152 75 10000 1250 6250 0.16 0.54

Panel B. By Industry × Region
Baseline geographical definition: 141 CZs
HHI (By 3-digit ISIC Rev.4) 6003 198 10000 3061 10000 0.11 0.80

Alternative industrial definition:
HHI (By 2-digit ISIC Rev.4) 4328 162 10000 1746 6250 0.18 0.62

Alternative geographical definition:
HHI (By Kreis) 7103 284 10000 4400 10000 0.07 0.91
HHI (By 258 CZs) 6645 310 10000 3750 10000 0.09 0.86
HHI (By 42 regions) 4721 113 10000 1911 7278 0.15 0.66
HHI (By Federal state) 4021 69 10000 1511 5702 0.18 0.57

Notes: Based on data from the Employee History (BeH). The table shows summary statistics for labor market
Herfindahl-Hirschman Index (HHI) for manufacturing sector under various market definitions, for the year 2018 using
Germanmatched employer-employee (longitudinal LIAB) data from the Federal Employment Agency. In the top panel,
the baseline is calculated using 141 commuting zones (CZs) for the geographic market definition and 3-digit KldB 1988
codes for the occupational market definition. In the bottom panel, I use industry instead of occupation in the definition
of labor market. The baseline is calculated using 141 CZs for the geographic market definition and 3-digit ISIC Rev.4
(WZ2008) industry codes for the industrial market definition. The calculation under alternative market definitions is
done by changing the baseline along one dimension. Note that regions are a cluster of kreis (or counties in the U.S.)
and there are total of 42 regions in Germany.
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Table 7: Labor Market-Level Effect of Robots on Markdowns: Long Difference

Dependent variable:
Change in aggregate markdowns, 1996-2018

(1) (2) (3) (4)

Panel A. OLS
Exposure to robots 0.0024* 0.0030* 0.0027* 0.0027*

(0.0013) (0.0018) (0.0016) (0.0016)
[0.0018] [0.0021] [0.0019] [0.0018]

R2 0.060 0.117 0.140 0.143

Panel B. 2SLS
Exposure to robots 0.0039**[**] 0.0050**[**] 0.0046**[**] 0.0045**[**]

(0.0019) (0.0023) (0.0020) (0.0020)
[0.0018] [0.0021] [0.0018] [0.0018]

First-stage F -stat on IVs 297.327 433.903 413.489 389.774
Hansen’s J-stat p-value 0.664 0.446 0.502 0.526
R2 0.055 0.110 0.133 0.137

Broad region dummies X X X X
Demographics X X X X
Manufacturing share X
Broad industry shares X X X
Exposure to net exports X X
Exposure to ICT equipment X

Notes: N = 212 local labor market regions (Landkreise und kreisfreie Staedte). Panel A presents the OLS results
from estimating the long difference in aggregate markdowns on the long difference in predicted robot exposure per
1000 workers between 1996 and 2018. Panel B reports results from the 2SLS IV regressions where German robot
exposure is instrumented with robot installations across industries in other high-income countries. All specifications
control for constant, broad region dummies and demographic characteristics of kreise or counties in the pre-shock
period. The broad region dummies indicate if the region is located in the north, west, south, or east of Germany. The
demographic controls constructed using the IABEstablishment Panel and thematched data include the share of females;
the share of foreigners; the share of workers over 50 years old; and the shares of workers with no vocational training,
vocational training, and university degree, measured in the base year 1996. Employment shares across industries are
based on BHP and BeH data and measured in 1994. The manufacturing share represents the employment share of
manufacturing workers in total employment. Broad industry shares are the shares of workers in nine broad industry
groups (agriculture, food products, consumer goods, industrial goods, capital goods, construction, consumer-related
services, business-related services, and public sector). Exposure to net exports and ICT equipment is measured by the
long difference in German net exports vis-à-vis China and 21 Eastern European countries (in 1000 euros per worker)
and by the long difference in German ICT equipment (in euros per worker), respectively, between 1996 and 2018.
Standard errors clustered at the level of 40 aggregate labor market regions are in parentheses. Shift-share standard
errors and statistical significance stars based on them are in brackets. Significance: *p < 0.10, **p < 0.05, and
***p < 0.01.
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Table 8: Summary Statistics (NRC, Routine, NRMWorkers)

NRC Routine NRM
Mean SD N Mean SD N Mean SD N

Log labor 2.381 1.540 7509 2.847 1.403 7331 2.535 1.579 5782
Labor cost (% revenue) 0.070 0.097 10168 0.104 0.115 10168 0.088 0.137 10168
Daily wage (€) 91.923 58.648 7498 73.180 36.563 7325 67.223 39.545 5776

Notes: The table summarizes the employment, wagebill, and daily wages for workers performing different tasks over the
period 1994-2018. The classification of workers is based on task intensity measures constructed using the BIBB/IAB
(1991-1992 and 1998-1999) and BIBB/BAuA Employment surveys (2006, 2012, and 2018). Employment and wagebill
information come from the IAB Establishment Panel (IAB BP) while daily wage comes from the matched employer-
employee (LIAB) data. The unit of observation is the firm, and sampling weights are applied. NRC, nonroutine
cognitive; NRM, nonroutine manual.

Table 9: Summary Statistics (High-skilled and Low-skilled Workers)

High-skilled Low-skilled
Mean SD N Mean SD N

Log labor 3.247 1.36 9837 2.013 1.501 6345
Labor cost (% revenue) 0.23 0.131 10243 0.032 0.073 10243
Daily wage (€) 79.522 43.428 9826 45.024 32.069 6336

Notes: The table summarizes the employment, wage bill, and daily wages for workers with different skills over the
period 1994-2018. High-skilled workers are those with vocational training and university degrees, whereas low-skilled
workers are those without vocational training. Employment and wage bill information come from the IAB Estab-
lishment Panel (IAB BP) while daily wage comes from the matched employer-employee (LIAB) data. The unit of
observation is the firm, and sampling weights are applied.

Table 10: Estimated Plant-level Markdowns for Heterogeneous Workers in German
Manufacturing

Median Mean IQR75-25 SD N

Panel A. NRC, Routine, and NRM workers
Routine workers 1.054 1.472 1.204 1.189 2029
Non-routine cognitive (NRC) workers 1.633 1.811 0.940 0.920 2029
Non-routine manual (NRM) workers 1.508 2.448 1.791 2.810 2029

Panel B. High-skilled and Low-skilled workers
High-skilled workers 1.088 1.242 0.628 0.573 4290
Low-skilled workers 1.565 2.074 1.627 1.816 4290

Notes: Markdowns are estimated using the IAB Establishment Panel (IAB BP) and the linked employer-employee
(LIAB) data under the assumption of a translog specification for gross output with heterogeneous labor inputs. Labor
inputs of production are heterogeneous by tasks performed at the workplace (panel A) and skill or education level (panel
B). In top panel, I group workers based on task intensity measures constructed using the BIBB/IAB and BIBB/BAuA
Employment Surveys. The distributional statistics are calculated using sampling weights provided in the data.
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Table 11: Difference between Markdown for Workers Performing Different Tasks Explained by
Observables and Job Tasks

NRC, Routine, and NRM

NRM(1) - NRC(2) NRM(1) - Routine(2) NRC(1) - Routine(2)
gap in explanatory gap in explanatory gap in explanatory

variables variables variables

Group 1 1.6842 (0.0478) 1.6842 (0.0478) 1.6944 (0.0182)
Group 2 1.6944 (0.0182) 1.5840 (0.0244) 1.5840 (0.0244)
Difference (1 - 2) -0.0103 (0.0512) 0.1002 (0.0537) 0.1104 (0.0305)
Endowments 0.0331 (0.0353) 0.0158 (0.0107) 0.0803 (0.0445)
Coefficients 0.3736 (0.1181) 0.0889 (0.0532) 0.1501 (0.0415)
Interaction -0.4170 (0.1147) -0.0045 (0.0226) -0.1200 (0.0533)

Notes: The table presents results from the Blinder-Oaxaca decomposition of wage markdowns for heterogeneous work-
ers performing different job tasks over the 1994-2018. The explanatory variables include workers’ average age and
worker composition of the group (shares of female, part-time, immigrant workers, and workers with vocational train-
ing and university degree). The standard errors are in parentheses. NRC, nonroutine cognitive; NRM, nonroutine
manual.

Table 12: Difference between Markdown for High-skilled and Low-skilled Workers Explained by
Observables and Skills

Low-skilled workers’ wage markdown equation;
Variables Low-skilled - High-skilled gap in explanatory variables

Low-skilled workers 2.6921 (0.0336)
High-skilled workers 1.0922 (0.0065)
Difference (Low-skilled - High-skilled) 1.6000 (0.0342)
Endowments -0.1370 (0.0133)
Coefficients 1.0866 (0.0609)
Interaction 0.6504 (0.0541)

Notes: The table presents results from the Blinder-Oaxaca decomposition of wage markdowns for high-skilled (with at
least vocational training) and low-skilled (without vocational training) workers over the 1994-2018. The explanatory
variables include workers’ average age and worker composition of the group (shares of female, part-time, immigrant
workers, and workers performing nonroutine cognitive and nonroutine manual tasks). The standard errors are in paren-
theses.
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A Theory Appendix

A.1 Derivation of Proposition 1

Using the expression of share of wage bill in total revenue at the industry level, we obtain

1

sL
− 1 =

∑
j zjxj − w(l)l

w(l)l
=

∑
j(zj − w(l))lj

w(l)l
. (A.1)

The wage markdown in equation (3) can be rewritten as

zj − w(l)

w(l)

lj
l

= εw

(
lj
l

)2

.

Taking the sum of above expression over firms in the industry, we get∑
j(zj − w(l))lj

w(l)l
= εw

∑
j

(
lj
l

)2

. (A.2)

Plugging (A.1) and expression of HHI into (A.2) yields

HHIl =
1

εw

(
1

sL
− 1

)
.

A.2 Derivation of Proposition 2

By rearranging the terms, simply rewrite the expression of zθ as

zθ =

M1∑
j=1

zj
1− θ

+

M2∑
j=M1+1

zj
1− riθ

+
M∑

j=M2+1

zj,
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and substituting zj expressions from the first order conditions in (6)-(8) into above, we obtain

zθ = (α + βl)M + βl.

By rearranging the term of this expression, we obtain the equilibrium employment as

l∗ =
m

β
(zθ − α(1/m− 1)),

wherem = 1/(M + 1).
The equilibrium wage follows as

w(l∗) = α + βl∗ = m(α + zθ).

A.3 Derivation of Proposition 3

Substituting the industry-level equilibrium employment shown in Proposition 2 into first order con-
ditions in (6)-(8), the equilibrium employment in individual firm j that adopts single and multiple
robots is defined respectively as

l∗j =
1

β
(zj/(1− θ)−mzθ − αm), j = 1, . . . ,M1, (A.3)

and
l∗j =

1

β
(zj/(1− rjθ)−mzθ − αm), j = M1 + 1, . . . ,M2. (A.4)

The equilibrium employment in labor-only firms, on the other hand, is

l∗j =
1

β
(zj −mzθ − αm), j = M2 + 1, . . . ,M. (A.5)

From (A.5) above, result (i) in Proposition 3 is immediate, i.e., ∂l∗j/∂zθ = −m/β < 0 for labor-
only employers.

To show result (ii), we need to find equilibrium employment for individual employers when no
firms automate. The profit maximization problem when no firms automate is

max
xj

zjxj − w(l)xj − f,

and the first order condition implies

zj = α + βlj + βl. (A.6)
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Denote z̄ =
∑M

j=1 zj/M and z = Mz̄. Using these, we find

z =
M∑
j=1

zj = (α + βl)M + βl,

and further derive the equilibrium industry-level employment as

l∗ =
m

β
(z − α(1/m− 1)).

By substituting this into the first order condition in (A.6) and rearranging the terms, the equilibrium
employment for individual employers when no firms automate is defined as

l∗j =
1

β
(zj −mz − αm).

Now we write employment in single-robot adopting firms to be higher than when no firms are
automated as follows to find necessary and sufficient condition of such situation:

1

β
(zj/(1− θ)−mzθ − αm) >

1

β
(zj −mz − αm),

which further reduces into
θ

(1− θ)
zj > m(zθ − z).

Breaking down and then rearranging the terms we can finally reach the following expression:

zj > (1− θ)m1z̄1 +
1− θ
θ

m2(z̄2 − z̄),

wherem1 = M1/(M+1),m2 = (M2−M1)/(M+1), and z̄ =
∑M

j zj/M =
∑M2

j=M1+1 zj/(M2−
M1) by construction. Here z̄2 > z̄ by definition due to productivity-enhancing impact of automa-
tion, so every term on the right hand side is positive.

A.4 Derivation of Proposition 4

The result in Proposition 4.1 is straightforward because automation increases equilibriumwagewith
no impact on productivity of labor-only firms, leading to drop in equilibrium wage markdowns in
such firms.

To show result in Proposition 4.2, note that the equilibrium markdown increases with automa-
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tion if and only if

zj/(1− θ)− w(l1)

w(l1)
>
zj − w(l0)

w(l0)
and

zj/(1− rjθ)− w(lR)

w(lR)
>
zj − w(l0)

w(l0)
,

where l0 is the equilibrium employment when no firms automate, l1 is the equilibrium employment
when some firms adopt single robot and others do not automate, and lR is the equilibrium employ-
ment when some firms adopt multiple robots, some adopt single robot, and others do not automate.
Above inequalities require, respectively

1

1− θ
>
w(l1)

w(l0)
⇔ α +

M∑
j=1

zj > α(1− θ) +

M1∑
j=1

zj +
M∑

j=M1+1

(1− θ)zj, (A.7)

and

1

1− rjθ
>
w(lR)

w(l0)
⇔

α +
M∑
j=1

zj > α(1− rjθ) +

M1∑
j=1

(
1− rjθ
1− θ

)
zj +

M2∑
j=M1+1

zj +
M∑

j=M2+1

(1− rjθ)zj,
(A.8)

to be satisfied.
I first examine the relationship in (A.7). It is easy to show that the equilibrium wage when no

firms automate (w(l0)) and when some firms adopt only single machine and others do not automate
(w(l1)) as below by solving the profit maximization problem in the two regimes:

w(l0) = m(α + z), w(l1) = m(α + zθ1),

where

z =
M∑
j=1

zj, z
θ
1 = M1z̄1 + (M −M1)z̄2, z̄1 =

M1∑
j=1

zj
(1− θ)M1

, z̄2 =
M∑

j=M1+1

zj
M −M1

,

whereM1 is the list of firms that adopt single machine, andM −M1 is the list of non-automation
firms. Using the expressions of equilibrium wages in the two regimes above, we can easily find
result in (A.7). If we further terminate the sum and rearrange the terms, the following inequality is
immediate

M∑
j=M1+1

zj > −α,

which is always true. So the equilibrium markdown in an industry with single-robot and labor-only
firms is always greater than that in an industry with no robot-adopting firms.
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Now I turn to the relationship in (A.9). Similarly solving the profit maximization problem under
two regimes: (i) no firms automate, and (ii) some firms adopt single machine, some adopt multiple
machines, and others do not automate, provides the following equilibrium wages under the two
regimes, respectively,

w(l0) = m(α + z), w(lR) = m(α + zθR),

where zθR ≡ zθ as in (9), and other expressions are same as above. Again, using these equilib-
rium wage equations, the result in (A.9) is immediate. Rearranging the terms yield the following
inequality:

M1∑
j=1

(
1− 1/rj

1− θ

)
zj −

M∑
j=M2+1

zj > −α,

which is also always true for rj > 1, θ > 0, and α > 0.
Finally, I will derive the result in Proposition 4.3. The equilibrium markdown in multiple-robot

firms (σRi ) is greater than that in single-robot firms (σ1
i ) if and only if

zj/(1− rjθ)− w(lR)

w(lR)
>
zj/(1− θ)− w(l1)

w(l1)
,

which would further require

1− θ
1− rjθ

>
w(lR)

w(l1)
⇔

− θα +

M1∑
j=1

zj +
M∑

j=M1+1

(1− θ)zj > −αrjθ +

M1∑
j=1

(
1− rjθ
1− θ

)
+

M2∑
j=M1+1

zj +
M∑

j=M2+1

(1− rjθ)zj

(A.9)

to hold. Rearranging the terms show that multiple-robot firms have greater equilibrium markdown
than single-robot firms if

M1∑
j=1

zj
1− θ

−
M2∑

j=M1+1

zj
rj − 1

+
M∑

j=M2+1

zj + α > 0.

It is easy to see that above inequality tends to always hold as robot adoption intensifies or ri > 1

increases.

A.5 Extension: Endogenous Exit-Entry and Endogenous Automation

Consider that firms can exit the market endogenously following the automation shock, and the
subsequent change in market structure affects the wage markdowns among surviving firms. Recall
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that the equilibrium profits of labor-only firms is

π0
j = zjl

∗
j − w(l∗)l∗j − f > (≤)0 ⇔

(
l∗j
l∗

)2

> (≤)
1

εw

f

w(l∗)l∗
.

So the firms to exit the market first subsequent to automation shock are the least productive labor-
only firms as they have the smallest labor shares. Highly productive automating firms operate in the
market since they have large labor shares and large labor market power. A reduction in the number
of firms operate in the industry due to automation shock attenuates the reduction in wage markdown
among the labor-only firms with low productivity, but magnifies the rise in wage markdown among
high productive firms.

Finally, suppose that automation decision is endogenous as opposed to exogenous automation
shock in the benchmark model. Since profit of single robot-adopting firm is

π1
j = zjlj/(1− θ)− w(l)lj − ρ(rj)− f,

the most productive firms among single-robot firms disproportionately benefit from automation
through the productivity effect 1/(1 − θ). Because high productive firms have higher labor share
lj/l and thus higher wage markdown εwlj/l, firms with high ex-ante wage markdowns are more
likely to find automation more profitable among single-machine firms.

For multiple-robot firms, employer profit is

πRj = zjlj/(1− rjθ)− w(l)lj − ρ(rj)rj − f,

and the derivative with respect to rj yields

θzjlj/(1− rjθ)2 − (ηj + 1)ρ(rj),

where ηj = ρ′(rj)rj/ρ(rj) is the elasticity of robot adoption cost with respect to number of robots
used at the firm, which is assumed to be constant. I assume that marginal cost of adopting an
incremental robots decreases, i.e., ρ′(rj) < 0, so that ηj < 0. Similar to single-robot firms, the
most productive firms among multiple-robot firms benefit from automation through productivity
effect 1/(1 − rjθ), but how much those most productive firms benefit from automation depends
on the elasticity ηj . To be specific, additional robot increases the profits of multiple-robot firms if
ηj < −1, and decreases the profits if −1 ≥ ηj < 0.
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B Data Appendix

B.1 Imputations

This section first describes how I approximate the capital stock in the IAB Establishment Panel. I
then explain how I impute education records and top-coded wage information in the worker-level
German administrative data.

B.1.1 Capital Stock Approximation

I use a perpetual inventorymethod following Mueller (2008, 2017) to compute the stock of capital,
one of the key ingredients in the production function estimation. One of the key inputs in using
the perpetual inventory approach is industry-specific average economic lives of capital goods, an
inverse of depreciation rate, which is obtained from Mueller (2017) at the time-consistent 2-digit
industry level for the periods 1993-2014. I merge this information with EP data at the 2-digit
industry level, which I generate from the 3-digit industry classification provided in the EP data.26

Given that the economic lives information is provided up to 2014 while my analysis spans until
2018, I extrapolate economic lives for four years between 2014-2018 by (i) keeping it constant and
the 2014 level and (ii) using 3-year moving average.27 Another issue with approximating capital
stock is the starting value of the capital stock.

Also Mueller (2008) proposes two approaches to compute the time series of capital stock using
either the average replacement investments over the whole sample period (KT) or the first three
years (K3) for each firm. I define these two types of capital stock series, following the procedure,
and which version of capital stock to use depends on the analysis. The latter performs better than
the earlier when the capital stock has a time trend, as it uses the short-term average as a starting
point. However, due to noisy investment data, the capital stock generated in this way, K3, is likely
to be misleading. However, the perpetual inventory routine slowly corrects the K3. So K3 might be
less appropriate when using between-firm information and OLS regression. However, it might be
more suitable for estimators that use only within-firm information using the GMM method. Since
the ACF method of production function estimation uses GMM to estimate production function
parameters, I primarily use the capital stock K3 in my analysis despite fewer observations than
KT.28

26Federal employment agency reports the time-consistent classification of economic activities at different aggrega-
tion levels.

27Since the average economic lives have been substantially stable over the years from 1993 to 2014 with small
variance, an extrapolation for four years is not expected to affect the results in any economically meaningful way. Also,
there is no record of any events that might have changed the dynamic pattern of the average economic lives of capital
goods. The results from production function estimation using these two different capital stocks are extremely similar.

28I also use KT in my production function estimation as a robustness check and find that estimates on production
function parameters remain the same.
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B.1.2 Imputation of Wages

I observe the nominal daily wage of each worker registered for social security purposes at the firm.
Since the wage data comes from social security records, it is generally highly reliable. However, a
common challenge of the wage data from the social security notifications is that the wage informa-
tion is recorded only until the social security contribution assessment ceiling. If a worker’s wage
exceeds this upper earnings limit, this value will be recorded as her wage, which differs by year and
location.29 Although only about 5% of the observations are subject to this top-coding procedure,
this censorship affects some groups of workers, e.g., high-skilled male workers above certain ages
in regular full-time employment. To address this censoring problem, I use a two-step imputation
procedure proposed by Dustmann et al. (2009), widely used in the literature, e.g., by Card et al.
(2013). First, I run a series of Tobit wage regressions—fit separately by year, East and West Ger-
many, and three educational groups—on worker characteristics, including gender, age range, and
tenure.

B.1.3 Imputation of Educational Attainments

I use the information on workers’ educational attainment to impute the right-censored wages. But
the highest level of workers’ educational attainment in the German administrative data is inconsis-
tent over time. For example, the educational attainment of an individual with a university degree
is recorded as an apprenticeship even if the individual has a university degree but did an appren-
ticeship later on. Following Fitzenberger et al. (2005), I correct such inconsistent developments in
educational attainment.

C Overview of Monopsony Measures
In a dynamic setting, a measure of monopsony based on a model pioneered by Manning (2003)
indirectly quantifies the wage elasticity to the firm by estimating its two components using the
following steady-state relationship:

εNw = εRw − εqw, (C.1)

where εNw is the wage elasticity of labor supply to the firm, εRw is the wage elasticity of the share of
recruits hired from employment, and εqw, is the wage elasticity of workers’ separation decisions to
either employment or unemployment. Manning (2021) calls this a “modern” monopsony in which
labor market frictions play a key role.

The classical monopsony in static settings has also been recently revived, and Card et al. (2018)
29The nominal wages and the assessment ceilings are deflated by the consumer price index from the Federal Statistical

Office to calculate the real wages.
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argue that the labor supply curve that an individual firm faces would be imperfectly elastic due
to idiosyncratic non-wage amenities offered by firms even if there are a small number of firms in
the labor market. The idea here is that a wage decline, for example, does not necessarily lead all
existing workers to leave because some might still like their idiosyncratic non-wage aspects. In this
strand, the wage elasticity of the labor supply curve to an individual firm j is derived as:

1

εj
=

1− sj
ε

(C.2)

where sj is the market share of the firm, and ε is the inverse of the elasticity of labor supply faced
by the firm as the labor supply is given by nj = ε−1(wj−bj) where nj is log employment, wj is log
wage, and bj is a labor supply shifter. Manning (2021) calls this as a “new classical” monopsony
in which non-wage amenities play in key role.

The measures of monopsony described above and in Section 5 are derived from theories. But
there are also some measures borrowed from other fields of economics. For example, one can
use concentration ratios for vacancies and employment using the Herfindahl index borrowed from
Industrial Organization (IO) literature (Azar et al., 2019). Relatedly, perfectly elastic labor supply
(or ε ≈ 0) implies perfect competition in the labor market, which is consistent with the monopsony
model, if a firm j’s market share is small (or sj ≈ 0) according to equation (C.2). One could also
use the number of employers in the labor market relative to the number of workers as a measure
of (inverse) employer power or monopsony. In particular, if the ratio of employers to workers is
lower, employer power is higher. Intuitively, the wage elasticity of labor supply positively relates
to the number of firms in the market since workers’ quit rate and labor supply elasticity would be
higher in a market with more employers or vacancies. For example, Chau and Kanbur (2021) used
this measure to analytically examine the impact of monopsony power on wage inequality in a labor
market with search frictions.

D Details of Production Function Estimation
Recall that I estimate the following production function in the log form,

yjt = f(vjt,kjt;β) + ωjt + εjt, (D.1)

where vjt is the log of fully flexible inputs Vjt, kjt is the log of non-fully flexible or fixed inputs
Kjt, and f(vjt,kjt;β) = ln(F (Vjt,Kjt;β)).

Firm-specific productivity ωjt unobserved by an econometrician but observed by the firm gen-
erates a problem of endogeneity for estimating the above production function. To address this
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problem, Levinsohn and Petrin (2003) suggest using the demand for intermediate materials30 mjt

as a proxy for productivity, which is given by

mjt = mt(ωjt;kjt, cjt), (D.2)

where cjt denotes a vector of any additional factors that affect a firm’s demand for material inputs,
such as input prices.

Under the assumption of strict monotonicity that the control functionmt(·) is strictly increasing
in ωjt31, one can invert equation (D.2) and express the productivity as

ωjt = m−1t (mjt;kjt, cjt) = gt(mjt;kjt, cjt). (D.3)

Substituting equation (D.3) into the production function in (D.1), we obtain the production as
a function of only observables

yjt = f(vjt,kjt;β) + gt(mjt;kjt, cjt) + εjt

= Φt(vjt,kjt, cjt) + εjt

= φjt + εjt.

(D.4)

I implement the ACF procedure to estimate the production function, which adopts a two-stage
procedure where each stage uses a different moment condition. To perform the procedure, I take
vjt = mjt, kjt = (kjt, ljt)

′, and cjt contains additional controls, the firm fixed effects and year fixed
effects. Equation (D.4) is the first-stage estimation. The first stage is performed by OLS regression
of yjt on third-degree polynomial in x̃jt = (kjt, ljt,mjt)

′ with interaction terms and cjt to obtain
φ̂jt. For translog production technology, we have

xjt = (kjt, ljt,mjt, kjtljt, kjtmjt, ljtmjt, k
2
jt, l

2
jt,m

2
jt)
′. (D.5)

Similar to OP and LP models, the ACF model assumes that the firm’s information set at t, Ijt,
includes current and past productivity shocks {ωjτ}tτ=0 but does not include future productivity
shocks {ωjτ}∞τ=t+1. Hence, the transitory shocks εjt satisfy E(εjt|Ijt) = 0. Under this assumption,

30The control function approach is also called as “proxy variable” method as it uses the intermediate inputs (in
cases of ACF and LP) or investment (in case of OP) as a proxy variable. Investments, ijt, rather than intermediate
inputs,mjt, can also be used as the proxy variable in the ACF procedure; however, one would lose the ability to allow
serially correlated, unobserved, firm-specific input price shocks to ijt and ljt. Hence, the ACF method primarily uses
intermediate inputs as a proxy variable.

31Intuitively, the strict monotonicity assumption implies that more productive firms use more intermediate materials,
which is plausible. Another advantage of proxying a firm’s productivity at time t with its materials purchase at period
t is that intermediate inputs purchased in period t are likely to be mainly used in production at time t. Although firms
can store some materials for future production, this is likely relatively small.
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the first-stage moment condition is

E(εjt|Ijt) = E[yjt − φjt|Ijt] = 0. (D.6)

In the first stage of ACF, none of the parameters will be estimated, but it generates an estimate
φ̂jt using the above moment condition. Now we turn to the second-stage estimation. The firm
productivity is assumed to evolve according to the following distribution, known to the firm,

p(ωit+1|Ijt) = p(ωjt+1|ωjt), (D.7)

which is stochastically increasing in ωjt. Using this assumption on the evolution of productivity
shocks and information set above, one can decompose ωjt into its conditional expectation at t− 1

and an innovation term, i.e.,

ωjt = E(ωjt|Ijt−1) + ξjt = E(ωjt|ωjt−1) + ξjt = h(ωjt−1) + ξjt, (D.8)

where E(ξjt|Ijt−1) = 0. Substituting this into production function in (D.1), we get

yjt = f(xjt;β) + h(ωjt−1) + ξjt + εjt

= f(xjt;β) + h [φt−1 − f(xjt−1;β)] + ξjt + εjt,
(D.9)

where the second line follows from the definition of φt−1.
Since E(ξjt|Ijt−1) = 0 and E(εjt|Ijt) = 0 (which also implies E(εjt|Ijt−1) = 0), the second

stage of ACF estimation procedure uses the following moment condition:

E(ξjt + εjt|Ijt−1)

= E[yjt − f(xjt;β)− h
(
φ̂t−1 − f(xjt−1;β)

)
|Ijt−1] = 0,

(D.10)

where φt−1 is replaced by its estimate from the first stage. Wooldridge (2009) pointed out that the
functions φt and h can be thought of as IV estimators. Additionally, Yeh et al. (2022) discuss how
the identification of the ACF estimator can be interpreted through the logic of an IV estimator. We
transform conditional moments into unconditional moments for actual estimation. To illustrate the
second-stage moment conditions, suppose that the productivity process is defined as

ωjt = st(ωjt−1) + ξjt. (D.11)

Then I approximate the productivity in the data as

ωjt(β) = φ̂jt − f(xjt;β). (D.12)
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Then, I approximate st(·) with P th-order polynomial in its arguments

ωjt(β) = Ωjt−1(β)′ρ(β) + ξjt

=
P∑
p=0

ρpω
p
jt−1(β) + ξjt.

(D.13)

Thus, the innovations to productivity are constructed as a function β as

ξjt = ωjt(β)− Ωjt−1(β)′ρ̂(β), (D.14)

where ρ̂(β) = ({ρ̂p}Pp=1)
′ is obtained by regressing Ωjt−1(β) on ωjt(β) with OLS, and I set P = 3

following De Loecker and Warzynski (2012) and Yeh et al. (2022).
Following De Loecker and Warzynski (2012) and Yeh et al. (2022), I define the instrument

zjt ∈ RZ as the vector that contains one-period lagged values of every polynomial term in f(xjt;β)

including ljt andmjt but capital at the current period kjt. Thus, the system of second stage moment
conditions for GMM estimation to identify β ∈ RZ is defined as

E(ξjt(β)zjt) = 0Z×1. (D.15)

Now I briefly discuss assumptions behind the moment conditions. First, labor input ljt is assumed
to be chosen at period t, t− 1, or somewhere between the two periods at t− b where 0 < b < 1. It
allows labor to have some dynamic pattern and addresses the fact that labor inputs are more flexible
than capital. Given some adjustment costs and other frictions in the labor market, for example, due
to labor contracts, ljt is modeled to be chosen at t− b, not all the points between t and t− 1. In this
sense, labor is not a perfectly variable input in the ACF, which is a weaker assumption than the OP
in which labor is perfectly variable. Assumption that labor is chosen after time t − 1 implies that
ljt is correlated with ξjt.

Second, the capital kjt is assumed to be accumulated according to the following form:

kjt = κ(kjt−1, ijt−1), (D.16)

where investment ijt−1 is chosen in period t−1. Thus, we assume that the firm’s choice of capital at
time t is predetermined in period t−1 with choices of kjt−1 and ijt−1. So it is safe to assume that kjt
is orthogonal to ξjt + εjt. For other terms in the “instrument”, they all take their one-period lagged
values, which must be orthogonal to the current period innovations (except for capital investment)
because firms cannot observe their idiosyncratic shocks in the future.
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E Additional Results on Markdowns

E.1 Markdown Trend under Cobb-Douglas Specification

As an alternative to my baseline choice of the functional form of the production function, translog, I
estimate the production function and thus markdowns using Cobb-Douglas specification. Appendix
Figure E.1 illustrates the time trend of aggregate markdowns. The result suggests that my estimates
are not entirely but generally robust to this different functional form.

Figure E.1: Time Evolution of Aggregate Markdowns under Cobb-Douglas Specification,
1994-2018

Notes: Markdowns are constructed using the IAB Establishment Panel (IAB BP) data from 1994-2018 under the as-
sumption of Cobb-Douglas production and aggregated according to expression (15) and (17). The employment share
of labor market ωklt is based on total number of employees.

E.2 Markups

Appendix Table E.1 reports the estimates for markups. The summary statistics are provided for
each industry group. The results indicate a presence of market power in output markets: producers
have about 30 percent (24 percent) of market power at the plant-year level at the mean (median). In
contrast to markdowns, variations of markups across and within industry groups are significantly
smaller than variations ofmarkdowns. The IQR and standard deviation ofmarkups are 19.7 percent.

Although these estimates of markups are informative, they are subject to bias because physical
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outputs are proxied by revenues deflated by 2-digit industry-level prices (Klette and Griliches, 1996;
Bond et al., 2021). So one should take these markup estimates as lower bounds for market power
in output markets. Fortunately, our estimates of markdown, which is my main focus in this paper,
are still valid with these estimates of markups as the bias cancels out in the equation (13). So the
markdowns estimated using deflated revenues are not subject to Bond et al. (2021)’s critique when
the markups are used to obtain estimates for markdowns. A formal proof can be found in Online
Appendix O.6 of Yeh et al. (2022).

Table E.1: Estimated Plant-level Markups in German Manufacturing

Industry group Median Mean IQR75-25 SD

Wearing apparel 1.403 1.427 0.276 0.235
Leather and related products 1.335 1.366 0.231 0.197
Beverages 1.331 1.434 0.316 0.348
Other transport equipment 1.316 1.391 0.298 0.238
Chemicals and chemical products 1.312 1.350 0.177 0.161
Rubber and plastics 1.301 1.339 0.287 0.221
Furniture 1.258 1.306 0.173 0.199
Other non-metallic minerals 1.223 1.231 0.101 0.075
Wood and wood products (excl. furniture) 1.221 1.235 0.160 0.131
Paper and paper products 1.221 1.264 0.156 0.141
Basic pharmaceutical products 1.217 1.332 0.216 0.265
Textiles 1.214 1.273 0.260 0.149
Food products 1.214 1.257 0.111 0.180
Repair and installation of machinery and equipment 1.212 1.260 0.151 0.168
Motor vehicles, trailers, and semi-trailers 1.206 1.252 0.053 0.127
Fabricated metals, excl. machinery and equipment 1.186 1.215 0.109 0.108
Basic metals 1.185 1.196 0.129 0.100
Machinery and equipment 1.176 1.209 0.108 0.118
Electrical equipment 1.166 1.182 0.035 0.069
Computer, electronic, and optical products 1.166 1.255 0.241 0.200
Other manufacturing 1.160 1.203 0.083 0.160
Printing and reproduction of recorded media 1.137 1.202 0.112 0.163

Whole sample 1.243 1.299 0.197 0.197
Sample size 13,175

Notes: Markups are estimated using the IAB Establishment Panel (IAB BP) data from 1994-2018 under the assumption
of a translog specification for gross output. Each industry group in manufacturing corresponds to the manufacturing
categorization of the Federal Statistical Office. The distributional statistics are calculated using sampling weights
provided in the data.

Appendix Figure E.2 presents the time series for the aggregate markup. The markup is aggre-
gated at the market level according to equation (16). Then, we aggregate markups across markets
through employment weights. As briefly discussed above, firm-level markups estimated using de-
flated revenues instead of physical outputs are biased, and thus the aggregate markups are biased.
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This bias will not contaminate the markdowns. While we should take the markup estimates cau-
tiously, a trend in aggregate markups could be informative. I find that the markup trend in German
manufacturing is not monotonic. The markup sharply declined between 1994 and 1998. But it has
been increasing since 1999. The markup level has not reached back its 1994 level yet by 2018.

Figure E.2: Time Evolution of Employment-Weighted Markups across German Manufacturing
Plants from 1994 to 2018

Notes: Markups are constructed using the IAB Establishment Panel (IAB BP) data from 1994-2018 under the assump-
tion of translog production and aggregated according to expressions (16) and (18). The employment share of labor
market ωjlt is based on total number of employees.

E.3 Cross-Sectional Correlation between Aggregate Markdown and Labor
Market Concentration

Appendix Table E.2 presents the cross-sectional correlation (across labor markets–a combination
of 3-digit industries and federal states) between the aggregate markdown Vklt and labor market con-
centration HHIklt. The correlation between aggregate markdown and labor market concentration
calculated using the same dataset (IAB Establishment Panel–IAB BP) is positive and statistically
significant at the 1% level on average; however, the correlation coefficient is 0.04, which is close to
zero (second column).

To check the robustness of my baseline employment HHI measure calculated using IAB BP
data, I compute the same index according to equation (19) based on the matched data (LIAB). The
cross-section correlation between the two HHIs is strong, positive, and statistically significant at
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the 1% level most of the time (third column). Across years and on average, the correlation between
aggregate markdown and LIAB-based HHI is mostly positive but sometimes statistically significant
(fourth column).

Table E.2: Correlation between Employment HHIs and Aggregate Markdowns across Local
Labor Markets

Year ρ(Vjlt,HHIIAB-BPjlt ) ρ(HHIIAB-BPjlt ,HHILIABjlt ) ρ(Vjlt,HHILIABjlt )

1994 0.2391 0.3946 -0.0756
1996 -0.0162 0.1818** 0.0212
1998 0.1797*** 0.1436** 0.1800***
2000 0.0573 0.1486** 0.1019*
2002 0.0914* 0.2113*** 0.0719
2004 0.0666 0.2029*** 0.1131**
2006 0.0338 0.2266*** 0.1084**
2008 -0.0089 0.2412*** 0.1189**
2010 -0.0147 0.3284*** 0.0260
2012 0.0405 0.2669*** 0.1555***
2014 -0.0180 0.2230*** 0.0308
2016 -0.0063 0.1379** 0.0501
2018 0.0349 0.2607*** 0.1087

Average 0.0388*** 0.2160*** 0.0891***
Notes: Markdowns are estimated using the IAB Establishment Panel (IAB BP) data from 1994-2018 under the assump-
tion of a translog specification for gross output. The cross-market correlations are calculated at the 3-digit ISIC-state
level every other year. Aggregate markdowns are calculated according to equation (15) whereas labor market concen-
tration HHIklt is calculated according to equation (19) using either IAB BP and matched employer-employee (LIAB)
data, which are highlighted in the superscript. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.

F Robustness Checks

F.1 Robustness of Automation Effects on Markdown of Heterogeneous
Workers Performing Different Tasks

F.1.1 Classification of Workers

This appendix performs the robustness check of my results on the effects of automation on mark-
downs for heterogeneous workers performing different job tasks at their workplaces using an alter-
nativemeasure of task intensity. Inmy baseline analysis, I define heterogeneousworkers performing
different tasks based on task intensity measures constructed using Germany’s BIBB/IAB and BIB-
B/BAuA Employment Surveys and an approach by Antonczyk et al. (2009). But, in this appendix,
I check the robustness of my results with heterogeneous workers performing different tasks to the
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use of alternative task intensity measures proposed by Autor and Dorn (2013).32

Since Autor and Dorn (2013) create their measures of task content or task inputs for each occu-
pation in the U.S. using O∗NET data, the values of the indices could be different from the values of
indices constructed using the German dataset of BIBB/IAB and BIBB/BAuAEmployment Surveys.
However, it is reasonable to consider that these two different measures are comparable. Specifically,
they build three measures of abstract, routine, and manual task inputs for their constructed version
of 3-digit 1990 U.S. Census occupations (occ1990dd). I match them with German administrative
data through Germany’s 5-digit KldB 2010 occupation classifications based on several crosswalks.
First, I obtain Autor and Dorn (2013)’s version of 3-digit 1990 U.S. Census occupations matched
with 3-digit 2000 U.S. Census occupations (occ2000) from Acemoglu and Autor (2011)’s data
appendix of task measure construction. Then I match that with the 6-digit 2000 Standard Occu-
pational Classification (SOC) via 3-digit 2000 U.S. Census occupations using their crosswalks.33

After that, using crosswalks obtained from the Institute for Structural Research (IBS),34 I matched
the occ1990dd to the 6-digit 2010 SOC and then to the 4-digit 2008 International Standard Clas-
sification of Occupations (ISCO-08). Finally, I match it with the 5-digit German Klassifikation der
Berufe 2010 (KldB 2010) via 4-digit ISCO-08 using a crosswalk obtained from Germany’s Federal
Employment Agency (Bundesagentur für Arbeit).35 After all these crosswalks, I have Autor and
Dorn (2013)’s three measures for abstract, routine, and manual task inputs merged to Germany’s
linked employer-employee data at the 5-digit occupations level.

The three indices for abstract, routine, and manual task inputs in each occupation o in 1980,
which are scaled between zero and ten, are denoted as TAo,1980, TRo,1980, and TMo,1980, respectively,
before merging with the matched data. But after matching these with the linked data (LIAB), I
denote them as TAijt, TRijt, or TMijt although the values are the same across worker i, firm j, and year
t within an occupation o. Since I have an individual index i, I drop the occupation index o. Then,
following Acemoglu et al. (2023), I normalize these three measures to have mean zero and unit
standard deviation. Using these indices, I determine whether a worker i at firm j in year t is an
abstract, routine, or manual worker if the maximum of the three normalized tasks inputs measure
is TAijt, TRijt, or TMijt , respectively.

Appendix Table F.1 summarizes the employment, wage bill, and daily wage for abstract, routine,
and manual workers.

32I obtained Autor and Dorn (2013)’s occupational task measures from David Dorn’s website:
https://www.ddorn.net/data.htm#Occupational%20Tasks

33The data files of task measure construction and the crosswalks are available on David Autor’s website:
https://economics.mit.edu/people/faculty/david-h-autor/data-archive

34https://ibs.org.pl/app/uploads/2016/04/onetsoc_to_isco_cws_ibs_en1.pdf
35The crosswalk between 4-digit ISCO-08 and 5-digit KldB 2010 can be downloaded from https:

//statistik.arbeitsagentur.de/DE/Statischer-Content/Grundlagen/Klassifikationen/
Klassifikation-der-Berufe/KldB2010-Fassung2020/Arbeitsmittel/Generische-Publikationen/
Umsteigeschluessel-KLDB2020-ISCO08.xlsx.
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Table F.1: Summary Statistics (Abstract, Routine, and Manual Workers)

Abstract Routine Manual
Mean SD N Mean SD N Mean SD N

Log labor 2.610 1.403 6923 2.873 1.461 8396 2.335 1.375 6653
Labor cost (% revenue) 0.067 0.102 10002 0.126 0.122 10002 0.068 0.102 10002
Daily wage (€) 116.015 70.590 6920 74.741 36.667 8387 66.442 45.058 6646

Notes: The table summarizes the employment, wagebill, and daily wages for abstract, routine, and manual workers
over the period 1994-2018. The classification of workers is based on Autor and Dorn (2013)’s task content/inputs
measures. Employment and wagebill information come from the IAB Establishment Panel (IAB BP) while daily wage
comes from the matched employer-employee (LIAB) data. The unit of observation is the firm, and sampling weights
are applied.

F.1.2 Estimated Markdowns

Appendix Table F.2 presents the estimated plant-level markdowns, which are strongly consistent
with my baseline results. Specifically, routine workers are subject to the lowest monopsony power,
while manual workers are subject to the highest labor market power on average.

Table F.2: Estimated Plant-level Markdowns for Workers Performing Different Job Tasks in
German Manufacturing (based on Autor-Dorn measure)

Median Mean IQR75-25 SD N

Routine workers 1.015 1.121 0.630 0.526 3790
Abstract workers 1.129 1.386 0.990 0.922 3790
Manual workers 1.549 1.962 1.144 1.567 3790

Notes: Markdowns are estimated using the IAB Establishment Panel (IAB BP) and the linked employer-employee
(LIAB) data under the assumption of a translog specification for gross output with heterogeneous labor inputs. Labor
inputs of production are heterogeneous by tasks performed at the workplace. I classify workers based on Autor and
Dorn (2013)’s task contents measures. The distributional statistics are calculated using sampling weights provided in
the data.

The distribution of markdowns for abstract, routine, and manual workers, plotted in Appendix
Figure F.1, is generally the same for nonroutine cognitive, routine, and nonroutine manual workers
in the baseline analysis.

Appendix Table F.3 presents results from the Blinder-Oaxaca decomposition on the contribution
of worker characteristics to the gap in markdowns due to job task differences. The result shows that
unobserved task differences explain a significant part of the overall differential between markdowns
for workers performing different job tasks after accounting for worker’s observable characteristics.
Appendix Table G.3 reports the detailed results from the Blinder-Oaxaca decomposition analysis.
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Figure F.1: Distributions of Wage Markdowns for Abstract, Routine, Manual Workers, 1996-2018

Notes: Based on the IAB Establishment Panel and matched employer-employee (LIAB) data. The classification of ab-
stract, routine, and manual task-performing workers is based on Autor and Dorn (2013)’s task contents measures. The
figure depicts the markdown distributions for abstract, routine, and manual workers every other year from 1996-2018.

Table F.3: Difference between Markdown for Workers Performing Different Tasks Explained by
Observables and Job Tasks (Autor-Dorn)

Abstract, routine, and manual workers
Manual(1) - Abstract(2) Manual(1) - Routine(2) Abstract(1) - Routine(2)
gap in explanatory gap in explanatory gap in explanatory

variables variables variables

Group 1 1.9210 (0.0194) 1.9210 (0.0194) 1.4287 (0.0142)
Group 2 1.4287 (0.0142) 1.2661 (0.0087) 1.2661 (0.0087)
Difference (1 - 2) 0.4923 (0.0240) 0.6550 (0.0213) 0.1626 (0.0167)
Endowments -0.0206 (0.0155) -0.0151 (0.0062) -0.1368 (0.0256)
Coefficients 0.2292 (0.0431) 0.6329 (0.0234) 0.1414 (0.0235)
Interaction 0.2837 (0.0404) 0.0372 (0.0152) 0.1580 (0.0305)

Notes: The table presents results from the Blinder-Oaxaca decomposition of wage markdowns for heterogeneous work-
ers performing different job tasks over the 1994-2018. The explanatory variables include workers’ average age and
worker composition of the group (shares of female, part-time, immigrant workers, and workers with vocational train-
ing and university degree). The standard errors are in parentheses.
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G Additional Figures and Tables

Table G.1: Difference between Markdown for Workers Performing Different Tasks Explained by
Observables and Job Tasks

NRC, Routine, and NRM

NRM(1) - NRC(2) NRM(1) - Routine(2) NRC(1) - Routine(2)
gap in explanatory gap in explanatory gap in explanatory

variables variables variables

Overall
Group 1 1.6842 (0.0478) 1.6842 (0.0478) 1.6944 (0.0182)
Group 2 1.6944 (0.0182) 1.5840 (0.0244) 1.5840 (0.0244)
Difference (1 - 2) -0.0103 (0.0512) 0.1002 (0.0537) 0.1104 (0.0305)
Endowments 0.0331 (0.0353) 0.0158 (0.0107) 0.0803 (0.0445)
Coefficients 0.3736 (0.1181) 0.0889 (0.0532) 0.1501 (0.0415)
Interaction -0.4170 (0.1147) -0.0045 (0.0226) -0.1200 (0.0533)

Endowments
Share of female workers -0.0804 (0.0162) -0.0007 (0.0012) 0.0134 (0.0189)
Share of workers with vocational training 0.0029 (0.0318) -0.0031 (0.0039) 0.0653 (0.0233)
Share of workers with university degree 0.2109 (0.0539) 0.0030 (0.0074) -0.0204 (0.0509)
Share of immigrant workers -0.0793 (0.0178) -0.0057 (0.0036) 0.0163 (0.0079)
Share of part-time workers -0.0007 (0.0024) 0.0081 (0.0056) 0.0219 (0.0063)
Age -0.0203 (0.0085) 0.0143 (0.0059) -0.0161 (0.0062)

Coefficients
Share of female workers -0.1733 (0.0806) -0.0185 (0.0462) 0.0761 (0.0291)
Share of workers with vocational training -0.5031 (0.2100) -0.2368 (0.2316) 0.3772 (0.2112)
Share of workers with university degree 0.4997 (0.1449) 0.0637 (0.0324) -0.0461 (0.0196)
Share of immigrant workers 0.0117 (0.0085) -0.0283 (0.0217) -0.0634 (0.0216)
Share of part-time workers 0.2783 (0.0311) 0.1470 (0.0243) -0.0518 (0.0167)
Age -1.4057 (0.3577) -0.5175 (0.3668) 0.8449 (0.2294)
Intercept 1.6660 (0.3614) 0.6792 (0.3545) -0.9868 (0.2808)

Interaction
Share of female workers 0.0825 (0.0386) 0.0008 (0.0021) 0.0633 (0.0243)
Share of workers with vocational training -0.1162 (0.0490) -0.0020 (0.0032) -0.0681 (0.0383)
Share of workers with university degree -0.4467 (0.1297) -0.0330 (0.0173) -0.1636 (0.0693)
Share of immigrant workers 0.0317 (0.0233) -0.0067 (0.0057) 0.0423 (0.0147)
Share of part-time workers -0.0500 (0.0194) 0.0218 (0.0144) -0.0207 (0.0073)
Age 0.0817 (0.0222) 0.0146 (0.0108) 0.0269 (0.0081)

Notes: The table presents results from the Blinder-Oaxaca decomposition of wage markdowns for heterogeneous work-
ers performing different job tasks over the 1994-2018. The explanatory variables include workers’ average age and
worker composition of the group (shares of female, part-time, immigrant workers, and workers with vocational training
and university degree). NRC, nonroutine cognitive; NRM, nonroutine manual. The standard errors are in parentheses.
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Table G.2: Difference between Markdown for High-skilled and Low-skilled Workers Explained
by Observables and Skills

Low-skilled workers’ wage markdown equation;
Variables Low-skilled - High-skilled gap in explanatory variables

Overall
Low-skilled workers 2.6921 (0.0336)
High-skilled workers 1.0922 (0.0065)
Difference (Low-skilled - High-skilled) 1.6000 (0.0342)
Endowments -0.1370 (0.0133)
Coefficients 1.0866 (0.0609)
Interaction 0.6504 (0.0541)

Endowments
Share of female workers 0.0032 (0.0011)
Share of workers performing cognitive tasks 0.0172 (0.0040)
Share of workers performing manual tasks -0.0010 (0.0010)
Share of immigrant workers -0.0085 (0.0050)
Share of part-time workers 0.0003 (0.0004)
Age -0.1482 (0.0124)

Coefficients
Share of female workers -0.0462 (0.0304)
Share of workers performing cognitive tasks 0.1316 (0.0424)
Share of workers performing manual tasks -0.0344 (0.0175)
Share of immigrant workers -0.0208 (0.0073)
Share of part-time workers 0.0539 (0.0159)
Age -2.8633 (0.1587)
Intercept 3.8658 (0.1249)

Interaction
Share of female workers -0.0040 (0.0028)
Share of workers performing cognitive tasks -0.053 (0.0172)
Share of workers performing manual tasks -0.0075 (0.0040)
Share of immigrant workers -0.0369 (0.0130)
Share of part-time workers 0.0016 (0.0022)
Age 0.7501 (0.0432)

Notes: The table presents results from the Blinder-Oaxaca decomposition of wage markdowns for high-skilled (with at
least vocational training) and low-skilled (without vocational training) workers over the 1994-2018. The explanatory
variables include workers’ average age and worker composition of the group (shares of female, part-time, immigrant
workers, and workers performing nonroutine cognitive and nonroutine manual tasks). The standard errors are in paren-
theses.
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Table G.3: Difference between Markdown for Workers Performing Different Tasks Explained by
Observables and Job Tasks (Autor-Dorn)

Abstract, routine, and manual workers
Manual(1) - Abstract(2) Manual(1) - Routine(2) Abstract(1) - Routine(2)
gap in explanatory gap in explanatory gap in explanatory

variables variables variables

Overall
Group 1 1.9210 (0.0194) 1.9210 (0.0194) 1.4287 (0.0142)
Group 2 1.4287 (0.0142) 1.2661 (0.0087) 1.2661 (0.0087)
Difference (1 - 2) 0.4923 (0.0240) 0.6550 (0.0213) 0.1626 (0.0167)
Endowments -0.0206 (0.0155) -0.0151 (0.0062) -0.1368 (0.0256)
Coefficients 0.2292 (0.0431) 0.6329 (0.0234) 0.1414 (0.0235)
Interaction 0.2837 (0.0404) 0.0372 (0.0152) 0.1580 (0.0305)

Endowments
Share of female workers 0.0007 (0.0008) -0.0076 (0.0039) -0.0083 (0.0043)
Share of workers with vocational training -0.0067 (0.0344) 0.0013 (0.0018) 0.1014 (0.0169)
Share of workers with university degree -0.0017 (0.0418) -0.0060 (0.0022) -0.2200 (0.0311)
Share of immigrant workers -0.0048 (0.0032) 0.0028 (0.0011) 0.0068 (0.0024)
Share of part-time workers -0.0031 (0.0080) 0.0027 (0.0027) -0.0018 (0.0018)
Age -0.0051 (0.0022) -0.0082 (0.0020) -0.0149 (0.0031)

Coefficients
Share of female workers 0.0347 (0.0171) 0.0584 (0.0254) -0.0013 (0.0206)
Share of workers with vocational training -0.5635 (0.1023) -0.4883 (0.1043) 0.3161 (0.1291)
Share of workers with university degree -0.5017 (0.0779) -0.0413 (0.0123) 0.0481 (0.0115)
Share of immigrant workers -0.0256 (0.0065) -0.0571 (0.0106) -0.0023 (0.0109)
Share of part-time workers 0.0900 (0.0089) 0.1262 (0.0100) -0.0089 (0.0110)
Age -1.1429 (0.1569) -0.5219 (0.1306) 0.5709 (0.1164)
Intercept 2.3382 (0.1856) 1.5569 (0.1442) -0.7813 (0.1592)

Interaction
Share of female workers 0.0023 (0.0016) -0.0221 (0.0097) 0.0005 (0.0086)
Share of workers with vocational training -0.2378 (0.0435) 0.0019 (0.0027) -0.0946 (0.0387)
Share of workers with university degree 0.4009 (0.0625) -0.0052 (0.0023) 0.2218 (0.0531)
Share of immigrant workers -0.0173 (0.0048) 0.0123 (0.0035) 0.0012 (0.0058)
Share of part-time workers 0.1131 (0.0125) 0.0635 (0.0082) 0.0030 (0.0037)
Age 0.0225 (0.0051) -0.0131 (0.0038) 0.0261 (0.0057)

Notes: The table presents results from the Blinder-Oaxaca decomposition of wage markdowns for heterogeneous work-
ers performing different job tasks over the 1994-2018. The explanatory variables include workers’ average age and
worker composition of the group (shares of female, part-time, immigrant workers, and workers with vocational training
and university degree). NRC, nonroutine cognitive; NRM, nonroutine manual. The standard errors are in parentheses.
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