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Abstract

This paper analyzes the returns to training-occupation combinations. I use ad-

ministrative panel data on apprenticeships and employment for German workers, and

identify the returns using data on occupation-specific vacancies. For the estimation,

I set up a Roy model and extend existing control function approaches to deal with

selection in a two-stage, high-dimensional setting. I find sizable returns to training

in one’s occupation, and substantial bias when not controlling for selection. Returns

are decreasing in the task distance between training and occupation. I argue that im-

perfect information leads to ex-post suboptimal training choices, and that retraining

could address this ex-ante friction.
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1 Introduction

Since the seminal work by Becker (1964) and Mincer (1974), a large body of literature in

economics has sought to causally identify the returns to education. This work has focused on

estimating the returns to additional years of schooling by running so-called Mincerian regres-

sions, using different approaches to overcome biases typically interpreted as resulting from an

omitted ability variable. More recently, a growing number of papers explores the heterogene-

ity of these returns across college majors, generally concluding that the earnings differentials

across fields of education are large (e.g. Arcidiacono (2004), Altonji et al. (2012)). How-

ever, while much of this literature acknowledges that average returns to major likely mask

important heterogeneity across occupations, we know little about the interactions between

field and occupation. In particular, the wage effects of working outside one’s field are largely

unknown. The present paper aims to bridge this gap in the literature. Understanding the

differential returns to field-occupation combinations provides important insights on the value

of field-specific human capital across occupations. Importantly, it also reveals key welfare

and policy implications since workers could hold suboptimal trainings ex-post.

The challenges faced in estimating these returns are twofold. Firstly, datasets recording

the field of education and occupation are often survey-based, and field-occupation matches

are typically classified as “related” or “unrelated” in a subjective way. Secondly, and more

importantly, causal identification requires accounting for the fact that individuals select into

a field, but also subsequently select into one of many occupations. While descriptive studies

show that working in an occupation related to one’s field is associated with higher earnings,

it is unknown to what extent this is driven by selection effects.1 As Altonji et al. (2016)

note, the fact that workers select at two stages and the first stage choice affects the return

across options in the second stage poses a formidable estimation problem.

I address the first challenge by using administrative panel data on German apprentices

and their subsequent careers for 1975-2010. Apprenticeships are the main form of upper-

and post-secondary education in Germany, held by around 70% of those who obtained this

level of education. An average of 40% of those are employed in an occupation different

from the one they were trained in. The data contains information on all (un)employment

spells. Importantly, since apprentices are partly trained in firms during their three-year

apprenticeship, the data also contains the occupation workers were working in as apprentices

(their training). As a result, trainings and occupations are objectively recorded, and defining

training-occupation cells is straightforward. The full matrix of combinations has training as

1Examples of studies that find such correlations using subjective classifcations of field-occupation matches
include Robst (2007), Nordin et al. (2010) and Lemieux (2014). Kinsler & Pavan (2015) build a structural
model and find sizeable returns to working in an occupation ”related” to one’s college major.
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row choice and occupation as column choice, with the same number of rows and columns. I

estimate the returns in these cells.

Identification of Average Treatment Effects (ATEs) in models with multiple unordered

treatments is complicated by a number of factors. To address the second challenge of causal

identification, I combine the employment panel with data on the universe of occupation-

specific apprenticeship vacancies that were posted via local employment agencies between

1978-2010. Given the institutional setting, recorded vacancies are unlikely to be driven by

labor supply and instead serve as close proxy for occupation-specific demand. The identi-

fication strategy then involves using vacancies in other options as exogenous shifters into

a particular training or occupation. In particular, I use expected vacancies in occupations

other than the chosen one as instruments for a training choice, with the idea that individuals

consider future returns across occupations when making their choice. Subsequent shocks to

these expectations in occupations other than the chosen one are used as instruments for occu-

pations. Using vacancies outside the chosen option is key to satisfy the exclusion restriction.

The instruments are highly relevant, confirming the importance of earnings expectations for

occupation choices (Miller (1984), Keane & Wolpin (1997), Arcidiacono et al. (2020)). Since

the instruments lack full support, I additionally rely on distributional assumptions in order

to identify ATEs, but these can be relaxed for the slope parameters in the wage equation.

To put structure on the selection problem, I set up a generalized Roy (1951) model.

The model provides a behavioural justification for the identification strategy and it implies

a monotonicity assumption (Vytlacil (2002)), but it does not impose further assumptions

for identification. In the model, workers choose a training in an initial stage, and subse-

quently select into an occupation in every work life period. While training is chosen to

maximize expected payoff including expected wages, occupations are chosen to maximize

current payoff including current wages. Importantly, individuals have imperfect information

about future labor demand and own occupation-specific abilities when choosing a training.

As a result, unexpected changes in labor demand or new information about abilities may

lead to individuals choosing employment outside their training.

Given the high dimensionality of the selection problem, implementing the identification

strategy is not straightforward. A parametric generalization of the classic two-step Heckman

(1979) approach would not be feasible in this context. Lee (1983) and Dahl (2002) develop

a control function approach that deals with selection in high-dimensional settings, where

the control function becomes a function of a few selection probabilities only. I extend their

approach to two selection stages and implement this using a machine learning algorithm

(random forests), where I predict training and occupation choices with the instruments to

get consistent estimates for the selection probabilities.
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The returns to training-occupation combinations depend on the granularity of the un-

derlying occupation classification. Given the availability of the vacancy data, I use a clas-

sification with 13 categories. Using these, I find the following three main results. Firstly,

focusing on effects on versus off the diagonal, my results suggest that individuals trained and

working in the same occupation on average earn around 15% more than workers employed

in occupations different from their training. The effect is highly significant and comparable

in magnitude to estimates of the return to a year of schooling in general, and an additional

year as an apprentice in the German system more specifically (Fersterer et al. (2008)). I find

evidence that the return is strongest at the beginning of a career, but only drops by about

two percentage points before stabilizing after 12 years of experience. Off-diagonal workers

thus do not catch up with their on-diagonal co-workers.

Secondly, not controlling for selection leads to substantial negative bias in the estimated

returns to working on versus off the diagonal such that, descriptively, on-diagonal workers

have lower wages. Intuitively, only the more able workers work off the diagonal as their

unobserved occupation-specific ability needs to compensate for the lack of training. The

majority of this bias is visible right after the training, confirming recent results in the sorting

literature that workers sort on wages early in their career (Lentz et al. (2021)). However, I

also find evidence that the bias becomes stronger with experience, a result which is in line

with the proposed model where individuals have imperfect information on their occupation-

specific ability. As more information is revealed to workers about these abilities, they decide

to work in an occupation different from their training if the gain in payoff exceeds the cost

of lack of training. As a result, workers on the diagonal are increasingly negatively selected.

Thirdly, my results display important heterogeneity. Across trainings, I find large dif-

ferences in the average returns to working on versus off the diagonal, and a strong positive

correlation between these returns and the fraction of workers with the relevant training

observed working on the diagonal. In line with the proposed model, relative returns thus

appear to be a key determinant of the selection into occupations. Even within training, there

is substantial heterogeneity in the penalty when working in different occupations. I use the

estimated returns from the full training-occupation matrix to provide a microfoundation for

the results in this paper by drawing on the task approach to occupations (Autor et al. (2003),

Autor (2013)). Measures of task content have been used empirically to analyze shifts in the

wage structure both between occupations (e.g. Autor et al. (2003) , Goos et al. (2014)) and

within occupations (e.g. Van der Velde (2020)).2 Most relevant to the present paper, Pole-

taev & Robinson (2008) and Gathmann & Schönberg (2010) argue that the transferability

of human capital across occupations depends on how similar occupations are in terms of

2Altonji et al. (2014) use task content measures to study the earnings inequality across college majors.
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their mix of tasks, showing that wage drops after displacement are larger for workers who

move to occupations that are less related to the previous one. Based on this evidence, one

may expect workers in the present context to incur larger wage penalties, the more distant

the occupation is from the training. To test this conjecture, I construct training-occupation

distance measures for every training-occupation cell using survey data on the task content of

occupations. In a second step, I regress the estimated returns for each training-occupation

match on these measures. The results suggest that a one-standard-deviation increase in task

distance significantly reduces the return in a training-occupation cell by 5−7pp. Overall, the

findings provide strong evidence that workers are trained in a specific mix of tasks and face

higher wage penalties, the less applicable the acquired skills are in their current occupation.

The reason underlying ex-post suboptimal training choices in the given framework is lack

of information at the time of training choice. Two groups of workers are affected by this.

The first group are off-diagonal workers. These workers forego the return to training in their

current occupation. The second group are workers who are locked into their training. These

individuals work on the diagonal, but would choose a different occupation in the absence

of off-diagonal penalties. My findings suggest that almost 70% of workers either work off

the diagonal or are locked in, i.e. only 30% hold the optimal training ex-post. Using these

shares, I estimate the associated welfare loss to be around 6 − 10% of wages per worker.

Back-of-the-envelope calculations suggest that ex-post retraining could effectively address

the ex-ante lack of information for a majority of workers.

From a more general policy perspective, my results also speak to the wider debate on

Germany’s apprenticeship system as a role model. It has often been argued that the system

facilitates labor market entry by providing young workers with specialized skills, thereby

leading to low youth unemployment rates. My findings suggest that while German appren-

ticeships successfully deliver occupation-specific skills, many workers cannot fully put these

to use in their chosen occupation.

This paper contributes to four strands of literature. Firstly, it relates to the literature

on the returns to college majors. Arcidiacono (2004) estimates a dynamic structural model

of college and major choice, finding large relative earnings premiums for certain majors.

Altonji et al. (2012) and Altonji et al. (2016) provide surveys of the theoretical and empirical

literature on the returns to college majors and document earnings differentials that can

exceed the college-high school premium. Similar results are found by Hastings et al. (2013)

and Kirkebøen et al. (2016) who exploit admission cutoffs to majors in Chile and Norway

in a regression discontinuity framework. I contribute to this literature by analyzing the

important heterogeneity that returns to fields display across occupations.

To address the challenges arising from the selection into trainings and occupations, this
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paper contributes to a second literature, on the estimation of treatment effects in selection

models with multiple unordered treatments. Heckman & Robb (1985) show that, in single-

index models, control functions may be written as functions of the propensity to self-select.3

In multiple-index models, Lee (1983) and Dahl (2002) develop a control function estimator

where the control function becomes a function of a small set of selection probabilities only.

A recent application of this approach can be found in Ransom (2021) who studies how the

returns to schooling are affected by the selection of workers into locations and occupations.

With multiple unordered treatments, identification of ATEs is particularly challenging (Heck-

man et al. (2006, 2008)). I contribute to this literature by extending the Lee/Dahl approach

to a two-stage selection setting, and combining it with an instrumental variable strategy to

identify and estimate ATEs in a setting with multiple unordered treatments.

Thirdly, this paper relates to the literature on human capital specificity. The idea that

human capital is specific was proposed by Becker (1962, 1964) and extended by Lazear

(2009) in the context of the firm, and has been taken to the data to explore specificity

along a number of dimensions such as industry (Neal (1995)), occupations (Shaw (1984,

1987), Kambourov & Manovskii (2009)) and skills (Poletaev & Robinson (2008), Guvenen

et al. (2020)). Most recently, a strand of this literature considering the tasks accumulated

over a work life suggests that human capital is partly task-specific, and thus more easily

transferable across occupations that require a similar mix of tasks (Gathmann & Schönberg

(2010), Yamaguchi (2012), Cortes & Gallipoli (2018)). The present paper contributes to

this literature by linking wages in different occupations to training received in the same

occupations. To the best of my knowledge, it is the first to provide such estimates.

The transferability of skills is of particular importance in the face of sectoral shocks.

A final related literature documents persistent adjustment costs for workers resulting from

trade shocks (e.g. Autor et al. (2013), Autor et al. (2014)) or industry regulation (Walker

(2013)). Most recently, the Covid-19 pandemic has led to dramatic shifts in the structure

of labor markets around the world. In the German context, Yi et al. (2017) show that

the impact of sectoral shocks is related to the ability to reallocate jobs to a new sector. I

contribute to this literature by suggesting a microfoundation for the large persistent impacts

that sectoral shocks have been found to have on worker outcomes.

The remainder of this paper is organized as follows. Section 2 outlines the setting and

discusses the data. Section 3 sets up the generalized Roy model. Section 4 discusses iden-

tification. Section 5 outlines the estimation using control functions. Section 6 presents and

discusses the results. Section 7 relates my findings to the task distance between trainings

and occupations. Section 8 discusses welfare and policy implications. Section 9 concludes.

3Ahn & Powell (1993) and Das et al. (2003) derive semi-parametric versions of such control functions.
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2 Setting and Data

2.1 The German Apprenticeship System

The German apprenticeship system is a dual system where apprentices work in firms for three

to four days a week and go to vocational school for the remaining one to two days. While the

training in firms provides apprentices with the necessary practical skills, vocational schools

teach theoretical skills in a number of different subjects. The total apprenticeship length

varies between two and three and a half years depending on the apprenticeship occupation,

but the majority of apprenticeships last three years.

Dual apprenticeships are the main form of upper- and post-secondary education in Ger-

many and, in 2010, about 70% of those who obtained this education level had completed an

apprenticeship in the dual system.4 Unlike other education forms, the dual system is reg-

ulated under a federal vocational training law (Berufsbildungsgesetz ) which implies a large

degree of standardization. The system is often regarded as the key pillar of the German

education system, supporting low youth unemployment rates by facilitating the transition

of young individuals into the labor market.

Importantly, the dual system trains apprentices in most non-university occupations, with

only a small number of exceptions in the medical and care occupations. To start a dual ap-

prenticeship, high-shool graduates need to apply to and be offered an apprenticeship position

with a firm. Once the firm accepts an apprentice, it is in charge of providing the necessary

practical training which is regulated under the legally defined training regulations (Aus-

bildungsordnung). The state government is responsible for providing a place at the local

vocational school to any apprentice who has been accepted by a firm. The curriculum is

determined centrally by each state for each apprenticeship occupation (Rahmenlehrplan) and

consists of general and specialized subjects which may vary depending on the apprenticeship

occupation.

All dual apprenticeships are completed through a final examination which is organized

and monitored by industry-specific boards (Kammern) and consists of a theoretical and

a practical part. After completing their apprenticeship, apprentices often continue to be

employed at the same firm as full-time employess (∼ 60% in 2010).5

4Source: Statistisches Bundesamt, Bildungsstand der Bevölkerung. Ergebnisse des Mikrozensus 2016.
Ausgabe 2018. Upper- and post-secondary education corresponds to ISCED levels 3 and above. The fraction
of workers who obtained this education level was around 85% among young workers in Germany in 2018
(Source: OECD Education at a Glance, 2019 ).

5Source: Institut für Arbeitsmarkt- und Berufsforschung, Statista 2018.
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2.2 Data

This paper uses two main datasets: an administrative employment panel covering 1975-2010,

and a dataset containing the universe of occupation-specific apprenticeship vacancies posted

through local employment agencies between 1978-2010.

2.2.1 Employment Panel

The employment panel dataset consists of a 2% sample of all German social security records

between 1975-2010.6 These records are based on all German workers employed in at least

one job during that time period, with the exception of the self-employed, civil servants and

those serving in the military. This amounts to about 80% of the workforce. Before 1991, only

West Germany is included in the sample, from 1991 the records cover both West and East

Germany. Workers who are selected in the sample are followed for the entire time period.

The dataset includes demographic information such as gender and date of birth as well as

detailed daily information for each (un)employment spell including the start and end date,

occupation, industry, location and daily wage. Wages reported in the data are capped at

a time-varying threshold defined within the statutory pension scheme. In my setting, this

threshold will only affect a small fraction of the data (see Section 2.5).

Importantly, since apprentices in the dual system work in firms for three days a week,

they pay social security contributions and their apprenticeship spells are contained in the

employment panel dataset. I therefore observe the occupation that apprentices are employed

in during their apprenticeship which I refer to as the training.

2.2.2 Vacancy Data

I use a second dataset for my analysis which contains the universe of apprenticeship vacancies

posted through local German employment agencies between 1978-2010.7 Between 1978-1992,

the data only covers West Germany. From 1993, vacancies are recorded for both West and

East Germany.8 Recorded vacancies include those filled and those not filled after a year and

aggregate information is available by year, training and location. Yearly data is measured

as a flow of vacancies posted between 1. October and 30. September, but most vacancies

are posted to line up with the schooling leaving dates in late summer.

6Sample of Integrated Employment Biographies. The data was provided by the Research Data Centre
(FDZ) of the German Federal Employment Agency (BA) at the Institute for Employment Research (IAB).

7This data combines different datasets provided by the German Federal Employment Agency. Source:
Arbeitsmarkt in Zahlen, Ausbildungsstellenmarkt, Bewerber und Berufsausbildungsstellen.

8In addition to firm-based vacancies, the data also includes apprenticeship vacancies outside the dual
system, but these make up a small fraction of the data (∼ 12%). Figures based on 2010. Source: Arbeitsmark
in Zahlen - Bewerber und Berufsausbildungsstellen Deutschland, September 2010.
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A particular advantage of using data on apprenticeship vacancies as opposed to non-

apprenticeship vacancies is that it specifically refers to jobs that can be carried out by those

who went through the apprenticeship training system.9 Moreover, in contrast to general job

vacancies, the degree of involvement of employment agencies for apprenticeship vacancies is

high. In 2013, 71% of firms publicized their apprenticeship vacancies through an agency,

while the same figure only amounted to 45% for non-apprenticeship vacancies.10

2.3 Field-Based Occupational Classification

Occupations in the employment panel and the vacancy dataset are coded based on the

same occupational classification called Klassifikation der Berufe 1988 (KldB88). This former

German occupational classification system was replaced by the current system (KldB2010 ) in

2010. For the purpose of this paper, the KldB88 has a key advantage over the newer system

and other internationally used systems such as the International Standard Classification of

Occupations or the Standard Occupational Classification in that it is field-based. Other

systems generally contain a broad category for Managers and as a result, being promoted

could imply that workers change their occupation in the classification. It would be impossible

to accurately translate the hierarchical occupation categories of these classifications into

a field-based system, and these measurement problems would be a major concern in the

present analysis where the combination of training and occupation choices is of key interest.

In fact, the KldB88 was revised significantly to form the KldB2010 precisely because, given

its field-based structure, it was not comparable to most other international occupational

classifications. Directly using the former field-based system KldB88 in the present analysis

therefore offers a unique opportunity to study the question of interest.

To make the analysis feasible and tractable, I use a classification level that groups oc-

cupations into 13 distinct categories, implying 169 distinct cells in the training-occupation

matrix. The chosen level of categorization is the narrowest for which the historical vacancy

data is available. Restricting the number of categories also ensures that the estimation will

remain computationally feasible. A list of the 13 occupations and trainings together with

their sample shares is shown in Figure 1.

9As an example, job vacancies advertised as health care occupations may refer to doctors and nurses,
but only those as nurses would be relevant for a worker who does not hold a medical degree.

10Source: BIBB-report 3/2014 Betriebe auf der Suche nach Ausbildungsplatzbewerberinnen und -
bewerbern: Instrumente und Strategien, and IAB-Stellenerhebung 2013. The degree of involvement of local
employment agencies may vary over the business cycle and firms are more likely to post vacancies through
the local agency when the supply of apprentices is low. The resulting time-variation will be picked up by
time fixed effects which are included in all regression specifications.
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Figure 1: Occupations and Trainings with Sample Shares
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Notes: The figure lists the 13 occupations used, and plots their baseline sample shares by occupation and
training. A detailed list of sub-categories contained in each occupation group is provided in Table A.1.

2.4 Sample Selection

Since individuals can have more than one employment relationship at a time, some of the

spells overlap in the administrative data . I define the main employment spell as the highest

daily wage spell and drop all secondary spells from the sample. Of the remaining individuals,

I only keep those who were enrolled in exactly one apprenticeship in the dual system at some

point during the sampling period. To ensure that the apprenticeship was completed, I further

exclude individuals who were never classified as having completed their apprenticeship in any

of their employment spells. Finally, I drop individuals whose training occupation or location

is unknown when they start their apprenticeship.

For the remaining individuals, I restrict spells to full-time employment and exclude those

with missing location, occupation or missing (or zero) wages.11 Finally, I only keep em-

ployment spells which started after the end of the apprenticeship training and for which

employers recorded the highest education level as vocational training. This excludes both

lower education levels (apprenticeship is not recorded as completed) and higher education

11Zero wages indicate interrupted employment spells due to e.g. unpaid maternity leave or sabbaticals.
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levels (additional university or technical college degree), to ensure that the amount of ed-

ucation as measured by years of schooling is comparable across the sample. The resulting

baseline sample contains 291,098 individuals and 4,012,034 employment spells.

2.5 Descriptive Statistics

Table 1 provides summary statistics for the baseline sample. About 48% of individuals

work outside their training occupation for at least one spell, and 38% work in more than

one occupation throughout their career. Since apprenticeship spells need to fall within the

sampling period for all individuals, the average worker is only 31 years old. As a result,

mean daily wages are relatively low implying that less than 3% of wages exceed the upper

earnings limit in the statutory pension scheme and are capped in the sample.

To give a sense of the empirical distribution across training-occupation cells, Table 2

reports the percentage of spells in each occupation for the five largest trainings. Table 3

reports the same figures for the five largest occupations.12 Both tables are restricted to

spells of workers with ten years of full-time work experience. It can be seen that, while

the majority of individuals work on the diagonal, the fraction of individuals working off the

diagonal is large, and displays considerable heterogeneity across trainings and occupations.

Table 1: Summary Statistics

Mean Min Max P10 P50 P90

N of observations/spells 4,012,034
N of individuals 291,098
Female (% of individuals) 45.4
Female (% of spells) 37.3
Individuals ever off diagonal (%) 47.6
Occupation switchers (%) 37.7
Occ. switches per individual 0.7 0 38 0 0 1.5
Distinct occ. per individual 1.5 1 10 1 1 2.5
Age 30.6 17 62 20.5 28.5 42.5

Notes: The table reports summary statistics for the baseline sample.

Figure 2 looks at the variation in occupation choice over a career by plotting the fraction

of individuals working in an occupation equal to their training by full-time work experience.

While around 75% of all workers start their career after the apprenticeship working in their

12Since only selected categories are reported, the row percentages in Table 2 and column percentages in
Table 3 do not sum to 100. Tables A.2 and A.3 contain equivalent figures for all trainings/occupations.
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training occupation, this fraction drops to around 65% after 6 years, and around 55% af-

ter 25 years of full-time work experience. Figure B.1 shows that this decline is not due to

compositional effects in the sample by plotting the fraction of individuals working on the

diagonal over time for different experience levels.

Table 2: Spells as Percentage of Trainings - Selected Categories

Occupation

Office Craft Sales, financ. Health Constr.
workers workers workers workers workers

T
ra

in
in

g

Office workers 80.6 0.6 12.6 1.6 0.1
Craft workers 4.8 55.3 3.9 2.4 2.5
Sales, financ. w. 26.5 1.6 60.6 2.1 0.3
Health, social w. 12.2 0.7 4.3 79.0 0.2
Construction w. 3.6 5.7 3.1 2.9 60.2

Notes: The table reports the number of spells with a particular training-occupation combination as a per-
centage of all spells in the training for the baseline sample. Results are restricted to individuals with ten
years of work experience. Only the five most common trainings and occupations are reported. As a result,
row percentages do not sum to 100. Table A.2 contains all 13 training/occupation categories.

Table 3: Spells as Percentage of Occupations - Selected Categories

Occupation

Office Craft Sales, financ. Health Constr.
workers workers workers workers workers

T
ra

in
in

g

Office workers 59.4 0.7 14.4 2.8 0.3
Craft workers 5.0 84.3 6.2 5.7 7.5
Sales, financ. w. 18.3 1.7 64.8 3.4 0.6
Health, social w. 5.1 0.4 2.7 76.4 0.3
Construction w. 1.7 4.0 2.3 3.2 85.1

Notes: The table reports the number of spells with a particular training-occupation combination as a per-
centage of all spells in the occupation for the baseline sample. Results are restricted to individuals with ten
years of work experience. Only the five most common trainings and occupations are reported. As a result,
column percentages do not sum to 100. Table A.3 contains all 13 training/occupation categories.
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Figure 2: Fraction On Diagonal by Work Experience
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Notes: The figure plots the fraction of individuals working in their training occupation by full-time work
experience for the baseline sample.

3 Selection Model

In this section, I present a statistical model of selection into training and occupations. I

model the choice problem using a generalized two-stage Roy (1951) model, where selection

is based on an underlying latent utility. The model provides a behavioral justification for

the identification strategy proposed in Section 4, but (apart from implying a monotonicity

assumption) it does not impose any assumptions for identification. The identification as-

sumptions will be presented in Section 4 where I also discuss the type of economic model

that would justify these assumptions.

The threshold-crossing nature of the proposed statistical model puts sufficient structure

on the choice problem to implement the identification strategy using a control function

approach which I describe in Section 5. Aside from that, the specification of latent utility is

not restricted by the model, meaning that I do not need to take a stance on the specifics of

how individuals select. Importantly, this implies that my empirical approach is robust to a

range of economic selection models.
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3.1 Setup and Wages

Training and occupation choices are modeled as a two-stage selection problem. In t = t0

(stage 1), individual i selects into a training indexed by j = 1, ..., J . In t = t0 + 1, ..., t0 + T

(stage 2), individual i selects into an occupation indexed by k = 1, ..., K. While stage 1

involves a single selection choice in t = t0, stage 2 involves T selection choices, one for each

period t = t0 + 1, ..., t0 + T . Note that the set of training and occupation options individual

i chooses from is identical.

In stage 2, log wages of individual i working in occupation k with training j follow:

ln(wijkrt) = δr + δt + f(vackrt) + δi + τjk + β′Xit + εikrt, (1)

where δr, δt, δi denote region, time and individual fixed effects, respectively. The term

f(vackrt) denotes a flexible function in log vacancies vackrt posted for occupation k in region

r at time t. Xit is a vector of individual- and time-varying controls including full-time work

experience, and εikrt denotes an individual error component which is assumed to vary across

occupations but not trainings. This captures the idea that individuals have an unobserved

occupation-specific ability affecting wages, but there is no heterogeneity in the ability to

productively use a training in a particular occupation. The (J × K) fixed effects τjk are

the parameters of interest. These parameters capture the log wage effect from a particular

combination of training j and occupation k. Note that the wage specification from equation

(1) may be derived from a standard exponential human capital production model (Griliches

(1977)), where log wages are equal to the sum of a log skill price w̄krt = δr + δt + f(vackrt)

and log human capital hijkrt = δi + τjk + β′Xit + εikrt. I further discuss the economic model

underlying the wage specification of equation (1) in Section 4.

3.2 Occupation Choice

In period t > t0, occupation choices are based on an underlying latent utility which is

additively separable in a sub-utility function Ũi(k|j)rt and an error component eikrt:

Ui(k|j)rt = Ũi(k|j)rt + eikrt. (2)

The sub-utility function captures the part of utility that depends on observable charac-

teristics and is therefore observed to the researcher. This includes both the observed com-

ponent of log wages as well as non-monetary observed preference components, tikrt, so that

Ũi(k|j)rt = ln(wijkrt)−εikrt+tikrt. The error term comprises unobserved components of utility

including the log wage error term εikrt as well as unobserved preference components, ψikrt, so
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that eikrt = εikrt + ψikrt. Note that workers have unobserved preferences across occupations,

but preferences do not vary by the match between training and occupation.

Individual i chooses occupation k to maximize the current-period utility Ui(k|j)rt. Using

the above notation, individual i chooses occupation k in period t if and only if

(eikrt − eik′rt) ≥ (Ũi(k′|j)rt − Ũi(k|j)rt), ∀k′ 6= k. (3)

I define a corresponding occupation dummy variable

occi(k|j)rt =

1 if Ui(k|j)rt ≥ Ui(k′|j)rt, ∀k′ 6= k,

0 otherwise.
(4)

Note that the occupational choice problem defined by equation (3) is static, i.e. past oc-

cupation choices do not affect current occupation-specific utility. This assumption does not

preclude individuals from being forward-looking, but it restricts the type of wage equation

that can be part of individuals’ latent utility. For instance, if work experience in and outside

of an occupation had differential effects on wages, today’s occupation choice would affect

the utility across options in the future, and the choice problem would be dynamic. To keep

the estimation problem tractable, I abstract from such differences and only account for total

work experience in the model.13

3.3 Training Choice

In period t0, training choices are based on a period-t0 training utility Uijr0t0 = Ũijr0t0 +eijr0t0 ,

and the expected future utility of choosing training j. Define the value of choosing j as the

sum of these two components:

Vijr0t0 = Ũijr0t0 + eijr0t0 + Et0 [
∑
t>t0

βt−t0U∗i(k|j)rt], (5)

where Et0 [
∑

t>t0
βt−t0U∗i(k|j)rt] is individual i’s maximal expected future reward, conditional

on training choice j in t = t0. Given the static nature of the occupational choice problem,

the expected maximal reward depends on the probability of choosing different occupations

k conditional on training j in the future. Since individuals hold imperfect information on

own abilities, preferences and future labor market developments, this will generally differ

13The endogeneity of occupation-specific experience makes it difficult to assess the validity of this simplifi-
cation, but including occupation-specific experience in the baseline regression suggests that the difference in
returns inside and outside the current occupation is only about 1.8pp (see Table 4 in Section 6.1). Imposing
equal returns therefore appears to be a reasonable approximation.
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from the discounted stream of realized utilities. In line with the occupation choice problem,

individual i chooses training j in t = t0 if and only if

(eijr0t0 − eij′r0t0) ≥ (Ṽij′r0t0 − Ṽijr0t0), ∀j′ 6= j, (6)

where Ṽijr0t0 = Ũijr0t0 + Et0 [
∑

t>t0
βt−t0U∗i(k|j)rt] is the conditional value Vijr0t0 − eijr0t0 . As

before, I define a training dummy variable

trainij =

1 if Vijr0t0 ≥ Vij′r0t0 , ∀j′ 6= j,

0 otherwise.
(7)

where subscripts r0 and t0 for trainij are omitted for expositional clarity as individuals only

choose their training once. Note that the individual takes into account that training choice

j will affect the utility across different occupations in the future.

4 Identification

This section explores potential biases due to workers’ selection into a training and an occu-

pation, and provides intuition for these biases using two hypothetical experiments. To ad-

dress the challenges resulting from self-selection in the given setup with multiple unordered

treatments, I then propose an instrumental variables strategy. I discuss the identification

assumptions, and present a range of robustness checks to support the assumptions made.

4.1 Selection Biases

Wages in a training-occupation cell are only observed for a sample of individuals who selected

into that cell, and the non-random allocation into cells may lead to selection biases. Based

on the definition of the training and occupation dummies from Sections 3.2 and 3.3, the

selection problem in outcome equation (1) may be written as

E[εikrt|trainij = 1, occij(k|j)rt = 1] 6= 0. (8)

Given the two-stage selection in the present context, identifying the effect of a particular

training-occupation combination on wages requires randomizing individuals to a training-

occupation cell. The ideal experiment would therefore involve initial random allocation to

a training, followed by random allocation to an occupation. In order to illustrate why ran-

domization at the training or the occupation stage alone will not identify the parameters of
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interest, I consider two hypothetical experiments that look at the selection into trainings and

occupations independently. The key insight from these experiments is that, while selection

into training is expected to lead to positive bias in the estimated on- versus off-diagonal re-

turn, selection into occupations is expected to lead to negative bias in the return. Intuitively,

the former is explained by individuals choosing a training they are relatively good at. The

latter is due to the fact that, conditional on training choice, off-diagonal workers must be

especially good in their chosen occupation to compensate for their lack of training.

For ease of illustration, focus on a stylized version of the selection model with two train-

ings and occupations, j, k ∈ {1, 2}, and two time periods, t ∈ {0, 1}. Individuals train in

t = 0 and work in t = 1. Denote by trainij and occik the training and occupation dummies

which are equal to one if individual i is trained in j/works in k. Assume that individuals self-

select into trainings and occupations based on a simplified version of the Roy (1951) model

where the training is chosen in t = 0 to maximize expected log wages and the occupation is

chosen in t = 1 to maximize current log wages. Assume homogenous returns to working on

the diagonal, and denote this return by τ > 0.14 Finally, denote by εi1, εi2 the log wage error

terms in t = 1 in occupations 1 and 2, and assume that these are known in t = 0.15

4.1.1 Selection into Training

Consider a first hypothetical experiment where individuals choose their training j and are

subsequently randomly allocated to an occupation k. Assume that individuals do not know

that occupations are randomly allocated when making their training choice. Focusing on

occupation 1, the selection bias when estimating parameter τ may be written as

E[εi1|traini1 = 1, occi1 = 1]− E[εi1|traini1 = 0, occi1 = 1]

= E[εi1|traini1 = 1]− E[εi1|traini1 = 0]

= E[εi1| (εi1 − εi2) > 0︸ ︷︷ ︸
chose training 1

]− E[εi1| (εi1 − εi2) < 0︸ ︷︷ ︸
chose training 2

] ≥ 0, (9)

where the difference in the observed component of expected log wages has been normalized

to zero. The final inequality follows from the assumptions made on the error terms (see

Appendix C). Intuitively, comparing individuals in occupation 1 who previously selected

into training 1 to individuals in occupation 1 who previously selected into training 2 will

result in estimates of τ which are upward biased, since those with higher ability in occupation

14In the log wage equation, τ > 0 corresponds to the parameter on a dummy variable Dj=k equal to one
if training j is the same as occupation k.

15Further assume that these are jointly normally distributed with mean zero, standard deviation σε1 = σε2 ,
and σε1ε2 = 0. For notational simplicity, other subscripts have been omitted.
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1 will have chosen it as a training. Under the given assumptions, selection into training will

thus lead to positive bias when estimating parameter τ .

4.1.2 Selection into Occupations

Now consider a second hypothetical experiment where individuals are randomly allocated to

a training, and can subsequently choose their occupation. Again focusing on occupation 1,

the selection bias when estimating parameter τ may be written as

E[εi1|traini1 = 1, occi1 = 1]− E[εi1|traini1 = 0, occi1 = 1]

= E[εi1|(occi1 = 1|traini1 = 1)]− E[εi1|(occi1 = 1|traini1 = 0)]

= E[εi1| (εi1 − εi2) > −τ︸ ︷︷ ︸
choose occupation 1
cond. on training 1

]− E[εi1| (εi1 − εi2) > τ︸ ︷︷ ︸
choose occupation 1
cond. on training 2

] ≤ 0, (10)

where the difference in observed log wages net of τ has been normalized to zero. As before,

the final inequality follows from the assumptions made on the error terms (see Appendix C).

Workers who choose occupation 1 conditional on having been randomly allocated to training

1 in t = 0 are positively selected. These workers realize the benefit τ from working on the

diagonal by choosing occupation 1. In contrast, workers who have previously been allocated

to training 2 would realize the benefit of working on the diagonal by choosing occupation 2.

The fact that they nonetheless choose occupation 1 implies they are more positively selected

than their co-workers who trained in occupation 1. Intuitively, those working off the diagonal

after random allocation to a training must be very productive in their chosen occupation

as their ability needs to compensate for the lack of training. Under the given assumptions,

selection into occupations will therefore lead to negative bias when estimating parameter τ .

4.2 Assumptions

The model in Section 3 is one of multiple unordered treatments. In addition, it features

essential heterogeneity as individuals select into treatment based on knowledge of their id-

iosyncratic returns εikrt. Identification in these models is complicated by a number of factors.

For expositional clarity, I will simplify the model notation compared to Section 3, and discuss

identification in the binary case, before moving to the case with multiple treatments.

4.2.1 Binary case

Consider the wage equation from Section 3 in a potential outcome framework. The notation

is simplified in the following way: Yk denotes the potential log wage in occupation k, Xk
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denotes covariates in the outcome equation, and εk is the occupation-specific error term.

Consider a model with only two occupation choices, k and k′, where the training choice j is

suppressed in the notation. Potential outcomes may be written as:

Yk = β′Xk + εk

Yk′ = β′Xk′ + εk′ .

Selection into k, denoted by the dummy variable occk = 1, occurs if and only if:

ek − ek′ ≥ Ũk′ − Ũk, (11)

where, compared to the notation in equation 3 in Section 3, subscripts are omitted as above.

The probability of selecting into occupation k is denoted by P (occk = 1|X), where X is the

vector of all characteristics, Xk and Xk′ . The parameter of interest is the ATE of occupation

k over k′, E[Yk − Yk′ |X].

I make the following assumptions:

A 1 There is a binary variable zk that is an element of vector Xk′, but not Xk,16

A 2 zk is conditionally independent of potential outcomes, zk ⊥⊥ Yk|Xk,

A 3 P (occk = 1|X, zk = 0) 6= P (occk = 1|X, zk = 1).

Assumptions 1 - 3 correspond to the well-known IV assumptions (exclusion, indepen-

dence, relevance). Note that the variable zk differs from standard “cost shifter” instru-

ments, as these would affect Ũk, not Ũk′ . Instead, there are sector-specific covariates that

secure identification (d’Haultfœille & Maurel (2013)).17 Further note that, given the addi-

tive separability of monetary and non-monetary components in Ũk, the threshold-crossing

nature of the selection model implies a monotonicity assumption (Vytlacil (2002)). A par-

ticular change in zk will move all individuals either into or out of occupation k. Taken

together, A1- A3 allow for identification of the Local Average Treatment Effect (LATE),

E[Yk − Yk′|X, occk(zk = 1) = 1, occk(zk = 0) = 0] (Imbens & Angrist (1994)).

In contrast to the LATE, identification of the ATE requires a large support assumption,

also referred to as identification at infinity (IAI) step, even in the binary case (Chamberlain

(1986), Heckman (1990)). In particular, there needs to exist some value of zk such that

E[εk|X, zk] = 0. Intuitively, the instrument needs to have enough support so that, for some

value of zk, the selection goes to zero.

16Note that zk is binary for expositional purpose only.
17This type of identification strategy is common in the IO literature where characteristics of competing

products are used as instruments in demand estimation (Berry et al. (1995)).
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4.2.2 Multinomial case

Additional complications for identification arise in the multinomial case. Consider a model

with three instead of two occupations (k, k′, k′′). As before, consider a variable zk that satis-

fies assumptions A1-A3. Monotonicity still holds as switching on zk will move all individuals

either into or out of occupation k. The issue in the multinomial setup is that, aside from

moving individuals into or out of occupation k, changes in zk will also move individuals

between occupations k′ and k′′. In order to separate these flows, one needs to again rely on

large support assumptions.18 Intuitively, as the value of occupation k′′ becomes arbitrarily

small, a shift in zk will only lead to changes in the choice between k and k′. This argument

naturally extends to the case with more than three choice alternatives.

An alternative way of thinking about this problem is in terms of the difference in indeces

Ũk′k = Ũk′ − Ũk from equation 11. An exogenous shift in this difference, holding all other

utility contrasts fixed, would identify treatment effects of occupation k versus k′. Since

Ũk′k = Ũk′k′′ − Ũkk′′ , such a shift is impossible. Heckman et al. (2008) make this argument in

the context of an exogenous “cost shifter” sk that affects the own index Ũk, but is not included

in other indeces or the outcome equation. Even in this case, identification of treatment effects

of alternative k versus k′ cannot proceed without additional assumptions.19 This is because

changes in sk affect any utility contrast that contains Ũk, and so individuals are drawn into

or out of option k from different second-best alternatives, not necessarily k′.

In summary, identification of the ATE of occupation k versus k′ in the given context thus

requires strong support for two reasons. Since there are more than two choice alternatives,

one needs to invoke an IAI step to identify the LATE of option k versus k′. In addition, as

in the binary case, an IAI step is required to recover the ATE.20 I will discuss the strong

support requirement in Section 5, after discussing assumptions A1-A3 in the given context.

4.2.3 Given context

The empirical part of this paper uses apprenticeship vacancies (henceforth vacancies) in

outside options vack′rt,∀k′ 6= k, as instruments zk. Since individuals select into trainings and

occupations, an instrument is needed for each of these choices. I address this challenge by

splitting vacancies into expectations and shocks, where the idea is that expected vacancies

will affect the choice across trainings (as individuals compare the expected payoffs), and

18Note that this requirement is in addition to the IAI argument needed to identify ATEs instead of LATEs.
19Alternatively, one can rely on additional data to achieve identification. This is done by Kirkebøen et al.

(2016) who consider the returns to choosing one field of education versus a particular next-best alternative
using rich information on individuals’ next-best alternatives.

20See Heckman et al. (2008) for details on this argument.
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shocks to these expectations in the current time period will affect the occupation choice.

Section 5 discusses how vacancies are split empirically.

For now, denote by vackrt the vacancies in occupation k in region r at time t, and by vacjrt

the vacancies in region r at time t in the occupation that training j is training in. Define

the expected vacancies for occupation k at time t of an individual deciding on a training in

region r0 at time t0 as E[vackt|Ωr0t0 ], where Ωr0t0 summarizes the individual’s information

set.21 Vacancies at time t are given by vackrt = E[vackt|Ωr0t0 ] + (vackrt − E[vackt|Ωr0t0 ]),

where the latter term is the shock to vacancies relative to the expectation of an individual

making a training choice in region r0 at time t0. Using the above, I formally define the set

of instruments for the training and occupation choices j and k, respectively, as:

zjr0t0,j′(t0+τ) = E[vacj′(t0+τ)|Ωr0t0 ] ∀j′ 6= j, ∀τ = 0, ..., 30, (12)

zkr0t0,k′rt = (vack′rt − E[vack′t|Ωr0t0 ]) ∀k′ 6= k. (13)

The instruments for a training choice j in equation 12 are the predictions up to 30 years

ahead of vacancies in occupations other than the one that training j is training in. The

instruments for occupation choice k at time t in equation 13 are the shocks to vacancies in

occupations other than k, relative to what was expected at the time of training choice.22

Note that for an individual making a training choice in region r0 at time t0,

vack′rt = zjr0t0,j′t + zkr0t0,k′rt, for j = k, ∀k′ 6= k,

i.e. for j = k, the instruments for training choice j and occupation choice k sum to vacancies

in the other available options. As discussed in Section 4.2.1 and 4.2.2, identification relies

on vack′rt to satisfy assumptions A1-A3. I will discuss these in turn, moving to a discussion

of the large support requirement in Section 5.

A1-A2 Exclusion and conditional independence. The key identifying assumption equiva-

lent to A1 (exclusion) and A2 (independence) in the given context is that occupation-specific

vacancies at time t are a sufficient statistic for random changes to occupation-specific labor

demand at time t, and that demand in occupation k is perfectly elastic.

To assess the plausibility of assumptions A1 and A2, it is important to recall that I use

vacancies in outside options, not the option itself, as instruments. For example, A1 requires

that conditional on vacancies for craft workers, vacancies for electrical workers are excluded

21Note that individuals’ expectations do not vary across regions.
22Given the 13 training/occupation categories, there are 12 × 31 = 372 instruments for each training

choice and 12 instruments for each occupation choice.
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from the wage equation for craft workers. Assumption A2 requires that vacancies are a

sufficient statistic for occupation-specific labor demand since vacancies for electrical workers

may otherwise be correlated with the unobserved part of wages for craft workers.

A potential threat to assumptions A1 and A2 are confounding effects through labor sup-

ply. Since labor supply across occupations is linked through worker self-selction, if vacancies

reflected occupation-specific supply instead of demand, vacancies for electrical workers would

be correlated with vacancies for craft workers, which could in turn lead to confounding im-

pacts in the wage equation. It is therefore important that vacancies reflect changes in labor

demand. Recall that the empirical measure of vacancies corresponds to the total number of

apprenticeship vacancies posted in a particular year by training firms, regardless of whether

they become filled or remain unfilled at the end of the year. I find that these vacancies

are positively correlated with non-apprenticeship job ads. However, since apprenticeship

vacancies are administered separately from job ads for other applicants in firms, they are

unlikely to be affected by changes in the occupation-specific supply of workers. In addition,

the majority of vacancies is posted to match up with the school leaving date, so the measure

does not react to supply fluctuations of apprentices in the same year. This implies that

vacancies likely serve as proxy for occupation-specific demand in the given context.

Even if vacancies reflect occupation-specific changes in demand, assumption A1 could be

violated if demand were not perfectly elastic, since general equilibrium effects through labor

supply may lead to an impact of vacancies for electrical workers on wages for craft worekrs.

While it is difficult to rule out such feedback effects, empirical support against them may

be provided by using the fact that supply-side responses would be expected not to impact

wages with a time lag. I therefore show that my results are robust to including occupation

times time fixed effects in the baseline model (see Table A.7). The fact that the results are

quantitatively very similar when only using variation within an occupation-time cell suggests

that supply feedback effects are not a major concern in the present setting.

Moving to assumption A2, a key requirement is that vacancies at time t are a sufficient

statistic for occupation-specific labor demand at time t. If this were not the case, it could be

that, conditional on vacancies for craft workers, vacancies for electrical workers are correlated

with the unobserved part of wages for craft workers. Most obviously, this would happen if

productivity shocks were industry-specific, and variation in occupation-specific vacancies

only captured part of the shock that affects wages in a particular occupation. To address

this concern, I show that my results are robust to the inclusion of industry times time

fixed effects in the estimation (see Table A.7). By only using variation within a particular

industry, this specification gives the instruments a Bartik interpretation where productivity

shocks (the shift) affect all occupations within an industry and identification comes from the
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different occupational composition (the share) within each industry. The fact that the results

are quantitatively very similar supports the assumption that occupation-specific vacancies

serve as a sufficient statistic for occupation-specific labor demand.23

An additional concern regarding assumption A2 would be non-random changes in va-

cancies with respect to the outcome. To rule out strategic vacancy setting by firms (e.g.

firms set fewer vacancies for electrical workers to increase the supply of craft workers), each

firm needs to be sufficiently small relative to the market. This is true empirically where

around three quarters of apprentices are trained in small and medium-sized firms.24 On the

worker side, conditional random assignment rules out systematic relocation of individuals

as a result of labor market conditions. For instance, individuals who are particularly able

in a specific occupation could choose to move to a state with a high number of vacancies

in a given year. Empirically, however, mobility is low. On average, over 93% of apprentices

start their apprenticeship in their state of residence.25 Moreover, only about 10− 15% of all

occupation changes in the sample correspond to changes of the region in which the employer

is located. Section 6.5 provides a robustness check excluding these spells from the sample,

showing that the results are almost unchanged by this restriction.

A3 Relevance. The relevance or first stage assumption states that the set of instruments

needs to be sufficiently related to the training and occupation choices. In the context of

categorical endogenous variables, a natural way of assessing the relevance assumption is

to look at the variation in selection probabilities generated by the instruments (e.g. Hull

(2018)) (see Section 5.3 for details on the estimation of the selection probabilitities). Figures

B.3 and B.4 show histograms of the selection probabilities into the five largest trainings and

occupations. It can be seen that, for both trainings and occupations, there is considerable

variability in the selection probabilities, indicating a substantial degree of first stage variation

in the sample. At the same time, selection probabilities do not typically reach extreme values

of 0.9 or above. This suggests that a fully non-parametric estimator will be infeasible in the

given context, justifying the additional structure imposed in the estimation (see Section 5.2).

23As a complementary check, I also examine the pairwise correlations of vacancies across all occupations
and do not find a pattern of higher correlations across vacancies for occupations that belong to arguably
similar industries. For example, while the two main occupations belonging to the manufacturing sector (craft
workers and process and plant workers) display a vacancy correlation of 0.24 across the sampling period, the
correlation between vacancies for electrical workers and sales and financial workers is 0.88.

24Around 50% are trained in small firms with less than 50 employes, 23% are trained in medium-sized
firms with more than 50 and less than 250 employees (see Figure B.2). Source: Bundesagentur für Arbeit.

25Population-weighted average across states in 2016. Source: Datenreport zum Berufsbildungsbericht 2016.

22



5 Estimation

A common approach to estimate ATEs in selection models with essential heterogeneity is a

control function estimator. The general idea behind this method is to model the endogenous

component of the regression error term using its dependence on the instruments and control

for it in the estimation. In the present context, define λjk(...) as the appropriate control

function using equation (8):

λjk(...) = E[εikrt|trainij = 1, occij(k|j)rt = 1], (14)

where λjk(...) depends on a set of variables further defined below.

Based on the above control function, we can provide further intuition for the assumptions

required for identification of the LATE from Section 4. Intuitively, the instruments ensure

that λjk(...) can vary in a sufficiently independent way from the expected outcome, and

this variation identifies the expected outcome up to a location parameter (d’Haultfœille &

Maurel (2013)). For separate identification of the intercept of expected wages and of the

control function, an IAI step or distributional assumptions are necessary (see Section 4.2).

Standard parametric control function approaches are computationally infeasible in high-

dimensional settings. For instance, a two-step Heckman (1979) estimator would require the

integration of a (J × K)-fold integral over the joint distribution of outcome and selection

error terms. To address this challenge, my approach is to reduce the dimensionality of the

selection problem by using assumptions on the joint distribution of the outcome and selection

errors. This control function method builds on Lee (1983) and Dahl (2002), and extends

their insights in settings with high-dimensional selection to a case with two selection stages.

5.1 Reduction of Dimensionality

Below, I briefly outline how the Lee (1983) and Dahl (2002) approach can be extended to

reduce the dimensionality of the given selection problem. Details can be found in Appendix

D. As a first step, Lee (1983) shows that the selection rules defined by equations (3) and (6)

may be re-written in terms of maximum order statistics:

trainij = 1 iff max
j′

(Vij′r0t0 − Vijr0t0) ≤ 0, (15)

occi(k|j)rt = 1 iff max
k′

(Ui(k′|j)rt − Ui(k|j)rt) ≤ 0. (16)
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The control function defined by equation (14) will depend on the conditional joint distribu-

tion of the outcome error εikrt and the two maximum order statistics, where the conditioning

is on the set of observed utility and value function differences (Ũi(k′|j)rt − Ũi(k|j)rt),∀k′ 6= k,

and (Ṽij′krt− Ṽijkrt),∀j′ 6= j. Since there exists a one-to-one mapping between these observed

utility and value function differences, and selection probabilities, the joint distribution can

instead be conditioned on the vector of selection probabilities. Based on this result, it has

been shown that control functions in single-index models may be written as a function of

the probability of selection only (Heckman & Robb (1985); Ahn & Powell (1993)). In the

present multiple-index setting, equation (1) may be written as

ln(wijkrt) = δr + δt + f(vackrt) + δi + τjk + λjk(pi1r0t0 , ..., piJr0t0 , pi(1|j)rt, ..., pi(K|j)rt) + uikrt,

(14)

where pijr0t0 is the probability of selecting into training j, pi(k|j)rt is the probability of selecting

into occupation k conditional on training j, and uikrt is a mean zero error term.

Note that, given the sequential nature of the selection problem, the functions λjk(...)

depend only on those occupation probabilities pi(k|j)rt that condition on the observed training

choice j. Nonetheless, estimating this equation fully flexibly would require a flexible function

in (J +K) probabilities to be included in (J ×K) control functions which is infeasible.

Following Lee (1983) and Dahl (2002), I impose a distributional assumption to further

reduce the dimensionality of the problem. In its strongest form, this assumption imposes

a specific functional form for the joint distribution of outcome errors and maximum order

statistics. As further discussed in Section 5.2, the estimation of parameters τjk from equa-

tion (1) relies on such a parametric distributional assumption.26 On the other hand, some

parameters in the heterogeneity analysis may be estimated non-parametrically, based on a

weaker so-called index sufficiency assumption (Dahl (2002)).27 I make use of this result and

provide robustness checks where I use both the parametric and the non-parametric control

function to estimate the slope parameters (see Section 5.2).

5.2 Distributional Assumptions

As outlined in Section 4, identifying the jk-specific intercepts from equation (1) separately

from the intercepts in the control function relies on strong support requirements. Intuitively,

26The parametric assumption replaces the IAI step discussed in Section 4.
27The index sufficiency assumption states that all information about the joint distribution of outcome

errors and maximum order statistics is summarized by a small set of selection probabilities. The parameters
that can be estimated using this assumption are those that vary within a particular jk-cell. This includes
the differences in parameters τexp, i.e. the slope of the on- versus off-diagonal effect by experience.
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the instruments need to have enough support so that for some values, individuals select

into a specific group with probability close to one. At these values of the instruments, the

selection bias goes to zero and OLS consistently estimates the ATE. In practice, it may be

difficult to meet such strong support requirements. This is especially true in settings with a

large number of choice alternatives. An alternative to this approach is to make parametric

assumptions on the distribution of the outcome and selection errors. Intuitively, this method

extrapolates the selection probabilities by imposing a functional form assumption in order to

separately identify the parameters of interest from the intercepts of the control function. I

follow the approach by Lee (1983) to simplify the estimation and impose standard normality

assumptions for the relevant distributions.28 The control function is then given by the well-

known function of the inverse Mill’s ratio (Heckman (1976, 1979)):

λjk(pi1r0t0 , ...piJr0t0 , pi(1|j)rt, ..., pi(K|j)rt) = −ρjk
φ[Φ−1(pijkrt)]

pijkrt
, (19)

where pijkrt = pijr0t0 × pi(k|j)rt is the probability of selecting into the observed training-

occupation cell jk, ρjk is the correlation between the outcome error and a random variable

constructed as part of the Lee (1983) approach, and φ(.) and Φ(.) denote the standard

normal probability density and cumulative density function, respectively. Given consistent

estimates for the selection probabilities pijkrt, the parametric approach may be implemented

by evaluating the inverse Mill’s ratio at these estimates, and including an interaction of this

expression with selected jk-cells in the outcome equation.29 Log wages in equation (1) may

then be written as

ln(wijkrt) = δr + δt + f(vackrt) + δi + τjk + β′Xit − ρjk
φ[Φ−1(pijkrt)]

pijkrt
+ uikrt, (20)

where E[uikrt|trainij = 1, occij(k|j)rt = 1] = 0.

Lee’s (1983) approach makes estimation in high-dimensional selection problems feasible,

but directly applying his transformation in the present setting simplifies the selection problem

by abstracting from its sequential nature. This simplification implies that the same control

function estimator would have been used in a static context with (J×K) choice alternatives

even though the joint distribution of the outcome and transformed errors would likely have

been different. Kline & Walters (2019) show that a wide class of control function estimators

yield estimates of the LATE that are identical to non-parametric IV estimates, but the same

does not necessarily hold for the estimation of ATEs which may be more sensitive to the

28See Appendix D for details on the Lee (1983) approach in the present setting.
29The selected jk-cells include all cells where j = k, and a cell for each occupation k where j 6= k.
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choice of distributional assumptions.

To provide some justification for the distributional assumptions required for the esti-

mation of the intercept parameters τjk in the present setting, I use the fact that the slope

parameters may be estimated non-parametrically using the weaker index sufficiency assump-

tion described in Section 5.1. A comparison of the estimates for these parameters from the

parametric and the non-parametric approach thus serves as a robustness check for the distri-

butional assumptions required to estimate the intercept parameters. As shown by the results

of this comparison (see Section 6.2), the slope estimates from both approaches coincide al-

most exactly, lending support to the distributional assumptions made.

5.3 Estimating the Selection Probabilities

Implementing the control function approach requires consistent estimates for the selection

probabilities pijr0t0 and pi(k|j)rt. To avoid imposing assumptions on the form of individual

preferences, I choose a flexible approach for the estimation of selection probabilities, and use

a machine learning algorithm (random forests) to predict the selection into trainings and

occupations based on observables and the instruments discussed in Section 4.2.3.

To obtain the instruments, vacancies need to be split into expectations and shocks. To do

so, I estimate separate linear time trend models in each region-time cell, where log vacancies

for each occupation are explained using five years of previous data.30 The details of this

approach are described in Appendix D. Intuitively, individuals use five years of past vacancy

data at the time of training choice to predict vacancies for 30 years into the future. Each

individual gets assigned the predictions for vacancies in each occupation based on demo-

graphics, and the region and time they started the apprenticeship in. Subsequent vacancy

shocks are defined at the individual level as the difference between realized vacancies and

the prediction at the time of training choice.

In a second step, I predict training and occupation choices using a random forest. Random

forests are among the most accurate classifiers available (Breiman (2001)). Besides avoiding

functional form assumptions, they have the advantage of naturally allowing for the large

number of independent variables in the present setting. The algorithm predicts variables

trainij and occi(k|j)rt using optimal splitting rules on the explanatory variables, and problems

of overfitting are avoided through a bootstrapping procedure.

To account for sampling variation due to the estimation of selection probabilities in my

analysis, I randomly select 50% of the individuals in the baseline sample to train the random

30Note that this implies that predictions and shocks will not be available during the first five years of the
sample, 1978-1981. Moreover, due to regional classification changes following German reunification, data are
not available for four regions for 1994-1997. This reduces the number of observations used in the estimation.
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forest, and only use the remaining 50% of individuals and their probability predictions in the

regression analysis. Details on the random forest algorithm as well as the implementation

of the algorithm in the present context can be found in Appendix D. With the estimated

probabilities at hand, the control function estimation proceeds by replacing the selection

probabilties from Section 5.2 with their estimates p̂ijr0t0 and p̂i(k|j)rt.

6 Results

This section discusses the results for regression equation (1), where I parameterize τjk using

different specifications to estimate returns to working on versus off the diagonal within

occupations (Sections 6.1 and 6.2) and across occupations for each training (Sections 6.3

and 6.4). All results are based on the baseline sample, excluding observations used to train

the random forest as well as years where the instruments are not available (see Section 5.3).

Following Abadie et al. (2017), standard errors allow for clustering at both the region and

time level. To generate meaningful averages, regression observations are weighted using the

empirical training-occupation distribution in the most recent sampling year, 2010. In all

baseline estimations, f(vackrt) is approximated using a fourth order polynomial in vackrt.

Robustness using a higher order polynomial is provided in Section 6.5.

6.1 Average Return to Working On versus Off the Diagonal

This section reports and discusses the results for the outcome equation where τjk = δk +

τDj=k, and parameter τ captures the average on- versus off-diagonal return within occupa-

tions.31 Table 4 shows the regression results. The main variable of interest is Dj=k which is

equal to one if the individual works on the diagonal. Columns (1) and (2) report the results

from estimations that do not control for occupation-specific experience, columns (3) and

(4) condition on expk.
32 Both specifications are estimated without controlling for selection

(columns (1) and (3)), and using the control function estimator (columns (2) and (4)).

The results from column (1) show that working on the diagonal is associated with a

small negative wage effect. This effect becomes more negative after controlling for expk

(column (3)), which is in line with workers on the diagonal having more experience in their

current occupation. When accounting for selection using the parametric control function

31Note that since all regressions contain individual fixed effects and individuals only complete one training,
the within-occupation comparison here assumes that the effect of a particular training that is common to
all occupations is the same across trainings.

32Note that, since occupation-specific experience corresponds to past selection into occupations, it may
be an endogenous regressor. The given control function does not explicitly take this additional potential
endogeneity into account. The results from columns (3) and (4) should therefore be taken with caution.

27



estimator (columns (2) and (4)), the effect of Dj=k becomes positive and significant, implying

a sizable negative selection bias of around 15 percentage points. The coefficients on the

control function are highly significant, confirming the importance of the selection bias. The

negative sign of the bias suggests that the selection into occupations dominates the selection

into training in the given setup (see Section 4.1.2). Intuitively, workers on the diagonal may

be negatively selected relative to workers off the diagonal as the latter must compensate for

the lack of training with higher occupation-specific ability.

Table 4: Average On- versus Off-Diagonal Returns

(1) (2) (3) (4)

Dj=k = 1 −0.0126 0.1510∗∗∗ −0.0349∗∗∗ 0.1355∗∗∗

(0.0079) (0.0193) (0.0087) (0.0214)
exp 0.0597∗∗∗ 0.0593∗∗∗ 0.0431∗∗∗ 0.0432∗∗∗

(0.0022) (0.0023) (0.0025) (0.0025)
exp2 −0.0010∗∗∗ −0.0010∗∗∗ −0.0004∗∗∗ −0.0004∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
expk 0.0182∗∗∗ 0.0176∗∗∗

(0.0013) (0.0014)
exp2

k −0.0008∗∗∗ −0.0008∗∗∗

(0.0001) (0.0001)

Indiv. FE yes yes yes yes
Occ./Reg./Time FE yes yes yes yes

Parametric cf no yes no yes
p-value cf 0.000 0.000

N 1,140,518 1,140,518 1,140,518 1,140,518

Notes: The table reports regression results for equation (1) with τjk = δk + τDj=k. Standard errors (in
parentheses) are clustered at the region and time level. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

Results from column (2) suggest that working on the diagonal leads to a significant

wage increase of 15.1%. This figure should be interpreted as the full effect of having received

training in the current occupation, including potentially higher experience in that occupation

that was accumulated as a result of the training. As before, controlling for occupation-specific

experience lowers the effect of Dj=k to about 13.6% (column (4)). Albeit smaller than the

full effect, the results from column (4) suggest that most of the positive effect of working on

the diagonal is due to the training itself, not the subsequent effect that training may have on

the accumulation of occupation-specific experience. As outlined above, given the potential
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endogeneity of occupation-specific experience, these results should however be taken with

caution. As a result, only the full-effect specification corresponding to columns (1) and (2)

will be used in the heterogeneity and full-matrix analysis that follows, i.e. regressions will

control for total work experience exp but not for occupation-specific work experience expk.

6.2 Heterogeneity by Experience

This section reports and discusses the results for the outcome equation where τjk = δk +

τ expDj=k, which looks at the heterogeneity in on- versus off-diagonal returns across different

levels of full-time work experience. Figure 3 plots separate coefficient estimates for τ exp,

where experience levels have been binned into yearly categories. Each coefficient compares

workers with a specific level of full-time work experience who were trained in their occupation

to workers with the same level of experience who were not trained in their occupation.

In line with the results from Table 4, Figure 3 shows that not controlling for selection

leads to a sizable negative bias in the coefficient estimates. The set of control function

estimates suggests that the effect of Dj=k first increases slightly from around 13% to 15%,

then falls to about 12% after 12 years of work experience where it stabilizes. While the

early increase is in line with an initially stronger accumulation of occupation-specific work

experience for on-diagonal workers, the subsequent decline suggests that off-diagonal workers

partly catch up with their co-workers who received the relevant training. However, there is

no full catch-up and sizable differences remain after 20 years of work experience.

Figure B.5 plots the same set of coefficients as Figure 3, adding the coefficients estimated

using the non-parametric control function estimator described in Sections 5.1 and 5.2. Since

the latter identifies the slope but not the level of the parameters of interest, all coefficients

are normalized to zero at zero years of work experience. Comparing the set of coefficients

estimated without selection control to those estimated with the parametric control function

shows that not controlling for selection leads to an increasingly negative bias in the estimated

coefficients, such that final levels are underestimated by about 2% more than those at low

levels of work experience. This increase in bias is in line with workers receiving better

information about their occupation-specific abilities over time.

Moreover, Figure B.5 shows that the normalized coefficients from the parametric and

non-parametric control function estimator are almost identical. This lends support to the

distributional assumptions made to implement the parametric approach.33

33Figure B.8 reports a similar comparison, adding on-diagonal probability terms to the non-parametric
control function (see Dahl (2002)). The results provide further support to the assumptions made.
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Figure 3: On- versus Off-Diagonal Returns by Experience
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Notes: The figure plots regression coefficient estimates for τexp in a version of equation (1) with τjk =
δk+τexpDj=k, where experience levels have been binned into yearly categories. Standard errors are clustered
at the region and time level. 95% confidence intervals are shown.

6.3 Heterogeneity by Training

This section presents and discusses the results for the outcome equation where τjk = τjDj=k,

which explores the on- versus off-diagonal returns for each training. Note that this model

aims at estimating the parameters that determine the occupational selection conditional on

each training and therefore does not contain occupation fixed effects. Figure 4 plots the

coefficients τj estimated with and without the parametric control function. The coefficient

estimates are highly heterogeneous and, out of the five largest trainings, health and social

workers have the highest, craft workers the lowest return to working in their training occupa-

tion. Given the regression specification, negative coefficient estimates τ̂j can be rationalized

by other occupations k 6= j providing better opportunities, regardless of the training.

Since workers choose their occupations taking into account the return to working on

versus off the diagonal, the heterogeneity in these returns across trainings should affect the

fraction of individuals choosing to work on the diagonal ex-post. Conditional on training

choice, the Roy model predicts that more workers will select onto the diagonal, the higher
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Figure 4: Average On- versus Off-Diagonal Returns by Training
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Notes: The figure shows regression coefficient estimates for τj in a version of equation (1) with τjk = τjDj=k

for each training. Standard errors are clustered at the region and time level. 95% confidence intervals shown.

the on- versus off-diagonal return in that training. Figure 5 explores this relationship by

plotting the average return to working on the diagonal from Figure 4 together with the

fraction working on the diagonal for each training. The positive slope is consistent with the

Roy model predictions outlined above, and suggests that relative returns are an important

determinant of the selection into occupations.

A further implication of the Roy model is that heterogeneity in the average return to

working on versus off the diagonal across trainings is related to the size of the selection bias.

As outlined in Section 6.1, the strong negative bias in average returns suggests that the

selection into occupations dominates the selection into training, and that off-diagonal workers

compensate for their lack of training with higher occupation-specific ability. As a result, one

may expect a negative correlation between the on-diagonal return and the estimated selection

bias across trainings. The higher the return to working on the diagonal for a particular

training, the more occupation-specific ability outside the training is required to work off the

diagonal, so returns in high-return trainings will be more strongly underestimated when not

controlling for selection. Figure B.6 confirms this by showing a negative correlation between

the estimated return and the selection bias across trainings.
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Figure 5: Average Return and Fraction Working in Training Occupation
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Notes: The figure plots average on- versus off-diagonal returns for each training from Figure 4 against the
fraction of individuals working in their training occupation. The fitted line corresponds to a weighted OLS
regression using the sample fraction in each training as weights. Marker size is proportional to the weights.

6.4 Full Training-Occupation Matrix

This section reports and discusses the results for the fully parameterized outcome equation

which contains separate parameters τjk for all cells in the training-occupation matrix. Table

5 shows the results using the parametric control function estimator for the five largest occu-

pations. Tables A.5 and A.6 report the results for all coefficients, with and without selection

control. As outlined before, the inclusion of individual fixed effects in the estimation implies

that all coefficients should be interpreted relative to the diagonal within the same training.

In line with the positive on- versus off-diagonal returns for four out of five of the largest

trainings in Figure 4, Table 5 shows that, with the exception of training as a craft worker,

most coefficients are negative suggesting that individuals incur wage penalties when working

outside their training occupation. Nonetheless, there is considerable heterogeneity in the

magnitudes of off-diagonal returns across trainings. For instance, the results suggest that

while trained office workers incur moderate penalties when working in a different occupation,

much larger penalties are incurred by trained health and social workers, with estimates
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ranging between −0.74 and −0.48 log points. Table 5 also shows that returns are highly

asymmetric. While trained office workers incur sizable penalties when working as craft

workers, trained craft workers receive wage gains when working as office workers. In line

with this finding, the fact that all trainings incur penalties when working as craft workers

suggests that craft occupations provide worse opportunities, regardless of the training (see

Section 6.3). Similar to Figure 5, Figure B.7 plots the estimated off-diagonal returns against

the fraction of individuals choosing to work in the relevant occupation conditional on their

training. Albeit noisier than Figure 5, the positive correlation confirms the importance of

returns in determining the selection into occupations.

While hard to interpret individually, the estimates from Table 5 provide an opportunity

to study a mechanism underlying the results presented in this paper. In Section 7, I use

data on the task content of occupations to explore the heterogeneity in estimated returns,

thereby providing a microfoundation for the empirical findings.

Table 5: Full Matrix of Returns - Within-Training Comparisons

Occupation

Office Craft Sales, financ. Health Constr.
workers workers workers workers workers

T
ra

in
in

g

Office workers 0 −0.41∗ −0.06 −0.18 −0.12
(0.20) (0.09) (0.16) (0.14)

Craft workers 0.21∗∗∗ 0 0.37∗∗∗ 0.26∗∗ 0.28∗∗

(0.04) (0.06) (0.09) (0.11)
Sales, financ. w. −0.10 −0.01 0 −0.02 0.02

(0.10) (0.16) (0.11) (0.15)
Health, social w. −0.73∗∗∗ −0.74∗∗∗ −0.48∗∗∗ 0 −0.72∗∗∗

(0.10) (0.10) (0.11) (0.18)
Construction w. −0.10 −0.14∗ 0.02 −0.04 0

(0.06) (0.07) (0.06) (0.14)

Notes: The table shows regression coefficient estimates for τjk in equation (1), estimated using the parametric
control function estimator. Results are shown for the five largest occupations. Table A.6 shows the full set
of coefficients. Standard errors (in parentheses) are clustered at the region and time level. Given the low
number of clusters, critical values of the t(9)-distribution are used. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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6.5 Robustness

Table 6 provides robustness checks for the main result in column (2) of Table 4 by restricting

the sample in a number of different ways.34 Column (1) excludes employment spells where

workers change the region in which their employer is located (see Section ??); column (2)

restricts the sample to individuals with an apprenticeship length between two and a half and

three years; column (3) excludes wages that could potentially be capped in the dataset (see

Section 2.5); column (4) excludes individuals who switched firms during their apprenticeship;

column (5) excludes all spells where workers were employed in their apprenticeship firm. All

results are obtained using the parametric control function estimator.

Table 6 shows that the effect of working on versus off the diagonal is positive and signif-

icant in all columns, with most results being quantitatively very similar to the main sample

estimate of 15.1%. Columns (1)-(4) all report coefficient estimates of around 15%. While

column (1) alleviates concerns regarding the conditional random assignment assumption (see

Section ??), columns (2)-(4) suggest that differences in the length across apprenticeships,

the presence of institutional wage caps in the data or the sample of apprentices switching

firms during their training are not driving the main result. The point estimate is slightly

lower at 10.5% in column (5). While this is partly due to the fact that the main coefficient is

lower at higher levels of experience, and that spells in apprenticeship firms are concentrated

early in a worker’s career, it also points to potential complementarities of working both in

the occupation and the firm one has been trained in. At the same time, column (5) shows

that such complementarities are small relative to the effect purely associated to the training.

7 Task Content

This section provides a microfoundation for the results presented in this paper by drawing

on the literature on the task content of occupations. The task approach considers tasks as

inputs to production, and skills as the human capital required to carry out these tasks (Autor

(2013), Autor & Handel (2013)). Occupations, as discrete classification units, correspond to

vectors of tasks that are carried out by workers.35

Based on this concept, it is possible to construct measures of task distance between

occupations. Poletaev & Robinson (2008) and Gathmann & Schönberg (2010) argue that, if

34Further robustness results focusing on the estimation method can be found in Table A.7.
35More generally, task vectors can be carried out by labor or capital and changes in relative prices may

lead to changes in the allocation of tasks to labor or capital (Acemoglu & Autor (2010), Autor (2013)). I
focus on the task vectors which are carried out by workers within each occupation.
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Table 6: Average On- versus Off-Diagonal Returns - Sample Restrictions Robustness

(1) (2) (3) (4) (5)
no movers app. length no capped no app.-firm- no spells in

2.5− 3 years wages switchers app. firm

Dj=k = 1 0.1492∗∗∗ 0.1461∗∗ 0.1434∗∗∗ 0.1558∗∗∗ 0.1052∗∗∗

(0.0200) (0.0481) (0.0189) (0.0229) (0.0245)
exp 0.0595∗∗∗ 0.0552∗∗∗ 0.0599∗∗∗ 0.0594∗∗∗ 0.0569∗∗∗

(0.0023) (0.0027) (0.0024) (0.0023) (0.0024)
exp2 −0.0010∗∗∗ −0.0009∗∗∗ −0.0010∗∗∗ −0.0010∗∗∗ −0.0009∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Indiv. FE yes yes yes yes yes
Occ./Reg./T. FE yes yes yes yes yes

Parametric cf yes yes yes yes yes
p-value cf 0.000 0.000 0.000 0.000 0.000

N 1,118,123 279,249 1,118,404 1,024,332 827,353

Notes: The table reports regression results for equation (1) with τjk = δk + τDj=k. Each column restricts
the baseline sample as indicated in the column header. Standard errors (in parentheses) are clustered at the
region and time level. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

human capital is task-specific, it should be more easily transferable across occupations that

require a similar mix of tasks.36 In the present context, these findings suggest an explanation

for the heterogeneity in estimated returns in the training-occupation matrix. If workers are

trained in a specific mix of tasks (equal to the mix of tasks performed in the occupation they

are trained for), then one would expect the penalty in a different occupation to be larger,

the more distant in terms of the task content the occupation is from the original training.

7.1 Measuring Task Distance

The measure of task distance is constructed using data from the German Qualification and

Career Survey (GQS), a representative telephone survey of around 20.000 individuals con-

ducted by the German Federal Institute for Vocational Training and Education (Bundesin-

stitut für Berufsbildung - BiBB). This data has been used to study the skill requirements

36Using samples of displaced workers, they find that wage penalties are larger the more distant the
occupational switch after displacement. Yamaguchi (2012) sets up a structural model to formalize these
findings. Similarly, Cortes & Gallipoli (2018) estimate a structural model and show that task difference is a
significant component of the cost of switching occupations.
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across occupations in Germany in a variety of different contexts (e.g. DiNardo & Pischke

(1997), Spitz-Oener (2006) and Gathmann & Schönberg (2010)). For the present analysis,

I use four survey waves that fall within the sampling period used in this study (1985/86,

1991/92, 1998/99 and 2005/06).

The survey records information on workers’ occupations and asks them to pick from a

list of tasks the ones they perform in their current occupation. A summary table of the

tasks together with the percentage of individuals working in the two largest occupations

(office and craft workers) performing these tasks is presented in Table 7.37 An advantage

of the GQS task data is that, unlike the Dictionary of Occupational Title (DOT) which is

the primary source of task data in the US, it makes a clear distinction between tasks and

skills.38 As a result, the task measures in the GQS all refer to activities that are required in

specific occupations (e.g. operate machines) as opposed to capabilities of workers which are

required to carry these out (e.g. manual dexterity).

Table 7: List of Tasks and Fraction Performing

Task Office workers Craft workers

Cultivate 0% 1%
Manufacture, install or construct 4% 47%
Publish, present or entertain others 5% 0%
Serve or accommodate 6% 2%
Clean 8% 27%
Secure 9% 15%
Repair, renovate, reconstruct 9% 72%
Equip or operate machines 14% 66%
Nurse or treat others 14% 11%
Pack, ship or transport 25% 35%
Execute laws or interpret rules 25% 3%
Design, plan, sketch 38% 29%
Employ, manage personnel, organize, coordinate 38% 14%
Calculate or do bookkeeping 41% 6%
Research, evaluate or measure 47% 50%
Sell, buy or advertise 48% 21%
Teach or train others 51% 39%
Program 55% 25%
Correct texts or data 74% 9%

Notes: The table shows the average fraction of individuals indicating they perform the given task.

37To construct averages, observations in each wave are weighted using survey weights and subsequently
combined giving equal weight to each wave. See Table A.8 for an equivalent list for all occupation categories.

38See Yamaguchi (2012) and Robinson (2018) for a recent discussion of the job measures in the DOT.
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Following Gathmann & Schönberg (2010), I use the task data to construct a measure

of distance between training j and occupation k, Distjk, which is based on the angular

separation between task vectors j and k (see Appendix E for details).39 The resulting

distance measure ranges from zero to one, and is decreasing in the degree of overlap between

the two task vectors (two orthogonal task vectors having distance one).

Excluding on-diagonal training-occupation cells where Distjk = 0, the empirical distance

in the given setting varies between 0.01 and 0.46 with a mean of 0.23. When weighting

training-occupation cells by their sample fractions, the mean distance drops to 0.19 suggest-

ing that, on average, workers who leave their training occupation work in occupations which

are more similar to their training than the average occupation. Figure B.9 explicitly shows

the negative correlation between training-occupation distance and the fraction of workers

in the relevant occupation. Tables A.9 and A.10 report the distance measure for the five

most similar and five most distant training-occupation pairs, as well as for the five largest

trainings and occupations.

7.2 Match Returns and Task Distance

I model the estimated returns to a training-occupation combination τ̂jk from Section 6.4

using the following simple specification:

τ̂jk = α + βDistjk + ηjk, (21)

where Distjk is the measure of task distance between training j and occupation k described

in Section 7.1, standardized to have mean zero and standard deviation equal to one, and ηjk

is a match-specific error term.

Table 8 presents the results for equation (21). Column (1) shows that higher task distance

is significantly related to lower returns in training-occupation cells. Specifically, the results

suggest that a one-standard-deviation increase in task distance is associated with a reduction

in the return to the match of around 7pp, or more than 50% of the average τ̂jk. To control for

the fact that some occupations provide better opportunities regardless of training, column

(2) includes occupation fixed effects in the regression. This slightly reduces the coefficient

on Distjk to 5.5pp. Columns (3) and (4) show the results for the same regression models

where the left-hand-side returns τjk have been estimated without selection control. It can be

39Measuring similarity between two vectors by the angular separation was first proposed by Jaffe (1986,
1989a) who estimated R&D spillovers across technologically similar firms. Subsequently, a number of studies
have used the measure in various contexts such as spillovers of university research to commercial innovation
(Jaffe (1989b)), knowledge-relatedness in technological diversification (Breschi et al. (2003)) and similarity
of tasks performed across occupations (Gathmann & Schönberg (2010), Cortes & Gallipoli (2018)).
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seen that the effect of Distjk is much smaller in magnitude and only marginally significant.

Tables A.11 and A.12 show that the above findings are robust to excluding on-diagonal

observations where τ̂jk = 0 and Distjk = 0, and even to restricting the sample to the five

largest trainings and occupations. Overall, the results are in line with the proposed hypoth-

esis that apprentices are trained to carry out a specific mix of tasks and their returns across

occupations are lower, the less applicable the acquired skills are to that occupation.

Table 8: Match Returns and Task Distance

τjk estimated with parametric control fcn. without selection control

(1) (2) (3) (4)

Distjk −0.0738∗∗ −0.0545∗∗ −0.0172∗ −0.0026
(0.0281) (0.0243) (0.0097) (0.0079)

Occ. FE yes yes

Mean of τ̂jk −0.1277 −0.1277 −0.0138 −0.0138

N 169 169 169 169

Notes: The table reports regression results from equation (21). Distjk is scaled by its standard deviation.
Robust standard errors are reported. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

8 Welfare and Policy

The results from Section 6.1 suggest sizable penalties from working off the diagonal. Using

the model from Section 3, this section explores the welfare losses from ex-post suboptimal

training choices which are implied by these estimates. In line with the model, the reason

why training choices may be suboptimal ex-post is imperfect information at the time of

training choice. This means that new information about the labor market and own abilities

may be revealed, causing workers to seek work in an occupation different from their train-

ing. In addition to off-diagonal workers, a second group is affected by the ex-ante lack of

information. These are workers who are locked into their training, meaning that they would

choose a different occupation in the absence of off-diagonal penalties but currently work on

the diagonal as their payoff elsewhere is insufficient to compensate for the lack of training.

Section 8.1 quantifies the welfare loss for off-diagonal and locked-in workers. Section 8.2

considers a potential policy intervention, retraining programs. Importantly, such programs
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target ex-post wage outcomes and do not require any assumptions on preferences beyond

those given in Section 3. Back-of-the-envelope calculations suggest that retraining could be

very effective in addressing the information friction in the present context.

8.1 Welfare Losses

Using the selection model from Section 3, this section looks at the partial equilibrium per-

period welfare losses due to imperfect information at the time of training choice. These

losses are equivalent to the gains from changing training to the optimal option ex-post. All

calculations are based on the empirical estimates for the average on- versus off-diagonal

returns within occupations (see Table 4 in Section 6.1). Total losses are computed as the

product of loss per worker and share of affected workers.

Focusing first on off-diagonal workers, the loss due to ex-ante imperfect information is

equivalent to the gain associated with being trained in the current occupation. Note that

since the model does not allow for individual-specific heterogeneity in the welfare returns to

matching a training to a particular occupation, this gain is given by τ .40 My findings suggest

that τ is about 15%.41 Figure 2 in Section 2.5 shows that the average share of off-diagonal

workers is about 40%. This implies that the welfare loss from off-diagonal workers amounts

to 6% of wages per worker in the system.

For each locked-in worker, the welfare loss is bounded from above by the on- versus off-

diagonal return τ . Intuitively, locked-in workers choose not to change their occupation given

the on- versus off-diagonal return, so their gain from a more suitable training choice can be at

most τ . Since occupation-specific abilities are unobserved, locked-in workers are not directly

observed in the data. To estimate the share of these workers, I use variation in the on- versus

off-diagonal return and in the fraction of on-diagonal workers by experience. Assuming that

changes in the fraction of workers on the diagonal are partly driven by the decrease in the

return, this variation allows for a counterfactual estimate of workers who would not be on

the diagonal in the absence of on-diagonal returns. Details of this calculation are provided

in Appendix F. The resulting estimated fraction of locked-in workers is 30%. Combining

this share with the upper bound on losses per worker, these results suggest that the welfare

loss from locked-in workers is given by at most 4.5% of wages per worker. This implies total

40By revealed preference a worker would not choose a different occupation after retraining in their current
occupation. Note that, in a model of heterogeneous returns across the training-occupation matrix (a model
with τjk instead of τ ×Dj=k), τ will be a lower bound on the gains from retraining since retraining in the
current occupation may not be the first best outcome.

41Note that the estimate controlling for occupation-specific experience could instead be used here, since a
hypothetical retraining scenario would not lead to higher accumulated work experience in the newly chosen
occupation. In practice, this makes little difference in the ensuing calculations.
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losses from off-diagonal and locked-in workers of about 6− 10.5% of wages per worker in the

dual apprenticeship system.

8.2 Retraining Programs

The calculations in Section 8.1 show that the welfare losses due to imperfect information at

the time of training choice are large. This section briefly considers retraining programs as a

potential policy intervention.42 Since workers are trained in occupation-specific subjects for

two thirds of their apprenticeship, I assume that retraining programs would last two thirds

of the initial training time. Details on all calculations below are presented in Appendix F.

Retraining programs will be costly to the government and training firms. In addition,

workers will forgo earnings while retraining. In 2010, total costs to train an apprentice,

including training, schooling costs and foregone earnings amounted to 31,960 Euros. As

outlined in Section 8.1, the per worker annual gain from retraining is τ for off-diagonal

workers, and at most τ for locked-in workers. My results suggest that this implies annual

benefits net of foregone work experience of 3, 510 Euros in 2010.

Note that, while the costs of retraining need to be paid upfront, the benefits accrue for

every subsequent year spent working with a more suitable training. Whether or not retraining

is associated with a net benefit therefore depends on the career stage of a worker. Following

this logic, my calculations indicate that retraining costs would be recovered for workers with

at most 10 years of work experience. Since about two thirds of off-diagonal workers leave

their training occupation in the first 10 years after completing the apprenticeship (see Figure

2 in Section 2.5) and only switch occupations once (see Table 1 in Section 2.5), the findings

suggest that retraining could pass a cost-benefit test for a large majority of the workers

ever working off the diagonal. Moreover, an additional 85% of workers ever locked in could

benefit from retraining (see Appendix F).

The above results imply that ex-post retraining programs could be highly effective in

addressing the imperfect information workers face at the time of training choice. While

a small number of firms already offer shorter training programs for career switchers, my

findings suggest that these programs should be substantially expanded to facilitate retraining

in response to new information on abilities, preferences and labor market circumstances.43

In addition, further research is required to better understand potential barriers to entry into

retraining such as liquidity constraints.

42The effects of a potential ex-ante provision of information by the government at the time of training
choice are harder to quantify. See Appendix F for a discussion.

43The sample fraction of individuals enrolled in two apprenticeships in distinct occupations is only 4.02%
(see Section 2.5). This is likely an overestimate of the fraction retraining as it includes spells for which the
occupation is missing and non-completed apprenticeships.
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9 Conclusion

This paper combines a large administrative employment panel with data on historical occupation-

specific vacancies to identify and estimate the returns to different training-occupation com-

binations. To this end, I extend previous methodological approaches in the presence of

high-dimensional selection to the given context where individuals select amongst a large

number of alternatives in two stages. I provide a behavioral justification for the identifica-

tion strategy, and implement the estimation approach by setting up a generalized two-stage

Roy (1951) model where individuals seek relative advantage when choosing their training

and occupation. To the best of my knowledge, this work is the first to present estimates on

the returns to different training-occupation combinations which are well identified.

The results suggest significant returns of 15% to working in the occupation one has been

trained for, with considerable heterogeneity across trainings and occupations. Combining

the returns with data on the task content of occupations shows that returns in a particular

training-occupation cell are lower, the higher the task distance between the training and

the occupation. These findings provide a microfoundation for the estimated returns, and

contribute to the literature on the task content of occupations by directly relating tasks

workers are trained in to the value of human capital across occupations.

Given the magnitude of the estimates, my findings suggest that imperfect information at

the time of training choice leads to important welfare losses. These losses are economically

meaningful and may seem surprising in the context of the German apprenticeship system

which has repeatedly been termed a role model for vocational training in other economies in

Europe, the US, China and India. My findings show that young workers’ ex-ante imperfect

information on own abilities and future labor market developments should be addressed by

policy makers, and that ex-post retraining programs could generate sizable net welfare gains.

For the presented policy analysis, I took the existing training system as given and looked at

improvements in the allocation of workers to training choices. Building on the estimates of

the effect of task distance on the returns to training-occupation combinations, an interesting

future avenue for research could relax this constraint and consider optimal training programs.
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Appendix A. Tables

Table A.1: List of Occupations

KldB88 Code Occupation label Sub-label % in code

75-78 Office workers Office workers 73.1
Other 26.9

19-30, 32 Craft workers Vehicle mechanics 14.4
Machine fitters 10.7
Plumbers 10.7
Other 64.2

68-70 Sales, financial Salespeople 34.3
workers Banking experts 24.3

Wholesalers, retail dealers 16.6
Other 24.8

79-89 Health, social Medical receptionists 25.9
workers Nurses, midwives 23.0

Nursery, childcare w. 10.2
Other 40.9

44-51 Construction Bricklayers, concrete w. 21.9
workers Carpenters 21.2

Decorators, painters 15.7
Other 41.2

10-18, 52-54 Process, plant Chemical, plastics proc. w. 26.4
workers Unskilled laborers 19.2

Other 54.4

71-74 Transport, storage Vehicle drivers 39.7
workers Movers, warehousers 22.0

Stock clerks 17.9
Other 20.4

60-63 Technical, laboratory Other technicians 22.6
workers Technical drawers 17.0

Electrical technicians 16.0
Other 44.4
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Table A.1 continued: List of Occupations

KldB88 Code Occupation label Sub-label % in code

31 Electrical workers Electricians 69.5
Telephone technicians 17.2
Electrical appliance fitters 13.3
Other 0

90-93 Personal service Hairdresssers, body care occ. 40.8
workers Hospitality workers 28.4

Other 30.8

39-43 Food preparation Cooks, ready meal producers 39.0
workers Bakers, confectioners 28.6

Butchers, fish processing w. 21.7
Coopers, brewers, food prod. 10.8
Other 0

01-09 Agricultural Gardeners, florists, foresters 57.9
workers Miners, oil production w. 22.9

Farmers, zookeepers 19.2
Other 0

33-37 Textile, garment Tailors, textile ind. w. 59.6
workers Spinners, leather good/shoem. 40.4

Other 0

Notes: The table lists all occupations contained in the baseline sample by fraction in the sample. Sub-labels
are provided for all within-code shares greater than 10%.
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Table A.2: Spells as Percentage of Trainings

Occupation

01-09 10-54 19-32 31 33-37 39-43 44-51 60-63 68-70 71-74 75-78 79-89 90-93

T
ra

in
in

g

01-09 Agricultural 51.8 6.3 4.9 0.8 0.2 0.4 4.8 3.3 5.3 9.6 6.5 4.7 1.4
10-54 Process, plant 0.7 57.3 4.2 0.6 0.1 0.2 1.5 12.0 4.7 5.7 8.7 3.6 0.6
19-32 Craft 0.9 9.5 55.3 1.6 0.2 0.4 2.5 8.9 3.9 9.2 4.8 2.4 0.6
31 Electrical 0.6 5.3 8.7 47.0 0.1 0.2 1.2 17.1 3.8 4.7 8.0 2.8 0.5
33-37 Textile, garment 0.4 9.7 8.0 0.4 35.6 1.5 3.6 7.0 8.3 5.6 12.7 4.7 2.5
39-43 Food preparation 1.1 8.6 6.2 0.7 0.3 43.1 3.6 1.7 7.8 13.2 6.7 3.6 3.4
44-51 Construction 1.1 7.5 5.7 0.5 0.3 0.4 60.2 4.3 3.1 9.4 3.6 2.9 0.9
60-63 Technical, lab. 0.3 2.7 2.5 3.2 0.0 0.1 0.7 68.7 4.1 1.6 12.8 2.8 0.5
68-70 Sales, financial 0.2 2.3 1.6 0.2 0.2 0.6 0.3 0.8 60.6 3.4 26.5 2.1 1.1
71-74 Transport, storage 0.1 5.3 3.5 0.9 0.0 0.3 2.5 2.1 7.6 55.2 18.9 2.9 0.7
75-78 Office 0.1 0.8 0.6 0.1 0.0 0.0 0.1 1.1 12.6 2.0 80.6 1.6 0.4
79-89 Health, social 0.2 0.8 0.7 0.1 0.0 0.2 0.2 0.8 4.3 1.0 12.2 79.0 0.7
90-93 Personal service 0.4 5.2 3.6 0.5 0.3 3.0 0.6 1.0 10.6 3.9 20.8 4.9 45.2

Notes: The table reports the number of spells with a particular training-occupation combination as a percentage of all spells in the training for the
baseline sample. Results are restricted to individuals with ten years of work experience.
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Table A.3: Spells as Percentage of Occupations

Occupation

01-09 10-54 19-32 31 33-37 39-43 44-51 60-63 68-70 71-74 75-78 79-89 90-93

T
ra

in
in

g

01-09 Agricultural 70.8 2.5 0.8 0.5 0.9 0.4 1.5 1.3 0.9 3.9 0.7 1.2 1.5
10-54 Process, plant 0.8 19.2 0.6 0.3 0.3 0.2 0.4 3.7 0.7 1.9 0.8 0.8 0.6
19-32 Craft 11.3 36.9 84.3 8.9 8.8 3.6 7.5 32.3 6.2 36.2 5.0 5.7 6.7
31 Electrical 2.6 6.4 4.1 84.1 0.9 0.7 1.2 19.2 1.9 5.7 2.6 2.1 1.6
33-37 Textile, garment 0.2 1.5 0.5 0.1 70.1 0.6 0.4 1.0 0.5 0.9 0.5 0.5 1.1
39-43 Food preparation 2.6 6.1 1.7 0.8 2.8 82.8 2.0 1.1 2.3 9.6 1.3 1.6 6.6
44-51 Construction 7.0 13.5 4.0 1.2 6.3 2.1 85.1 7.2 2.3 17.0 1.7 3.2 4.3
60-63 Technical, lab. 0.4 1.2 0.4 2.1 0.2 0.1 0.2 27.6 0.7 0.7 1.5 0.8 0.6
68-70 Sales, financial 1.7 5.9 1.7 0.9 6.1 4.3 0.6 1.8 64.8 9.0 18.3 3.4 8.1
71-74 Transport, storage 0.0 0.6 0.1 0.1 0.0 0.1 0.2 0.2 0.3 5.9 0.5 0.2 0.2
75-78 Office 1.0 2.3 0.7 0.3 1.0 0.3 0.3 2.8 14.4 5.5 59.4 2.8 3.1
79-89 Health, social 0.8 1.3 0.4 0.3 0.6 0.7 0.3 1.2 2.7 1.6 5.1 76.4 2.8
90-93 Personal service 0.7 2.7 0.7 0.4 2.2 4.1 0.2 0.5 2.2 2.0 2.8 1.6 62.9

Notes: The table reports the number of spells with a particular training-occupation combination as a percentage of all spells in the occupation for
the baseline sample. Results are restricted to individuals with ten years of work experience.
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Table A.4: Suggestive First Stage Regressions

Occupation

01-09 10-54 19-32 31 33-37 39-43 44-51 60-63 68-70 71-74 75-78 79-89 90-93

ln(vacin) 0.80 1.82 9.86 0.04 0.49 1.10 2.37 1.69 2.43 1.20 5.92 1.91 1.08
(0.02) (0.04) (0.12) (0.10) (0.00) (0.04) (0.04) (0.05) (0.15) (0.03) (0.09) (0.05) (0.04)

ln(vacout) -0.77 -2.21 -9.76 0.27 -0.43 -1.23 -2.78 -1.12 -2.68 -1.2 -5.17 -2.65 -1.49
(0.02) (0.05) (0.14) (0.10) (0.01) (0.04) (0.05) (0.06) (0.15) (0.03) (0.08) (0.06) (0.04)

Notes: N=3,964,883 in all regressions. This corresponds to the main sample, excluding observations where no vacancy data is available (1975-1978 and
1992-1993 in East Germany). The dependent variable in each column is a dummy variable equal to one for the given occupation and zero otherwise,
vacin denotes vacancies in the given occupation, and vacout denotes the mean of vacancies in other occupations. Regressions control for gender and
experience. Coefficients are scaled by 100. Robust standard errors are reported.
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Table A.5: Full Matrix of Returns - No Selection Control

Occupation

01-09 10-54 19-32 31 33-37 39-43 44-51 60-63 68-70 71-74 75-78 79-89 90-93

T
ra

in
in

g

01-09 Agricultural 0 −0.02 0.03 0.03 −0.02 0.04 0.07 0.08 0.07 −0.02 0.04 0.02 −0.21
(0.03) (0.04) (0.07) (0.06) (0.11) (0.05) (0.10) (0.03) (0.04) (0.04) (0.04) (0.07)

10-54 Process, plant −0.08 0 −0.03 −0.01 0.27 0.00 −0.02 0.08 −0.02 −0.06 0.00 −0.01 −0.45
(0.07) (0.05) (0.10) (0.14) (0.14) (0.06) (0.03) (0.07) (0.04) (0.05) (0.04) (0.17)

19-32 Craft −0.09 0.02 0 0.04 0.13 −0.01 0.03 0.15 0.07 −0.01 0.08 −0.03 −0.13
(0.04) (0.01) (0.02) (0.08) (0.04) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.06)

31 Electrical −0.05 0.07 0.09 0 −0.07 0.05 −0.03 0.17 0.13 −0.02 0.19 0.04 −0.09
(0.08) (0.02) (0.02) (0.14) (0.07) (0.06) (0.02) (0.03) (0.03) (0.03) (0.03) (0.08)

33-37 Textile, garment 0.07 0.00 0.08 −0.04 0 −0.20 0.06 0.04 −0.03 −0.02 −0.05 −0.09 −0.57
(0.21) (0.03) (0.06) (0.13) (0.15) (0.09) (0.10) (0.12) (0.12) (0.10) (0.09) (0.09)

39-43 Food preparation 0.00 0.03 0.17 0.10 0.06 0 0.11 0.21 0.13 0.07 0.15 0.07 −0.03
(0.05) (0.03) (0.03) (0.10) (0.05) (0.04) (0.04) (0.03) (0.02) (0.03) (0.05) (0.04)

44-51 Construction −0.09 −0.07 0.01 −0.10 −0.22 −0.03 0 0.06 −0.06 −0.07 0.01 −0.11 −0.21
(0.03) (0.02) (0.02) (0.03) (0.06) (0.04) (0.02) (0.03) (0.02) (0.02) (0.02) (0.04)

60-63 Technical, lab. −0.22 −0.08 0.02 −0.09 −0.17 0.08 0.05 0 0.05 −0.06 0.03 −0.04 −0.66
(0.19) (0.06) (0.04) (0.03) (0.31) (0.15) (0.07) (0.05) (0.08) (0.03) (0.07) (0.20)

68-70 Sales, financial −0.24 −0.03 0.11 0.05 0.06 −0.01 −0.04 0.05 0 −0.01 0.01 −0.09 −0.26
(0.05) (0.03) (0.02) (0.06) (0.06) (0.05) (0.05) (0.05) (0.02) (0.01) (0.03) (0.03)

71-74 Transport, storage −0.40 −0.07 0.10 −0.19 0 −0.42 0.04 −0.04 −0.08 0 −0.02 0.04 −0.26
(0.25) (0.07) (0.05) (0.17) (0.22) (0.08) (0.05) (0.10) (0.04) (0.11) (0.15)

75-78 Office −0.22 −0.09 −0.10 −0.11 0.01 −0.20 0.01 0.11 0.07 −0.08 0 −0.07 −0.38
(0.09) (0.04) (0.05) (0.08) (0.17) (0.12) (0.07) (0.03) (0.01) (0.03) (0.03) (0.07)

79-89 Health, social −0.29 −0.01 −0.01 0.11 0.08 −0.20 −0.14 −0.00 0.03 −0.08 −0.03 0 −0.49
(0.09) (0.04) (0.04) (0.16) (0.13) (0.13) (0.11) (0.04) (0.02) (0.04) (0.03) (0.07)

90-93 Personal service 0.05 0.22 0.41 0.46 0.45 0.07 0.10 0.20 0.16 0.17 0.18 0.13 0
(0.07) (0.04) (0.04) (0.10) (0.12) (0.04) (0.12) (0.05) (0.03) (0.04) (0.02) (0.05)

Notes: The table shows coefficient estimates τ̂jk from equation (1), estimated without selection control. Standard errors (in parentheses) are clustered
at the region and time level.
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Table A.6: Full Matrix of Returns - Parametric Selection Control

Occupation

01-09 10-54 19-32 31 33-37 39-43 44-51 60-63 68-70 71-74 75-78 79-89 90-93

T
ra

in
in

g

01-09 Agricultural 0 −0.39 −0.21 −0.67 −0.14 −0.23 −0.04 0.26 −0.09 −0.31 −0.16 0.02 −0.46
(0.13) (0.17) (0.25) (0.68) (0.36) (0.25) (0.17) (0.10) (0.18) (0.13) (0.19) (0.25)

10-54 Process, plant 0.04 0 0.02 −0.47 0.45 0.03 0.28 0.62 0.34 −0.07 0.11 0.33 −0.40
(0.50) (0.23) (0.24) (0.73) (0.48) (0.34) (0.21) (0.20) (0.15) (0.19) (0.22) (0.30)

19-32 Craft 0.07 0.03 0 −0.23 0.34 0.07 0.28 0.57 0.37 0.05 0.21 0.26 −0.02
(0.31) (0.09) (0.16) (0.50) (0.21) (0.11) (0.05) (0.06) (0.06) (0.04) (0.09) (0.14)

31 Electrical 0.38 0.32 0.46 0 0.41 0.40 0.53 0.93 0.74 0.30 0.60 0.64 0.28
(0.35) (0.10) (0.11) (0.62) (0.29) (0.15) (0.11) (0.08) (0.10) (0.09) (0.11) (0.19)

33-37 Textile, garment −0.23 −0.51 −0.28 −0.93 0 −0.59 0.07 0.16 −0.11 −0.45 −0.37 −0.20 −0.94
(0.75) (0.31) (0.43) (0.39) (0.49) (0.45) (0.37) (0.26) (0.39) (0.39) (0.28) (0.36)

39-43 Food preparation 0.23 0.06 0.33 −0.21 0.35 0 0.48 0.80 0.56 0.18 0.36 0.48 0.14
(0.38) (0.11) (0.11) (0.20) (0.55) (0.16) (0.11) (0.09) (0.08) (0.10) (0.12) (0.21)

44-51 Construction −0.18 −0.33 −0.14 −0.66 −0.26 −0.19 0 0.28 0.02 −0.27 −0.10 −0.04 −0.36
(0.27) (0.09) (0.07) (0.20) (0.51) (0.18) (0.09) (0.06) (0.09) (0.06) (0.14) (0.21)

60-63 Technical, lab. −0.83 −0.91 −0.67 −1.27 −0.71 −0.62 −0.42 0 −0.35 −0.81 −0.62 −0.48 −1.35
(0.46) (0.18) (0.22) (0.19) (0.78) (0.41) (0.27) (0.17) (0.20) (0.18) (0.21) (0.38)

68-70 Sales, financial −0.30 −0.27 −0.01 −0.48 0.05 −0.14 0.02 0.31 0 −0.18 −0.10 −0.02 −0.38
(0.31) (0.16) (0.16) (0.20) (0.44) (0.20) (0.15) (0.15) (0.13) (0.10) (0.11) (0.20)

71-74 Transport, storage −0.46 −0.34 −0.02 −0.85 0 −0.57 0.15 0.33 0.09 0 −0.10 0.17 −0.39
(0.42) (0.20) (0.20) (0.39) (0.43) (0.27) (0.19) (0.18) (0.18) (0.24) (0.32)

75-78 Office −0.47 −0.52 −0.41 −0.85 −0.19 −0.53 −0.12 0.18 −0.06 −0.44 0 −0.18 −0.68
(0.34) (0.11) (0.20) (0.21) (0.45) (0.35) (0.14) (0.11) (0.09) (0.10) (0.16) (0.16)

79-89 Health, social −0.98 −0.86 −0.74 −1.10 −0.53 −0.93 −0.72 −0.37 −0.48 −0.87 −0.73 0 −1.22
(0.33) (0.10) (0.10) (0.36) (0.56) (0.23) (0.18) (0.12) (0.11) (0.11) (0.10) (0.18)

90-93 Personal service −0.10 −0.12 0.19 −0.23 0.34 −0.17 0.08 0.41 0.17 −0.10 −0.00 0.13 0
(0.33) (0.17) (0.17) (0.28) (0.61) (0.25) (0.24) (0.15) (0.13) (0.17) (0.12) (0.17)

Notes: The table shows coefficient estimates τ̂jk from model (1), estimated using the parametric control function estimator. Standard errors (in
parentheses) are clustered at the region and time level.
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Table A.7: Average On- versus Off-Diagonal Returns - Estimation Robustness

(1) (2) (3) (4)
10th-order full set of occ. x time ind. x time
polynomial cf cells FE FE

Dj=k = 1 0.1515∗∗∗ 0.1088∗∗∗ 0.1491∗∗∗ 0.1451∗∗∗

(0.0191) (0.0288) (0.0217) (0.0181)
exp 0.0593∗∗∗ 0.0591∗∗∗ 0.0581∗∗∗ 0.0571∗∗∗

(0.0023) (0.0023) (0.0022) (0.0042)
exp2 −0.0010∗∗∗ −0.0010∗∗∗ −0.0010∗∗∗ −0.0010∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Indiv./Reg. FE yes yes yes yes
Occ. FE yes yes yes
Time FE yes yes
Occ. x Time FE yes
Ind. x Time FE yes

Parametric cf yes yes yes yes
p-value cf 0.000 0.000 0.000 0.000

N 1,140,518 1,140,518 1,140,512 1,139,022

Notes: The table reports regression results for equation (1) with τjk = δk + τDj=k. Column (1) controls
for a tenth order polynomial in own vacancies. Column (2) allows the control function to vary for the full
set of training-occupation cells. Column (3) includes a full set of 14 industry fixed effects in the regression.
Standard errors are clustered at the region and time level (columns (1), (2) and (3)), or at the region and
time and industry level (column (4)). ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

Table A.7 shows further robustness results relating to the estimation method. Column (1)

approximates the skill price in occupation k using a tenth order polynomial in log vacancies

instead of the fourth order polynomial used throughout Chapter 6. This functional form

change leaves the baseline estimate almost unchanged. Column (2) allows the parametric

control function estimator to vary across all training-occupation cells. The resulting on-

versus off-diagonal is only slightly lower at around 11%. Columns (3) and (4) address two of

the identification concerns discussed in Section ??, showing that the inclusion of occupation

times time or industry times time fixed effects does not appreciably change the baseline

result of 15.1%.

55



Table A.8: List of Tasks and Fraction Performing

Task 01-09 10-54 19-32 31 33-37 39-43 44-51 60-63 68-70 71-74 75-78 79-89 90-93

1 Cultivate 80 3 1 1 0 2 4 1 1 2 0 2 1
2 Manufacture 30 39 47 39 66 67 50 19 6 5 4 7 10
3 Publish 1 0 0 1 0 1 0 6 4 1 5 17 2
4 Serve 8 2 2 1 2 38 2 2 8 2 6 15 32
5 Clean 38 29 27 24 35 50 33 11 20 25 8 26 70
6 Secure 19 15 15 18 6 13 16 16 9 17 9 25 9
7 Repair 52 38 72 84 41 19 71 31 11 31 9 20 17
8 Equip machines 50 65 66 61 53 48 43 39 12 30 14 20 18
9 Nurse 23 7 11 9 10 20 8 11 20 14 14 49 30
10 Pack 50 46 35 31 22 38 43 21 41 81 25 24 21
11 Execute laws 5 2 3 6 1 5 2 20 8 6 25 20 2
12 Design 31 19 29 34 22 29 32 62 33 18 38 42 21
13 Employ 21 11 14 20 8 21 16 49 33 14 38 36 14
14 Calculate 16 4 6 9 4 15 10 31 34 5 41 9 9
15 Research 39 43 50 57 42 39 41 68 43 27 47 54 23
16 Sell 48 10 21 27 22 37 27 42 86 23 48 39 39
17 Teach 39 29 39 46 31 37 39 54 52 30 51 72 31
18 Program 19 25 25 32 13 12 13 49 38 21 55 35 11
19 Correct texts 20 11 9 16 7 10 10 37 50 21 74 44 12

Notes: The table shows the average percentage of individuals indicating they perform the given task. Task 1: cultivate; task 2: manufacture, install
or construct; task 3: publish, present or entertain others; task 4: serve or accommodate; task 5: clean; task 6: secure; task 7: repair, renovate,
reconstruct; task 8: equip or operate machines; task 9: nurse or treat others; task 10: pack, ship or transport; task 11: execute laws or interpret
laws; task 12: design, plan, sketch; task 13: employ, manage personnel, organize, coordinate; task 14: calculate or do bookkeeping; task 15: research,
evaluate or measure; task 16: sell, buy or advertise; task 17: teach or train others; task 18: program; task 19: correct texts or data.
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Table A.9: Training-Occupation Distances - Selected Categories

Statistics Training j Occupation k Distjk

Overall mean 0.2314
Standard dev. 0.1108
Weight. mean 0.1863

Craft workers Electrical workers 0.0111
Craft workers Construction workers 0.0235
Construction workers Electrical workers 0.0316
Craft workers Process, plant workers 0.0379
Craft workers Textile, garment workers 0.0492
. . .
. . .
. . .
Office workers Construction workers 0.4000
Textile, garment workers Sales, financial workers 0.4108
Office workers Process, plant workers 0.4089
Office workers Craft workers 0.4113
Office workers Textile, garment workers 0.4631

Notes: The table reports summary statistics on the distance measure Distjk, and distances for the five most
similar and the five most distant training-occupation pairs.
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Table A.10: Training-Occupation Distances - Five Largest Occupations

Occupation

Office Craft Sales, financ. Health Constr.
workers workers workers workers workers

T
ra

in
in

g

Office workers 0

Craft workers 0.41 0

Sales, financ. w. 0.07 0.38 0

Health, social w. 0.12 0.29 0.12 0

Construction w. 0.40 0.02 0.33 0.28 0

Notes: The table reports the distance measure Distjk for the five largest occupations.

Table A.11: Match Returns and Task Distance - Exclude On-Diagonal Observations

τjk estimated with parametric control fcn. without selection control

(1) (2) (3) (4)

Distjk −0.0753∗∗ −0.0573∗ −0.0189 −0.0037
(0.0348) (0.0309) (0.0116) (0.0090)

Occ. FE yes yes

Mean of τ̂jk −0.1383 −0.1383 −0.0150 −0.0150

N 156 156 156 156

Notes: The table reports regression results from equation (21). Distjk is scaled by its standard deviation.
Robust standard errors are reported. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table A.12: Match Returns and Task Distance - Five Largest Trainings/Occupations

τjk estimated with parametric control fcn. without selection control

(1) (2) (3) (4)

Distjk −0.0802∗∗ −0.0488 −0.0240 −0.0062
(0.0330) (0.0331) (0.0113) (0.0090)

Occ. FE yes yes

Mean of τ̂jk −0.2382 −0.2382 −0.0478 −0.0478

N 65 65 65 65

Notes: The table reports regression results from equation (21). Distjk is scaled by its standard deviation.
Robust standard errors are reported. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Appendix B. Figures

Fraction On Diagonal Over Time

Figure B.1: Fraction On Diagonal over Time
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Notes: The figure plots the fraction of individuals working in an occupation equal to their training occupation
over time for the baseline sample. The three lines plot this fraction for individuals who finished their
apprenticeship 5, 10, or 15 years prior to the date shown on the x-axis.
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Training Firm Statistics

Figure B.2: Fraction of Apprentices by Firm Size
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Notes: The figure plots the fraction of apprentices trained in firms with less than 50 (small firms), 100 and
250 (medium-sized firms) employees over time. Source: Bundesagentur für Arbeit.
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Figure B.3: First Stage Variation in Selection Probabilities - Training
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Notes: The figure shows a set of histograms of the estimated selection probabilities for the five largest trainings. Histograms in blue show the full
variability in estimated selection probabilities. Histograms in red are restricted to male workers, and residualized using location and time of training
fixed effects.
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Figure B.4: First Stage Variation in Selection Probabilities - Occupation
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Notes: The figure shows a set of histograms of the estimated selection probabilities for the five largest occupations. Histograms in blue show the full
variability in estimated selection probabilities. Histograms in red are residualized using region, time and individual fixed effects.
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Figure B.5: Normalized On- versus Off-Diagonal Returns by Experience
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Notes: The figure plots regression coefficient estimates for τexp in a version of equation (1) with τjk =
δk + τexpDj=k, where experience levels have been binned into yearly categories. All coefficient estimates are
normalized to zero at zero years of work experience.
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Figure B.6: Average Return and Estimated Selection Bias by Training
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Notes: The figure plots average on- versus off-diagonal returns for each training from Figure 4 against the
estimated selection bias, i.e. the difference between the returns estimated without selection control and those
using the parametric control function estimator. The fitted line corresponds to a weighted OLS regression
using the sample fraction in each training as weights. Marker size is proportional to the weights.
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Figure B.7: Full Matrix of Returns and Sample Fraction
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Notes: The figure plots training-occupation cell returns against the within-training sample fraction of workers
in the relevant occupation for each off-diagonal training-occupation pair. Marker size is proportional to the
fraction of workers in each cell.
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Figure B.8: Normalized On- versus Off-Diagonal Returns by Work Experience - Robustness
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Notes: The figure plots regression coefficient estimates for τexp in a version of equation (1) with τjk =
δk + τexpDj=k, where experience levels have been binned into yearly categories. All coefficient estimates
are normalized to zero at zero years of work experience. In contrast to Figure B.5 in Section 6.2, the
non-parametric control function estimator also includes the on-diagonal probability pi(k=j|j)rt.

Figure B.8 provides a comparison between the slope estimates τ exp under no selection

control, the parametric selection and the non-parametric selection control where, in contrast

to Figure B.5, the probability of selection into one’s training occupation pi(k=j|j)rt has been

added as an additional term in the non-parametric control function (see Sections 5.1 and

6.2). It can be seen that the slope estimates when using the additional probability in the

non-parametric control function are very similar to those in Figure B.5, closely mapping the

slope estimates obtained when using the parametric selection control. This result provides

further support to the distributional assumptions made.
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Figure B.9: Training-Occupation Distance and Sample Fraction
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Notes: The figure plots training-occupation distances against the within-training sample fraction of workers
in the relevant occupation for each off-diagonal training-occupation pair. The fitted line corresponds to a
weighted OLS regression where each training-occupation pair is weighted by the fraction of total workers in
that cell. Marker size is proportional to the weights.
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Appendix C. Proof

Proof for Section 4.1:

E[εi1|(εi1 − εi2) > 0]− E[εi1|(εi1 − εi2) < 0] ≥ 0.

Given εi1 ∼ N(0, σε1), εi2 ∼ N(0, σε2) with σε1 = σε2 ,

E[εi1|(εi1 − εi2) = ν > z] =
σε1σε2
σν

(
σε1
σε2
− ρε1ε2)(

φ(z)

1− Φ(z)
)

=
σε1σε2
σν

(1− ρε1ε2)(
φ(z)

1− Φ(z)
) ≥ 0,

where ρε1ε2 =
σε1ε2
σε1σε2

≤ 1.

It follows that E[εi1|(εi1 − εi2)) > 0]− E[εi1|(εi1 − εi2) < 0] ≥ 0.

Defining ( φ(z)
1−Φ(z)

) = κ(z), κ′(z) > 0 from the assumption of normality. It follows that

E[εi1|(εi1 − εi2) > −τ ]− E[εi1|(εi1 − εi2) > τ ] ≤ 0.
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Appendix D. Estimation Details

Splitting Vacancies into Expectation and Shock

In order to obtain the training and occupation instruments defined in equations (??) and

(??), vacancies need to be split into expectations and shocks. To do so, I estimate separate

linear time trend models in each region-time cell, where log vacancies for each occupation

are explained using five years of previous data. Note that using five years of past data to

predict future vacancies implies that predictions and shocks will not be available during the

first five years of the sample, 1978-1981. Moreover, due to regional classification changes

following German reunification, data on predictions and shocks will also not be available for

four regions between 1994-1997. This will reduce the number of observations in the baseline

sample used in the estimation. I estimate the following model:

vackrt = κkr + πkrt × t+ εkrt, ∀rt. (D.1)

Note that I allow both the intercepts and slopes to be occupation-specific. Based on the

region and time when first starting the apprenticeship, r0 and t0, 30-year ahead predic-

tions for vacancies in each occupation are then computed for each individual as conditional

expectations using equation (D.1):

Et0 [vackr(t0+τ)|Ωr0t0 ] = κ̂kr0 + π̂kr0t0 × (t0 + τ), ∀τ = 0, ..., 30. (D.2)

For any t = t0 + τ , individual-specific shocks to vacancies are then defined as residuals

relative to the expectation formed at the time of training choice t0 in region r0:

vackrt − Et0 [vackr(t0+τ)|Ωr0t0 ], ∀τ = 0, ..., 30. (D.3)

While the conditional expectations derived using equation (D.2) will serve as training instru-

ments IVtrainj , the residuals from equation (D.3) will serve as occupation instruments IVocck .

Note that, using this definition, expectations and shocks will be orthogonal by construction.

Reduction of Dimensionality

Define the joint cumulative distribution of the outcome and selection error terms as Fjk(...),

and the joint cumulative distribution of the outcome error and the two maximum order

statistics as Gjk(...). Evaluating Fjk(...) at the observed value function and utility differences,

the equivalence between Fjk(...) and Gjk(...) can be established with the following steps:
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Fjk(z0, Ṽijr0t0 − Ṽi1r0t0 , ..., Ṽijr0t0 − ṼiJr0t0 , Ũi(k|j)rt − Ũi(1|j)rt, ..., Ũi(k|j)rt − Ũi(K|j)rt)

= Pr(εikrt ≤ z0, ei1r0t0 − eijr0t0 ≤ Ṽijr0t0 − Ṽi1r0t0 , ..., eiJr0t0 − eijr0t0 ≤ Ṽijr0t0 − ṼiJr0t0 ,

ei1rt − eikrt ≤ Ũi(k|j)rt − Ũi(1|j)rt, ..., eiKrt − eikrt ≤ Ũi(K|j)rt − Ũi(k|j)rt)

= Pr(εikrt ≤ z0,max
j′

(Ṽij′r0t0 − Ṽijr0t0 + eij′r0t0 − eijr0t0) ≤ 0,

max
k′

(Ũi(k′|j)rt − Ũi(k|j)rt + eik′rt − eikrt) ≤ 0|

Ṽi1r0t0 − Ṽijr0t0 , ...., ṼiJr0t0 − Ṽijr0t0 , Ũi(1|j)rt − Ũi(k|j)rt, ..., Ũi(K|j)rt − Ũi(k|j)rt)

= Gjk(z0, 0, 0|Ṽi1r0t0 − Ṽijr0t0 , ...., ṼiJr0t0 − Ṽijr0t0 , Ũi(1|j)rt − Ũi(k|j)rt, ..., Ũi(K|j)rt − Ũi(k|j)rt).
(D.4)

This equivalence may also be written in terms of density functions:

fjk(εikrt, ei1r0t0 − eijr0t0 , ..., eiJr0t0 − eijr0t0 , ei1rt − eikrt, ..., eiKrt − eikrt|

Ṽi1r0t0 − Ṽijr0t0 , ...., ṼiJr0t0 − Ṽijr0t0 , Ũi(1|j)rt − Ũi(k|j)rt, ..., Ũi(K|j)rt − Ũi(k|j)rt)

= gjk(εikrt,max
j′

(Ṽij′r0t0 − Ṽijr0t0 + eij′r0t0 − eijr0t0),max
k′

(Ũi(k′|j)rt − Ũi(k|j)rt + eik′rt − eikrt)|

Ṽi1r0t0 − Ṽijr0t0 , ...., ṼiJr0t0 − Ṽijr0t0 , Ũi(1|j)rt − Ũi(k|j)rt, ..., Ũi(K|j)rt − Ũi(k|j)rt). (D.5)

Given the one-to-one mapping between the selection probabilities and the observed util-

ity and value function differences, the joint distribution gjk(...) may be conditioned on

(pi1r0t0 , ..., pijr0t0 , ..., piJr0t0 , pi(1|j)rt, ..., pi(k|j)rt, ..., pi(K|j)rt), where pijr0t0 is the probability of

selcting into training j at time t0, and pi(k|j)rt is the probability of selecting into occupation

k conditional on training j at time t:

= gjk(εikrt,max
j′

(Ṽij′r0t0 − Ṽijr0t0 + eij′r0t0 − eijr0t0),max
k′

(Ũi(k′|j)rt − Ũi(k|j)rt + eik′rt − eikrt)|

Ṽi1r0t0 − Ṽijr0t0 , ...., ṼiJr0t0 − Ṽijr0t0 , Ũi(1|j)rt − Ũi(k|j)rt, ..., Ũi(K|j)rt − Ũi(k|j)rt)

= gjk(εikrt,max
j′

(Ṽij′r0t0 − Ṽijr0t0 + eij′r0t0 − eijr0t0),max
k′

(Ũi(k′|j)rt − Ũi(k|j)rt + eik′rt − eikrt)|

pi1r0t0 , ..., pijr0t0 , ..., piJr0t0 , pi(1|j)rt, ..., pi(k|j)rt, ..., pi(K|j)rt). (D.6)

Rewriting the joint distribution gjk(...) in this way captures the fact that the vector of selec-

tion probabilities contains the same information as the observed utility and value function

differences.
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Lee’s (1983) Parametric Control Function

Define Mijkrt = trainij × occi(k|j)rt and recall that the selection problem is given by

Mijkrt = 1 iff max
j′

(Vij′r0t0 − Vijr0t0) ≤ 0 and max
k′

(Ui(k′|j)rt − Ui(k|j)rt) ≤ 0. (D.7)

Lee (1983) points out that it is possible to create new random variables based on the distri-

bution of the maximum order statistics (see Appendix A in Dahl (2002) for details). I use

Dahl’s (2002) notation and adapt Lee’s (1983) approach to the present selection problem.

To do so, define the marginal distribution of the selection errors as Ljk(...), and the marginal

distribution of the two maximum order statistics as Hjk(...). Denote the corresponding den-

sity functions by ljk(...) and hjk(...), respectively. Using Lee’s (1983) insight on maximum

order statistics, and evaluating Ljk(...) at the observed utility and value function differences,

the distribution may be written as

Ljk(Ṽijrt0 − Ṽi1rt0 + z1, ...., Ṽijrt0 − ṼiJrt0 + z1, Ũi(k|j)rt − Ũi(1|j)rt + z2, ..., Ũi(k|j)rt − Ũi(K|j)rt + z2)

= Pr(ei1r0t0 − eijr0t0 ≤ Ṽijrt0 − Ṽi1r0t0 + z1, ..., eiJr0t0 − eijr0t0 ≤ Ṽijrt0 − ṼiJrt0 + z1,

ei1rt − eikrt ≤ Ũi(k|j)rt − Ũi(1|j)rt + z2, ..., eiKrt − eikrt ≤ Ũi(k|j)rt − Ũi(K|j)rt + z2)

= Pr(max
j′

(Vij′r0t0 − Vijr0t0) ≤ z1,max
k′

(Ui(k′|j)rt − Ui(k|j)rt) ≤ z2|

Ṽi1r0t0 − Ṽijr0t0 , ...., ṼiJr0t0 − Ṽijr0t0 , Ũi(1|j)rt − Ũi(k|j)rt, ..., Ũi(K|j)rt − Ũi(k|j)rt)

= Hjk(z1, z2|Ṽi1r0t0 − Ṽijr0t0 , ...., ṼiJr0t0 − Ṽijr0t0 , Ũi(1|j)rt − Ũi(k|j)rt, ..., Ũi(K|j)rt − Ũi(k|j)rt).
(D.8)

Now define the random variables ζijkrt as

ζijkrt = Γ−1
jk {Hjk(0, 0|Ṽi1r0t0 − Ṽijr0t0 , ...., ṼiJr0t0 − Ṽijr0t0 ,

Ũi(1|j)rt − Ũi(k|j)rt, ..., Ũi(K|j)rt − Ũi(k|j)rt)}, (D.9)

where Γjk is any continuous cumulative distribution function. Based on the above transfor-

mation, the selection problem may be written as

Mijkrt = 1 iff ζijkrt ≤ Γ−1
jk {Ljk(Ṽijr0t0 − Ṽi1r0t0 , ...., Ṽijr0t0 − ṼiJr0t0 ,

Ũi(k|j)rt − Ũi(1|j)rt, ..., Ũi(k|j)rt − Ũi(K|j)rt)}, (D.10)

where Ljk(...) is evaluated at the observed value function and utility differences.

The key step in Lee’s (1983) approach is then to assume that the vector (εikrt, ζijkrt) is

independent and identically distributed with joint cumulative distribution function Ijk(...),
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thereby specifying the joint distribution of outcome and selection errors Fjk(...). Importantly,

the distribution function Ijk(..) is not allowed to vary with the observed utility and value

function differences, i.e. the same transformation is applied to maximum order statistics

regardless of the specific values for Ṽi1r0t0 − Ṽijr0t0 , ... and Ũi(1|j)rt − Ũi(k|j)rt, ... . Dahl (2002)

shows that this simplification is equivalent to the index sufficiency assumption from Section

5.1. Using this assumption, the joint distribution of outcome and selection errors Fjk(...)

may be written as

Fjk(z0, Ṽijr0t0 − Ṽi1r0t0 , ..., Ṽijr0t0 − ṼiJr0t0 , Ũi(k|j)rt − Ũi(1|j)rt, ..., Ũi(1|j)rt − Ũi(K|j)rt)

= Pr(εikrt ≤ z0, ei1r0t0 − eijr0t0 ≤ Ṽijr0t0 − Ṽi1r0t0 , ..., eiJr0t0 − eijr0t0 ≤ Ṽijr0t0 − ṼiJr0t0 ,

ei1rt − eikrt ≤ Ũi(k|j)rt − Ũi(1|j)rt, ..., eiKrt − eikrt ≤ Ũi(k|j)rt − Ũi(K|j)rt)

= Pr(εikrt ≤ z0, ζijkrt ≤ Γ−1
jk {Ljk(Ṽijr0t0 − Ṽi1r0t0 , ..., Ṽijr0t0 − ṼiJr0t0 ,

Ũi(k|j)rt − Ũi(1|j)rt, ..., Ũi(k|j)rt − Ũi(K|j)rt)})

= Ijk(z0,Γ
−1
jk {Ljk(Ṽijr0t0 − Ṽi1r0t0 , ...., Ṽijr0t0 − ṼiJr0t0 ,

Ũi(k|j)rt − Ũi(1|j)rt, ..., Ũi(k|j)rt − Ũi(K|j)rt)}). (D.11)

The final step involves making parametric assumptions on the distributions Γjk(...) and

Ijk(...). As described in Section 5.2, I follow Lee (1983) and assume that Γjk(...) is a univariate

standard normal cdf and Ijk(...) is a bivariate standard normal cdf.

Random Forest Algorithm

Leo Breiman’s and Adele Cutler’s random forest algorithm belongs to the class of supervised

machine learning algorithms and is commonly used in prediction problems with categorical

dependent variables. Random forests operate by constructing a large number of decision

trees based on different samples of observations which are combined to give as an outcome

the average prediction of all trees. In doing so, random forests avoid problems of overfitting.

Individual trees are grown using an optimal splitting algorithm where explanatory vari-

ables are first selected and then split according to the algorithm, resulting in new branches

starting from an original node. This process is repeated until no explanatory variable meets

the selection criteria (see Hastie et al. (2009) for details).

In order to account for sampling variation due to the estimation of the selection proba-

bilities when conducting inference in the outcome equations, I randomly select 50% of the

individuals as training dataset. I then use the training dataset to grow separate random

forests for the training and occupation choices using the explanatory variables described in

Section 5.3. Both random forests are based on 500 trees, where 1000 randomly selected
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observations from the training dataset are used to grow each tree. While training choice

is predicted using a single observation for each individual, occupation choices are predicted

using all employment spells of the selected individuals. In a second step, the resulting forests

are applied to the remaining 50% of the sample, the test dataset. Probability predictions

for each training or occupation option in the test dataset are computed as the proportion of

counts for that option across all trees in the final nodes.
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Appendix E. Task Content

Task Distance Measure

Define a task vector for each occupation k, qk = (q1k, ..., qSk), where qsk is the fraction of

workers performing task s in occupation k. Similarly, define a task vector for each training j,

qj = (q1j, ..., qSj), where qsj is the fraction of workers performing task s when being trained

in training j. Assume that the composition of tasks when being trained in j is equivalent to

the composition of tasks performed when working in occupation k = j.

Following Gathmann & Schönberg (2010), I define the angular separation between train-

ing j and occupation k as a measure of similarity using task vectors qj and qk:

AngSimjk =

∑S
s=1(qsj × qsk)

[(
∑S

s=1 q
2
sj)× (

∑S
s=1 q

2
sk)]

1/2
. (E.1)

The angular separation is equivalent to the uncentered correlation or the cosine difference

between two vectors and is a symmetric, purely directional measure, i.e. it is unaffected by

the length of two skill vectors qj and qk. In contrast to that, the Euclidean distance between

two vectors qj, qk measures the length of the vector connecting qj and qk and is therefore

sensitive to their length. As a result, two occupations with relatively short vector lengths

could be classified as similiar even when they are orthogonal. AngSimjk ranges between

zero and one, with two orthogonal task vectors having similarity zero, and is increasing in

the degree of overlap between two task vectors qj and qk. Following Gathmann & Schönberg

(2010), I define (1− AngSimjk) as the distance between training j and occupation k:

Distjk = (1− AngSimjk). (E.2)
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Appendix F. Welfare and Policy

Locked-in Workers

Table F.1 summarizes the calculations to estimate the share of locked-in workers. Figure

3 in Section 6.2 shows that the return to working on versus off the diagonal falls by about

2.5pp between 3−12 years of work experience. At the same time, the fraction of on-diagonal

workers falls from about 70% to 60% (see Figure 2 in Section 2.5). This latter change may

in part be induced by a reduction in the lock-in effect caused by the fall in returns to work-

ing on versus off the diagonal. However, other factors such as newly revealed information

about own occupation-specific abilities may have contributed to the decline. Assume that

other factors causing a decline in the fraction of on-diagonal workers are stable throughout a

career and consider the change in the fraction of workers on the diagonal after returns have

stabilized, i.e. after 12 years of work experience. Figure 2 shows that between 12− 21 years

of work experience, this fraction drops by about 5pp. This implies that about half of the

drop between 3− 12 years of work experience may be associated with the fall in the returns

to working on versus off the diagonal. These simple calculations therefore suggest that a

1pp reduction in the return to working on the diagonal leads to a 2pp drop in the fraction of

individuals working on the diagonal. Note that this is likely going to be an upper bound on

the lock-in effect since information on occupation-specific abilities is expected to be revealed

at a higher rate early on in a career. In a hypothetical world without a 15% return on the

diagonal, a world without lock-in effects, the fraction of individuals working on the diagonal

would thus be 30pp lower.

Table F.1: Estimating the Share of Locked-in Workers

work exp. ∆ return ∆ fraction implied ∆ fraction ∆ fraction on diag. per

(years) on diag. on diag. not due to ∆ return ∆ return on diag.

3− 12 −2.5pp −10pp

}
−5pp −10pp−(−5pp)

−2.5pp
= 2

12− 21 0 −5pp − −

Notes: The table summarizes the estimation of the share of locked-in workers.
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Retraining Calculations

Total costs in Euros

In 2010, the average annual cost per apprentice in the dual system was around 5, 280

Euros for firms and 6, 620 Euros for all government bodies (Source: Finanzierung der beru-

flichen Ausbildung in Deutschland, BWP 2/2016, BiBB. Figures are 2012/13 cpi adjusted).

In terms of private cost, the average yearly difference in earnings between an apprentice and

a trained worker with less than 15 years of work experience was about 20, 060 Euros in 2010

(Source: BiBB press release, 01/2011 and author’s own calculations).

Net benefits in Euros

My estimates suggest that the annual average gain of retraining of τ corresponds to 15%

of wages for the average worker. The cost of a year of foregone work experience is about

6%. Assuming that the effective foregone work experience of two years of retraining is one

year (apprentices spend about two thirds of their time working in firms), the net gain of

retraining is therefore equal to 9%. Based on average annual earnings of 39, 000 Euros in

2010, this amounts to 3, 510 Euros in 2010.

Cost-benefit calculations

Assuming a discount factor of 0.96, retraining costs would be recouped after about 39

years of subsequent work in the new occupation:

31, 960 + β × 31, 960 = β2 × 3, 510× 1− βt+1

1− β
(F.1)

t ≈ 35. (F.2)

Based on an average training completion age of 20, and a retirement age of 67, off-diagonal

workers would therefore need to switch out of their training occupation with at most six

years of work experience for retraining to be profitable (67 − 20 − 2 − 35 = 10 years). In

addition, the return to working on versus off the diagonal only drops by at most 2pp from its

peak of 15% by 10 years of experience (see Figure 3 in Section 6.2). Using the calculations

for locked-in workers in this appendix, this suggests that 26% of all workers are still locked

in at 10 years of experience. Based on a final share of 30%, this corresponds to a fraction of

over 85% of locked-in workers.
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Information Provision

Section 8.2 considers retraining as a potential policy instrument. This section briefly dis-

cusses the provision of ex-ante information as an alternative policy intervention. Note that

ex-ante information provision may be a perfect substitute for costless retraining, at least in

a model with only a single second-stage occupation choice. Differences arise with multiple

occupation choices since workers would need to take into account the average payoffs across

all occupation stages when choosing their training in a perfect foresight environment. On

the other hand, with costless retraining, training choices can be readjusted each period.

Given that the vast majority of workers works in at most two occupations, this distinction

is unlikely to matter in the given context. With perfect information at the time of training

choice, retraining costs do not impact wages. Similarly, in the absence of any retraining cost,

imperfect information at the time of training choice does not affect wage outcomes.

Albeit harder to quantify, the ex-ante provision of information at the time of training

choice is likely to be more cost-effective than ex-post retraining programs. In particular, my

findings suggest that government programs causing high-school graduates to start training in

instead of outside the occupation they will ultimately work in would generate a net benefit up

to a cost of 6, 300 Euros in 2010 for every year participants will subsequently spend working

on instead of off the diagonal (14% of an average of 45, 000 Euros in 2010). Moreover, using

the 2010 empirical distribution of workers across training-occupation cells, I find that over

50% of off-diagonal workers could be trained in their ex-post optimal occupation without

making changes to the total number of apprentices trained in each occupation. In other

words, a substantial fraction of workers could have been trained in their current occupation

without changing occupation-specific training capacities. Policies could include internships to

provide information on own occupation-specific abilities or workshops indicating occupations

that may be in high demand in the foreseeable future. While it is hard to know exactly how

much additional information may be provided through such initiatives, the figures suggest

that only a very small percentage of apprentices would need to make a better training choice

for these programs to be cost-effective.
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