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Abstract

Governments devote a large share of public budgets to construct, repair and modernize

school facilities. However, little is known about whether investments in the physical condi-

tion of schools translate into student achievements. In this study, we report the results of a

large field study, providing quasi-experimental evidence on the implications of poor air qual-

ity conditions inside classrooms − key performance measure of school infrastructure, and a

common indicator guiding investments in school facilities. We continuously monitor the air

quality conditions (i.e. CO2, coarse and fine particles, temperature, humidity) in the class-

rooms of 5,500 children over two school years, and link them to their scores in over 38,000

nationally standardized tests. Using a fixed-effects strategy, relying on within-pupil changes

in air quality conditions, we find that exposure to poor indoor air quality during the school

term preceding the test is associated with significant performance drops. We document that

a one standard deviation increase in average daily peak CO2 during the school term leads to

a 0.10 standard deviation decrease in test scores. Our results add to the ongoing debate on

the determinants of student human capital accumulation, highlighting the role of physical

capital in affecting learning outcomes.

Keywords: Academic Performance, Human Capital, Indoor Air Quality, School Infrastruc-

ture, Education.
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1 Introduction

Governments invest billions of dollars in the construction and modernization of school facilities

every year. In the U.S. alone, school infrastructure receive USD 490 billion, the second-biggest

public investment in the country (G.A.O., 2020). In addition, the 2020 “Reopen and Rebuild

America’s Schools Act” allocated an extra USD 130 billion to the renovation, modernization

and construction of schools across the country (Cochrane, 2021). Yet, many schools across the

country are in some state of disrepair, with heating, ventilation and air-conditioning (HVAC)

systems having the highest priority to receive investments. Over 40% of schools in the country

rely on outdated HVAC systems that need to be updated or replaced, a significant concern for

facilities where children spend eight hours a day (G.A.O., 2020).

Despite the importance of capital spending, little is known about the impacts of deficient

HVAC systems on educational outcomes. Deficient ventilation systems produce deficient air

exchange into buildings, and are a source of health risks to occupants, such as infection risk

to airborne diseases, school absences, or cognitive impairments.1 Lab studies provide initial

evidence on the detrimental consequences of short term exposure to poorly ventilated rooms

for human cognition and decision-making (Seppanen et al., 2006; Fisk, 2017; Du et al., 2020).

Subjects in lab studies exposed for 3 hours to poorly ventilated rooms display lower performance

in higher order cognitive functions (basic activity level, applied activity level, focused activity

level, crisis response, information usage, breadth of approach, strategy) (Allen et al., 2016). In

children, experimental evidence shows that kids in poorly ventilated classrooms struggle to pay

attention, and display lower performance in memory and concentration tests (Bakó-Biró et al.,

2012). However, there is a lack of large, long-term field studies that are able to evaluate the

causal impact of poor indoor air quality on educational outcomes.

This paper provides the first causal evidence on the implications of variation in indoor

air quality conditions on academic achievement in a large sample of primary school students.

Primary school students spend most of their schooldays in the same classroom, experiencing

prolonged exposure to the indoor conditions of that specific room. We report the results of a

large, pre-registered field study in which we deploy a network of sensors, continuously monitoring

the indoor environmental conditions in 225 classrooms across 27 primary schools over a period

1Since the beginning of the COVID-19 pandemic, there has been an increasing focus on the implications of poor
ventilation for the spread of airborne diseases. Poorly ventilated rooms represent a public health risk, given the
high exposure risk to occupant’s droplets. In response, governments in countries like Germany, the Netherlands
and the US are increasing public spending to upgrade ventilation systems to reduce the risk of SARS-COV-2
transmission in schools (BBC, 2020; Rijksoverheid, 2020).
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of five academic semesters.2 Each sensor collects high-frequency measurements on a range of

indoor environmental variables – i.e. CO2, coarse and fine particles, temperature, humidity,

noise levels and light intensity. To estimate the impact of a classroom’s air quality on the

cognitive development of students, we link daily measures of indoor air quality in classrooms

providing space to more than 5,500 primary school students (aged 6 to 12) to their scores on

standardized tests. During the sample period, each student took an average of 7 tests across a

range of subjects, including mathematics, spelling, reading and vocabulary, resulting in more

than 38,000 unique test outcomes. All tests in our sample are designed by a national examination

center (i.e. not by the teacher), as part of a national tracking system to monitor the development

of students throughout their primary school education.

Our primary measure of air quality in classrooms is based on the concentration of carbon

dioxide (CO2) in the room. Humans produce and exhale CO2, which is typically removed from

the room by either mechanical systems (i.e. HVAC) or natural ventilation systems (i.e. windows),

that exchange indoor with outdoor air. CO2 is a widely used indicator by engineers and scientists

to measure how much fresh (outdoor) air is brought into a room, and by public officials to set

guidelines and evaluate the performance of ventilation systems in (public) buildings. As the

ventilation rate (i.e., the replacement rate of indoor air with fresh, outdoor air supply) decreases,

the CO2 concentration in the room increases. To account for potential confounders, we rely on

the panel structure of the data to estimate models with subject and student-fixed effects. Fixed

effect regressions identify the impact of indoor air quality (i.e. CO2) during the prior school term

by leveraging within-student-subject variation in air quality over multiple school terms.

Our identification strategy relies on the premise that variation in air quality over successive

terms for a given student is uncorrelated with unobserved determinants of learning. We therefore

include controls for classroom infrastructure attributes by including classroom fixed-effects, and

other time-varying factors that could be contemporaneous and correlated with CO2, such as

air particles, temperature, noise, and relative humidity. Nevertheless, it is still possible that

other unobserved factors that are correlated with both CO2 and test scores remain present. In

particular, kids’ activity patterns or teacher behavior can alter the generation levels of CO2 in

the classroom and therefore hinder a causal interpretation of our estimates. We provide a number

of robustness checks to ensure that the impact of CO2 on student performance is a direct impact

of poor ventilation and not a by-product of changes in student or teacher behavior. First, we

construct measures of pupil activity patterns from the minute-by-minute readings of the noise

2For the pre-registration of the study see Palacios et al. (2020)
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sensor (e.g. number of minutes above certain decibel’s (dBA) thresholds and daily averages of

dBA’s during the school term). Second, we use the variation in CO2 levels associated with break-

downs in ventilation systems, linking the number of days a system is failing with student test

scores.

The main results show that children who were exposed to high concentrations of CO2 during

the learning period perform worse on subsequent standardized tests. In our preferred specifica-

tion, including a rich set of fixed effects, a one standard deviation increase in CO2 level during

the school term leads to a 0.11 standard deviation drop in test scores. The effects are strongest

in mathematics, where a one standard deviation increase in CO2 level during the school term is

associated with an 0.21 drop in test scores. Evidence from a heterogeneity analysis suggests that

poor ventilation impairs learning outcomes of students specially when they are between eight

and twelve years old.

A battery of (robustness) tests sheds light on the role of three key sources of CO2 con-

centrations in classrooms in our sample: (1) changes in student activity patterns, (2) teacher

behavior, and (3) ventilation infrastructure. First, we control for changes in activity patterns of

students in the classroom. The noise sensor is able to capture changes in a number of student

behaviors that are related to the production of CO2, such as screaming or moving in the class

during teaching hours. The noise sensor also picks up the background noise associated with the

opening of windows. In an analysis that tests over one hundred specifications of our main re-

gression analysis, we show that the magnitude and significance of the coefficient associated with

CO2 levels remains unchanged when including several combinations of IEQ and noise indicators.

Second, we check whether teacher quality correlates with CO2 concentration in the classroom.

Using variation of teacher’s exposure to CO2 across academic terms, we show that it does not

(negatively) correlate with variation across time of their students’ test scores. Finally, we ex-

ploit the plausibly exogenous variation in CO2 concentration associated with failures in schools’

ventilation systems, in the subsample of schools that are mechanically ventilated. The failure of

a mechanical ventilation system in a given day results in sustained and abnormally high levels

of CO2 in the classroom (20-40% higher than in normal ventilation days). The results of an

instrumental variable strategy using ventilation breakdowns show a significant drop of 0.25 to

0.4 standard deviations in test scores depending on the specification used.

This study is the first to show that exposure to poor air quality inside the classroom can hin-

der student performance, which speaks to the long-standing debate on the relationship between

investments in school infrastructure and academic achievements (see Hanushek (2003)). Exist-
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ing evidence shows a positive impact of school construction projects in contexts where school

facilities were either in extremely poor condition or just non-existent, which suggests that new

school construction projects generally are positively associated with student outcomes (Duflo,

2001; Aaronson and Mazumder, 2011; Neilson and Zimmerman, 2014). Similarly, another stream

of quasi-experimental studies investigates the link between (general) school spending or school

investment campaigns for school infrastructure and academic outcomes (Martorell et al., 2016;

Jackson et al., 2016). Finally, Stafford (2015) provides evidence that public funding campaigns

targeting mold reduction and ventilation improvements have a positive impact on student per-

formance in elementary schools. This study departs from the existing literature by investigating

actual air quality in the classroom, rather than just broad, monetary indicators of changes in

school infrastructure, providing insights based on objective, high-frequency measures of indoor

environmental quality. Our outcome-based approach of school quality can facilitate for more

precise estimates as compared to a purely input-based approach (see Hanushek (2003) for a

discussion of misallocation of resources in school investments).

In addition, this paper contributes to the nascent literature that explores the role of envi-

ronmental factors (i.e., air pollution and extreme heat) in cognitive performance and human

capital development. Over the last decade, there have been a number of studies providing quasi-

experimental evidence on the negative effects of exposure to extreme temperatures or ambient

air pollution on human health and human capital accumulation (see, for a review, Graff Zivin

and Neidell (2013) and Graff Zivin and Neidell (2018); Roth (2017)). Prolonged exposure to

high levels of air pollution has been associated with numerous respiratory problems in early

life (e.g. asthma), ultimately affecting school absence (Currie et al., 2009; Currie and Walker,

2011; Knittel et al., 2016) and infant mortality (Chay and Greenstone, 2003; Currie and Neidell,

2005).3

Beyond the health damage, there is increasing evidence on the direct consequences of expo-

sure to air pollution on the human brain and cognitive performance (Zhang et al., 2018). An

increasing number of studies show that exposure to air pollution harms student performance.

Numerous studies have linked local levels of air pollution on testing days (i.e. high levels of

PM2.5) to lower performance of young adults in high-stakes examinations (Ebenstein et al.,

2016; Roth, 2018; Graff Zivin et al., 2020).4 In the medium term, accumulated exposure to traf-

3There are also numerous studies showing the effects of elevated concentrations of fine particles on mortality
rates in adult populations (Liu et al., 2019). At the macro level, the impact of air pollution on human health
is staggering: the World Health Organization (WHO) estimates seven million premature deaths due to poor air
quality (WHO, 2014).

4Air pollution also affects labor market outcomes. In particular, the literature provides evidence of air pollution
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fic or industry-induced pollution during an academic year is correlated with lower test scores

in subsequent exams, and with behavioral incidents during high school (Persico and Venator,

2019).

Our results contribute to the existing literature in multiple ways. First, the overwhelming

majority of studies use outdoor climate measurements to assess students’ exposure, often using

data from air quality or weather stations located miles away from the schools where the pupils

are learning and taking their tests. 5 We collect data on air quality and other environmental

metrics inside the classrooms, where our subjects are learning and taking exams, overcoming

the challenge of measurement error which could result from miss-assigning environmental con-

ditions to individuals (Moretti and Neidell, 2011; Roth, 2018). The access to rich data retrieved

from our large sensor network allows controlling for a rich set of factors often neglected in the

literature (e.g. noise) and explore channels through which poor air quality affects student per-

formance. Second, we provide evidence on the impact of environmental conditions on children

in elementary schools, a cohort in which the implications of exposure to poor air quality or ex-

treme temperatures are still largely unexplored. The current evidence mostly relies on samples

of high-school or university students.6 Our estimates are based on individual standardized tests

taken by children twice a year throughout all elementary school years (age 6 to 12), a critical

age range for cognitive and human capital development (Howard-Jones et al., 2012; Heckman,

2006).

The remainder of the paper is organized as follows. In Section 2, we describe the study design

and descriptive statistics of the main variables in the study. Section 3 describes the empirical

strategy used to link indoor environmental conditions to student academic performance. Section

4 present the estimation results, and Section 7 concludes.

2 Data

This study exploits data from a large-scale network of sensors, deployed in 225 classrooms across

27 schools in the Netherlands. In each year of the sample period, the schools have an aggregate

affecting the productivity of agricultural workers (Graff Zivin and Neidell, 2012), the productivity of factory
workers (Chang et al., 2016), and soccer players (Lichter et al., 2017). Importantly, the effects of outdoor ambient
air pollution also have implications for indoor labor, affecting call center productivity (Chang et al., 2019), trading
activity (Meyer and Pagel, 2017), decision time and quality of judges (Kahn and Li, 2020), and the performance
of chess players (Künn et al., 2019).

5A notable exception is Roth (2018), who deploys indoor sensors to measure the level of air particles (PM10)
during the exams of university students.

6Persico and Venator (2019) is a notable exception, investigating the impact of proximity to industrial sites or
busy highways on the performance of elementary school students, studying the learning performance of children
from grade 5 (10−11 years old).
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Figure 1: Map of School Locations and Average Income

Note: Figure 1 shows the location of each school in the sample (bright red). Dots in dark red represent schools in the area
not selected for the study. Schools were selected based on a random sample of a set of 47 schools belonging to the largest
school board in the region. All schools in the sample below to the same metropolitan area, with similar household income,
outdoor temperature and outdoor level of air quality. The metropolitan area has a total of 257.499 inahbitants, spread over
6 municipalities (Wikipedia, 2022).

enrollment of more than 5,500 students.

2.1 School Characteristics

Our sample consists of 27 schools randomly selected from 47 schools managed by the largest

school board in province of Limburg, the most southern province in the Netherlands.7 The

bright red polygons in Figure 1 show the location of each school. All schools are located in the

same metropolitan area, exposed to similar levels of outdoor temperature and air quality. The

metropolitan area in which the schools are located is generally considered a lower-SES part of

the Netherlands, with median net household incomes varying from €21.9-25.6k, compared to

the national median household income of €25.8k.

The schools in our sample all follow the same teaching curriculum, and children are evaluated

following the same set of standardized exams (Section 2.3 describes the national testing system

in depth). Panel A of Table 1 displays the characteristics of the schools in the sample. The

average school has about 10 classrooms, with an average class size of 28 students. The youngest

students are four years old, and the oldest students are thirteen years old. In our study, we focus

7See Palacios et al. (2020) for the study protocol, including a detailed description of the sample and school
typology, pre-analysis plan, and an extensive discussion of sensor placement and calibration.
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Table 1: Summary Statistics: Schools and Groups

Panel A: Schools Mechanically Ventilated Naturally Ventilated

Mean St. Dev. Min. Max. Mean St. Dev. Min. Max.

Schools 23 0 23 23 4 0 4 4
Classrooms per school 8 2 5 13 7 2 5 10
Age of Buildings 25 20 2 88 48 9 38 60
Age of Ventilation System 8 6 0 21

Panel B: Groups Mechanically Ventilated Naturally Ventilated

Mean St. Dev. Min. Max. Mean St. Dev. Min. Max.

Age 9 2 5 13 10 2 5 13
Group Size 28 10 15 63 30 11 15 55
Years of Proficiency 3 1 0 8 3 1 0 5

on students who are older than six, the age at which the standardized test system starts for all

core subjects in the curriculum.

Schools in our sample are 25 years old, on average. The majority of schools in our sample (85

%) have a mechanical ventilation system, in the other schools, the ventilation system is ”natural”

(i.e. by opening and closing windows). Note that none of the schools have an air-conditioning

(cooling) system, given the relatively mild temperatures in Summer.

2.2 Environmental Conditions in Classrooms

For each school in the sample, the environmental conditions in each classroom with students

aged 6 and above are continuously monitored throughout the sample period, using advanced en-

vironmental sensors. We use wall-mounted stationary sensors from the sensor company Aclima,

Inc., that monitor the levels of CO2 (ppm), coarse and fine particles (PM10, counts/L), temper-

ature (◦ C), relative humidity (rH), light intensity (lux) and noise (dBA). The sensors capture

raw data with a frequency of 1 to 30 seconds, transmitting all data to a cloud-based server.

The data is aggregated at the minute level, and becomes available to the research team at the

end of every day. The deployment of sensors took place between January 2018 and December

2018.8. Supplementary Figure C.3 describes the daily statistics of sensor coverage per date as

well as the time period covered by the sensors. The Figure shows that the sensor coverage reaches

full coverage in January 2019, upon completion of the sensor deployment, which has been fully

operational since then.

We assess the quality of indoor air in each classroom based on the levels of CO2 concentra-

8Each sensor is plugged into the wall for electricity and is connected to the local WiFi network for secure data
transmission. During some days there are sensors that do not deliver any data (typically the result of sensors that
are unplugged during cleaning, etc.)
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Table 2: Summary Statistics for Environmental Conditions in Classrooms

Panel A: Room Ventilation Mechanically Ventilated Naturally Ventilated

CO2 Concentration (ppm) Mean St. Dev. Min. Max. Mean St. Dev. Min. Max.

Daily Average (in ppm) 957 324 485 2783 1249 321 604 2024
Daily Peak (in ppm) 1430 601 737 4665 2036 547 928 3189
Peak > 1000 (% days with class) 75 30 0 100 95 12 53 100
Peak > 2000 (% days with class) 12 24 0 100 46 25 0 100
Peak > 1000 (% lesson time) 65 32 0 100 92 14 43 100
Peak > 2000 (% lesson time) 9 21 0 96 37 23 0 85

Panel B: Environmental Parameters Mechanically Ventilated Naturally Ventilated

Daily Average Mean St. Dev. Min. Max. Mean St. Dev. Min. Max.

Temperature (in ◦C) 21 1 19 25 21 1 18 23
Humidity (in rH) 43 6 28 57 45 5 35 55
Noise (in dBA) 56 2 47 64 55 1 52 60
PM10 (in Count/L) 1045 554 72 2950 1608 512 814 3465

Daily Peak Mean St. Dev. Min. Max. Mean St. Dev. Min. Max.

Temperature(in ◦C) 22 1 20 27 22 1 21 25
Humidity(in rH) 48 6 31 66 50 5 39 60
Noise(in dBA) 77 3 66 85 75 2 69 82
PM10(in Count/L) 2522 1256 334 8497 3508 1240 1697 9758

tion, as a direct measure of the ventilation rate in the room. CO2 is a widely used indicator by

building facility managers and policymakers to monitor and regulate ventilation rates in build-

ings (ASHRAE, 2022). Occupants exhale CO2, which stays in the room until a mechanical or

natural ventilation system removes and exchanges it with outdoor air. The recommendation from

the main institution setting standard on building ventilation, the American Society of Heating,

Refrigerating and Air-Conditioning Engineers (ASHRAE, Standard 62.1-2013) highlights that

building ventilation rates should keep indoor CO2 concentrations at a maximum of 700 parts

per million (ppm) above outdoor concentrations, in order to ensure occupant satisfaction and

comfort. The levels of outdoor CO2 are always an order of magnitude lower than those in oc-

cupied rooms – the global average atmospheric carbon dioxide in 2020 was 412.5 ppm (NOAA,

2021).9

Table 2 provides the summary statistics of the indoor environmental quality variables ob-

tained from the sensors, while the children in our sample are inside the classroom. We restrict the

sample period to those official school days that the classroom is occupied, which can be inferred

by the levels of CO2 and noise in the room. The sensors monitor the levels of the six indoor

environmental quality variables continuously throughout the year. Panel A in Table 2 describes

9In addition, the onset of COVID-19 has triggered the development of new guidelines to support strategies to
use ventilation to tackle transmission risk of airborne diseases (e.g. EPA, 2022).
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the distribution of the CO2 in the study. Consistent to a recent review of the literature of CO2 in

schools Fisk (2017), all students in our sample are exposed to CO2 levels above the recommended

threshold. The distribution of daily CO2 peaks indicates that the average student in our sample

is exposed to 1,436 ppm on a given school day, with a range spanning from 700 ppm to 3,950

ppm (i.e. almost four times the limit recommended by ASHRAE). The comparisons between

the right and left side of the table shows how the levels of CO2 are significantly influenced by

the presence of a ventilation system in the school. In naturally ventilated classroom, which rely

on opening windows rather than a mechanical HVAC system to ventilate rooms, the average

levels of CO2 are substantially larger – i.e. 606 ppm (42%) higher than those in mechanically

ventilated schools.

Panel B in Table 2 provides the summary statistics of the remaining indoor environmental

quality variables collected by the sensors. The results show that, on average, the levels of tem-

perature, humidity, particles and noise are within the healthy and comfortable levels proposed

by regulators. The average thermal conditions, measured by the relative humidity and temper-

ature in the classroom, are within the comfortable levels. The average temperature levels are

21◦C (69.8◦F), within the comfortable range for humans (17–24◦C; 63-75◦F) and below the tem-

peratures considered harmful for human health (Asseng et al., 2021). The maximum daily peak

in our sample is 27◦C (80 ◦F), within levels recently estimated to impact student performance

(Park et al., 2020).10 The levels of noise in our classroom are also within the levels to ensure

human health (Hammer et al., 2014). 11

2.3 Student Performance Data: Nationally Standardized Tests

In the Netherlands, student performance in primary schools is tracked through biannual, na-

tionally standardized tests taking place halfway through the school year (January-February)

and at the end of the school year (May/June). The tests cover a wide range of education do-

mains, including Mathematics, Reading, Spelling, and Vocabulary, and apply to students from

Kindergarten through 6th grade. 12.

For each student in our sample, we collect scores for all tests over the entire primary school

education. The source of this data is the OnderwijsMonitor Limburg − a collaboration be-

10In our regression, we control flexibly for temperature to avoid any confounding effects in our estimates
associated with CO2.

11We also tested for background levels of noise with the distribution of noise in unoccupied classrooms. On
average, all classrooms in our sample display noise levels below 35 dBA – i.e. the recommendations by the
American National Standards Institute and the Acoustical Society of America (Spratford et al., 2019).

12In the Netherlands, grades correspond to groups, where Kindergarten is group 1, for 4 year-old children, and
6th grade is group 8, for 12 year-old children
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Table 3: Summary Statistics for Test Scores

Mechanically Ventilated Naturally Ventilated

By Age Bracket N Mean St. Dev. Min. Max. N Mean St. Dev. Min. Max.

[5− 7] 8810 0.00 0.45 -3.41 3.69 945 0.01 0.40 -2.09 0.77
[8− 9] 11748 -0.02 0.39 -2.64 2.82 1318 0.01 0.42 -3.41 3.35
[10− 13] 12886 -0.08 0.38 -2.57 1.99 1697 0.01 0.36 -2.10 1.04

By Test Domain N Mean St. Dev. Min. Max. N Mean St. Dev. Min. Max.

Mathematics 9236 -0.03 0.42 -3.41 3.69 1122 0.01 0.33 -1.06 2.27
Spelling 9491 -0.04 0.41 -2.47 3.15 1043 -0.03 0.41 -1.79 3.35
Reading 7504 -0.03 0.38 -2.16 2.10 843 -0.08 0.39 -2.66 1.28
Vocabulary 2393 -0.12 0.38 -2.27 2.61 250 0.31 0.42 -3.41 0.79
Other 4820 -0.01 0.41 -2.04 2.82 702 0.07 0.38 -1.53 2.82

By Test Period N Mean St. Dev. Min. Max. N Mean St. Dev. Min. Max.

Jan-Feb 2018 1364 -0.17 0.29 -2.41 0.67
May-Jun 2018 1229 -0.18 0.38 -2.46 1.02
Jan-Feb 2019 8431 -0.04 0.42 -1.85 3.69 522 -0.05 0.31 -0.90 0.56
May-Jun 2019 9504 -0.01 0.41 -3.41 2.22 1644 0.03 0.39 -3.41 2.05
Jan-Feb 2020 12916 -0.02 0.39 -2.57 3.57 1794 0.01 0.40 -2.10 3.35

tween Maastricht University and the elementary schools, school boards, and municipalities in

the province of Limburg (for more information, see Borghans et al. (2015)). For the purpose of

this study, we exclude testing data in Kindergarten (groups 1 and 2), given the limited testing

taking place for these grades and the limited comparability of test results relative to subsequent

grades.

The tests are designed by a national examination center, administered at each individual

school, and graded by the teachers using a standardized grading scheme. The raw results are

transformed into percentiles by the testing center. The rules for transformation are constant

over time, such that results for the same student can be compared between periods. For each

test period, we construct a comparable scale for each domain, standardizing the variable to have

a mean of zero and a standard deviation of one within a given test in a test period. The main

outcome variable is thus the standardized score for each student, in each test period and domain

(we only consider students that take the same test domain at least twice across different test

periods).

3 Empirical Approach

In our identification strategy, we exploit the fact that we observe students that are tested multiple

times during the sample period, with exposure to varying levels of indoor air quality during the

school term preceding the test (i.e. the learning period). The data allows us to test whether
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students score lower following a term in which their classroom was poorly ventilated, relative to

their own score following a school term in a classroom with “good” air quality.

We estimate a fixed-effects model, that removes the influence of confounding factors driven

by ex-ante differences in student skills or socio-economic background, classroom infrastructure,

and general trends in test scores in our sample for each testing domain. More formally, we

estimate the following specification:

Scoreidt = βCO2ct + αid + αt + αc + αl + ΓXct + εidt (1)

where Scoreidt is the standardized test score of student i, in domain d (e.g., mathematics,

vocabulary, etc.), and testing period t (e.g. February 2020). We define cumulative CO2 exposure,

CO2ct, as the average daily peak CO2 experienced during school days in the school term prior

to the test for all students in classroom c taking the test in testing period t. We standardized the

parameter, such that the coefficient of interest β can be interpreted as the standard deviation

impact on a student’s test score associated with a standard deviation increase in the average

daily peak of CO2 in the classroom where students took classes during the term.

The model includes fixed effects for each student i by test domain d (αid) to capture changes

in idiosyncratic abilities of students in different education domains (e.g. mathematics, reading,

etc.). The inclusion of testing-period t fixed effects (αt) controls for common factors affecting

all pupils taking a test in the same testing period. The classroom fixed effects (αc) control for

all time-invariant characteristics of a classroom, such as views, or any relevant major (time

invariant) differences in teaching infrastructure in the room (e.g. digital boards, furniture, etc.).

Finally, Xct is a vector of IEQ, group, and individual controls containing average daily peak

measures of PM10, Temperature, and Humidity observed in the classroom during the learning

period, a linear and quadratic term for group size, two dummies indicating the age of the student,

i.e. 8 to 10, and 10 to 13 years old with reference 5 to 8 years old, and the average level of noise

in the classroom during the learning period. In addition, we include a a series of dummmies

describing the number of terms that students have received lessons on the specific subject by

the time they take the test in their school time. These control for heterogeneity in test results

that might arise from students repeating the taking of a test, for example.

Standard errors (εict) are clustered at the classroom by period level to control for correlation

among tests results for students learning in the same classroom at the same time, and following

the suggestion by (Abadie et al., 2017) to cluster at the level of treatment variation. In addition,
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all regressions are weighted by the number of days that a sensor records valid data in each school

term, to take into consideration the sample size from which we derive our exposure measures

during each school term.

The identifying assumption of our empirical approach is that the variation in standardized

test scores for each student is independent of other variables that might be correlated with

CO2 levels. The key identifying assumption is therefore that, conditional on the rich set of

fixed effects, there is no unobservable (environmental) factors correlated with classroom CO2

and test scores. To ensure the robustness of our results, we implement the following strategies.

First, the access to a rich set of environmental parameters from the environmental sensors

allows controlling for a number of factors often neglected in the literature. All specifications

include a rich set of environmental controls (Xct) that enable us to isolate the impact of indoor

air quality (CO2) from all other key environmental conditions in the classroom – i.e. average

exposure to a classroom’s coarse and fine particles (PM10), temperature, relative humidity and

noise intensity.13 To test the robustness of our results to different specifications, we implement a

specification curve where we test the changes in our main parameter of interest under multiple

transformations of the CO2 measure and the environmental controls.

Second, in order to further isolate the impact of ventilation on learning outcomes, we exploit

the plausibly exogenous variation in CO2 associated with failures in schools’ ventilation systems.

A selection of schools in the sample are mechanically ventilated. The failure of a mechanical

ventilation system on a given day results in sustained and abnormally high levels of CO2 in

the classroom. We constructed a data-driven algorithm where we detect days when there are

abnormal levels of CO2 for a sustained amount of time in the classrooms of our sample during our

sample period. The algorithm employs a fixed effects specification to predict each classroom’s

steady peak and average CO2 levels (conditional on the time of the day, date, academic term,

and classroom), and indicates the days when both measures of CO2 in a classroom are 15000

ppm above them.

Finally, it is important to note that in our setting, classroom equipment and teacher quality

are unlikely to co-move over time with the indoor air quality in the classroom during our sample

period. A series of focus interviews between the research team and the board of the schools

confirmed the lack of major changes in school furniture or equipment during our sample period.

In our sample of schools, the teaching material and equipment is procured at the school level

13We construct these variables following the same procedure as our main treatment variable. The measurements
are standardized to facilitate comparisons across the different environmental factors.
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or at school board level. In a robustness check, we include school-by-year fixed effects αst to

control for the present of any school-level shocks. 14 In addition, an ultimate reason of concern is

that teachers sort into rooms based on indoor environmental quality, with high-quality teachers

selecting classrooms with healthier conditions. In our sample of schools, it is the school principal

who determines classroom allocation to teachers and student groups, rather than individual

teachers. Furthermore, the classroom fixed effects of the fixed-effect model partly control for this

self-selection into classrooms, since those teachers that always teach in their favorite classroom

will be part of the time invariant aspects of the classroom – this is absorbed by the classroom

fixed effects αc.

Nevertheless, we collect data on the allocation of teachers to classrooms at each term and for

each school in our sample to test how air quality and teacher quality correlate. We construct the

same environmental variable as for the main analysis for air quality using the average daily peak

exposure to CO2 for each teacher. Similarly, we compute the average score achieved by each

teacher’s students in each academic term. Regressing separately average scores and average CO2

daily peaks on fixed effects indicating each teacher, we look at how their estimated coefficients

correlate and show that our assumption is plausible.

4 Results

4.1 Indoor Air Quality and Student Performance

This section presents our main estimation results liking the variation of CO2 in the school term

to student performance in standardize tests, together with a series of heterogeneity tests, and

robustness checks.

4.1.1 Main Results

We first analyze how changes in average exposure to CO2 concentrations during the school term

affect the test scores of individual students.

Table 4 displays the estimated coefficients in our main specification (Eq. 1), with different

versions that introduce sequentially the set of controls to test the sensitivity of our main effects.

The results indicate that high concentrations of CO2 in the classroom during the school term

clearly lowers the performance of students in the test. The coefficient is highly statistically

significant. After controlling for the environmental conditions in the classroom (Column (2)),

14In addition, the research team undertook visual inspection to a random set of schools every school term,
confirming the lack of changes in the classrooms during the study period.
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Table 4: Average Daily Peak CO2 Concentration During Learning Period on Standardized Test Scores

Dependent Variable: Standardized Test Scores

(1) (2) (3) (4) (5)

CO2 (z-score) -0.066∗ -0.094∗∗ -0.115∗∗∗ -0.108∗∗ -0.110∗∗∗

(0.037) (0.041) (0.043) (0.045) (0.038)
PM10 (z-score) 0.016 0.010 0.044 0.047

(0.062) (0.058) (0.057) (0.071)
Temperature (z-score) -0.014 -0.011 -0.006 -0.016

(0.029) (0.029) (0.025) (0.031)
Humidity (z-score) 0.058 0.066 0.055 -0.029

(0.048) (0.053) (0.053) (0.067)
Age [8-9] -0.030 -0.024 -0.032

(0.039) (0.039) (0.038)
Age [10-13] -0.022 -0.019 -0.019

(0.025) (0.025) (0.024)
Class Size 0.021∗∗∗ 0.024∗∗∗

(0.008) (0.008)
Class Size Sq. -0.000∗∗ -0.000∗∗

(0.000) (0.000)
Avg. Noise (z-score) -0.039 -0.055

(0.031) (0.040)

Fixed Effects
Student by Domain Y Y Y Y Y
Period Y Y Y Y Y
Classroom Y Y Y Y Y
Proficiency N N Y Y Y
School by Period N N N N Y

Obs. 37,451 37,451 37,451 37,451 37,451
Adj. R2 0.741 0.741 0.750 0.750 0.754

All models relate average daily peak of CO2 concentration in the classroom with standardized test scores. Column (1)
provides results for a model with fixed effects for students by each domain and periods. Column (2) provides results for a
model that controls for observed and unobserved physical conditions within the classroom using average daily peaks of other
IAQ variables and classroom fixed effects. Column (3) gives results for a model that adds characteristics of the groups and
students, i.e. group size, age, and the average daily mean noise within the classroom. Finally, the last column adds school
by period fixed effects to use only variation within each specific school and rule out unobserved heterogeneity at the school
level. Clustered standard errors at the classroom by period level are shown in brackets. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

our estimates describe that the exposure to one standard deviation extra in average CO2 levels

during the term lowers student performance by 0.094 standard deviations. This result is very

precisely estimated and robust to a variety of controls for potential confounding factors.

That students score declines following terms with poor air quality relative to their own

scores following terms with good air quality in the classroom does not appear to be driven by

other channels potentially correlated with CO2 in the school term leading up to the test, as

seen in the next three columns of Table 4 (Column (3)-(5)). Controlling for changes in student

age, and for promotions of students within the curriculum to higher level groups (or students
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repeating the same grade) has nearly no effect on the point estimate (Column (3) in Table

4). Similarly, controlling for changes in class characteristics (i.e. class size, and noise levels

capturing changes in behavior of students) leaves our estimate nearly unchanged, implying that

we are measuring the direct impact of poor ventilation in the classroom and not changes in class

characteristics (Column (4) in Table 4). Finally, Column (5) presents the results of a regression

including school-period fixed effects, that control flexibly for any changes in the school across

periods, such as outdoor environmental conditions (e.g. air pollution or outdoor temperature),

investments in equipment, or changes in the leadership of the school 4. Again, the results remain

largely unaltered, supporting the hypothesis that our effects are reflecting the direct effects of

CO2 concentrations in the classroom during the school term, and not other confounded changes

in the school setting.

The estimates associated with other environmental parameters considered in the study (i.e.

PM10, temperature, humidity) indicate that these factors have, on average, no significant impact

on test scores in our sample, conditional upon the inclusion of fixed-effects. It is important to note

that indoor temperature or particles have a lower range of variation in our data set, due to the

thermal control infrastructure in the schools (i.e. heating systems). In addition, the geographical

density of the schools in our sample limits the cross-sectional variation of coarse particles, that

is our proxy for outdoor particulate matter. The changes over time in those conditions are

controlled for by the period fixed effects and school-period fixed effects.

4.2 Heterogeneity

This section explores differences in the damage functions associated with poor ventilation. We

wish to identify whether there are subpopulations or mental tasks that may be particularly

responsive to poor indoor air quality. Second, this may help to identify mechanisms for the

observed reduced form relationship between indoor air quality and student performance.

Table 5 presents the estimates of our main regression for the different sub samples, including

the full set of fixed effects. Column (1) to (3) in Table 5 show the estimated impact of CO2 for

spelling, mathematics, and reading separately. The Table shows that the results in the pooled

estimation, including all tests in the sample, are mainly determined by mathematics tests and

reading comprehension tests. Columns (4) to (6) in Table 5 present the main estimates for three

age groups (5 to 7 years old, 8 to 10 years old, and older than 10 years old). The results indicate

that the impact of CO2 is strongest for the two oldest cohorts.

In addition, we explore differences in impacts associated with high concentrations of CO2
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Table 5: Average Daily Peak CO2 Concentration on Standardized Test Scores

by Domain by Age

(1) (2) (3) (4) (5) (6)
Spelling Math Reading Age[5-7] Age[8-9] Age[10-13]

CO2 (z-score) -0.022 -0.215∗∗∗ -0.116∗∗ 0.109 -0.173∗∗∗ -0.185∗∗∗

(0.061) (0.057) (0.059) (0.072) (0.052) (0.064)

Fixed Effects
Student Y Y Y Y Y Y
Student by Domain N N N Y Y Y
Period Y Y Y Y Y Y
Classroom Y Y Y Y Y Y
Proficiency Y Y Y Y Y Y

Obs. 10,627 10,437 8,434 9,553 13,164 14,734
Adj. R2 0.7565 0.7836 0.7503 0.7200 0.7749 0.7624

All models relate average daily peak of CO2 concentration in the classroom with standardized test scores. Column (1)
provides results for a model with fixed effects for students by each domain and periods. Column (2) provides results for a
model that controls for observed and unobserved physical conditions within the classroom using average daily peaks of other
IAQ variables and classroom fixed effects. Column (3) gives results for a model that adds characteristics of the groups and
students, i.e. group size, age, and the average daily mean noise within the classroom. Finally, the last column adds school
by period fixed effects to use only variation within each specific school and rule out unobserved confounders at the school
level. Cluseterd standard errors at the classroom by period level are shown in brackets. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

across school week days. Schools design their curriculum in a way that content and skill de-

velopment training is distributed over the school term and week. Here, we construct exposure

measures for each day of the week and re-estimate our main specification 1. Supplementary

Table A.3 displays the coefficients associated with the average concentration of CO2 in differ-

ent school days. The results indicate that poor environmental conditions are equally important

across school days, except for Wednesdays, when students have only half day of class in Dutch

primary schools. That estimates associated with the exposure the day of the week that there is

only half instruction time highlights the role of exposure time in our study.

5 Robustness Checks

5.1 Specification tests

In our main results, we include all regressors as the average of daily maximum over the school-

term. This subsection presents the results of a specification curve analysis (Simonsohn et al.,

2020), where we test the sensitivity of our main results to the functional form of our environmen-

tal exposure measures. In particular, we run a variety of specification tests, where we include

in the regression model different forms of our treatment measure and indoor environmental
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Figure 2: Specification Sensitivity Curve

controls.

Specification curve analysis of environmental parameters. Figure 2 displays the coef-

ficients and confidence intervals associated with the concentration of indoor CO2 in the school

term preceding the test for a combination of dozens of different forms of the variable itself and

the environmental controls. In our main specification, our measure of exposure during the term

is based on the average daily peaks across all teaching days in the term (denoted in Figure

2 as CO2(z–score DAP)). The figure shows the sensitivity of the estimate to specifying the

school-term concentrations of CO2 based on average daily average concentrations (CO2(z–score

DAM)), average daily average concentrations after correcting the algorithm to consider only
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the minutes that children were inside the classroom (CO2(z–score DAMWI)) 15, a dummy vari-

able that indicates that the school-term average of daily peaks of CO2 were above 2500 ppm

(CO2 > 2, 500 ppm (DAP)), or a dummy variable that indicates that the school-term average of

daily averages of CO2 were above the 1500 ppm (CO2 > 1, 500 ppm (DAM)). Similarly, we test

different specifications of the environmental controls based on the school-term daily averages

(Linear (DAM)) and their quadratic form (Quadratic (DAM)), and the school-term daily peaks

(Linear (DAP)) and their quadratic form (Quadratic (DAP)).

Figure 2 shows that our results are robust to the different specifications of the treatment and

environmental control variables. The coefficient shows high stability in terms of its statistical

significance. The estimates in our main specification are within the confidence intervals of the

CO2 coefficient in each specification in the curve. The only few specifications (< 2% of specifica-

tions) that are only statistically significant at 10%are associated with the school-term average of

daily mean, without the adjustment of the algorithm to include only the minutes that children

are in the classroom (CO2 (z–score) DAM). The occupancy patterns in the classroom affect the

levels of CO2 and therefore generate intraday variation in the CO2 measurements that introduce

measurement error in our estimation, and reduce the size of our coefficient. The consistency of

our estimates across specifications support the robustness of the findings, and indicate that our

results are not driven by one single form of computing the exposure of kids to poor indoor air

quality.

Noise measures of activity patterns in the classroom. Alterations in children activity

patterns might generate changes in CO2 levels. As the physical activity increases, the exhala-

tion rate increases, producing a subsequent increase in the production of CO2 and ultimately

increasing its concentration in the classroom. To test the role of these channels in our setting, we

use the noise sensor to construct multiple indicators of activity patterns among children in the

classroom. In particular, we include the school-term average of daily peaks and daily averages,

and a variable capturing the number of minutes in the school-term where the sensor in the room

captured a signal that was above 40 dBA,16 as a proxy of the number of minutes where occupants

were actively moving or speaking. Figure 2 shows the robustness of our results to changes in the

specification of the noise in the room. This suggests the lack of influence of activity patterns

in the room on our estimates, and therefore indicates that alterations of activity patters in the

15See Supplementary Section C.3 for a description of the algorithm to detect the presence of students in the
classroom

16We tested the sensitivity of the results to different thresholds showing no influence in our estimates.
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classroom are not a source of meaningful variation in CO2 levels in our study.

Falsification test: miss-assignment of sensor to student. Finally, we perform a set of

falsification tests where we misspecified the exposure of CO2 of the student in the school term

with a sensor different from the one deployed in the classroom of the student. We estimate

the relationship between indoor CO2 in a classroom other than the actual classroom where

the student was allocated for the school term. In Supplementary Table A.4, we display the

relationship between test scores and indoor air quality collected from a sensor different than the

sensor deployed in the classroom where the student learned during the school term. None of the

results in the table are statistically different from zero. This is the case for both, classrooms that

belong to the same school of the assigned classroom for the student (Panel b), and a classroom

belonging to a different school than the student was truly assigned (Panel a). The lack of a

significant effect in these placebo tests is reassuring that our results are not driven by a spurious

correlation.

5.2 Instrumenting CO2 concentrations in the classroom with malfunctioning

ventilation systems

In this subsection, we explicitly test for the role of the school infrastructure (i.e. HVAC system)

as a key driver of main effects. We develop a data driven algorithm to detect infrastructure

failures based on the presence of jumps (i.e. sudden changes to transitory and abnormally high

levels) in the time series of daily peaks of CO2. Then, we implement a two stage strategy where

the school-term average concentration of CO2 is instrumented with the number of days that the

algorithm detects that the HVAC system supplying fresh air in the classroom is broken.

In our sample 85% of schools are mechanically ventilated, with an HVAC system refreshing

the air in the room with outdoor air. One of the most common consequences of an HVAC

malfunction generates is the reduction of air exchange rates in the room, limiting the refreshment

of indoor air with outdoor air and letting the level of CO2 accumulate to very high levels. The

presence of high concentrations of CO2 is one of the main indicators used by technicians to

detect failures in ventilation systems. The failure of engines or blockage of the pipes in the

system limits are common failures that generate abnormally high concentrations of CO2 in the

classroom, that remain high until the system is repaired. Ventilation failures are unlikely to be

correlated with teaching quality, as they are the consequence of an infrastructure failure that

teachers cannot predict.
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We use our data from our sensors to detect spikes in the daily concentration of CO2 in the

classroom. We design a simple algorithm to detect outliers in the time series of daily peaks for

each classroom. In particular, we infer from the data that there has been a ventilation failure

by regressing the daily maximum and daily average levels of CO2 observed in each classroom

on a series of fixed effect that control for regularities (i.e. flexible trend) in observed CO2 levels

during lessons and specific dates as shown below:

CO2schτ = αcht + αcwt + ατ + εchτ ,

where CO2chτ is the maximum level of CO2 observed in classroom c, during the lesson that

started at time h on date τ , αcht is a classroom c by hour of the school day h during learning

period t, αcwt is a classroom by day of the week w during learning period t, and ατ is a date

fixed effect that controls for common environmental factors affecting all classrooms at the same

time, such as weather conditions.

To determine whether a specific classroom presents a ventilation system breakdown during

a specific day, we look at the residual elements resulting from the previous regressions ε̂chτ =

{ε̂ch1, . . . , ε̂chτ , . . . , ε̂chT }. We consider that a ventilation system breakdown has taken place at

classroom c during time of the day h in date τ if ε̂chτ > 1, 500 ppm for both, average and

maximum levels. The key rational of considering jointly the maximum and the mean values in

the analysis, rather than one of them separately, is to ensure that the abnormally high levels of

CO2 are sustained over a substantial amount of time in the day, rather than just being a spike

in CO2 in a few minutes during the entire school day.

Panel (a) in Figure 3 shows average peak CO2 concentration levels in each classroom during

the school term in days with (in red) and without (in blue) broken ventilation. The figure shows

how the days detected as failing HVAC system are sudden increases in CO2. Panel (b) in Figure

3 describes the coefficients from an event study estimation that describe the changes in CO2

in the days immediately preceding and following a failure in ventilation systems using an event

study approach. The estimates show that on the date where the ventilation system is broken,

CO2 levels in the room increase by about 40% compared to the average of the previous 5 days,

and remain high (about 20% higher) in the day immediately after the brake down was detected,

suggesting that sometimes HVAC systems cannot be fixed on the same day.

We then create dummy variables Days Broken V entctv corresponding to bins v = (0, 1 −

2, 3−4, 5−6, > 6) indicating the number of days with broken ventilation detected, in a regression
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Figure 3: Average Peak CO2 Concentration and Mean Noise in classrooms on days with and without
broken ventilation

(a) Detection ventilation failures

(b) Changes in CO2 in days before and after ventilation failure events
detected

Note: Panel (a) shows daily peak CO2 concentration levels for each classroom in each academic term when
ventilation is functioning normally (blue) and when it is broken (red), as identified by our algorithm. Panel (b)
shows results of an event study identifying the excess levels of peak CO2 in days when a ventilation breakdown
has been detected (day 0) and during the following 5 days, compared to the average level during the previous 5
days.

including the same fixed effects as in our main regression specification (Eq. 1):

ĈO2ct =
∑

ξvDays Broken V entctv + ΓXct + αid + αc + αt + αl + εidt, (2)

Second stage:

Scoreidt =βĈO2ct + ΓXct + αid + αc + αt + αl + εidt. (3)

Table 6 shows the coefficients in our main regression, using the instrumented school-term

average concentrations CO2 as regressors. At the bottom of the table, we include the coefficients

associated with the set of dummies describing the failures of the ventilation system in the first
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Table 6: Average Daily Peak CO2 Concentration on Standardized Test Scores

Peak (z-score) Average
(z-score)

Peak>
2500ppm

Average>
1500ppm

CO2 (IV) −0.247∗∗∗ −0.338∗∗∗ −0.392∗∗∗ −3.366
(0.047) (0.103) (0.082) (3.342)

Fixed Effects
Student by Domain Y Y Y Y
Period Y Y Y Y
Classroom Y Y Y Y
Proficiency Y Y Y Y

Controls
IEQ Parameters Y Y Y Y
Age Y Y Y Y
Class Size Y Y Y Y

Obs. 32,442 32,442 32,442 32,442
Adj. R2 0.745 0.743 0.745 0.675

First Stage

1-2 days broken 0.618∗∗∗ 0.564∗∗ 0.008 0.050
(0.222) (0.225) (0.077) (0.087)

3-4 days broken 2.097∗∗∗ 1.122∗∗∗ 1.118∗∗∗ 0.136
(0.178) (0.196) (0.057) (0.115)

> 6 days broken 1.077∗∗∗ 1.381∗∗∗ 0.181 0.038
(0.285) (0.279) (0.113) (0.098)

F-statistic 44.014 17.568 166.411 0.363
p-val 0.0000 0.0000 0.0000 0.8349

Note: This table presents results for our main specification when instrumenting CO2 concentration levels
during the learning period using dummies indicating the number of days that the ventilation in the school
was detected as broken by our algorithm. Each column shows results from instrumenting a different
measure of CO2 concentration as indicated in the column title. Significance levels are ∗∗∗p < 0.01;
∗∗p < 0.05; ∗p < 0.1.

stage. The high value associated with the F-statistic suggests the high predictive power of the

ventilation breakdown events on the school-term average CO2 concentrations in the classroom,

after controlling for classroom fixed effects and the remaining factors listed in our main regression

(Eq. 1). The estimates associated with the instrumented CO2 concentrations are similar in

magnitude and statistical significance as in our main results, indicating that our main effects

are mainly driven by ventilation breakdowns, identified as sudden jumps in the series of CO2 in

classrooms. Similarly, Supplementary Table B.3 replicates the heterogeneity analysis.
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Figure 4: Correlation Between Estimates of Teacher Fixed Effects on Average Scores and Daily Peak CO2

(a) Only Teacher FEs
(b) Teacher, School, Domain, Period, and Proficiency
FEs

Notes: The figure describes the correlation between the estimated teacher fixed effects in Equation 4 and the estimated
teacher fixed effects in Equation 5. Panel A. includes no controls in the regression models. Panel B. controls for school,
test domain, period and the student proficiency. Fitted lines were estimated using a locally weighted regression with a
smoothing parameter α = 0.8. The Pearson correlation coefficients between are 0.18 and -0.12, respectively, and neither
was statistically significant.

5.3 Teacher Effects on Indoor Climate

A common identification challenge in the identification of impacts of school infrastructure has

to do with its correlation with teacher quality. In our study, the correlation between teacher

quality and air quality challenges the interpretation of our results as air quality impacts.

In this subsection, we estimate the extent to which systematic differences in teaching quality

correlate with classroom’s CO2 levels. In this analysis, we link the average scores of students

taught by a given teacher with the average levels of CO2 in the classrooms allocated to the

teacher over the sample period of our study. We compute the teacher-specific differences in the

distribution of tests scores of students and classroom CO2 levels from teacher fixed effects in the

following two regression models:

CO2ctp = TeacherCO2
p + εitp (4)

and

Scorectdp = Teachertestsp + εitdp (5)

where TeacherCO2
p in Eq. 4 describes the teacher fixed-effects, containing dummy variables

describing the individual differences across teachers in the CO2 levels in classrooms in the school

terms where the teacher was allocated to the classroom. In Eq. 5, Teachertestsp describes the

teacher fixed-effects, containing dummy variables describing the individual differences across

teachers in the test scores of their students. Figure 4 displays the link between the two sets
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of fixed effects, to test for the link between student test scores and classroom CO2. The lack

of relationship (or rather, a slightly positive relationship) between the two set of fixed effects

indicates that teacher quality is not linked to the levels of CO2 in the classroom. This results

suggest that teachers are not a key driver of the impacts of CO2 on the performance of students.

6 Long-run Effects: Effects on high school advice

In our final analysis for learning achievements, we relate indoor environmental conditions during

the learning period with test results that students take in their final year of primary education.

These tests largely determine the advice that teachers will give about the type of high school a

student should attend in the future.

Students in the Netherlands can attend different types of high schools, according to their

performance in primary school. The first type of high schools, namely “VMBO”, require lowest

performance in their primary school education, and it is more orientated towards practical set of

skills. The second level, namely “HAVO”, requires an intermediate academic level and focuses on

teaching a mixed of applied and conceptual skills. And finally, for students with the highest level

of academic achievement, “VWO” high schools will teach more conceptual subjects with most of

these students entering research universities after high school completion (Supplementary Figure

C.4 displays the distribution of test scores in the final test separately for each secondary school

track).

All tests results since third grade of primary education provide the teacher with elements

to determine the final advice about the type of high school that the student should attend. In

their final year of primary education, students take a final set of tests conducted with the sole

purpose of confirming the teacher’s advice. Teachers calculate a comprehensive score combining

all these test results and compare it with their own advice. If the advice shown by the tests is

to a higher high school level than advised, then teachers are obliged to review their decision, if

in turn the opposite occurs, there are no consequences and the original advice remains.

In a cross-section analysis, we relate the school-term CO2 in the classroom preceding the

final test with the result in the final test, the result in each part of the test (i.e. Language and

Mathematics), and with the probability that the student is given the advice to attend a HAVO

or VWO high school. Table (7) shows results for this analysis, including controls for the other

IEQ variables and the class size.17 Column (1) shows that a one standard deviation increase in

17There are no fixed effects possible to control for since there is only one group 8 per school, and we observe
only one period for each student taking this test.
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Table 7: Average Daily Peak CO2 Concentration on 8th Grade Test Scores and on Probability of Student
Receiving Advice to Join VWO/HAVO Level High School

Full Score (logs) Language Mathematics Advice to
VWO/HAVO
(Prob.)

Skill Score
(logs)

(1) (2) (3) (4) (5)

CO2 (z-score) -0.019∗∗∗ -0.022∗∗∗ -0.015∗∗∗ -0.127∗∗∗ -0.020∗∗∗

(0.001) (0.000) (0.003) (0.003) (0.003)

Controls
IEQ Controls Y Y Y Y Y
Class Size Y Y Y Y Y

Obs. 193 193 193 193 1615
R2 0.020 0.025 0.025 0.031 0.010

Note: This table shows results of a cross-section analysis relating CO2 concentration levels during the learning term
for 193 students taking the final test that determines whether teachers will review their advice about which level of
high school they should attend. The table gives the impact on the log final score obtained by the student (Column
(1)), on the log scores obtained for the Language (Column (2)) and Mathematics (Column (3)) parts, and on the
probability that the student is given the advice to attend to either of the two higher levels of high school (i.e. VWO
and HAVO) (Column (4)). Column 5 provides an estimate for the impact of ventilation on the scores achieved for each
individual skill when observations for all scores of each student are pooled together. Significance levels are ∗∗∗p < 0.01;
∗∗p < 0.05; ∗p < 0.1.

daily average peak values of CO2 during the learning period preceding the test reduce final test

results by 2%. This result is driven by both parts of the test (i.e. Language and Mathematics)

(Columns (2) and (3)). Column (4) in Table (7) shows that a one standard deviation increase in

CO2 concentration is associated with a 13% lower chance to be recommended to a higher high

school level.

The data collected on these final tests allow us to look more closely into which specific

skills are being relatively more affected by poor indoor air quality. Within each part of the

test, different skills (i.e. logic, geometry, fractions, and numbers for mathematics; and glossary,

vocabulary, language usage, and reading for the language part) are separately evaluated by

assigning a score to each of them. To gain more statistical power we regress the score obtain

by the student in each skill and find an average effect of a 2% decline in test scores (Table (7),

Column (5)) controlling for the skill fixed effects. In addition, we individually relate the CO2

exposure measure during the learning period to the log-scores given to each skill. Figure (5)

plots coefficient estimates of these effects with corresponding 5% significance levels error bars

for each skill. All mathematics skills (except logic formulations) are being affected by poor levels

of air quality while the students learn these skills. A one standard deviation increase in CO2

concentration is associated with a reduction in mathematics skills scores that range between

2.5% and 5%. However, CO2 concentration is also associated with an increase in logic skills. For
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Figure 5: Correlation Between Estimates of Teacher Fixed Effects on Average Scores and Daily Peak CO2

Notes: The figure describes the correlation between the estimated teacher fixed effects in Equation 4 and the estimated
teacher fixed effects in Equation 5. Panel A. includes no controls in the regression models. Panel B. controls for school, test
domain, period and the student proficiency.

language skills, results show that the main driver of the reduction in scores is glossary with an

almost 10% decrease associated to a one standard deviation increase in CO2 concentration.

7 Discussion and Conclusion

This paper provides the first quasi-experimental evidence on how air quality conditions in the

classroom affect learning outcomes. We design and implement a large field study, deploying

an indoor sensing network in 27 elementary schools, continuously monitoring the indoor air

quality conditions in 235 individual classrooms, covering some 4,000 children aged 6 to 12. We

document large variation in indoor air quality across schools, classrooms and over time. Such

variance cannot be explained (add here percentage) by classroom or school characteristics, or

ambient weather conditions – strengthening the need to measure those factors indoors, and

on a continuous basis. Using within-child variation in exposure to air quality conditions, we

document that when children are systematically exposed to poor air quality during a prolonged

learning period, their cognitive development is slowed down, as measured by the improvement

on standardized tests made by the same student.

To put our findings into perspective, we can compare them to the effects documented for
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other school interventions, for example, the Active Living Program (Golsteyn et al., 2020) or

the Early Training Program (Anderson, 2008). Of course, these intervention programs are not

directly comparable, given the non-experimental setting of this paper, but the comparison of

average treatment effects is nonetheless helpful in understand the magnitude of the documented

results. The effects of the Active Living Program, an experiment aimed at stimulating physical

activity on Dutch primary schools, showed a negative effect of 0.06 standard deviations, using

a comparable sample and setting. Clearly, the effects of passive exposure to poor air quality

conditions in the classroom trump the negative effects of a program aimed at stimulating physical

activity (see Golsteyn et al. (2020)). Anderson (2008) documents average impact outcomes across

programs of 0.28 standard deviations, while Deming (2009) documents an average impact of

0.23 standard deviations for the Head Start program. Although the setting of these programs is

fundamentally different than ours, these simple comparisons provide some indication that the

economic magnitude of the findings in this paper is quite substantial.

This study highlights the understudied role that school facility conditions play in generating

educational outcomes. It also highlights the extent to which disparities in such physical envi-

ronments contribute to inequality in educational outcomes. The results allow us to estimate the

benefits of potential public investment, for example in school HVAC systems, that may help

reduce such gaps. A variety of recent papers have examined connections between investment

in school facility and academic achievements, but the mechanisms explaining that connection

remain a matter of speculation. In addition, this paper complements the growing literature on

the impacts of pollution, temperature, and academic performance. The existing evidence de-

pends on measurements of outdoor temperature or ambient air quality to assess the relationship

between environmental conditions and student performance, relying on strong assumptions to

extrapolate outdoor measurements to indoor exposure. The use of sensors inside the classrooms

where children are learning and being tested allows us to assess exposure to specific pollutants

with an unprecedented accuracy.

Our results also yield several important policy lessons. The airborne transmission of the

SARS-COV-2 virus has elevated the salience of indoor environmental quality as an important

factor to prevent the spread of the disease. Many countries have begun preparing major in-

vestment outlays to improve ventilation, via modernization or installation of HVAC systems,

or upgrading the standards of ventilation in buildings. Schools buildings are among the major

targets in many nations’ building portfolios, due to the high density of children in classrooms,

and the long need for disrepair or installation of schools’ air treatment systems. Our results
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suggest that upgrades in indoor air quality in schools is relevant besides reduction of the spread

of viral diseases, such as COVID-19, and supports children’s cognitive capacities, precisely at a

critical age for human capital accumulation and skill formation.
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Appendix

A Main Results Using Average Mean CO2 Concentration

Table A.2: Average Daily Mean CO2 Concentration on Standardized Test Scores

Dependent Variable: Standardized Test Scores

(1) (2) (3) (4) (5)

CO2 (z-score) -0.053 -0.062 -0.088∗ -0.088∗ -0.120∗∗

(0.035) (0.046) (0.047) (0.047) (0.052)
PM10 (z-score) -0.059 -0.042 -0.009 0.015

(0.058) (0.060) (0.057) (0.072)
Temperature (z-score) -0.010 -0.008 -0.008 -0.027

(0.027) (0.028) (0.026) (0.040)
Humidity (z-score) 0.101 0.109 0.088 -0.013

(0.074) (0.074) (0.076) (0.105)
Age [8-10) -0.029 -0.023 -0.031

(0.039) (0.039) (0.037)
Age [10-14) -0.022 -0.019 -0.019

(0.025) (0.025) (0.024)
Class Size 0.020∗∗∗ 0.023∗∗∗

(0.007) (0.008)
Class Size Sq. -0.000∗∗ -0.000∗∗

(0.000) (0.000)
Avg. Noise (z-score) -0.041 -0.062∗

(0.031) (0.037)

Fixed Effects
Student by Domain Y Y Y Y Y
Period Y Y Y Y Y
Classroom Y Y Y Y Y
Proficiency N N Y Y Y
School by Period N N N N Y

Obs. 37,451 37,451 37,451 37,451 37,451
Adj. R2 0.741 0.741 0.750 0.750 0.754

All models relate average daily mean CO2 concentration in the classroom with standardized test scores. Column (1) provides
results for a model with fixed effects for students by each domain and periods. Column (2) provides results for a model
that controls for observed and unobserved physical conditions within the classroom using average daily peaks of other IAQ
variables and classroom fixed effects. Column (3) gives results for a model that adds characteristics of the groups and
students, i.e. group size, age, and the average daily mean noise within the classroom. Finally, the last column adds school
by period fixed effects to use only variation within each specific school and rule out unobserved confounders at the school
level. Clustered standard errors at the classroom by period level are shown in brackets. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

1



Table A.3: Average Daily Peak CO2 Concentration on Standardized Test Scores by Day of the Week

by Day of Week During Learning Period

Mondays Tuesdays Wednesdays Thursdays Fridays

CO2 (z-score) -0.075∗ -0.072∗∗ 0.036 -0.065∗∗ -0.071∗

(0.043) (0.034) (0.040) (0.032) (0.038)

Fixed Effects
Student by Domain Y Y Y Y Y
Period Y Y Y Y Y
Classroom Y Y Y Y Y
Proficiency Y Y Y Y Y

Controls
IEQ Parameters Y Y Y Y Y
Age Y Y Y Y Y
Class Size Y Y Y Y Y

Obs. 34,675 36,710 33,764 36,564 35,344
Adj. R2 0.7559 0.7523 0.7736 0.7503 0.7515

Each model relates standardized test scores with only the average daily peak CO2 measured during each of the days during
the learning period indicated in the column name. The last column includes daily average peak CO2 observed in all days
of the week. Significance levels are ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table A.4: Falsification Test for CO2 Concentration During Learning Period and Standardized Test Scores

Panel A: Test for the effect of contemporaneous CO2 concentration in a randomly chosen different
classroom at the same school

Peak (z-score) Average (z-
score)

Peak>
2500ppm

Average>
1500ppm

CO2 0.017 0.032 0.051 -0.115∗

(0.036) (0.037) (0.075) (0.059)

Obs. 37,451 37,451 37,451 37,451
Adj. R2 0.745 0.745 0.745 0.745

Panel B: Test for the effect of contemporaneous CO2 concentration in a random classroom at a
different school

CO2 -0.029 -0.023 -0.153 -0.107
(0.041) (0.041) (0.114) (0.134)

Obs. 37,451 37,451 37,451 37,451
Adj. R2 0.757 0.757 0.757 0.757

Fixed Effects
Student by Domain Y Y Y Y
Period Y Y Y Y
Classroom Y Y Y Y
Proficiency Y Y Y Y

Controls
IEQ Parameters Y Y Y Y
Age Y Y Y Y
Class Size Y Y Y Y
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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B Broken ventilation: robustness

B.1 Using other CO2 thresholds

Table B.2: Average Daily Peak CO2 Concentration on Standardized Test Scores

Second Stage (1) (2) (3) (4)

CO2 (z-score, IV) −0.322∗∗ −0.247∗∗∗ −0.127 −0.083
(0.1310) (0.0469) (0.0981) (0.1191)

Fixed Effects
Student by Domain Y Y Y Y
Period Y Y Y Y
Classroom Y Y Y Y
Proficiency Y Y Y Y

Controls
IEQ Parameters Y Y Y Y
Age Y Y Y Y
Class Size Y Y Y Y

Obs. 32,442 32,442 32,442 32,442
Adj. R2 0.7434 0.7448 0.7457 0.7457

First Stage

1-2 days broken 0.5601∗ 0.6123∗∗ 0.6604∗∗∗ 0.2413∗

(0.3167) (0.3107) (0.1831) (0.1313)
3-4 days broken 1.2605∗∗∗ 0.5851 0.4633∗∗

(0.3349) (0.5285) (0.2340)
5-6 days broken 0.7410∗∗∗ 0.7192∗∗

(0.2170) (0.3543)
> 6 days broken 1.0998∗∗∗ 0.9118∗∗∗ 0.7738∗∗

(0.3390) (0.2285) (0.3067)

F-stat 1.1572 44.0141 9.2822 7.2085
p-val 0.3291 0.0000 0.0000 0.0000

These IV estimations use 1800ppm (1), 1400ppm (2), 1000ppm (3), and 600ppm (4) as thresholds to
determine the ventilation breakdown. Significance is given by ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

B.2 Temperature and noise during ventilation breakdown
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Figure B.2: Average Peak Temperature at Days Before and After Ventilation Breakdown Detected

Figure B.3: Average Peak Noise at Days Before and After Ventilation Breakdown Detected
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Table B.3: Average Daily Peak CO2 Concentration on Standardized Test Scores

by Domain by Age

Second Stage Spelling Maths Reading [5-7] [8-10] [11-13]

CO2 (z-score, IV) −0.161∗∗ −0.360∗∗∗ −0.308∗∗∗ 0.081 −0.236∗∗∗ −0.206∗

(0.080) (0.054) (0.077) (0.270) (0.051) (0.118)

Fixed Effects
Student Y Y Y Y Y Y
Student by Domain N N N Y Y Y
Period Y Y Y Y Y Y
Classroom Y Y Y Y Y Y
Proficiency Y Y Y Y Y Y

Controls
IEQ Parameters Y Y Y Y Y Y
Age Y Y Y Y Y Y
Class Size Y Y Y Y Y Y

Obs. 9,282 9,028 7,361 8,249 11,674 12,519
Adj. R2 0.752 0.784 0.743 0.709 0.777 0.763

First Stage

1-2 days broken 0.726∗∗∗ 0.493∗∗∗ 0.292∗∗∗ 0.720∗∗∗ 0.213∗∗ 0.993∗∗∗

(0.196) (0.159) (0.091) (0.232) (0.103) (0.359)
3-4 days broken 2.001∗∗∗ 2.178∗∗∗ 1.968∗∗∗ 1.452∗∗∗ 2.071∗∗∗

(0.142) (0.179) (0.116) (0.188) (0.131)
> 6 days broken 1.285∗∗∗ 1.045∗∗∗ 0.691∗∗∗ 1.406∗∗∗

(0.286) (0.273) (0.216) (0.477)

F-stat 50.506 42.556 90.662 15.228 67.006 2.201
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0697

Note: This table presents results for our main specification when instrumenting average daily peak CO2 levels during the
learning period using dummies indicating the number of days that the ventilation in the school was detected as broken by
our algorithm. Each column shows results for specific subsamples as indicated in the column title. Significance levels are
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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C Data Coverage and Algorithm to Detect Occupancy

C.1 Data Coverage

Figure C.2: Deployment and Coverage of Dates by Sensor

Figure C.3: Coverage of Sensors by Date
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Figure C.4: Composite standard score (all tests) and high school level advice

C.2 Secondary School Advice

C.3 Algorithm to Detect Occupancy

The algorithm used to determine entry and exit in the classroom searches for increases in CO2

concentration that are sustained in time while looking for a spike in the sound to detect the

exact time when the children have entered the classroom. Sustained increases in CO2 show that

the room is no longer empty and that the door is closed (the rate of CO2 generation is higher

than the rate of air exchange), while a spike in sound indicates that students have entered the

classroom and are (in the process of) sitting down. To detect when the classroom is empty, the

algorithm searches for a sustained decrease in CO2 concentration (the rate of CO2 generation

is now lower than the rate of air exchange, as the door is opened and there are fewer students

inside the classroom), while also looking for a spike in sound (students make noise when exiting

the classroom).

As described in the main text, the algorithm makes use of regularities in the behavior of both

CO2 and sound in the event of children entering or exiting the classroom. Those regularities are

easily spotted in Figure C.5. The graph plots how CO2 concentration and sound decibels move

between 8am and 4pm (school hours). One can identify how accumulation of CO2 starts and

sound spikes at the morning entry between 8:15am and 8:30am (8.25 to 8.5 in the graph). For

exits, the opposite occurs for CO2, while sound also spikes as is evident during the first break
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at 10:15am (10.25 in the graph).

Using these regularities, the algorithm first detects all series of j consecutive minutes showing

a CO2 increase (decrease) during the school day (8am-4pm). After these series are found, we

label their first minute as a candidate entry or exit if at any of those minutes in the series, we

observe a spike in sound above a threshold s. Once all entry and exit candidates are labelled,

the algorithm orders them by time in decreasing order, and retains the first of all consecutive

entries before and exit occurs, and the first of all consecutive exits before an entry takes place,

such that in order to get an exit, an entry must have been labeled before and vice-versa (except

for the first entry and last exit of the day, of course).

Figure C.5: Example of observed levels of CO2 and Sound (normalized) across a school day

Note: This graphs describe how CO2 (above) and sound (below) move along a school day (8am to 4pm)
inside a particular classroom. It clearly shows how CO2 starts accumulating and sound spikes when
children enter the room and the opposite happens when they exit.

We assess the algorithm’s sensitivity and accuracy relative to different values of j and s to

determine which give the optimal result. For this purpose, we labeled the observed entries and

exits during the school day for nearly 500 graphs of CO2 and sound series in different days and

schools (randomly chosen with monthly stratification). We then compare those labels to the

algorithm predictions.

To measure the algorithm’s performance we use two metrics: an F1 indicator and the al-

gorithms R2. The F1, widely used in machine learning contexts, takes the geometric mean of

two ratios: (i) the number of correctly predicted entries over all predicted entries; and (ii) the

number of correctly predicted entries over all observed entries. This indicator gives a sense of

the algorithm’s sensitivity as it assesses the proportions of false entry/exit predictions and those
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of unpredicted but observed entry/exit. However, this measure is silent on the algorithm’s ac-

curacy in predicting the exact time at which entry and exits took place. Hence, we assess the

algorithm’s prediction accuracy using an R2 coefficient, a well known indicator to assess predic-

tive power. Figure C.6 shows the resulting F1 and R2 for j = 7, 8, 9, 10, 11, 12 minutes and for

s = 0.01, 0.05, 0.1, 0.2, 0.3 normalized dBA.

Figure C.6: Algorithm performance (F1 and R2)

The combination of both indicator values suggests that j = 10 and s = 0.05 predict entries

and exits both most accurately as well as most frequently. The highest point achieved by the F1

indicator is at this point (upper right plot), while the highest R2 for both, entries and exits, is

also achieved at the same point. We therefore construct our data set on indoor environmental

quality using these parameters in the algorithm to predict when students are inside or outside

of the classroom.
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