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Abstract

I develop a novel method for estimating teacher value added which controls for non-

random student-teacher sorting without having to control for lagged grades in standard-

ised tests. To do so, I exploit “networks” of teachers - teachers from the same subject

who are observed in classrooms with a unique “link” teacher from another subject. I

measure the relative value added of two teachers in a network as the difference between

their classrooms’ grades in a standardised exam, unexplained by student characteristics,

correcting for the classrooms’ grade differential in the subject of the link teacher. I show

that the estimated teacher effects are unbiased under plausible assumptions that I con-

firm in the data. Using exhaustive French administrative data, I find that a 1 SD increase

in teacher value added within school improves student scores by 0.17 SD in Math and

0.16 SD in French.
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1 Introduction

Teacher value added - the effect of a teacher on her students’ grades - has been consistently

identified as a better predictor of student long-term outcomes than any observable teacher

characteristics.1 Nevertheless, the majority of educational systems around the world rely

heavily on observable characteristics such as the teacher’s exam grades, qualification and

experience in order to make decisions on recruitment, compensation and career progression,

and do not take into account measures of teacher value added.

One important reason for this fact is that standard methods for value-added estimation (e.g.

Rockoff, 2004; Kane & Staiger, 2008; Chetty et al., 2014a) rely on a panel data of student test

scores in standardised exams, which is missing in most countries due to the specificities of

their educational systems. For instance, in the European Union, only two countries conduct

standardised assessments in two consecutive years over the course of a student’s academic

experience.2

The panel structure of the data is important because failing to control for lagged exam

scores may lead to bias in the teacher value added estimates. More precisely, to identify the

value added of teachers, researchers regress student test scores on a function of lagged test

scores, other student characteristics and teacher fixed effects - such that the latter identify a

teacher’s value added. Importantly, lagged test scores are assumed to be a sufficient statistic

to control for unobserved student characteristics, such as ability. Hence, including lagged

test scores would control for non-random sorting of teachers across classrooms based on

student unobservables: for instance, high-ability students being placed in classrooms taught

by high-quality teachers. Omitting past grades in such case would lead to an overestimation

of the value added of these teachers.

This paper develops a method to uncover plausibly unbiased relative teacher value added

estimates within school in settings where such panel data analyses are not possible, relying

only on cross-sectional student information in more than one subject. In simulated settings,

I show that the method performs well compared to the standard method under minimal

assumptions. I confirm the plausibility of these assumptions using French administrative

data covering the universe of public middle schools in France between 2009 and 2018, and

taking advantage of the standardised tests in Math and French performed at the end of the

9th grade. Applying the method to the French setting, I find that for a 1 standard deviation

increase in the value added of a Math (French) teacher within a school, the average student’s

test score improves by 17.4 (16.3) percent of a standard deviation.

To grasp the intuition behind the method, it is worth starting from a general approach.

1For instance, Rockoff (2004), Kane, Rockoff, and Staiger (2008), Chetty, Friedman, and Rockoff (2014a),

and Chetty, Friedman, and Rockoff (2014b), Bau and Das (2020).
2One notable exception is the United States, on which the bulk of the literature has focused thus far.
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One can think of a simplified case of a school with only two classrooms, each taught by

a different Math teacher and a different French teacher. Let us assume that observable

student characteristics do not matter for student grades and only teacher value added and

unobservable student ability explain grades. We can take the difference between the average

grades in Math between both classrooms (denoted difference M ). This difference measures the

sum of both the differences in value added between the two Math teachers and the difference

in average student ability between the two classrooms. By analogy, the same difference

between French grades of both classrooms (denoted difference F ) measure the sum of both

the differences in value added between the two French teachers and the difference in average

student ability between the two classrooms. By taking the difference between difference M

and difference F, we obtain a measure of the difference between the difference in value added

between the two Math teachers and the difference in value added between the two French

teachers.

My method focuses on a corner case of this general approach in which the two Math teachers

are observed with a single French teacher. As the value added of the French teacher in both

classrooms is by construction the same, the difference between difference M and difference

F represents the relative value added between the two Math teachers.

More specifically, I propose to uncover relative value added of two teachers by exploiting

such differences in differences within “networks” of teachers: teachers in the same subject

who have been observed in a classroom with the same teacher from another subject - a

“link” teacher. I measure the relative value added of two such teachers in a network in a

two-step procedure. In the first step, I residualise student grades in standardised exams in

Math and French from observable student characteristics, such as parental socio-economic

status, the scholarship status of the student, gender, age, and region of birth. In the second

step, I compute the difference in the average residualised Math grades of the two classrooms,

controlling for the average overall level of ability by subtracting the difference in the two

classrooms’ residualised French grades.

Transforming such pairwise network comparisons into a distribution of teacher value added

which includes all teachers within a school is achieved by transitivity. For the purpose of

example, imagine a school with three Math teachers in total - A, B and C. Teachers A

and B form a “network”, as do teachers B and C, but teachers A and C are not observed

together. Using the two available relative value added estimates in a system of equations

allows me to find the relative value added of teachers A and C. I define a school in which I

can identify the entire value added distribution through either direct or indirect networks a

“complete school network”, and focus exclusively on such schools.

By construction, the estimation method allows to control for any potential sorting of teachers

to students based on the overall ability - the ability that is common between the two subjects
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and would therefore be captured when controlling for the grade in the subject of the link

teacher. A problem may arise if there exist students that have subject-specific ability which

deviates from their overall ability, and in addition teachers are sorted across classrooms based

on that subject-specific ability. For example, if high-quality Math teachers are allocated to

classrooms which are on average relatively better in Math than they are in French, then one

would overestimate their value added.

It follows that the unbiasedness of the value added estimates relies on the assumption that

Math (French) teachers are not sorted to classrooms based on the relative Math-specific

(French-specific) ability in these classrooms. While the assumption cannot be tested for

unobservable student characteristics such as ability, I can test whether there seems to be

sorting between teachers and students based on observable characteristics. To the extent

that the observable characteristics are correlated with the unobserved ability, such tests can

give us an idea of the sorting patterns on ability as well.

To test this assumption, I first predict the student-level difference between her Math and

French grades with observable student characteristics, such as the socio-economic status

of her parents and her scholarship status. For every school, I then regress the predicted

difference in grades on teacher fixed effects. I compare the average R2 of such regressions to

the distribution of R2 obtained with bootstrapped data under the null of no sorting based

on the difference in Math and French grades predicted by observable characteristics. I find

that the probability of such sorting is lower or equal to the one obtained in the simulated

random assignments, suggesting that I fail to reject the null of no such sorting. This finding

gives supporting evidence to the identifying assumption.

In addition to the main identifying assumption, I derive two more assumptions necessary for

identification of the value-added estimates. In particular, I assume that each classroom in

which a teacher is observed is equally informative of the teacher’s value added. I conduct

several tests which attest to that. Moreover, I assume that any time component (or “drift”,

as in Chetty et al. (2014a)) of value added is additively separable from the intrinsic value

added of a teacher and is a function of the years of experience of the teacher, and I control

for it by including years-of-experience fixed effects in the first stage of the analysis.

I then compare my method to the standard method in a simulated school setting that matches

the characteristics of the average French middle school in my data. I conduct three types of

simulations exercises. I focus on a case with random sorting between teachers and students,

a case with sorting based on the overall ability and a case with sorting based on subject-

specific ability. I evaluate the mean squared error (MSE) and Spearman correlation (SP)

of both the proposed method and the standard method compared to the true value added

parameters averaging over 1,000 simulations. In the case of no sorting, my method performs

almost equally well in terms of MSE, producing a very small MSE compared to the standard
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deviation of the value added parameters. Once sorting on common ability is introduced,

consistent with the theoretical prediction of my method, the MSE is unchanged. On the

other hand, the square root of the MSE of the traditional method is almost 50 times as big

as the one of my method. Finally, consistent with the predictions, once sorting on subject-

specific ability is introduced, the MSE of my method drastically increases. It is, however,

only 2 times as big as the MSE of the traditional method. Finally, in all three scenarios,

both methods produce perfect SP.

I test the method empirically using French administrative data for the universe of middle

schools in Metropolitan France. Focusing on 9th graders and their Math and French language

teachers, I find that for a 1 standard deviation increase in Math (French) teacher value-added

within a school, student scores improve by 17.4 (16.3) percent of a standard deviation. This

implies that moving a student from a teacher who is at the 5th percentile of the value-

added distribution of a school to one who is at the 95th percentile of the same value-added

distribution would increase that student’s test scores on average by 58 percent of a standard

deviation in Math and by 54 percent of a standard deviation in French. I show that the

variation of value added is higher in more disadvantaged regions of France and schools which

have a higher share of disadvantaged students. In addition, I show that the teacher estimates

are positively correlated with being female and with in-class pedagogical assessments, and

are not associated with having a higher salary or an advanced qualification, consistent with

the literature.

The paper’s main contribution is to expand the scope of the teacher value added literature

to educational systems where students take standardised exams in more than one subject

in a single year, but do not necessarily take exams in the same subject in two consecutive

years. Cross-sectional student grade data in different subjects has been used in a number

of settings so far, from studies which focus on the effect of instructional time (Lavy, 2015),

to such which link teacher credentials or teacher assessment grades to student achievement

(e.g. Clotfelter, Ladd, & Vigdor, 2010; Benhenda, 2018). Nevertheless, it has so far not been

used in the setting of value-added estimation.

I also contribute to the literature by providing empirical evidence on teacher value-added non-

experimentally outside of the widely studied United States setting or developing countries.

Indeed, these results provide the first test of value added in French middle schools and

one of the first non-experimental evidence in Europe. The estimates of within-school value

added in France are slightly larger compared to those in United States middle schools, which

typically lie between 0.10 and 0.15 SD in Math and 0.05 and 0.15 SD in Literature (Jackson,

2014,Bacher-Hicks & Koedel, 2022), and are more in line with estimates found for some

developing countries (e.g. Bau & Das, 2020; Buhl-Wiggers, Kerwin, Smith, & Thornton,

5



2017).3 They are also in line with the typical finding that Math teachers have a higher

variability in value added compared to Literature teachers (Lefgren & Sims, 2012; Condie,

Lefgren, & Sims, 2014,Bau & Das, 2020). This gives further evidence that the effect of

teachers on student outcomes may be institution-specific, stemming from the differences in

the educational environment across countries.

The rest of the paper proceeds as follows. Section 2 briefly discusses the related literature.

Section 3 derives the proposed methodology and the necessary identification assumptions.

Section 4 outlines the corresponding empirical strategy, whereas Section 5 provides a sim-

ulation exercise. Section 6 details the French institutional setting, the data sources and

descriptive statistics. Section 7 provides the results. Finally, section 8 concludes.

2 Teacher value added in the literature

The existing literature on value-added modelling has not changed substantially since its

creation (see Bacher-Hicks & Koedel, 2022 for a recent extensive review). Although there

is variation in the exact choice of regression and the set of covariates in the literature, the

essential components across all specifications are similar and rely on the same underlying

theoretical model. From a theoretical perspective, one can decompose the student grade of

student i in subject f into a set of factors,

Ai,f,s,t = A[Xi, γi,f , θjf ,t, θs, ϵi,f,s,t]

or, assuming additive separability of inputs, as is common in the teacher value-added liter-

ature, we can re-write the above equation as:

Ai,f,s,t = Xiβf + γi,f + θjf ,t + θs + ϵi,f,s,t (1)

In this simple function, Ai,f,s,t is the grade of student i in subject f , and θjf ,t represents the

value added of i’s teacher jf at time t. One can think of the teacher value added θjf ,t as

a function θjf ,t = θjf + αjf ,t - a combination of a permanent component of teacher quality

θjf , and a time-specific fluctuations of teacher value added (or a “drift” of value added, as

referred to by Chetty et al. (2014a)), αjf ,t. In addition, Xi is a vector of other observable

student characteristics, γi,f is the underlying ability of student i in subject f , θs represents

school productivity, and ϵi,f,s,t is an idiosyncratic error which contains all other possible

inputs that impact i’s grade in subject f .

Importantly, an essential part of teacher value added models and indeed a common compo-

nent across all value added papers is the identification of the student’s unobserved character-

istics, γi,f . We can think of γi,f as some combination of average ability and subject-specific

3Bau and Das (2020) finds a SD of 0.19 for Math teachers, 0.11 for Urdu teachers and 0.15 for English teachers

in Pakistan. Buhl-Wiggers et al. (2017) finds an average SD across subjects between 0.14 and 0.16.
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ability, γi,f = θi+θi,f . The majority of papers proxy for γi,f empirically by including Ai,f,t−1

in their regression analysis - student i’s grade in the subject in the previous academic year.

In particular, student i’s grade in the subject from the previous year is seen as a sufficient

statistic to account for the student’s unobserved ability endowment in subject f and all other

factors, such as parental and school inputs, that may affect i’s performance in period t and

are not included in Xi.

Including such lagged grades is important, as students might be sorted to teachers in a

non-random manner based on the students’ ability, which would bias teacher value added

estimates if not controlled for.4

In particular, if higher-quality teachers within a school teach only the classes with higher-

ability students (and vice versa for lower-quality teachers), estimating equation 1 without

past grades would lead to an upward bias in estimates - one would overestimate the quality of

higher-quality teachers and underestimate the quality of lower-quality teachers. A number

of papers assess whether simply controlling for past grades is enough to obtain unbiased

estimates (a notable example is Chetty et al., 2014a) and typically conclude that in the

presence of non-random sorting, the model tends to recover reasonable estimates, albeit

slightly biased.

However, due to differing cultural and political preferences, many countries do not conduct

standardised assessments on students in consecutive years of the students’ academic path.

Strikingly, in the European Union, only two countries conduct at least two standardised tests

over two consecutive years: France in elementary school and Malta in middle school.5 This

automatically means that the method is inapplicable for the majority of European countries,

as well as for the majority of other countries, explaining the strikingly small number of

studies of value added outside of the US. This stylised fact motivates the method proposed

in this paper.

4It is worth noting that the term is not necessary if students are randomly allocated to classrooms and

randomly matched to teachers. If this is the case, any variation in student ability across classrooms would

on average add random noise to the estimates of teacher value added rather than bias.
5More specifically, these are France and Malta. Since September 2018, French pupils in the 1st and 2nd

grade (CP and CE1, respectively) undergo national assessments (”Repères”) in Mathematics and French

language. In the 1st grade, these assessments are administered twice during the school year - in September

and February, whereas in the 2nd grade, there is only one assessment in September. The next possible

standardised assessment is only held in the 6th grade. By contrast, in Malta standardised assessments are

conducted at the end of 4th, 5th and 6th grade in Maltese, English and Maths. Two more examinations are

held in high school, at the age of 16 and 18.
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3 Proposed value-added methodology

In this section, I propose and discuss in detail the identification of teacher value-added with

the use of within-student across-subject variation in test scores. I focus on a setting where

one cannot proxy student i’s unobservable factors in subject f , denoted γi,f , by the lagged

grade student i grade in subject f , Ai,f,t−1. However, there are strictly more than one

subjects assessed in year t, such that the two different subjects are taught to a student

by two different teachers. For simplicity, and so as to mirror the actual strategy used for

the empirical test, I focus on two subjects in my notation - Math and French, such that

f ∈ {M,F}.6

3.1 Simplified case of two classrooms

I propose to make use of the cross-sectional variation in grades in different subjects of students

in order to uncover the distributions of teacher effects in each subject.7 For tractability, I

average student grades on a classroom-subject level, and I first assume a school with only

two classrooms, c ∈ {cA, cB} of equal size that are observed at the same time t. To simplify

notation, I omit the subscript t from the equations of interest for the time being.

Intuition using two teachers in each subject Assume that each classroom has one

Math teacher, jM ∈ {jMA
, jMB

} and one French teacher, jF ∈ {jFA
, jFB

}, such that jMA

and jFA
teach at classroom cA, and jMB

and jFB
teach at classroom cB. For each classroom

in each subject f , I can express the average classroom grade as a function of the same

characteristics as:

Ac,f = Xcβf + γc,f + θjf + θs + εc,f (2)

where θjf is the teacher’s effect on the grade of the student, θs are school-related effects, for

example due to peer effects and the effect of the principal, Xc represent observable student

characteristics, and γc,f represents the unobserved classroom characteristics in a subject,

which we can think of as the average unobserved characteristics of students in classroom c.

6Following Benhenda (2018), the choice to restrict my attention on Math and French is done for two main

reasons. Firstly, this is useful for the purpose of comparison with the rest of the literature, which focuses

exclusively on Math and Reading/Literature/English (Jackson, 2014). Secondly, Math and French are two

subjects in which the threat of teacher value-added spillover across subjects is minimal (Koedel, 2009). By

contrast, one would expect that spillover effects seem more plausible between History-Geography and French,

or Math and Physics-Chemistry.
7Note that simply adding student fixed effects would not help with identification. While estimates would be

unbiased provided that teacher-student sorting is based on general, rather than subject-specific ability, we

would essentially be comparing Math to French teachers, rather than Math to Math (and French to French)

teachers. This is not desirable, as according to the existing literature, teacher effects vary significantly across

subjects (Lefgren & Sims, 2012; Condie et al., 2014) and are thus not directly comparable.
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I can decompose γc,f for Math and French into the average common ability component in

the classroom and the average subject-specific ability, such that γc,f = θc + θc,f .

To better understand the identification, note that for each classroom, I can express equation 2

in the equivalent difference in grades across subjects, such that for classroom cA:

AcA,M −AcA,F = XcA · (βM − βF ) + (θjMA
− θjFA

) + (θcA,M − θcA,F ) + (εcA,M − εcA,F )

and equivalently, for classroom B. Subtracting the equations for classroom cB from that for

cA and rearranging leaves us with a difference-in-difference equation of the sort:

∆AM,cA,cB = (XcA −XcB ) · (βM − βF ) + (θjMA
− θjMB

)− (θjFA
− θjFB

) + ηcA,cB ,M,F (3)

where

(θcA,M − θcB ,M )− (θcA,F − θcB ,F ) + (εcA,M − εcB ,M )− (εcA,F − εcB ,F ) ≡ ηcA,cB ,M,F

and

(AcA,M −AcA,F )− (AcB ,M −AcB ,F ) ≡ ∆AM,cA,cB

Note that in this setting, one can directly now compare Math to Math teachers and French

to French teachers. In particular, we can find the relative value-added of the Math teachers

jMA
and jMB

, controlling for the difference in value-added of each classroom’s French teacher

(jFA
and jFB

, respectively). However, what this means is that in addition to capturing the

difference in value added of the Math teachers, we also capture the difference in value added

of the French teachers.

In the best case, this would lead to noise in our estimates of Math teachers’ relative value

added. This is the case as the estimated value added of the Math teachers would be different

if measured by controlling for a different set of French teachers, for an unchanged true relative

value added of the two Math teachers. To see this, imagine a simple scenario where the true

value-added of jMA
is higher than the true value added of jMB

. If jMA
happened to randomly

be coupled with a very high value-added French teacher jFA
, and jMB

is coupled with a very

low value-added French teacher jFB
, I might wrongly conclude that Math teacher jMB

is

relatively better than jMA
.

In the worst case, if Math teachers and French teachers within a school are not randomly

allocated, such that better Math teachers and better French teachers are more likely to

be allocated to overall better classrooms, the estimated relative value added of the Math

teachers would also be biased.

Focus on the corner case: using a link teacher in one subject Importantly, note

that these issues could be avoided in one specific sub-case: when the value added of the
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two French teachers is exactly the same, θjFA
= θjFB

, such that I am only left with the

relative value added of the two Math teachers. There is a very small probability that I could

consistently compare only Math teachers in classrooms with French teachers of exactly the

same quality. However, there is one case in which I can be certain of that: when the French

teacher in both classrooms is identical, i.e. jFA
= jFB

. In what follows, I propose a method

which focuses exclusively on such cases.

Let us for simplicity assume that I can observe a school s with only two classrooms of equal

size, c ∈ {cA, cB}, two Math teachers, jM ∈ {jMA
, jMB

}, and one French teacher jF . The

Math teachers jMA
and jMB

teach respectively in classrooms cA and cB, whereas the French

teacher jF teaches in both classrooms. Let us denote the Math teachers jMA
and jMB

as two

teachers who are part of a direct network, and the French teacher jF as the link teacher of

the network - the one through which we can connect the Math teachers to one-another.

Transforming equation 3 by using the fact that teacher value-added is fixed, such that θjF

is constant across classrooms, I obtain that:

∆AM,cA,cB = (XcA −XcB ) · (βM − βF ) + (θjMA
− θjMB

) + ηcA,cB ,M,F (4)

In this case, the condition for unbiasedness of the pairwise difference in teacher value added

can be formally written as:

E[(θcA,M − θcB ,M )− (θcA,F − θcB ,F )|θjMA
− θjMB

] = 0

provided that E[(εcA,M − εcB ,M )− (εcA,F − εcB ,F )] = 0, which is true by assumption.

In this simplified framework with two classrooms, the condition which needs to hold for the

estimated value added to be unbiased predictors of the real value added of a teacher is:

Preliminary Condition. The relative Math ability of classroom cA and cB should be

identical:

[(θcA,M − θcB ,M )− (θcA,F − θcB ,F )] = 0

While this is a very restrictive condition, it would be useful to provide intuition behind the

identifying assumption for a network with many classrooms in a school.

3.2 Direct network observed in multiple classrooms

The previous section concludes with a condition under which one can identify unbiased

estimates of teacher value added in a simplified case with one direct network observed in two

classrooms.

I now turn to a case where we observe multiple classrooms within a school, which are of equal

size. Without loss of generality, let me assume there are four classrooms c ∈ {cA, cB, cC , cD}.
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For simplicity, I still focus on a case with a single direct network of Math teachers jM ∈
{jMAB

, jMCD
}, linked through a single French teacher jF who teaches in all four classrooms.

For the sake of example, let jMAB
teach in classrooms cA and cB and jMCD

teach in classrooms

cC and cD.

It is easy to show that the Preliminary Condition from the previous section can now be

generalised to an assumption necessary for the unbiased identification of the relative value

added of two teachers observed together more than once (see Appendix A.1 for details).

Assumption 1. There is no teacher sorting to classrooms within school based

on the relative subject-specific ability (θc,M − θc,F ).

Expressed mathematically,

E

 ∑
c∈{c0|j(c0)=jMAB

}

(θc,M − θc,F )−
∑

c′∈{c′0|j(c′0)=jMCD
}

(θc′,M − θc′,F )

 = 0 (5)

where
∑

c∈{c0|j(c0)=jMAB
}(θc,M − θc,F ) represents the relative Math to French ability of all

classrooms of teacher jMAB
, and

∑
c′∈{c′0|j(c′0)=jMCD

}(θc′,M − θc′,F ) represents the relative

Math ability of all classrooms of teacher jMCD
.

In other words, it should not be the case that the sorting of Math (French) teachers to

classrooms is done on the basis of relative Math (French) ability. Note that, importantly,

one needs not to worry about sorting on the general level of ability of students.

While this assumption is not directly testable for unobservable factors, it could be tested with

the use of observable factors by examining the patterns of student tracking to classrooms and

teacher specialisation into teaching certain types of students. As teacher-student sorting is

possible only under the condition that both students are sorted non-randomly into classrooms

and that teachers are sorted non-randomly to classrooms, one would need for both of these

conditions to hold in order to conclude that the identifying assumption is broken.

The tests of the assumption based on observables for the case of the French 9th grade teachers

and students is conducted in Appendix B. While ideally, one could test for sorting based on

past grades, I do not have access to such data. For this reason, I take advantage of other

observable student characteristics which are highly correlated with student grades, such as a

student’s socio-economic status, scholarship status, age, gender, takeup of advanced classes8,

and region of birth. I predict the student-level difference between her Math and French grades

with such observable characteristics. I then test for the two conditions necessary for non-

random sorting to occur: tracking of students into classrooms and specialisation of teachers

into teaching certain types of tracks.

8In particular, I focus on Ancient Greek and Latin which are important for tracking of students in the French

system.
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To do this, for every school, I regress the predicted difference in grades separately on class-

room fixed effects and teacher fixed effects. I compare the average R2 of such regressions to

the distribution of R2 obtained with bootstrapped data under the null of no sorting based

on the difference in Math and French grades predicted by observable characteristics.9

I find that the probability of such sorting is lower or equal to the one obtained in the

simulated random assignments. In other words, the probability that any type of segregation

of students across classrooms or classrooms across teachers has happened by chance is very

high. This strongly suggests that I fail to reject the null of no such sorting, which gives

supporting evidence to the identifying assumption.

Finally, as shown in Appendix A.1, the analysis requires an additional assumption once we

move to a setting where classroom size can vary.

Assumption 2. Each classroom in which a teacher is observed is equally infor-

mative of the teacher’s value added.

In order to ensure that small classroom size does not add noise to the estimates of value

added, I restrict the analysis to only classrooms with more than 15 students. Panel (b)

of Figure F.7 confirms that varying the threshold for minimum classroom size does not

impact significantly the average within-school standard deviation in estimated value added.

In addition, I weigh the effect of observable classroom characteristics Xc by classroom size

(details in Section 4).

Finally, in Appendix C I also test that in cases where we observe a network of two teachers

multiple times, weighting each observation by the number of students shared by the two

teachers does not change estimates of value added. Indeed, the Spearman correlation of

teacher value added estimates with and without differential weighting is higher than 0.99

and the average within-school standard deviation in value added is almost unchanged. This

confirms that, provided that we exclude very small classrooms which are likely the cause of

reporting errors, classrooms may be considered as equally informative of a teacher’s value

added.

3.3 Direct network observed in multiple classrooms at different times

So far, I have assumed that all classrooms are observed over the same year t. It is use-

ful to explain how complexifying the analysis to a repeated cross section would affect the

assumptions of the model.

I now consider a case where I observe four classrooms c ∈ {cA,t1 , cB,t2 , cC,t3 , cD,t4} observed

9Following the same procedure, I also test for possible sorting on common ability, even though such sorting

would not violate the identifying assumption. I do indeed find evidence that sorting on common ability is

of high probability.
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in 4 different periods, τ ∈ [t1, t4]. For simplicity, I still focus on a case with a single direct

network of Math teachers jM ∈ {jMAB
, jMCD

}, linked through a single French teacher jF

who teaches in all four classrooms. For the sake of example, let jMAB
teach in classrooms

cA,t1 and cB,t2 and jMCD
teach in classrooms cC,t3 and cD,t4 .

Taking into account the year of observation, I can rewrite the initial model to:

Ac,f,τ = Xcβf + γc,f + θjf ,τ + θs + εc,f,τ

where the true functional form of teacher effects θjf ,τ = θjf + αjf ,τ , which is time-specific

for each period τ due to the presence of the additively separable component αjf ,τ .

I derive the necessary assumption for unbiasedness of the results in Appendix A.2. I show

that the results obtained by my proposed methodology would provide me with an estimated

pairwise difference of value added that is equal to the true difference given the following

condition.

Preliminary Condition. Provided that Assumptions 1, 2 and 3 hold, the estimated

relative value added is unbiased if:

E

∑
t,t′

(αjM ,t − αjM′ ,t′)−
∑
t,t′

(αjF ,t − αjF ,t′)

 = 0 (6)

where t ∈ {t1, t2} and t′ ∈ {t3, t4}.

Note that this condition would hold under the strict assumption of a zero mean of individual

time components, E[αjf ,τ ] = 0. However, I can provide a more lax assumption if I provide

a functional form for αjf ,τ . In particular, I assume that αjf ,τ is some function of teacher

experience, such that αjM ,τ = f(expjM ,τ ) and αjF ,τ = g(expjF ,τ ). Provided that this is the

case, I can control for this difference in difference in years of experience of a teacher in a

flexible manner. This leads me to the next assumption of the paper.

Assumption 3. The time component of value added is additively separable from

the intrinsic value added of a teacher and it is a function of years of experience.

Given this assumption, since a teacher’s years of experience are observable, one can simply

control for f(expjM ,τ ) and g(expjF ,τ ) using fixed effects of experience.

3.4 School network with many teachers within one school

Once I allow for the existence of many classrooms and many teachers within a school, one

needs to compare all Math (French) teachers to each other, in order to uncover the entire

value added distribution within a school.
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Complete school networks At this point it would be useful to introduce some additional

vocabulary in order to simplify the discussion.

In the previous section, I have already discussed the meaning of a direct network and of a

link teacher. As a reminder, two teachers from the same subject are said to be in a direct

network if they can be compared because they teach in the same classrooms as a unique link

teacher from another subject.

Let me denote an indirect network as two teachers from the same subject who do not have

a common link teacher but can be compared to each other through their connection to

teachers in a direct network, in other words, by transitivity. Let us further denote a school

network as the total of all teachers in a subject within a school. Finally, let me make the

distinction between complete school networks and incomplete school networks: I denote a

complete school network as a school network in which all teachers from a subject can be

compared to each other, either because of their direct networks or indirect networks.

To better grasp the idea behind these terms, it is worthwhile to examine Figures 1 and 2.

Both figures represent hypothetical school networks of Math and French teachers, represented

in blue and yellow nodes, respectively. An edge connecting a Math and a French teacher

represents that the two teachers are observed together in a classroom.

Figure 1 provides an example of a complete school network which consists of 6 Math teachers

(M1 to M6) and 6 French teachers (denoted F1 to F6). To see this, note that teachers M1

and M2 are in a direct network : they can be directly compared to each other as they are

both observed in classrooms with French teacher F1. Furthermore, Math teachers M2 and

M3 are also in a direct network direct networks: through their observation with link teacher

F2. Note further that Math teachers M1 and M3 are not in a direct network, but they are

however in an indirect network as they can be compared by transitivity, as they are both in

a direct network with M2. Similarly, all Math teachers can be compared to each other either

through direct or indirect networks. Therefore, one can uncover the entire distribution of

Math teacher value-added in this school. The logic extends similarly to French teachers.

By contrast, Figure 2 provides an example of an incomplete school network. Math teachers

M1, M5 and M6 can be compared to each other, but they cannot be compared to M2, M3

and M4 as there is no one teacher that is in a direct network with another teacher from both

of these subgroups. Therefore, one cannot construct the full distribution of Math teacher

value-added in this school. The logic follows for French teachers as well.

It follows that in order to estimate teacher value-added one needs to have a complete school

network.

While in theory one would prefer to have a complete school network of teachers every year

(which would be equivalent to having year-specific teacher effects), in practice this might be
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complicated due to a restricted school size. In particular, if a school has very few classrooms

per year, it follows that there would be few teachers per year, which entails few networks.

At best, this would lead to very noisy coefficients of value-added, as the pairwise comparison

between two teachers would be computed off one or few classrooms. At worst, the issue

would lead to incomplete school networks and thus an impossibility to measure value added.

For this reason, Assumption 3 plays a very important role, as it allows to construct networks

based on a longer period than one year, and in particular use the entire available period of

networks of a teacher to identify her value added, provided that one controls for experience

in a flexible manner.

Thus, no further assumptions are necessary to uncover the entire school distribution of

teacher value added in a subject.

M1
M2

M3

M4

M5

M6

F1

F2

F3

F4

F5

F6

M MATH TEACHER

FRENCH TEACHERF

Figure 1: Complete school network

M1
M2

M3

M4

M5

M6

F1

F2

F3

F4

F5

F6

M MATH TEACHER

FRENCH TEACHERF

Figure 2: Fragmented school network

3.5 System of networks with many teachers within many schools

The method allows to measure value-added of teachers only within school. What this entails

is that one cannot directly compare the coefficients of two teachers from two different schools,

or of the same teacher observed in two different schools.

This is important as the method does not require any additional assumptions on the distribu-

tion of teachers across schools, which is much less likely to be random than the within-school

distribution of teachers across classrooms.

In fact, the only additional assumption required by extending the model to multiple schools

has to do with school representativeness. It is only necessary if one wants to say something

about the average variability in teacher effectiveness.

Assumption 4. The schools which exhibit a complete school network are rep-

resentative of the school system.
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The assumption is once again easily testable for observable school characteristics. For the

case of the French system of schools, I provide details in Section 6.3 and Table E.8 which show

that this is the case for the treated French schools (86% of all public middle schools) based

on a large number of school-level average student and teacher characteristics. In particular,

while there appear to be some statistically significant differences between treated schools

and the average school, these are economically insignificant.

4 Empirical strategy

The empirical strategy follows very closely the model discussed in the previous section.

First stage I begin by estimating for each student i and each subject f ∈ {M,F} a

regression of the sort:

Ai,f,jf ,t = Xiβf + αjf ,t + θs + εi,f,jf ,t

where Xi is a vector of observable student characteristics, αjf ,t are fixed effects for years of

teacher experience, and θs are school fixed effects. This is preferred to directly averaging

on a classroom level as it allows to give more weight to larger classrooms in estimating the

coefficients. The estimation requires the inclusion of the school fixed effects θs in order to

follow the identification based on within-school comparisons of teachers.

Second stage I take the student level difference of the residuals (ε̂i,M,jM ,t − ε̂i,F,jF ,t)

and aggregate it to a classroom level denoted (ε̂c,jM − ε̂c,jF ). In order to compute for each

observation n of a direct network of any two Math teachers jMA
and jMB

and any given

French link teacher jF , I take the difference:

(ε̂cA,jMA
− ε̂cA,jF )− (ε̂cB ,jMB

− ε̂cB ,jF ) ≡ ε̂njMA
,jMB

I then average across all observations of a single direct network of two teachers in a subject,

such that the relative value-added of the Math teachers jMA
and jMB

is computed as:

θ̂jMA
− θ̂jMB

=
1

N

N∑
1

ε̂njMA
,jMB

and similarly for a direct network of any two French teachers linked by any given Math

teacher.

Moving from pairwise comparisons to a distribution Finally, as I obtain only pair-

wise comparisons between teachers in a direct network, it is necessary to discuss how one

can use these comparisons to also compare teachers in an indirect network, and furthermore
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turn these comparisons into single coefficients for each teacher which would allow for com-

paring teachers along the entire distribution of value added within a school. Problems with

this arise as one undoubtedly is faced with the issue of an overdetermined system of these

linear equations, and thus the possibility to find many different estimates for value added of

a teacher based on the algorithm used to solve this system.

I propose to solve this system by OLS. To make this clearer, imagine a system of pairwise

comparisons of three Math teachers, such that θ̂jMA
− θ̂jMB

= a, θ̂jMC
− θ̂jMB

= b, and

θ̂jMA
− θ̂jMC

= c, but c ̸= a − b. Note that I can write out this system in a matrix form

Ax = v, such that I obtain: 
1 −1 0

0 −1 1

1 0 −1

x =


a

b

c


Thus, instead of trying to equate each equation to zero Ax−v = 0, the use of OLS minimises

the sum of squared distances from zero and allows us to obtain a single estimate for each

teacher’s value added.

Note that the method requires choosing arbitrarily a teacher to whom to allocate a value-

added of 0, i.e. by dropping a column from the matrix A. I choose to arbitrarily allocate

a value-added of 0 to the first teacher in a subject observed in my school-level dataset.

Naturally, an implication of this is that by construction, the mean value-added within a

school does not have any meaning, contrary to the results from the typical estimation of

within-school value added where the zero-mean represents the believed true mean of value

added within a school. Thus, I can de-mean the value-added estimates within-school, such

that all school means are shifted to zero, making deviations from the mean comparable.

I apply these methods within school and calculate the standard deviation of value-added

measured within each school. I then take the average within-school variability in teacher

value-added in order to provide an idea of the average possible gains in student grades from

moving a student to a better teacher within the same school.

5 Simulations

Before applying the method empirically on French data, I conduct Monte Carlo simulations

to illustrate the performance of the method in terms of recovering the true value added

effects under three possible scenarios of teacher-student sorting within school (discussed in

Section 3). First, I begin from a simulated network of teachers who are sorted to students

randomly. Second, I simulate a type of sorting where students are sorted into a classroom

and to a Math teacher based on their general level of ability (i.e. the common component
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of ability between Math and French). Third, I simulate a type of sorting where students are

sorted into a classroom and to their Math teacher based on their Math-specific ability. For

comparison, I provide the results of these simulations for the traditional method as well.10

To better compare the predictive power of the two methods, I focus on three measures.

First, in order to find how accurate is the estimated rank of each teacher in the value added

distribution resulting from my method, relative to that of the traditional method, I compute

the Spearman correlation between each of the teacher value estimates and true value added.

Second, in order to find how precise are my value added estimates compared to the traditional

estimates, I compute the Mean Squared Error (MSE) of the estimates, compared to the true

value added. Third, in order to assess the presence of bias in addition to precision, I provide

graphical evidence of the estimates of value added from each model and each sorting scenario,

each averaged over 1,000 Monte Carlo simulations, compared to the true parameters.

The simulations are based on a school with the properties of the representative school in the

French data in terms of the total number of classrooms, number of students, and number of

teachers, over a period of 8 years (see Table 1). In what follows, I focus on simulations for

the value added of Math teachers, but naturally the equivalent is true for the value added of

French teachers.

Characteristic Size

Number of classrooms 25

Average classroom size 24

Number of Math teachers 5

Number of French teachers 6

Table 1: Simulated school

Note: The table depicts the characteristics of the average school in my sample of schools for a total period of

8 years. These characteristics are used for the purpose of simulating the average school.

I use 1,000 Monte Carlo replications per scenario per method, where I keep the distribution

of true value added fixed but I reassign students to classes and classes to teachers, and redraw

all other random variables.

5.1 Setup

To focus more explicitly on the problem of model predictions, I restrict the DGPs to a narrow

set of relatively idealised conditions. I assume that test scores of a student are only a function

of overall ability, subject-specific ability and teacher value added - in other words there is no

other idiosyncratic factor, or other observable characteristics such as socio-economic status,

10See details of the precise estimations used in Appendix D.4
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which affect grades. I assume further that there are no time effects, no peer effects, and

teacher value added is constant.

The random variables used in the simulations of my method are therefore precisely the teacher

value added, θjf , overall student ability, θi, and subject-specific ability θi,f . In addition, for

the simulations of the traditional method, I generate a lagged test score variable AAi,f,jf ,t−1
.

All four variables are drawn from Normal distributions, such that lagged test scores are by

construction correlated with the sum of ability (θi + θi,f ).

Simulated scenario 1. Random sorting First, I simulate random sorting between

teachers and students. To simulate student grades in Math, As
i,M,jM

, I draw ”true” teacher

value added θjM ∼ N (0, 0.1342), overall ability θi ∼ N (0, 0.3392) and Math-specific ability

θi,M ∼ N (0, 0.3392). The choice of standard deviations follows the findings of Chetty et al.

(2014a). More specifically, I take the standard deviation of teacher value added found in

Chetty et al. (2014a) and its share of the total variance - 0.07. I then assume the rest of the

total variance is equally shared between overall ability and Math-specific ability (i.e. with

shares 0.47 and 0.47). In Appendix D.2, I show that the results are robust to varying these

shares of the variance. Specifically, I first vary the respective shares of overall ability and

Math-specific ability, keeping the weight of teacher value added (respectively 0.23, 0.69, 0.07

and 0.69, 0.23, 0.07), and show that the higher the share of the common ability is in the total

variance, compared to the share of Math-specific ability, the better the MSE of my method

is. In addition, following Guarino, Reckase, and Wooldridge (2015), I show that increasing

teacher value added’s share of the variance to 0.21 yields similar results.

Using these random generated variables, I compute the Math grade11 of a student i as:

As
i,M,jM

= θjM + θi + θi,M (7)

The DGP for the French grade of a student As
i,F,jF

is the equivalent with one exception. I

choose to vary the French-specific ability’s standard deviation, σθi,F , in order to vary the

correlation between As
i,M,jM

and As
i,F,jF

. In other words, I exploit the fact that the French

grade is used for the Math teachers’ value added derivation in my method, but it is not used

in the traditional method, in order to vary the predictive power of my method for a given

predictive power of the traditional method. This allows me to compare the predictive power

of both methods for different levels of correlation between the residualised student grades

in two subjects, which is important for external validity. I also focus more specifically on

the correlation ρAs
M ,As

F
= 0.58, which is equivalent to the correlation between the Math and

11One can think of it as the residualised student grade (net of observable student characteristics).

19



French grades net of observable characteristics in my data.12

The final random variable that I generate is the lagged exam score of a student in Math,

Ai,M,jM′ ,t−1 ∼ N (0, σ2
(θi+θi,M )), which is used in the traditional method. Ai,M,jM′ ,t−1 is

correlated with the total ability of a student in Math, (θi + θi,f ), by a factor ρ ∈ [0.1, 0.9].

As the lagged grade is not used in my method, I exploit this range of ρ to vary the predictive

power of the traditional method for a given predictive power of my method. This allows me

to compare the predictive power of both methods for different levels of correlation between

lagged student grade and total ability. I focus more specifically on the correlation ρ = 0.8,

which is on the upper bound of the reported correlation in the literature.13

Simulated scenario 2. Sorting on common ability Second, I simulate a setting where

students are sorted to Math teachers based on their common ability θi. In particular, I use

an extreme example where θi is no longer generated from the DGP specified in the random

sorting scenario, but it is instead generated in such a way that it is 1-to-1 correlated with

θjM , through an equation θi = a × θjM + b, a > 0.14 This would mean that better Math

teachers are sorted into classrooms with better students.

As shown in Section D.4, θi cancels out in my method. However, in the traditional model,

the use of the past grade does not fully control for the non-random sorting as the correlation

between Ai,M,jM′ ,t−1 and (θi + θi,M ), ρ, is lower than 1.

Simulated scenario 3. Sorting on Math-specific ability Third, I simulate a setting

in which students are sorted to Math teachers based on their Math-specific ability θi,M .

More specifically, I use an extreme example where θi,M is no longer generated from the DGP

specified in the random sorting scenario, but it is instead generated in such a way that it

is 1-to-1 correlated with θjM , through an equation θi,M = a × θjM + b, a > 0.15 This would

mean that better Math teachers are sorted into classrooms with students who are better

specifically in Math.

It can be shown that in this scenario, each pairwise comparison of teachers in a network

12Note that the standard deviation σθi is still derived depending on the Math teacher’s value added and the

Math-specific ability, as outlined above. This is not important for the simulation of my method, as θi would

cancel out in either way. It is also not important for the traditional method, as As
i,F,jF

is not used for the

derivation of the Math teacher’s value added. Finally, θjF ∼ N (0, 0.0.098), as in Chetty et al. (2014a).
13Rothstein (2009) shows that the correlation for actual reading grades between classes is between 0.7 and

0.8.
14Note that such a DGP would lead to a mean µθi = aµθjM

= 0 and a variance σ2
θi

= a2σ2
θjM

. For

comparability with the previous scenario, I thus rescale the new variable θi in order to obtain the same σ2
θi

as in the case of no sorting.
15Note that such a DGP would lead to a mean µθi,M = aµθjM

= 0 and a variance σ2
θi,M

= a2σ2
θjM

. For

comparability with the previous scenario, I thus rescale the new variable θi in order to obtain the same σ2
θi

as in the case of no sorting.
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would be biased by a factor (1+ a) (see Appendix D.4 for details). As in Simulated scenario

2, the traditional model also suffers from bias.

5.2 Simulation results

Table D.4 and Figures D.2, D.3 and D.6 in the Appendix depict the results for the MSE

and Spearman correlation between each of the models’ estimates and the true value added

parameters for the three cases: no sorting, sorting on common ability and sorting on subject-

specific ability. Table D.4 focuses on the specific case with correlation between past grade

and student ability of 0.8, and correlation between residualised Math and French grade of

0.58 (i.e. the empirically identified statistics based on Rothstein (2009) and the data on

9th grade students in France, respectively). Figures D.2, D.3 and D.6 vary the two types of

correlation to provide a distribution of results. In addition, panels (c) and (d) of each figure

provide a better idea of the individual value added estimates and allow to discuss potential

bias.

Precision of estimates As seen in Table D.4, in the case of no sorting, the MSE of both

models is very small and close to each other - such that the square root of the MSE of

my method’s estimates is 0.005 and that of the traditional model’s estimates is 0.003). In

Figure D.2, one can see that the difference between the MSE of my method and traditional

method is lower the higher the correlation between Math and French grades is. Varying

the level of correlation between student ability and past Math grade does not change the

difference substantially (as seen by the small difference across lines).

Once (extreme) sorting on common ability is introduced, the MSE of my method stays

unchanged, consistent with the theoretical prediction of the method, the MSE produced from

my method stays unchanged, while the MSE of the traditional method grows substantially

(its square root is 0.244). As seen in Figure D.3, my method outperforms the traditional in

terms of MSE consistently, irrespective of the correlation between Math and French grades,

and decreasing with the correlation between student ability and past Math grade.

When I move to (extreme) sorting on subject-specific ability, as expected the MSE of the my

method grows substantially (the square root is 0.464), while the square root of the MSE of

the traditional method is similar to the one obtained given sorting on common ability - 0.246.

It is visible from Figure D.6 that the traditional method indeed consistently outperforms my

method in terms of MSE. The difference between the two MSEs is slightly decreasing with

the increase in the correlation between Math and French grades and is increasing with the

correlation between student ability and past Math grade.

Precision of the ranking of estimates Irrespective of the presence of sorting, the pre-

diction of the rank of each teacher’s value added in the distribution of value added is equally
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good for both my method and the traditional method, and in fact is perfect for the bench-

mark values of correlation chosen. As visible from Figures D.2, D.3 and D.6, the difference

between the Spearman correlations is always zero, irrespective of the correlation between

ability and past grade and the correlation between Math and French grades.

NE BE ∆ (NE-BE)

No sorting

Sqr. Root of MSE 0.005 0.003 0.002

Spearman corr. 1.00 1.00 0.00

Sorting on common ability

Sqr. Root of MSE 0.005 0.244 -0.239

Spearman corr. 1.00 1.00 0.00

Sorting on subject-specific ability

Sqr. Root of MSE 0.464 0.246 0.218

Spearman corr. 1.00 1.00 0.00

Table 2: Model performance comparison

Note: This table depicts the square root of the mean squared error (MSE) of the Traditional model (BE)

compared to the true value added parameters and of the Network model (NE) and the true value added

parameters. It also shows the Spearman correlations between the BE model and the true value added

parameters, and the NE model and the true value added parameters. The referenced BE model is estimated

for a correlation ρ = 0.8 between past student grade and student ability (θi+ θi,f ). The referenced NE model

is estimated for a correlation 0.58 between As
i,M,jM

and As
i,F,jF

. The case of No sorting does not impose

any correlation between value added and student ability. The case of Sorting on common ability imposes a

correlation of 1 between the value added of the Math teacher and the common ability factor θi, specifically

by imposing a structure θi = a × θjM + b. Finally, the case of Sorting on subject-specific ability imposes

a correlation of 1 between the value added of the Math teacher and the Math-specific ability factor θi,M ,

specifically by imposing a structure θi,M = a× θjM + b.

Bias As visible from panels (c) and (d) of Figure D.2, in the absence of sorting there is

no observable bias in the estimated value added. In panel (c), one can notice that, given

variation in the correlation between Math and French grades, while the precision of my

method’s estimates changes, there is no sign of bias in one direction or another.

As shown in Figure D.3, it is worth noting that once I introduce sorting on common ability,

while there is no bias in my method’s estimates, there is positive bias in the traditional

method’s estimates. In other words, the value added of better teachers (those above the

reference teacher with zero value added) is overestimated, while the value added of worse

teachers is underestimated, compared to the true values. In panel (d), one can see that the

level of bias is higher the lower the correlation between student ability and past student

grades is. This is consistent with the theoretical prediction outlined above.
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Finally, once I introduce sorting based on the subject-specific component of ability, one can

note in Figure D.6 that indeed both my method and traditional method produce estimates

which are biased upwards. However, the bias is lower in the traditional method, specifically

for high levels of correlation between ability and past grades.

All of these findings indeed confirm that my method performs well compared to the tradi-

tional in the case of random sorting of students to teachers. If sorting is based on common

ability, my method significantly outperforms the traditional method. Finally, as confirmed

in Appendix D.2, in all three scenarios, the larger the share of common ability is in the total

variance of student grades, compared to the share of Math-specific ability, the lower the MSE

of my method is.

6 Institutional setting and data

As this paper uses French data in order to apply the methodology empirically, this section

briefly discusses the French institutional setting and provides details on the data used.

6.1 Institutional setting

Due to the use of French data for the test of the proposed value-added methodology, it is

worthwhile to have an overview of the French institutional setting. In this section, I briefly

discuss the educational system, focusing particularly on middle schools in France and the

specificities of the teaching career, as these would be important for better understanding the

distribution of teachers in France.

6.1.1 Overview of the French educational system

The educational system is split in public and private schools, such that about 80% of sec-

ondary school students attend public school.16 Due to the prevalent presence of public

schools, the wider differences in teacher remuneration, recruitment and advancement, as well

as the higher concentration of high socio-economic status students in private schools, I focus

exclusively on public schools in the empirical tests of my identification strategy.

Education in France is compulsory from the age of 6 until the age of 16, when students finish

middle school - generally, following the obtainment of National Brevet Diploma (DNB).17

After middle school, students have a choice to enter general, vocational or technical training.

16Private schools are either to an extent publicly-funded (mostly catholic schools; they follow the curriculum

of the Ministry of Education at the exchange of teachers being paid by the State) or privately funded (they

do not follow the official curriculum and depend on strong financial participation of families).
17There are two, less common, alternatives to the DNB: the General Training Certificate (CFG) and the IT

and Internet Certificate (B2i-IT). The former is intended for adapted pupils (SEGPA) and those in regional

adapted education institutions (EREA). The latter is an attestation of skill level acquired by the pupil in

mastering multimedia tools and the Internet.
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About half of middle-school graduates continue with the general track, which offers the most

opportunities after graduation and is a necessary step for students who wish to continue with

higher education.

The French educational system does not rely on annual standardised testing. It does, how-

ever, rely on standardised testing in specific years of the program. One such important

standardised exam occurs at the end of the 9th grade - the final middle school year. In order

to obtain the DNB at the end of middle school, in addition to continuous assessment, which

weighs for 400 out of the 700 points, all students are required to sit a set of national standard-

ised exams at the end of 9th grade which weigh for the remaining 300 points. These exams

(hereafter DNB) test the knowledge, skills and culture acquired throughout middle school in

Math, French language and other subjects. While pursuit in high school is not conditional

on the obtained DNB grade, the exams are nevertheless considered of high importance for

the smooth passing of the 9th grade.18 As teachers prepare their students for the exams over

the entire 9th grade, the exam grades should indeed reflect well the effectiveness of teaching.

6.1.2 The teaching career

Generally speaking, there are two types of teachers - teachers on a tenure track and contrac-

tual teachers.

Individuals wishing to become tenured-track teachers undergo a year of intensive pedagogical

preparation at university for a competitive national exam. There are different certification

exams depending on whether one wishes to teach in nursery and primary schools (first degree)

or in middle schools and high schools (second degree). The most common certification for

those who wish to teach in second degree is the Certificate of Aptitude for Teaching Secondary

Education (CAPES). A more advanced certification alternative - the Agrégation, allows to

teach in high schools and higher education and comes with additional perks such as higher

salary and fewer teaching hours. However, it is less common among teachers in middle school

due to the difficulty and selectivity of the certification exams. In both types of certifications,

successful candidates become trainee teachers for one to two years, and are allocated to a

school and an experienced teacher within that school who acts as a tutor. Once the internship

is completed, the teacher is officially appointed as a tenured teacher19 and becomes a civil

servant.

An alternative way to teach in both first and second degree is to become a contractual

18The diploma is also required for certain public service competitions and professional internships. Further-

more, scholarship holders on social criteria who obtain a “Good” or “Very Good” grade can apply for a

merit scholarship during their high school career. Its importance seems tangible for students, who have the

option to decide to repeat the 9th grade in order to retake the exam, in case they have missed it the first

time.
19In the case of teachers with Agrégation, candidates need to also go before a jury to validate their diploma.
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teacher. According to data from the Statistical office of the French Ministry of Education,

the DEPP, about 8% of all teachers in secondary education are contractual teachers. Con-

tractual teachers have not passed the recruitment competitions organised by the Ministry

of Education and are simply required to have studied for at least 3 years after completing

their general secondary education. Generally, their mission is to replace a tenured teacher

who is on leave, or to fill a vacant position in a public school which cannot be filled by a

tenured teacher. This could explain why in my data, a contractual teacher has a 19% higher

probability of teaching at a disadvantaged school.

Due to the nature of their contract, they are bound to stay at a school for a maximum period

of 3 years. Indeed, in the sample of 9th grade Math and French teachers, the average time

for which a contractual teacher stays in a school is 1.8 years, compared to 6.5 years for the

average tenured teacher. The salary of contract teachers is also tied to a different pay scale

and is generally lower than the salary of tenured teachers.

As the period of observation within a school of contractual teachers is generally lower, and as

one might argue this could affect such teachers’ motivation and incentives on the job quite

differently than those of a tenured teacher, I do not focus on contractual teachers in the

empirical exercise in order to lower the potential noise coming from their value added.

6.2 Data sources

This study relies on administrative data from the statistical office of the French Ministry of

Education (DEPP) for the period between 2009 and 2018.20 Specifically, to construct my

final dataset, I utilise two main databases: RELAIS - a database with rich information on

teachers, and FAERE - a database on students.I focus exclusively on public schools in the

26 académies in Metropolitan France, concentrating on students in the 9th grade and their

teachers in Math and French.

The database RELAIS contains a large amount of individual teacher-specific information,

such as gender, date of birth, qualification, teaching status, subject taught, rank on the wage

scale and pedagogical grades. Each teacher is also associated with the school(s) in which

she teaches during each year of her career.21 Importantly, for every year of their career, the

RELAIS database provides a classroom identifier within the school in which she teaches,

indicating the specific classroom in which they teach.

The database FAERE contains individual data on students, such as gender, date of birth,

city of birth, current residence, occupation and working status of parents, scholarship status,

20Note that currently, the study does not use information from the 2016-2017 school year as DNB grades are

not yet available for use.
21All of this information is available in the files MEN, EMF and AIR, which can be merged with the use of

unique teacher identifiers.
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choices of optional courses, grades in the national standardised examination DNB, as well as

grades of the continuous assessment during the 9th grade, and importantly, the classroom

in which the student is taught.22 The latter allows to match each teacher to their respective

students. I standardise the DNB grades by year and subject to allow for comparability

across years. In addition, I use parent profession in order to compute each student’s socio-

economic status (SES) based on guidelines provided by the Ministry of Education, split

in four categories: very high SES (Très favorisée), high SES (Favorisée), medium SES

(Moyenne) or low SES (Défavorisée). Specifically, I classify each student according to the

occupation of their parent with the higher rank.23

In order to reduce the potential noise in estimates, I exclude very specific classroom types,

such as classrooms for students with mental disabilities or integration classrooms for non-

French speakers. I furthermore exclude classrooms with very few students (less than 15)

and schools which are not observed for more than 2 years, both of which are likely reporting

errors. I also exclude schools with very few classrooms (less than 5 in total over the years),

as those have too few teacher networks to provide precise estimates. Finally, I choose to

focus only on tenured (as opposed to contractual) teachers in order to make sure we have a

sufficient number of teacher observations per teacher within a school.

6.3 Descriptive statistics

Appendix E provides descriptive statistics of the variables used in this paper for the sample

that enters the analysis, split into characteristics of 9th grade students and characteristics

of Math and French teachers in 9th grade.

As seen in Table E.7, 19% of students in 9th grade are placed in a school labelled as dis-

advantaged, and 23% are scholarship recipients. The pass rate of 9th grade stands at 76%.

About 97% of students are French nationals. Finally, according to the chosen classification

of socio-economic status, 54% of students recorded as having a medium (33%) or low (21%)

SES, compared to 19% of students having a high SES and 27% of students - a very high

SES.

Math and French teachers’ characteristics are shown in Tables E.5 and E.6, respectively.

Math (French) teachers in the sample are on average 40 (41) years old, with about 11 (12)

years of experience. Only 9% (8%) of Math (French) teachers teaching in 9th grade have

an advanced certification level (Agrégation) which is expected since, as discussed above, the

22The information exists in the Apprenant and DNB databases and can be merged through unique student

identifiers.
23As labour decisions of each parent may depend on the labour decisions of the other parent, a household’s

socio-economic status is likely best represented by the higher earner’s socio-economic status. I thus choose

to use this classification rather than the classification used in the Ministry, which relies exclusively on the

father’s rank, as the higher earner may be the mother.
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majority of Agrégés typically continue to teach at high school or higher education. The

average gross monthly salary base for Math (French) teachers is about 3,000 euros (3,020).24

The sample is almost evenly split between Math and French teachers, with about 48% of

teachers teaching Math. Finally, 21% of Math teachers and 21% of French teachers teach at

a disadvantaged school.

For the total of middle schools in Metropolitan France in our sample, an incomplete school

network is observed in only 14% of schools. We can compare the observable characteristics

of the treated schools to the average characteristics in the school system in order to make

sure that the treated schools are representative. As seen in Table E.8, while there are

some statistically significant differences that define the treated schools, but the economic

significance of such differences is very insignificant.

Beyond the issue of school network completeness, it is also important to study the charac-

teristics of the teacher networks in schools that have a complete network. As we can see in

Table E.9, we observe about 40,000 unique teacher networks in Math and about 60,000 in

French. The average Math (French) teacher is part of 4.4 (5.4) networks within a school, and

each network is observed on average 5.6 (4.9) times, which corresponds to 135 (117) students

per couple.

7 Results

The coefficients of the first stage are shown in Table F.10. After obtaining the estimates of

the pairwise differences in value added of pairs of teachers, I apply the matrix method for

deriving single teacher effects, as described in Section 4.

Using this method, I find that for a 1 SD increase in Math (French) teacher value-added

within a school, student scores benefit on average by 0.174 SD (0.163 SD).25The effect is

substantial: what it means is that if the average student in a school moves from a Math

(French) teacher in the 5th percentile of the school’s value-added distribution to a teacher in

the 95th percentile, his Math (French) grade would improve by 0.58 SD (0.54 SD). Given the

distribution of grades in each subject, this is equivalent to a 14 percentage points increase

in the student’s Math grade and a 10 percentage points increase in his French grade.

The coefficients are placed on the higher bound of the estimates found in the existing litera-

ture on US middle schools, which typically lie between 0.10-0.15 SD for Math and 0.05 and

0.15 SD for literature (Jackson, 2014,Bacher-Hicks & Koedel, 2022), with higher estimates

24Note that I compile this information based on the public pay scheme for teachers published on the website

of the Ministry of Education.
25Note that the Pearson and Spearman correlations between the derived value added estimates from this

empirical strategy and an alternative strategy where one does not control for experience fixed effects is

above 0.98. This indeed confirms that the importance of the drift in value added is very small.

27



for Math than for literature (Lefgren & Sims, 2012; Condie et al., 2014). In fact, they are

closer to estimates found in developing countries (e.g. Bau & Das, 2020; Buhl-Wiggers et

al., 2017 find coefficients between 0.11 and 0.19 SD).

These results are robust to changes in the restrictions on the minimum number of classrooms

within a school and the minimum classroom size (see Figure F.7 in the Appendix). I also

re-estimate the model weighting for total number of students shared between two teachers

in a network and obtain almost identical results (Appendix C).

Heterogeneity There is, albeit small, variation in the within-school variability of value-

added estimates by French educational region (see Figures 3). In particular, the highest

variation in within-school teacher effectiveness in both Math and French is measured in

Creteil, near Paris, the French region with the highest difficulties in attracting teachers and

the region with the highest share of newly tenured teachers.26,27

Figure 3: Within-school s.d. in value added by region

Note: The figure shows the académie-level average standard deviation in teacher value-added within school.

Corsica is excluded from the figure.
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This is also consistent with the finding that the average within-school variability in teacher

value added is higher in more disadvantaged schools. In Figure 4, schools are split into

deciles of disadvantaged level, based on the share of low-SES students the school welcomes

on average. As seen, while the average variability seems relatively stable in general, it jumps

sharply for the last decile of schools, in other words - for the most disadvantaged schools.

26According to information from the Pommiers and Lecherbonnier (2022) Le Monde article “Education :

comment le système de mutation des enseignants s’est grippé”.
27Similar conclusions can be drawn for Lille - the other region with the highest variation in value-added for

French teachers.
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This finding hints that the differences in teacher quality are particularly drastic in schools

which predominantly teach disadvantaged students.

Correlation of value added estimates with observable characteristics In addition

to using the value added estimates to provide some average idea of variability in teacher

effects, it is interesting to observe if there are certain characteristics which are correlated with

these value added estimates. Figure 5 shows the correlations between teacher characteristics

and the value added estimates.28

Figure 4: Standard deviation of value added by school disadvantaged level

Note: The figure shows the average within-school standard deviation in Math teacher value added by decile of

“school disadvantageness level”. School disadvantagedness level is defined by computing the share of students

with “Low SES” out of all students within the school, and then splitting schools into deciles of this measure,

such that the lowest decile represents the schools with the lowest share of low SES students, and vice versa

for the highest decile.
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(b) French VA
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Female teachers have on average higher value added, similar to what is found in the literature

(e.g. Aaronson, Barrow, and Sander (2007)). This finding is to a large extent driven by

female teachers being better at teaching female students, but the effect persists even when

accounting for this relationship.

The classroom observation grade given to a teacher for their pedagogical skills by inspectors

sitting in their class is strongly positively associated with value added - in fact, both for

Math and French teachers, it is the characteristic that best correlates with the value added

estimates. The coefficient of correlation is also in line with that found in the literature (e.g.

Rockoff, Jacob, Kane, & Staiger, 2011; Kane & Staiger, 2012; Harris & Sass, 2014; Jacob &

Lefgren, 2008).

28Note that I repeat the exercise but add all observable characteristics to a regression for a small subsample

of teachers for whom there is no missing data in any of the characteristics. Appendix Table F.3 broadly

confirms these predictions.
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Finally, having an advanced qualification (Agrégation) is not associated with having higher

value added. Similarly, having a higher salary (which is in itself a function of a fixed set of

characteristics such as seniority) is not associated with higher value added either. This is

consistent with the idea that remuneration based solely on observable teacher characteristics

is independent of considerations of value added.

Figure 5: Correlation between value added estimates and teacher characteristics

Note: The figure shows the conditional correlation between teacher value added estimates and teacher char-

acteristics. The correlations are conditional on school fixed effects to reflect the fact teacher value added

estimates are comparable only within school. The characteristics are either fixed or averaged over the entire

period in which the teacher is observed within school.
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8 Conclusion

This paper propose an alternative method for teacher value added estimation which does

not rely on lagged test scores - a measure typically used to control for potential non-random

sorting between teachers and students, which might bias value added estimates. Instead, I

derive a measure of within-school value added with the use of within-student cross-sectional

variation in standardised exam grades in different subjects. Using direct networks of teachers

- teachers in the same subject who have been observed in a classroom with the same teacher

from another subject - I show how one can compare the relative value added of teachers in

a pairwise manner, and how one can uncover the entire value added distribution within a

school by transitivity.

I show that certain assumptions need to hold in order to provide unbiased estimates of

teacher value added. Firstly, I assume there is no teacher sorting to classrooms within school

based on subject-specific student ability. I provide a simple test of the assumption using
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observable characteristics and indeed show that in my observed setting, this assumption is

not a cause for concern. Secondly, I assume each classroom in which a teacher is observed

is equally informative of the teacher’s value added. I perform several tests which point in

that direction, and restrict the sample to large enough classrooms to minimise the potential

noise of smaller classrooms. Thirdly, I assume that the time component of value added is

additively separable from the intrinsic value added of a teacher and is a function of years

of experience. I then take care of this empirically by adding fixed effects for the the years

of experience of a teacher in each classroom. Finally, unrelated to unbiasedness, I assume

that the schools which exhibit a complete school network (i.e. the schools for which we can

conduct the analysis) are representative of the school system. This is necessary to ensure

the average result has merit on the aggregate. I conduct balance checks which confirm that

while there are some statistically significant differences between the treated schools and the

average school, these differences are very small.

To compare the estimator to the one commonly used in the literature, I simulate a represen-

tative school and go through three possible types of sorting of students to teachers - random

sorting, sorting based on common ability, and sorting based on subject-specific ability. I

show that my method performs slightly worse but generally quite well in the case of no

sorting, significantly better in the case of sorting on common ability, and worse in the case of

sorting on subject-specific ability. The latter is consistent with the identification assumption

of the model.

I test the method using French administrative data for the universe of public middle schools in

Metropolitan France. I focus on 9th graders and their Math and French teachers, exploiting

the fact that these students need to hold standardised exams in the two subjects at the end

of the 9th grade. I find that for a 1 SD increase in Math (French) teacher value added within

school, student scores improve by 17.4 (16.3) percent of a SD. This implies that moving a

student from a teacher at the 5th percentile of the value-added distribution of a school to one

at the 95th percentile in the same school is associated with an average increase in student

test scores by 58 (54) percent of a SD in Math (French).

I show that the variation of value added is higher in more disadvantaged regions of France

and schools which have a higher share of disadvantaged students. Finally, I show that the

teacher estimates are positively correlated with being female and with in-class pedagogical

assessments, consistent with the literature. These results provide the first test of value added

in French middle schools and indeed one of the first non-experimental evidence in Europe.
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Appendix

A Deriving the identifying assumptions

A.1 Classroom size and multiple network observations

I turn to a case where we observe multiple classrooms within a school. Without loss of

generality, let us assume there are four classrooms c ∈ {cA, cB, cC , cD}. For simplicity, I

still focus on a case with a single direct network of Math teachers jM ∈ {jMAB
, jMCD

},
linked through a single French teacher jF who teaches in all four classrooms. For the sake of

example, let jMAB
teach in classrooms cA and cB and jMCD

teach in classrooms cC and cD.

There are four possible ways to find the relative value added of teachers jMAB
and jMCD

,

using equation 4 and the decomposition of student ability γi,f :

∆ÂM,cA,cC − (X̂cA − X̂cC ) · (βM − βF ) =

(θjMAB
− θjMCD

) + (θcA,M − θcC ,M )− (θcA,F − θcC ,F )
(A.1)

∆ÂM,cA,cD − (X̂cA − X̂cD) · (βM − βF ) =

(θjMAB
− θjMCD

) + (θcA,M − θcD,M )− (θcA,F − θcD,F )
(A.2)

∆ÂM,cB ,cC − (X̂cB − X̂cC ) · (βM − βF ) =

(θjMAB
− θjMCD

) + (θcB ,M − θcC ,M )− (θcB ,F − θcC ,F )
(A.3)

∆ÂM,cB ,cD − (X̂cB − X̂cD) · (βM − βF ) =

(θjMAB
− θjMCD

) + (θcB ,M − θcD,M )− (θcB ,F − θcD,F )
(A.4)

I denote for simplicity

∆ÂM,c,c′ − (X̂c − X̂c′) · (βM − βF ) ≡ ∆ÂP
M,c,c′

and

[(θc,M − θc′,M )− (θc,F − θc′,F )] ≡ ϕM,c,c′

Equal classroom size Assuming that each classroom observation is equally informative

of a teacher’s value added due to equal classroom size, it follows for the average pairwise

difference (θjMAB
− θjMCD

) that:

1

4

∑
c,c′

ÂP
M,c,c′ =

1

4

∑
c,c′

[(θjMAB
− θjMCD

) + ϕM,c,c′)] =⇒

1

4

∑
c,c′

ÂP
M,c,c′ = (θjMAB

− θjMCD
) +

1

4

∑
c,c′

ϕM,c,c′

(A.5)

34



for each c ∈ {cA, cB} and c′ ∈ {cC , cD}. The estimated difference in value added would then

be equal to the true difference if: ∑
c,c′

ϕM,c,c′ = 0 (A.6)

which is equivalent to: ∑
c∈{c0|j(c0)=jMAB

}

(θc,M − θc,F )−
∑

c′∈{c′0|j(c′0)=jMCD
}

(θc′,M − θc′,F )

 = 0 (A.7)

It follows that for the relative value added to be unbiased, the following condition needs to

hold:

Condition. ∑
c∈{c0|j(c0)=jMAB

}

(θc,M − θc,F )−
∑

c′∈{c′0|j(c′0)=jMCD
}

(θc′,M − θc′,F )

 = 0 (A.8)

The Condition is satisfied if the average relative ability in Math compared to French for

teacher jMAB
is the same as the average relative ability in Math compared to French for

teacher jMCD
. In other words, Math teachers should not be sorted on the relative ability in

Math compared to French (and vice versa for French teachers). This leads us to the first

assumption of the model.

Different classroom size So far I have assumed that each classroom observation is

equally informative of a teacher’s value added due to equal classroom size. Assume now

that larger classrooms might are more informative due to a smaller noise in the estimated

∆ÂP
M,c,c′ .

Classroom Classroom size

cA 30

cB 10

cC 20

cD 20

Table A.1: Imaginary different classroom size

Consider that each of the four classrooms has a size as indicated in Table A.1. We can add

different weights to each classroom accordingly, such that equation A.5 becomes:

3

8
ÂP

M,cA,cC
+

1

8
ÂP

M,cA,cD
+

1

4
ÂP

M,cB ,cC
+

1

4
ÂP

M,cB ,cD
=

(θjMAB
− θjMCD

) +
3

8
ϕM,cA,cC +

1

8
ϕM,cA,cD +

1

4
ϕM,cB ,cC +

1

4
ϕM,cB ,cD

(A.9)
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It follows that for the estimated difference in value added to be equal to the true difference:

3

8
ϕM,cA,cC +

1

8
ϕM,cA,cD +

1

4
ϕM,cB ,cC +

1

4
ϕM,cB ,cD = 0 (A.10)

which can be expressed as:

[
1

2
(θcA,M − θcA,F ) +

1

2
(θcB ,M − θcB ,F )]−

[
5

8
(θcC ,M − θcC ,F ) +

3

8
(θcD,M + θcD,F )] = 0

It follows that for the relative value added to be unbiased, the following condition needs to

hold:

Condition.
[wcA(ζcA,M − ζcA,F ) + wcB (ζcB ,M − ζcB ,F )]−

[wcC (ζcC ,M − ζcC ,F ) + wcD(ζcD,M + ζcD,F )] = 0
(A.11)

The Condition is satisfied if the weighted average relative ability in Math compared to French

for teacher jMAB
is the same as the weighted average relative ability in Math compared to

French for teacher jMCD
.

This condition is very unlikely to hold in reality as it is highly specific. This indeed re-

quires me to assume that each classroom is equally informative of a teacher’s effectiveness,

irrespective of differences in classroom size.

A.2 Drifts in value added

Case with only two classrooms Let us focus on a case where we observe only two

classrooms of equal size within a school, but at different times τ ∈ {t, t′}, such that c ∈
{cA,t, cB,t′}. Let us further assume that we observe two Math teachers, jM,τ ∈ {jMA,t, jMB ,t′},
who teach respectively in classrooms cA,t and cB,t′ , and one French teacher jF who teaches

in both classrooms. This generalises the initially proposed model to:

Ac,f,τ = Xcβf + γc,f + θjf ,τ + θs + εc,f,τ

where θjf ,τ = θjf +αjf ,τ and αjf ,τ is the time-specific part of a teacher’s value added, which

is additively separable from the intrinsic value added of a teacher. Then, following the same

procedure as before, we can express for classroom A:

AcA,t,M,t −AcA,t,F,t = XcA,t · (βM − βF ) + (θjMA
− θjF ) + (αjMA

,t − αjF ,t)+

(θcA,t,M − θcA,t,F ) + (εcA,t,M,t − εcA,t,F,t)

and for classroom B:

AcB,t′ ,M,t′ −AcB,t′ ,F,t
′ = XcB,t′ · (βM − βF ) + (θjMB

− θjF ) + (αjMB
,t′ − αjF ,t′)+

(θcB,t′ ,M − θcB,t′ ,F ) + (εcB,t′ ,M,t′ − εcB,t′ ,F,t
′)
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Thus, one can express the relative value added of the two Math teachers as:

(AcA,t,M,t −AcA,t,F,t)− (AcB,t′ ,M,t′ −AcB,t′ ,F,t
′) = (XcA,t −XcB,t′ ) · (βM − βF )+

(θjMA
− θjMB

) + [(αjMA
,t − αjMB

,t′)− (αjF ,t − αjF ,t′)]+

(θcA,t,M − θcA,t,F )− (θcB,t′ ,M − θcB,t′ ,F ) + (εcA,t,M,t − εcA,t,F,t)− (εcB,t′ ,M,t′ − εcB,t′ ,F,t
′)

Assuming that Assumption 1 of the model holds and denoting for simplicity:

(ÂcA,t,M,t− ÂcA,t,F,t)− (ÂcB,t′ ,M,t′ − ÂcB,t′ ,F,t
′)− (X̂cA,t − X̂cB,t′ ) · (βM −βF ) ≡ ∆ÂP ′

M,cA,t,cB,t′

our estimated relative teacher value added can be expressed as:

ÂP ′
M,cA,t,cB,t′

= (θjMA
− θjMB

) + [(αjMA
,t − αjMB

,t′)− (αjF ,t − αjF ,t′)]

The predicted relative value added of teachers jMA
and jMB

from this alternative model

would be equal to that of my proposed model given the following condition:

Condition

E[(αjMA
,t − αjMB

,t′)− (αjF ,t − αjF ,t′)] = 0 (A.12)

Note that this condition would hold under the stricter assumption E[αjf ,τ ] = 0. However, I

can instead assume that αjf ,τ is some functional form of years of experience, such that for

Math, αjM ,τ = f(expjM ,τ ) and αjF ,τ = g(expjF ,τ ). Since a teacher’s years of experience are

observable, one can simply control for f(expjM ,τ ) and g(expjF ,τ ) in Xcτ .

Case with multiple classrooms I turn to a case where we observe multiple classrooms

within a school. Let us assume there are four classrooms c ∈ {cA,t1 , cB,t2 , cC,t3 , cD,t4} observed
in 4 different periods, τ ∈ [t1, t4]. For simplicity, I still focus on a case with a single direct

network of Math teachers jM ∈ {jMAB
, jMCD

}, linked through a single French teacher jF

who teaches in all four classrooms. For the sake of example, let jMAB
teach in classrooms

cA,t1 and cB,t2 and jMCD
teach in classrooms cC,t3 and cD,t4 .

As before, there are four possible ways to find the relative value added of teachers jMAB
and

jMCD
. Denoting for simplicity

∆ÂM,c,c′ − (X̂c − X̂c′) · (βM − βF ) ≡ ∆ÂP ′
M,c,c′

for each c ∈ {cA,t1 , cB,t2} and c′ ∈ {cC,t3 , cD,t4}, and

(αjM ,t − αjM′ ,t′)− (αjF ,t − αjF ,t′) ≡ ∆αjM ,jM′ ,t,t′

for each t ∈ {t1, t2} and t′ ∈ {t3, t4}, and furthermore assuming Assumptions 1 and 2 of the

model hold, I can express these as:

∆ÂP ′
M,cA,t1

,cC,t3
= (θjMAB

− θjMCD
) + ∆αjMAB

,jMCD
,t1,t3 (A.13)
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∆ÂP ′
M,cA,t1

,cD,t4
= (θjMAB

− θjMCD
) + ∆αjMAB

,jMCD
,t1,t4 (A.14)

∆ÂP ′
M,cB,t2

,cC,t3
= (θjMAB

− θjMCD
) + ∆αjMAB

,jMCD
,t2,t3 (A.15)

∆ÂP ′
M,cB,t2

,cD,t4
= (θjMAB

− θjMCD
) + ∆αjMAB

,jMCD
,t2,t4 (A.16)

Assuming that Assumption 3 of the model holds, it follows that for the average pairwise

difference (θjMAB
− θjMCD

):

1

4

∑
c,c′

ÂP ′
M,c,c′ =

1

4

∑
c,c′

[(θjMAB
− θjMCD

) + ∆αjM ,jM′ ,t,t′ ] =⇒

1

4

∑
c,c′

ÂP
M,c,c′ = (θjMAB

− θjMCD
) +

1

4

∑
c,c′

∆αjM ,jM′ ,t,t′

(A.17)

The estimated difference in value added would then be equal to the true difference if:

E[
∑
c,c′

∆αjM ,jM′ ,t,t′ ] = 0 (A.18)

which can be rewritten as:

E

∑
t,t′

(αjM ,t − αjM′ ,t′)−
∑
t,t′

(αjF ,t − αjF ,t′)

 = 0 (A.19)

Note that this holds as Condition A.12, given the functional forms of αjf ,τ for each subject

f . Therefore, this leads me to the third assumption of the model.

B Tests of within-school teacher-student sorting

Student-teacher sorting may occur under two conditions. Firstly, if the school groups stu-

dents into classrooms by ability (tracking). And secondly, if some teachers specialise into

teaching either low or high tracks.

While one cannot test for tracking and specialisation based on unobservable student char-

acteristics by default, we could test for sorting with the use of observable characteristics.

In particular, if there is tracking and specialisation, then this should be detectable from

the observable characteristics of students grouped together in a classroom and assigned to a

teacher. One natural candidate for such characteristics is past achievement. However, as we

do not observe any student scores prior to the DNB grades, a second-best alternative is to

rely on other student observables.

I predict student grades as shown in Table B.2 for Math, French, and the difference between

a student’s grades in Math and French which represents the student’s relative Math grade.

I denote these predicted scores in Math and French for student i respectively AP
i,M and

AP
i,F , such that AP

i,M−F denotes the predicted relative Math grade of student i. The used

observable characteristics are able to predict 30.4% of the variation in Math, 28.7% in French,

and 11.4% in relative Math to French grade, according to the adjusted R2.
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Table B.2: Predicted grades

Math grade French grade Math-French grade

Male 0.030∗∗∗ -0.379∗∗∗ 0.409∗∗∗

(0.001) (0.001) (0.001)

Age -0.364∗∗∗ -0.333∗∗∗ -0.032∗∗∗

(0.001) (0.001) (0.001)

Scholarship student -0.141∗∗∗ -0.114∗∗∗ -0.027∗∗∗

(0.001) (0.001) (0.001)

High SES -0.267∗∗∗ -0.224∗∗∗ -0.043∗∗∗

(0.002) (0.002) (0.001)

Medium SES -0.404∗∗∗ -0.351∗∗∗ -0.053∗∗∗

(0.001) (0.001) (0.001)

Low SES -0.618∗∗∗ -0.582∗∗∗ -0.036∗∗∗

(0.002) (0.002) (0.002)

Moved department 0.018∗∗∗ 0.037∗∗∗ -0.019∗∗∗

(0.001) (0.001) (0.001)

Taking Ancient Greek 0.411∗∗∗ 0.399∗∗∗ 0.012∗∗∗

(0.003) (0.003) (0.003)

Taking Latin 0.540∗∗∗ 0.552∗∗∗ -0.013∗∗∗

(0.001) (0.001) (0.001)

School FE Yes Yes Yes

Year FE Yes Yes Yes

Nationality FE Yes Yes Yes

Main guardian type FE Yes Yes Yes

Observations 2,807,201 2,807,201 2,807,201

Adjusted R2 0.304 0.287 0.114

Note: The table presents the OLS regression results for the association of observable student char-

acteristics with student grades in Math, French and the student-level difference between Math and

French grades. Student grades are standardised by subject and year. The base SES category is that

of ”Very high SES”. The dummy ”Moved department” is equal to 1 if a student’s birth department

is different from his current department of living.

* p < 0.1, ** p < 0.05, *** p < 0.01
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B.1 Tracking

I test for tracking of students into classrooms by regressing the predicted grades

Ai,f ∈ {AP
i,M , AP

i,F , A
P
i,M−F } on classroom fixed effects for each school s:

AP
i,f = θcn + εi,f

As each classroom dummy captures the specific constant for each classroom, R2 of the

regression could be interpreted as a measure of between-classroom segregation in student

characteristics in the specific school s. Repeating this regression for all schools in the system

of schools with a complete school network (i.e. all the schools included in the analysis)

and taking the average R2 therefore provides us with an average measure of such between-

classroom segregation. Let us denote this average percentage as the True R2.

We can then reassign students to a random classroom numerous times and compute the

R2 from these simulations, which would give us a placebo measure of between-classroom

segregation given random allocation of students to classrooms. In particular, I do this re-

assignment procedure 100 times, reassigning students only to a classroom from the universe

of classrooms in their school and year of study, and making sure that the classroom size of

each classroom cn is kept fixed to its original value. Following the same procedure as above,

we can take the average R2 as the average measure of between-classroom segregation under

random reassignment. Let us denote this average percentage as the Placebo R2.

Using the two measures, we can then compute at which percentile p of the bootstrap distri-

bution of the Placebo R2 is the value of the True R2. In this setting, 1−p can be interpreted

as the empirical p-value: the probability that the observed level of segregation could have

occurred by chance.

The first three sets of bars in Figure B.1 depict the True R2, Placebo R2 and empirical

p-value for the predicted Math grade, the predicted French grade and the predicted relative

Math grade for the tests of student tracking.

What we can see is that, while there is a small baseline segregation in student characteris-

tics in Math, there is a very small probability (6%) that this segregation has occurred by

chance. The same conclusions follow for French (7% probability). However, once we turn

to relative Math, we see that the level of the baseline segregation in student characteristics

falls significantly and furthermore that the probability that this segregation has occurred by

chance jumps to 73%.

B.2 Teacher specialisation

I perform similar tests to determine the presence of teacher sorting to classrooms within a

school, particularly by regressing the students’ predicted grades in a subject on teacher fixed
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effects:

AP
i,f = θj + εi,f

In this setting, the True R2 now represents the average measure of between-teacher segre-

gation in student characteristics, which would indicate that different teachers specialise in

teaching different types of students. The Placebo R2 is the corresponding average measure of

between-teacher segregation under random reassignment of teachers to students. Similarly,

the empirical p-value shows the probability that the observed level of segregation could have

occurred by chance.

The last three sets of bars in Figure B.1 depict the True R2, Placebo R2 and empirical p-value

for the predicted Math grade, the predicted French grade and the predicted relative Math

grade for the tests of teacher specialisation.

Figure B.1: Tests of within-school teacher-student non-random sorting

Note: The figure shows the results from the tests on student tracking (the 3 sets of columns on the left) and

specialisation (the 3 columns on the right). For both tests, I predict student grades in Math, French and

the difference between Math and French grade (relative Math grade) on observable student characteristics,

as shown in Table B.2. Using the predicted grades, I first test for tracking (specialisation) by regressing each

of the predicted grades on classroom (teacher) fixed effects. I take the R2 of this regression as the measure of

between-classroom (teacher) segregation in school s. The average R2 across all schools is denoted as the True

R2 in this figure. I then reassign students to random classrooms (teachers) 100 times, keeping classroom size

fixed to its original value, and compute the R2 from these simulations. I denote this the Placebo R2, and it is

interpreted as a measure of between-classroom (teacher) segregation under random allocation. I compute at

which percentile p of the bootstrap distribution of the Placebo R2 is the value of the True R2. The Empirical

p-value is 1− p, the probability that the observed level of segregation could have occurred by chance.
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The conclusions from the previous section follow similarly here. In fact, segregation of student

characteristics in Math and in French are even smaller for segregation across teachers than

it is for segregation across classrooms. Furthermore, once we turn to relative Math, the

baseline level of between-teacher segregation is basically zero, with a probability that this
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segregation has occurred by chance of 49%.

Therefore, taking into account both the results for tracking and specialisation, and assum-

ing that similar conclusions would follow for unobservable student characteristics, it is not

difficult to argue in favour of the proposed methodology, as the method requires solely that

student-teacher sorting does not occur based on the relative Math ability of students (or

other such unobservable factors).

C Tests of differential classroom informativeness of teacher

effects

In this section, I focus on the handling of multiple observations of a network of two teachers.

In particular, one might be worried that larger classrooms are more informative of a teacher’s

value added. To test for this, I consider a network of two teachers which is observed twice -

through different link teachers, as shown in Table C.3.

Math teacher French teacher Classroom Classroom size

jMAB
jFAC

cA 30

jMAB
jFBD

cB 10

jMCD
jFAC

cC 20

jMCD
jFBD

cD 20

Table C.3: Imaginary network of teachers with different classroom size

As one can see, through their connection to the link teacher jFAC
, teachers jMAB

and jMCD

share a total of 50 students, whereas through their connection to the link teacher jFBD
they

share only 30 students.29,30 I can reflect the fact that for the former, my estimation strategy

would lead to more precise estimates than for the latter by adding weights. In particular,

following the empirical strategy detailed in Section 4, the second-stage equations for the

network of Math teachers would be:

(ε̂cA,jMAB
− ε̂cA,jFAC

)− (ε̂cC ,jMCD
− ε̂cC ,jFAC

) = ∆1 (C.20)

and

(ε̂cB ,jMAB
− ε̂cB ,jFBD

)− (ε̂cD,jMCD
− ε̂cD,jFBD

) = ∆2 (C.21)

29Note that in reality, the differences in classroom size are much smaller, and extremely small classrooms

(below 15 students) are removed from the analysis due to likely being reporting errors, so as to minimise

the noise in estimation even further.
30Conclusions hold in the same way given different observations of a network with the same link teacher.
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I can compute θ̂jMAB
− θ̂jMCD

as:

θ̂jMAB
− θ̂jMCD

=
5

8
∆1 +

3

8
∆2 (C.22)

Following this logic, I use the estimated residuals to compute for each observation of a

network of two Math teachers:

(ε̂cA,jMA
− ε̂cA,jF )− (ε̂cB ,jMB

− ε̂cB ,jF ) = ∆n
jMA

,jMB

and similarly for a network of two French teachers:

(ε̂cC ,jFC
− ε̂cC ,jM )− (ε̂cD,jFD

− ε̂cD,jM ) = ∆n
jFC

,jFD

I then average across all observations of a single network of two teachers in a subject, weight-

ing by the number of students within each observation, such that the relative value-added of

the Math teachers jMA
and jMB

is computed as:

θ̂jMA
− θ̂jMB

=

N∑
1

wn ·∆n
jMA

,jMB

and similarly that of the French teachers jFC
and jFD

is:

θ̂jFC
− θ̂jFD

=

N∑
1

wn ·∆n
jFC

,jFD

where w is the weight of observation n.

I apply these methods within school and calculate the standard deviation of value-added

measured within each school. I then proceed by calculating the average of these within-

school standard deviations, in order to provide an estimate of the average within-school

variability in teacher value-added.

Comparing the results of this estimation to the results of the baseline estimation, I note two

facts. Firstly, the Spearman correlation between individual value-added estimates is 0.99 in

for both Math and French within-school value-added distributions. Secondly, the estimated

average within-school standard deviation in value added is almost identical: for Math, the

new s.d. is 0.1743 compared to the baseline value of 0.1744; similarly, for French, the new s.d.

is 0.1632 compared to 0.1633. Therefore, I conclude that adding weights based on classroom

size does not add much value to the analysis.

D Simulation exercise

D.1 Model comparison

Network estimates In line with the theoretical model described in my paper, as As
i,f,jf ,t

represent the student grades in each subject f , net of student characteristics, it follows that:

(As
cA,M,jMA

−As
cA,M,jF

)− (As
cB ,M,jMB

−As
cB ,M,jF

) ≡ As,n
jMA

,jMB
(D.23)
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and therefore, using all n observations of the network of teachers jMA
and jMB

, I find their

relative value added as:

θ̂jMA
− θ̂jMB

=
1

N

N∑
1

As,n
jMA

,jMB
(D.24)

I use the method described in Section 4 to move from pairwise comparisons to a distribution

of value added.

Note that according to my data, the correlation between the residualised Math and French

grades of students is 0.58. I take this value as a reference point but also vary the level of

correlation between the two grades (through an increase in the standard deviation of the

French grade) in order to see how the MSE and rank predictability react.

In the case of no sorting between students and teachers, both θi and θi,M are left to vary

independently of θjM .

Once sorting on common ability is introduced, I use an extreme example such that θi is

1-to-1 correlated with teacher value added θjM , in the form of θi = a× θjM + b, a > 0. This

would mean that better Math teachers are sorted into classrooms with better students., It

is clear that, using equation 7 to substitute into equation D.23, this factor would cancel out

in the difference.

Finally, in the case of sorting on Math-specific ability, to use an extreme example, let θi,M

now be 1-to-1 correlated with teacher value added θjM , such that θi,M = a× θjjM + b, a > 0.

Using again equation 7 averaged on a classroom level to substitute into equation D.23, and

assuming there is no sorting in French such that θcA,F = θcB ,F on average, then:

As,n
jMA

,jMB
= (1 + a)[θjMA

− θjMB
] ̸= θjMA

− θjMB
(D.25)

In both cases, to make sure that the transformation does not change the relative part of the

variance of the simulated grade, I then restandardise respectively the θi in the first case and

θi,M in the second, to have the same standard deviation as in the no sorting case.

Baseline estimates I reproduce the BE by running a regression of the sort:

As
i,M,jM

= α+ βAi,M,jM′ ,t−1 + θjM + ϵi,M,jM (D.26)

and extract the estimated teacher fixed effects θjM . Rothstein (2009) shows that the correla-

tion for actual reading grades between classes is between 0.7 and 0.8. I take 0.8 as a reference

point for the correlation between the ability of a student (θi+θi,M ) and his past Math grade,

ρ, but I also repeat the exercise for different values of ρ in order to see how the MSE and

rank predictability react. Note that we do not have an idea of ρ from the literature, as it

represents the correlation between residualised grades, rather than actual grades, but it is
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logical that such correlation would be lower, as a lot of the same observable student-level

factors affect the realisation of both grades.

In this case, for the case of any of the two types of sorting, as the correlation between

Ai,M,jM′ ,t−1 and (θi + θi,M ) is lower than 1, the use of the past grade does not fully clear up

the bias of sorting.
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Figure D.2: Results for a case of random teacher-student sorting

The four graphs represent the results for the BE and NE models in the case of no sorting. Panels (a) and

(b) depict respectively the difference in the mean squared error (MSE) of the NE and BE models, and the

difference between the Spearman correlation of estimates of the NE and BE models, when comparing the

value added estimates of each to the true value added parameters. In both graphs, the x-axis represents

variation in the correlation between As
i,M and As

i,F , such that the vertical red line represents the empirically

found correlation of 0.58. Each of the lines represents a different level of correlation between student ability

θi + θi,M and past grade Ai,M,t−1. The crossing of the horizontal red line is associated with the NE method

outperforming the BE method in terms of precision of estimates. Panels (c) and (d) depict respectively the

estimates of value added for the 5 Math teachers from both the NE and BE model, and how they compare to

the true value added parameters (the 45-degree line). The estimates of the NE model are shown with circles

and the estimates of the BE model are shown with triangles. Panel (c) keeps constant the corr(AM,t,AM,t−1),

at 0.8, and varies the corr(AM ,AF ), therefore showing a set of NE estimates for each value of corr(AM ,AF ).

Panel (d) keeps constant the corr(AM ,AF ), at 0.58, and varies the corr(AM,t,AM,t−1), therefore showing a

set of BE estimates for each value of corr(AM,t,AM,t−1).
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Figure D.3: Results for a case of teacher-student sorting based on common ability

The four graphs represent the results for the BE and NE models in the case of no sorting. Panels (a) and

(b) depict respectively the difference in the mean squared error (MSE) of the NE and BE models, and the

difference between the Spearman correlation of estimates of the NE and BE models, when comparing the

value added estimates of each to the true value added parameters. In both graphs, the x-axis represents

variation in the correlation between As
i,M and As

i,F , such that the vertical red line represents the empirically

found correlation of 0.58. Each of the lines represents a different level of correlation between student ability

θi + θi,M and past grade Ai,M,t−1. The crossing of the horizontal red line is associated with the NE method

outperforming the BE method in terms of precision of estimates. Panels (c) and (d) depict respectively the

estimates of value added for the 5 Math teachers from both the NE and BE model, and how they compare to

the true value added parameters (the 45-degree line). The estimates of the NE model are shown with circles

and the estimates of the BE model are shown with triangles. Panel (c) keeps constant the corr(AM,t,AM,t−1),

at 0.8, and varies the corr(AM ,AF ), therefore showing a set of NE estimates for each value of corr(AM ,AF ).

Panel (d) keeps constant the corr(AM ,AF ), at 0.58, and varies the corr(AM,t,AM,t−1), therefore showing a

set of BE estimates for each value of corr(AM,t,AM,t−1).
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Figure D.4: Results for a case of teacher-student sorting based on subject-specific ability

The four graphs represent the results for the BE and NE models in the case of no sorting. Panels (a) and

(b) depict respectively the difference in the mean squared error (MSE) of the NE and BE models, and the

difference between the Spearman correlation of estimates of the NE and BE models, when comparing the

value added estimates of each to the true value added parameters. In both graphs, the x-axis represents

variation in the correlation between As
i,M and As

i,F , such that the vertical red line represents the empirically

found correlation of 0.58. Each of the lines represents a different level of correlation between student ability

θi + θi,M and past grade Ai,M,t−1. The crossing of the horizontal red line is associated with the NE method

outperforming the BE method in terms of precision of estimates. Panels (c) and (d) depict respectively the

estimates of value added for the 5 Math teachers from both the NE and BE model, and how they compare to

the true value added parameters (the 45-degree line). The estimates of the NE model are shown with circles

and the estimates of the BE model are shown with triangles. Panel (c) keeps constant the corr(AM,t,AM,t−1),

at 0.8, and varies the corr(AM ,AF ), therefore showing a set of NE estimates for each value of corr(AM ,AF ).

Panel (d) keeps constant the corr(AM ,AF ), at 0.58, and varies the corr(AM,t,AM,t−1), therefore showing a

set of BE estimates for each value of corr(AM,t,AM,t−1).
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D.2 Robustness

To show that the results outlined above are robust to changes in the characteristics of the

school, I vary sequentially the number of classrooms, the average classroom size, and the

number of Math and French teachers and plot the respective Spearman correlation and MSE

for the NE model, assuming no sorting. Every time a characteristic is left to vary, I keep all

other characteristics constant for tractability.

Figure D.5: Spearman correlation (LHS) and MSE (RHS) of the NE model for different

levels of the school characteristics (pt. 1)
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Overall, changes in the number of classrooms, the classroom size and the number of French

(link) teachers does not affect the rank prediction of the model, but slightly affects the MSE,

such that fewer classrooms lead to a larger MSE. The number of Math teachers (i.e. those for

whom I estimate value added) naturally plays a larger part, such that too many teachers lead
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to too few observations per teacher in a classroom, and therefore leads to a low Spearman

correlation and high MSE.

Figure D.6: Spearman correlation (LHS) and MSE (RHS) of the NE model for different

levels of the school characteristics (pt. 2)
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I further vary the respective shares in the total variance of overall ability, Math-specific

ability and teacher value added.
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NE BE ∆ (NE-BE)

No sorting

Shares (θi = 0.23, θi,M = 0.69, θjM = 0.07)

Sqr. Root of MSE 0.005 0.004 0.001

Spearman corr. 1.00 1.00 0.00

Shares (θi = 0.69, θi,M = 0.23, θjM = 0.07)

Sqr. Root of MSE 0.004 0.003 0.001

Spearman corr. 1.00 1.00 0.00

Shares (θi = 0.395, θi,M = 0.395, θjM = 0.21)

Sqr. Root of MSE 0.006 0.004 0.002

Spearman corr. 1.00 1.00 0.00

Sorting on common ability

Shares (θi = 0.23, θi,M = 0.69, θjM = 0.07)

Sqr. Root of MSE 0.005 0.14 -0.135

Spearman corr. 1.00 1.00 0.00

Shares (θi = 0.69, θi,M = 0.23, θjM = 0.07)

Sqr. Root of MSE 0.004 0.393 -0.389

Spearman corr. 1.00 1.00 0.00

Shares (θi = 0.395, θi,M = 0.395, θjM = 0.21)

Sqr. Root of MSE 0.006 0.225 -0.219

Spearman corr. 1.00 1.00 0.00

Sorting on subject-specific ability

Shares (θi = 0.23, θi,M = 0.69, θjM = 0.07)

Sqr. Root of MSE 0.567 0.394 0.173

Spearman corr. 1.00 1.00 0.00

Shares (θi = 0.69, θi,M = 0.23, θjM = 0.07)

Sqr. Root of MSE 0.329 0.142 0.187

Spearman corr. 1.00 1.00 0.00

Shares (θi = 0.395, θi,M = 0.395, θjM = 0.21)

Sqr. Root of MSE 0.427 0.227 0.2

Spearman corr. 1.00 1.00 0.00

Table D.4: Model performance comparison

Note: This table depicts the square root of the mean squared error (MSE) of the Traditional model (BE)

compared to the true value added parameters and of the Network model (NE) and the true value added

parameters. It also shows the Spearman correlations between the BE model and the true value added

parameters, and the NE model and the true value added parameters. The referenced BE model is estimated

for a correlation ρ = 0.8 between past student grade and student ability (θi+ θi,f ). The referenced NE model

is estimated for a correlation 0.58 between As
i,M,jM

and As
i,F,jF

. The case of No sorting does not impose

any correlation between value added and student ability. The case of Sorting on common ability imposes a

correlation of 1 between the value added of the Math teacher and the common ability factor θi, specifically

by imposing a structure θi = a × θjM + b. Finally, the case of Sorting on subject-specific ability imposes

a correlation of 1 between the value added of the Math teacher and the Math-specific ability factor θi,M ,

specifically by imposing a structure θi,M = a× θjM + b.
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E Descriptive statistics

Table E.5: Math teacher characteristics

n mean sd min max range se

Experience 71,548 11.46 6.60 0.00 44.00 44.00 0.02

Age 71,548 39.99 8.16 22.00 67.00 45.00 0.03

At disadv. school 71,548 0.21 0.41 0.00 1.00 1.00 0.00

Perc. of time teaching 7,113 77.42 10.96 46.94 100.00 53.06 0.13

Pedag. grade (harm.) 15,022 46.42 4.17 29.00 60.00 31.00 0.03

Adv. qualif. (agrégé) 71,548 0.09 0.28 0.00 1.00 1.00 0.00

Gross monthly salary 70,122 2998.53 425.75 2047.37 4919.13 2871.76 1.61

Table E.6: French teacher characteristics

n mean sd min max range se

Experience 77,510 12.18 6.53 0.00 39.00 39.00 0.02

Age 77,510 40.70 8.30 22.00 67.00 45.00 0.03

At disadv. school 77,510 0.21 0.41 0.00 1.00 1.00 0.00

Perc. of time teaching 9,297 76.21 11.19 50.00 100.00 50.00 0.12

Pedag. grade (harm.) 16,605 46.42 4.27 33.30 60.00 26.70 0.03

Adv. qualif. (agrégé) 77,510 0.08 0.28 0.00 1.00 1.00 0.00

Gross monthly salary 76,321 3021.24 435.77 2047.37 5200.80 3153.43 1.58
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Table E.7: Student characteristics

n mean sd min max range se

Age 2,450,480 14.32 0.57 12.00 18.00 6.00 0.00

Moved region since birth 2,450,480 0.33 0.47 0.00 1.00 1.00 0.00

Takes Ancient Greek 2,450,480 0.03 0.16 0.00 1.00 1.00 0.00

Takes Latin 2,450,480 0.16 0.36 0.00 1.00 1.00 0.00

Num. times taking exam 2,450,480 1.03 0.17 1.00 3.00 2.00 0.00

Passed 9th grade 2,450,480 0.76 0.43 0.00 1.00 1.00 0.00

French grade (pre-2016) 2,120,131 20.97 7.50 0.00 40.00 40.00 0.01

French grade (post-2016) 330,349 42.81 18.15 0.00 100.00 100.00 0.03

Math grade (pre-2016) 2,120,131 19.02 9.59 0.00 40.00 40.00 0.01

Math grade (post-2016) 330,349 47.75 24.73 0.00 100.00 100.00 0.04

At disadv. school 2,450,480 0.19 0.39 0.00 1.00 1.00 0.00

Scholarship student 2,450,480 0.23 0.42 0.00 1.00 1.00 0.00

Female 2,450,480 0.51 0.50 0.00 1.00 1.00 0.00

French national 2,450,480 0.97 0.18 0.00 1.00 1.00 0.00

Very high SES 2,450,480 0.27 0.44 0.00 1.00 1.00 0.00

High SES 2,450,480 0.19 0.39 0.00 1.00 1.00 0.00

Medium SES 2,450,480 0.33 0.47 0.00 1.00 1.00 0.00

Low SES 2,450,480 0.21 0.41 0.00 1.00 1.00 0.00

Parent employed 2,450,480 0.79 0.41 0.00 1.00 1.00 0.00

Parent retired 2,450,480 0.01 0.10 0.00 1.00 1.00 0.00

Parent unemployed 2,450,480 0.02 0.14 0.00 1.00 1.00 0.00

Parent other situation 2,450,480 0.05 0.21 0.00 1.00 1.00 0.00
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Table E.8: Balance checks - schools in value-added analysis

Coefficient S.E.

Average teacher age -1.1103*** 0.0879

Average class size 0.1946*** 0.0442

Average cohort size -18.9017*** 0.7764

Average teacher experience 1.2675*** 0.0664

Average french grade 0.0179* 0.0059

Average math grade 0.0135 0.0072

Average number of teachers per year -0.8457*** 0.0375

Average number of french teachers per year -0.4592*** 0.0209

Average number of math teachers per year -0.4009*** 0.0187

Average DNB pass rate 0.0049* 0.0017

Average pedagogical grade -0.0196 0.0113

Average perc. pedagogical grade -0.0074 ** 0.0035

Average perc. agregation 0.0077*** 0.0021

Average perc. CAPES 0.0492*** 0.0022

Perc. French students 0.0053*** 0.0010

Perc. male students 3e-04 0.0006

Average perc. male teachers 0.0126*** 0.0034

Perc. scholarship stusdents -0.0133*** 0.0030

Perc. students SES 1 0.0106*** 0.0031

Perc. students SES 2 0.0061*** 0.0012

Perc. students SES 3 0.0034 0.0018

Perc. students SES 4 -0.0033 0.0030

Perc. students taking Ancient Greek 3e-04 0.0010

Perc. students taking Latin 3e-04 0.0016

Average teacher salary -73.887*** 4.5570

Average number of times taking DNB exams 6e-04 0.0004

Disadvantaged school -0.019 ** 0.0088

Note: The table presents the OLS regression coefficients of a regression which compares the treated

schools’ characteristics to those of all schools (i.e. including the treated).

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table E.9: Network statistics

Mean S.d.

Math teachers

Number of networks per teacher within school 4.42 1.79

Number of times a network is observed 5.6 6.54

Number of students per network 135 158.7

Number of French link teachers per Math teacher 2.75 1.46

Number of unique networks 39,094

French teachers

Number of networks per teacher within school 5.36 2.09

Number of times a network is observed 4.85 5.78

Number of students per network 117 139.9

Number of Math link teachers per French teacher 2.4 1.26

Number of unique networks 58,232
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F Results

F.1 First stage

The coefficients of the first stage are shown in Table F.10.31

It is worth noting that all factors Xi have a significantly different impact on student grades

depending on whether we examine Math or French grades, indicating that certain factors

are more important for the performance of a student in a certain subject. While coefficients

across subjects are nevertheless generally in the same ballpark, it is interesting to note that

male students perform slightly better in Math (0.03 s.d.), and significantly worse in French

(-0.38 s.d.).

In addition, the socio-economic status of students (expressed both by their scholarship sta-

tus and their parents’ SES) is particularly important for the DNB grades of the students.

Compared to a student with a very high SES status, the Math (French) grade of a low SES

student is 0.62 (0.58) s.d. lower on average, for two students who study at the same school

in the same year, and are thus exposed to a very similar school environment.

Taking Ancient Greek or Latin are also very good indicators of the performance of a student,

which likely has to do with the SES of a student, due to the fact that the take-up of the two

languages is often seen as a mechanism by more strategic parents of sorting their children

into better classrooms.

Despite the number of student-level controls and the specific focus on the within-school

variation in estimates, these observable characteristics seem to only explain about 30% (29%)

of the variation in Math (French) DNB grades.

31Note that almost all controls are typical for the value-added literature, with the exception of the dummies

“ Taking Ancient Greek” and “ Taking Latin”. The latter two are included due to anecdotal evidence

that parents use the two optional subjects in order to sort their children into classrooms of higher perfor-

mance/ability.
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Table F.10: First stage of value-added estimation

Math grade French grade

Male 0.030∗∗∗ -0.379∗∗∗

(0.001) (0.001)

Age -0.364∗∗∗ -0.333∗∗∗

(0.001) (0.001)

Scholarship student -0.141∗∗∗ -0.114∗∗∗

(0.001) (0.001)

High SES -0.267∗∗∗ -0.224∗∗∗

(0.002) (0.002)

Medium SES -0.404∗∗∗ -0.351∗∗∗

(0.001) (0.001)

Low SES -0.618∗∗∗ -0.582∗∗∗

(0.002) (0.002)

Moved department 0.018∗∗∗ 0.037∗∗∗

(0.001) (0.001)

Taking Ancient Greek 0.411∗∗∗ 0.399∗∗∗

(0.003) (0.003)

Taking Latin 0.540∗∗∗ 0.552∗∗∗

(0.001) (0.001)

School FE Yes Yes

Teacher experience FE Yes Yes

Year FE Yes Yes

Nationality FE Yes Yes

Main guardian type FE Yes Yes

Observations 2,807,201 2,807,201

R2 0.306 0.289

Note: The table presents the OLS regression results for the association of observable student char-

acteristics with student grades in Math and French. Student grades are standardised by subject

and year. The base SES category is that of ”Very high SES”. The dummy ”Moved department” is

equal to 1 if a student’s birth department is different from his current department of living.

* p < 0.1, ** p < 0.05, *** p < 0.01
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F.2 Robustness

Figure F.7: Average within-school s.d. in value-added given different restrictions on the

minimum number of classrooms per school (LHS) and the number of students per classroom

(RHS)
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F.3 Explaining the value added estimates conditionally

Math VA French VA

Age 0.099∗ −0.014

(0.055) (0.038)

Age2 −0.001∗∗ 0.00000

(0.001) (0.0004)

Experience −0.017 −0.003

(0.023) (0.018)

Experience2 0.0002 0.0002

(0.001) (0.001)

Total num. students 0.002∗∗∗ −0.0003

(0.0005) (0.0004)

Male −0.184∗∗ −0.242∗∗∗

(0.085) (0.074)

Pedag. grade (harm.) 0.432∗∗∗ 0.220∗∗

(0.167) (0.104)

Adv. qualif. (agrégé) −0.309 0.072

(0.226) (0.144)

Hours teaching −0.306∗∗ 0.062

(0.125) (0.084)

Gross monthly salary 0.001∗∗∗ 0.0002

(0.0002) (0.0001)

Mover −0.031 0.018

(0.093) (0.064)

Leaver 0.081 −0.020

(0.154) (0.110)

School FE Yes Yes

Observations 4,194 5,010

R2 0.613 0.590

Note: The table presents the OLS regression results for the association of observable teacher charac-

teristics with the estimated teacher value added. The estimates are available for a small subsample

of teachers due to missing data in the characteristics. The correlations are conditional on school

fixed effects to reflect the fact teacher value added estimates are comparable only within school. *

p < 0.1, ** p < 0.05, *** p < 0.01
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