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Abstract

This paper explores teachers’ instructional decisions and their implications for the distribution
of student achievement. Canonical models of student performance often assume that teacher
effectiveness is independent of the classroom environment. In practice, however, teachers can
endogenously adapt instruction based on the composition of the classroom. This can have impli-
cations for the design of education policies whose impact is likely mediated by teachers’ behavior.
I exploit unique data from US elementary schools with rich information on teacher instruction to
develop and estimate an equilibrium model of endogenous teacher instructional choices, student
effort, and student achievement. Teachers are heterogeneous in their teaching ability and choose
instructional effort and the allocation of class time across topics. Students vary by initial ability
and choose study effort. Student achievement depends on both teacher and student inputs. The
model specification allows me to assess whether teachers value unequally the achievement of stu-
dents with different levels of ability. I find that teachers place a higher value on the achievement of
students at the bottom of the ability distribution. I then perform a counterfactual analysis where
I reallocate students to classrooms based on prior test score performance (ability tracking) and
teachers to classrooms based on teaching ability (assortative matching). Results show that track-
ing has heterogeneous effects on students with different levels of ability, and that the distribution
of these impacts depends on how teachers endogenously adjust their instructional choices to the
composition of the classroom. Moreover, the combination of tracking with assigning high-ability
teachers to low-ability students would benefit students both at the top and at the bottom of the
ability distribution. High-ability students would benefit from spillovers from high-ability peers,
while low-ability students would gain from the higher quality and better tailored instruction pro-
vided by high-ability teachers.
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1. Introduction

Disadvantaged students are consistently underachieving in the United States. Recent estimates

show that the disparity in academic performance between students from high and low socioeconomic

backgrounds is equivalent to about three years of learning, a value similar to fifty years ago (Hanushek

et al., 2020). Closing the achievement gap has been one of the top priorities of US policymakers over

the past decades, but improvements have been modest despite the policies and resources deployed.

Meanwhile, a growing body of research reports that interventions aimed at tailoring instruction to

students’ preparedness are particularly effective in fostering learning gains and reducing inequality,

especially in early grades (see e.g., Banerjee et al., 2007; Kremer et al., 2013; Connor and Morrison,

2016; Connor et al., 2018). In practice, however, meeting the needs of academically diverse students

could be a challenging task for educators, especially given the public good nature of instruction in a

classroom environment (Lazear, 2001). A feasible alternative could then entail tailoring instruction

to the needs of students with specific levels of ability.1 Teachers can choose to orient instruction

towards specific segments of the classroom based on the value that they attach to the achievement of

students along the ability distribution, which can reflect a variety of factors, like personal preferences,

incentives provided by education systems, or other institutional constraints.

Whether teachers value unequally the achievement of different students can determine how they

adjust instruction based on the composition of the classroom. This, in turn, has potential implica-

tions for the distributional impact of student-classroom assignment policies, like the common prac-

tice of separating students into classrooms on the basis of ability (i.e., ability tracking). Besides, the

extent to which teachers respond to the composition of the classroom can depend on potential match

effects between the teacher’s and the students’ ability. Yet, teachers might also have incentives to stick

to a predetermined curriculum or to simply follow specific teaching strategies regardless of the stu-

dent composition in the classroom.

Existing empirical evidence seems to indicate the presence of specific patterns in teaching strate-

gies across different countries. Recent studies show that educators in developing countries tend to

direct their efforts towards better prepared students (e.g., Duflo et al., 2011; Gilligan et al., forthcom-

ing; Cuesta et al., 2020), while teachers in US schools are more likely to target students in the lower

part of the distribution as a result of incentive-based policies like No Child Left Behind (e.g., Reback,

2008; Neal and Schanzenbach, 2010; Deming and Figlio, 2016; Macartney et al., 2021). Yet, these find-

ings are often inferred from student test scores, while evidence from direct information on teachers’

instructional decision in the classroom is still scarce.

In this paper, I exploit unique data with rich information on teachers’ instructional choices and

1The terms “ability”, “readiness”, “prior achievement”, “prior knowledge”, and “baseline knowledge” are used inter-
changeably throughout the paper.
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teaching skills to address the following research questions: Do teachers assign unequal values the

achievement of different students? Are teachers’ instructional choices affected by the composition of

the classroom? How does instruction shape the distribution of student achievement, and what are

the implications for the impact of teacher-student assignment policies? I address these questions by

developing and estimating an equilibrium model of endogenous instructional choices and student

effort in a classroom environment. Teachers are endowed with teaching ability and choose the al-

location of class time among different topics jointly with the amount of instructional effort to exert

throughout the school year. Students, instead, are endowed with a level of baseline knowledge and

choose how much learning effort to exert. Teacher and students strategically interact in a classroom

environment, and their choices are modeled as the equilibrium of a static game of complete informa-

tion. A technology of knowledge formation links instructional choices, teacher ability, and student

inputs to the production of end-of-year knowledge, with the allocation of class time among differ-

ent topics having a potentially heterogeneous impact on students with different levels of baseline

knowledge. In particular, the parametric specification of the production function allows me to find

the specific allocations of instructional time tailored to each student’s level of prior knowledge. More-

over, the technology incorporates direct peer-to-peer spillovers not mediated by the teacher’s behav-

ior (e.g., originating from direct interactions among students). Availability of data on instructional

choices and student characteristics allows me to empirically disentangle their separate contribution

to the overall level of peer effects.

The model allows teachers to value differently the achievement of different students by attaching

a specific weight to each student’s end-of-year knowledge. Although not modeled in this framework,

these weights can reflect the influence of various factors that potentially determine how teachers are

rewarded for their students’ performances, including monetary incentives or personal preferences.

Moreover, these weights, combined with the specification of the knowledge production function, are

able to generate the mechanism through which teachers orient their instruction towards students

with specific levels of prior achievement. Specifically, teachers might optimally choose an allocation

of class time closer to the one tailored to those students whose achievement is weighted the highest.

Teachers also bear a cost of exerting effort and have preferences over time spent teaching specific

topics and its alignment with the state-level curriculum standards. These standards represent the

content and pace of instruction that, according to the educational authorities, teachers are supposed

to follow in order to attain student proficiency by the end of the grade. Finally, students care about

their end-of-year knowledge and also bear a learning effort cost.

The model is estimated using data from the Measures of Teaching Effectiveness (MET) project

carried out by the Bill and Melinda Gates Foundation between 2009 and 2011. The dataset merges

school administrative information on test scores and other student characteristics from five US pub-

lic school districts with a large set of measures of teacher ability, teacher effort, student effort, and
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detailed information on class time allocation across topics.2 In particular, the empirical analysis fo-

cuses on fourth grade math classrooms. The model is estimated through simulated maximum likeli-

hood, which accounts for the potential presence of measurement error by exploiting the availability

of a large constellation of measures of both student-level and teacher-level inputs.

The results from the estimated model suggest that teachers attach higher rewards to the achieve-

ment of students with lower levels of initial knowledge. These estimates turn out to be a good char-

acterization of the incentives provided by the US education system, especially as documented by

evidence on recent incentive-based policies like NCLB (see e.g. Macartney et al., 2021; Deming and

Figlio, 2016). Furthermore, my estimates show that better prepared students tend to be more produc-

tive in learning new material, that teacher ability is positively related to students’ learning, and that

the allocation of class time across different topics has a significantly different impact on end-of-year

knowledge depending on the student’s level of preparation. As for direct peer-to-peer spillovers, the

sign of the estimates uncover two main patterns. First, students in the lower and middle part of the

distribution benefit from larger shares of higher-achieving peers, but only from adjacent quantiles.

Second, only high-achieving students benefit from classmates with similar levels of prior knowledge.

Besides allowing for a more complete specification of knowledge accumulation process, the in-

puts included in the knowledge production function play a key role in controlling for factors poten-

tially related to the non-random assignment of teachers to classrooms. Indeed, the latter is often con-

sidered a primary source of bias in the estimation of education production functions. To the extent

that teacher assignments are based on prior test scores, teacher ability, or other observable character-

istics, the inputs included are able to account for a wide range of potential confounding factors. Yet,

assignment based on unobservables could still afflict the estimates. In order to check for the validity

of the estimated model, I perform an out-of-sample validation exercise using data from the second

year of the MET study in which teachers were randomly assigned to classrooms within each school.

Specifically, I use the model estimates to predict measures of instruction and end-of-year knowledge

in the second-year sample and then compare the simulated values with the actual data.3 Results show

that, although teachers were not randomly assigned in the sample used for the estimation, the model

does a good job predicting second-year outcomes.

The estimated model allows me to run a counterfactual experiment where I implement ability

tracking on 4th grade math classes. To this end, I re-assign students to classrooms based on their

prior test scores and simulate the outcomes under three alternative teacher assignment mechanisms:

(i) random assignment, (ii) higher ability teachers to higher tracks and lower ability teachers to lower

tracks (positive assortative matching), and (iii) higher ability teachers to lower tracks and lower ability

2There are a total of seven school districts participating in the MET study. However, two of these districts do not provide
the necessary data to be included in the empirical analysis.

3Note that the simulated instructional time inputs cannot be compared to the actual data, as measures of class time
allocation were not collected in the second year of the study.
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teachers to higher tracks (negative assortative matching). I find that the effect of tracking on end-of-

year knowledge depends significantly on the way teachers are assigned to classrooms. In particular,

assigning better teachers to higher tracks can generate an increase in the achievement of students

at the top of the distribution of about 0.16 standard deviations (SD), while performance of students

in the middle and bottom terciles would decrease by 0.04SD. On the other hand, assigning the best

teachers to lower-ability students increases the achievement of both high and low-achieving students

by 0.05SD and 0.027SD, respectively. Repeating this counterfactual experiment assigning teachers to

classrooms based on teaching experience yields results similar to mere random assignment. The

main novelty of these findings is that, on top of accounting for teachers’ behavioral response to

changes in classroom composition, they shed light on a new dimension that determines the distribu-

tional effect of tracking, namely the teacher assignment mechanism.

These findings are partly driven by the way teachers adjust instruction to the specific track they

are assigned to. In particular, teachers assigned to lower tracks tend to reallocate instructional time

in a way that is better tailored to students’ baseline knowledge, as well as to increase the amount of

effort they exert. Both these responses are directly implied by the increased classroom homogeneity

generated by the tracking policy. In fact, while tracking allows teachers to better match the pace of

instruction to the students’ initial knowledge, it also separates students whose achievement is more

rewarding (i.e., weaker students) from those whose performance is less so. The model also allows me

to disentangle the two peer effects channels operating under ability tracking. I find that ignoring the

behavioral response of teachers to this policy can result into substantial bias in the estimated effects,

often underestimating the potential benefits of tracking for students at the bottom of the distribution.

In a final analysis, I look at how curriculum standards impact the achievement of students at

different levels of the distribution. Contrary to the beliefs of educational authorities, adhering to cur-

riculum standards does not always translate into higher learning (see e.g., Polikoff and Porter, 2014).

In fact, setting common standards has the potential drawback of curtailing flexibility, as they could

impose a curriculum that is either too ambitious or too undemanding for the students in different

schools and classrooms. To assess whether this is the case, I simulate a counterfactual experiment

in which all teachers teach according to the state’s curriculum standards. The results show that stu-

dents along the entire distribution of prior knowledge would experience a decrease in end-of-year

achievement.

The contribution of the present study spans several strands of the literature. First, this paper con-

tributes to a recent literature on the impact of incentives on teacher rewards and student outcomes.

Duflo et al. (2011) finds that the heterogeneous impact of tracking on achievement is consistent with

the hypothesis that teachers in Kenyan schools tend to tailor their instruction to students at the top

of the distribution. Using data on US schools, Macartney et al. (2021) find that the implementation

of NCLB in North Carolina created a peak of test scores growth around proficiency cutoffs, while
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Deming and Figlio (2016) report higher achievement gains of low-achieving students in schools that

were more likely to be marked as “low performing” under an accountability program in Texas. In

both cases, the authors interpret these results in terms of teachers directing their efforts towards stu-

dents at the margin or in the lower tail of the achievement distribution in response to the incentive

programs. A novelty of the present study is that it employs instructional choices data in order to in-

vestigate the extent to which teachers orient instruction towards specific groups of students, rather

than inferring such behavioral responses from changes in distribution of student outcomes. My re-

sults are in line with prior evidence in that it confirms that teachers in US public schools attach higher

rewards to achievement gains of students in lower quantiles.

Second, this paper contributes to the literature on the distributional impact of ability tracking

on student outcomes. Evidence on the effect of tracking on student outcomes is still mixed. Fu and

Mehta (2018) develop and estimate a model of endogenous tracking choices and parental invest-

ments, and find that tracking benefits only high-achieving students while being detrimental for those

assigned to lower tracks. These results are consistent with early findings by Argys et al. (1996). Similar

results are also found by Donaldson et al. (2017), who show that teachers assigned to lower tracks pro-

vide less emotional, organizational, and instructional support to students. On the other hand, Betts

and Shkolnik (2000) find little differences in student outcomes between tracking and non-tracking

schools, while Figlio and Page (2002) find that tracking might benefit low-ability students when ac-

counting for endogenous sorting into schools. Duflo et al. (2011) use a randomized experiment to

study the effect of two-way tracking in Kenyan schools. They find that tracking increases student

achievement significantly across the entire ability distribution, and that these effects are likely driven

by the behavioral response of teachers to the increased classroom homogeneity. My model expands

on the theoretical and empirical findings of Duflo et al. (2011) by investigating how teachers’ choices

respond to tracking as well as how its impact on achievement might depend on the specific teacher-

classroom assignment mechanism employed.

This paper also adds to a more general and well-established literature on peer effects in the class-

room (e.g. Manski, 1993; Brock and Durlauf, 2001; Sacerdote, 2011, for a review). As pointed out

by Sacerdote (2011), there are a large number of channels through which peers can affect student

outcomes. In particular, both Duflo et al. (2011) and Todd and Wolpin (2018) highlight how peer

spillovers can occur from the behavioral response of teachers to the distribution of student character-

istics in the classroom. Similarly, Aucejo et al. (2021) employ data from the MET project and find that

different teaching practices have different effects on student achievement depending on the com-

position of the classroom. Moreover, there is growing evidence that peer effects are non-linear and

heterogeneous across students’ own ability (e.g., Hoxby and Weingarth, 2005; Booij et al., 2017). The

present paper contributes to this literature by explicitly modeling “indirect” peer effects stemming

from teachers’ response to classroom composition and allowing for (potentially non-linear) direct
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peer-to-peer spillovers. Finally, the present study contributes to a strand of research focused on the

estimation of skills and education production functions (e.g., Ben-Porath, 1967; Todd and Wolpin,

2003, 2007; Cunha et al., 2010) as well as on the estimation of model of endogenous decisions by

teachers and students in the classroom (e.g., Todd and Wolpin, 2018). This paper constitutes an ad-

dition to this literature by including endogenous instructional time allocation to the achievement

production function, with its effect on learning gains being allowed to depend on the student’s prior

knowledge.

The rest of the paper is structured as follows. Section 2 describes the structure of the model and

the specification of the knowledge formation technology. Section 3 analyses the identification of the

model and discusses the estimation method; Section 4 describes the data and reports descriptive

statistics of the final sample; Section 5 discusses the estimation results as well as internal and exter-

nal validation of the model. Finally, Section 6 analyses the counterfactuals and policy experiments,

whereas Section 7 contains concluding remarks.

2. A Model of Teacher’s Instructional Decisions

This section presents an equilibrium model capturing the potential mechanisms underlying

teacher instructional choices and peer effects. The model focuses on 4th grade math classrooms.

I assume that each teacher teaches only in one classroom. Each teacher chooses both teaching effort

and class time allocation across topics given her preferences over the achievement of her students,

over specific time allocations, and over the costs of exerting teaching effort and of deviating from cur-

riculum standards. Students choose learning effort based on their preferences over their own achieve-

ment and based on the characteristics of their classmates. Teacher and students are assumed to make

their choices simultaneously.4

2.1 Environment and Choices

Consider a teacher t teaching in a class composed by Nt students, each of them indexed by i .

The teacher is endowed with a level of ability At , which affects the productivity of her instruction,

and a total amount of class time over the entire school year, τt . The latter can be allocated among

J different topics, where time spent on topic j ∈ {1, . . . , J } is denoted by τt j ∈ [0,τt ]. Define the class

time allocation vector chosen by teacher t asτt = (τt1, . . . ,τt J ), with
∑J

j=1τt j = τt . On top of class time

allocation, the teacher chooses the amount of instructional effort to exert in class, which is assumed

to be a non-negative scalar et . Both τt and et are assumed to be pure public inputs, thus excluding

the possibility of individualized instruction or within-classroom ability grouping practices. Finally,

4The model is meant to be an approximation of the complex dynamics encompassing the interactions between teachers
and students throughout the school year. For instance, one can envision a more complete dynamic model where teacher
and students adjust their actions sequentially in a day-to-day basis.
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each student i taught by teacher t starts with a level of initial knowledge in math, K0t i , and exerts

learning effort, ht i ≥ 0.

2.2 Knowledge Production Technology

Student i end-of-year knowledge in mathematics, K1t i , is determined by the production function

K1t i = δ0K0t i +δ1K γ0

0t i Aγ1
t eγ2

t hγ3

t i

J∏
j=1

τ
η j qi

t j +
q∑

k=1
πqi k f k

t ,−i , (1)

where δ0K0t i is the depreciated stock of prior knowledge, qi denotes the q-quantile of K0t i (hence-

forth referred to as simply student i ’s quantile), and η j q ∈ (0,1) for each j = 1, . . . , J . The last term in

(1) captures potential “direct” peer-to-peer spillovers, with f k
t ,−i the fraction of i ’s classmates in quan-

tile k, and
(
πqk

)q
k,q=1 parameters to be estimated. This specification is flexible enough to allow for

potential non-linearities in peer effects, where the distribution of peer characteristics can have a dif-

ferent effect on students at different quantiles of K0t i (see e.g., Booij et al., 2017; Hoxby and Weingarth,

2005).5 Equation (1) is assumed to satisfy constant returns to scale (CRS) in time inputs conditional

on the quantile q , i.e.,
∑J

j=1η j q = 1 for each q = 1, . . . , q . The specification in (1) follows the formu-

lation of human capital production by Ben-Porath (1967) in that it posits a knowledge accumulation

process where a flow of learning gains, or knowledge value-added (i.e., the second and third terms

in the equation), is added to the level of existing stock of knowledge net of depreciation, δ0K0t i . The

knowledge value-added captures the direct outcome of the learning process, where both instructional

and non-instructional inputs are combined and transformed into additional knowledge.

The Cobb-Douglas specification of the first term of the knowledge value-added is consistent with

the theoretical and empirical literature on learning and cognitive achievement. First, this functional

form fits the intuitive idea that instruction is made of two complementary elements: 1) the content

(i.e., what the teacher teaches), determined by the class time allocation τt , and 2) the delivery of such

content to the students, here governed by instructional effort et .6 In particular, the content of instruc-

tion includes both the curriculum (i.e., the set of topics the teacher allots positive amount of time to)

as well as the pace, defined by the specific distribution of class time allocated among the topics cov-

ered in class (e.g., a slower pace of instruction could involve spending more time on basic topics and

less on more advanced ones). Effort, instead, is meant to capture the degree to which the teacher

takes actions aimed at delivering the content to the students in an effective way. Moreover, the model

allows for the quality of instruction delivery, in terms of its impact on students learning gains, to de-

pend on the ability of the teacher, At . The latter generally includes teacher skills like verbal ability

5An error term, modeled as classical measurement error, is going to be included in the empirical specification of the
production function, as discussed in 3.1.2.

6Empirical evidence on the complementarity between content, delivery, and teacher ability can be found in Agodini
and Harris (2014).
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and content knowledge, which are considered among the most important attributes of teaching ef-

fectiveness.7 Second, equation (1) implies that the time inputs in τt (i.e. time spent in a each topic

j , τt j ) are all complement to each other. This is consistent with the literature on learning trajectories

of students in different subjects (see e.g. Kilpatrick et al., 2001, 2003, for a review of of the theoretical

and empirical studies of instruction and learning in mathematics). 8 Third, the elasticity parameters

(η j q )J
j=1 are quantile-specific, thus allowing time inputs to be more or less productive depending on

the level of i ’s initial knowledge. As discussed below, this feature of the model allows teacher to tailor

instruction to specific segments of the classroom. Finally, the complementarity of teacher inputs with

K0t i and ht i is consistent with the idea that the effectiveness of instruction depends on the students’

level of preparation and their level engagement in learning activities, where the latter can include

time spent studying the subject, amount of attention during classes, or class disruption. The comple-

mentarity between instruction and student readiness is well-documented in the literature (see e.g.,

Bodovski and Farkas, 2007; Engel et al., 2013, 2016; Todd and Wolpin, 2018), while recent studies find

both a positive impact of student effort on achievement (e.g. Burgess, 2016) as well an increase in

the effectiveness of teacher effort when students are more engaged in learning inside and outside the

classroom (see e.g. Todd and Wolpin, 2018).

An implication of the specification in (1) is that it allows me to find the optimal class time alloca-

tion for each student. Formally, this is given by τ̃t i = argmaxτt (Kt i ) conditional on all other inputs

and subject to the time constraints τt j ∈ [0,τt ], j = 1, . . . , J , and
∑J

j=1τt j = τt . Solving the maximiza-

tion problem, we obtain

τ̃t i = (τtη1qi . . . ,τtη J qi ) = τtηqi ≡ τ̃qi
t , (2)

where ηqi = (η1qi . . . ,η J qi ). Thus, τ̃qi
t represents the class time allocation tailored to all students at

quantile q = qi . This follows from a well-known property of the Cobb-Douglas with CRS and re-

sources constraint, which implies that the optimal share of time allocated to each topic is given by the

elasticity parameters ηq . The tailored instruction τ̃q
t is key in this model as it represents the channel

through which teachers are able to target the instructional needs of specific students. In particular,

7The importance of teaching ability in explaining achievement gains is stressed by Kane et al. (2013), who show how
a variety of research-based teaching effectiveness measures is able to strongly predict teachers’ value-added. Moreover,
the set of relevant attributes included in teacher ability can potentially go beyond content knowledge and verbal ability, as
noted by Darling-Hammond and Youngs (2002) and Andrew et al. (2005).

8Complementarity arises naturally between many mathematical topics. For example, learning how to compute the area
of a rectangle can reinforce the understanding of number multiplication. Yet, a potential drawback of the Cobb-Douglas
specification in (1) is that it carries the strong assumption that τt j = 0, for any j , implies zero learning gains. Although
relevant from a theoretical point of view, this assumption has no particular implication in the specific application of the
present study, as τt j = 0 never occurs in the data. Moreover, this specification has the desirable feature of allowing the
identification of the time allocation vectors tailored to each level of initial knowledge, as discussed below. A similar Cobb-
Douglas specification for time inputs in the achievement production function has been also used by e.g., Del Boca et al.
(2014).
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teachers can orient instruction towards students at a specific quantile q by choosing a vectorτt closer

to τ̃q
t .

2.3 Curriculum Standards

The majority of the US state departments of education adopt curriculum standards, which are

defined as the content students are supposed to know at the end of each grade and what teachers

should teach in order to ensure students’ proficiency. My model allows teachers to follow the state-

level standards as defined by the vector ϕt = (ϕt1, . . . ,ϕt J ), where each element ϕt j is defined as the

amount of class time the teacher is supposed to spend on topic j . Notice that standards could be

different across schools depending on the state they are located. This implies that if two teachers t

and t ′ are located in the same state, thenϕt =ϕt ′ .

2.4 Preferences

Teachers have preferences over their students’ knowledge as well as chosen instruction over the

school year.9 In particular, preferences are represented by the utility function

Ut =
Nt∑

i=1
ωt i K1t i −

e2
t

2
+

J∑
j=1

(
α1 j +εt j

)
τt j −

J∑
j=1

α
j
2t

2

(
τt j −ϕt j

)2 . (3)

Equation (3) is composed by four terms. The first one represents preferences over students’ end-

of-year knowledge, specified as a weighted average of the elements in K1t ≡ (K1t i , . . . ,K1t Nt ). The

teacher attaches a (possibly different) value (or weight) to each student’s knowledge level, which is

captured by the student-specific parameter ωt i . In particular, this weight is assumed to follow the

parametric specification

ωt i =
q∑

q=1
1
{

q = qi
}
ω

q
1 +W ′

t iω2, (4)

where the first term on the RHS captures the part ofωt i determined by student i ’s baseline knowledge,

which is represented by the quantile-specific parameterωq
1 , and the last term allowsωt i to depend on

other students’ or teacher’s characteristics Wt i , like gender or race. The second term in (3) represents

teacher’s effort cost, which is assumed to be quadratic in et , whereas the third term captures teachers’

preferences over the allocation of class time among classroom activities. Specifically, (α1k +εtk ) is the

marginal utility (cost) the teacher gets (bears) when increasing time spent on activity k (while holding

K1t fixed), with εtk a mean-zero preference shock and α1k a parameter to be estimated. Finally, the

last term represents teacher’s utility (cost) of deviating from the state curriculum standards ϕt . This

9Consistently with the literature on instructional effort choices, I assume that teachers do not account directly for stu-
dents’ future outcomes when making decisions (e.g. Barlevy and Neal, 2012; Macartney et al., 2021; Todd and Wolpin, 2018).
In fact, the implicit assumption is that teachers care about students’ future outcomes (like graduation, college enrollment,
earnings etc.) only to the extent to which they are determined by knowledge produced during the school year they are
teaching in.
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term captures teacher t ’s preference for adhering to the standards. In particular, α j
2t < 0 implies a

general compliance of the teacher with the standards on topic j , while a positive value indicates a

willingness to depart from ϕt j . I model the parameter α j
2t as

α
j
2t =α20 j +α21φt ,

where α20 j , j = 1, . . . , J , and α31 are parameters to be estimated, and φt represents teacher t ’s pref-

erence over the alignment to the standards. Specifically, the latter captures both teachers’ personal

preferences as well as potential constraints imposed by the school or district.

Students have preferences over their end-of-year knowledge and their effort, as represented by

the utility function

Ut i =ψt i K1t i −
h2

t i

2
, (5)

where ψt i captures student-specific preference over her end-of-year knowledge.

2.5 Model Solution and Equilibrium

Both the teacher and the student’s reaction functions are obtained through the maximiza-

tion of their utility conditional on the information available. I assume that all teacher and stu-

dents characteristics are known to the players when they make the decisions. That is, Gt ≡(
At ,ϕt ,εt ,φt , (K0t i ,ψt i )Nt

i=1

)
is common knowledge among the teacher and students in the classroom.

For given Gt and the level of effort exerted by students in the classroom, ht ≡ (ht1, . . . ,ht Nt ), the

teacher chooses effort et and class time allocation τt in order to maximize (3) subject to the choice

variables constraints. Formally,

max
et ,τt

[ Nt∑
i=1

ωt i K1t i −
e2

t

2
+

J∑
j=1

(
α1 j +εt j

)
τt j −

J∑
j=1

α
j
2t

2

(
τt j −ϕt j

)2
]

s.t . et ≥ 0, τt j ∈ [0,τt ], for j = 1, . . . , J ,
J∑

j=1
τt j = τt . (6)

Substituting for τt J = τt−∑J−1
j=1τt j and taking the first-order conditions, we obtain the following equa-

tions for an interior solution for the reaction functions of effort, e∗t (ht ), and time spent on each activ-
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ity k = 1. . . , J −1, τ∗tk (ht ),

γ2eγ2−1
t

Nt∑
i=1

ωt iδ1K γ0

0t i Aγ1
t hγ3

t i

J∏
j=1

τ
η j q

t j −et = 0 (7a)

Nt∑
i=1

ωt iδ1K γ0

0t i Aγ1
t eγ2

t hγ3

t i (ηkqiτ
−1
tk −η J qτ

−1
t J )

J∏
j=1

τ
η j q

t j +

+(α̃1k + ε̃tk )−αk
2t (τtk −ϕtk )+αJ

2t (τt J −ϕt J ) = 0, (7b)

where α̃1 j ≡ (α1 j −α1J ) and ε̃1 j ≡ (ε1 j − ε1J ). Equation (7a) represents the optimality condition for

et , which equates the marginal utility of students’ end-of-year knowledge from a change in et with

the marginal cost of effort. Notice that, given et ≥ 0, equation (7a) holds as long as the weighted

average in the first term is positive. Otherwise, the teacher optimally chooses to exert no effort by

setting e∗t = 0. This equation determines the relationship between instructional effort and the other

inputs. In particular, it shows that teachers respond to the classroom distribution of initial knowl-

edge, K0t , and how this relationship is governed by the interaction of the values attached to each

student end-of-year knowledge, (ωst i )Nt

i=1, with the the other inputs determining the productivity of

effort. Indeed, the more productive is effort in producing knowledge, the higher is the value of e∗t the

teacher chooses. These implications also characterize the relationship between instructional effort

and class time allocation given the results obtained in 2.2. In fact, the closer is time allocation τt to

the value tailored to the students whose achievement teacher t finds most rewarding, the more effort

she will exert.10 The optimality condition for an interior solution of each time input τtk , k = 1 · · · , J−1,

is represented by equation (7b). Although the way τ∗t is related to the value of other inputs and pa-

rameters is more complicated compared to the one with effort, the interaction between the weights

(ωt i )Nt

i=1 and the other production function parameters governs also the relationship between class

time allocation and the composition of the classroom. Yet, probably the most important aspect of

these FOCs is the presence of ht and K0t in both (7a) and (7b), which determines how peer effects

operate through the teacher’s instruction (i.e., the indirect channel of peer effects). These equations

also show how the sign and magnitude of such peer effects are non-trivial. For instance, even as-

suming γ0,γ3 > 0, higher levels of initial knowledge and student effort do not guarantee an increase

in instructional effort, especially in case the teacher attaches a higher weight to the achievement of

students in lower quantiles.

Given the effort levels exerted by her classmates, ht ,−i , and the teacher’s instruction, et and τt ,

10Formally, if we define q ′ ∈ argmaxq {ω
q
1 }Q

q=1 (i.e. the quantile of those students whose achievement the teacher attaches

the highest value), the lower is the distance between τt and τ̃
q ′
t (from (2)), the higher will be

∏J
j=1 τ

η j q

t j and, in turn, e∗t .
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student i chooses ht i in order to maximize her utility,

max
ht i

[
ψt i K1t i −

h2
t i

2

]
s.t . ht i ≥ 0, (8)

The FOC for an interior solution of the effort reaction function ht i (ht ,−i ,et ,τt ) is then

γ3ψt i hγ3−1
t i δ1K γ0

0t i Aγ1
t eγ2

t

J∏
j=1

τ
η j q

t j −ht i = 0. (9)

The positive effort Nash equilibrium is given by the solution to the system of equations composed

by the reaction functions determined by (7a), (7b), and (9) (for all i = 1, . . . , Nt ). To ease notation,

define D t i ≡ δ1K γ0

0t i Aγ1
t and Fq (τt ) ≡∏J

j=1τ
η j q

t j , and also α̃1k ≡α1k −α1J and ε̃tk ≡ εtk −εt J . The time

constraint implies τt J = τt −∑J−1
j=1τt j . The positive effort equilibrium profile {e∗t ,τ∗t , (h∗

t i )Nt

i=1} satisfies:

e∗t =
[
γ2(γ3)

γ3
2−γ3

Nt∑
`=1

ωt`[D t`Fq`(τ∗t )]
2

2−γ3 (ψt`)
γ3

2−γ3

] 2−γ3
2(2−γ2−γ3)

h∗
t i =

[
ψt i D t i Fq (τ∗t )

] 1
2−γ3

[
γ2(γ3)

2−γ2
γ2

Nt∑
`=1

ωt`[D t`Fq`(τ∗t )]
2

2−γ3 (ψt`)
γ3

2−γ3

] γ2
2(2−γ2−γ3)

and, for k = 1, . . . , J −1,

Nt∑
i=1

ωt i D t i e∗γ2
st h∗γ3

t i (ηkqiτ
∗−1
tk −η J qτ

∗−1
t J )Fq (τ∗t )+ (α̃1k + ε̃tk )−

−(α20k +α21φt )
(
τ∗tk −ϕtk

)+ (α20J +α21φt )
(
τ∗t J −ϕt J

)= 0.

3. Estimation

In the empirical specification of the model, both inputs and outputs are assumed to be latent fac-

tors measured with error. The factor model allows me to correct for variables mis-measurement and

the arbitrariness of their scales. This structure is in line with recent literature on child skills develop-

ment (e.g. Cunha et al., 2010; Agostinelli and Wiswall, 2016) and similar to the specification employed

by Todd and Wolpin (2018). This section describes the structure imposed to the latent factors as well

as the system of measurement equations.

3.1 Latent Factors and Measurement Structure

3.1.1 Latent Factors Structure of Endowments

Each exogenously determined latent input θ ∈ {A,φ,K0,ψ} is assumed to depend linearly on a

vector of initial conditions X θ and on one or more random effects. Formally, the teacher’s ability At ,

12



and preference over curriculum standards adherence φt are specified as

l og (At ) = X A
t β

A +υA
t , (10a)

log (φt ) = Xφ
t β

φ+υφt (10b)

with υA
t and υ

φ
t representing teacher-level unobserved error terms. Similarly, student i ’s baseline

knowledge K0t i and preference over own end-of-year knowledge ψt i are specified as

K0t i = X K0

t i β
K0 +υK0

t +ζK0

t i (11a)

log (ψt i ) = Xψ

t iβ
ψ+υψt +ζψt i , (11b)

where υK0
t and υ

ψ
t , and ζ

K0

t i and ζ
ψ
t , are are teacher-level and student-level unobserved components,

respectively.11 The log-linear specification of At , φt , and ψt i guarantees that these inputs take only

positive values. Equation (11a) defines K0t i as a linear function of the exogenous determinants X K0

t i .12

The error terms at each separate level are allowed to be correlated across factors and are assumed to

be orthogonal to the exogenous variables X t i ≡ (ϕt , X A
t , Xφ

t , X K0

t i , Xψ

t i ), to each other, and to be mean

zero and jointly normally distributed. Formally, υt |X t i ∼ N (0,Συ), ζt i |X t i ∼ N (0,Σζ), and υt ⊥ ζt i ,

where υt ≡ (υA
t ,υφt ,υK0

t ,υψt ) and ζt i ≡ (ζK0

t i ,ζψt i ). Finally, the latent factors of teacher effort et , time

allocation τt , student effort ht i , and end-of-year knowledge K1t i are endogenously determined by

the equations (7a), (7b), (9), and (1), respectively.

3.1.2 Measurement Equations Structure

Both the endowments At , φt , and ψt i , and the endogenous variables et and ht i are assumed to

be latent factors measured with error. Dropping the subscripts to simplify the notation, let Mθ be

the number of distinct measures and Z θm be the m-th measure latent factor θ ∈ {A,φ,ψ,K1,e,h},

respectively. Each measure Z θm is allowed to be either continuous or ordinal. In particular, define

Z θm∗ =µθm
0 +µθm

1 log (θ)+ςθm , for θ ∈ {A,φ,ψ}, m = 1, . . . , Mθ,

Z θm∗ =µθm
0 +µθm

1 θ+ςθm , for θ ∈ {K1,e,h}, m = 1, . . . , Mθ.

Continuous measures are then defined as Z θm = Z θm∗, while ordinal measures are defined as step

functions with the latent variable equal to Z θm∗. Both baseline knowledge, K0t i , and time inputs,

τt , are assumed to be measured without error. Finally, I assume classical measurement errors to-

gether with joint normality, that is ςt i ≡ (ςA,m
t ,ςK1,m

ti ,ςh,m
ti ,ςe,m

t , ) ∼ N (0,Σς),, where Σς is a diagonal

11The model could also allow for school-level random effects. However, observations entailing only one teacher per
school are quite frequent in the sample used for the estimation. As a result, separately identifying teacher and school-level
effects would be a demanding task.

12As discussed in the next sections, log-linearity is not applied to K0t i for compatibility with the measures of K1t i .
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variance-covariance matrix and ςt i with assumed orthogonal to all the observed and unobserved

components of the latent factors.

3.1.3 Further Assumptions and Discussion

In order to bring the model to the data, it is necessary to first discuss some issues related to the

measures available as well as to some necessary restriction to be imposed to the model. A first issue

is given by the information available on instructional time inputs, as the MET data does not provide

variables on τt expressed in terms of time (e.g. hours, days, or weeks). Instead, data on class time

allocation is available only in terms of fractions of total class time, τt /τd . In order to mitigate the

potential consequences from the lack of information on τt , I allow the parameter δ1 to be district-

specific.13 This assumption seems particularly suited to the data, as there is evidence that schools

participating in the MET study have to abide to a specific total number of school days and class hours

determined by the school district (with only few exceptions). This implies that total class time τt is

going vary for the most part between and not within districts.14 As for curriculum standards, Section

2.3 points out that states do not actually provide the time variables ϕt , but rather some documents

which detail what skills a typical student is supposed to acquire in each subject by the end of each

grade. Given that exact data on ϕt is not available, I will use information on the state test content

collected by the MET study as a proxy of the standards.15 Test content variables are also expressed as

fractions, thus making them comparable to the curriculum data discussed above. The idea is that, to

the extent that the state test is aimed at measuring students’ proficiency, its content should reflect the

educational standards set by the state. Moreover, there is evidence of alignment between tests and

standards content, as shown by Polikoff et al. (2011).

For the empirical specification of the weights (ωq
1 )q

q=1 and the elasticities (η j q )J
j=1)q

q=1, I use ter-

ciles, i.e. q = 3. An additional specification issue concerns the variables to include as determinants

of teacher’s preferences, Wt i , in equation (4). For this I follow recent empirical evidence on gender

stereotypes (Carlana, 2019) and ethnicity role model effects (Gershenson et al., 2018) and include

both teacher-level and student-level gender and race dummies. A third issue entails the inclusion of

class size effects on K1t i . To account for that, I follow Todd and Wolpin (2018) and allow the elas-

ticity of effort to depend on Nt through the equation γ2 = γ20 +γ21Nt . Moreover, in order to ensure

a solution for optimal teacher and student effort, e∗t and h∗
t i , I assume γ2,γ3 ∈ (0,2). The parametric

13Indeed, a large body of research shows that total instructional time has a significant impact on student achievement.
For a recent review of the literature, see Gromada and Shewbridge (2016).

14If total class time were indeed fixed to τd across all schools within each district d , we can obtain the empirical spec-
ification of the knowledge production function by dividing and multiplying the knowledge value-added in equation (1) by
τd , redefine each time input in fractional terms, τt j /τt , for j = 1, . . . , J , and define the district-specific parameter (to be
estimated) as δ1d ≡ δ1τd .

15The MET study actually provides data on the state standards content, whose variables are measured as fractions of
“items” in the curriculum standards document about each single topic. As it is not clear whether the fraction of items in
such documents is a good measure of the “weight” a state gives to each topic, using test content data seems a better option.
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specification is then completed by imposing distributional assumptions on the the preference shocks

ε̃t = (ε̃t1, . . . , ε̃t J−1), which are assumed to be jointly normally distributed with mean zero, covariance

matrix Σε̃, and orthogonal to the random effects (υt ,ζt i ) and measurement errors ςt i .

A final concern is about the possibility of corner solutions in either exerted effort (e∗t = 0 and

h∗
t i ) or in the time allocation choice (τtk = 0 for some k = 1. . . , J − 1). In fact, a complete descrip-

tion of the model would necessitate an analysis of the conditions on the parameters, latent factors,

and preference shocks values that give rise to each specific corner solution. However, since none of

the measures of instruction used in my analysis are consistent with corner solutions, the empirical

specification employs the FOCs in (7a), (7b), and (9) as the only conditions of optimality required to

estimate the model.

3.2 Identification

To illustrate the sources of identification for the knowledge technology and preferences parame-

ters, I first analyze the case of no measurement error. With perfect measures, the knowledge produc-

tion function parameters (δ0,δ1,γ0,γ1,γ20,γ21,γ3, ((η j q )J
j=1)3

q=1, (πq1,πq3)3
q=1) are identified through

independent variation in the observable inputs (K0t i , At ,et ,ht i ,τt ) and end-of-year knowledge K1t i ,

upon the normalization of πq2 = 0 for q = 1,2,3. As for the utility function parameters, the main

source of identification comes from data on instructional choices together with variation in class-

room composition characteristics. Specifically, the weights parameters ((ωq
1 )3

q=1,ω2) are identified off

variations in (K0t ,Wt ), time allocation choices, τt , and student and teacher effort, ht i and et . Finally,

the utility parameters (α1 j ,α2 j )J
j=1 and the preference shocks covariance matrixΣε̃ are identified from

the distributional moments of observed time inputs τt and curriculum standards ϕt combined with

the equations in (7b).

Turning to the latent factors model considered in this paper, the identification argument follows

the one in Todd and Wolpin (2018). In particular, let the optimal instructional choices from (7a)-(7b)

and the end-of-year knowledge production function (1) be represented as functions of the exogenous

initial conditions, X t i , and the random shocks (υt ,ζt i , ε̃t ). Formally

e∗t = ae (X t ,υt ,ζt , ε̃t ) (12a)

τ∗t j = aτ j (X t ,υt ,ζt , ε̃t ), j = 1, . . . , J −1 (12b)

h∗
t i = ah(X t i ,υt ,ζt i , ε̃t ) (12c)

K1t i = aK1 (X t i ,υt ,ζt i , ε̃t ), (12d)

where X t = (X t1, . . . , X t Nt ) and ζt = (ζt1, . . . ,ζt Nt ). Consider now a system of equations that combines:

(i) the exogenous latent factor equations from (10a), (10b), and (11b) with the measurement equa-

tions; (ii) the equations on endogenous effort, (12a), (12c) with their measurements; and (iii) (11a)
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and (12b), for j = 1, . . . , J , assumed to be measured without error. This system is a measurement

model for the latent factors (υt ,ζt i , ε̃t ) analogous to (3.7) in Cunha et al. (2010). As a result, it is possi-

ble to invoke Theorem 2 from the same paper in order to identify both utility and production function

parameters.

Parameters of the exogenous latent factors equations (10a), (10b), (11b), and (11a), and of the

measurements equations are identified through observable determinants X t i and multiple measure-

ments of each latent variable (upon necessary normalizations). Identification of the latent and mea-

surement equations for the exogenous inputs (At ,φt ,ψt i ,K0t i ) follows the canonical arguments of

structural equation modeling as in Goldberger (1972). Consider a latent factor θ ∈ {A,ψ,φ,K0}, with

subscripts dropped whenever it is not confusing to do so. First, I normalize the intercept and slope

of measure m = 1 (without loss of generality) by setting µθ1
0 = 0 and µθ1

1 = 1. Given the orthogonality

assumptions of both unobserved random components and measurement errors, the latent equation

parameters are identified by regressing the first measure Z θ1 on X θ, that is

βθ = E [(X θ)′X θ]−1E [(X θ)′Z θ1].

Once the parameters βθ are known, the slopes and intercepts of the remaining measurement

equations m = 2, . . . , Mθ for θ ∈ {A,ψ,φ} are identified as follows. First, regress each measurement

Z θm on X θ and obtain µ̃θm = E [(X θ)′X θ]−1E [(X θ)′Z θm], and then compute

µθm
1 = µ̃θm

j /βθj , µθm
0 = µ̃θm

0 −µθm
1 βθ0 ,

for an arbitrary j th element of µ̃θm , j ≥ 2, and with βθ0 being the latent factor equation constant. It is

then possible to pin down Συ, and Σζ by computing the covariances between measures. In particular,

the diagonal elements σ2
υθ

, and σ2
ζθ

are obtained by

σ2
ζθ =Cov(Z θ1

t i , Z θm
ti )/µθm

1 −V ar (X θ
t iβ

θ)−σ2
υθ,

where m ≥ 2 for θ ∈ {A,ψ,φ} and m = 1 for θ = K0, (Z
θ1
t , X

θ
t ) are class-level means, and the last equa-

tion holds only for the student-level latent factor, ψ. Similarly, the off-diagonal elements συθθ′ , and

σζθθ′ , for θ,θ′ ∈ {A,ψ,φ,K0}, θ 6= θ′, are determined as

συθθ′ =Cov(Z
θ1
t , Z

θ′1
t )−Cov(X

θ
t β

θ, X
θ′

t β
θ′)

σζθθ′ =Cov(Z θ1
t i , Z θ′1

t i )−Cov(X θ
t iβ

θ, X θ′
t iβ

θ′)−συθθ′ .

As a last step, the measurement error variances for teacher ability and student inputs measures are
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obtained as

σ2
ςAm =V ar (Z Am

t )−V ar (X A
t β

A)−σ2
υA m = 1, . . . , MA

σ2
ςhm =V ar (Z hm

ti )−V ar (X h
tiβ

h)−σ2
υh −σ2

ζh , m = 1, . . . , Mh .

Finally, given that all the production function parameters are identified, the measurement equa-

tions parameters related to the latent student and teacher effort, (µhm
0 ,µhm

1 )Mh
m=1 and (µem

0 ,µem
1 )Me

m=1,

are identified from the multiple effort measures available in the data.

3.3 Likelihood Function

Estimation is carried out through simulated maximum likelihood (SML). Let Θ be the vector of

all the parameters of the model to be estimated (including production function, preferences, exoge-

nous latent factors, and measurement equations). The likelihood contribution of teacher/classroom

t given Θ is represented by the joint density of the measurements of the latent factors for the teacher

and all Nt students, denoted by Mt , conditional on the initial conditions Xt ≡ (X t1, . . . , X t Nt ,ϕt ). De-

noting the simulated likelihood contribution of teacher t by Lt (Θ|Mt ;Xt ), the likelihood function to

be maximized overΘ is

L (Θ) =
T∏

t=1
Lt (Θ|Mt ;Xt ),

where T is the total number of classrooms/teachers in the sample. A complete description of likeli-

hood function formulas and of the estimation procedure is reported in the Appendix.

4. Data

For the empirical part of this paper I use data from the Measurements of Effective Teaching (MET)

project, which was run by the Bill and Melinda Gates between 2009 and 2011. This study was con-

ducted in two years in seven large US school districts and involved 2714 4th-to-9th grade Math and

English Language Arts (ELA) teachers in 317 schools.16 The main goal of this project was to assess

the ability of a large set of research-based indicators of teacher quality to identify effective teachers.

Moreover, in order to ensure validity of the estimates, teachers in the second year of the study were

randomly assigned to classrooms within each school (while in the first year the assignment was per-

formed as usual). The data collected by the MET study include detailed information on: i) teaching

practices in the classroom from both video-recorded lessons and surveys taken by both teachers and

students; ii) topics covered in end-of-grade state tests; iii) self-reported student information on own

effort and home environment; iv) end-of-grade state tests scores in various subjects and teacher and

16The seven school districts included in the MET study are: Charlotte-Mecklenbourg Schools (NC), Dallas Independent
School District (TX), Denver Public Schools (CO), Hillsborough County Public Schools (FL), Memphis City Schools (TN),
the New York City Department of Education (NY), and the Pittsburgh Pubilc Schools (PA).
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student demographics from administrative district data. All these variables provide information used

to measure the latent inputs and outputs of the model. The estimation is carried out using a sub-

sample of the first-year MET data including 4th grade Math teachers who took the Survey of Enacted

Curriculum (SEC).17 Originally developed by Porter and Smithson (2001) to study the alignment of

classroom instruction with curriculum standards and test content, this survey asks teachers to report

their class time allocation throughout the school year across an exceptionally fine-grained array of

different topics spanning all school grades. These answers were then converted and re-expressed as

fractions of total class time.18 The survey was conducted only in the first year of the MET study, thus

not allowing me to exploit the second-year random assignment of teachers to estimate the model.

Nevertheless, second-year data is used to perform an out-of-sample validation exercise (see Section

5.3). The final sample includes 101 teachers and 2532 students from 85 schools in 5 school districts.19

Table 1 displays descriptive statistics of the student and teacher characteristics determining stu-

dent effort and teacher ability. Panel A shows that students in the sample are on average 9-10 years

old (as expected for 4th graders) and the gender ratio among them is almost 1:1, with a slightly higher

percentage of females. The majority of the student population is black (43%) followed by white (26%)

and Hispanic students (25%). About 6% of the students have been identified as gifted, while almost

9% are placed in special education programs (SpEd) due to learning disabilities and 17% are labeled as

English language learners (ELL). As regards to students’ socioeconomic status (SES) and family/home

environment, almost half of the students in the estimating sample receive either free or reduced-price

lunch and 88% of them has at least one computer at home. Finally, nearly half of the responding stu-

dents possess at least 25 books in their bedroom, 40% of the students report to have always a quite

place to study at home, and 69% has always a person at home who can help with homework. The sam-

ple is clearly not representative of the US student population, as it includes a much higher percentage

of black and Hispanic students and a slightly lower percentage of students served by SpEd programs

compared to national averages. As for teacher characteristics, Panel B shows summary statistics of

the determinants of teacher ability. The majority of the teachers (83%) are generalist, i.e. teach both

Math and ELA to the same classroom. As for characteristics related to their human capital, teach-

ers in the sample have on average 6.5 years of teaching experience in the school district with a quite

significant variability, and about half of the teachers possess a Master’s degree.

[Table 1 here]

Table 2 reports descriptive statistics on class time allocation and curriculum state standards. Top-

17The full sample of teachers taking the SEC included 4th and 8th grade Math and ELA teachers.
18As pointed out in Section 3.1.3, the MET data does not provide teachers’ original answers on the actual time spent on

different topics. As a reference point, Trends in International Mathematics and Science Study (TIMSS) reports that in 2015
teachers in the US spent on average 216 class hours.

19Unfortunately, confidentiality restrictions do not allow to disclose the exact identity of these five districts out of the
seven listed above.
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ics are aggregated in five different groups representing common areas of mathematics covered in 4th

grade classes, namely: place value, rounding, addition, and subtraction (group 1); multi-digit mul-

tiplication and division (group 2); shapes, angles, and geometry (group 3); fractions and decimals

(group 4); unit conversion and measurement (group 5).20 On average, teachers split 3/4 of the school

year evenly between teaching multi-digit multiplication and division (26%) fractions and decimals

(25.5%) and unit conversion and measurement (24.2%). The remaining time is then largely devoted

to geometry topics (17.5%), while only a smaller fraction of class time focuses on more basic top-

ics like place value, rounding, addition, and subtraction of whole numbers (6.8%). Columns 2 to 5

show the variation of these time allocations across teachers. There is a 2 percentage points variation

between the first and third tercile in the percentage of class time devoted to place value, rounding,

addition, and subtraction, whereas the difference is about 7-8 percentage points for all other topics

groups. These correspond to about 25% of the value taken by the mean for groups 2, 4 and 5, to about

30% for group 1, and to more than 40% for geometry topics (group 3). Similarly, the ratio between the

standard deviation and the mean is around 30% for groups 1 and 3 and never above 25% for all other

groups.

[Table 2 here]

Panel B reports descriptive statistics on the content composition of the state curriculum standards

as measured by the percentage of test items covering each topic group in the end-of-year grade 4

state test. As reported in Column 1, the curriculum standards averages are very similar to those of

class time allocation, thus suggesting a potential alignment between the two. However, descriptive

statistics in Panel C show that differences between standards and classroom instruction are in fact

significant. Specifically, Column 1 shows that, for each topic, the average absolute deviation between

these two is always greater than the standard deviation of class time allocation. This is particularly

true for the geometry group, where the value of the mean absolute deviation is 40% larger than the

standard deviation.

[Table 3 here]

A potential reason behind this misalignment with the standards could entail adjustments of

teaching strategies to the composition of the classroom. As displayed in the upper panel of Table

3, classrooms could vary substantially in their composition as it pertains to students’ level of math

readiness. Columns 3-5 show that one fourth of the classrooms in the sample have a fraction of low-

achieving (1st tercile) students below 0.14 while another one fourth display values above 0.46. This

range is a little higher for the fraction of high-achieving students, with 25% of the classrooms having

20The SEC allows class time to be allocated in 183 topics combined with five possible levels of “cognitive” demand, for a
total of 915 cells. The choice of the five topic groups was inspired by the Common Core standards classification.
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14.3% or less students performing on the higher part of the distribution and another 25% with 52% or

more. Classrooms tend to have more similar percentage of students with initial knowledge falling in

the middle of the distribution, with the first and third quartiles being 24.1% and 41.7%, respectively.

The distribution of classroom composition may depend on the implementation of ability tracking in

the schools. In particular, schools can choose to track students at different intensity levels, where

the level of intensity is the importance given to students’ prior performances when assigning them

to classrooms. One way to measure tracking intensity in a school entails computing the share of to-

tal variance of baseline test scores due to between-classroom variation. Indeed, schools that track

students would display higher shares of between-classroom variation due to higher classroom ho-

mogeneity and, as a result, a lower share of within-classroom variance. At the extreme, the share of

between-classroom variance can range from zero or close to zero to a maximum given by the value

taken by the highest level of tracking intensity, represented by the scenario in which students are se-

quentially assigned to classrooms from low to high baseline knowledge.21 The lower panel of Table

3 reports descriptive statistics of tracking intensity for 4th grade math classrooms across all schools

participating to the the MET study in Year 1. The comparison between the average share of between-

classroom variation in the data with the tracking policy configuration suggests that schools apply a

very low level of tracking. This is confirmed by the descriptive statistics on the ratio between these

two shares (third row), which gives a scale of the degree of tracking relative to the most extreme case.

With 1 being the maximum, schools display an average degree of tracking of about 0.12, with 75% of

all schools scoring at or below 0.145. Figure B.3 in the Appendix gives a broader look to the level of

tracking implemented by the schools. As seen, the distribution of tracking intensity observed in the

data is shifted to the left of the same distribution under the highest degree of tracking possible within

each school.22 This result is not surprising, as schools are much less likely to track in lower grades.

Indeed, national statistics show that about 30% of US schools implements any sort of ability tracking

in 4th grade math classes, and only 5% for 4th grade reading classes.

[Table 4 here]

Table 4 provides descriptive statistics of the measures of used in the estimation of the model.

Baseline knowledge is measured by standardized score of the 3r d grade math test administered by

the state at the end of each school year, rescaled to have mean 500 and standard deviation 100 at

the district level.23 As seen, the mean and standard deviation in the final sample are 510.20 and 95.40,

respectively, hereby showing slightly higher average math performances (with lower dispersion) com-

pared to the district average. There are two measures of end-of-year knowledge. The first measure is

21The value of tracking intensity attains zero whenever it is possible to allocate students such that average test scores are
identical across classrooms within the school, which is possible only for special configurations of the within-school sample.

22Further analysis show that the distribution of tracking intensity displayed in the data is very similar to the one obtained
randomly assigning students to classrooms.

23The rescaling follows the convention of national and international education athorities as well as prior empirical work.

20



the end-of-year 4th grade state test-score in mathematics administered by the state, also rescaled to

have mean 500 and standard deviation 100 at the district level. As shows by Table 4, the mean and

standard deviation in the final sample are 505.38 and 96.79, respectively. Hence, similarly to the 3r d

grade scores, students in the final sample perform better in math in 4th grade than the district av-

erage and display a slightly lower variability. The second measure of end-of-year knowledge is the

percentage of correct questions in the Balanced Assessment of Mathematics (BAM) test, which was

administered by the MET study staff to the participating students. Table 4 shows that, on average,

students answer about 55% of the questions correctly, with a standard deviation of about 21%.

There are 11 measures for latent teacher ability, including three Classroom Assessment Scoring

System (CLASS), two Framework for Teaching Mathematics (FFTM), and two Mathematical Qual-

ity of Instruction (MQI) scale scores from video-recorded lessons, as well as four measures from the

student survey. The CLASS scores are measured on a scale of 1 to 7 and include: (i) the behavior man-

agement score, which evaluates teacher’s ability to set clear behavior expectations, to prevent and

redirect students misbehavior, and to obtain students’ compliance; (ii) the content understanding

score, which refers to both the depth of the lesson’s content and the teacher’s ability to help students

in understanding the framework and key ideas of the topic taught; (iii) and the productivity score

which measures teacher’s level of preparation for the lesson as well as her ability to maximize learning

time and to set clear routines and instructional expectations. As for the FFTM scores, measured on a

scale of 1 to 4, the management of class procedures score measures the degree of smooth functioning

of the classroom, whereas the management of student behavior score evaluates the teacher’s ability

to manage student conduct and to respond to their misbehavior. Differently from CLASS and FFTM

measures, the MQI scores assess the pedagogical knowledge and preparation of the teacher necessary

to teach mathematics. Specifically, the richness of mathematics score refers to the teacher’s ability to

explain mathematical ideas as well as to draw connections and illustrate different aspects of math

concepts, while the mathematical knowledge for teaching (MKT) score measures the overall teacher’s

knowledge in the specific area of mathematics taught in 4th grade. Finally, the last four measures are

class-level averages of student evaluation scores on the teacher’s ability to deliver instruction, where

each single student response is an ordinal variable converted to a measure taking values from 1 to 4.

As seen, teachers have pretty good evaluations in terms of their ability to explain concepts (with aver-

ages higher than 3), whereas they tend to get lower ratings with respect to their ability to control the

class behavior. Similarly to the last four measures of teaching ability, the 8 measures of latent teacher

effort come from student evaluations and take values on a scale of 0 to 4. Specifically, these measures

refer to the teacher’s level of feedback and motivational support provided to the students, as well

as to her level of effort in trying to avoid that students fall behind during the lesson. As shown by the

third panel of Table 4, teachers average score is higher than 3 in five out of eight measures, while lower

scores are reported in terms of teachers’ effort to not waste time in class, to summarize the lesson, and

21



to write feedback on homework and exams. As for teacher preference for the adherence of instruc-

tion to the curriculum standards, the measures include the teacher’s self-reported degree at which

her school administrators require teachers to adhere to the standards and the frequency at which she

uses curriculum standards documents (both 5 categories). As shown by the mean values above 2, the

majority of teachers report a high degree of required adherence to the standards by administrators as

well as a frequent use of standards documents.

At the student level, measures of student effort are represented by the answers to 4 questions in-

cluded in the student survey. Students report a quite high level of effort in school activities, with more

than 40% of the sample declaring to always do their best work in class, to never give up when work

gets hard, to never take it easy not trying to do their best, or to complete all the homework assigned.

Measures of student preference for own knowledge include response to questions on whether the

student finds school work interesting and/or enjoyable, and on whether the student reads at home

daily. The last panel of Table 4 displays a relatively higher heterogeneity in the responses compared

to student effort. More than half of the students find school work interesting either all or most of the

time (25% and 31%), while 29% of them finds it interesting sometimes and 15% uninteresting. About

45% of the students think that school work is never or mostly never not enjoyable (29% and 16%),

while 29% report to not enjoy school work either always or at least most of the time (12% and 17%).

Finally, a 65% of students report to read at home almost every day, 22% do that sometimes, and only

13% rarely or never reads at home.

[Table B.1 here]

A necessary condition for the identification of the model’s parameters entails the non-

independence between measures of each latent variable. To this end, Table B.1 in the Appendix

reports the correlation matrices of the measures described in Table 4. Specifically, the correlation be-

tween continuous variables is measured by the Pearson’s correlation coefficient, while the Pearson’s

chi-squared statistics is computed to assess the association between categorical variables. Almost

all pairs of measures display statistically significant correlations, with the exception of the student-

survey measures of teacher ability which more than half of the times are unrelated to the CLASS,

FFTM, and MQI scale scores.

5. Estimation Results

5.1 Parameter Estimates

Table 5 reports the estimated parameters of the production and utility functions (1) and (3). Es-

timates of the class time taste shocks covariance matrix and of the measurements and exogenous

latent factors equations are instead reported in Table B.4 in the Appendix. Column (1) shows that a
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positive value of the parameter δ0, which captures both knowledge depreciation between grades 3

and 4 and a normalization, since K0t i and K1t i are different cardinal measures of math knowledge.

The coefficients converting input units, (δ1d )5
d=1 are all positive and statistically different from 0 at

the 0.01 level, with an average value of about 0.0005.24 The estimates show that baseline knowledge

and teacher ability are both positively related to end-of-year knowledge, with values of 1.1288 and

0.3414, respectively. The total elasticity of teacher effort, γ20 +γ21Nt , is estimated to be about 0.0139

for an average class size Nt of 23 students. Both γ20 and γ21 are statistically significant a the 0.01 level,

with the negative sign of γ21 suggesting that teacher effort is less productive in larger classes, with a

decrease in elasticity of about 0.0004 points for each additional student. Finally, the elasticity of stu-

dent effort is relatively small and imprecisely estimated. Column (3) reports the estimates capturing

direct peer-to-peer spillovers together with the standard deviation of the random shock.25 Given the

normalization πq2 = 0 for q = 1,2,3, each estimate is interpreted as the effect of an increase in the

fraction of classmates in tercile k = 1,3 in response to an identical decrease in the fraction of students

in the 2nd tercile. As seen, an increase in the share of classmates in tercile 1 (relative to a decrease

second tercile students) tends to harm students in the first two terciles, although both π11 and π21

are both imprecisely measured. Interestingly, students in the highest tercile seem to benefit more

from low-achieving peers than those in the middle range of the distribution, as shown by π31 > 0. On

the other hand, the effect of an increase in the share of high-achieving classmates (in response to an

equal decrease in the share of 2nd tercile peers) on the achievement of students in the first tercile has

negative sign though not statistically significant at canonical levels. Both students in the second and

third tercile benefit from a higher share of third-tercile students in the classroom, with high-achieving

students experiencing the highest spillovers from peers with similar prior knowledge.

Panel B in Table 5 reports the elasticities of class time inputs conditional on initial knowledge

tercile. For all terciles, the most productive topics are those related to either unit conversion and

measurement or fractions and decimals, with estimated values all above 0.25. Although likely the

most difficult topic for fourth graders, time spent teaching fractions and decimals seem very produc-

tive for students in the 1st tercile (η41 = 0.385), especially compared to students in the 2nd tercile.

Time allocated to unit conversion and measurement has a higher elasticity on students in the mid-

dle range of baseline knowledge (η52 = 0.356), while it has less of an effect on students in the top

tercile (η53 = 0.257). The topics displaying the lowest elasticities are those related to geometry, with

estimated values never above 0.07. Students in the top terciles seem to benefit the most from ge-

ometry topics, while the estimates for students with baseline knowledge in the 1st and 2nd terciles

are imprecisely measured. The more basic topics of place value, rounding, addition, and subtrac-

tion, also display low elasticities across all terciles. Interestingly, time allocated to this topic group is

24District-specific values are not reported due to confidentiality agreements.
25Both K0t i and K1t i have been divided by 100 for the estimation. Hence, the parameters have to be interpreted accord-

ingly.
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more productive for higher students in higher terciles. Finally, the elasticities of time spent teaching

multiplication and division are very similar across terciles, with estimates ranging between 0.247 and

0.270.

[Table 5 here]

The utility function parameters are reported in Panel C of Table 5. As shown in Column (1), teach-

ers attach the highest value to achievement gains of students with low baseline knowledge (ω1
1) and

the lowest to students with high initial knowledge (ω3
1). Hence, teachers exhibit a higher preference

for compensatory teaching aimed at fostering the learning gains of students starting with lower levels

of math knowledge. In particular, a unit increase in math achievement from of a student with low

initial knowledge rewards the teacher about 2.2 times the same increase for a student whose level of

prior math knowledge falls in the third tercile.26. Moreover, the estimates of (ω2
1, ω2

2, and ω2
3 suggest

that teachers tend value more the achievement of both black and Hispanic students, while they attach

a slightly lower value to female students. Column (3) shows the estimated parameters on teacher pref-

erences over class time allocation. Each α̃1 j ≡α1 j −α15 (for j = 1, . . . ,4) captures the utility a teacher

gets from reallocating 1% of class time from unit conversion and measurement to topics in group j ,

while holding fixed the value of all the other terms in the utility function. The sign of the estimates

suggest that teachers have a general preference for time spent away from unit conversion and mea-

surement topics, with the only exception of fraction and decimals (topic 4). In particular, teacher

seem to get much more utility from time spent teaching geometry (topic 3) compared to all other

topics. On the other hand, the parameters on topics 2 and 4 are not statistically different from zero.

Moreover, a likelihood ratio test fails to reject the null that α̃11 = ·· · = α̃14 = 0.27 Finally, the relatively

high and statistically significant estimate of α203 suggests that teachers tend to adhere to the stan-

dards associated with geometry topics. Otherwise, the low estimates of the parameters (α20 j )5
j=1 and

α21 indicate that teachers do not bear significant costs if they teach away from what suggested by the

education authorities in all other topics.

5.2 Within-Sample Model Fit

Columns (1)-(4) in Table 6 compare the means and standard deviations obtained from simula-

tions of the estimated model with the actual values observed in the data. Overall, the model fits the

data well. The predict mean and standard deviation of both baseline and end-of-year knowledge

(measured, respectively, by the 3r d -grade math state test and the BAM test score) very close to the ac-

tual ones. Indeed, the model slightly overestimates statistics on baseline knowledge, with differences

26A LR test rejects the null hypothesis that these weights are all equal.
27Notice that α̃11 = ·· · = α̃14 = 0 is equivalent to α11 = ·· · =α15, where each α1 j could well be different zero. Hence, the

test fails to reject the null that teachers value time spent on each topic the same.
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of about 1% for the mean and to 2% for the standard deviation, respectively, while it moderately un-

derestimates the mean and standard deviation of the BAM score by about 5% and 3%, respectively.

As for the class time allocations across topics, the average simulated values are very similar to the

respective data means, with the largest difference being in the time spent on place value, rounding,

addition and subtraction, whose mean value is 1.0 percentage points higher than in the data. On the

other hand, the model tends to systematically over-estimate the standard deviations of class time al-

location. In particular, the model is very imprecise in predicting the standard deviation of place value,

rounding, addition and subtraction topics, whose prediction is 4 percentage points higher than the

one found in the data. As for the other topic groups, the model overestimates the standard deviation

by no more than 1.7 percentage points (i.e., fraction and decimals). Yet, although these difference

are quite large relative to the standard deviations observed in the data, they do not seem substantial

when compared to the mean values. Finally, the model fits very well the sample statistics of all other

measures, with minimal discrepancies in both mean and standard deviations.

[Table 6 here]

Column (5) in Table 6 reports the share of total variance due to the latent factor (1 minus the frac-

tion reflecting measurement error). These shares are not reported for baseline knowledge and class

time allocation inputs, as these inputs are assumed to be measured without errors. The values re-

ported shows a substantial level of measurement error in the measures used in the analysis. About

53% of the variance of the BAM test score is due to true variation in end-of-year knowledge, while the

remaining 47% represents measurement error. The importance of measurement error varies signif-

icantly across measures of teacher effort, going from a low of 56% for "Teacher ask questions..." to a

maximum of 92.3% and 99.7% for average responses to the questions "The teacher writes feedback

on our papers" and "The teacher pushes students to work hard", respectively. All other teacher effort

measures entail a degree of measurement error reflecting between 60% and 80% the total variation

of the measure. On the other hand, the importance of measurement error is quite uniform across

measures of student effort, despite being always as high as 86%. An even wider range of measure-

ment error importance is displayed by teacher ability measures. Indeed, these include very precise

measures like those from the FFTM protocol (with only 19% and 21%) as well as a set of very noisy

measures represented those collected through the MQI protocol, with shares of measurement error

between 87% and 99%. As for the other ability measures, those collected through the CLASS protocol

tend to be relatively accurate with an average of about 40% of their variance reflecting the actual vari-

ation in the latent factor. Teacher ability measures based on student survey evaluations, instead, tend

to display higher levels of measurement error, ranging between 67% to 80%. Probably the most error-

ridden measures presented in Table 6 are those on student preference for own knowledge, where

both responses to "School work is interesting" and "School work is not enjoyable" displaying a share
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of “true” latent factor variance below 8.5%. Yet, a slightly more precise measure is "I read at home

almost every day", where measurement error accounts for “only” 70% of its total variance. Finally,

the measures on teacher preference for adherence to the standards show very different levels of mea-

surement error. Indeed, while variation in responses to the question "Administrators require rigid

adherence to the standards" are due to measurement error for almost 80% of their value, the mea-

sure "I frequently refer to and use information found in standards documents" mostly reflect true

variation in the latent factor.

5.3 Out-of-Sample Validation

I exploit the second-year data of the MET study to perform an out-of-sample validation of the

model. In particular, this exercise entails using the estimated parameters to predict second-year out-

comes given both teacher and student initial conditions. This sample includes all the teachers partic-

ipating to the second year of the study who were randomly assigned to a classroom within the same

school.28 The randomization was performed by MET researchers in order to correct for the potential

bias in the estimates of teacher value-added caused by the non-random assignment of teachers to

classrooms, especially when the latter is based on unobservable student or teacher characteristics.

In the theoretical framework of this paper, the non-random assignment of teachers in Year 1 of the

study would bias the effect of the teacher inputs At , τt , and et on end-of-year knowledge if these

were correlated with omitted inputs even after controlling for prior achievement. Therefore, this ex-

ercise allows me to check indirectly whether the model specification is able to capture the variation

underlying the teacher assignment mechanism.

Table B.6 compares descriptive statistics of selected variables from the sample used to estimate

the model and the one used to perform the validation exercise. There are several major differences

between students and teachers in these two samples. First, students in the second-year sample dis-

play lower initial and end-of-year knowledge in math, with test scores being about 0.13σ lower than

the first-year sample. Second, students are younger in the Year 2 sample, with an average age lower

by about 0.6 (equivalent to about seven months). Finally, teachers have, on average, one less year

of experience teaching in the district, classrooms are larger in size, and their composition tend to

be more skewed towards students with low levels of baseline knowledge. Indeed, while the fraction

of 2nd tercile students is very similar compared to Year 1, classrooms have on average 5 percentage

points more students in the 1st tercile and about 5 percentage points less students in the 3r d tercile.

All other student and teacher characteristics are very similar between the two samples.

[Table 7 here]

Table 7 compares predicted and actual means and standard deviations using the second year sam-

28Not all teachers participating to the study were randomly assigned to a classroom in Year 2. See the MET documenta-
tion for further details.
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ple. As shown by the values reported, the model does a very good job in predicting all the outcomes

outside of the sample used in estimation, and virtually the whole analysis on the discrepancies be-

tween data and predictions made in Section 5.2 holds in this case as well. The only exception is rep-

resented by the predicted means and standard deviations of the two measures on teacher preference

for adherence to the standards, whose values severely underestimate the actual values by more than

50%. Finally, despite the absence of data on class time allocation in the second-year sample, which

does not allow me to assess the model fit, it can be noticed that the model predicts the class time al-

locations to be different in the second year of the study. In particular, according to these simulations,

teachers spend more time teaching place value, rounding, addition, and subtraction, multiplication

and division, and fractions and decimals.

5.4 Discussion: Teacher Rewards and Educational Incentives

As discussed in the section above, the estimated weights
(
ω

q
1

)3
q=1 in Table 5 suggest that teachers

in the school districts represented in the sample tend to value more the learning gains of students at

the bottom of the distribution. This result is highly consistent with the incentives that teachers face

from the US educational system. At the national level, the No Child Left Behind (NCLB) act was in full

regime in 2009 and 2010, when the MET data were collected. In particular, NCLB tied the disburse-

ment of funds directed to Title I schools and other local education agencies (LEA) to their student

performances as measured by the so-called Adequate Yearly Progress (AYP).29 The latter represents

the improvement the school needs to attain in the share of students performing above proficiency

level in order to reach the ambitious goal of 100% proficiency by the end of 2014. Moreover, addi-

tional steps are taken to improve eligible schools that fail to attain the AYP for multiple years, such as

staff replacements, providing students with a transfer option, and even closing the school for good.

These rules are clearly aimed at providing schools with the incentive to focus their efforts on pupils

below the proficiency level. In particular, recent empirical evidence suggests that educators concen-

trated their effort on students a the margin of the proficiency cutoff (see Macartney et al., 2021). The

schools represented in the MET data are particularly exposed to the NCLB incentives, with the dis-

tricts having between 70%-to-90% Title I schools.

Furthermore, almost all school districts represented in the sample run their own local teacher

performance-pay programs during the MET study.30 In the NYC Public Schools district, about

200 low-performing schools were randomly selected to participate in the School-Wide Performance

Bonus Program (SPBP).31 Each of these schools can earn up to $3000 per staff member, represented

29Schools are eligible to receive Title I funds if they have a representation of low income students (as measured by the
share of students receiving reduced-price or free lunch) above a specific threshold.

30The only district in the sample not running any such program is Memphis City Schools.
31This program was part of a randomized controlled trial in which 200 schools were randomly assigned to the program

out of a total pool of 400 low-performing schools . The total number of schools in the NYC district in 2009 was about 1,600.
(For more details about the program and its effects see Springer, 2011; Fryer, 2013).
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by the United Federation of Teachers (UFT), if it attains specific performance targets. Targets are ex-

pressed as a score reported yearly by a Progress Report Card. Specifically, 55% of this score comes

from student performances, which in elementary and middle schools are measured by the average

change in state proficiency ratings (based on the NY state exam) and by the percentage of students

making a year of progress among the bottom third. Hence, somewhat similarly to NCLB, schools

participating in SPBP have an incentive in focusing their attention on students at the lower quan-

tiles of the distribution. A similar incentive seems to be envisioned by the Merit Awards Program

(MAP) run by the state of Florida starting from 2007, which rewarded teachers in the top quartile

of an assessment which depends for a 60% on either student proficiency, student learning gains, or

both. Hillsborough County Public Schools participated in MAP in during the MET study, with rewards

ranging between 5% to 10% of a teacher salary. Different mechanisms were instead envisioned by the

performance-pay programs in Charlotte-Mecklenburg (the TIF-LEAP program) and Denver Public

Schools (ProComp program). Indeed, in both districts teacher performances were partly measured

with respect to specific objectives on student learning outcomes that the teacher establishes at the

beginning of the year with a school leader or with some education professionals.32 These goals could

include improvement in the achievement of specific segments of the classroom, like low-performing

or disadvantaged students. Finally, the Dallas Independent Schools District (ISD) Performance-Pay

Program implemented in 2008 awarded teachers whose estimated value-added measure (referred by

the program as Classroom Effectiveness Index) above the 70th percentile in the same district. How-

ever, differently from the programs discussed above, it is not clear whether and how incentives based

on value added measures would incentivize educators to concentrate their effort on specific groups of

students, although there are plausible mechanisms that could generate such a behavioral response.33

6. Counterfactual Analysis

6.1 Ability Tracking and Teacher Assignment Mechanisms

The parameter estimates discussed in Section 3 allow me to investigate the distributional impact

of tracking on student achievement. In order to do that, I simulate several counterfactual scenarios

where I reassign students to classrooms based on their prior knowledge, K0t i . This policy experiment

is feasible since, as already described in Section 4, there is no evidence of tracking in 4th grade math

classes among schools participating to the MET study. In particular, I choose to simulate the most

32These objectives are called Student Learning Objectives (SLO) in Charlotte-Mecklenburg and Student Growth Objec-
tives (SGO) in Denver Public Schools.

33For instance, a possible mechanism could entail the fact that students at the bottom of the distribution have much
more room for improvement, as shown for instance by the unusually high impact of a individualized instruction interven-
tion in Gambia assessed by Eble et al. (2021). On the other hand, one can argue that low-achieving students are generally
less motivated and, hence, less responsive to teacher and school efforts. In this scenario, focusing on stronger and more
motivated students could be more productive.
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extreme configuration of ability tracking, i.e., by ranking students from lowest to highest K0t i within

each school and then assigning them sequentially to each classroom. To have a full representation of

all the 4th grade teachers in each school, I perform this policy experiment using the full sample of 4th

grade math classes in the first year of the MET study.34 In the simulation, I keep the same number of

classrooms as the original data and I change class sizes to be the same within each school.

Once students are assigned to classrooms, a second-order issue involves the assignment of teach-

ers to each track. As I will show below, the choice of the teacher assignment mechanism turns out to

be crucial for the distributional impact of tracking on achievement. In practice, there is evidence that

schools make these assignments in a non-random fashion, usually based on both teacher and student

characteristics. For instance, Kalogrides et al. (2013) show that, in a large school district in Florida,

schools tend to assign more educated and/or experienced teachers to high-achieving students, and

either female or minority teachers to lower-achieving ones. This is usually due to the accumulation

of both organizational and social capital by more experienced teachers, which makes them more

influential in terms of the assignment decisions (Grissom et al., 2015). To the extent that teacher’s

experience is correlated with instructional ability, these assignment patterns might either overlap or

contrast with the specific goals the school wants to pursue in terms of student achievement. In the

present analysis, I take a closer look at this issue and use teacher’s ability as a discriminant for their as-

signment to different tracks within each school. I then compare the resulting outcomes to allocation

mechanisms based on years of experience. Specifically, I first simulate ability tracking under three

alternative teacher assignment mechanisms: 1) random assignment (RA); 2) higher ability teachers

to higher tracks and low-ability teachers to lower tracks (positive assortative matching, or PAM); 3)

higher ability teachers to lower tracks and lower ability teachers to higher tracks (negative assortative

matching, or NAM).

Plot (a) in Figure 1 shows the impact of tracking on end-of-year knowledge for students at each

tercile of the prior knowledge distribution and across different teacher assignment mechanisms.35 As

seen, the overall effect of tracking on achievement ("All terciles" group) is positive and similar across

teacher assignment mechanisms, with values ranging between 0.015SD (NAM) and 0.02SD (PAM).

Yet, the effects are very heterogeneous across both terciles and assignment mechanisms. When as-

signing teachers at random (green bars on the right of each tercile group), we see that tracking yields

a nearly zero negative effect on 1st tercile students and a decrease in achievement of 2nd tercile stu-

dents by about 0.036SD, while students in the top tercile experience a quite significant increase in

achievement of about 0.10SD. On the other hand, assigning teachers with higher ability to upper

34I therefore include teachers not entering the sample used to estimate the model (i.e., those who did not take the SEC
survey, and therefore did not report information on their class time allocation).

35Results are based on a total of 8,000 simulated classrooms. Given the missing information on class time allocation
for a large part of the teachers in the sample, the baseline values are also simulated given the assignments of students and
teachers to classrooms in the data.
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tracks with PAM (and, therefore, allocating the low ability teachers to students at the bottom of the

distribution) yields results with same sign but larger magnitudes (light blue bars in the middle of the

tercile groups). Indeed, for both 1st and 2nd -tercile students tracking is even more detrimental when

assigned to lower quality teachers, with their achievement decreasing by about 0.037SD with respect

to the original classroom assignments. Conversely, students at the top of the distribution experience

an even higher improvement in achievement when assigned to high-ability teachers, with an increase

in end-of-year knowledge of about 0.16SD. Finally, the distributional effect of tracking is significantly

different when the best teachers are, instead, assigned to students in the lowest part of the distribu-

tion (i.e., negative assortative matching). Indeed, Figure 1 shows that students at both the top and the

bottom terciles of the distribution benefit from tracking, with an increase in end-of-year knowledge

of 0.05SD and 0.027SD, respectively. Students in the middle of the distribution, instead, experience

almost the same decline in knowledge as under RA and PAM. As a result, depending on how teach-

ers with different instructional ability are assigned to classrooms, tracking can either hurt, benefit, or

leave unaltered the performance of students at the bottom of the distribution. On the other hand,

high-achievement students benefit from tracking no matter the teacher assignment mechanism, al-

though the magnitude of these positive effects can vary substantially depending on the ability of the

teacher they are assigned to.

Finally, Panel (b) in Figure 1 reports the effect of tracking on achievement when, rather than on

ability, teachers are assigned to tracks based on their years of teaching experience. The figure illus-

trates a pattern somewhat similar to the ability-based assignments, although with different magni-

tudes. In particular, while the effect of tracking still differs substantially across terciles, it also changes

very little under different teacher assignment mechanisms. A potential reason behind this result is

that years of experience are, generally, weakly correlated with teacher ability. Indeed, as shown in

Table B.2, the estimates of the parameters inβA
1 on teacher experience are not statistically significant.

These findings are consistent with a common pattern found in the literature, according to which

teacher quality is usually poorly explained by characteristics like experience or educational attain-

ment (see e.g., Rivkin et al., 2005).

6.2 Teachers’ Instructional Adjustments and Peer Spillovers

On top of the specific teacher assignment mechanism employed, the heterogeneity in the effect of

tracking across terciles is driven by changes in the composition of the classrooms through teachers’

instructional adjustments as well as direct peer-to-peer spillovers. Teachers can adjust instruction

by altering both the allocation of class time across topics and the amount of effort they exert. Table

8 reports the average allocation of class time across topics delivered to students at different terciles

under both the baseline (non-tracking) and the tracking scenarios. In particular, the present analysis

focuses on tracking in the case of random assignment of teachers to classrooms. Results under either
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type of assortative matching are similar and, therefore, are omitted. Columns (1) and (2) show the av-

erage values of τt delivered to students at different terciles under the baseline and tracking scenarios,

respectively. Column (3), instead, reports the allocation of class time tailored to student’s prior knowl-

edge at each specific tercile, computed as τ̃q = τ×ηq for q = 1,2,3. The comparison of these three

columns shows that, under tracking, students in the first tercile tend to receive values of τt slightly

closer to τ̃q , while for students at higher terciles there is no clear pattern on how class time allocation

adjusts. These results are likely a by-product of the higher value teachers attach to the achievement of

students in the first tercile. Hence, teachers have a higher incentive to tailor instruction to students’

needs when assigned to lower tracks. On the other hand, other factors like curriculum standards and

preferences for time spent on specific topics seem to drive the adjustments ofτt for teachers assigned

to higher tracks.36

Panel (a) of Figure 2 shows the effect of tracking on the level of instructional effort experienced

by students at different terciles for different teacher assignment mechanisms. Under tracking with

negative assortative matching (blue bars at the left of the tercile groups), students at the bottom of

the distribution see an increase of effort by the teachers they are assigned to equivalent to about

0.7SD, while students at the top tercile experience a drop in instructional effort of the same magni-

tude. Similar results are found when teachers are randomly assigned to classrooms, although with

much smaller magnitudes (grey bars on the right of each tercile group), with the changes in teacher

effort for students at the bottom and top terciles being +0.2SD and -0.25SD, respectively. Conversely,

under positive assortative matching students in the bottom tercile see a decrease in the instructional

effort of their teacher of almost 0.2SD, while third-tercile students experience an increase of about

0.1SD. As for students in the second tercile, teacher effort increases by less than 0.1SD no matter how

teachers are assigned. These result are a clear reflection of interactions between teachers’ ability and

the rewards they get for the achievement of different students. On one hand, teachers tend to in-

crease (decrease) effort when assigned to students whose achievement they value the most (least).

On the other hand, more able teachers tend to exert more effort because their instruction is generally

more productive. As a result, these effects can either magnify or offset each other depending on how

teachers with high or low ability are assigned to lower or higher tracks.

A final channel through which changes in classroom composition brought about by tracking in-

fluence student outcomes is direct peer-to-peer spillovers. Table 9 displays how the total effect of

tracking on the achievement of students at different terciles is the sum of the effect of both direct

and indirect peer-to-peer spillovers. The sign and magnitude of direct peer spillovers reflect those of

the estimated parameters πqk , and their values are, by construction, constant across teacher assign-

ment mechanisms. In particular, tracking generates large positive direct spillovers for students in the

36Although similar, these effects can be more or less pronounced under depending on the teacher assignment mech-
anism. In particular, given the complementarity between τt and teacher ability, negative (positive) assortative matching
leads teachers assigned to lower tracks to teach closer (further) to the level of instruction tailored to students’ knowledge.
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top tercile, and negative ones for all other students. On the other hand, Table 9 shows how indirect

spillovers originating from teachers’ instructional adjustments are able to either reinforce or offset

the effect of direct peer effects, where these adjustments are represented by changes in class time al-

location and instructional effort discussed above. Specifically, assigning low ability teachers to lower

tracks and high ability teachers to higher tracks (PAM) further widen the achievement inequality al-

ready generated by direct peer spillovers. On the contrary, assigning better teachers to students in

lower tracks (NAM) yields high enough positive indirect effects to both compensate and reverse the

sign of the overall effect of tracking on students in the bottom tercile, while students in the top tercile

experience lower, but still positive, total effects.

6.3 The Impact of Curriculum Standards on Instruction and Achievement

Since the early 1990s, many education policies have been involved in the establishment of edu-

cational standards. The main objective of these standards is to establish a common benchmark for

student proficiency across schools, as well as to provide teachers with guidelines on how to struc-

ture their curricula and pace of instruction. Despite their importance in the education policy agenda,

empirical evidence on the effectiveness of curriculum standards in raising student achievement is

still inconclusive. Hence, a first-order question is whether the existing curriculum standards are set

at a level which would actually foster student achievement. To do that, I simulate a counterfactual

where I impose teachers to teach according to the standards in their state. Formally, I set τt =ϕt for

each s and t . The simulation results are reported in Table 10. Comparing the counterfactual scenario

with the status quo (where teachers are free to choose their time allocation) it is possible to see that

teaching according to the state-level standards would be slightly detrimental for students along the

entire distribution of prior achievement. Hence, these results suggest that curriculum standards in

the 5 states represented in the MET data are, in general, not well-suited to the students’ level of prior

knowledge.

7. Conclusion

This paper explores the relationship between instruction, classroom composition, and student

knowledge accumulation by developing and estimating an equilibrium model of endogenous instruc-

tion and student effort. Teachers maximize their utility by choosing how much effort to exert in class

as well as the allocation of instructional time among different topics. The model allows teachers to at-

tach different weights to the achievement of students with different levels of prior knowledge, race, or

gender. Students also maximize their utility by choosing learning effort. The equilibrium is modeled

as the outcome of a static game of complete information. The model also specifies a technology of

knowledge production which allows class time allocation to have a differential impact on the achieve-
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ment of students at different levels of the distribution of prior knowledge, and to incorporate direct

peer-to-peer spillovers not mediated by the teacher’s behavior. For the empirical part of the analysis,

I use a sub-sample of fourth grade math classes from the first year of the MET project data. The es-

timation is carried out through maximum simulated likelihood. Estimates of the model suggest that

teachers attach higher values to the achievement of students with lower levels of initial knowledge.

These results are consistent with the incentives provided by the US education system at both the

federal and local level in the past two decades, especially from policies like NCLB. Moreover, students

with different baseline knowledge display different learning profiles, as shown by the difference in the

quantile-specific class time elasticity parameters. The model fits the data well both within and out-of-

sample. In particular, the model predicts accurately both student-level and teacher-level outcomes

from the second year of MET study, where teachers were randomly assigned to classrooms within

each school. These results suggest that the estimates are not significantly affected by the potentially

non-random assignment of teachers in the first year of the study.

The counterfactual analysis involves the implementation of ability tracking within each school. I

find that the distributional effects of tracking are heterogeneous and depend heavily on how teach-

ers with different ability are assigned to classrooms. In particular, while students at the top of the

distribution are always positively affected by tracking (with a peak increase in achievement when as-

signed to high-ability teachers), assigning high-ability teachers to lower tracks yields positive effects

on the achievement of students in the first tercile, thus offsetting the negative effect stemming from

the reduction in peer quality. Further analysis shows that teachers respond to tracking by both better

tailoring instruction to the students’ readiness level and exerting more effort when assigned to lower

tracks. Indeed, disentangling the effect of tracking into its direct and indirect peer-to-peer spillovers

components, I find that, while students at the bottom of the distribution are those more affected by

the negative direct spillovers from lower-quality peers, they are also those benefiting the most from

teachers’ instructional adjustment after the implementation of tracking. This study contributes to

a long-standing discussion on the distributional effects of tracking on students with different levels

of prior achievement. In particular, my results highlight the trade-offs generated by tracking when

accounting for the endogenous response of teachers, their assignment to different tracks, as well as

direct peer-to-peer spillovers. A main takeaway of these results is that, with the right combination

of incentives (i.e., teacher rewards) and resources (e.g., high-quality teachers), tracking can benefit

disadvantaged students despite the lower peer quality.

The present framework can be expanded in several directions. A natural first step could be to ex-

plore what drives the observed heterogeneity in the rewards that teachers attach to the achievement

of different students. This has potential implications from a policy standpoint, as it would allow ed-

ucational authorities to understand the extent to which they are able to incentivize teachers in order

to achieve specific policy goals. Moreover, there is a variety of other factors characterizing teacher
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instructional decisions that are not captured by the mere allocation of time among topics and by the

specific measures of instructional effort used in this study. Indeed, broadening the teacher’s choice

set by including other dimensions of instruction could help uncover new facets of teacher’s behavior,

especially as related to their interaction with heterogeneous students (see e.g., Aucejo et al., 2021).

Further extensions of the present framework could also entail the inclusion of social interactions in

the spirit of Blume et al. (2015) or Conley et al. (2018). In particular, including direct peer-to-peer

spillovers as equilibrium outcomes would improve on the common specification entailing mechan-

ical peer effects embedded in the education production function. Finally, upon availability of more

comprehensive data, the model can be extended to incorporate endogenous parental response to

schools, teachers, and peers, whose importance has been highlighted by a growing body of empiri-

cal research (see e.g., Fu and Mehta, 2018; Agostinelli, 2018). All these extensions are left for future

research.
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Table 1: Student and Teacher Characteristics

Mean Std.Dev Mean
Panel A: Students (Obs. = 2532)
Age 9.52 0.50 Gifted 0.06
Male 0.48 Special education (SpEd) 0.09
White 0.26 English language learner (ELL) 0.17
Black 0.43 Reduced price/free lunch 0.45
Hispanic 0.25
N. books in bedroom: N. computers at home:

None 0.09 None 0.12
≥1 and ≤10 0.22 One 0.45
≥11 and ≤24 0.21 More than one 0.43
≥25 0.48

Has person at home to help with homework: Has no quiet place to study at home:
Never 0.02 Never 0.40
Mostly not 0.03 Mostly not 0.12
Sometimes 0.09 Sometimes 0.16
Mostly 0.17 Mostly 0.12
Always 0.69 Always 0.2

Panel B: Teachers (Obs. = 101)
Years of experience in the district 6.40 5.94
Master’s degree 0.53
Teaches both Math and ELA (generalist) 0.83

Table 2: Class Time Allocation, State Curriculum Standards, and Classroom Composition

Mean St.Dev p25 Median p75
Panel A: Class time allocation (% of total class time)
Place value, rounding, addition, and subtraction 6.797 2.165 5.614 6.678 7.567
Multi-digit multiplication and division 25.981 6.246 21.967 25.229 28.899
Shapes, angles, and geometry 17.513 5.135 14.014 17.448 21.078
Fractions and decimals 25.546 5.367 22.362 25.464 29.427
Unit conversion and measurement 24.163 6.182 20.472 24.627 28.352

Panel B: Curriculum standards (% of test content)
Place value, rounding, addition, and subtraction 7.967 2.632
Multi-digit multiplication and division 29.483 6.023
Shapes, angles, and geometry 15.910 5.157
Fractions and decimals 25.617 9.222
Unit conversion and measurement 21.024 7.851

Panel C: Distance between instruction and standards (abs. dev.)
Place value, rounding, addition, and subtraction 2.471 2.201
Multi-digit multiplication and division 7.601 5.152
Shapes, angles, and geometry 5.887 4.179
Fractions and decimals 9.288 5.376
Unit conversion and measurement 8.629 5.338

Notes: Curriculum standards for each topic (Panel B) are measured as the percentage of items in the 4th grade state
test in mathematics related to each different topic. Information on the test content has been collected by the MET
staff and categorized to be consistent with the topic categories included in the SEC survey. Panel C shows statistics
of the absolute deviation between observed class time allocation choices and the standards.
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Table 3: Classroom Composition and Tracking Intensity

Mean St.Dev p25 Median p75
Student composition across classrooms (baseline knowledge):

% of students in 1st tercile 30.20 21.80 14.30 26.30 46.40
% of students in 2nd tercile 33.20 13.20 24.10 34.80 41.70
% of students in 3r d tercile 36.60 26.80 14.30 30.20 52.00

Class size 23.29 4.97 20 23 26

N. classrooms 101

Share of between-classroom variation in baseline knowledge:

(based on all Year-1 MET schools)
Data (1) 0.074 0.089 0.016 0.039 0.099
Tracking (2) 0.616 0.158 0.521 0.626 0.729

Tracking Intensity (ratio of (1) to (2)) 0.123 0.158 0.027 0.062 0.145

N. schools 111

Notes: The upper panel reports statistics on the distribution of the percentages of students in each district-level
tercile of baseline knowledge (based on the 3r d grade state tests in math) across classrooms in the sample. The
lower panel shows the degree at which schools participating in the first year of the MET study are tracking 4th grade
students in math classrooms. Let V ars (K0) =V ars (K0)B +V ars (K0)W denote the decomposition of the total variance
of baseline knowledge in school s, V ars (K0), in between-classroom (V ars (K0)B ) and within-classroom (V ars (K0)W )
variation. The share of between-classroom variation is then V ars (K0)B /V ars (K0). The second row of the lower panel
(Tracking (2)) shows the share of between-classroom variation in the most extreme version of tracking (i.e., students
ranked from low to high based on baseline knowledge and then reassigned sequentially to each classrooms, keeping
equal class sizes in each school). The ratio of the two shares (third row) gives the measure of tracking intensity in
each school.
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Table 4: Descriptive Statistics of the Latent Factors Measures

Student knowledge: Mean Std.Dev

3r d grade math state test score (rescaled) 510.179 95.415
BAM test (% correct answers) 54.735 21.389

Teacher ability

CLASS Behavior management (1-7 scale) 5.943 0.715
CLASS Content understanding (1-7 scale) 4.137 0.481
CLASS Productivity (1-7 scale) 5.918 0.555
FFTM Management of class procedures (1-4 scale) 2.763 0.354
FFTM Management of student behavior (1-4 scale) 2.840 0.344
MQI Richness of mathematics (1-3 scale) 1.340 0.261
MQI Mathematical knowledge for teaching (MKT) score (1-3 scale) 2.030 0.218
Teacher explains clearly (0-4 scale) 3.321 0.295
Teacher controls class behavior (0-4 scale) 2.251 0.437
Teacher explains in orderly way (0-4 scale) 3.180 0.300
Teacher can explain in several ways (0-4 scale) 3.216 0.295

Teacher effort (0-4 scale)

Teacher explains in another way if we do not understand 3.325 0.285
Teacher pushes us to work hard 3.092 0.370
Teacher does not waste time in class 2.664 0.385
Teacher asks us if we understand the lesson 3.329 0.315
Teacher asks us if we are following along 3.440 0.277
Teacher writes feedback on our papers 2.887 0.387
Teacher takes the time to summarize the lesson 2.813 0.480
Teacher encourage us to do our best 3.533 0.257

Teacher preference for adherence to standards (0-4 scale)

Administrators require rigid adherence to standards 3.137 0.800
I frequently refer to and use information found in standards documents 2.422 0.521

Student effort Never Mostly not Sometimes Mostly Always

I have done my best quality work in this class 0.007 0.010 0.089 0.242 0.457
In this class, I stop trying when the work gets hard 0.488 0.119 0.103 0.046 0.048
In this class, I take it easy and do not try to do my best 0.427 0.096 0.090 0.066 0.119

None Some Most All All plus extra
How much homework do you usually complete? 0.006 0.062 0.106 0.489 0.137

Student preference for own knowledge Never Mostly not Sometimes Mostly Always

School work is interesting 0.062 0.084 0.285 0.255 0.315
School work is not very enjoyable 0.287 0.165 0.256 0.124 0.168
I read at home almost every day 0.056 0.081 0.219 0.228 0.417

Notes: The 3r d grade state test scores is rescaled to display mean and standard deviation equal to 500 and 100. The first 7 measures of teaching ability are
based on several evaluation protocols of video-recorded lessons performed by the MET staff. All measures of teacher’s instructional effort and the last 4 of
teaching ability are average scores from student survey responses, whose categories ranged from 0 ("Never") to 4 ("Always").
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Table 5: Production and Utility Functions Parameter Estimates

Panel A: Selected Production Function Parameters
Value Std.Err. Value Std.Err.

Parameter Label (1) (2) Parameter Label (3) (4)
δ0 deprec. rate/unit conv. 0.1104 0.0034 π11 direct peer spillov. q = 1, k = 1 −0.0236 0.0248
δ1 unit conversion (mean) 0.0005 - π13 direct peer spillov. q = 1, k = 3 −0.0315 0.0316
γ0 elasticity baseline knowledge 1.1288 0.0341 π21 direct peer spillov. q = 2, k = 1 −0.0236 0.0316
γ1 elasticity teacher ability 0.3414 0.0359 π23 direct peer spillov. q = 2, k = 3 0.0607 0.0280
γ20 elasticity teach. eff. (const.) 0.0231 0.0024 π31 direct peer spillov. q = 3, k = 1 0.0861 0.0447
γ21 elast. teach. eff. (class size) −0.0004 0.0001 π33 direct peer spillov. q = 3, k = 3 0.1033 0.0266
γ3 elasticity student effort 0.0066 0.0067

Panel B: Elasticity of Class Time Inputs

Student tercile (q)
q = 1 q = 2 q = 3

Value Std.Err. Value Std.Err. Value Std.Err.
Parameter Topic group (1) (2) (3) (4) (5) (6)

η1q Place value, rounding, addition, and subtraction 0.0475 0.0068 0.0731 0.0111 0.0637 0.0073
η2q Multi-digit multiplication and division 0.2500 0.0149 0.2472 0.0271 0.2697 0.0196
η3q Shapes, angles, and geometry 0.0149 0.1096 0.0537 0.1824 0.0703 0.0393
η4q Fractions and decimals 0.3846 0.0237 0.2697 0.0196 0.3390 0.0166
η5q Unit conversion and measurement 0.3030 - 0.3563 - 0.2573 -

Panel C: Teacher Utility Parameters

Value Std.Err. Value Std.Err.
Parameter Label (1) (2) Parameter Label (3) (4)

ω1
1 weight on 1st tercile student 29.3623 0.0269 α̃13 preference for topic 3 0.3825 0.0654

ω2
1 weight on 2nd tercile student 21.7276 0.1431 α̃14 preference for topic 4 −0.0579 0.0464

ω3
1 weight on 3rd tercile student 13.0701 0.5923 α201 adherence to stand. topic 1 5.9E−06 0.0025

ω21 weight on female student −2.3023 0.0923 α202 adherence to stand. topic 2 1.4E−05 0.0015
ω22 weight on black student 4.8183 0.1027 α203 adherence to stand. topic 3 0.0675 0.0041
ω23 weight on Hispanic student 7.7529 0.5156 α204 adherence to stand. topic 4 5.3E−05 0.0016
α̃11 preference for topic 1 0.0891 0.0480 α205 adherence to stand. topic 5 0.0002 0.0020
α̃12 preference for topic 2 0.0712 0.0450 α21 adherence to stand. (slope) 7.6E−06 0.0010

Notes: The table reports the parameter estimates of the production function and teacher utility. In Panel A, the value of δ1 is the mean of the
district-level parameters (δ1d )5

d=1 (whose estimates and standard errors are not reported due to confidentiality). For the parameters πqk , the
subscript q represents the student’s own tercile while k is the peers’ tercile. Both measures of K0t i and K1t i have been divided by 100 before
the estimation. Hence, all parameters have to be interpreted accordingly. In Panel B, the elasticities of time spent teaching unit conversion and
measurement are computed as η5q = 1−∑4

j=1 η j q . In Panel C, the topic numbers from 1 to 5 refer to the same order of the topic groups in

Panel B (e.g., topic 1 = "Place value, rounding, addit. and subract.", topic 2 = "Multi-digit multiplication and division", etc.). The parameters
(α̃11, α̃12, α̃13, α̃14) are defined as α̃1 j =α1 j −α15, j = 1, . . . ,4.
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Table 6: Within-Sample Model Fit

Data Model
Mean Std.Dev. Mean Std.Dev. σtrue/σtotal

(1) (2) (3) (4) (5)
Knowledge measures:

3r d grade math state test score 510.179 95.415 515.881 97.500
BAM test score (% correct) 54.735 21.389 51.810 20.714 0.531

Class time topic area (% of total class time):

Place value, rounding, addition, and subtraction 6.797 2.165 7.721 6.071
Multi-digit multiplication and division 25.981 6.246 26.080 6.650
Shapes, angles, and geometry 17.513 5.135 17.244 6.674
Fractions and decimals 25.546 5.367 25.731 7.076
Unit conversions and measurement 24.163 6.182 23.224 7.122

Teacher effort

Teacher explains in another way if class does not understand 3.325 0.285 3.330 0.269 0.155
Teacher pushes students to work hard 3.092 0.370 3.108 0.349 0.003
Teacher does not waste time 2.664 0.385 2.682 0.375 0.146
Teacher asks questions to make sure students understand 3.329 0.315 3.364 0.300 0.436
Teacher asks if students are following along 3.440 0.277 3.445 0.288 0.377
Teacher writes feedback on our papers 2.887 0.387 2.897 0.418 0.077
Teacher takes time to summarize the lesson 2.813 0.480 2.819 0.442 0.142
Teacher encourages students to do their best 3.533 0.257 3.571 0.263 0.145

Student effort

I have done my best quality work in this class 3.406 0.801 3.387 0.810 0.109
In this class, I stop trying when the work gets hard 0.817 1.214 0.854 1.240 0.141
In this class, I take it easy and do not try to do my best 1.190 1.512 1.236 1.531 0.102
How much homework do you usually complete? 3.862 0.814 3.847 0.820 0.104

Teacher ability

CLASS Behavior management scale 5.943 0.715 5.917 0.761 0.574
CLASS Content understanding scale 4.137 0.481 4.153 0.502 0.307
CLASS Productivity scale 5.918 0.555 5.936 0.633 0.473
FFTM Management of class procedures score 2.763 0.354 2.727 0.442 0.806
FFTM Management of student behavior score 2.840 0.344 2.822 0.391 0.791
MQI Richness of mathematics score 1.340 0.261 1.338 0.250 0.011
MQI Mathematical knowledge for teaching (MKT) score 2.030 0.218 2.016 0.268 0.136
Teacher explains clearly (0-4 score) 3.321 0.295 3.319 0.301 0.222
Teacher controls class behavior (0-4 score) 2.251 0.437 2.256 0.443 0.275
Teacher explains in orderly way (0-4 score) 3.180 0.300 3.196 0.298 0.198
Teacher can explain in several ways (0-4 score) 3.216 0.295 3.209 0.278 0.326

Student preference for own knowledge

I read at home almost every day 2.869 1.202 2.869 1.181 0.281
School work is interesting 2.677 1.178 2.647 2.676 0.085
School work is not very enjoyable 2.278 1.426 2.195 2.278 0.070

Teacher preference for adherence to standards

Administrators require rigid adherence to standards 3.137 0.800 3.013 0.772 0.239
I frequently refer to and use info. found in stand. documents 2.422 0.521 2.366 0.509 0.827
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Table 7: Out-of-Sample Validation (Year 2 Data Sample Fit)

Data Model
Mean Std.Dev. Mean Std.Dev.

(1) (2) (3) (4)
Knowledge measures:

BAM test score (% correct) 53.453 22.123 50.488 20.062

Class time topic area (% of total class time):

Place value, rounding, addition, and subtraction 7.376 3.745
Multi-digit multiplication and division 26.562 6.289
Shapes, angles, and geometry 15.268 6.790
Fractions and decimals 27.926 6.726
Unit conversions and measurement 22.868 5.741

Teacher effort

Teacher explains in another way if class does not understand 3.328 0.299 3.389 0.277
Teacher pushes students to work hard 3.192 0.427 3.107 0.369
Teacher does not waste time 2.709 0.402 2.744 0.404
Teacher asks questions to make sure students understand 3.392 0.322 3.418 0.329
Teacher asks if students are following along 3.502 0.252 3.528 0.300
Teacher writes feedback on paper 2.959 0.468 2.913 0.403
Teacher takes time to summarize lesson 2.981 0.434 2.894 0.472
Teacher encourages students to do their best 3.600 0.289 3.589 0.276

Teacher ability

CLASS Behavior management scale 5.803 0.512 5.886 0.731
CLASS Content understanding scale 4.120 0.496 4.133 0.509
CLASS Productivity scale 5.803 0.419 5.901 0.585
FFTM Management of class procedures score 2.691 0.346 2.734 0.440
FFTM Management of student behavior score 2.767 0.380 2.820 0.398
MQI Richness of mathematics score 1.353 0.263 1.310 0.235
MQI Mathematical knowledge for teaching (MKT) score 2.027 0.225 2.002 0.249
Teacher explains clearly (0-4 score) 3.324 0.269 3.320 0.291
Teacher controls class behavior (0-4 score) 2.211 0.506 2.230 0.447
Teacher explains in orderly way (0-4 score) 3.229 0.347 3.187 0.301
Teacher can explain in several ways (0-4 score) 3.311 0.292 3.212 0.304

Student effort

I have done my best quality work in this class 3.409 0.815 3.403 0.803
In this class, I stop trying when the work gets hard 0.831 1.246 0.801 1.205
In this class, I take it easy and do not try to do my best 1.316 1.519 1.166 1.507
How much homework do you usually complete? 3.933 0.833 3.863 0.820

Student preference for own knowledge

School work is interesting 2.830 1.117 2.629 1.182
School work is not very enjoyable 1.596 1.398 2.257 1.431

Teacher preference for adherence to standards

Administrators require rigid adherence to standards 2.865 0.870 1.539 0.668
I frequently refer to and use info. found in stand. documents 2.341 0.631 0.945 0.227
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Table 8: Impact of Ability Tracking on Class Time Allocation

Average % of Total
Class Time Allocated Tailored
Baseline Tracking Instruction (τ̃q )

(1) (2) (3)
1st tercile students
Place value, round., addit., and subtr. 7.032 6.123 4.747
Multi-digit multipl. and division 25.435 24.799 24.997
Shapes, angles, and geom. 17.402 16.524 1.486
Fractions and decimals 26.825 27.804 38.458
Unit conversion and meas. 23.305 24.750 30.312

2nd tercile students
Place value, round., addit., and subtr. 7.977 8.481 7.314
Multi-digit multipl. and division 26.112 25.738 24.722
Shapes, angles, and geom. 15.981 16.215 5.367
Fractions and decimals 27.017 27.383 37.848
Unit conversion and meas. 22.913 22.183 24.749

3r d tercile students
Place value, round., addit., and subtr. 8.269 8.753 6.374
Multi-digit multipl. and division 26.735 28.049 26.965
Shapes, angles, and geom. 14.980 15.529 7.034
Fractions and decimals 26.778 25.141 33.900
Unit conversion and meas. 23.238 22.528 25.727

Notes: The baseline levels of class time allocation are simulated using the student-
classroom assignment observed in the data. Counterfactual results are, instead, based on
tracking with random assignment of teachers to classrooms. The level of tailored instruc-
tion for students in tercile q = 1,2,3 is given by τ̃q = τ×ηq = 100×(η1q ,η2q ,η3q ,η4q ,η5q )
as illustrated in Section 2.2.
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Table 9: Disentangling Peer-to-Peer Spillovers

∆BAM score (in SD)
All terciles 1st tercile 2nd tercile 3r d tercile

Tracking with random assignment of teachers

Total effect 0.0209 −0.0075 −0.0358 0.1091
Direct peer spillovers 0.0205 −0.0127 −0.0333 0.1103
Indirect peer spillovers 0.0004 0.0052 −0.0025 −0.0012

Tracking with positive assortative matching

Total effect 0.0264 −0.0383 −0.0368 0.1574
Direct peer spillovers 0.0205 −0.0127 −0.0333 0.1103
Indirect peer spillovers 0.0059 −0.0256 −0.0035 0.0471

Tracking with negative assortative matching

Total effect 0.0148 0.0266 −0.0318 0.0525
Direct peer spillovers 0.0205 −0.0127 −0.0333 0.1103
Indirect peer spillovers −0.0057 0.0393 0.0015 −0.0578

Notes: The table shows the decomposition of the effect of tracking on students end-of-year knowledge (mea-
sured by the standardized BAM score) at different terciles. Direct peer spillovers represent the effect of tracking
due to classmates characteristics when teachers do not adjust instruction to the new composition of the class-
room (i.e., each student receives the same instruction as the baseline "non-tracking" scenario). Indirect peer
spillovers represent the effect of tracking due to teachers instructional response to the new classroom compo-
sition, while keeping direct peer spillovers fixed to the baseline level. Teacher assortative matching is based on
teaching ability.

Table 10: Impact of Teaching According to the Curriculum Standards on End-of-Year Knowledge

BAM score (% correct)
Baseline knowledge tercile Baseline Counterf. ∆ (in SD)

All terciles (SD = 20.714) 51.8104 51.7459 −0.0031
1st tercile 35.1232 35.0190 −0.0050
2nd tercile 51.3147 51.2401 −0.0036
3r d tercile 69.3925 69.3791 −0.0006
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Figure 1: Impact of Ability Tracking on Student Achievement

Figure 2: Impact of Ability Tracking on Teacher Effort
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Appendix

A. Model Solution and Likelihood Function

Let D t i ≡ δ1K γ0

0t i Aγ1
t and Fq (τt ) ≡∏J

j=1τ
η j q

t j , and also α̃1k ≡α1k −α1J and ε̃tk ≡ εtk −εt J . The FOCs

(7a), (7b), and (9) can be re-written as

e∗t = γ
1

2−γ2
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and, for k = 1, . . . , J −1,
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t i (ηkqiτ
∗−1
tk −η J qτ
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τ∗tk −ϕtk
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(
τ∗t J −ϕt J
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(14)

For each student i taught by teacher t , an observation in the data includes the measures of both

exogenous and endogenous latent factors together with the initial conditions,

Ot i =
((

Am
t

)MA

m=1 ,
(
em

t

)Me

m=1 ,
(
φm

t

)Mφ

m=1 ,
(
hm

ti

)Mh
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ψm

ti

)Mψ

m=1 ,K0t i ,K1t i ,τ∗t , X t i

)
,

with X t i = (X A
t , Xφ

t , X K0

t i , Xψ

t i ,ϕt ,Wt i ). The vectors of observations and initial conditions for class t

are then Ot = (Ot1, . . . ,Ot Nt ) and X t = (X t1, . . . , X t Nt ). Define the vectors of random effects χt =(
υt ,ζt1, . . . ,ζt Nt

)
. In order to derive the likelihood contribution of class t , let’s first assume that χt

is observed by the econometrician. Then, given the distributional assumptions and suppressing the

subscripts to ease notation, the likelihood of the exogenous latent factor θ ∈ {A,φ,ψ} is given by

`θ
(
(θm)Mθ

m=1|X θ,χ
)= Mθ∏

m=1
`m
θ (θm |θ)

where `m
θ

(·) is the likelihood of the mth measure of θ. As for the endogenous variables, conditional

on
(

X t ,K0t ,τt ,χt
)
, optimal effort e∗t and h∗

t i are completely deterministic. Hence, the likelihood of
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the effort measures are given by

`e
(
(em

t )Me
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.

Similarly, the conditional likelihood of end-of-year knowledge K1t i is given by `K1

(
K1t i |X t ,τt ,χt

)
.

Finally, the conditional likelihood of τ is derived from the FOCs (13), for k = 1. . . , J−1, combined with

the distributional assumption on εt . Specifically, denoting the RHS of (13) for all k = 1. . . , J −1 as a

multivariate function ε̃(X t ,χt ) we have that the likelihood of τ is given by

`τ
(
τt |X t ,χt

)= ∣∣∣det J
(
ε̃(X t ,χt )

)∣∣∣×`ε̃ (
ε̃(X t ,χt )|X t ,χt

)
where J

(
ε̃(X t ,χt )

)
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and `ε̃(·) the likelihood of ε̃t (a multivariate normal with mean zero and covariance matrix Σε̃).

As a result, the likelihood contribution of class t in school s conditional on
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is given by
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with Φ(·;Σ) a multivariate normal density with zero mean and covariance matrix Σ. Now since χt is

actually unobserved, we need to integrate it out, that is

Lt (Θ|Ot ) =
∫

Lt (Θ|Ot ,χ)dχ. (16)

Given R draws from the joint distribution of χt , denoted (χ̂tr )R
r=1, we can perform a Monte Carlo

integration to approximate (16) and obtain our simulated likelihood contribution of class t
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B. Additional Tables and Figures

Table B.1: Correlation Matrices: Latent Factors Measures

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Teacher ability (Pearson’s correlation coeff.)

CLASS Behavior management (1) 1.000
p-value
CLASS Content understanding (2) 0.383 1.000
p-value 0.001
CLASS Productivity (3) 0.810 0.495 1.000
p-value 0.000 0.000
FFTM Management of class procedures (4) 0.591 0.381 0.486 1.000
p-value 0.000 0.001 0.000
FFTM Management of student behavior (5) 0.680 0.338 0.450 0.753 1.000
p-value 0.000 0.004 0.000 0.000
MQI Richness of mathematics (6) 0.307 0.413 0.348 0.197 0.161 1.000
p-value 0.009 0.000 0.003 0.102 0.182
MQI Mathematical knowledge for teaching (MKT) score (7) 0.321 0.321 0.283 0.332 0.326 0.347 1.000
p-value 0.007 0.007 0.018 0.005 0.006 0.003
Teacher explains clearly (8) 0.119 0.101 0.179 0.155 0.074 0.055 −0.108 1.000
p-value 0.325 0.407 0.139 0.201 0.545 0.649 0.374
Teacher controls class behavior (9) 0.332 0.291 0.427 0.306 0.292 0.110 0.170 0.341 1.000
p-value 0.005 0.014 0.000 0.001 0.014 0.364 0.159 0.000
Teacher explains in orderly way (10) 0.199 0.061 0.199 0.025 0.039 0.127 0.007 0.587 0.325 1.000
p-value 0.098 0.616 0.099 0.838 0.747 0.294 0.955 0.000 0.001
Teacher can explain in several ways (11) 0.173 0.255 0.353 0.191 0.156 0.180 0.062 0.564 0.385 0.557 1.000
p-value 0.153 0.033 0.003 0.113 0.198 0.135 0.609 0.000 0.000 0.000

Teacher effort (Pearson’s correlation coeff.)

Teacher explains in another way if we do not understand (1) 1.000
p-value
Teacher pushes us to work hard (2) 0.207 1.000
p-value 0.041
Teacher does not waste time in class (3) 0.150 0.319 1.000
p-valuee 0.140 0.001
Teacher asks us if we understand the lesson (4) 0.365 0.360 0.167 1.000
p-value 0.000 0.000 0.101
Teacher asks us if we are following along (5) 0.409 0.380 0.016 0.609 1.000
p-value 0.000 0.000 0.876 0.000
Teacher writes feedback on our papers (6) 0.372 0.238 0.102 0.178 0.261 1.000
p-value 0.000 0.018 0.319 0.079 0.009
Teacher takes the time to summarize the lesson (7) 0.452 0.357 0.248 0.442 0.448 0.459 1.000
p-value 0.000 0.000 0.014 0.000 0.000 0.000
Teacher encourage us to do our best (8) 0.425 0.286 0.405 0.233 0.324 0.281 0.214 1.000
p-value 0.000 0.004 0.000 0.021 0.001 0.005 0.035

Teacher preference for adherence to standards (Pearson’s χ2)

Administrators require rigid adherence to standards (1) .
p-value .
I frequently refer to and use information found in standards documents (2) 1.02 .
p-value 0.60

Student effort (Pearson’s χ2)

I have done my best quality work in this class (1) .
p-value .
In this class, I stop trying when the work gets hard (2) 240.90 .
p-value 0.00
In this class, I take it easy and do not try to do my best (3) 276.08 393.21 .
p-value 0.00 0.00
How much homework do you usually complete? (4) 143.23 108.17 92.01 .
p-value 0.00 0.00 0.00

Student preference for own knowledge (Pearson’s χ2)

School work is interesting (1) .
p-value .
School work is not very enjoyable (2) 512.35 .
p-value 0.00
I read at home almost every day (3) 228.46 95.70 .
p-value 0.00 0.00
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Table B.2: Exogenous Inputs Equation Parameter Estimates

Determinants
Student preference for own

Baseline knowledge (K0t i ) knowledge (log (ψt i ))
Estimate Std.Err. Estimate Std.Err.

Constant 5.8378 0.3880 0.0000
Male 0.0032 0.0312 −0.2458 0.0243
Gifted 0.9097 0.0701 0.4049 0.0556
Special education −0.4311 0.0579 −0.0800 0.0398
English language learner −0.0065 0.0575 0.1430 0.0423
Free/Reduced price lunch −0.1257 0.0385 0.0251 0.0273
Black −0.4344 0.0527 −0.1867 0.0341
Hispanic −0.2076 0.0571 −0.0360 0.0420
Age −0.0853 0.0330 0.0398 0.0235
N. books in bedroom (base = None):
≥1 and ≤10 0.0614 0.0595 0.3088 0.0420
≥11 and ≤24 0.1821 0.0608 0.3791 0.0431
≥25 0.1226 0.0560 0.5870 0.0432

Has quiet place to study at home:
Mostly not 0.0945 0.0521 −0.2470 0.0424
Sometimes −0.0370 0.0462 −0.2347 0.0362
Mostly −0.1504 0.0528 −0.2822 0.0385
Always −0.1654 0.0428 −0.0523 0.0299

N. computers at home (base = None)
One 0.1075 0.0509 −0.0046 0.0370
More than one 0.2167 0.0544 −0.1288 0.0397

Has person at home to help with homework (base = Never)
Mostly not 0.3237 0.1261 −0.1139 0.0886
Sometimes 0.3238 0.1087 0.0743 0.0759
Mostly 0.3694 0.1039 0.2241 0.0723
Always 0.2545 0.0987 0.4148 0.0700

Teacher preference for
Teacher ability (log (At )) adherence to standards (log (ψt ))
Estimate Std. Err.

Constant 0.0000 0.0000
Years of experience 0.0205 0.0261 −0.0077 0.0406
Years of experience (squared) −0.0015 0.0014 0.0014 0.0023
Master’s degree 0.1532 0.1305 0.5319 0.2288
Generalist teacher −0.2222 0.2111 0.0465 0.3054
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Table B.3: Exogenous Inputs Random Effects Covariances

Taste Shocks Covariance Matrix (Σε̃)
ε̃11 ε̃12 ε̃13 ε̃14

ε̃11 0.0190
(0.0085)

ε̃12 0.0147 0.0187
(0.0099) (0.0063)

ε̃13 −0.0013 −0.0024 0.1230
(0.0315) (0.0350) (0.0160)

ε̃14 0.0109 0.0139 −0.0042 0.0251
(0.0131) (0.0129) (0.0087) (0.0092)

Teacher-level Random Effects Covariance Matrix (Σν)
(1) (2) (3) (4)

Teacher ability (1) 0.2922
(0.060)

Teacher preference for adherence to standards (2) −0.0311 0.0982
(0.0460) (0.0939)

Student preference for own knowledge (3) 0.0846 0.0793 0.1115
(0.2879) (0.3471) (0.0280)

Baseline knowledge (4) −0.0014 0.0186 −0.0074 0.0808
(0.2179) (0.2990) (0.0413) (0.0463)

Student-level Random Effects Covariance Matrix (Σζ)
(1) (2)

Student preference for own knowledge (1) 0.1228
(0.0223)

Baseline knowledge (2) 0.0257 0.5079
(0.0155) (0.0088)

Notes: Standard errors in parenthesis
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Table B.4: Measurement Equations Parameters - Endogenous Latent Factors

Intercept (µy
0m) Slope (µy

1m) Meas.Error (σςym)
Estimate Std. Err. Estimate Std.Err. Estimate Std.Err.

End-of-year knowledge (K1t i )

BAM test score (fraction correct) · · 1.000 · 0.1410 0.0023

Teacher effort (et )

Teacher explains in another way if we do not understand 2.7028 0.0287 1.0000 0.0000 0.2620 0.0082
Teacher pushes us to work hard 2.9783 0.0365 0.1756 0.2369 0.3659 0.0155
Teacher does not waste time in class 1.8248 0.0378 1.3535 0.2330 0.3711 0.0192
Teacher asks us if we understand the lesson 2.1664 0.0311 1.8680 0.2141 0.2677 0.0094
Teacher asks us if we are following along 2.4006 0.0273 1.6690 0.1914 0.2272 0.0069
Teacher writes feedback on our papers 2.1979 0.0388 1.0965 0.2522 0.3843 0.0174
Teacher takes the time to summarize the lesson 1.8392 0.0492 1.5698 0.3443 0.4384 0.0226
Teacher encourage us to do our best 2.9471 0.0251 0.9463 0.1617 0.2437 0.0074

Student effort (ht i )

I have done my best quality work in this class 0.0000 1.0000 0.0000 1.0000
Cutoff 1 ("Never"-"Mostly not") −1.6038 0.0804
Cutoff 2 ("Mostly not"-"Sometimes") −1.2247 0.0588
Cutoff 3 ("Sometimes"-"Mostly") −0.2623 0.0324
Cutoff 4 ("Mostly"-"Always") 0.7383 0.0260

In this class, I stop trying when the work gets hard 0.0000 1.1712 0.1164 1.0000
Cutoff 1 ("Never"-"Mostly not") −0.5988 0.0403
Cutoff 2 ("Mostly not"-"Sometimes") −0.2122 0.0330
Cutoff 3 ("Sometimes"-"Mostly") 0.3271 0.0278
Cutoff 4 ("Mostly"-"Always") 0.7803 0.0261

In this class, I take it easy and do not try to do my best 0.0000 0.9598 0.0824 1.0000
Cutoff 1 ("Never"-"Mostly not") −0.2119 0.0317
Cutoff 2 ("Mostly not"-"Sometimes") 0.1062 0.0285
Cutoff 3 ("Sometimes"-"Mostly") 0.4576 0.0266
Cutoff 4 ("Mostly"-"Always") 0.7900 0.0259

How much homework do you usually complete? 0.0000 0.9735 0.0702 1.0000
Cutoff 1 ("Never"-"Mostly not") −1.6513 0.0835
Cutoff 2 ("Mostly not"-"Sometimes") −0.5495 0.0361
Cutoff 3 ("Sometimes"-"Mostly") 0.0814 0.0287
Cutoff 4 ("Mostly"-"Always") 1.8935 0.0306

Notes: The BAM test score measure has been rescaled from “% correct” to “fraction” for computational purposes before the estima-
tion (the measure K0t i has been dived by 100 as well). The constant term of the measure of K1t i , µK1

0 , is allowed to vary by district.
These values are not reported in the table due to a confidentiality agreement with ICPSR.
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Table B.5: Measurement Equations Parameters - Exogenous Latent Factors

Intercept (µy
0m) Slope (µy

1m) Meas.Error (σςym)
Estimate Std. Err. Estimate Std.Err. Estimate Std.Err.

Teacher ability (l og (At ))

CLASS Behavior management scale 6.1656 0.1892 1.0000 · 0.5042 0.0277
CLASS Content understanding scale 4.2827 0.0786 0.4818 0.0787 0.4240 0.0304
CLASS Productivity scale 6.1145 0.1349 0.7546 0.0699 0.4103 0.0183
FFTM Management of class procedures score 2.9415 0.0768 0.6927 0.0528 0.2303 0.0124
FFTM Management of student behavior score 2.9924 0.0722 0.6050 0.0507 0.2033 0.0115
MQI Richness of mathematics score 1.3651 0.0404 0.1630 0.0424 0.2590 0.0089
MQI Mathematical knowledge for teaching (MKT) score 2.0529 0.0316 0.1714 0.0330 0.2411 0.0054
Teacher explains clearly 3.3907 0.0383 0.2463 0.0486 0.2699 0.0120
Teacher controls class behavior 2.3622 0.0621 0.4032 0.0701 0.3892 0.0246
Teacher explains in orderly way 3.2438 0.0396 0.2299 0.0482 0.2755 0.0117
Teacher can explain in several ways 3.2922 0.0417 0.2749 0.0487 0.2634 0.0119

Student preference for own knowledge (log (ψt i ))

I read at home almost every day 0.0000 1.0000 1.0000
Cutoff 1 ("Never"-"Mostly not") −1.2339 0.5078
Cutoff 2 ("Mostly not"-"Sometimes") −0.6183 0.5072
Cutoff 3 ("Sometimes"-"Mostly") 0.2833 0.5082
Cutoff 4 ("Mostly"-"Always") 0.9971 0.5091

School work is interesting 0.0000 0.4966 0.1858 1.0000 -
Cutoff 1 ("Never"-"Mostly not") −1.2747 0.4847
Cutoff 2 ("Mostly not"-"Sometimes") −0.7550 0.4839
Cutoff 3 ("Sometimes"-"Mostly") 0.1859 0.4834
Cutoff 4 ("Mostly"-"Always") 0.8819 0.4841

School work is not very enjoyable 0.0000 −0.4495 0.0930 1.0000
Cutoff 1 ("Never"-"Mostly not") −0.9216 0.4819
Cutoff 2 ("Mostly not"-"Sometimes") −0.4558 0.4815
Cutoff 3 ("Sometimes"-"Mostly") 0.2457 0.4816
Cutoff 4 ("Mostly"-"Always") 0.6773 0.4818

Teacher preference for adherence to standards (l og (φt i ))

Administrators require rigid adherence to standards 0.0000 1.0000 1.0000
Cutoff 2 ("Disagree"-"Neither") −1.7035 0.5804
Cutoff 3 ("Neither"-"Agree") −0.7385 0.4501
Cutoff 4 ("Agree"-"Strongly agree") 0.6952 0.4307

I frequently refer to and use information found in standards documents 0.0000 4.3914 0.8928 1.0000
Cutoff 3 ("Neither"-"Agree") −5.1065 0.8423
Cutoff 4 ("Agree"-"Strongly agree") 1.3321 0.5190
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Table B.6: Year 1 and Year 2 Samples Comparison - Selected Descriptive Statistics

Year 1 Year 2
Mean Std.Dev Mean Std.Dev

Obs. 2352 4452
Student knowledge:

3r d grade math state test score 507.675 95.726 499.443 95.514
BAM test score (% correct) 53.453 22.123 53.787 21.633

Student characteristics:
Age 9.52 0.50 8.91 0.81
Male 0.48 0.50
White 0.26 0.23
Black 0.43 0.46
Hispanic 0.25 0.24
Gifted 0.06 0.06
Special education (SpEd) 0.09 0.11
English language learner (ELL) 0.17 0.14
Reduced price/free lunch 0.45 0.49

Teacher characteristics:
Obs. 177
Years of experience in the district 6.40 5.94 5.42 4.59
Master’s degree 0.53 0.46
Teaches both Math and ELA (generalist) 0.83 0.82

Classroom Composition

Class size 23.29 4.97 24.15 6.29
Students baseline knowledge (3r d grade test score):

% low-level (1st tercile) 30.20 21.80 35.20 25.70
% mid-level (2nd tercile) 33.20 13.20 32.90 13.40
% high-level (3r d tercile) 36.60 26.80 31.90 24.80

Table B.7: Within-Sample and Out-of-Sample Model Fit of Student Effort Measures

Within-Sample Fit
Never Mostly not Sometimes Mostly Always

Data Model Data Model Data Model Data Model Data Model
I have done my best quality work in this class 0.007 0.009 0.010 0.013 0.089 0.116 0.242 0.306 0.457 0.556
In this class, I stop trying when the work gets hard 0.488 0.593 0.119 0.151 0.103 0.133 0.046 0.055 0.048 0.068
In this class, I take it easy and do not try to do my best 0.427 0.522 0.096 0.122 0.090 0.115 0.077 0.083 0.119 0.159

None Some Most All All plus extra
Data Model Data Model Data Model Data Model Data Model

How much homework do you usually complete? 0.006 0.007 0.062 0.082 0.106 0.138 0.489 0.604 0.137 0.169

Out-of-Sample Validation (Year 2 Data Sample Fit)
Never Mostly not Sometimes Mostly Always

Data Model Data Model Data Model Data Model Data Model
I have done my best quality work in this class 0.007 0.009 0.021 0.012 0.010 0.112 0.291 0.302 0.431 0.566
In this class, I stop trying when the work gets hard 0.611 0.613 0.145 0.146 0.115 0.128 0.062 0.054 0.067 0.059
In this class, I take it easy and do not try to do my best 0.482 0.543 0.131 0.123 0.128 0.106 0.106 0.081 0.153 0.147

None Some Most All All plus extra
Data Model Data Model Data Model Data Model Data Model

How much homework do you usually complete? 0.008 0.007 0.062 0.078 0.147 0.135 0.554 0.603 0.229 0.177
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Table B.8: Year 2 Sample - Student and Teacher Characteristics

Year 1 Year 2 Year 1 Year 2
Mean Std.Dev Mean Std.Dev Mean Mean

Panel A: Students
Obs. 2352 4452
Age 9.52 0.50 8.91 0.81 Gifted 0.06 0.06
Male 0.48 0.50 Special education (SpEd) 0.09 0.11
White 0.26 0.23 English language learner (ELL) 0.17 0.14
Black 0.43 0.46 Reduced price/free lunch 0.45 0.49
Hispanic 0.25 0.24
N. books in bedroom: N. computers at home:

None 0.09 0.08 None 0.12 0.11
≥1 and ≤10 0.22 0.21 One 0.45 0.41
≥11 and ≤24 0.21 0.21 More than one 0.43 0.48
≥25 0.48 0.50

Has person at home to help Has no quiet place to study
with homework: at home:

Never 0.02 0.03 Never 0.40 0.36
Mostly not 0.03 0.06 Mostly not 0.12 0.12
Sometimes 0.09 0.13 Sometimes 0.16 0.16
Mostly 0.17 0.14 Mostly 0.12 0.11
Always 0.69 0.64 Always 0.21 0.25

Panel B: Teachers
Obs. 177
Years of experience in the district 6.40 5.94 5.42 4.59
Master’s degree 0.53 0.46
Teaches both Math and ELA (generalist) 0.83 0.82

Classroom Composition

Class size 23.29 4.97 24.15 6.29
Student composition across classrooms:

% low-level (1st tercile) 30.20 21.80 35.20 25.70
% mid-level (2nd tercile) 33.20 13.20 32.90 13.40
% high-level (3r d tercile) 36.60 26.80 31.90 24.80
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Table B.9: Year 1 and Year 2 Samples - Teacher-Level Latent Factors Measures

Year 1 Year 2
Mean Std.Dev Mean Std.Dev

Teacher effort

Teacher explains in another way if we do not understand (survey 0-4 score) 3.325 0.285 3.328 0.299
Teacher pushes us to work hard (survey 0-4 score) 3.092 0.370 3.192 0.427
Teacher does not waste time in class (survey 0-4 score) 2.664 0.385 2.709 0.402
Teacher asks us if we understand the lesson (survey 0-4 score) 3.329 0.315 3.392 0.322
Teacher asks us if we are following along (survey 0-4 score) 3.440 0.277 3.502 0.252
Teacher writes feedback on our papers (survey 0-4 score) 2.887 0.387 2.959 0.468
Teacher takes the time to summarize the lesson (survey 0-4 score) 2.813 0.480 2.981 0.434
Teacher encourage us to do our best (survey 0-4 score) 3.533 0.257 3.600 0.289

Teacher ability

CLASS Behavior management scale 5.943 0.715 5.803 0.512
CLASS Content understanding scale 4.137 0.481 4.120 0.496
CLASS Productivity scale 5.918 0.555 5.803 0.419
FFTM Management of class procedures score 2.763 0.354 2.691 0.346
FFTM Management of student behavior score 2.840 0.344 2.767 0.380
MQI Richness of mathematics score 1.340 0.261 1.353 0.263
MQI Mathematical knowledge for teaching (MKT) score 2.030 0.218 2.027 0.225
Teacher explains clearly (survey 0-4 score) 3.321 0.295 3.324 0.269
Teacher controls class behavior (survey 0-4 score) 2.251 0.437 2.211 0.506
Teacher explains in orderly way (survey 0-4 score) 3.180 0.300 3.229 0.347
Teacher can explain in several ways (survey 0-4 score) 3.216 0.295 3.311 0.293

Teacher preference for adherence to standards

Administrators require rigid adherence to standards 2.935 0.865 2.865 0.870
I frequently refer to and use information found in standards documents 2.355 0.592 2.341 0.631
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Table B.10: Year 1 and Year 2 Samples - Student-Level Latent Factors Measures

Year 1 Year 2
Student knowledge: Mean Std.Dev Mean Std.Dev

3r d grade math state test score 507.675 95.726 499.443 95.514
BAM test score (% correct) 53.453 22.123 53.787 21.633

Student effort

I have done my best quality work in this class
Never 0.007 0.007
Mostly not 0.010 0.021
Sometimes 0.089 0.104
Mostly 0.242 0.291
Always 0.457 0.577

In this class, I stop trying when the work gets hard
Never 0.488 0.611
Mostly not 0.119 0.145
Sometimes 0.103 0.115
Mostly 0.046 0.062
Always 0.048 0.067

In this class, I take it easy and do not try to do my best
Never 0.427 0.482
Mostly not 0.096 0.131
Sometimes 0.090 0.128
Mostly 0.066 0.106
Always 0.119 0.153

How much homework do you usually complete?
None 0.006 0.008
Some 0.062 0.051
Most 0.106 0.147
All 0.489 0.554
All plus extra 0.137 0.229

Student preference for own knowledge

I read at home almost every day
Never 0.055 -
Mostly not 0.079 -
Sometimes 0.225 -
Mostly 0.237 -
Always 0.404 -

School work is interesting
Never 0.061 0.048
Mostly not 0.072 0.061
Sometimes 0.272 0.252
Mostly 0.255 0.291
Always 0.339 0.348

School work is not very enjoyable
Never 0.310 0.316
Mostly not 0.159 0.171
Sometimes 0.250 0.255
Mostly 0.124 0.115
Always 0.157 0.142
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Figure B.1: Distribution of Class Time Allocations

Figure B.2: Distribution of Classroom Composition
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Figure B.3: Tracking Intensity Across Schools

Figure B.4: A snippet of the Survey of Enacted Curriculum for mathematics.
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