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Abstract: We study heterogeneity in the relationship between temperature and mortality across U.S. 
climate regions and its implications for climate adaptation. Using exogenous variation in temperature and 
data on all elderly Medicare beneficiaries from 1992 – 2011, we show that the mortality effect of hot days 
is much larger in cool ZIP codes than in warm ones and that the opposite is true for cold days. We attribute 
this heterogeneity to historical climate adaptation. As one adaptive mechanism, air conditioning penetration 
explains nearly all of the regional heterogeneity in heat-driven morality but not cold-driven mortality. 
Combining these results with projected changes in local temperature distributions by the end of the century, 
we show that failure to incorporate climate heterogeneity in temperature effects can lead to mortality 
predictions that are wrong in sign for both cool and warm climates. Allowing regions to adapt to future 
climate according to the degree of climate adaptation currently observed across climates yields mortality 
impacts of climate change that are much lower than those estimated without allowing for adaptation, and 
possibly even negative.  
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I. INTRODUCTION 
The broad consensus among climate scientists is that global temperatures are rising, driven by human 
activities that generate greenhouse gases (IPCC, 2014). The prospect of continued warming over the coming 
decades has concentrated attention on understanding the impact of climate change on human health and on 
developing strategies to moderate its harmful effects. Strategic responses have focused primarily on two 
approaches: mitigation efforts to slow the rate of climate change, and adaptation to actual or expected 
climate. Adaptation through adjustments in human behavior or systems include air conditioning, urban 
planning, health care resources or locations, and public health systems such as heat warnings or cooling 
centers. These activities are especially important given that many adaptation initiatives can be taken at the 
individual or local levels, whereas mitigation typically requires global coordination (Bush, 2001). Optimal 
policy decisions regarding costly strategic responses rely on accurate estimates of how climate change 
affects human welfare and on the extent to which adaptation can offset climate change effects. 

We study the relationship between temperature and mortality in the U.S. and how this relationship 
varies by local climate. We examine whether regions exhibit adaptation to their current climate to shed light 
on the scope for adaptation to future climate change. Prior studies have documented heterogeneity in the 
mortality effects of hot and cold temperatures across broadly-defined geographic regions such as Census 
Divisions (Deschênes and Greenstone, 2011) or groups of contiguous states (Barreca et al. 2016), but have 
generated mixed findings on whether this heterogeneity correlates with the average climate of these broad 
regions. Yet, because the relationship between temperature and mortality plausibly varies nonlinearly with 
respect to local climate in the presence of climate adaptation, with heat effects diminishing but cold effects 
intensifying as the climate warms, aggregating across locations with disparate climates can lead to biased 
estimates of the relationship between temperature effects and local climate. Overcoming this bias is 
important both for reconciling the mixed evidence in the current literature and for incorporating adaptation 
into predictions of climate change impacts.1  

In this paper, we estimate for the first time how the full temperature-mortality relationship varies 
with local climate at the ZIP code level. We use these estimates to develop new measures of the mortality 
cost of projected climate change that incorporate both current climate heterogeneity and adaptation to future 
climate. Our estimation relies on two primary data sources: weather monitor readings from the National 
Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI) and 
Medicare administrative data, both providing U.S. coverage over the period 1992 – 2011 at the daily level. 
Although many papers have used one of these datasets, to our knowledge ours is the first to merge the two 
over a 20-year period. The result is a dataset with unprecedented scope in both temporal and geographic 
                                                           
1 Deschênes (2014) reviews the empirical literature on temperature, human health, and adaptation.  
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coverage as well as the sheer number of observations, allowing us to explore the effects of temperature in 
ways that previously were not possible.  

Building on the panel approach of Deschênes and Greenstone (2011), we exploit exogenous 
variation in daily temperature across years in a given location for identifying the causal effects of 
temperature on elderly mortality. While this approach leads to clean identification of the effects of 
temperature fluctuations, its usefulness for studying the effects of climate change (i.e. a change in the 
temperature distribution) is limited, since it does not incorporate the possibility of technological and/or 
behavioral change as emphasized by the cross-sectional Ricardian approach pioneered by Mendelsohn, 
Nordhaus, and Shaw (1994). We address this by flexibly estimating the relationship between temperature 
effects and long-run climate across ZIP codes, and using that relationship to predict how each ZIP code 
may adapt to future changes in climate.2  

We begin by providing new evidence on the relationship between ZIP code-level daily average 
temperature and elderly mortality assuming a homogeneous, national temperature-mortality relationship. 
We find that both hot and cold temperatures correspond to higher mortality than moderate temperatures, 
confirming that the qualitative U-shaped relationship between temperature and mortality prevalent in the 
literature is robust to the inclusion of very flexible controls for geography and seasonality, temperature lags, 
and secular trends (see, e.g., Huynen et al., 2001; Ren, Williams and Tong, 2006; Baccini et al., 2008; 
Deschênes and Greenstone, 2011). The granularity and temporal scope of our analysis lend sufficient power 
to non-parametrically identify temperature effects at 5-degree F increments from <10°F to 95+°F, shedding 
new light on the nonlinearity in the effects of very extreme temperatures. For example, relative to a 
moderate 65-70°F day, we estimate that a hot day with an average temperature exceeding 95°F increases 
elderly mortality within 3 days of exposure by 1.7 additional deaths per 100,000 on average nationally. For 
cold, we estimate that a day with an average temperature less than 10°F increases elderly mortality by 0.7 
additional deaths per 100,000 on average nationally. 

Next, we estimate how the effects of temperature vary by local climate, allowing the effects to vary 
arbitrarily by whether a ZIP code is among the coolest, middle, or warmest third of U.S. ZIP codes. We 
find stark heterogeneity in the effects of temperature across these climate regions, consistent with climate 
adaptation. As a first indication of adaptation, we find that mortality is minimized on 55-60°F days in the 
coldest ZIP codes, 65-70°F days for the middle group, and 75-80°F days in the warmest ZIP codes. Second, 
we find that the effects of hot days are much larger in cool regions: relative to a moderate 65-70°F day, a 
hot day with an average temperature between 85-90°F increases mortality by 3.3 deaths per 100,000 in the 
coolest third of ZIP codes—where such days occur about once every five years, on average—but slightly 
                                                           
2 For further discussion of the various approaches to estimating the effects of weather and climate, see Dell, Jones 
and Olken (2014). 



3 
 

reduces mortality by 0.1 deaths per 100,000 in the warmest third of regions, where such days occur over 15 
times each year, on average. Conversely, we find that cold days are much less harmful in cool regions: 
relative to a 65-70°F day, a cold day with an average temperature less than 10°F increases mortality by less 
than 0.2 deaths per 100,000 in the coolest third of ZIP codes but by nearly 2.4 deaths per 100,000 in the 
warmest third of regions.3 

We explore two potential channels for adaptation: residential air conditioning (AC) and hospital 
use. Using measures of AC prevalence derived from the U.S. Energy Information Administration’s 
Residential Energy Consumption Survey, we estimate how the effects of temperature differ across ZIP 
codes as a function of AC penetration. We find substantial reductions in heat-driven mortality as AC 
penetration increases, but find little difference in cold-driven mortality. We show that nearly all of the cross-
sectional differences in heat-related deaths across the coolest, middle, and warmest third of U.S. ZIP codes 
can be explained by differential AC adoption. This result complements the finding of Barreca et al. (2016) 
that AC adoption has been a major contributor to the decline in heat-related mortality over time, and 
provides strong evidence that the heterogeneity we find is due to adaptation.  

Next, we estimate the effects of temperature on hospital use, as captured by hospital admissions 
and emergency department visits for a 100 percent sample of fee-for-service Medicare beneficiaries over 
the period 1996 – 2011. Consistent with climate adaptation, the results suggest that when regions adapt to 
temperatures, exposure to those temperatures does increase hospital use. Relative to temperate days, warm 
regions see few additional hospitalizations on hot days, and cool regions see no additional hospitalizations 
on cold days. However, cool regions experience additional hospital visits on hot days, and warm regions 
experience fewer hospital visits on cold days. This pattern of increased mortality but decreased hospital use 
might arise if cold days increase mortality in warm regions partly because people have difficulty accessing 
healthcare services, perhaps because of icy roads or lack of transportation infrastructure designed to deal 
with the cold.  

To illustrate the implications of climate heterogeneity in the mortality response to temperature, we 
calculate the mortality impact of climate “swaps”: exchanging each of the coolest, middle, and warmest 
tercile’s climate for the climate of one of the other two terciles. We show that ignoring current climate 
heterogeneity leads to the prediction that warming reduces mortality in cool regions and that cooling 
                                                           
3 While Deschênes and Greenstone (2011) and Barreca et al. (2016) examine whether the effects of both hot and cold 
temperatures vary across climates in a statistically significant way, a few other studies have examined this question 
more narrowly. Barreca et al. (2015) find that the impact of hot days (>90°F) tends to be larger in cooler states, but 
does not examine heterogeneity at cooler temperatures. In an epidemiological study of 11 U.S. cities, Curriero et al. 
(2002) find a qualitative pattern of larger effects of cold temperatures in the southern cities and larger effects of heat 
in northern cities, although the study relies on functional form restrictions and does not report whether observed 
differences are statistically significant. None of these studies incorporates the regional heterogeneity in temperature 
effects into predictions of climate change impacts. 
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increases mortality in warm regions. By contrast, incorporating heterogeneity leads to the prediction that 
each of the three climate regions sees a mortality increase under the climate of either of the other two 
regions, warmer or colder, with effects that are about seven times larger in absolute value than those 
generated based on homogeneous effects. This further supports the idea that regions exhibit significant 
adaptation to their current climate, but it also demonstrates that failing to account for heterogeneity when 
predicting climate impacts can lead to errors of both sign and magnitude. 

Finally, we develop new measures of the mortality impact of projected end-of-century (2080-2100) 
climate change that incorporate both current climate heterogeneity and potential adaptation to future 
climate. Because this calculation is a non-linear function of temperature effects and changes in the 
temperature distribution, both of which may vary at the local level, we avoid aggregation bias by making 
predictions at the ZIP code level and then averaging these predictions to the regional or national level. We 
estimate the ZIP code-specific mortality effects of temperature as a semi-parametric, smooth function of 
both daily temperature and the long run average climate. This provides us with a unique relationship 
between temperature and mortality at the ZIP code level and a link between the ZIP code’s climate and its 
temperature-mortality relationship. We then use 21 different climate models to make end-of-century 
projections of the daily temperature distribution for each ZIP code. Finally, we combine these to predict the 
climate-induced change in mortality by the end of the century. Importantly, because the estimated 
temperature effects in this calculation are a function of climate, we can incorporate adaptation by basing 
each ZIP code’s future mortality curve on its future climate. Intuitively, as a location gets warmer over 
time, its temperature-mortality relationship will change and begin to look like the relationship for a location 
that is currently warm. 

The results from this exercise illustrate the importance of incorporating both climate heterogeneity 
and adaptation in mortality predictions. Ignoring heterogeneity and adaptation leads us to predict that, by 
the end of the century, warming would decrease mortality in the coolest regions and increase mortality in 
the warmest regions, with an overall national increase in mortality of about 0.9 percent. The finding that 
warming will benefit cool regions and harm warmer regions is consistent with the findings in Houser et al. 
(2014), which also adopts a homogeneous effects approach. However, accounting for climate-specific 
heterogeneity in the temperature-mortality relationship, but not adaptation, substantially changes these 
predictions. Specifically, in contrast to Houser et al. (2014), we find that incorporating heterogeneity by 
current climate leads to a prediction that mortality will increase in both cool regions and warm regions and 
that the effect will be smallest in the warmest ZIP codes. Nationally, the implied impact of this warming is 
an annual mortality increase of about 2.8 percent, over 3 times the magnitude of the estimate that ignores 
heterogeneity in temperature effects. Finally, if we allow for ZIP codes to adapt over time in the sense that 
the temperature-mortality relationship for their future climate is the same as for those ZIP codes that 
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currently experience that climate, then the predicted end-of-century mortality change switches sign; we 
predict that mortality will decrease by 0.62 percent nationally. This calculation does not necessarily imply 
that climate change will improve elderly well-being, since we do not model the transition cost of adaptation 
or the effect on other determinants of welfare such as the ability to enjoy outdoor amenities. Nonetheless, 
this finding illustrates that there is significant scope for adaptation to moderate the potential mortality 
impact of warming. Future technological progress that makes adaptation cheaper or more effective could 
expand the scope for adaptation even further.  

This paper contributes to a growing literature that explores adaptation to climate change in the 
context of the mortality effect of temperatures. As surveyed by Hondula et al. (2015), much of this work is 
in public health, environmental health, and epidemiology. Among the approaches they catalog, the one 
most similar to ours is the “analog city” approach, where a city’s future temperature-mortality relationship 
is assumed to resemble that of a city that currently experiences that city’s future climate. The success of 
such a method depends on identifying an appropriate analog. The survey by Hsiang (2016) refers to a 
generalized version of this approach as “time-series variation with stratification,” in which weather effects 
may vary according to historical frequency of weather events or other regional characteristics that may 
drive or result from adaptation. Our study is in this vein, although the temporal granularity and spatial 
coverage of our data allow us to fully estimate the temperature-mortality relationship and its dependence 
on climate at a nationally representative level. Methodologically, the study most closely related to ours is 
Auffhammer (2017), which uses a similar approach to consider regional adaptation in energy use.4  

The remainder of this paper proceeds as follows. Section II describes our data. Section III presents 
the results assuming a homogeneous, nation-wide temperature-mortality relationship. In section IV, we 
estimate climate-specific temperature-mortality relationships and estimate the extent to which air 
conditioning and healthcare use explain this relationship. Section V makes predictions of long-run climate-
change-induced mortality, with and without climate-based regional heterogeneity and with and without 
adaptation. Section VI concludes. 
  

                                                           
4 Kahn (2015) discusses the urban economics literature on climate change adaptation. Other papers explore adaptation 
in areas other than the temperature-mortality link. For example, Graff Zivin and Neidell (2014) study the effect of 
rising temperatures on time use, Dell, Jones, and Olken (2012) study the effect of temperature on growth, Burke and 
Emerick (2016) study the effect of temperature on agricultural output, and Fried and Sheldon (2016) and Hsiang and 
Narita (2012) study the effect of extreme weather events like tornados on economic damages. Kahn (2016) summarizes 
the literature on firm and household adaptive responses to climate change. 



6 
 

II. DATA  
II.A. Data Description 
Our analysis combines, for the first time, two primary data sources: weather monitor readings from the 
National Oceanic and Atmospheric Administration’s National Centers for Environmental Information 
(NCEI) and Medicare administrative data, both covering the period 1992 – 2011 at the daily level. We 
briefly describe the data used for our analysis below, and we provide more detailed data descriptions and 
summary statistics in Appendix A. 

The NCEI climatological data include daily monitor-level measures of high and low temperatures 
for many monitors throughout the nation. The dataset contains 6,786 monitors for 1992 and 9,017 monitors 
for 2011. Quality flags are provided for each measurement by the monitor for each type of weather 
measurement; any observations with a flag are recoded as missing. The average, per-monitor number of 
days per year in which a non-missing value of temperature is present is about 330-340. Because the 
geographic level of the Medicare data observations is the ZIP code, we first average the daily high- and 
low-temperature values for each monitor and then aggregate to ZIP code measures using inverse distance 
weighting.5 In addition to the daily temperature data, we use NOAA's historical Climate Normals data, 
which include each monitor location's average number of cooling degree days (CDD) over the three-decade 
period 1981-2010. These long-run climate measures are used to categorize ZIP codes as hot or cold. CDD 
are based on daily temperatures and are designed to reflect the energy needed to cool a building to a base 
temperature, typically 65°F. For example, one full day at a temperature of 75°F would represent 10 CDD, 
while a day with temperatures below the base temperature would represent 0 CDD. A region’s annual CDD 
is the sum of daily CDD values across all days in the year. More details on the weather monitor data are 
described in Appendix Table A1. 

Our measures of mortality come from the Medicare Master Beneficiary Summary File from 1992 
– 2011, which is an annual directory providing enrollment data on 100 percent of individuals eligible for 
Medicare in that calendar year. The directory includes beneficiary date of death derived from Social 
Security Administration records, ZIP code of residence, date of birth, sex, and whether the beneficiary is 
enrolled in managed care (Medicare Advantage). Hospital visits are derived from the Medicare Provider 
Analysis and Review (MedPAR) File (direct hospital admissions and admissions via the Emergency 
                                                           
5 This is the same method used by Currie and Niedell (2005), and also by Beatty and Shimshack (2014) for 
aggregating pollution monitor data. Specifically, using data from the U.S. Census Gazetteer files on coordinates of 
geographic centroids of ZIP codes, each ZIP code is assigned a temperature reading by averaging readings from all 
temperature monitors located within 20 miles of the ZIP code centroid, weighting the monitors by the inverse of the 
location to the centroid. ZIP codes are not assigned a temperature reading if they are not within 20 miles of a 
weather monitor. This affects fewer than 2 percent of ZIP codes, and an even smaller fraction of the population, 
since regions without a nearby weather monitor tend to be sparsely populated. 
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department) and Outpatient claims records (Emergency department visits that do not result in hospital 
admission). Analyses using the MedPAR and Outpatient files begin in 1996, the first year for which a 100 
percent sample of hospital visit data are available, and cover the 79.5 percent of Medicare beneficiaries 
enrolled in traditional (fee-for-service) Medicare over the period 1996-2011.  

Finally, we use data from the nationally representative Residential Energy Consumption Survey 
(RECS) to derive estimates of ZIP code-level air conditioning use. The RECS is administered roughly every 
four years by the U.S. Energy Information Administration and records information on housing 
characteristics, household appliances (including air conditioning), geographic information, and household 
demographics. We use data from RECS survey years 1993, 1997, 2001, 2005, and 2009 to provide balanced 
coverage of our study period 1992-2011. 

II.B. Summary Statistics 
The primary unit of analysis for our study is a ZIP code-day. There are roughly 32,000 ZIP codes in our 
sample, yielding over 230 million ZIP code-day observations over our sample period 1992 – 2011. The 
U.S. exhibits substantial climate variation, with average annual temperature ranging from less than 40°F in 
the northern Midwest to more than 70°F in the South. Figure 1 summarizes the distribution of temperature 
over this period across each of 19 temperature bins ranging in 5°F increments from <10°F to >95°F. The 
grey shaded region presents the distribution of daily average temperature for the U.S. as a whole, while the 
blue, grey and orange curves present the distributions for the coolest, middle and warmest thirds of U.S. 
ZIP codes (weighted by population). In addition to differences in average temperatures, the climate terciles 
exhibit significant heterogeneity, especially in the tails. Very hot days occur frequently in the warmest ZIP 
codes by very rarely in the coolest. The opposite is true for very cold days. 

Table 1 presents summary statistics of ZIP-day observations binned by average daily temperature. 
Columns 2 – 4 present the daily median, low and high temperatures within each bin. One feature worth 
noting is that a day with a high average temperature often features an extremely high daily high and also a 
high daily low. For example, days in the 90-95°F bin have a median average temperature of around 92°F, 
but a high temperature around 105°F. Further, the daily low is almost 80°F, meaning that even the night 
offers little respite from the heat. A similar pattern emerges at the low end, where days with low average 
temperatures often feature very cold low temperatures and high temperatures that remain well below 
freezing.6 Column 5 presents the average daily mortality rate for the 65+ population during our sample. 
                                                           
6 Appendix Figure A2 shows the number of days per beneficiary exposed to 90°F or higher, for each year in the 
sample, along with a three-year moving average and a linear trend. The spike in 2011 corresponds to the summer heat 
wave that year. The linear trend finding of approximately one additional 90+ day every 20 years is roughly consistent 
with predictions of the effects of climate change, for example see 
http://www.climatecentral.org/gallery/graphics/new_york_july_days_over_90_degrees.  
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Unconditionally, the average daily mortality rate in the 65+ population over this time period was 13.3 deaths 
per 100,000 beneficiaries. However, mortality rates were systematically lower on warmer ZIP-days, with 
the lowest mortality rate of 11.8 deaths per 100,000 occurring after days in the hottest temperature bin 
where average temperatures were at least 95°F. A naïve interpretation of this pattern is that replacing cooler 
days with very hot days reduces mortality. Yet this conclusion could be flawed for two important reasons. 
The first is that hot days tend to occur during the summer, potentially confounding the temperature effect 
with seasonality. The second is that not all regions are equally likely to experience hot days, and the 
population of individuals residing in regions where this occurs most often may differ systematically from 
cooler regions. The richness of our data provides an exceptional opportunity to address these potential 
confounders by controlling very flexibly for both location and seasonality, as described below. 

III. HOMOGENEOUS MORTALITY EFFECTS OF TEMPERATURE 
We begin our analysis by estimating the temperature-mortality curve for the entire U.S. under the 
assumption that the temperature-mortality relationship is homogeneous across locations. As discussed in 
the introduction, in doing so we aggregate together a wide range of climates. If temperature effects vary 
non-linearly by climate, then aggregating disparate climates and imposing homogeneity on the temperature 
effects will lead to inaccurate estimates. While we recognize this bias, beginning with an examination of 
the homogeneous effects case provides a useful benchmark and point of comparison with the literature. 

III.A. Empirical Strategy 
Following the approach of Deschênes and Greenstone (2011), we use year-over-year variation in daily 
temperature to identify the causal effect of temperature on mortality. Our analysis uses daily observations 
of mortality and temperature at the ZIP code level. Our primary outcome of interest, ݉ݕݐ݈݅ܽݐݎ݋௭ௗ, is 
defined as the number of deaths per 100,000 beneficiaries in ZIP code z within a specified window (e.g. 3 
days) after the reference day d to capture possible lags in mortality effects as well as near-term mortality 
displacement (harvesting).7 We then estimate  

௭ௗݕݐ݈݅ܽݐݎ݋݉ = ෍ ௭ௗ௕ܾ݊݅݌݉݁ݐ௕ߚ
௕∈஻\{଺ହି଻଴}

+ ௭ௗݕܽܦ݌ܼ݅ + ௭ௗܮ + ௭ௗݎܻݐܵ + ௭ௗߝ , (1) 

where an observation is a ZIP code z on day d.  

                                                           
7 For example, the 3-day mortality rate assigned to a ZIP code for January 1, 2000, is the number of deaths on 
January 1, 2, and 3, divided by the elderly population, and multiplied by 100,000. 
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The primary independent variables of interest in Equation (1) are temperature indicators 
௭ௗ௕ܾ݊݅݌݉݁ݐ  defined by which of 19 temperature bins ܤ = {< 10, 10 − 15, … , 90 − 95, 95+} the average 
temperature in ZIP code z falls on day d. These temperature indicators allow for arbitrary nonlinearities in 
the relationship between temperature and mortality. The omitted temperature category consists of days with 
average temperature in the 65-70°F range. As a result, the coefficients ߚ௕ capture the difference in mortality 
from a typical day with average temperature in bin b relative to a typical 65-70°F day.  

We identify the effects of temperature on mortality by isolating year-over-year variations in 
temperature and mortality, controlling for both geography and seasonality using ZIP code by day of year 
fixed effects ܼ  ,௭ௗ. This control strategy accounts for the fact that mortality follows a seasonal patternݕܽܦ݌݅
with deaths being highest in winter and lowest in summer, and that this pattern varies by location. To 
account for serial correlation in daily temperature and potentially lagged mortality effects, ܮ௭ௗ includes 
three fully interacted sets of 5-degree average temperature bins for the preceding 2 and 6 days as well as 
the subsequent 2 days. Finally, state-by-year fixed effects ܵݎܻݐ௭ௗ are included to control for arbitrary annual 
shocks that may vary by state, such as changes to Medicare or Medicaid policy. All regressions are weighted 
by the ZIP code Medicare population, and standard errors are clustered at the county level.  
III.B. Results: Homogeneous Temperature Effects 
Figure 2, Panel A, depicts the results of estimating Equation (1) with 3-day mortality as the outcome. The 
black line plots the coefficients ߚ௕, which capture the difference in mortality from a typical day with average 
temperature in bin b relative to a day with average temperature in the 65-70°F range. The shaded region 
around the solid black line represent the 95 percent confidence interval for the point estimates. The 
estimates imply that both hot and cold temperatures lead to increases in mortality relative to more moderate 
temperatures. For example, substituting a typical 65-70°F day for a typical day in the highest temperature 
bin (95°F +) generates about 1.7 additional deaths per 100,000 people. Substituting instead for a cold day 
with average temperature below 10°F generates around 0.7 additional deaths per 100,000 people compared 
to a 65-70°F day. In Appendix Figure A3, we present results from several robustness specifications which 
vary the structure of temperature leads and lags as well as the level at which standard errors are clustered 
(ZIP code, county, state, or ZIP code-date two-way clustering), all of which yield results very similar to our 
baseline specification. 

A natural concern is that the observed increase in deaths may not represent a substantial loss of life 
if it simply captures deaths that would have occurred in a few days or weeks in the absence of the 
temperature event; i.e. it is merely harvesting, or mortality displacement. The extent of harvesting has 
important implications for policymakers, since the cost in terms of life years lost is much lower if those 
dying from extreme temperatures would have been expected to live only a short time if the weather shock 
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had not occurred compared to the case where decedents are randomly selected from the population. In 
Appendix Section B, we discuss the harvesting hypothesis in greater detail and show that it does not appear 
to drive the mortality effects we find. For example, the excess mortality impacts from the hottest and coldest 
temperatures do not diminish and may even increase as the post-event window grows from 3 days to 7 or 
28 days, suggesting that any near-term harvesting is offset by delayed effects of extreme temperatures (see 
Appendix Figure A4). In addition, we estimate the mortality effects of temperature separately for the five 
age groups 65-69, 70-74, 75-79, 80-84, and 85-100. While the mortality effects are largest among the older 
groups, the life-years lost—defined for each decedent based on Social Security age- and sex- life tables—
is broadly comparable among each of the groups (see Appendix Figures A5 and A6). 

IV. CLIMATE-SPECIFIC MORTALITY EFFECTS AND ADAPTATION
In this section, we re-estimate our model separately for the coolest, middle, and warmest third of U.S. ZIP 
codes, rather than assuming a homogeneous response as in the previous section. We find significant 
heterogeneity in the effects of temperature across these climate regions with patterns consistent with 
adaptation to local climate. Supporting the interpretation that this heterogeneity is evidence of adaptation 
rather than immutable geographic factors correlated with current climate, we show that differential air 
conditioning adoption across climate regions can account for regional differences in the mortality impact 
of hot days. We also find evidence of heterogeneity in the relationship between temperature and hospital 
visits. The section concludes by showing how failure to incorporate heterogeneity can lead to errors of both 
sign and magnitude in estimating aggregate mortality effects. 

IV.A. Empirical Strategy
To estimate how the mortality effects of temperature vary across climate regions, we partition ZIP codes 
into three climate regions based on whether the long-run average cooling degree days (CDD) in each ZIP 
is in the coolest, middle, or warmest third of the population-weighted distribution of CDD (Appendix Figure 
A7 maps CDD across U.S. ZIP codes).8 Our estimating equation is the same as Equation (1), except that 
the temperature bins are interacted with indicators for the three climate regions: 

௭ௗݕݐ݈݅ܽݐݎ݋݉ = ෍ ௭ௗ௕ܾ݊݅݌݉݁ݐ௕௖௢௢௟ߚ ×૚(ܼݐ ݐݏ݈݁݋݋ܿ ݊݅ ݖ ܲܫℎ݅ݏ݊݋݅݃݁ݎ ݂݋ ݀ݎ)
௕∈஻\{ହହି଺0}

 

+ ෍ ௭ௗ௕ܾ݊݅݌݉݁ݐ௕௠௜ௗߚ ×૚(ܼݐ ݈݁݀݀݅݉ ݊݅ ݖ ܲܫℎ݅ݏ݊݋݅݃݁ݎ ݂݋ ݀ݎ)
௕∈஻\{଺ହି଻଴}

(2)

8 The coolest tercile contains ZIP codes with less than 783 CDD. The middle tercile contains ZIP codes with 783 – 
1416 annual CDD, and the warmest tercile contains ZIP codes with more than 1416 CDD. 
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+ ෍ ௭ௗ௕ܾ݊݅݌m݁ݐ௕௛௢௧ߚ ×૚(ܼݐ ݐݏ݁݉ݎܽݓ ݊݅ ݖ ܲܫℎ݅ݏ݊݋݅݃݁ݎ ݂݋ ݀ݎ)
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+ ௭ௗݕܽܦ݌ܼ݅ + ௭ௗܮ + ௭ௗݎܻݐܵ + ௭ௗߝ ,
where an observation is a ZIP code z on day d. 

The primary independent variables of interest in Equation (2) are temperature indicators 
௭ௗ௕ܾ݊݅݌݉݁ݐ  defined by which of 19 temperature bins ܤ = {< 10, 10 − 15, … , 90 − 95, 95+} the average 
temperature in ZIP code z falls on day d. Because Equation (2) includes ZIP code fixed effects, the 
coefficients on the set of temperature indicators for each climate region are only identified up to a common 
constant. Given that the choice of the omitted temperature category for each climate region is arbitrary, we 
omit the bin at which mortality is minimized for that climate region.9 As a result, the coefficients ߚ௕௖ describe 
for a ZIP code in climate region c the average difference in mortality from a day with average temperature 
in bin b relative to day with a temperature that minimizes mortality in region c.  

IV.B. Results: Climate-Specific Mortality Effects
Figure 2, Panel B depicts results from estimating Equation (2) with 3-day mortality as the outcome. For 
clarity, we show coefficient estimates and confidence intervals for the hottest and coldest tercile, while for 
the middle tercile we show only the coefficient estimates.10  

The heterogeneity in temperature effects is a strong indicator of adaptation to the current climate. 
The hottest ZIP code tercile, depicted with the red line, has its lowest mortality at 75-80°F, while the coldest 
ZIP code tercile, depicted with the blue line, has its lowest mortality at 55-60°F. More strikingly, as 
temperatures increase above 75°F, the colder regions feature a stark increase in mortality, while warmer 
regions have much more modest effects. For example, an 85-90°F day increases the mortality rate in the 
coldest decile by more than 3 deaths per 100,000, while it has nearly no effect in the hottest decile. On the 
other hand, the increase in mortality in the hot region as temperature decreases is much larger than in the 
cold or medium regions. A 10-15°F day has no effect on mortality in the coldest tercile but increases deaths 
in the hottest tercile by 2 deaths per 100,000 population. Overall, the coldest regions see almost no mortality 
impact from even the coldest days.  

9 An alternative approach would be to omit the same temperature category (e.g. 65 – 70 F) for all climate regions. 
However, the results from that regression can be obtained from Equation (2) as the difference ௕௖ߚ − ଺ହି}ߚ }௖ . 
10 Estimates are reported and indicated with a marker for temperature bins comprising at least 0.05 percent of daily 
ZIP code observations (about two days every ten years, on average) in that climate region. The dashed curves are 5th 
order polynomials fit to the reported estimates for each tercile and fit to all temperature bins. 
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We attribute this heterogeneity in the impact of heat/cold to technological, behavioral, and/or 
biological differences across the regions, i.e., adaptation.11 It is important to note that this adaptation has 
two aspects: regions are good at dealing with temperatures they commonly experience, and they are bad at 
dealing with temperatures that they do not. Thus, a cold region is good at dealing with cold but bad at 
dealing with heat, while the opposite is true for a hot region. This suggests that increasing temperatures 
may be particularly bad for cold regions, since they will experience fewer cold days, which they are adapted 
to deal with, and more hot days, which they are not. 

In our analysis, we distinguish in a statistically precise and economically meaningful way between 
temperature effects in the hottest and coldest terciles over the entire range of temperatures except for the 
65-70°F and 70-75°F bins, where mortality effects are small regardless of climate. Relative to previous 
studies (Deschênes and Greenstone, 2011; Barreca et al., 2015, 2016), our results are more precise for two 
reasons. First, the Medicare data allow us to examine temperature effects at a much finer geographic level 
and over finer temperature bins. Second, we are able to partition the ZIP codes based on climate rather than 
state, and removing within-partition heterogeneity in climate increases the precision of our estimates. These 
results inform our preferred approach in the next section, where we smoothly parameterize the dependence 
of temperature effects on local climate and use this relationship to predict the impact of adaptation on 
temperature-related mortality. 

Comparing Panels A and B of Figure 2 provides insight into the possible biases introduced by 
aggregating nonlinear temperature effects across disparate climates. Under an assumption of homogeneous 
effects, the impact of hot days is primarily identified off places that experience many hot days, i.e. warm 
places. Similarly, the impact of cold days is primarily identified off cool places. Because of adaptation, 
places that frequently experience a given temperature have relatively low mortality from that temperature. 
The result is that the homogeneous effects tend to be biased toward the lower envelope of the effects in 
Panel B. To take one example, homogeneous effects would imply that replacing a 40-45°F day with an 85-
90°F day would have no net mortality effect. Using the climate-specific effects in Panel B, however, 
mortality would increase by 3 deaths per 100,000 individuals in the cold tercile and decrease by 1 death per 
100,000 individuals in the warmest tercile. The discrepancy arises because homogeneous effects 
underweight both the benefit to losing a cold day in the warmest tercile (which doesn’t usually experience 
cold days) and the harm of gaining a hot day in the coldest tercile (which doesn’t usually experience hot 
days).  

                                                           
11 To be precise, differences in the marginal effects, i.e., the slopes of the curve, are attributable to adaptation. The 
difference in average mortality across hot and cold regions is not depicted in these diagrams. That is, although the 
slopes between the points in the curves are well-identified, the height of the curve depends on the values of the fixed 
effects from the regression, and the particular time and place at which the fixed effects are evaluated. 
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IV.C. Air Conditioning as Adaptation 
There are two possible categories of explanations for regional heterogeneity in the temperature-mortality 
relationship. The first is that the heterogeneity is substantially due to changes in human physiology and 
behavior, i.e., adaptation. The second is that the regional differences are due to characteristics that are 
correlated with current climate but not the results of human choices or physiology. This distinction is 
important for interpretation because if regional differences are caused by factors that are immutable in this 
sense, then even though Chicago in the future may face the climate that Dallas does now, we should not 
expect the Chicago of the future to be as good at dealing with heat as Dallas currently is. Thus, 
understanding the extent to which current heterogeneity is due to adaptation is important for understanding 
the extent to which future adaptation may mitigate the impact of climate change. 

There are numerous ways in which people and communities adapt to their current climate, including 
biological acclimatization, infrastructure investments, architectural styles, etc. It is beyond the scope of this 
paper to identify each component of regional adaptation or to estimate how much regional heterogeneity is 
explained by each method of adaptation. However, in this section we examine more closely one method of 
adaptation—residential air conditioning (AC)—and the extent to which AC adoption can moderate the 
relationship between temperature and mortality. Strikingly, we find that differential AC adoption can 
explain near all of differences in heat-related mortality that we observe across regions, but does not explain 
differential cold-related mortality. We interpret this as evidence that regional differences are substantially 
due to behavioral differences, and thus that it is reasonable to expect that regions could continue to adapt 
to their changing climate in the future. It is important to note, however, that this is a statement about 
technological feasibility. While regions could adapt their behavior, infrastructure, etc., to address future 
climate, we do not assess the cost of doing so. It may be that such changes, though technologically feasible, 
are prohibitively expensive to implement. 

Unfortunately, we do not observe AC adoption at the ZIP code level. Instead, we impute a value 
for the ZIP code penetration rate by fitting a machine learning (LASSO) model of AC adoption based on 
housing unit characteristics including housing stock age, geography, and climate and using housing 
characteristics from the American Community Survey and 2010 Census. Full details of the data and 
imputation procedure are presented in Appendix Section A.3. We then interact this continuous value of AC 
penetration (between 0 and 1) with the temperature bins in Equation (1). We also include in this regression 
Census Region by temperature bin fixed effects.  

Figure 3, Panel A, presents these regression results for 3-day mortality outcomes. The curve 
represents the regression coefficients on the interaction between the AC penetration variable and the 
specified temperature bin. The interaction effects are significantly negative for temperatures above 70°F. 
For example, the coefficient on the interaction between AC penetration and the 80-85°F temperature bin is 
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-6.1. This implies each 10 percentage point increase in AC penetration corresponds to 0.61 fewer deaths 
per 100,000 individuals from an 80-85°F day. At hotter temperatures, the air conditioning effect is even 
stronger: for example, the coefficient on the 90-95°F day bin implies about 2 fewer deaths per 100,000 for 
each 10 percentage point increase in AC penetration. By contrast, for temperatures below about 65°F, the 
interactions between air conditioning and temperature are all close to zero, indicating that the mortality 
effect of cold days is independent of the level of AC penetration. This null result reassures us that the AC 
curve is not picking up the influence of factors that are correlated with AC adoption, such as income, which 
might be expected to reduce mortality sensitivity to both high and low temperatures. 

Based on these estimates, we calculate how much of the difference in heat sensitivity across regions 
can be explained by differences in air conditioning penetration. Over the sample, AC penetration was 93.2 
percent in the warmest ZIP codes, 82.1 percent in the middle third of ZIP codes, and 63.2 percent in the 
coolest. Panels B and C of Figure 3 present counterfactual simulations where we compute what the mortality 
curve would have been if the warmest ZIP codes had the AC penetration rates of the other two terciles, 
respectively. Thus, Panel B estimates what the temperature-mortality relationship would be in the warmest 
third of ZIP codes if the AC penetration rate in those ZIP codes were 30 percentage points lower than it 
actually is, as is the case in the coolest ZIP codes. Strikingly, the counterfactual warmest ZIP code curve 
closely tracks the actual curve for the coolest ZIP codes at temperatures above 65-70°F, suggesting that 
differences in AC penetration can explain nearly all of the differences in heat-related mortality between the 
warmest and coolest regions. At the same time, differences in AC penetration explain little of the difference 
between the regions on cold days, consistent with air conditioning as the mechanism driving the regional 
differences in heat-related mortality only. Panel C repeats this exercise, this time comparing a 
counterfactual where the warmest ZIP codes are adjusted for the approximately 11 percentage point 
difference in AC between the warmest and middle terciles. Once again, the counterfactual warmest tercile 
aligns almost perfectly with the middle tercile on hot days, again suggesting that differences in AC 
penetration account for a substantial portion of the estimated difference between the regions.  

These results build on the finding from Barreca et al. (2016) that increases in AC adoption over 
time can explain a substantial share of the reduction in heat-related mortality in the U.S. over the past 
century. Our results show that in addition to explaining the reduction in heat-related mortality in the time-
series, AC adoption can explain nearly all the cross-sectional differences in heat-related deaths observed 
across U.S. climate regions. These counterfactual exercises provide strong evidence that the heterogeneity 
in temperature effects across climate regions is driven primarily by adaptation, and in particular AC, rather 
than by immutable regional characteristics. Thus, we might expect places to engage in this and other types 
of adaptive behavior in response to warming. 
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These results come with several caveats. First, the AC penetration rate is imputed from 
demographic and housing characteristics rather than observed, so it is possible that the estimated divergence 
is due to those characteristics directly instead of AC. For example, AC may be simply acting as a proxy for 
some aspect of climate not captured with CDD, and therefore it is not surprising that the AC-adjusted 
counterfactuals match. Second, while temperature shocks are exogenous, AC adoption is not, and ZIPs with 
higher imputed AC adoption may take other actions beyond adopting AC to protect against heat. Third, AC 
itself is an adaptation that only moderates the effect of hot days, not cold days. However, one might be 
concerned that AC adoption is a marker of high income, and that high-income might affect the temperature-
mortality relationship even on cold days. While each of these is a potential concern, if they are important 
drivers of our results, then we would expect AC adoption to affect temperature effects on both hot and cold 
days. The fact that we see no effect of AC adoption on cold days suggests that our results are not driven by 
these factors. 

IV.D Climate-Specific Heterogeneity in Hospital Visits 
To shed further light on climate-specific heterogeneity in mortality effects and adaptation, we next consider 
how the relationship between temperature and health care use, in the form of hospital visits, varies with 
climate. To do so, we re-estimate the heterogeneity equation (2), replacing the 3-day mortality outcome 
with a measure of 3-day hospital visits, where we count as a visit any encounter with the emergency room 
or any admission to the hospital. As we did for the mortality regressions, for each climate tercile the omitted 
temperature category is the mortality-minimizing temperature bin (which is not necessarily the 
hospitalization-minimizing temperature bin). 
 Figure 4 plots the results. Beginning with the coolest regions, we see that the relationship between 
temperature and hospital visits is flat for temperatures below 55°F, a range over which the temperature-
mortality relationship is also flat (Figure 2, Panel B). This suggests that over this range, the adaptations that 
prevent excess mortality relative to a temperate day also prevent excess hospital visits. A similar pattern 
emerges for the other ZIP code terciles. For the middle third of ZIPs, hospital visits are relatively flat from 
around 35 – 70°F, as is mortality, while for the warmest ZIPs hospital visits are flat from around 50 – 85°F 
and excess mortality is also low over this range. Taken together, this suggests that the adaptive efforts that 
keep mortality in check for the temperatures a ZIP code typically experiences also prevent hospitalizations. 
Conversely, it does not appear to be the case that adaptation works through the healthcare system, since we 
do not see regions where excess mortality is low and hospital visits are high. If we did see that, it would be 
evidence that the healthcare system is fine-tuned to restore health in frequently-experienced extreme 
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temperatures (i.e., hospitals in hot areas would excel at treating heat-related illness and hospitals in cold 
areas would excel at treating cold-related illness).12 
 The results for the ranges of temperatures over which regions are not adapted (i.e., hot temperatures 
in cold regions and cold temperatures in hot regions) are more nuanced. For cold regions, as one might 
expect, both hospital visits and mortality increase when faced with hot temperatures. This pattern is present 
in the middle ZIP codes over a range of moderate to high temperatures, although both the mortality and 
hospital visit effects are more attenuated. The pattern is more difficult to identify in the hottest ZIP codes, 
since they are adapted to reduce mortality on hot days. However, we do see that both mortality and hospital 
visits begin to rise at the very hottest temperatures (>85°F). 

For temperatures that are unusually cold, we see the opposite relationship: hospital visits and 
mortality tend to be negatively related. This pattern is most clear in the hot ZIP codes, which are least 
adapted to deal with cold, though it is present but less clear in the middle third of ZIP codes. Because the 
mortality curve for the coldest ZIPs is essentially flat even on the coldest days, it is difficult to identify the 
negative relationship between mortality and hospital visits, although hospital visits may decrease on the 
very coldest days relative to a temperate day. 

Fully identifying the mechanisms underlying this pattern of increased mortality and decreased 
hospital visits on very cold days is beyond the scope of this paper. But, it is consistent with a situation 
where cold temperatures prevent sick individuals from going to the hospital, especially in the hottest regions 
(perhaps because of icy roads or other difficulties traveling on cold days), and the result is higher mortality. 
This also suggests a potential role for public investments (e.g., snow plows, ambulances, etc.) in regional 
adaptation. 

IV.E. The Importance of Regional Heterogeneity in Climate Change Impacts 
Climate-related heterogeneity can have important implications for predicting how mortality will change as 
a region’s climate changes. Although we will investigate this issue in greater detail in the next section using 
detailed, science-based climate change predictions, the simple exercise here can help to fix ideas. In Figure 
5, we present counterfactual simulations that qualitatively explore the importance of regional heterogeneity 
in the temperature-mortality relationship. The counterfactual simulations considered here are very simple: 
we replace a given climate region’s current distribution of temperature with the current distribution of one 
of the other climate regions and compute expected mortality in two ways. First, we use the homogeneous, 

                                                           
12 Although our primary interest is in studying climate-related heterogeneity in hospital visits, aggregating across the 
regions would yield an upward sloping relationship between temperature and hospital visits. This result is consistent 
with White (forthcoming), who studies the relationship between temperature and emergency department visits in 
California but does not investigate climate-related heterogeneity. 
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national temperature-mortality relationship depicted in Figure 2 Panel A, and second, we use the climate-
specific temperature-mortality relationships depicted in Figure 2 Panel B.  

Figure 5 summarizes the mortality impact of these scenarios for each of the three climate terciles. 
The blue bars give the impact on temperature-related mortality computed using the homogeneous 
temperature-mortality relationship, and the green bars give the impact on heat-related mortality using the 
climate-specific temperature-mortality relationship. In each case, we compute the effect relative to a 
baseline using the region’s current climate. The leftmost third of Figure 5 represents the coolest tercile of 
ZIPs. Under homogeneous effects (blue bars), increasing the temperature distribution to that of the middle 
or warmest tercile (i.e., warming) reduces mortality. For example, replacing the temperature of the coolest 
tercile with that of the warmest tercile decreases deaths by 0.4 percent.13 However, using the climate-
specific relationship (green bars) yields the opposite prediction: warming increases mortality, by 3.3 
percent. The same occurs for the middle tercile, where moving to the temperature distribution of the 
warmest tercile reduces mortality under homogeneous effects (by 0.2 percent) but increases mortality under 
climate-specific effects (by 0.4 percent). Lastly, for the hottest tercile in the rightmost third of panel B, 
replacing its temperature with that of either the coldest or the middle tercile will increase deaths, under 
either the homogeneous or the climate-specific effects. But, the magnitude of the increase in deaths is much 
larger under the climate-specific effects. For example, replacing it with the coolest third will increase deaths 
by 0.4 percent under homogeneous effects but by 3.1 percent under climate-specific effects. 

The simulations under the assumption of homogeneous effects suggest that warming would reduce 
mortality in cold places and increase mortality in hot places. However, under climate-specific effects, a 
change in a region's temperature always increases mortality, whether that change involves warming or 
cooling. This evidence further supports that regions exhibit significant adaptation to their current climate 
but also demonstrates that failing to account for heterogeneity when predicting climate impacts can lead to 
errors of both sign and magnitude. 

V. PREDICTING CLIMATE CHANGE-INDUCED MORTALITY AND ADAPTATION 
In this section, we develop estimates of the end-of-century mortality impact of climate change. Because 
heterogeneity in both the temperature-mortality relationship and the change in the temperature distribution 
can affect the predictions, we begin with a general framework for thinking about the problem. We then 
discuss how we derive model-based predictions of ZIP code-level changes in the temperature distribution 
and empirically estimate the temperature-mortality relationship. Finally, we present predictions of the 

                                                           
13 By construction, replacing the coolest third's temperatures with that of the coolest third yields no change in 
mortality, so the bars in those columns are zero. 
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change in mortality by the end of the century (2080-2100) under three sets of assumptions: homogeneous 
temperature effects with no future adaptation, current-climate heterogeneity with no future adaptation, and 
current-climate heterogeneity with future adaptation. Although heterogeneity in current effects could be 
interpreted as arising from past adaptation, the importance of incorporating heterogeneous effects in climate 
change impact estimates does not depend on whether this heterogeneity results from adaptation.  
 
V.A. General Framework. 
A major component of integrated assessment models (IAMs) of climate change is choosing a damage 
function to model the economic costs of climate change. The component of the damage function that arises 
from temperature-related mortality necessarily involves judgments about the extent to which adaptation 
will modify the temperature-mortality relationship. To fix ideas, let ݉௭௣(ݐ) denote the mortality effect of a 
day with average temperature in bin t in ZIP-code z in period p. We will consider both the current period, 
p=current, and the future, p=future. Let ݃௭௣(ݐ) be the number of days per year in which the temperature 
falls in bin t in period p. Current annual mortality (ܯܣܥ௭) is therefore: 

௭ܯܣܥ = ෍ ݉௭௖௨௥௥௘௡௧(ݐ)
௧

݃௭௖௨௥௥௘௡௧(ݐ). 

We are interested in the change in excess mortality due to climate change. Future annual mortality (ܯܣܨ௭) 
can differ from ܯܣܥ௭ for two reasons. First, climate change will alter the temperature distribution in 
location z, with the new distribution given by ݃௭௙௨௧௨௥௘(ݐ). Second, the temperature-mortality relationship 
may change between the current and future periods. There are many reasons why this might occur, including 
adaptation (e.g., AC adoption, changes in building practices, etc.) or environmental changes (e.g., changes 
in the prevalence vector-borne illnesses, changes in the agricultural sector, sea-level changes, etc.). Let 
݉௭௙௨௧௨௥௘(ݐ) denote the future mortality effect of temperature bin t in location z. In this case, the change in 
excess mortality would incorporate both the change in the temperature distribution and the change in the 
temperature-mortality relationship: 

௭ܯܣܨ − ௭ܯܣܥ = ෍ ݉௭௙௨௧௨௥௘(ݐ)
௧

݃௭௙௨௧௨௥௘(ݐ) − ෍ ݉௭௖௨௥௥௘௡௧(ݐ)݃௭௖௨௥௥௘௡௧(ݐ)
௧

. (3) 

V.B. Empirical Implementation 
Computing the change in excess mortality involves four functions: current and future temperature 
distributions and current and future temperature-mortality relationships. The current temperature 
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distribution is observed in the data. Future temperature distributions will be taken from climate change 
projection models. The current temperature-mortality relationship is estimated from the data, as described 
in the previous sections. However, for this analysis we estimate this relationship at the ZIP code level as 
described below. Finally, the future temperature-mortality relationship must be estimated/projected. 
V.B.1 Predictions of future temperature distributions. We use predictions of the end-of-century (2080 
– 2100) temperature distribution for each ZIP code using daily projections derived from all 21 climate 
models for which daily scenarios are produced and distributed as part of the Coupled Model 
Intercomparison Project Phase 5 (CMIP5).14 Daily downscaled projections for each of these models come 
from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset. The NEX-
GDDP data include daily minimum and maximum temperature predictions on a 25km by 25km grid (0.25 
degree spatial resolution). We consider climate predictions made under the Representative Concentration 
Pathway (RCP) 8.5 “business as usual” scenario, where emissions continue to rise throughout the 21st 
century (Meinshausen et al., 2011).15 Predicted daily average temperatures (the average of the predicted 
daily high and low temperatures) are assigned to ZIP codes using the climate model grid point nearest to 
the ZIP centroid. We then use the predicted daily average temperatures over the period 2080 – 2100 to 
construct the predicted daily temperature distribution at 1°F bins for each ZIP code during that period. This 
process yields 21 end-of-century climate (i.e. daily temperature distribution) predictions for each ZIP code. 

Rather than presenting separate results for each of the 21 models, we average over all of the models 
to produce a single “meta” prediction of the temperature distribution for each ZIP code. We refer to this 
average model as the meta-model and the average predicted temperature distribution as the meta-prediction 
or the meta-distribution. The techniques we use apply equally well to the output of any single model. 
Further, since averaging is a linear operator, in addition to being the impact on the “average” model’s 
predicted distribution, our results can also be interpreted as the average impact across all of the models’ 
predicted distributions. Appendix Figure A8 shows the predicted change in U.S. average annual 
temperature under RCP 8.5 over the rest of the century for each of the 21 models we study and for the meta-
model. The various models predict an end-of-century change in average temperature ranging from about 
5°F to 11.5°F, while the meta-model predicts around 8.5°F of warming. Appendix Figure 9 maps the 
projected change in temperature under the RCP 8.5 meta-model. Although predicted warming tends to be 
higher in areas that are currently cooler, comparing Appendix Figures A9 and A7 shows that there is 
significant variation in predicted warming even among regions that currently have quite similar climates. 
                                                           
14 See Auffhammer et al. (2013) for a discussion of the use of climate models in economic analysis. 
15 The NEX-GDDP data also contain climate predictions under other emissions scenarios, such as RCP 4.5, a mid-
range projection under which emissions peak around 2040 and then decline. It is straightforward to modify our method 
to accommodate alternative models or scenarios. 
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V.B.2. Estimating ZIP code-specific mortality relationships. With sufficient observations for each ZIP 
code at each temperature, we could estimate the temperature-mortality relationship non-parametrically for 
each ZIP code in the same way that we estimated it non-parametrically at the climate tercile level using 
Equation (2). In practice, however, there are not enough observations for each ZIP code to estimate this 
relationship precisely. Instead, we estimate the daily temperature-mortality relationship as a semi-
parametric, smooth function ݂(ݐ,  that depends on both daily average temperature and climate, as (ܦܦܥ
captured by the long-run average CDD (or CDD normal) of the ZIP code. 

The regression equation used to estimate this semi-parametric function of temperature and climate 
is identical to Equation (2), except the temperature and climate indicators are replaced by this smooth 
function ݂(ݐ,  :of temperature and climate, yielding the estimating equation (ܦܦܥ

௭ௗݕݐ݈݅ܽݐݎ݋݉ = ௭ௗݐ)݂  , (୸ܦܦܥ + ௭ௗݕܽܦ݌ܼ݅  + ௭ௗܮ + ௭ௗݎܻݐܵ + ௭ௗߝ . (4) 

We define ݂(ݐ,  to be a linear spline in temperature, with knot points at 10-degree increments from (ܦܦܥ
30 to 90°F, fully interacted with a spline in log CDD, with knot points at the 33rd and 66th percentiles of the 
current distribution of ZIP-level CDD normals, the same cutoff points used to define the climate terciles. 
Since ݂(ݐ,  ,is identified up to a constant, we choose 65°F as the reference temperature. Specifically (ܦܦܥ
if ܨ஼஽஽ is the CDF of the current CDD Normal distribution, then  

,ݐ)݂ (ܦܦܥ = ݐ)଴ߚ   − 65) + ෍ ݐ)௞૚ߚ > ݐ)(10݇ − 65)
ଽ

௞ୀଷ
 

+ ෍ log ܦܦܥ ⋅ ૚(ܦܦܥ > ((݌33)஼஽஽ܨ ൥ߚ଴௣(ݐ − 65) +  ෍ ݐ)௞௣૚ߚ > ݐ)(10݇ − 65)
ଽ

௞ୀଷ
൩ 

ଶ

௣ୀ଴
. 

Appendix Figure A10 summarizes the results of estimating Equation (4) by plotting the temperature-
mortality relationship for two cold ZIP codes (Fargo, ND, and Minneapolis, MN); one moderate ZIP code 
(Chicago, IL); and two hot ZIP codes (Dallas, TX, and Miami, FL) using the estimated temperature effects 
,ݐ)݂  evaluated at each ZIP code’s current CDD normal. As with the non-parametric tercile-based (ܦܦܥ
regressions presented in Figure 2, Panel B, the coldest places suffer the most from hot days, and the hottest 
places suffer the most from cold days. To provide a more complete summary of how our choice of 
,ݐ)݂  fits the variation in the temperature mortality relationship across climates, we compute fitted (ܦܦܥ
values of ݂(ݐ,  for each ZIP code using realized average daily temperatures over the sample period (ܦܦܥ
1992-2011 and current CDD normal. We then re-estimate Equation (4) where the fitted mortality values 
are the outcome and where the only controls are the temperature and climate tercile indicators. Appendix 
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Figure A11 compares these results to the non-parametric morality estimates reported in Figure 2, with the 
parametric estimates broadly lining up with the non-parametric estimates in each climate tercile. 

Finally, we can relate the estimate of ݂(ݐ, ݉ to the mortality effect (ܦܦܥ ௭௣(ݐ) of a day with average 
temperature t in ZIP code z in period p, introduced in our general framework above. Note that ݂(ݐ,  (ܦܦܥ
is identified up to a constant, determined by mortality on a day with the reference temperature (65°F). Let 
 65௭௣௘௥௜௢ௗ represent mortality on a 65-degree day in ZIP code z and a given period. Thenܯ

݉௭௣௘௥௜௢ௗ(ݐ) = 65௭௣௘௥௜௢ௗܯ + ݂൫ݐ,  .௭௣௘௥௜௢ௗ൯ܦܦܥ
V.C. End-of-Century Mortality Predictions 
We estimate the change in mortality between the current period (1992 – 2011) and the end of the century 
(2080 – 2100) using the meta-predictions of climate change under the RCP 8.5 emissions scenario, 
described above. We construct these estimates under three different sets of assumptions about how the 
mortality effects of temperature vary spatially and over time to investigate the importance of accounting 
for regional heterogeneity in mortality predictions and the potential for adaptation to moderate the impact 
of changing temperatures. 
V.C.1. Homogeneous current effects with no future adaptation. Our first set of predictions relies on two 
simplifications commonly made when predicting mortality effects of climate change. The first has been to 
use a regression average mortality estimate, ݉௣௘௥௜௢ௗ(ݐ), rather than region-specific estimates, ݉௭௣௘௥௜௢ௗ(ݐ). 
As discussed above, a key limitation with this approach is that if the mortality effect of temperature varies 
across climate regions, predicted damages from climate change based on average temperature effects could 
lead to biased local predictions and inefficient strategic policy responses for all regions.  

The second simplification has been to estimate health damages under a “business as usual” 
assumption of no adaptation to future climate change, i.e. to define ݉௭௙௨௧௨௥௘(ݐ) to be equal to ݉௭௖௨௥௥௘௡௧(ݐ). 
This approach quantifies the mortality benefits from costly strategic climate strategies relative to a world 
in which no strategic action is taken. Importantly, this approach overstates the mortality costs of climate 
change if the marginal cost of mortality adaptation (such as through behavior change or technology 
adoption) is less than the cost of averted mortality. We implement this empirically by estimating a version 
of Equation (4) where ݂ ,ݐ)  does not depend on CDD to get a single temperature-mortality relationship (ܦܦܥ
௖௨௥௥௘௡௧(ݐ)݉ = 65ܯ +  and then using that relationship for all ZIP codes in both the current and future ,(ݐ)݂
periods. Under these conditions, the change in mortality for each ZIP code z from Equation (3) is given by 
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௭ܯܣܨ − ௭ܯܣܥ = ෍ (ݐ)݂
௧

ൣ݃௭௙௨௧௨௥௘(ݐ) − ݃௭௖௨௥௥௘௡௧(ݐ)൧. 

Note that while we use the same mortality function ݂(ݐ) for all ZIP codes, each ZIP’s mortality change is 
computed with respect to its own predicted future temperature distribution. These assumptions comprise 
the case of homogeneous current effects with no future adaptation. 

 
V.C.2. Current-climate heterogeneity with no future adaptation. For our second set of predictions, we 
allow for each individual ZIP code to have its own temperature-mortality relationship, ݉௭௖௨௥௥௘௡௧(ݐ), by 
estimating Equation (4) where ݂(ݐ,  is permitted to depend on CDD. Thus, any two ZIP codes with (ܦܦܥ
the same current CDD will have the same estimated temperature-mortality curve. We continue the no-
adaptation, “business-as-usual” assumption of using this mortality relationship to capture both current and 
future conditions. Now, the change in mortality for each ZIP code z from Equation (3) is given by  

௭ܯܣܨ − ௭ܯܣܥ = ෍ ,ݐ)݂ (௭௖௨௥௥௘௡௧ܦܦܥ
௧

ൣ݃௭௙௨௧௨௥௘(ݐ) − ݃௭௖௨௥௥௘௡௧(ݐ)൧. 
The key difference between this computation and the homogeneous business as usual prediction is that here 
we account for regional climate-specific heterogeneity by computing the expected mortality change with 
respect to each ZIP code’s temperature-mortality relationship. These assumptions comprise the current-
climate heterogeneity with no future adaptation case. 

 
V.C.3. Current-climate heterogeneity with future adaptation. In our third and final set of predictions, 
we account for both climate-specific heterogeneity in the temperature-mortality relationship and adaptation 
over time. We operationalize this by evaluating the future mortality effects of temperature in ZIP code z 
under the predicted future climate in that ZIP code. Specifically, 

݉௭௙௨௧௨௥௘(ݐ) = 65௭௙௨௧௨௥௘ܯ + ݂൫ݐ,  ,௭௙௨௧௨௥௘൯ܦܦܥ

where ܦܦܥ௭௙௨௧௨௥௘ is the average end-of-century CDD for ZIP code z predicted by the meta-model.  
Intuitively, this approach assumes that if Chicago’s climate changes so that its end-of-century CDD 

is equal to Houston’s current CDD, then Chicago’s end-of-century temperature-mortality relationship will 
be the same as Houston’s is today, up to the constant term 65ܯ௭௙௨௧௨௥௘ . This approach is similar in spirit to 
the "analog cities approach" that has been used in the epidemiology literature. However, we are not 
restricted to examining and matching individual cities, and instead we are free to use the entire U.S. Two 
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features of this approach to modeling adaptation warrant mention. First, it assumes that adaptation is 
complete in the sense that if future-Chicago has Houston’s current climate, Chicago will look like Houston 
does today. Thus, we assume that Chicago fully adopts Houston’s current technology. This need not be the 
case, both due to the cost of adaptation and the fact that some characteristics of current-Chicago may be 
immutable.16 The second key feature of this approach is that it ignores the possibility of technological 
progress. To the extent that future technology improvements moderate the temperature-mortality 
relationship, we will not capture these effects. Nevertheless, this approach does provide a useful illustration 
of the potential scope for adaptation in addressing temperature-related mortality due to climate change. 

The final input necessary to compute ݉௭௙௨௧௨௥௘(ݐ) is 65ܯ௭௙௨௧௨௥௘ , the future mortality on a day in 
the reference category, a 65-degree day. For our computations, we assume that mortality at 65 degrees does 
not change over time, 65ܯ௭௖௨௥௥௘௡௧ =  65௭௙௨௧௨௥௘.17 Our justification for this assumption is that when theܯ
temperature is near 65 degrees, individuals typically do not choose to air condition their homes, and use of 
heat, if any, is minimal. This assumption is appropriate if regional differences in mortality on 65 degree 
days, after adjusting for seasonal and other fixed effects, reflect baseline differences in mortality across ZIP 
codes that are not affected by changes in climate. Under these assumptions, the end-of-century change in 
mortality for each ZIP code z from Equation (3) is given by 

௭ܯܣܨ − ௭ܯܣܥ = ෍ ݂൫ݐ, ௭௙௨௧௨௥௘൯ܦܦܥ
௧

݃௭௙௨௧௨௥௘(ݐ) − ෍ ,ݐ)݂ (ݐ)௭௖௨௥௥௘௡௧)݃௭௖௨௥௥௘௡௧ܦܦܥ
௧

. 
These assumptions comprise the current-climate heterogeneity with future adaptation case. 
 
V.C.4. End-of-century mortality prediction results. The results of our prediction exercise for each of the 
three cases described above are presented in Figure 6. In the leftmost scatter plot of Panel A, each blue dot 
represents the current climate (as measured by CDD Normal on the horizontal axis) and percentage change 
in predicted annual mortality by the end of the century (2080 – 2100, vertical axis) for a single ZIP code 
under the assumptions of homogeneous current effects and no adaptation. The large squares represent 
averages by CDD bin. Under homogeneous effects with no adaptation, we see that the largest mortality 
increases are expected to occur in the hottest regions, with modest or even negative effects in the coldest 
regions. This is not surprising, since under homogeneous effects making cold days warmer reduces 
mortality, while making hot days even hotter increases mortality.  
                                                           
16 An alternative would be to assume that future-Chicago’s temperature-mortality relationship is based on a 
weighted average of current-Chicago and current-Houston. 
17 There are many alternative assumptions that could be made here, such as assuming that 65ܯ௭௙௨௧௨௥௘ is equal to 
65௭̂௖௨௥௥௘௡௧ܯ  for ZIP codes ݖ ෝ that currently experience ZIP z’s future CDD. It is straightforward to apply the approach 
we outline here to alternative assumptions about current and future mortality at the reference category. 
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The prediction that hot regions are expected to suffer more under climate change agrees with 
previous simulations based on homogeneous effects (Houser et al., 2014). However, as our previous results 
suggest, cold regions tend to be better at dealing with cold and worse at dealing with heat, while hot regions 
tend to be better at dealing with heat but worse at dealing with cold. The result is that the homogeneous 
temperature effects assumption tends to understate mortality in the cold regions and overstate mortality in 
the hot regions. This conclusion is supported by the middle scatter plot in Panel A of Figure 6, where we 
compute end-of-century mortality using each ZIP code’s climate-specific temperature-mortality 
relationship still not allowing for adaptation (i.e., the current-climate heterogeneity with no future 
adaptation case). These results, depicted by the green dots in the center scatter plot (circles represent 
averages by CDD bin), exhibit the opposite relationship from the homogeneous effects plot.18 Here we see 
that cold areas, which are expected to experience more hot days by the end of the century and are 
particularly bad at dealing with them, exhibit the highest expected mortality increase. Hot regions, which 
will experience more very hot days but are already quite good at dealing with extreme heat, will experience 
small, or even negative mortality changes.19 

The rightmost scatter plot in Panel A of Figure 6 presents results for the current-climate 
heterogeneity with future adaption case. Two features of note emerge from this plot. First, relative to the 
middle panel with climate-specific current effects but no future adaptation, the predicted mortality change 
is generally lower. This is because hotter regions are generally better at dealing with hot days, so allowing 
ZIP codes to adapt reduces the mortality impact of increasingly prevalent hot days. Second, the predicted 
mortality change relative to baseline is negative over a wide range of initial climates, extending from about 
1000 CDD (e.g., current Chicago) on up. As illustrated in Figure 2, Panel B, as regions get hotter, they get 
better at dealing with heat but worse at dealing with cold. However, under most warming scenarios the 
likelihood of very cold days shrinks rapidly, allowing ZIP codes that adapt to warming to gain the benefits 
of better resilience to heat without suffering a large cost due to increased vulnerability to cold.20 

Panel B of Figure 6 summarizes the predicted overall mortality impact of warming by the end of 
the century under the three cases, separating by the coolest, middle, and warmest third of ZIP codes, and 
also presenting the aggregate national level results. The blue bars show that, under homogeneous current 
                                                           
18 The greater degree of vertical dispersion in the green dots relative to the blue, especially among the cooler regions, 
arises due to two reasons. First, ZIP codes with the same climate today can have different predicted future climates, 
including different fractions of very hot days. Second, because cooler regions are particularly bad at dealing with very 
hot days (i.e., the temperature-mortality curve is very steep for hot days, as in Figure 2, Panel B), small variation in 
the proportion of very hot days can induce very different mortality predictions. 
19 The possibility of negative mortality changes for hot regions is driven by the fact that they are particularly bad at 
dealing with cold, and they are far less likely to experience very cold days at the end of the century. 
20 The increased vertical dispersion of the green dots is not present under adaptation because when ZIP codes adapt to 
their future temperatures, very few days fall on steep parts of the temperature-mortality curve, which reduces the 
influence of small changes in the temperature distribution on average mortality. 
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effects with no future adaptation, mortality remains essentially constant in the coolest tercile and increases 
in both the middle and warmest terciles, with the largest effect coming in the warmest tercile. Overall, under 
the homogeneous current effects, no future adaptation assumption, end-of-century mortality would be 
expected to increase by 0.87 percent. 

Allowing for current-climate heterogeneity but no future adaptation paints a very different picture. 
In this case, depicted by the green bars, we see much larger mortality increases in the coolest and middle 
third of ZIPs compared to homogeneous effects, but a smaller mortality increase in the largest third of ZIPs. 
This is because cold and moderate ZIP codes are worse at dealing with very hot days than the homogeneous 
effects curve suggests, while hot ZIP codes are better at it. The overall effect on end-of-century mortality 
under climate-specific effects is a mortality increase of 2.84 percent, over three times as large as the 
prediction under homogeneous effects. 

Finally, the grey bars summarize the impact of allowing for future adaptation on top of current-
climate heterogeneity. Here we see that, for each tercile and overall, the grey bar is substantially lower than 
the green bar, i.e., adaptation reduces predicted mortality. In each case, the magnitude of these differences 
is large, with the mortality effect shrinking by over 60 percent for the coolest third of ZIPs and actually 
becoming negative (relative to baseline) for the two other terciles and for the overall total.  

We find substantial scope for adaptation to mitigate, and even reverse, the potential mortality 
impact of climate change. However, it is worth stressing that this calculation is subject to many caveats. 
We are not claiming that climate change will necessarily be a boon for elderly health and well-being. In 
one sense, the 0.62 percent decrease in annual deaths is a best-case scenario for adaptation, if we assume 
that our modeling of adaptation represents each ZIP fully adopting the technology of ZIPs that already 
experience those climates. Even if such adaptation is technologically possible, our simulations do not 
address the cost of adaptation or the transition path. However, even if it were possible for adaptation to 
substantially reduce mortality at a very low cost, it is important to note that mortality is only one input into 
elderly welfare. If adaptation to heat involves staying indoors and running the air conditioner, then a 
decrease in utility from outdoor activities may offset some or all of the mortality benefit of adaptation 
relative to the current situation. 

Another fundamental reason to be cautious about these simulations is that they assume that the 
temperature-mortality relationship—or, in the case under the adaptation assumption, the temperature-
mortality-CDD relationship—will remain the same in the future as it is now. Over time, however, 
demographics may change or migration may take place in response to climate change. In addition, new 
technologies may make adaptation more complete or less costly, further lowering the mortality impact of 
climate change. On the other hand, generally warmer global temperatures may lead to changes in sea-levels, 
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agriculture, vector-borne disease prevalence and other factors that will fundamentally alter the relationship 
between temperature and mortality and may make high temperatures even more dangerous. 

VI. CONCLUSION 
This paper investigates heterogeneity in the relationship between temperature and mortality across U.S. 
climate regions to assess the scope for adaptation to climate and its implications for predicting climate 
change impacts. The exceptional temporal and geographic scope afforded by daily mortality data on the 
universe of elderly Medicare beneficiaries over two decades allows us to explore heterogeneity in 
temperature effects across local climates. We find strong evidence that regions have adapted to their current 
climate, with residents of cooler climates being more vulnerable to extreme heat but less vulnerable to 
extreme cold than residents of hotter climates. We present evidence that differential air conditioning 
adoption can explain essentially all the variation in heat-related mortality between cooler and warmer 
climates, suggesting that cool climates may have significant scope to adapt to future warming. 

Using both simple counterfactual exercises and predictions of the actual change in the temperature 
distribution from climate projection models, we demonstrate that failure to incorporate climate 
heterogeneity when predicting the effects of climate change can result in regional predictions that are wrong 
in sign, and overall predictions that are wrong in magnitude. Moreover, allowing regions to adapt to future 
climate according to the degree of climate adaptation currently observed in the cross-section yields 
mortality impacts of climate change that are much lower than those calculated without allowing adaptation, 
and possibly even negative. Because our method for calibrating the adaptation to future climate changes is 
based on historical adaptation involving currently available adaptive technologies, the potential for future 
technological change to reduce the costs of adaptation may lower the mortality effect of climate change 
even further. 
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Figure 1 

 Notes: This figure summarizes the distribution of daily temperature in the United States over the period 1992-2011, 
based on climatological data from the National Oceanic Atmospheric Administration’s National Centers for 
Environmental Information. The coolest, middle, and warmest third of ZIPs partition U.S. ZIP codes into 
population-weighted thirds based on 30-year average cooling degree days. Statistics are calculated over daily 
observations at the ZIP code level and are weighted by the elderly Medicare population in each ZIP. Each 5-degree 
bin contains all ZIP-day observations where the average temperature (calculated as the mean of the daily high and 
low temperatures) falls within the bin range.  
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Figure 2 

 Notes: Panel A plots (black) estimates from a daily ZIP code level regression of 3-day mortality on daily average temperature bins (see Equation 1). The 
estimate for each bin reflects excess mortality associated with replacing a day in the reference category (65°F-70°F) with a day in the specified bin.  

Panel B plots estimates from an analogous regression, but where temperature bins are interacted with an indicator for whether the ZIP code is in the 
coolest, middle, or warmest third of ZIP codes based on 30-yar average cooling degree days (see Equation 2). The temperature estimates for each climate 
region reflect excess mortality from a given temperature day relative to a day in the mortality-minimizing temperature category for that region: 55°F-60°F, 
65°F-70°F, and 75°F-80°F for the coolest, middle, and warmest regions, respectively. Estimates are reported and indicated with a marker for temperature 
bins comprising at least 0.05 percent of daily ZIP code observations (about two days every ten years, on average) in that climate region. The dashed curves 
are 5th order polynomials fit to the reported estimates for each tercile and fit to all temperature bins. 

Regressions in both panels include ZIP code by day of year fixed effects, state by year fixed effects, and flexible controls for temperature in the preceding 
2 and 6 days and subsequent 2 days. Regressions are weighted by population and shaded regions report 95 percent confidence intervals based on standard 
errors clustered at the county level.  
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Figure 3 

 Notes: Panel A reports estimates of how the mortality effect of each temperature bin varies with regional AC penetration. The estimates come from estimating 
a version of Equation (1) expanded to include daily average temperature bins interacted with ZIP code-level AC penetration as well separate temperature 
controls for each Census Region. The shaded region reports 95 percent confidence intervals based on standard errors clustered at the county level. Panel B 
and Panel C present the implied counterfactual mortality effects of temperature in the warmest third of ZIP codes if exposed to the lower AC penetration 
rates in the coolest and middle third of ZIP codes, respectively.  
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Figure 4 

 Notes: Figure plots estimates from a daily ZIP code level regression of 3-day hospital visits (emergency room visits 
or hospital admissions) on daily average temperature bins using the same regression specification as in Figure 2, 
Panel B, except with hospital visits as the outcome. The temperature estimates for each climate region reflect excess 
hospital visits from a given temperature day relative to a day in the mortality-minimizing temperature category for 
that region: 55°F-60°F, 65°F-70°F, and 75°F-80°F for the coolest, middle, and warmest regions, respectively. 
Estimates are reported and for temperature bins comprising at least 0.05 percent of daily ZIP code observations 
(about two days every ten years, on average) in that climate region. 95 percent confidence intervals are reported for 
the warmest and coolest third of regions based on standard errors clustered at the county level. 
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Figure 5 

 Notes: This figure summarizes business-as-usual mortality impacts from counterfactual scenarios in which each of 
these climate region’s current distribution of temperature is replaced by the current distribution of one of the other 
two climate regions (see Figure 1).  
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Figure 6 

 Notes: This figure summarizes results from predicting the mortality impact of end-of-century (2080-2100) climate 
change as projected by 21 climate models under the RCP 8.5 emissions scenario.  
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Table 1  
Daily average temperature bin (F) Median average temperature Median low temperature Median high temperature Daily mortality per 100,000 

Daily hospital visits per 100,000 
(1) (2) (3) (4) (5) (6) 
<10 5.3 -5.1 14.6 14.9 187.8 

10-15 12.9 3.6 21.9 15.0 194.3 
15-20 17.9 9.1 26.4 15.0 196.8 
20-25 22.8 14.6 30.8 14.9 197.9 
25-30 27.7 19.9 35.3 14.8 197.5 
30-35 32.7 25.0 40.3 14.6 198.3 
35-40 37.6 28.9 46.1 14.5 197.7 
40-45 42.5 32.9 52.2 14.2 196.5 
45-50 47.6 37.1 57.9 13.9 194.2 
50-55 52.5 41.8 63.3 13.5 191.4 
55-60 57.5 46.5 68.7 13.2 189.6 
60-65 62.5 51.2 73.9 12.8 188.9 
65-70 67.6 56.3 78.8 12.6 190.5 
70-75 72.5 62.0 83.1 12.4 189.5 
75-80 77.4 67.4 87.5 12.4 189.4 
80-85 82.0 72.4 91.9 12.3 191.3 
85-90 86.4 75.4 98.1 12.3 193.2 
90-95 91.8 78.9 105.1 11.9 177.5 
95+ 96.6 83.8 110.0 11.8 170.6 

Total 59.5 48.4 70.9 13.3 192.1 
Notes: This table presents raw summary statistics across each of 19 temperature bins. Statistics are calculated over 
daily observations at the ZIP code level and are weighted by the elderly Medicare population in each ZIP code. 
Each temperature bin contains all ZIP-day observations where the average temperature (calculated as the mean of 
the daily high and low temperatures) falls within the bin range. Mortality rates are computed for the elderly (65+) 
Medicare population over the period 1992-2011, and hospital visits are calculated for the subset (79.5 percent) of 
this population enrolled in traditional fee-for-service Medicare over the period 1996-2011. 
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Appendix (for Online Publication) 
A Data Descriptions 
A.1 Medicare Data 
Our baseline sample consists of all Medicare beneficiaries age 65 – 100 and is derived from 100% 
Medicare enrollment information files for years 1992 – 2011.1 These annual files include an 
observation for each beneficiary enrolled in Medicare for at least one day in that calendar year, 
whether enrolled in Original Medicare (fee-for-service) or Medicare Advantage. The enrollment 
files report a variety of demographic and enrollment variables, including unique beneficiary 
identifiers that link individuals over time; monthly indicators for Medicare eligibility; state, 
county, and ZIP code of residence based on the mailing address for official correspondence; and 
date of birth, date of death, and gender.  

Medicare beneficiaries include the vast majority of elderly living in the United States. 
Panel A of Appendix Figure A1 compares the size of our baseline Medicare sample to Census 
estimates of the U.S. population age 65 and over. To aid comparison, we use Census estimates of 
the resident population on July 1 each year and limit the Medicare sample to beneficiaries residing 
in the 50 states and the District of Columbia and who turned 65 before July 1. Over the period 
1992 – 2011, the Census estimates an average of 36.3 million elderly individuals each year, 
compared to 35.4 million elderly beneficiaries in Medicare. Thus, the Medicare sample covers 
over 97% of elderly living in the U.S., a share which remains roughly constant over the sample 
period. 

The mortality variables used in our analysis are based on dates of death recorded in the 
Medicare enrollment files. Medicare's death data come primarily from the Social Security 
Administration but are augmented based on reviews triggered by hospitalization claims indicating 
patient death. The annual mortality rates in the Medicare data align closely to mortality rates based 
on national vital statistics death records and Census population estimates, as shown in Appendix 
Figure A1, Panel B. While all recorded deaths in the Medicare data are validated, some death dates 
in the data are not validated and are assigned the last date in the month of death. Because much of 
our analysis is performed at the daily level, we drop individuals who die at any point in the year 

                                                 
1 The Research Data Assistance Center (ResDAC) provides a helpful overview of the Medicare enrollment information 
files at http://www.resdac.org/training/workshops/intro-medicare/media/3. 
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and who do not have a validated death date flag. This restriction affects fewer than 3% of the 
deaths in our sample, with the share of deaths with unvalidated dates diminishing over time. 

A.2 Temperature Data 
Appendix Table A1 provides summary statistics on the coverage of the National Centers 

for Environmental Information (NCEI) weather monitors across our sample period. 2 The number 
of monitors increases almost monotonically from 6,786 in 1992 to 9,017 in 2011. For all years, the 
number of non-missing days for both temperature observations that are used to create the average 
daily temperature (the daily maximum and minimum temperatures) is large, and most days of the 
year are covered. More than 98% of ZIP codes are covered by at least one monitor in all years (that 
is, for 98% of ZIP codes there is at least one monitor within 20 miles of the ZIP code centroid, 
though not necessarily within the ZIP code). The number of monitors per ZIP code averages from 
3.47 to 4.86.  

A.3 Air Conditioning Data 
Our data on air conditioning are derived from the Residential Energy Consumption Survey (RECS) 
which is administered by the Energy Information Administration (EIA) and surveys a nationally 
representative sample of housing units in the US across 50 States and the District of Columbia. 
The RECS collects information on energy consumption and energy-related characteristics of 
housing units, including air conditioning. We use this information to estimate a model of air 
conditioning as a function of the location and characteristics of housing units. Specifically, we 
estimate a housing-unit level regression of whether the housing unit has air conditioning (AC) 
equipment as a flexible function of cooling degree days (a fourth-order polynomial) in the housing 
unit location, year built, number of rooms, urban location, mobile home status, and ownership 
status. We interact each of these housing characteristics with dummies for Census Region and 
Census Division. To avoid overfitting, we use LASSO penalized regression and select the penalty 
to minimize 10-fold cross-validated mean squared prediction error. We then apply this model to 
ZIP code level housing characteristics from the Census to compute predicted air conditioning for 
each U.S. ZIP code.  

This process requires constructing a set of comparable housing characteristics in both 
RECS and Census data. Below, we describe the housing characteristics we use and how we define 
them in terms of original RECS and Census variables.  

                                                 
2 Available from http://www.ncdc.noaa.gov/. The NCEI was formerly the National Climatic Data Center (NCDC). 
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A.3.1 Residential Energy Consumption Survey Data 
We use RECS data from survey years 1993, 1997, 2001, 2005, and 2009. We model whether a 
housing unit in the RECS data has air conditioning as a function of housing-level characteristics 
including the housing unit type, the geographic location of the housing unit, and the climate for 
the location of the unit. Below we describe the specific variables used in this model and how these 
variables are defined in terms of the original RECS variables from each year of the survey.  

1. Air conditioning (AC). An indicator variable for whether a household reports to have 
air conditioning equipment at home. This corresponds to the RECS variable AIRCOND 
(“Do you have air conditioning equipment at home”) in years 1993, 1997, 2001, and 
2005. For year 2009, the AIRCOND survey question changed to whether air 
conditioning equipment is “used.” To obtain a consistent measure of AC ownership, 
for 2009 we rely instead on the variable DNTAC (“No air conditioning equipment, or 
unused air conditioning equipment”) which stratifies all households into three groups 
based on their report of AC ownership and usage status: (1) Have AC equipment but 
don’t use it; (2) Have AC equipment and use it; (3) Don’t have any AC equipment. We 
define a household unit to have AC equipment if it belongs to group (1) or (2).  

2. Year built. A set of indicator variables (summing up to one for each household) 
identifying the decade when the housing unit was built (1939 or earlier, 1940 to 1949, 
…, 1990 to 1999, 2000 or later). These are based on the RECS variable YEARMADE 
(“Year home built”) which reports the decadal interval when the home is built (mostly 
in early year) or the year the home is built. For each year, we group household units 
into decade-built according to the categorization used by the 2007-2011 5-year 
American Community Survey (ACS). 

3. Number of rooms. A set of indicator variables (summing up to one for each household) 
identifying the number of rooms in the housing unit (1 room, 2 rooms, …, 8 rooms, 9 
or more rooms). For years 1993, 1997, 2001, we count rooms by adding up RECS 
survey variables BEDROOMS (“Number of bedrooms”) and OTHROOMS (“Number 
of other rooms”). We use the variable TOTROOMS (“Total number of rooms”) which 
is available for year 2005 and 2009. We then assign number of rooms according to the 
categorization used by the 2007-2011 5-year ACS. 

4. Urban. An indicator variable for whether the housing unit is in the urban area, i.e. non-
rural area. This is based on the RECS variable UR (or URBRUR in early years). The 
RECS urban status information is obtained from interviewer observation (1993), 
household report (1997, 2001, 2005), and the Census Bureau’s Urban/Rural geographic 
identifier (2009). 
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5. Mobile. An indicator variable for whether the housing unit is a mobile home. This is 
based on the RECS variable TYPEHUQ (“Type of home as report by respondent”). 
TYPEHUQ reports whether the housing unit is mobile, single-family detached, single-
family attached, apartment in building with 2-4 units, or apartment in building with 5+ 
units. 

6. Own. An indicator variable for whether the housing unit is owned. This is based on the 
RECS variable KOWNRENT (“Housing unit owned or rented”). KOWNRENT reports 
whether the housing unit is owned by someone in the household, rented, or occupied 
without payment. 

7. CDD65. A continuous measure of cooling degree days (CDD) of the survey year with 
a base temperature of 65 Fahrenheit, i.e. the total number of degrees the daily 
temperature exceeds 65 Fahrenheit from January to December of the survey year. We 
draw this information from the RECS variable CDD65 (CD65 in earlier years). RECS 
creates this variable using temperature monitoring data from the National Climate Data 
Center’s weather stations. A housing unit is first matched to the closest weather station, 
and then CDD is computed using the station’s daily temperature data from January to 
December of the survey year. To mask the household location, a “random error” was 
added to the CDD. RECS does not provide further information regarding the structure 
of the random error. 

8. Census region. A set of categorical variables (summing up to one for each household) 
identifying the Census region location of the housing unit. This corresponds to the 
RECS variable REGIONC (“Census Region”) which includes Northeast, Midwest, 
South, and West Census Region. 

9. Census division. A set of categorical variables (summing up to one for each household) 
identifying the Census division location of the housing unit. This corresponds to the 
RECS variable DIVISION (“Census Division”). For years 1993, 1997, 2001, and 2005, 
DIVISION divides housing units into New England (CT, MA, ME, NH, RI, VT), 
Middle Atlantic (NJ, NY, PA), East North Central (IL, IN, MI, OH, WI), West North 
Central (AR, LA, OK, TX), South Atlantic (DC, DE, FL, GA, MD, NC, SC, VA, WV), 
East South Central (AL, KY, MS, TN), West South Central (AR, LA, OK, TX), 
Mountain (AZ, CO, ID, MT, NM, NV, UT, WY), and Pacific Census Division (AK, 
CA, HI, OR, WA). In 2009, the Mountain Census Region is further divided into the 
Mountain North Sub-Division (CO, ID, MT, UT, WY) and the Mountain South Sub-
Division (AZ, NM, NV). We combine the two groups to the single Mountain Division 
to keep the division identifier coherent across years. 
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10. Sampling weights. The sampling weight variable NWEIGHT provided by the RECS. 
This is the sampling weight for the observation in each survey year, which equals 
approximately to the inverse of the probability of selection into the sample. RECS 
applies a couple of adjustments to the weights, including (1) adjustments to interview 
nonresponse; (2) post-stratification for matching total energy consumptions by fuel 
types; (3) benchmarking which ensures that the total RECS weights add up to the 
ACS’s total number of occupied housing units. 

A.3.2 Census Data 
We use ZIP code level housing characteristics from the 2007-2011 5-year American Community 
Survey (ACS) and the 2010 Census to construct a comparable set of housing characteristics as 
used for predicting AC using the LASSO model fit to the RECS data described above. We obtained 
Census data provided by the Minnesota Population Center (2016) through the National Historical 
Geographic Information System (NHGIS), and the variable names we refer to below are from the 
NHGIS. 

1. Year built. Eight variables each measuring the fraction of housing units that were built 
1939 or earlier, 1940 to 1949, …, 1990 to 1999, and 2000 or later. We create these 
variables from the ACS variable “Year Structure Built” which counts total number of 
housing units built in each of the decadal intervals listed above. We convert counts to 
fractions by dividing the total number of housing units in the ZIP code. 

2. Number of rooms. Nine variables each measuring the fraction of housing units that have 
1 room, 2 rooms, …, 8 rooms, and 9 or more rooms. These are based on the ACS 
variable “Rooms.” We convert counts to fractions by dividing the total number of 
housing units in the ZIP code. 

3. Urban. Fraction of urban population from 2010 Census data. We divide the urban 
population in the ZIP code by the total population. 

4. Mobile. Fraction of housing units that are mobile home. We base this on the ACS 
variable “Units in Structure” which provides number of mobile homes in the ZIP code, 
and we divide counts by the total number of housing units in the ZIP code. 

5. Own. Fraction of occupied housing units that are owned. We draw this information 
from the ACS variable “Tenure by Household Size.” We divide number of owner 
occupied housing units by the total number of occupied housing units in the ZIP code. 

6. CDD65. Cooling degree days for the ZIP code, obtained from NOAA Climate Normals 
over the period 1980-2010 using inverse distance weighting of all monitors within a 
20-mile radius of the ZIP code centroid. 
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7. Census region. A set of categorical variables (summing up to one for each ZIP code) 
identifying the Census region of the ZIP code centroid. We use US Census Bureau’s 
standard definition of Census regions. 

8. Census division. A set of categorical variables (summing up to one for each ZIP code) 
identifying the Census division of the ZIP code centroid We use US Census Bureau’s 
standard definition of Census divisions. 

B Robustness: Mortality Displacement (Harvesting) 
A natural concern in the case of temperature-related deaths is that the observed increase in deaths 
does not represent a substantial loss of life years. Rather, it represents a moving forward in time 
of deaths that would have occurred in a few days or weeks even in the absence of the weather 
event. Implicit in this view is the idea that the event attacks the frailest people in the population, 
so that those who die were likely to have had few life years remaining. The extent of harvesting 
has important implications for policymakers, since the cost in terms of life years lost is much lower 
if decedents due to extreme temperatures would have been expected to live only a short time if the 
weather shock had not occurred compared to the case where decedents are randomly selected from 
the population.  

As noted in the survey by Oudin Åström et al. (2011), relatively few studies in the public 
health and epidemiology literatures have investigated the role of mortality displacement in heat-
related mortality. What evidence exists tends to be mixed and dependent on the location of the 
study. Hajat et al. (2005) find mixed results, with evidence of short-term harvesting after heat 
waves in London but not in Dehli. In the Czech Republic, Kyselý (2004) finds a relative rise in 
total mortality of 13% during heat waves, but a net mortality effect of only 1%, attributing the rest 
to short-term mortality displacement. Toulemon and Barbieri (2008) find evidence of modest 
harvesting during the 2003 heat wave in France. To the extent that a clear pattern emerges, it is 
that excess mortality during hot days tends to be due to short term displacement, at least to some 
extent, while the excess mortality during cold periods tends to build over time (Braga et al, 2001; 
Huynen et al., 2001; Deschênes and Moretti, 2009; Deschênes and Greenstone, 2011). 

We investigate the possibility of harvesting in two ways. First, we expand the after-event 
window to include not only the event day and the following two days (3-day mortality), but also 
the following six days (7-day mortality) and 27 days (28-day mortality). We also compare 
specifications that look only at deaths on the event day itself (1-day mortality). If the additional 
deaths are due to very near-term harvesting, then an increase in deaths immediately following a 
temperature event should be followed by a decrease in deaths shortly thereafter. In this case, as the 
post-event window becomes longer, the net mortality effect over that window would become 
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smaller. On the other hand, if the mortality effect of a temperature event remains stable or increases 
as the post-event window expands, this suggests that the estimated mortality effect is not simply 
an artifact of very short-term harvesting. 

Appendix Figure A4 depicts regression results for 3-, 7-, and 28-day mortality.3 For the 
hottest days, we see that 3- and 7-day excess mortality is higher than 1-day, and 28-day excess 
mortality is higher still, with the point estimate of the 28-day mortality of a 95+ degree day (2.2 
excess deaths per 100,000 individuals) being about 30% larger than the 3-day impact (1.7 excess 
deaths per 100,000 individuals), although these effects cannot be statistically distinguished at 
conventional levels. This “build up” effect suggests that excess mortality takes time to manifest 
itself after the initial event, contrary to the harvesting story.4 For moderately hot temperatures (80-
85°F, 85-90°F, 90-95°F), we see little difference between the effects for the 3-, 7-, and 28-day 
windows. This result suggests harvesting in the very near term, i.e., that deaths from moderately 
hot days on the event day are offset by reduced mortality over the next two days. 

Expanding the event window after cold days shows evidence of “build up,” where mortality 
increases as the event window expands. For 28-day mortality, the effects of cold weather are larger 
in magnitude than the effects of hot weather, with a day in the 10-15°F range increasing mortality 
by 2.9 deaths per 100,000 people relative to a 65-70°F day, an effect that is slightly larger than 
that of very hot day. Interestingly, during our sample, very cold days (<10°F) occur almost 37 
times as often as the hottest (>95°F) days (1.47% vs. 0.04%). Ignoring climatic heterogeneity in 
the effects of temperature, this suggests that the overall mortality impact of increasing 
temperatures may be negative if the reduction in the likelihood of extreme cold more than offsets 
the increased likelihood of extreme heat. 

Our second approach to the question of harvesting begins with the observation that the 
essence of the “harvesting” critique is that deaths due to high heat are concentrated in the frailest 
individuals and represent smaller welfare losses since those who are killed only lose a few days or 
weeks of life. This question is of central importance to policymakers, since it has the potential to 
significantly affect the value of mortality reductions due to efforts to moderate or adapt to climate 

                                                 
3 All four of the regressions in Figure 3 use an identical set of lead and lag controls, although it is a different set of 
controls than used in the regressions in Figure 2. Because the post-event window goes up to 28 days, we include bins 
for the average temperatures in: the previous six days, the previous 2 days, the subsequent 2 days, the subsequent 6 
days, and the subsequent 27 days. We also include all interactions of these bins. We omit plotting the standard errors 
for clarity. 
4 It is possible that harvesting, which reduces future mortality relative to the present, and delayed effects, which 
increases excess mortality in the future, take place simultaneously. In this case, increasing excess mortality as the 
event window increases only suggests that the buildup effect is larger than the harvesting effect. Because of this issue, 
below we directly investigate the hypothesis that those who are killed by the heat event are relatively frail by directly 
investigating the characteristics of who dies following the heat event.  
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change. The rich demographic data provided by the Medicare files allow us to directly investigate 
the question of whether those who die on hot or cold days are more frail than the population overall 
and to directly estimate the loss in life expectancy. To do this, we investigate how mortality effects 
differ across demographic groups, and we also calculate estimates of the effect of temperature on 
life-years lost, rather than on mortality counts, using demographic data to infer decedents’ 
counterfactual life-years remaining. 

Appendix Figure A5 depicts regression coefficients for 3-day mortality regressions, 
separately estimated by five age groups (65-69, 70-74, 75-79, 80-84, and 85-100). (Appendix 
Table A2 reports the fraction of our sample within each age group and the mortality rate across 
age groups.) The largest marginal effect of both hot and cold days is among the oldest age groups. 
For 85-100-year-olds, a 95+ degree day causes an additional 4 deaths per 100,000 relative to the 
excluded temperature bin, while that effect is just about half as much for the next oldest group (80-
84) and more than five times as large as for the youngest group (65-69). A <10°F day causes an 
additional 2.5 deaths per 100,000 among 85-100-year-olds; for all other age groups the effect of 
this coldest temperature bin is about 0.5 deaths. Hot days exhibit a roughly monotonic relationship 
between age and the mortality coefficient, but cold days have a larger effect only for the oldest age 
group. Overall Appendix Figure A5 demonstrates that the mortality effects of temperature are 
likely to affect the oldest individuals more than the youngest (among the Medicare population). 
This relationship is not necessarily unexpected, however, since the oldest cohorts have the highest 
mortality rates anyway: a proportionate increase in all cohorts’ mortality rates could lead to the 
pattern observed in Appendix Figure A5, at least for hot days.  

Nevertheless, Appendix Figure A5 suggests that if mortality effects are concentrated in the 
oldest cohorts, then mortality counts or rates that weight all individuals equally may overstate the 
impact of extreme temperatures. In other words, the life-years lost (i.e., mortality cost) from 
extreme temperatures may be moderated by the fact that the oldest individuals (with the fewest 
counterfactual life-years remaining) are the most susceptible. We investigate this possibility by 
estimating our main regression equation where mortality is weighted by the decedent’s expected 
life years remaining using estimates provided by the Social Security administration based on age 
and gender.5 We assign each individual alive at the start of the day a value of expected remaining 
life-years using this table, which in turn implies the number of expected life years lost for each 
death. This procedure is likely to generate an upper bound on the true effect of temperature on life-
years lost, since those who are killed by extreme temperatures are likely to be less healthy than the 
average individual within an age-gender cell. We sum the total expected life-years lost per 100,000 

                                                 
5 Available at http://www.ssa.gov/oact/STATS/table4c6.html.  
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individuals and use this sum as our outcome measure. Regression results are reported in Appendix 
Figure A6.  

While Appendix Figure A5 demonstrates that the effect of temperature on mortality counts 
is highest among the oldest individuals, Appendix Figure A6 shows that the U-shaped relationship 
between temperature and life years lost is similar across age groups. This pattern would be unlikely 
to emerge if the marginal deaths due to temperature were concentrated solely among those with 
the shortest expected lifespans, since these individuals are given very little weight in the new 
regressions. Indeed, extrapolating from these estimates, we find that the marginal decedent due to 
extreme temperatures has an expected remaining lifespan that is quite similar to that of the typical 
person who dies on more temperate days (details available upon request). This observation 
supports the conclusion that the mortality effects we measure represent “true” marginal deaths 
associated with substantial loss of life years and not merely short-term mortality displacement. 
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Appendix Figures and Tables 
Appendix Figure A1 

 
Notes: Figure compares Medicare and Census elderly population and mortality rates over the sample period 1992-2011.  

Left Panel: Census population estimates are derived from U.S. Census Bureau files. Estimates for 1992-2009 are intercensal estimates of the July 1 resident 
population age 65 and over; estimates for 2010-2011 are postcensal estimates of the July 1 resident population age 65 and over. Medicare beneficiaries for a given 
calendar year include all individuals age 65-100 in the corresponding annual Medicare enrollment file, limited to those who turned 65 before July 1 of the year and 
have a ZIP code of residence located in the 50 states or the District of Columbia. 

Right Panel: National vital statistics mortality data come from the Compressed Mortality File (CMF), which is produced by the National Center for Health 
Statistics and is based on death certificates filed in the 50 states and the District of Columbia. To obtain vital statistics mortality rates, we divide total CMF deaths 
among the 65 and over population in a given year by the Census population estimates shown in the Left Panel. The dashed lines report annual mortality rates based 
on death dates recorded in the Medicare annual enrollment files. The figure reports both the total mortality rate in the Medicare sample, as well as the mortality rate 
among the analytical sample used in the paper which excludes individuals who have a validated death that year but do not have a validated death date flag. 
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Appendix Figure A2 

 
Notes: This graph plots in solid orange the number of days exposed to 90-degree or higher average temperature for a typical Medicare beneficiary, 
for each year in the sample. Annual exposure is computed by calculating the number of days each beneficiary is exposed to 90+ degree average 
temperature based on ZIP code of residence and then averaging across beneficiaries. The heavy-dashed gray line and lightly-dashed blue line describe 
the three-year moving average and a best fit linear trend of this time series, respectively.   
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Appendix Figure A3

 
Notes: This figure presents coefficients from the same regression specification as shown in Figure 2 Panel A, but 
demonstrates the effects clustering standard errors at different levels and excluding interaction terms for the lead and lag 
temperature controls. Each figure plots estimates from a separate, daily ZIP code level regression of 3-day mortality on 
daily average temperature bins (see Equation 1). The estimate for each bin reflects excess mortality associated with 
replacing a day in the reference category (65°F-70°F) with a day in the specified bin. The shaded grey region represents 
the 95% confidence interval of the estimates. The orange line captures the marginal mortality effect of moving one 
temperature bin to the right, with the error bars showing the 95% confidence interval. All regressions include state-by-
year and ZIP-code-by-day-of-year fixed effects. Regressions are weighted by population and standard errors are clustered 
at the county level. 
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Appendix Figure A4 

 Notes: This figure presents coefficients from separate regressions for each of three outcome variables: 3-day, 7-day, and 
28-day mortality. The regression specification is that of Equation (1), but with temperature leads expanded to included 
average temperature in the 6 and 27 days following the event day. 
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Appendix Figure A5 

 
Notes: This figure plots estimates from a daily ZIP code level regression of 3-day mortality on daily average temperature bins (see Equation 1) 
separately for individuals in each of 5 age groups: 65-69, 70-74, 75-79, 80-84, and 85-100. The estimate for each bin reflects excess mortality 
associated with replacing a day in the reference category (65°F-70°F) with a day in the specified bin. All regressions include state-by-year and ZIP-
code-by-day-of-year fixed effects and also controls flexibly for temperature leads/lags by fully interacting three sets of 5-degree average temperature 
bins for the preceding 2 and 6 days and subsequent 2 days. Regressions are weighted by population and standard errors are clustered at the county 
level.   
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Appendix Figure A6 

 
Notes: This figure plots estimates from a daily ZIP code level regression of life years lost (LYL) due to 3-day mortality on daily average temperature 
bins (see Equation 1) separately for individuals in each of 5 age groups: 65-69, 70-74, 75-79, 80-84, and 85-100. The estimate for each bin reflects 
additional loss of life years associated with replacing a day in the reference category (65°F-70°F) with a day in the specified bin. LYL is computed 
by assigning individuals their expected life years remaining based on age and gender using Social Security Administration life tables, and then 
summing over those alive on any ZIP-code-day to get the total number of remaining life years and then estimating equation (1). The regression 
includes state-by-year and ZIP-code-by-day-of-year fixed effects and also controls flexibly for temperature leads/lags by fully interacting three sets 
of 5-degree average temperature bins for the preceding 2 and 6 days and subsequent 2 days. The regression is weighted by population and standard 
errors are clustered at the county level.   
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Appendix Figure A7 
Cooling degree days (1981-2010) 

 
Notes: Map shows average cooling degree days over the 3-decade period 1981-2010, by U.S. ZIP code. Data based on 
NOAA Climate Normals for weather stations, aggregated to the ZIP code level using inverse distance weighting of all 
monitors within 20 miles of the ZIP code centroid.  
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Appendix Figure A8 

 
Notes: This figure plots (thin brown lines) projected U.S. average annual temperature (20-year moving average) for each of 
the 21 climate models produced under CMIP5 for which daily weather scenarios are available. The thick dashed line plots 
projected annual average temperature under the “meta” model, which is defined by averaging across the temperature 
distributions of each of the 21 climate models. 
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Appendix Figure A9 

 
Notes: The figure shows, for each U.S. ZIP code, the predicted change in annual average temperature at the end of the 
century (2080 – 2100) relative to the current period (1992 – 2011) under the RCP 8.5 high emissions scenario. Predicted 
changes are derived by averaging the predictions of all 21 climate models produced under CMIP5 for which daily weather 
scenarios are available (see Appendix Figure A8).   
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Appendix Figure A10 

 
Notes: This figure summarizes the results of estimating Equation (4) by plotting the temperature-mortality 
relationship for two cold ZIP codes (Fargo, ND, and Minneapolis, MN); one middle ZIP code (Chicago, 
IL); and two hot ZIP codes (Dallas, TX, and Miami, FL) using the estimated temperature effects ݂ሺݐ,  ሻܦܦܥ
evaluated at each ZIP code’s current CDD normal.  
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Appendix Figure A11 

 
Notes: This figure summarizes how the estimated semi-parametric function of temperature and climate ݂ሺݐ,  ሻ performs relative to the non-parametric estimates of temperature effects by climate tercileܦܦܥ
reported in Figure 2 Panel B. The estimates plotted in yellow come from re-estimating Equation (2) (used 
to generate the non-parametric estimates plotted in blue) but with the fitted mortality values መ݂ሺݐ,  ሻ asܦܦܥ
the outcome and controlling only for temperature and climate tercile indicators.  
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Appendix Table A1 

Year Number of Monitors 
Average, per-monitor number of days with missing temperature observations 

Fraction of ZIP codes matched with at least one monitor 
Average number of matched monitors per ZIP code Tmin Tmax 

1992 6786 342 341 0.982 3.47 
1993 6828 339 337 0.982 3.50 
1994 6867 339 337 0.982 3.53 
1995 6902 337 336 0.982 3.52 
1996 7043 336 334 0.980 3.62 
1997 7248 333 331 0.980 3.76 
1998 7546 331 328 0.983 4.03 
1999 7700 334 331 0.984 4.11 
2000 7867 335 333 0.985 4.22 
2001 8113 331 329 0.985 4.32 
2002 8343 331 328 0.985 4.44 
2003 8576 333 330 0.985 4.53 
2004 8738 334 332 0.986 4.65 
2005 8815 332 330 0.987 4.68 
2006 8808 334 332 0.985 4.69 
2007 8820 336 334 0.985 4.72 
2008 8814 335 333 0.984 4.70 
2009 8868 335 334 0.984 4.72 
2010 8817 339 338 0.983 4.67 
2011 9017 336 335 0.984 4.86 

Notes: This table presents summary statistics related to the number of weather monitors available in the 
NCEI dataset. Number of monitors includes just monitors with at least one observation of Tmax (daily 
maximum temperature) or Tmin (daily minimum temperature). A monitor is matched to a ZIP code if it is 
located within 20 miles of the ZIP code centroid. 
 
 
  



58  

Appendix Table A2 

Age Group Fraction of Elderly 
Population 

3-day Mortality Per 
100,000 

Beneficiaries 

Average Life 
Expectancy (Based 

on Age, Sex) 
65-69 26.6% 14.5 17.5 
70-74 24.9% 21.6 14.1 
75-79 20.3% 33.8 10.9 
80-84 14.8% 54.1 8.1 

85-100 13.5% 115.4 5.1 
Total 100.0% 39.6 12.3 

Notes: This table shows the fraction of our sample within each age group and the mortality rate across the 
age groups for the regressions shown in Figure 4. Statistics are calculated over daily observations at the 
ZIP code level. Statistics in all columns are weighted by the Medicare age group population in each ZIP 
code. 


	2017-03-14-AdaptationTemperature_Draft
	2017-03-14-AdaptationTemperature_Appendix

